WorldWideScience

Sample records for high ambient light

  1. Data based ambient lighting control

    NARCIS (Netherlands)

    2012-01-01

    In controlling an ambient lighting element, a category of data being rendered by a host is identified, ambient lighting data associated with the identified category is retrieved, and the retrieved ambient lighting data is rendered in correspondence with the rendered data. The retrieved ambient

  2. Interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological variables in broilers grown to 42 day of age

    Science.gov (United States)

    The interactive effects of ambient temperature and light sources at high relative humidity on growth performance and blood physiological reactions in broilers grown to 42 day of age were investigated. The experiment consisted of 2 levels (Moderate=21.1, High=26.7 °C) of temperatures and 2 light sour...

  3. Studies in ambient intelligent lighting

    NARCIS (Netherlands)

    Sekulovski, D.

    2013-01-01

    The revolution in lighting we are arguably experiencing is led by technical developments in the area of solid state lighting technology. The improved lifetime, efficiency and environmentally friendly raw materials make LEDs the main contender for the light source of the future. The core of the

  4. Towards New Ambient Light Systems: a Close Look at Existing Encodings of Ambient Light Systems

    Directory of Open Access Journals (Sweden)

    Andrii Matviienko

    2015-10-01

    Full Text Available Ambient systems provide information in the periphery of a user’s attention. Their aim is to present information as unobtrusively as possible to avoid interrupting primary tasks (e.g. writing or reading. In recent years, light has been used to create ambient systems to display information. Examples of ambient light systems range from simple notification systems such as displaying messages or calendar event reminders, to more complex systems such as focusing on conveying information regarding health activity tracking. However, for ambient light systems, there is a broad design space that lacks guidelines on when to make use of light displays and how to design them. In this paper we provide a systematic overview of existing ambient light systems over four identified information classes derived from 72 existing ambient light systems. The most prominent encoding parameters among the surveyed ambient light systems are color, brightness, and their combination. By analyzing existing ambient light systems, we provide a first step towards developing guidelines for designing future ambient light systems.

  5. The influence of ambient light on the driver

    Science.gov (United States)

    Klinger, Karsten D.; Lemmer, Uli

    2008-04-01

    Increasingly, cars are fitted with interior ambient lighting which is switched on while driving. This special kind of interior light emphasizes the interior design of the car, it makes a car look special and gives the buyers a new option to personalize their automobiles. But how does ambient interior light influence the driver? We conducted a series of over 50 tests to study the influence of interior ambient light on contrast perception under different illumination levels, colors and positions of the illuminated areas. Our tests show that in many cases the ambient lighting can improve the visual contrast for seeing objects in the headlamp beam. But the test persons mentioned that the tested brightness looked too bright and that they felt glared. The measured values instead proved that no disability glare exists. Therefore, provided that the drivers can adjust the intensity of the ambient light to avoid glare, the ambient light has no negative effect on the drivers' contrast perception.

  6. Oscillations studied with the smartphone ambient light sensor

    International Nuclear Information System (INIS)

    Sans, J A; Manjón, F J; Pereira, A L J; Gomez-Tejedor, J A; Monsoriu, J A

    2013-01-01

    This paper makes use of a smartphone's ambient light sensor to analyse a system of two coupled springs undergoing either simple or damped oscillatory motion. The period, frequency and stiffness of the spring, together with the damping constant and extinction time, are extracted from light intensity curves obtained using a free Android application. The results demonstrate the instructional value of mobile phone sensors as a tool in the physics laboratory. (paper)

  7. Oscillations studied with the smartphone ambient light sensor

    Science.gov (United States)

    Sans, J. A.; Manjón, F. J.; Pereira, A. L. J.; Gomez-Tejedor, J. A.; Monsoriu, J. A.

    2013-11-01

    This paper makes use of a smartphone's ambient light sensor to analyse a system of two coupled springs undergoing either simple or damped oscillatory motion. The period, frequency and stiffness of the spring, together with the damping constant and extinction time, are extracted from light intensity curves obtained using a free Android application. The results demonstrate the instructional value of mobile phone sensors as a tool in the physics laboratory.

  8. Effects of read-out light sources and ambient light on radiochromic film

    International Nuclear Information System (INIS)

    Butson, Martin J.; Yu, Peter K.N.; Metcalfe, Peter E.

    1998-01-01

    Both read-out light sources and ambient light sources can produce a marked effect on coloration of radiochromic film. Fluorescent, helium neon laser, light emitting diode (LED) and incandescent read-out light sources produce an equivalent dose coloration of 660 cGy h -1 , 4.3 cGy h -1 , 1.7 cGy h -1 and 2.6 cGy h -1 respectively. Direct sunlight, fluorescent light and incandescent ambient light produce an equivalent dose coloration of 30 cGy h -1 , 18 cGy h -1 and 0 cGy h -1 respectively. Continuously on, fluorescent light sources should not be used for film optical density evaluation and minimal exposure to any light source will increase the accuracy of results. (author)

  9. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor.

    Science.gov (United States)

    Park, Yoo Min; Han, Yong Duk; Chun, Hyeong Jin; Yoon, Hyun C

    2017-07-15

    We present a hand-held optical biosensing system utilizing a smartphone-embedded illumination sensor that is integrated with immunoblotting assay method. The smartphone-embedded illumination sensor is regarded as an alternative optical receiver that can replaces the conventional optical analysis apparatus because the illumination sensor can respond to the ambient light in a wide range of wavelengths, including visible and infrared. To demonstrate the biosensing applicability of our system employing the enzyme-mediated immunoblotting and accompanying light interference, various types of ambient light conditions including outdoor sunlight and indoor fluorescent were tested. For the immunoblotting assay, the biosensing channel generating insoluble precipitates as an end product of the enzymatic reaction is fabricated and mounted on the illumination sensor of the smartphone. The intensity of penetrating light arrives on the illumination sensor is inversely proportional to the amount of precipitates produced in the channel, and these changes are immediately analyzed and quantified via smartphone software. In this study, urinary C-terminal telopeptide fragment of type II collagen (uCTX-II), a biomarker of osteoarthritis diagnosis, was tested as a model analyte. The developed smartphone-based sensing system efficiently measured uCTX-II in the 0-5ng/mL concentration range with a high sensitivity and accuracy under various light conditions. These assay results show that the illumination sensor-based optical biosensor is suitable for point-of-care testing (POCT). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. High ambient contrast ratio OLED and QLED without a circular polarizer

    International Nuclear Information System (INIS)

    Tan, Guanjun; Zhu, Ruidong; Luo, Zhenyue; Wu, Shin-Tson; Tsai, Yi-Shou; Lee, Kuo-Chang; Lee, Yuh-Zheng

    2016-01-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized. (paper)

  11. High Brightness OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC; Kondakova, Marina [OLEDWorks LLC; Boroson, Michael [OLEDWorks LLC; Hamer, John [OLEDWorks LLC

    2016-05-25

    In this work we describe the technology developments behind our current and future generations of high brightness OLED lighting panels. We have developed white and amber OLEDs with excellent performance based on the stacking approach. Current products achieve 40-60 lm/W, while future developments focus on achieving 80 lm/W or higher.

  12. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light.

    Science.gov (United States)

    Foulds, Wallace S; Barathi, Veluchamy A; Luu, Chi D

    2013-12-09

    To determine whether progressive ametropia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. One-day-old chicks were raised in red light (90% red, 10% yellow-green) or in blue light (85% blue, 15% green) with a 12 hour on/off cycle for 14 to 42 days. Refraction was determined by streak retinoscopy, and by automated infrared photoretinoscopy and ocular biometry by A-scan ultrasonography. Red light induced progressive myopia (mean refraction ± SD at 28 days, -2.83 ± 0.25 diopters [D]). Progressive hyperopia was induced by blue light (mean refraction at 28 days, +4.55 ± 0.21 D). The difference in refraction between the groups was highly significant at P light (-2.21 ± 0.21 D) was reversed to hyperopia (+2.50 ± 0.29 D) by subsequent 21 days of blue light. Hyperopia induced by 21 days of blue light (+4.21 ± 0.19 D) was reversed to myopia (-1.23 ± 0.12 D) by 21 days of red light. Rearing chicks in red light caused progressive myopia, while rearing in blue light caused progressive hyperopia. Light-induced myopia or hyperopia in chicks can be reversed to hyperopia or myopia, respectively, by an alteration in the chromaticity of ambient light. Manipulation of chromaticity may be applicable to the management of human childhood myopia.

  13. Using ambient lighting in persuasive communication : the role of pre-existing color associations

    NARCIS (Netherlands)

    Lu, S.; Ham, J.R.C.; Midden, C.J.H.; Spagnolli, A.; Chittaro, L.; Gamberini, L.

    2014-01-01

    Earlier research indicated that ambient persuasive lighting can have persuasive effects on energy-efficiency behavior. However, why would this kind of ambient feedback be effective? The current research investigated the influence of the strength of associations (of colors used for giving feedback)

  14. Subjective quality of videos displayed with local backlight dimming at different peak white and ambient light levels

    DEFF Research Database (Denmark)

    Mantel, Claire; Korhonen, Jari; Forchhammer, Søren

    2015-01-01

    In this paper the influence of ambient light and peak white (maximum brightness) of a display on the subjective quality of videos shown with local backlight dimming is examined. A subjective experiment investigating those factors is set-up using high contrast test sequences. The results are firstly...

  15. Effects of ambient lighting displays on peripheral activity awareness

    NARCIS (Netherlands)

    Davis, K.; Owusu, E.B.; Marcenaro, L.; Feijs, L.; Regazzoni, C.; Hu, J.

    2017-01-01

    The emergence of ubiquitous sensing and the Internet of Things (IoT) have inspired the development of “smart” everyday objects, which offer tremendous opportunities for maintaining the quality of life in ambient assisted living (AAL) environments. Inspired by the future possibilities of connected

  16. Visible Light Communications (VLC) for Ambient Assisted Living

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena D.; Kyriazakos, Sofoklis

    2014-01-01

    and a conceptual supporting architecture for its deployment. Further, the technical challenges and possible roadmap for the actual deployment are analyzed for the particular case of an eHealth scenario where the utilization of VLC technology is the enabler of the costefficient rollout of the required...... (WLANs) can take upon part of the indoor traffic, the ever increasing demand for such data, and users, calls for either use of licensed or novel unlicensed wireless communication technologies as part of the smart home enablers. This paper focuses on the potentials of visible light communications (VLC......), jointly with radio and fiber communications, to support very dense low and high data rate connectivity, while enabling deployment of secure-sensitive indoor applications, including indoor tracking and localization. The paper proposes a scenario for integrating VLC into the smart home scenario...

  17. A high-resolution ambient seismic noise model for Europe

    Science.gov (United States)

    Kraft, Toni

    2014-05-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential to the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquake at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. Due to this development an increasing number of seismic monitoring networks are being installed in densely populated areas with strongly heterogeneous, and unfavorable ambient noise conditions. This poses a major challenge on the network design process, which aims to find the sensor geometry that optimizes the

  18. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos

    DEFF Research Database (Denmark)

    Li, Rong; Liu, Ying; Callesen, Henrik

    2015-01-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos...... was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased...... the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time...

  19. Dye-sensitized solar cells for efficient power generation under ambient lighting

    Science.gov (United States)

    Freitag, Marina; Teuscher, Joël; Saygili, Yasemin; Zhang, Xiaoyu; Giordano, Fabrizio; Liska, Paul; Hua, Jianli; Zakeeruddin, Shaik M.; Moser, Jacques-E.; Grätzel, Michael; Hagfeldt, Anders

    2017-06-01

    Solar cells that operate efficiently under indoor lighting are of great practical interest as they can serve as electric power sources for portable electronics and devices for wireless sensor networks or the Internet of Things. Here, we demonstrate a dye-sensitized solar cell (DSC) that achieves very high power-conversion efficiencies (PCEs) under ambient light conditions. Our photosystem combines two judiciously designed sensitizers, coded D35 and XY1, with the copper complex Cu(II/I)(tmby) as a redox shuttle (tmby, 4,4‧,6,6‧-tetramethyl-2,2‧-bipyridine), and features a high open-circuit photovoltage of 1.1 V. The DSC achieves an external quantum efficiency for photocurrent generation that exceeds 90% across the whole visible domain from 400 to 650 nm, and achieves power outputs of 15.6 and 88.5 μW cm-2 at 200 and 1,000 lux, respectively, under illumination from a model Osram 930 warm-white fluorescent light tube. This translates into a PCE of 28.9%.

  20. Making it not too obvious. The effect of ambient light feedback on space heating energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Maan, S.; Merkus, B.; Ham, J.; Midden, C. [Human-Technology Interaction, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-03-15

    Earlier research investigating persuasive technology - technology designed to influence human behavior or attitude - indicates that persuasive technology can stimulate energy efficient behavior. However, most applications of persuasive technology need people's focal attention to be successful, and people may often not have these cognitive resources available. The current research investigates a form of persuasive technology that is less obvious and easier to process: ambient lighting as persuasive technology. In an experimental study, participants could conserve energy while setting temperatures on a central heating panel and receive feedback about their energy consumption in each task. We tested the effect of feedback through a lamp that gradually changed color dependent on energy consumption and compared these effects to more widely used factual feedback. Half of the participants received lighting feedback, and half of the participants received numerical feedback. To investigate whether ambient feedback is easier to process than numerical feedback, half of the participants performed a cognitive load task in addition to the focal task. Results indicated that feedback through lighting has stronger persuasive effects than numerical feedback. Furthermore, ambient lighting feedback seemed easier to process than numerical feedback because cognitive load interfered with processing numerical feedback, but not with processing lighting feedback. Implications for theory and design of energy consumption feedback systems, persuasive lighting, and (ambient) persuasive technology are discussed.

  1. Effect of ambient light exposure of media and embryos on development and quality of porcine parthenogenetically activated embryos.

    Science.gov (United States)

    Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik

    2015-06-01

    Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.

  2. Chapter 21. Intelligent light therapy for older adults: Ambient assisted living.

    NARCIS (Netherlands)

    H.T.G. Weffers; M.P.J. Aarts; MD E.J.M. Wouters; A.C. Westerlaken; B. Schrader; M.B.C. Aries; J. van Hoof

    2013-01-01

    van Hoof, J., Wouters, E.J.M., Schräder, B, Weffers, H.T.G., Aarts, M.P.J., Aries, M.B.C., Westerlaken, A.C. (2013) Chapter 21. Intelligent light therapy for older adults: Ambient assisted living. In: Agah, A. (ed.) Medical Applications of Artificial Intelligence. CRC Press/Taylor & Francis Group,

  3. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  4. Effect of ambient light on the time needed to complete a fetal biophysical profile: A randomized controlled trial.

    Science.gov (United States)

    Said, Heather M; Gupta, Shweta; Vricella, Laura K; Wand, Katy; Nguyen, Thinh; Gross, Gilad

    2017-10-01

    The objective of this study is to determine whether ambient light serves as a fetal stimulus to decrease the amount of time needed to complete a biophysical profile. This is a randomized controlled trial of singleton gestations undergoing a biophysical profile. Patients were randomized to either ambient light or a darkened room. The primary outcome was the time needed to complete the biophysical profile. Secondary outcomes included total and individual component biophysical profile scores and scores less than 8. A subgroup analysis of different maternal body mass indices was also performed. 357 biophysical profile studies were analyzed. 182 studies were performed with ambient light and 175 were performed in a darkened room. There was no difference in the median time needed to complete the biophysical profile based on exposure to ambient light (6.1min in darkened room versus 6.6min with ambient light; P=0.73). No difference was found in total or individual component biophysical profile scores. Subgroup analysis by maternal body mass index did not demonstrate shorter study times with ambient light exposure in women who were normal weight, overweight or obese. Ambient light exposure did not decrease the time needed to complete the biophysical profile. There was no evidence that ambient light altered fetal behavior observed during the biophysical profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Installation of the light tight cover for the SSD modules (the modules are behind the aluminium plate). The silicon sensors are sensitive to light tight, so ambient light will increase the noise and may even damage them.

    CERN Multimedia

    Nooren, G.

    2004-01-01

    Installation of the light tight cover for the SSD modules (the modules are behind the aluminium plate). The silicon sensors are sensitive to light tight , so ambient light will increase the noise and may even damage them.

  6. High mortality of Red Sea zooplankton under ambient solar radiation.

    Science.gov (United States)

    Al-Aidaroos, Ali M; El-Sherbiny, Mohsen M O; Satheesh, Sathianeson; Mantha, Gopikrishna; Agustī, Susana; Carreja, Beatriz; Duarte, Carlos M

    2014-01-01

    High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation). The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM) 18.4±5.8% h(-1), five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM) 12±5.6 h(-1)% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  7. High mortality of Red Sea zooplankton under ambient solar radiation.

    Directory of Open Access Journals (Sweden)

    Ali M Al-Aidaroos

    Full Text Available High solar radiation along with extreme transparency leads to high penetration of solar radiation in the Red Sea, potentially harmful to biota inhabiting the upper water column, including zooplankton. Here we show, based on experimental assessments of solar radiation dose-mortality curves on eight common taxa, the mortality of zooplankton in the oligotrophic waters of the Red Sea to increase steeply with ambient levels of solar radiation in the Red Sea. Responses curves linking solar radiation doses with zooplankton mortality were evaluated by exposing organisms, enclosed in quartz bottles, allowing all the wavelengths of solar radiation to penetrate, to five different levels of ambient solar radiation (100%, 21.6%, 7.2%, 3.2% and 0% of solar radiation. The maximum mortality rates under ambient solar radiation levels averaged (±standard error of the mean, SEM 18.4±5.8% h(-1, five-fold greater than the average mortality in the dark for the eight taxa tested. The UV-B radiation required for mortality rates to reach ½ of maximum values averaged (±SEM 12±5.6 h(-1% of incident UVB radiation, equivalent to the UV-B dose at 19.2±2.7 m depth in open coastal Red Sea waters. These results confirm that Red Sea zooplankton are highly vulnerable to ambient solar radiation, as a consequence of the combination of high incident radiation and high water transparency allowing deep penetration of damaging UV-B radiation. These results provide evidence of the significance of ambient solar radiation levels as a stressor of marine zooplankton communities in tropical, oligotrophic waters. Because the oligotrophic ocean extends across 70% of the ocean surface, solar radiation can be a globally-significant stressor for the ocean ecosystem, by constraining zooplankton use of the upper levels of the water column and, therefore, the efficiency of food transfer up the food web in the oligotrophic ocean.

  8. Bright ambient light conditions reduce the effect of tryptophan depletion in healthy females.

    Science.gov (United States)

    Defrancesco, Michaela; Niederstätter, Harald; Parson, Walther; Kemmler, Georg; Hinterhuber, Hartmann; Marksteiner, Josef; Deisenhammer, Eberhard A

    2013-11-30

    Tryptophan depletion (TD) is an established method to influence the serotonergic system and mood. The purpose of this study was to examine the effect of TD under different ambient light conditions, measured through serotonin-associated plasma levels and a visual analog scale (VAS), on healthy females. Thirty-eight healthy female s-allele carriers of the serotonin transporter promoter gene (5-HTTLPR) were administered a TD under dim light conditions (75 lx). A sub-group of 8 participants repeated the procedure randomized in two additional light conditions (585 lx and 1530 lx respectively). Prior to, and 5h following administration of TD, various variables (serotonin-associated plasma levels, VAS) were measured. Due to not normal distributed data, non-parametric statistical tests were used. Overall analysis showed a significant mood lowering effect of TD. Moreover, TD decreased all measured serotonin-associated plasma levels significantly. Significant differences in varying light conditions were found for the VAS and plasma tryptophan, with the greatest effect of TD in the 75 lx condition. Results of our study showed an influence of even slight differences in ambient light intensity on the effect of TD concerning mood as well as on the serotonergic system. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    Science.gov (United States)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    the first minutes of the cycle, before the light-off of the Three-Way Catalyst (TWC). Less ammonia has been emitted with ethanol fuel, in particular in low ambient condition (E75 versus E5). Ammonia is a harmful compound for human health and vegetation, and is a precursor of secondary aerosol. Even if agricultural activities are the main source of anthropogenic ammonia, the contribution from the transport sector increases significantly during the cold season. Consequently, using high concentrated ethanol as fuel may have a positive impact on ammonia emission in urban area. However, ethanol fuel had a negative impact on formaldehyde and acetaldehyde. The latter together with methane was notably emitted in low ambient temperature, in comparison with gasoline fuel (E5). Moreover, the OFP at -7°C was influenced by the amount of ethanol in gasoline, mainly because of the increase of ozone precursors linked to ethanol (ethylene, acetylene, and acetaldehyde). Even if ozone concentration levels are generally lower during the cold seasons these results show that the issue should be considered globally before promoting the use of high concentrated ethanol fuel in a large scale.

  10. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-05-01

    Full Text Available To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  11. A Novel Optical Morse Code-Based Electronic Lock Using the Ambient Light Sensor and Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Chin-Tan Lee

    2017-02-01

    Full Text Available In this work, a novel electronic lock that can encode and decode optical signals, modulated using Morse code conventions, was developed to build a smart home security system based on the Internet of Things (IoT. There are five topics of interest in this research: (1 optical Morse code encoder; (2 optical Morse code decoder; (3 ambient light sensor circuit; (4 fuzzy controller; (5 cloud monitoring system. We take advantage of the light-emitting components as the encoder, which are readily available in hand-held mobile devices (e.g., Smart phones and photoresistors and a microcontroller as the decoder. By Wi-Fi transferring, even without a personal computer, real-time information about this lock can be uploaded to the cloud service platform, and helps users to ensure home safety on the remote monitoring system. By using the ambient light sensor and fuzzy controller in this novel optical Morse code-based electronic lock, experimental results show that the reliability of this system is much improved from 65% to 100%. That means that it is highly resistant to different illumination conditions in the work environment, and therefore all functions, including coding, emitting, receiving, decoding, uploading and cloud monitoring, can work well. Furthermore, besides the convenience and cost reduction, by incorporating traditional keys into smart phones, as a consumer electronics, our proposed system is suitable for users of all ages because of a user-friendly operation interface.

  12. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang

    2018-03-20

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  13. GDI fuel sprays of light naphtha, PRF95 and gasoline using a piezoelectric injector under different ambient pressures

    KAUST Repository

    Wu, Zengyang; Wang, Libing; Badra, Jihad A.; Roberts, William L.; Fang, Tiegang

    2018-01-01

    This study investigates fuel sprays of light naphtha (LN), primary reference fuel (PRF) and gasoline under different ambient pressures with an outwardly opening piezo gasoline direct injection (GDI) fuel injector. The tested gasoline fuel (regular grade with up to 10% ethanol, E10) was obtained by mixing fuels with AKI (the average of the research octane number (RON) and the motor octane number (MON)) of 87 from three local gas stations. Primary reference fuel (PRF) is commonly used as gasoline surrogate fuel and is blended by iso-octane and n-heptane. PRF95 is the blend of 95% iso-octane and 5% n-heptane by volume. LN fuel was provided by Saudi Aramco Oil Company. Five different ambient pressure conditions varied from 1 bar to 10 bar were tested. The spray was visualized by applying a Mie-scattering technique and a high-speed camera was employed to capture the spray images. The spray structure, spray angle, spray penetration length and spray front fluctuation were analyzed and compared among three fuels. Spray images show that a clear filamentary hollow-cone spray structure is formed for all three fuels at atmospheric conditions, and toroidal recirculation vortexes are observed at the downstream spray edges. A higher ambient pressure leads to a stronger vortex located closer to the injector outlet. Generally speaking, larger spray angles are found under higher ambient pressure conditions for all three fuels. Gasoline fuel always has the largest spray angle for each ambient pressure, while PRF95 has the smallest at most time. For each fuel, the spray front penetration length and spray front penetration velocity decrease with increasing ambient pressure. LN, PRF95 and gasoline show similar penetration length and velocity under the tested conditions. A two-stage spray front fluctuation pattern is observed for all three fuels. Stage one begins from the start of the injection and ends at 450–500 μs after the start of the injection trigger (ASOIT) with a slow

  14. VLC-beacon detection with an under-sampled ambient light sensor

    Science.gov (United States)

    Green, Jacob; Pérez-Olivas, Huetzin; Martínez-Díaz, Saúl; García-Márquez, Jorge; Domínguez-González, Carlos; Santiago-Montero, Raúl; Guan, Hongyu; Rozenblat, Marc; Topsu, Suat

    2017-08-01

    LEDs will replace in a near future the current worldwide lighting mainly due to their low production-cost and energy-saving assets. Visible light communications (VLC) will turn gradually the existing lighting network into a communication network. Nowadays VLC transceivers can be found in some commercial centres in Europe; some of them broadcast continuously an identification tag that contains its coordinate position. In such a case, the transceiver acts as a geolocation beacon. Nevertheless, mobile transceivers represent a challenge in the VLC communication chain, as smartphones have not integrated yet a VLC customized detection stage. In order to make current smartphones capable to detect VLC broadcasted signals, their Ambient Light Sensor (ALS) is adapted as a VLC detector. For this to be achieved, lighting transceivers need to adapt their modulation scheme. For instance, frequencies representing start bit, 1, and 0 logic values can be set to avoid flicker from illumination and to permit detecting the under-sampled signal. Decoding the signal requires a multiple steps real-time signal processing as shown here.

  15. Near-infrared light absorption by brown carbon in the ambient atmosphere

    Science.gov (United States)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  16. Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions

    Directory of Open Access Journals (Sweden)

    Sreetama Banerjee

    2017-07-01

    Full Text Available We report light-induced negative organic magnetoresistance (OMAR measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynylpentacene (TIPS-pentacene planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron–hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

  17. Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions.

    Science.gov (United States)

    Banerjee, Sreetama; Bülz, Daniel; Reuter, Danny; Hiller, Karla; Zahn, Dietrich R T; Salvan, Georgeta

    2017-01-01

    We report light-induced negative organic magnetoresistance (OMAR) measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE) having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET) substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron-hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

  18. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  19. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Graduate Institute of Electronics Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei106, Taiwan (China)

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  20. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.; Karlsson, Patrik G.; Aksoy, Funda; Lundqvist, Måns; Wannberg, Björn; Mun, Bongjin S.; Hussain, Zahid; Liu, Zhi

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  1. 5 years of ambient pressure photoelectron spectroscopy (APPES) at the Swiss Light Source (SLS)

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, Giorgia [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland); Giorgi, Javier B. [Department of Chemistry and Biomolecular Sciences, and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Green, Richard G. [Measurement Science and Standards, National Research Council Canada, Ottawa, Ontario K1A 0R6 (Canada); Brown, Matthew A., E-mail: matthew.brown@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093, Zurich (Switzerland)

    2017-04-15

    Highlights: • A review of the ongoing research using the APPES endstation of the Swiss Light Source is presented. • Research interests include the liquid-vapor, liquid-nanoparticle and vapor-solid interfaces. • An outlook to the next five years of research at the Swiss Light Source is presented. - Abstract: In March of 2012 an endstation dedicated to ambient pressure photoelectron spectroscopy (APPES) was installed at the Swiss Light Source (SLS) synchrotron radiation facility on the campus of the Paul Scherrer Institute (PSI). The endstation is mobile and operated at the vacuum ultraviolet (VUV), Surfaces/Interfaces: Microscopy (SIM) and Phoenix beamlines, which together afford a nearly continuous photon energy range from 5−8000 eV. This broad energy range is by far the widest available to a single currently operational APPES endstation. During its first five years of operation this endstation has been used to address challenging fundamental problems in the areas of soft-matter colloidal nanoscience, environmental science and energy storage—research that encompasses the liquid-nanoparticle, liquid-vapor (or vacuum) and solid-vapor interfaces. Here we present select highlights of these results and offer an outlook to the next five years of APPES research at the SLS.

  2. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    Energy Technology Data Exchange (ETDEWEB)

    Albert, K.R.; Ro-Poulsen, H. (Univ. of Copenhagen, Dept. of Terrestrial Ecology, Copenhagen (DK)); Mikkelsen, T.N. (Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Biosystems Dept., Roskilde (DK))

    2008-06-15

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B. (au)

  3. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.

    Science.gov (United States)

    Albert, Kristian R; Mikkelsen, Teis N; Ro-Poulsen, Helge

    2008-06-01

    An UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis but also the effects on other parts of the photosynthetic machinery, e.g. the Calvin cycle, might be important. The 60% reduction of the UV-B irradiance used in this study implies a higher relative change in the UV-B load than many of the supplemental experiments do, but the substantial effect on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B.

  4. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  5. Bright versus dim ambient light affects subjective well-being but not serotonin-related biological factors.

    Science.gov (United States)

    Stemer, Bettina; Melmer, Andreas; Fuchs, Dietmar; Ebenbichler, Christoph; Kemmler, Georg; Deisenhammer, Eberhard A

    2015-10-30

    Light falling on the retina is converted into an electrical signal which stimulates serotonin synthesis. Previous studies described an increase of plasma and CNS serotonin levels after bright light exposure. Ghrelin and leptin are peptide hormones which are involved in the regulation of hunger/satiety and are related to serotonin. Neopterin and kynurenine are immunological markers which are also linked to serotonin biosynthesis. In this study, 29 healthy male volunteers were exposed to bright (5000lx) and dim (50lx) light conditions for 120min in a cross-over manner. Subjective well-being and hunger as well as various serotonin associated plasma factors were assessed before and after light exposure. Subjective well-being showed a small increase under bright light and a small decrease under dim light, resulting in a significant interaction between light condition and time. Ghrelin concentrations increased significantly under both light conditions, but there was no interaction between light and time. Correspondingly, leptin decreased significantly under both light conditions. Hunger increased significantly with no light-time interaction. We also found a significant decrease of neopterin, tryptophan and tyrosine levels, but no interaction between light and time. In conclusion, ambient light was affecting subjective well-being rather than serotonin associated biological factors. Copyright © 2015. Published by Elsevier Ireland Ltd.

  6. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  7. Ambient Persuasive Technology Needs Little Cognitive Effort: The Differential Effects of Cognitive Load on Lighting Feedback versus Factual Feedback

    Science.gov (United States)

    Ham, Jaap; Midden, Cees

    Persuasive technology can influence behavior or attitudes by for example providing interactive factual feedback about energy conservation. However, people often lack motivation or cognitive capacity to consciously process such relative complex information (e.g., numerical consumption feedback). Extending recent research that indicates that ambient persuasive technology can persuade the user without receiving the user's conscious attention, we argue here that Ambient Persuasive Technology can be effective while needing only little cognitive resources, and in general can be more influential than more focal forms of persuasive technology. In an experimental study, some participants received energy consumption feedback by means of a light changing color (more green=lower energy consumption, vs. more red=higher energy consumption) and others by means of numbers indicating kWh consumption. Results indicated that ambient feedback led to more conservation than factual feedback. Also, as expected, only for participants processing factual feedback, additional cognitive load lead to slower processing of that feedback. This research sheds light on fundamental characteristics of Ambient Persuasive Technology and Persuasive Lighting, and suggests that it can have important advantages over more focal persuasive technologies without losing its persuasive potential.

  8. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating

    DEFF Research Database (Denmark)

    Sandstrom, Andreas; Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time-and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication...... of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-mu m-thick active material that is doped in situ during operation. It is notable...

  9. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  10. Maternal and ambient environmental effects of light on germination in Plantago lanceolata: correlated responses to selection on leaf length

    International Nuclear Information System (INIS)

    Hinsberg, A. van

    1998-01-01

    1. Seeds from artificial selection lines were exposed to different maternal and ambient conditions, simulating sunlight and vegetation shade. 2. Lines selected for longer leaves also produced larger seeds, indicating a positive genetic correlation between leaf length and seed size. 3. Light conditions during maturation had no large effect on seed size. 4. Seed germination was reduced by a low ratio of red to far-red light (R/FR ratio) in the ambient environment. 5. Seeds maturated under simulated vegetation shade germinated less readily and were more inhibited by a low ambient R/FR ratio than seeds maturated under full sunlight or R/FR-neutral shade. Thus, low R/FR-ratios in the maternal and ambient environment operated synergistically. 6. Large genotypic variation in the germination responses to both maternal and ambient light conditions was found among and within selection lines, indicating that such responses might have the potential to evolve in response to natural selection. 7. Artificial selection for leaf length had affected seed germination characteristics but correlated responses and thus genetic correlations largely depended on light conditions in the selective environment. Selection for longer leaves under a low R/FR ratio increased seed dormancy and plasticity of germination in response to the R/FR ratio. However, in the opposite selective environment selection for longer leaves reduced seed dormancy and plasticity to the R/FR ratio. It is argued that leaf length and seed germination characteristics are somehow linked by shared physiological mechanisms, which may facilitate concerted changes in shade avoidance responses

  11. Soot measurements for diesel and biodiesel spray combustion under high temperature highly diluted ambient conditions

    KAUST Repository

    Zhang, Ji

    2014-11-01

    This paper presents the soot temperature and KL factor for biodiesel, namely fatty acid methyl ester (FAME) and diesel fuel combustion in a constant volume chamber using a two-color technique. The KL factor is a parameter for soot concentration, where K is an absorption coefficient and proportional to the number density of soot particles, L is the geometric thickness of the flame along the optical detection axis, and KL factor is proportional to soot volume fraction. The main objective is to explore a combustion regime called high-temperature and highly-diluted combustion (HTHDC) and compare it with the conventional and low-temperature combustion (LTC) modes. The three different combustion regimes are implemented under different ambient temperatures (800 K, 1000 K, and 1400 K) and ambient oxygen concentrations (10%, 15%, and 21%). Results are presented in terms of soot temperature and KL factor images, time-resolved pixel-averaged soot temperature, KL factor, and spatially integrated KL factor over the soot area. The time-averaged results for these three regimes are compared for both diesel and biodiesel fuels. Results show complex combined effects of the ambient temperature and oxygen concentration, and that two-color temperature for the HTHDC mode at the 10% oxygen level can actually be lower than the conventional mode. Increasing ambient oxygen and temperature increases soot temperature. Diesel fuel results in higher soot temperature than biodiesel for all three regimes. Results also show that diesel and biodiesel fuels have very different burning and sooting behavior under the three different combustion regimes. For diesel fuel, the HTHDC regime offers better results in terms of lower soot than the conventional and LTC regimes, and the 10% O2, 1400 K ambient condition shows the lowest soot concentration while maintaining a moderate two-color temperature. For biodiesel, the 15% O2, 800 K ambient condition shows some advantages in terms of reducing soot

  12. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    Science.gov (United States)

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-03-12

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  13. Highly reactive light-dependent monoterpenes in the Amazon

    Science.gov (United States)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  14. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  15. Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.

    Science.gov (United States)

    Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo

    2011-08-01

    Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  16. Modeling the Quality of Videos Displayed With Local Dimming Backlight at Different Peak White and Ambient Light Levels

    DEFF Research Database (Denmark)

    Mantel, Claire; Søgaard, Jacob; Bech, Søren

    2016-01-01

    is computed using a model of the display. Widely used objective quality metrics are applied based on the rendering models of the videos to predict the subjective evaluations. As these predictions are not satisfying, three machine learning methods are applied: partial least square regression, elastic net......This paper investigates the impact of ambient light and peak white (maximum brightness of a display) on the perceived quality of videos displayed using local backlight dimming. Two subjective tests providing quality evaluations are presented and analyzed. The analyses of variance show significant...

  17. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  18. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum.

    OpenAIRE

    Albert, Kristian; Ro-Poulsen, Helge; N. Mikkelsen, Teis

    2008-01-01

    UV-B-exclusion experiment was established in high arctic Zackenberg, Northeast Greenland, to investigate the possible effects of ambient UV-B on plant performance. During almost a whole growing season, canopy gas exchange and Chl fluorescence were measured on Vaccinium uliginosum (bog blueberry). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a...

  19. Joint measurements of PM2. 5 and light-absorptive PM in woodsmoke-dominated ambient and plume environments

    Science.gov (United States)

    Zhang, K. Max; Allen, George; Yang, Bo; Chen, Geng; Gu, Jiajun; Schwab, James; Felton, Dirk; Rattigan, Oliver

    2017-09-01

    DC, also referred to as Delta-C, measures enhanced light absorption of particulate matter (PM) samples at the near-ultraviolet (UV) range relative to the near-infrared range, which has been proposed previously as a woodsmoke marker due to the presence of enhanced UV light-absorbing materials from wood combustion. In this paper, we further evaluated the applications and limitations of using DC as both a qualitative and semi-quantitative woodsmoke marker via joint continuous measurements of PM2. 5 (by nephelometer pDR-1500) and light-absorptive PM (by 2-wavelength and 7-wavelength Aethalometertext">®) in three northeastern US cities/towns including Rutland, VT; Saranac Lake, NY and Ithaca, NY. Residential wood combustion has shown to be the predominant source of wintertime primary PM2. 5 emissions in both Rutland and Saranac Lake, where we conducted ambient measurements. In Ithaca, we performed woodsmoke plume measurements. We compared the pDR-1500 against a FEM PM2. 5 sampler (BAM 1020), and identified a close agreement between the two instruments in a woodsmoke-dominated ambient environment. The analysis of seasonal and diurnal trends of DC, black carbon (BC, 880 nm) and PM2. 5 concentrations supports the use of DC as an adequate qualitative marker. The strong linear relationships between PM2. 5 and DC in both woodsmoke-dominated ambient and plume environments suggest that DC can reasonably serve as a semi-quantitative woodsmoke marker. We propose a DC-based indicator for woodsmoke emission, which has shown to exhibit a relatively strong linear relationship with heating demand. While we observed reproducible PM2. 5-DC relationships in similar woodsmoke-dominated ambient environments, those relationships differ significantly with different environments, and among individual woodsmoke sources. Our analysis also indicates the potential for PM2. 5-DC relationships to be utilized to distinguish different combustion and operating conditions of woodsmoke sources, and

  20. The influence of color association strength and consistency on ease of processing of ambient lighting feedback.

    NARCIS (Netherlands)

    Lu, S.; Ham, J.R.C.; Midden, C.J.H.

    2016-01-01

    Lighting feedback may use colors that through their associations help users to easily process feedback messages and adapt their behavior. Study 1 showed more ease of processing (of feedback messages) only for participants receiving strongly-associated lighting feedback, as their processing times

  1. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  2. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  3. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.

    Science.gov (United States)

    Gubin, D G; Weinert, D; Rybina, S V; Danilova, L A; Solovieva, S V; Durov, A M; Prokopiev, N Y; Ushakov, P A

    2017-01-01

    values were decreased during the former light time. No effects on HR were found. Altogether, the results of the present paper show that BT, BP and HR are affected by exogenous factors differently. Moreover, the effect was gender-specific. Especially, the response of BT and BP to ambient light was evident only in females. We suppose that the distinct, gender-specific responses of SBP, DBP and HR to activity, sleep and ambient light do reflect fundamental differences in the circadian control of various cardiovascular functions. Furthermore, the presented data are important for the elaboration of updated reference standards, the interpretation of rhythm disorders and for personalized chronotherapeutic approaches to prevent adverse cardiovascular events more effectively.

  4. CALDER: High-sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Casali, N.; Bellini, F.; Cardani, L.

    2017-01-01

    The current bolometric experiments searching for rare processes such as neutrinoless double-beta decay or dark matter interaction demand for cryogenic light detectors with high sensitivity, large active area and excellent scalability and radio-purity in order to reduce their background budget. The CALDER project aims to develop such kind of light detectors implementing phonon-mediated Kinetic Inductance Detectors (KIDs). The goal for this project is the realization of a 5 × 5 cm"2 light detector working between 10 and 100mK with a baseline resolution RMS below 20 eV. In this work the characteristics and the performances of the prototype detectors developed in the first project phase will be shown.

  5. Surgical instrument biocontaminant fluorescence detection in ambient lighting conditions for hospital reprocessing and sterilization department (Conference Presentation)

    Science.gov (United States)

    Baribeau, François; Bubel, Annie; Dumont, Guillaume; Vachon, Carl; Lépine, André; Rochefort, Stéphane; Massicotte, Martin; Buteau-Vaillancourt, Louis; Gallant, Pascal; Mermut, Ozzy

    2017-03-01

    Hospitals currently rely on simple human visual inspection for assessing cleanliness of surgical instruments. Studies showed that surgical site infections are in part attributed to inadequate cleaning of medical devices. Standards groups recognize the need to objectively quantify the amount of residues on surgical instruments and establish guidelines. We developed a portable technology for the detection of contaminants on surgical instruments through fluorescence following cleaning. Weak fluorescence signals are usually detected in the obscurity only with the lighting of the excitation source. The key element of this system is that it works in ambient lighting conditions, a requirement to not disturb the normal workflow of hospital reprocessing facilities. A biocompatible fluorescent dye is added to the detergent and labels the proteins of organic residues. It is resistant to the harsh environment in a washer-disinfector. Two inspection devices have been developed with a 488nm laser as the excitation source: a handheld scanner and a tabletop station using spectral-domain and time-domain ambient light cancellation schemes. The systems are eye safe and equipped with image processing and interfacing software to provide visual or audible warnings to the operator based on a set of adjustable signal thresholds. Micron-scale residues are detected by the system which can also evaluate soil size and mass. Unlike swabbing, it can inspect whole tools in real-time. The technology has been validated in an independent hospital decontamination research laboratory. It also has potential applications in the forensics, agro-food, and space fields. Technical aspects and results will be presented and discussed.

  6. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.

    Science.gov (United States)

    Rahman, Shadab A; St Hilaire, Melissa A; Lockley, Steven W

    2017-08-01

    We compared the effects of bedroom-intensity light from a standard fluorescent and a blue- (i.e., short-wavelength) depleted LED source on melatonin suppression, alertness, and sleep. Sixteen healthy participants (8 females) completed a 4-day inpatient study. Participants were exposed to blue-depleted circadian-sensitive (C-LED) light and a standard fluorescent light (FL, 4100K) of equal illuminance (50lx) for 8h prior to a fixed bedtime on two separate days in a within-subject, randomized, cross-over design. Each light exposure day was preceded by a dim light (LED conditions compared to FL 30min prior to bedtime. EEG-based correlates of alertness corroborated the reduced alertness under C-LED conditions as shown by significantly increased EEG spectral power in the delta-theta (0.5-8.0Hz) bands under C-LED as compared to FL exposure. There was no significant difference in total sleep time (TST), sleep efficiency (SE%), and slow-wave activity (SWA) between the two conditions. Unlike melatonin suppression and alertness, a significant order effect was observed on all three sleep variables, however. Individuals who received C-LED first and then FL had increased TST, SE% and SWA averaged across both nights compared to individuals who received FL first and then C-LED. These data show that the spectral characteristics of light can be fine-tuned to attenuate non-visual responses to light in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Light emitting diodes as an alternative ambient illumination source in photolithography environment

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Ou, Haiyan; Dam-Hansen, Carsten

    2009-01-01

    We explored an alternative light emitting diode (LED) - based solution to replace the existing yellow fluorescent light tubes (YFT) used in photolithography rooms. A no-blue LED lamp was designed and a prototype was fabricated. For both solutions, the spectral power distribution (SPD) was measured......, the colorimetric values were calculated, and a visual comparison using Gretagmacbeth colorcharts was performed. The visual comparison showed that the LED bulb was better to render colors despite a low color rendering index (CRI). Furthermore, the LED bulb was tested in a photolithography room...... and there was no exposure to the photoresist even after 168 hours illumination....

  8. Assessment of ambient-temperature, high-resolution detectors for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Ruhter, W.D.; McQuaid, J.H.; Lavietes, A.

    1993-01-01

    High-resolution, gamma- and x-ray spectrometry are used routinely in nuclear safeguards verification measurements of plutonium and uranium in the field. These measurements are now performed with high-purity germanium (HPGe) detectors that require cooling liquid-nitrogen temperatures, thus limiting their utility in field and unattended safeguards measurement applications. Ambient temperature semiconductor detectors may complement HPGe detectors for certain safeguards verification applications. Their potential will be determined by criteria such as their performance, commercial availability, stage of development, and costs. We have conducted as assessment of ambient temperature detectors for safeguards measurement applications with these criteria in mind

  9. High gradient accelerators for linear light sources

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1988-01-01

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs

  10. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  11. Study of system dynamics model and control of a high-power LED lighting luminaire

    International Nuclear Information System (INIS)

    Huang, B.-J.; Hsu, P.-C.; Wu, M.-S.; Tang, C.-W.

    2007-01-01

    The purpose of the present study is to design a current control system which is robust to the system dynamics uncertainty and the disturbance of ambient temperature to assure a stable optical output property of LED. The system dynamics model of the LED lighting system was first derived. A 96 W high-power LED luminaire was designed and built in the present study. The linearly perturbed system dynamics model for the LED luminaire is derived experimentally. The dynamics model of LED lighting system is of a multiple-input-multiple-output (MIMO) system with two inputs (applied voltage and ambient temperature) and two outputs (forward current and heat conducting body temperature). A step response test method was employed to the 96 W LED luminaire to identify the system dynamics model. It is found that the current model is just a constant gain (resistance) and the disturbance model is of first order, both changing with operating conditions (voltage and ambient temperature). A feedback control system using PI algorithm was designed using the results of the system dynamics model. The control system was implemented on a PIC microprocessor. Experimental results show that the control system can stably and accurately control the LED current to a constant value at the variation of ambient temperature up to 40 o C. The control system is shown to have a robust property with respect to the plant uncertainty and the ambient temperature disturbance

  12. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  13. High Quantum Efficiency OLED Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  14. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    ). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower...... during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis...... on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B....

  15. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    , nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  16. Ambient Seismic Noise Tomography of a Loess High Bank at Dunaszekcső (Hungary)

    Czech Academy of Sciences Publication Activity Database

    Szanyi, G.; Gráczer, Z.; Györi, E.; Kaláb, Zdeněk; Lednická, Markéta

    2016-01-01

    Roč. 173, č. 8 (2016), s. 2913-2928 ISSN 0033-4553 Institutional support: RVO:68145535 Keywords : seismic interferometry * ambient noise * group velocity * tomography * landslide * high bank Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016 http://link.springer.com/article/10.1007/s00024-016-1304-1

  17. The JLab high power ERL light source

    International Nuclear Information System (INIS)

    Neil, G.R.; Behre, C.; Benson, S.V.

    2006-01-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered (superconducting) Linac (ERL). The machine has a 160MeV electron beam and an average current of 10mA in 75MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ∼ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100fs pulses with >200W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10kW of average power in the IR from 1 to 14μm in 400fs pulses at up to 74.85MHz repetition rates and soon will produce similar pulses of 300-1000nm light at up to 3kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and

  18. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  19. A high-flow humidograph for testing the water uptake by ambient aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brink, H.M.; Khlystov, A.; Kos, G.P.A. [ECN Fuels Conversion and Environment, Petten (Netherlands); Tuch, T. [Institut of Medical Data Management, Biometrics and Epidemiology, Ludwig-Maximilian University, Muenich (Germany); Roth, C.; Kreyling, W. [Institute for Inhalation Biology, GSF National Research Center for Environment and Health, Neuherberg/Muenich (Germany)

    1999-10-01

    A scanning humidograph, with an air flow rate of 0.5 m{sup 3} s{sup -1} was built to investigate the uptake of water and its effect on sizing, collection and light-scattering of ambient aerosol. The performance of the system was assessed with laboratory particles of ammonium nitrate, ammonium sulfate and sodium chloride which are the major hygroscopic components of ambient aerosol. The increase in size at the deliquescence points, which ideally is a stepwise function of relative humidity, occurs over a range of 3% RH units. This is shown to be an optimum value in a system of such large dimensions. Because of the strong temperature increase of the vapor pressure of ammonium nitrate, its evaporative loss was investigated as a function of heating/drying temperature. The loss of pure test aerosol, with a mass distribution similar to that in the ambient atmosphere, was found to be acceptable for drying temperatures of up to 40C. The sizing of deliquesced aerosol by LAS-X monitors was tested and found to be a complex function of RH. In Berner low pressure impactors growth of hygroscopic aerosol was not observed, not even at an RH approaching saturation. 21 refs.

  20. A design method to assess the accessibility of light on PV cells in an arbitraty geometry by means of ambient occlusion

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Willeke, G.; Ossenbrink, H.

    2007-01-01

    A design method has been developed by which the accessibility of light on PV cells in an arbitrary geometry can be quickly visualized and quantified. Modelling of irradiance in this method is based on ambient occlusion, which indicates the likelihood of shading of object’s surfaces due to

  1. High Efficiency, Illumination Quality OLEDs for Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown

  2. Multiplexing milli-volt transmitter for operation in high ambient temperatures

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1980-01-01

    A high integrity method of multiplexing up to two hundred and fifty millivolt level signals and transmitting the data to a remote measuring station via a 12 core flexible cable is described. The system was designed for operation in the normally hazardous and therefore inaccessible areas where high ambient temperatures are experienced. Additionally, because one potential application is in nuclear reactor systems, the design is tolerant to high levels of gamma background. The system's high reliability, high integrity and relatively small and conventional cable installation, makes it applicable to situations which depend upon temperature measurement for plant or personnel safety. (author)

  3. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  4. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. I. Rayleigh model and scaling

    Science.gov (United States)

    Bonde, Jeffrey

    2018-04-01

    The dynamics of a magnetized, expanding plasma with a high ratio of kinetic energy density to ambient magnetic field energy density, or β, are examined by adapting a model of gaseous bubbles expanding in liquids as developed by Lord Rayleigh. New features include scale magnitudes and evolution of the electric fields in the system. The collisionless coupling between the expanding and ambient plasma due to these fields is described as well as the relevant scaling relations. Several different responses of the ambient plasma to the expansion are identified in this model, and for most laboratory experiments, ambient ions should be pulled inward, against the expansion due to the dominance of the electrostatic field.

  5. Physiological responses of growing pigs to high ambient temperature and/or inflammatory challenges

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Reis Furtado Campos

    Full Text Available ABSTRACT Global warming is one of the major environmental threats facing the world in the 21st century. This fact will have a significant impact on pig production due to its direct effects on welfare, health, and performance of pigs. Besides, the effects of high temperatures will presumably become more important over the next decades due to the development of pig production in developing countries mainly located in tropical and subtropical areas, where animals are often exposed to ambient temperatures above their thermal comfort zone. Furthermore, pigs reared in tropical areas are often confronted to sanitary challenges including poor hygiene conditions, lack of respect for sanitary rules, and pathogens. This results in the stimulation of the immune system and, as a consequence, in the production of pro-inflammatory cytokines and neuroendocrine adjustments that, in turn, usually have a negative impact on growth and feed efficiency. Although the effects of high ambient temperature and disease on pig physiology and performance have been well documented in literature, little is known about the associated effects of both factors. This understanding may contribute to a better quantification and comprehension of the physiological and metabolic disturbances occurring in practical conditions of pig production in tropical areas and, more generally, in many other geographic areas that will be influenced by the perspective of global warming. Therefore, the objective of this work is to provide an overview of recent research advances on the physiological responses of growing pigs during acclimation to high ambient temperature and on the potential effects of high ambient temperature on the ability of growing pigs to resist, cope with, or recover from an inflammatory challenge.

  6. High Output LED-Based Profile Lighting Fixture

    DEFF Research Database (Denmark)

    Török, Lajos; Beczkowski, Szymon; Munk-Nielsen, Stig

    2011-01-01

    Recent developments in power light emitting diode (LED) industry have made LEDs suitable for being efficiently used in high intensity lighting fixtures instead of the commonly used high intensity discharge (HID) lamps. A high output LEDbased profile-light fixture is presented in this paper...

  7. Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy. Center for Accelerator Science and Education

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-­conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-­antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU -­ BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder-­ and single-­crystal diffraction, x-­ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and

  8. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  9. Ambient growth of highly oriented Cu{sub 2}S dendrites of superior thermoelectric behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Mulla, Rafiq; Rabinal, M.K., E-mail: mkrabinal@yahoo.com

    2017-03-01

    Highlights: • A simple and ambient route to synthesize highly oriented dendrites of copper sulfide is proposed. • Remarkable enhancement is observed in Seebeck coefficient by room temperature, solution phase doping. • High thermoelectric power factor is observed at room temperature, indicating promising behaviour. - Abstract: Low-cost, non-toxic and efficient material is an urgent need for the thermoelectric energy conversion. Here, a rapid and ambient chemical route has been developed to grow dense and highly oriented dendrites of copper sulfide (Cu{sub 2}S) on copper substrate in a very simple approach, these films are uniform and covered with dense nanosheets. Room temperature solution doping of copper ions is carried out to improve thermoelectric performance. The Seebeck coefficient increased from ∼100 to 415 μV K{sup −1} with a slight decrease in electrical conductivity, this gives a high power factor (S{sup 2}σ) of about ∼400 μW m{sup −1} K{sup −2}. The improved thermoelectric properties in these films are accounted for resonant energy level doping and high phonon scattering. Such films with improved thermoelectric behaviour can be promising materials for energy conversion. The earth abundant, low cost, non toxic with a good thermoelectric property makes copper sulfide as a promising thermoelectric material for future applications.

  10. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    Science.gov (United States)

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature ( 21 degrees C) on each variable. Compared with findings at ambient temperatures 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  11. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  12. Development of an ozone high sensitive sensor working at ambient temperature

    International Nuclear Information System (INIS)

    Berger, F; Ghaddab, B; Sanchez, J B; Mavon, C

    2011-01-01

    Hybrid SnO 2 /SWNTs thin layer were deposited by using sol-gel process. Such sensitive layers showed very high performances for O 3 flow detection at ambient temperature. Limit sensitivity, lower than 21,5 ppb of O 3 in air has been reached by using these hybrid layers. Compared to usefull metal oxide sensors, the main advantage of the use of such hybrid layers, is that these devices enable the detection of O 3 traces at room temperature. The influence of sensor's working temperature is discussed and finally a reactional mechanism for the detection of O 3 is proposed.

  13. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    Science.gov (United States)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  14. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  15. High visibility temporal ghost imaging with classical light

    Science.gov (United States)

    Liu, Jianbin; Wang, Jingjing; Chen, Hui; Zheng, Huaibin; Liu, Yanyan; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2018-03-01

    High visibility temporal ghost imaging with classical light is possible when superbunching pseudothermal light is employed. In the numerical simulation, the visibility of temporal ghost imaging with pseudothermal light, equaling (4 . 7 ± 0 . 2)%, can be increased to (75 ± 8)% in the same scheme with superbunching pseudothermal light. The reasons for that the retrieved images are different for superbunching pseudothermal light with different values of degree of second-order coherence are discussed in detail. It is concluded that high visibility and high quality temporal ghost image can be obtained by collecting sufficient number of data points. The results are helpful to understand the difference between ghost imaging with classical light and entangled photon pairs. The superbunching pseudothermal light can be employed to improve the image quality in ghost imaging applications.

  16. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    International Nuclear Information System (INIS)

    Chung, Wan-Ho; Hwang, Hyun-Jun; Kim, Hak-Sung

    2015-01-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved

  17. Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Wan-Ho; Hwang, Hyun-Jun [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, 17 Haendang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    In this work, the hybrid copper inks with precursor and nanoparticles were fabricated and sintered via flash light irradiation to achieve highly conductive electrode pattern with low porosity. The hybrid copper ink was made of copper nanoparticles and various copper precursors (e.g., copper(II) chloride, copper(II) nitrate trihydrate, copper(II) sulfate pentahydrate and copper(II) trifluoroacetylacetonate). The printed hybrid copper inks were sintered at room temperature and under ambient conditions using an in-house flash light sintering system. The effects of copper precursor weight fraction and the flash light irradiation conditions (light energy and pulse duration) were investigated. Surfaces of the sintered hybrid copper patterns were analyzed using a scanning electron microscope. Also, spectroscopic characterization techniques such as Fourier transform infrared spectroscopy and X-ray diffraction were used to investigate the crystal phases of the flash light sintered copper precursors. High conductivity hybrid copper patterns (27.3 μΩ cm), which is comparable to the resistivity of bulk copper (1.68 μΩ cm) were obtained through flash light sintering at room temperature and under ambient conditions. - Highlights: • The hybrid copper inks with precursor and nanoparticles were fabricated. • The hybrid copper ink was sintered via flash light irradiation. • The resistivity of sintered hybrid copper ink was 27.3 μΩ cm. • Highly conductive copper film with low porosity could be achieved.

  18. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  19. High resolution synchrotron light analysis at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Switka, Michael; Zander, Sven; Hillert, Wolfgang [Bonn Univ. (Germany). Elektronen-Stretcher Anlage ELSA-Facility (ELSA)

    2013-07-01

    The pulse stretcher ring ELSA provides polarized electrons with energies up to 3.5 GeV for external hadron experiments. In order to suffice the need of stored beam intensities towards 200 mA, advanced beam instability studies need to be carried out. An external diagnostic beamline for synchrotron light analysis has been set up and provides the space for multiple diagnostic tools including a streak camera with time resolution of <1 ps. Beam profile measurements are expected to identify instabilities and reveal their thresholds. The effect of adequate countermeasures is subject to analysis. The current status of the beamline development is presented.

  20. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  1. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone.

    Science.gov (United States)

    Chen, Yuan; Fu, Qiangqiang; Li, Dagang; Xie, Jun; Ke, Dongxu; Song, Qifang; Tang, Yong; Wang, Hong

    2017-11-01

    Smartphone biosensors could be cost-effective, portable instruments to be used for the readout of liquid colorimetric assays. However, current reported smartphone colorimetric readers have relied on photos of liquid assays captured using a camera, and then analyzed using software programs. This approach results in a relatively low accuracy and low generality. In this work, we reported a novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays. The portable and low-cost ($0.15) reader utilized a simplified electronic and light path design. Furthermore, our reported smartphone colorimetric reader can be compatible with different smartphones. As a proof of principle, the utility of this device was demonstrated using it in conjunction with an enzyme-linked immunosorbent assay to detect zearalenone. Results were consistent with those obtained using a professional microplate reader. The developed smartphone colorimetric reader was capable of providing scalable, cost-effective, and accurate results for liquid colorimetric assays that related to clinical diagnoses, environment pollution, and food testing. Graphical abstract A novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays.

  2. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon

    Science.gov (United States)

    Beckner, Matthew; Dailly, Anne

    2014-03-01

    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  3. Carbon-Based CsPbBr3 Perovskite Solar Cells: All-Ambient Processes and High Thermal Stability.

    Science.gov (United States)

    Chang, Xiaowen; Li, Weiping; Zhu, Liqun; Liu, Huicong; Geng, Huifang; Xiang, Sisi; Liu, Jiaming; Chen, Haining

    2016-12-14

    The device instability has been an important issue for hybrid organic-inorganic halide perovskite solar cells (PSCs). This work intends to address this issue by exploiting inorganic perovskite (CsPbBr 3 ) as light absorber, accompanied by replacing organic hole transport materials (HTM) and the metal electrode with a carbon electrode. All the fabrication processes (including those for CsPbBr 3 and the carbon electrode) in the PSCs are conducted in ambient atmosphere. Through a systematical optimization on the fabrication processes of CsPbBr 3 film, carbon-based PSCs (C-PSCs) obtained the highest power conversion efficiency (PCE) of about 5.0%, a relatively high value for inorganic perovskite-based PSCs. More importantly, after storage for 250 h at 80 °C, only 11.7% loss in PCE is observed for CsPbBr 3 C-PSCs, significantly lower than that for popular CH 3 NH 3 PbI 3 C-PSCs (59.0%) and other reported PSCs, which indicated a promising thermal stability of CsPbBr 3 C-PSCs.

  4. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere.

    Directory of Open Access Journals (Sweden)

    Anne-Lise Fabre

    Full Text Available Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius' law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.

  5. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere

    Science.gov (United States)

    Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques

    2017-01-01

    Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats. PMID:29190767

  6. High voltage interactions of a sounding rocket with the ambient and system-generated environments

    International Nuclear Information System (INIS)

    Kuharski, R.A.; Jongeward, G.A.; Wilcox, K.G.; Rankin, T.V.; Roche, J.C.

    1990-01-01

    The high-power space systems will interact with their environment far more severely than the low-voltage, low-power space systems flown to date. As a minimum, these interactions will include ionization and bulk breakdown, plasma-induced surface flashover, oxygen erosion, meteor and debris damage, and radiation effects. The SPEAR program is addressing some of these issues through the development and testing of high-powered systems for the space environment. SPEAR III, the latest in the SPEAR program, is scheduled to fly in early 1991. It will test high-voltage designs in both ambient and system-generated environments. Two of the key questions that the experiment hopes to address are whether or not the Earth's magnetic field can cause the current that a high-voltage object draws from the plasma to be far less then the current that would be drawn in the absence of the magnetic field and under what neutral environment conditions a discharge from the high-voltage object to the plasma will occur. In this paper, the authors use EPSAT (the environment power system analysis tool) to baseline the design of SPEAR III. The authors' calculations indicate that the experiment will produce the conditions necessary to address these questions

  7. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  8. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature.

    Science.gov (United States)

    Jung, Inuk; Kang, Hyejin; Kim, Jang Uk; Chang, Hyeonsook; Kim, Sun; Jung, Woosuk

    2018-03-19

    Ginseng is a popular traditional herbal medicine in north-eastern Asia. It has been used for human health for over thousands of years. With the rise in global temperature, the production of Korean ginseng (Panax ginseng C.A.Meyer) in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Under the high ambient temperature, vegetative growth was accelerated, which resulted in early flowering. This precocious phase change led to yield loss. Despite of its importance as a traditional medicine, biological mechanisms of ginseng has not been well studied and even the genome sequence of ginseng is yet to be determined due to its complex genome structure. Thus, it is challenging to investigate the molecular biology mechanisms at the transcript level. To investigate how ginseng responds to the high ambient temperature environment, we performed high throughput RNA sequencing and implemented a bioinformatics pipeline for the integrated analysis of small-RNA and mRNA-seq data without a reference genome. By performing reverse transcriptase (RT) PCR and sanger sequencing of transcripts that were assembled using our pipeline, we validated that their sequences were expressed in our samples. Furthermore, to investigate the interaction between genes and non-coding small RNAs and their regulation status under the high ambient temperature, we identified potential gene regulatory miRNAs. As a result, 100,672 contigs with significant expression level were identified and 6 known, 214 conserved and 60 potential novel miRNAs were predicted to be expressed under the high ambient temperature. Collectively, we have found that development, flowering and temperature responsive genes were induced under high ambient temperature, whereas photosynthesis related genes were repressed. Functional miRNAs were down-regulated under the high ambient temperature. Among them are miR156 and miR396 that target flowering (SPL6

  9. Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer

    Directory of Open Access Journals (Sweden)

    M. Furger

    2017-06-01

    Full Text Available The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb showed excellent correlation between the compared methods, with r2 values  ≥  0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28 and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.

  10. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  11. Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment.

    Science.gov (United States)

    De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed

    2017-07-01

    High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly (P behavior of sheep which is directed to circumvent the effect of the stressor.

  12. Effect of high ambient temperature on behavior of sheep under semi-arid tropical environment

    Science.gov (United States)

    De, Kalyan; Kumar, Davendra; Saxena, Vijay Kumar; Thirumurugan, Palanisamy; Naqvi, Syed Mohammed Khursheed

    2017-07-01

    High environmental temperature is a major constraint in sheep production under semi-arid tropical environment. Behavior is the earliest indicator of animal's adaptation and responses to the environmental alteration. Therefore, the objective of this study was to assess the effects of high ambient temperature on the behavior of sheep under a semi-arid tropical environment. The experiment was conducted for 6 weeks on 16 Malpura cross (Garole × Malpura × Malpura (GMM)) rams. The rams were divided equally into two groups, designated as C and T. The rams of C were kept in comfortable environmental conditions served as control. The rams of T were exposed to a different temperature at different hours of the day in a climatic chamber, to simulate a high environmental temperature of summer in semi-arid tropic. The behavioral observations were taken by direct instantaneous observation at 15-min intervals for each animal individually. The feeding, ruminating, standing, and lying behaviors were recorded twice a week from morning (0800 hours) to afternoon (1700 hours) for 6 weeks. Exposure of rams to high temperature (T) significantly ( P animals of T spent significantly ( P behavior of sheep which is directed to circumvent the effect of the stressor.

  13. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    International Nuclear Information System (INIS)

    Xue, Dezhen; Zhou, Yumei; Ding, Xiangdong; Otsuka, Kazuhiro; Lookman, Turab; Sun, Jun; Ren, Xiaobing

    2015-01-01

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti 50 (Pd 50−x D x ) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q −1 ~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q −1 ~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges

  14. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  15. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...

  16. Impact of high ambient temperature on unintentional injuries in high-income countries: a narrative systematic literature review

    Science.gov (United States)

    Otte im Kampe, Eveline; Kovats, Sari; Hajat, Shakoor

    2016-01-01

    Objectives Given the likelihood of increased hot weather due to climate change, it is crucial to have prevention measures in place to reduce the health burden of high temperatures and heat waves. The aim of this review is to summarise and evaluate the evidence on the effects of summertime weather on unintentional injuries in high-income countries. Design 3 databases (Global Public Health, EMBASE and MEDLINE) were searched by using related keywords and their truncations in the title and abstract, and reference lists of key studies were scanned. Studies reporting heatstroke and intentional injuries were excluded. Results 13 studies met our inclusion criteria. 11 out of 13 studies showed that the risk of unintentional injuries increases with increasing ambient temperatures. On days with moderate temperatures, the increased risk varied between 0.4% and 5.3% for each 1°C increase in ambient temperature. On extreme temperature days, the risk of injuries decreased. 2 out of 3 studies on occupational accidents found an increase in work-related accidents during high temperatures. For trauma hospital admissions, 6 studies reported an increase during hot weather, whereas 1 study found no association. The evidence for impacts on injuries by subgroups such as children, the elderly and drug users was limited and inconsistent. Conclusions The present review describes a broader range of types of unintentional fatal and non-fatal injuries (occupational, trauma hospital admissions, traffic, fire entrapments, poisoning and drug overdose) than has previously been reported. Our review confirms that hot weather can increase the risk of unintentional injuries and accidents in high-income countries. The results are useful for injury prevention strategies. PMID:26868947

  17. Whole high-quality light environment for humans and plants

    Science.gov (United States)

    Sharakshane, Anton

    2017-11-01

    Plants sharing a single light environment on a spaceship with a human being and bearing a decorative function should look as natural and attractive as possible. And consequently they can be illuminated only with white light with a high color rendering index. Can lighting optimized for a human eye be effective and appropriate for plants? Spectrum-based effects have been compared under artificial lighting of plants by high-pressure sodium lamps and general-purpose white LEDs. It has been shown that for the survey sample phytochrome photo-equilibria does not depend significantly on the parameters of white LED light, while the share of phytoactive blue light grows significantly as the color temperature increases. It has been revealed that yield photon flux is proportional to luminous efficacy and increases as the color temperature decreases, general color rendering index Ra and the special color rendering index R14 (green leaf) increase. General-purpose white LED lamps with a color temperature of 2700 K, Ra > 90 and luminous efficacy of 100 lm/W are as efficient as the best high-pressure sodium lamps, and at a higher luminous efficacy their yield photon flux per joule is even bigger in proportion. Here we show that demand for high color rendering white LED light is not contradictory to the agro-technical objectives.

  18. Differential responses of seven contrasting species to high light using pigment and chlorophyll a fluorescence

    Directory of Open Access Journals (Sweden)

    Mittal S.

    2011-05-01

    Full Text Available High light intensity may induce severe photodamage to chloroplast and consequently cause decreases in the yield capacity of plants and destruction of pigments, causing an overall yellowing of the foliage. Thus, study related to light adaptation becomes necessary to understand adaptation processes in higher plants on the basis of which they are characterized as full sunlight or shade plants. Chlorophyll can be regarded as an intrinsic fluorescent probe of the photosynthetic system. The ecophysiological parameter related to plant performance and fitness i.e. in-situ chlorophyll fluorescence measurements were determined for different plant species in the medicinal plant garden of Banasthali University, Rajasthan. Miniaturized Pulse Amplitude Modulated Photosynthetic Yield Analyzers are primarily designed for measuring effective quantum yield (ΔF/Fm’ of photosystem II under momentary ambient light in the field. Photosynthetic yield measurements and light-response curves suggested a gradation of sun-adapted to shade-adapted behaviour of these plants in following order Withania somnifera> Catharanthus roseus> Datura stamonium> Vasica minora> Vasica adulta> Rauwolfia serpentina. As indicated by light response curves and pigment analysis, Datura stramonium, Withania somnifera and Catharanthus roseus competed well photosynthetically and are favoured while Rauwolfia serpentina, Vasica minora, Vasica adulta and Plumbago zeylanica were observed to be less competent photosynthetically. These light response curves and resultant cardinal points study gave insight into the ecophysiological characterization of the photosynthetic capacity of the plant and provides highly interesting parameters like electron transport rate, photo-inhibition, photosynthetically active photon flux density and yield on the basis of which light adaptability was screened for seven medicinally important plants.

  19. Nanosecond high-power dense microplasma switch for visible light

    Energy Technology Data Exchange (ETDEWEB)

    Bataller, A., E-mail: bataller@physics.ucla.edu; Koulakis, J.; Pree, S.; Putterman, S. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-12-01

    Spark discharges in high-pressure gas are known to emit a broadband spectrum during the first 10 s of nanoseconds. We present calibrated spectra of high-pressure discharges in xenon and show that the resulting plasma is optically thick. Laser transmission data show that such a body is opaque to visible light, as expected from Kirchoff's law of thermal radiation. Nanosecond framing images of the spark absorbing high-power laser light are presented. The sparks are ideal candidates for nanosecond, high-power laser switches.

  20. Calcium homeostasis in low and high calcium water acclimatized Oreochromis mossambicus exposed to ambient and dietary cadmium

    NARCIS (Netherlands)

    Pratap, H.B.; Wendelaar Bonga, S.E.

    2007-01-01

    The effects of cadmium administered via ambient water (10 mg/l) or food (10 mgCd/fish/day) on plasma calcium, corpuscles of Stannius and bony tissues of Oreochromis mossambicus acclimated to low calcium (0.2 mM) and high calcium (0.8 mM) water were studied for 2, 4, 14 and 35 days. In low calcium

  1. Effects of floor cooling during high ambient temperatures on the lying behavior and productivity of growing finishing pigs

    NARCIS (Netherlands)

    Huynh Thi Thanh Thuy,; Aarnink, A.J.A.; Spoolder, H.A.M.; Verstegen, M.W.A.; Kemp, B.

    2004-01-01

    Given that exposing rapidly growing pigs to high ambient temperatures can induce heat stress, which reduces their welfare and production, this study looked at the influence of floor cooling on pigs¿ behavior and performance. Pens in room 1 had a solid floor (60%) and a metal slatted floor (40%). The

  2. Responses of hybrid poplar clones and red maple seedlings to ambient O3 under differing light within a mixed hardwood forest

    International Nuclear Information System (INIS)

    Wei, C.; Skelly, J.M.; Pennypacker, S.P.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.; Davis, D.D.

    2004-01-01

    The responses of ramets of hybrid poplar (Populus spp.) (HP) clones NE388 and NE359, and seedlings of red maple (Acer rubrum, L.) to ambient ozone (O 3 ) were studied during May-September of 2000 and 2001 under natural forest conditions and differing natural sunlight exposures (sun, partial shade and full shade). Ambient O 3 concentrations at the study site reached hourly peaks of 109 and 98 ppb in 2000 and 2001, respectively. Monthly 12-h average O 3 concentrations ranged from 32.3 to 52.9 ppb. Weekly 12-h average photosynthetically active radiation (PAR) within the sun, partial shade and full shade plots ranged from 200 to 750, 50 to 180, and 25 to 75 μmol m -2 s -1 , respectively. Ambient O 3 exposure induced visible foliar symptoms on HP NE388 and NE359 in both growing seasons, with more severe injury observed on NE388 than on NE359. Slight foliar symptoms were observed on red maple seedlings during the 2001growing season. Percentage of total leaf area affected (%LAA) was positively correlated with cumulative O 3 exposures. More severe foliar injury was observed on plants grown within the full shade and partial shade plots than those observed on plants grown within the sun plot. Lower light availability within the partial shade and full shade plots significantly decreased net photosynthetic rate (Pn) and stomatal conductance (g wv ). The reductions in Pn were greater than reductions in g wv , which resulted in greater O 3 uptake per unit Pn in plants grown within the partial shade and full shade plots. Greater O 3 uptake per unit Pn was consistently associated with more severe visible foliar injury in all species and/or clones regardless of differences in shade tolerance. These studies suggest that plant physiological responses to O 3 exposure are likely complicated due to multiple factors under natural forest conditions. - Under natural forest conditions and ambient O 3 exposures, available light plays a significant role in determining O 3 uptake and

  3. South Ilan Plain High-Resolution 3-D S-Wave Velocity from Ambient Noise Tomography

    Directory of Open Access Journals (Sweden)

    Kai-Xun Chen

    2016-06-01

    Full Text Available The Ilan Plain in northeastern Taiwan is located at a pivotal point where the Ryukyu trench subduction zone, the northern Taiwan crustal stretching zone, and the ongoing arc-continent collision zone converge. In contrast to the North Ilan Plain, the South Ilan Plain exhibits a thin unconsolidated sedimentary layer with depths ranging from 0 - 1 km, high on-land seismicity and significant SE movements relative to Penghu island. We deployed a dense network of 43 short-period vertical component Texan instruments from June to November 2013 in this study, covering most of the South Ilan Plain and its vicinity. We then used the ambient noise tomography method for simultaneous phase and group Rayleigh wave velocity measurements to invert a high-resolution 3-D S-wave for shallow structures (up to a depth of 2.5 km in the South Ilan Plain. We used the fast marching method for ray tracing to deal with ray bending in an inhomogeneous medium. The resulting rays gradually bend toward high velocity zones with increasing number of iterations. The high velocity zone results are modified by more iterations and the resolutions become higher because ray crossings are proportional to ray densities for evenly distributed stations. The final results agreed well with known sedimentary basement thickness patterns. We observed nearly EW trending fast anomalies beneath the mountainous terrain abutting to the South Ilan Plain. The Chingshui location consistently exhibited a low S-wave velocity zone to a depth of 1.5 km.

  4. Radiophotoluminescence light scope for high-dose dosimetry

    International Nuclear Information System (INIS)

    Sato, Fuminobu; Zushi, Naoki; Sakiyama, Tomoki; Kato, Yushi; Murata, Isao; Shimizu, Kikuo; Yamamoto, Takayoshi; Iida, Toshiyuki

    2015-01-01

    A radiophotoluminescence (RPL) light scope is a remote-sensing technique for measuring in situ the radiation dose in an RPL detector placed at a distance. The RPL light scope is mainly composed of an ultraviolet (UV) pulse laser, telescopic lenses, a photomultiplier tube, and camera modules. In a performance test, some RPL detectors were placed at distances up to 30 m and were illuminated with a pulsed UV laser beam. The photoluminescence responses of the RPL detectors were analyzed using this scope. Their radiation doses were determined from the amplitude of the given component of the photoluminescence responses. The RPL readout could be repeated without fading, and its amplitude exhibited good linearity at a dose ranging from 0.1 to 60 Gy. Furthermore, a two-dimensional distribution of radiation dose was obtained by laser scanning on an RPL detector. It was confirmed that the RPL light scope was a useful remote-sensing tool for high-dose dosimetry. - Highlights: • A radiophotoluminescence (RPL) light scope was developed for high-dose dosimetry. • The RPL light scope has high sensitivity and accuracy in high-dose dosimetry. • Two-dimensional radiation dose distribution was obtained by the RPL light scope.

  5. High resolution Rayleigh wave group velocity tomography in North-China from ambient seismic noise

    International Nuclear Information System (INIS)

    Fang Lihua; Wu Jianping; Ding Zhifeng; Panza, G.F.

    2009-03-01

    This study presents the results of the Rayleigh wave group velocity tomography in North-China performed using ambient seismic noise observed at 190 broadband and 10 very broadband stations of the North-China Seismic Array. All available vertical component time-series for the 14 months span between January, 2007 and February, 2008 are cross-correlated to obtain empirical Rayleigh wave Green functions that are subsequently processed, with the multiple filter method, to isolate the group velocity dispersion curves of the fundamental mode of Rayleigh wave. Tomographic maps, with a grid spacing of 0.25 deg. x 0.25 deg., are computed at the periods of 4.5s, 12s, 20s, 28s. The maps at short periods reveal an evident lateral heterogeneity in the crust of North-China, quite well in agreement with known geological and tectonic features. The North China Basin is imaged as a broad low velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, and the Quaternary intermountain basins show up as small low-velocity anomalies. The group velocity contours at 4.5s, 12s and 20s are consistent with the Bouguer gravity anomalies measured in the area of the Taihangshan fault, that cuts through the lower crust at least. Most of the historical strong earthquakes (M≥6.0) are located where the tomographic maps show zones with moderate velocity gradient. (author)

  6. Origin and Distribution of PAHs in Ambient Particulate Samples at High Mountain Region in Southern China

    Directory of Open Access Journals (Sweden)

    Peng-hui Li

    2015-01-01

    Full Text Available To understand the deposition and transport of PAHs in southern China, a measurement campaign was conducted at a high-elevation site (the summit of Mount Heng, 1269 m A.S.L. from April 4 to May 31, 2009, and a total of 39 total suspended particulate samples were collected for measurement of PAH concentrations. The observed particulate-bound PAHs concentrations ranged from 1.63 to 29.83 ng/m3, with a mean concentration of 6.03 ng/m3. BbF, FLA, and PYR were the predominant compounds. Good correlations were found between individual PAHs and meteorological parameters such as atmospheric pressure, relative humidity, and ambient temperature. The backward trajectory analysis suggested that particulate samples measured at the Mount Heng region were predominantly associated with the air masses from southern China, while the air masses transported over northern and northwestern China had relative higher PAHs concentrations. Based on the diagnostic ratios and factor analysis, vehicular emission, coal combustion, industry emission, and unburned fossil fuels were suggested to be the PAHs sources at Mount Heng site. However, the reactivity and degradation of individual PAHs could influence the results of PAH source profiles, which deserves further investigations in the future.

  7. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  8. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  9. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  10. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  11. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance.

    Science.gov (United States)

    Muzziotti, Dayana; Adessi, Alessandra; Faraloni, Cecilia; Torzillo, Giuseppe; De Philippis, Roberto

    2017-04-01

    The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H 2 -producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Materials and Designs for High-Efficacy LED Light Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ibbetson, James [Cree, Inc., Durham, NC (United States); Gresback, Ryan [Cree, Inc., Durham, NC (United States)

    2017-09-28

    Cree, Inc. conducted a narrow-band downconverter (NBD) materials development and implementation program which will lead to warm-white LED light engines with enhanced efficacy via improved spectral efficiency with respect to the human eye response. New red (600-630nm) NBD materials could result in as much as a 20% improvement in warm-white efficacy at high color quality relative to conventional phosphor-based light sources. Key program innovations included: high quantum yield; narrow peak width; minimized component-level losses due to “cross-talk” and light scattering among red and yellow-green downconverters; and improved reliability to reach parity with conventional phosphors. NBD-enabled downconversion efficiency gains relative to conventional phosphors yielded an end-of-project LED light engine efficacy of >160 lm/W at room temperature and 35 A/cm2, with a correlated color temperature (CCT) of ~3500K and >90 CRI (Color Rending Index). NBD-LED light engines exhibited equivalent luminous flux and color point maintenance at >1,000 hrs. of highly accelerated reliability testing as conventional phosphor LEDs. A demonstration luminaire utilizing an NBD-based LED light engine had a steady-state system efficacy of >150 lm/W at ~3500K and >90 CRI, which exceeded the 2014 DOE R&D Plan luminaire milestone for FY17 of >150 lm/W at just 80 CRI.

  13. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric [Cree, Inc., Goleta, CA (United States)

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  14. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions

    Science.gov (United States)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper M.; Bech, Søren; Andersen, Jakob Dahl; Forchhammer, Søren

    2015-01-01

    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate the effect of the ambient light from having an important influence on the quality grades to no influence at all.

  15. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2.

    Science.gov (United States)

    Pérez-López, Usue; Sgherri, Cristina; Miranda-Apodaca, Jon; Micaelli, Francesco; Lacuesta, Maite; Mena-Petite, Amaia; Quartacci, Mike Frank; Muñoz-Rueda, Alberto

    2018-02-01

    The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO 2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO 2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO 2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO 2 . In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Transmission Lines or Poles, Electric, MDTA High Mast lighting, High Mast Lighting along I 95, Maryland Transportation Authority High Mast Lighting poles, Published in 2011, 1:1200 (1in=100ft) scale, Maryland Transportation Authority.

    Data.gov (United States)

    NSGIC State | GIS Inventory — Transmission Lines or Poles, Electric dataset current as of 2011. MDTA High Mast lighting, High Mast Lighting along I 95, Maryland Transportation Authority High Mast...

  17. Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry

    Science.gov (United States)

    Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.

    2018-05-01

    Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.

  18. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  19. California Publicly-Owned Utilities (POUs) – LBNL ‘Beyond Widgets’ Project. Task: ambient lighting and occupancy-based plug load control. System Program Manual

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alastair; Mathew, Paul A.; Regnier, Cynthia; Schwartz, Peter; Schakelford, Jordan; Walter, Travis

    2017-09-01

    This program manual contains detailed technical information for implementing an incentive program for task-ambient lighting and occupancy-based plug load control. This manual was developed by Lawrence Berkeley National Laboratory, in collaboration with the California Publicly-Owned Utilities (CA POUs) as a partner in the ‘Beyond Widgets’ program funded by the U.S. Department of Energy Building Technologies Office. The primary audience for this manual is the program staff of the various CA POUs. It may also be used by other utility incentive programs to help develop similar programs. It is anticipated that the content of this manual be utilized by the CA POU staff for developing related documents such as the Technical Resource Manual and other filings pertaining to the rollout of an energy systems-based rebate incentive program.

  20. Adaptability of drowsiness level detection that measures blinks utilizing image processing to changes in the ambient light; Hikari kankyo no henka ni tekiosuru kao gazo shori ni yoru inemuri unten kenchi

    Energy Technology Data Exchange (ETDEWEB)

    Kaneda, M; Obara, H; Nasu, T [Nissan Motor Co. Ltd, Tokyo (Japan)

    1997-10-01

    A drowsiness warning system that measures blinks utilizing image processing technology has a number of issues that need to be resolved. One issue is the adaptability of the system to changes in the ambient light environment in the actual vehicle interior. We have devised image processing software which is robust to changes in the ambient light. The drowsiness detection performance of the system was evaluated in laboratory tests and actual driving tests. It was found that the system can has a positive effect on detecting drowsiness level. 3 refs., 10 figs.

  1. The Effect of High Ambient Temperature on the Elderly Population in Three Regions of Sweden

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2010-06-01

    Full Text Available The short-term effects of high temperatures are a serious concern in the context of climate change. In areas that today have mild climates the research activity has been rather limited, despite the fact that differences in temperature susceptibility will play a fundamental role in understanding the exposure, acclimatization, adaptation and health risks of a changing climate. In addition, many studies employ biometeorological indexes without careful investigation of the regional heterogeneity in the impact of relative humidity. We aimed to investigate the effects of summer temperature and relative humidity and regional differences in three regions of Sweden allowing for heterogeneity of the effect over the scale of summer temperature. To do so, we collected mortality data for ages 65+ from Stockholm, Göteborg and Skåne from the Swedish National Board of Health and Welfare and the Swedish Meteorological and Hydrological Institute for the years 1998 through 2005. In Stockholm and Skåne on average 22 deaths per day occurred, while in Göteborg the mean frequency of daily deaths was 10. We fitted time-series regression models to estimate relative risks of high ambient temperatures on daily mortality using smooth functions to control for confounders, and estimated non-linear effects of exposure while allowing for auto-regressive correlation of observations within summers. The effect of temperature on mortality was found distributed over the same or following day, with statistically significant cumulative combined relative risk of about 5.1% (CI = 0.3, 10.1 per °C above the 90th percentile of summer temperature. The effect of high relative humidity was statistically significant in only one of the regions, as was the effect of relative humidity (above 80th percentile and temperature (above 90th percentile. In the southernmost region studied there appeared to be a significant increase in mortality with decreasing low summer temperatures that was not

  2. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  3. Dye laser light for high-resolution classical photography

    International Nuclear Information System (INIS)

    Geissler, K.K.

    1982-01-01

    The test run with the bubble chamber HOLEBC in October 1981 offered the opportunity of checking the usefulness of de-speckled dye laser light for illumination purposes in high-resolution classical dark field photography of small bubble chambers. (orig./HSI)

  4. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, R. S.

    2011-01-01

    for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  5. Lighting.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  6. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  7. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  8. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air.

    Directory of Open Access Journals (Sweden)

    M Tanweer Khan

    Full Text Available The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precluded its clinical application in the treatment of patients with inflammatory bowel diseases. The present studies were therefore aimed at developing a strategy to keep F. prausnitzii alive at ambient air. Our previous research showed that F. prausnitzii can survive in moderately oxygenized environments like the gut mucosa by transfer of electrons to oxygen. For this purpose, the bacterium exploits extracellular antioxidants, such as riboflavin and cysteine, that are abundantly present in the gut. We therefore tested to what extent these antioxidants can sustain the viability of F. prausnitzii at ambient air. The present results show that cysteine can facilitate the survival of F. prausnitzii upon exposure to air, and that this effect is significantly enhanced the by addition of riboflavin and the cryoprotectant inulin. The highly oxygen-sensitive gut bacterium F. prausnitzii can be kept alive at ambient air for 24 h when formulated with the antioxidants cysteine and riboflavin plus the cryoprotectant inulin. Improved formulations were obtained by addition of the bulking agents corn starch and wheat bran. Our present findings pave the way towards the biomedical exploitation of F. prausnitzii in redox-based therapeutics for treatment of dysbiosis-related inflammatory disorders of the human gut.

  9. Design of Light-Weight High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Rui Feng

    2016-09-01

    Full Text Available High-entropy alloys (HEAs are a new class of solid-solution alloys that have attracted worldwide attention for their outstanding properties. Owing to the demand from transportation and defense industries, light-weight HEAs have also garnered widespread interest from scientists for use as potential structural materials. Great efforts have been made to study the phase-formation rules of HEAs to accelerate and refine the discovery process. In this paper, many proposed solid-solution phase-formation rules are assessed, based on a series of known and newly-designed light-weight HEAs. The results indicate that these empirical rules work for most compositions but also fail for several alloys. Light-weight HEAs often involve the additions of Al and/or Ti in great amounts, resulting in large negative enthalpies for forming solid-solution phases and/or intermetallic compounds. Accordingly, these empirical rules need to be modified with the new experimental data. In contrast, CALPHAD (acronym of the calculation of phase diagrams method is demonstrated to be an effective approach to predict the phase formation in HEAs as a function of composition and temperature. Future perspectives on the design of light-weight HEAs are discussed in light of CALPHAD modeling and physical metallurgy principles.

  10. LED-based high-speed visible light communications

    Science.gov (United States)

    Chi, Nan; Shi, Meng; Zhao, Yiheng; Wang, Fumin; Shi, Jianyang; Zhou, Yingjun; Lu, Xingyu; Qiao, Liang

    2018-01-01

    We are seeing a growing use of light emitting diodes (LEDs) in a range of applications including lighting, TV and backlight board screen, display etc. In comparison with the traditional incandescent and fluorescent light bulbs, LEDs offer long life-space, much higher energy efficiency, high performance cost ratio and above all very fast switching capability. LED based Visible Light Communications (VLC) is an emerging field of optical communications that focuses on the part of the electromagnetic spectrum that humans can see. Depending on the transmission distance, we can divide the whole optical network into two categories, long haul and short haul. Visible light communication can be a promising candidate for short haul applications. In this paper, we outline the configuration of VLC, its unique benefits, and describe the state of the art research contributions consisting of advanced modulation formats including adaptive bit loading OFDM, carrierless amplitude and phase (CAP), pulse amplitude modulation (PAM) and single carrier Nyquist, linear equalization and nonlinear distortion mitigation based on machine learning, quasi-balanced coding and phase-shifted Manchester coding. These enabling technologies can support VLC up to 10Gb/s class free space transmission.

  11. Wheel-running activity and energy metabolism in relation to ambient temperature in mice selected for high wheel-running activity

    NARCIS (Netherlands)

    Vaanholt, Lobke M.; Garland, Theodore; Daan, Serge; Visser, G. Henk; Garland Jr., Theodore; Heldmaier, G.

    Interrelationships between ambient temperature, activity, and energy metabolism were explored in mice that had been selectively bred for high spontaneous wheel-running activity and their random-bred controls. Animals were exposed to three different ambient temperatures (10, 20 and 30 degrees C) and

  12. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.

    OpenAIRE

    Hillers , Gregor; Campillo , Michel; Lin , Y.-Y.; Ma , K.F.; Roux , Philippe

    2012-01-01

    International audience; The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that ...

  13. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil

    Science.gov (United States)

    Eugene S. Takle; William J. Massman; James R. Brandle; R. A. Schmidt; Xinhua Zhou; Irina V. Litvina; Rick Garcia; Geoffrey Doyle; Charles W. Rice

    2004-01-01

    We report measurements at 2Hz of pressure fluctuations at and beneath the soil in an agricultural field with dry soil and no vegetation. The objective of our study was to examine the possible role of pressure fluctuations produced by fluctuations in ambient wind on the efflux of CO2 at the soil surface.We observed that pressure fluctuations penetrate to 50 cm in the...

  14. High-Efficiency Nitride-Based Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light

  15. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  16. Effect of transportation during periods of high ambient temperature on physiologic and behavioral indices of beef heifers.

    Science.gov (United States)

    Theurer, Miles E; White, Brad J; Anderson, David E; Miesner, Matt D; Mosier, Derek A; Coetzee, Johann F; Amrine, David E

    2013-03-01

    To determine the effect of transportation during periods of high ambient temperature on physiologic and behavioral indices of beef heifers. 20 heifers (mean body weight, 217.8 kg). Ten heifers were transported 518 km when the maximum ambient temperature was ≥ 32.2°C while the other 10 heifers served as untransported controls. Blood samples were collected from transported heifers at predetermined intervals during the transportation period. For all heifers, body weights, nasal and rectal temperatures, and behavioral indices were measured at predetermined intervals for 3 days after transportation. A week later, the entire process was repeated such that each group was transported twice and served as the control twice. Transported heifers spent more time near the hay feeder on the day of transportation, had lower nasal and rectal temperatures for 24 hours after transportation, and spent more time lying down for 2 days after transportation, compared with those indices for control heifers. Eight hours after transportation, the weight of transported heifers decreased 6%, whereas that of control heifers increased 0.6%. At 48 hours after initiation of transportation, weight, rectal temperature, and time spent at various pen locations did not differ between transported and control heifers. Cortisol concentrations were higher 4 hours after initiation of transportation, compared with those determined just prior to transportation. Results indicated transportation during periods of high ambient temperatures caused transient changes in physiologic and behavioral indices of beef heifers.

  17. Large-area high-efficiency flexible PHOLED lighting panels

    Science.gov (United States)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  18. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  19. Non-contact video-based vital sign monitoring using ambient light and auto-regressive models

    International Nuclear Information System (INIS)

    Tarassenko, L; Villarroel, M; Guazzi, A; Jorge, J; Clifton, D A; Pugh, C

    2014-01-01

    Remote sensing of the reflectance photoplethysmogram using a video camera typically positioned 1 m away from the patient’s face is a promising method for monitoring the vital signs of patients without attaching any electrodes or sensors to them. Most of the papers in the literature on non-contact vital sign monitoring report results on human volunteers in controlled environments. We have been able to obtain estimates of heart rate and respiratory rate and preliminary results on changes in oxygen saturation from double-monitored patients undergoing haemodialysis in the Oxford Kidney Unit. To achieve this, we have devised a novel method of cancelling out aliased frequency components caused by artificial light flicker, using auto-regressive (AR) modelling and pole cancellation. Secondly, we have been able to construct accurate maps of the spatial distribution of heart rate and respiratory rate information from the coefficients of the AR model. In stable sections with minimal patient motion, the mean absolute error between the camera-derived estimate of heart rate and the reference value from a pulse oximeter is similar to the mean absolute error between two pulse oximeter measurements at different sites (finger and earlobe). The activities of daily living affect the respiratory rate, but the camera-derived estimates of this parameter are at least as accurate as those derived from a thoracic expansion sensor (chest belt). During a period of obstructive sleep apnoea, we tracked changes in oxygen saturation using the ratio of normalized reflectance changes in two colour channels (red and blue), but this required calibration against the reference data from a pulse oximeter. (paper)

  20. High-Performance Red-Light Photodetector Based on Lead-Free Bismuth Halide Perovskite Film.

    Science.gov (United States)

    Tong, Xiao-Wei; Kong, Wei-Yu; Wang, You-Yi; Zhu, Jin-Miao; Luo, Lin-Bao; Wang, Zheng-Hua

    2017-06-07

    In this study, we developed a sensitive red-light photodetector (RLPD) based on CsBi 3 I 10 perovskite thin film. This inorganic, lead-free perovskite was fabricated by a simple spin-coating method. Device analysis reveals that the as-assembled RLPD was very sensitive to 650 nm light, with an on/off ratio as high as 10 5 . The responsivity and specific detectivity of the device were estimated to be 21.8 A/W and 1.93 × 10 13 Jones, respectively, which are much better than those of other lead halide perovskite devices. In addition, the device shows a fast response (rise time: 0.33 ms; fall time: 0.38 ms) and a high external quantum efficiency (4.13 × 10 3 %). It is also revealed that the RLPD has a very good device stability even after storage for 3 months under ambient conditions. In summary, we suggest that the CsBi 3 I 10 perovskite photodetector developed in this study may have potential applications in future optoelectronic systems.

  1. Light extinction method on high-pressure diesel injection

    Science.gov (United States)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  2. Design of High Efficiency Illumination for LED Lighting

    OpenAIRE

    Chang, Yong-Nong; Cheng, Hung-Liang; Kuo, Chih-Ming

    2013-01-01

    A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against de...

  3. Ambient Space and Ambient Sensation

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    The ambient is the aesthetic production of the sensation of being surrounded. As a concept, 'ambient' is mostly used in relation to the music genre 'ambient music' and Brian Eno's idea of environmental background music. However, the production of ambient sensations must be regarded as a central...... aspect of the aesthetization of modern culture in general, from architecture, transport and urbanized lifeforms to film, sound art, installation art and digital environments. This presentation will discuss the key aspects of ambient aesthetization, including issues such as objectlessness...

  4. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  6. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.; Wu, M.S.; Hsu, P.C.; Chen, J.W.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  7. Development of high-performance solar LED lighting system

    International Nuclear Information System (INIS)

    Huang, B.J.; Wu, M.S.; Hsu, P.C.; Chen, J.W.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring.

  8. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  9. Arsenic ambient conditions preventing surface degradation of GaAs during capless annealing at high temperatures

    Science.gov (United States)

    Kang, C. H.; Kondo, K.; Lagowski, J.; Gatos, H. C.

    1987-01-01

    Changes in surface morphology and composition caused by capless annealing of GaAs were studied as a function of annealing temperature, T(GaAs), and the ambient arsenic pressure controlled by the temperature, T(As), of an arsenic source in the annealing ampul. It was established that any degradation of the GaAs surface morphology could be completely prevented, providing that T(As) was more than about 0.315T(GaAs) + 227 C. This empirical relationship is valid up to the melting point temperature of GaAs (1238 C), and it may be useful in some device-processing steps.

  10. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Arto V. Nurmikko; Jung Han

    2007-03-31

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  11. Architecture of a highly modular lighting simulation system

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    This talk will discuss the challenges before designing a highly modular, parallel, heterogeneous rendering system and their solutions. It will review how different lighting simulation algorithms could be combined to work together using an unified framework. We will discuss how the system can be instrumented for collecting data about the algorithms' runtime performance. The talk includes an overview of how collected data could be visualised in the computational domain of the lighting algorithms and be used for visual debugging and analysis. About the speaker Hristo Lesev has been working in the software industry for the last ten years. He has taken part in delivering a number of desktop and mobile applications. Computer Graphics programming is Hristo's main passion and he has experience writing extensions for 3D software like 3DS Max, Maya, Blender, Sketchup, and V-Ray. Since 2006 Hristo teaches Photorealistic Ray Tracing in the Faculty of Mathematics and Informatics at the Paisii Hilendarski...

  12. Plasmonics for solid-state lighting : enhanced excitation and directional emission of highly efficient light sources

    NARCIS (Netherlands)

    Lozano, G.; Louwers, Davy J.; Rodriguez, S.R.K.; Murai, S.; Jansen, O.T.A.; Verschuuren, M.A.; Gomez Rivas, J.

    2013-01-01

    Light sources based on reliable and energy-efficient light-emitting diodes (LEDs) are instrumental in the development of solid-state lighting (SSL). Most research efforts in SSL have focused on improving both the intrinsic quantum efficiency (QE) and the stability of light emitters. For this reason,

  13. Magnetic anisotropy of pure and doped YbInCu sub 4 compounds at ambient and high pressures

    CERN Document Server

    Mushnikov, N V; Rozenfeld, E V; Yoshimura, K; Zhang, W; Yamada, M; Kageyama, H

    2003-01-01

    The susceptibility and high-field magnetization of single-crystalline Yb sub 1 sub - sub x Y sub x InCu sub 4 (x = 0, 0.2 and 0.3) samples have been measured for different field orientations at ambient and high pressures. The compounds with x = 0 and 0.2 undergo a first-order valence transition from the intermediate-valence state to the trivalent state on increasing either temperature or magnetic field. The magnetization and susceptibility of these compounds have appreciable anisotropy in both states. The magnetic phase diagram of Yb sub 1 sub - sub x Y sub x InCu sub 4 determined at ambient pressure is also anisotropic, which is explained by the crystal-field calculations for the free Yb ion in the high-temperature phase. Moreover, the low-temperature magnetization process for x = 0.2 and 0.3 has been measured in low fields under high pressure; it shows anisotropic ferromagnetic ordering.

  14. High mobility solution-processed hybrid light emitting transistors

    International Nuclear Information System (INIS)

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B.; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa

    2014-01-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm 2 /V s, current on/off ratios of >10 7 , and external quantum efficiency of 10 −2 % at 2100 cd/m 2 . These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective

  15. Progress in extremely high brightness LED-based light sources

    Science.gov (United States)

    Hoelen, Christoph; Antonis, Piet; de Boer, Dick; Koole, Rolf; Kadijk, Simon; Li, Yun; Vanbroekhoven, Vincent; Van De Voorde, Patrick

    2017-09-01

    Although the maximum brightness of LEDs has been increasing continuously during the past decade, their luminance is still far from what is required for multiple applications that still rely on the high brightness of discharge lamps. In particular for high brightness applications with limited étendue, e.g. front projection, only very modest luminance values in the beam can be achieved with LEDs compared to systems based on discharge lamps or lasers. With dedicated architectures, phosphor-converted green LEDs for projection may achieve luminance values up to 200-300 Mnit. In this paper we report on the progress made in the development of light engines based on an elongated luminescent concentrator pumped by blue LEDs. This concept has recently been introduced to the market as ColorSpark High Lumen Density LED technology. These sources outperform the maximum brightness of LEDs by multiple factors. In LED front projection, green LEDs are the main limiting factor. With our green modules, we now have achieved peak luminance values of 2 Gnit, enabling LED-based projection systems with over 4000 ANSI lm. Extension of this concept to yellow and red light sources is presented. The light source efficiency has been increased considerably, reaching 45-60 lm/W for green under practical application conditions. The module architecture, beam shaping, and performance characteristics are reviewed, as well as system aspects. The performance increase, spectral range extensions, beam-shaping flexibility, and cost reductions realized with the new module architecture enable a breakthrough in LED-based projection systems and in a wide variety of other high brightness applications.

  16. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Munk, Jeffrey D [ORNL; Shrestha, Som S [ORNL; Linkous, Randall Lee [ORNL; Goetzler, William [Navigant Consulting Inc.; Guernsey, Matt [Navigant Consulting Inc.; Kassuga, Theo [Navigant Consulting Inc.

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  17. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Kassuga, Theo [Navigant Consulting Inc., Burlington, MA (United States)

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  18. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  19. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  20. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    Science.gov (United States)

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  1. Differential signaling spread-spectrum modulation of the LED visible light wireless communications using a mobile-phone camera

    Science.gov (United States)

    Chen, Shih-Hao; Chow, Chi-Wai

    2015-02-01

    Visible light communication (VLC) using spread spectrum modulation (SSM) and differential signaling (DS), detected by a mobile-phone camera is proposed and demonstrated for the first time to provide high immunity to background ambient light interference. The SSM signal provides the coding gain while the DS scheme enhances the clock recovery particular under high background ambient light. Experiment results confirm the feasibility of the proposed scheme, showing that the proposed system has 6-dB gain comparing with the traditional on-off keying (OOK) modulation under background ambient light of 3000 lux. The direct incident ambient light to the mobile-phone camera is 520 lux.

  2. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  3. Search for new light bosons in high energy astronomy

    International Nuclear Information System (INIS)

    Wouters, Denis

    2014-01-01

    High-Energy astronomy studies the most violent phenomena in the universe with observations in a large spectrum of energies ranging from X rays to very high energy gamma rays (1 keV - 100 TeV). Such phenomena could be for instance supernovae explosions and their remnants, pulsars and pulsar wind nebulae or ultra relativistic jets formation by active galactic nuclei. Understanding these phenomena requires to use well-known particle physics processes. By means of high energy photons, studying such phenomena enables one to search for physics beyond the standard model. Concepts regarding the emission and propagation of high-energy photons are introduced and applied to study their emission by extragalactic sources and to constrain the extragalactic background light which affects their propagation. In this thesis, these high-energy extragalactic emitters are observed in order to search for new light bosons such as axion-like particles (ALPs). The theoretical framework of this family of hypothetical particles is reviewed as well as the associated phenomenology. In particular, because of their coupling to two photons, ALPs oscillate with photons in an external magnetic field. A new signature of such oscillations in turbulent magnetic fields, under the form of stochastic irregularities in the source energy spectrum, is introduced and discussed. A search for ALPs with the HESS telescopes with this new signature is presented, resulting in the first constraints on ALPs parameters coming from high-energy astronomy. Current constraints on ALPs at very low masses are improved by searching for the same signature in X-ray observations. An extension of these constraints to scalar field models for modified gravity in the framework of dark energy is then discussed. The potential of the search for ALPs with CTA, the prospected gamma-ray astronomy instrument, is eventually studied; in particular, a new observable is proposed that relies on the high number of sources that are expected to

  4. Det ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Om begrebet "det ambiente", der beskriver, hvad der sker, når vi fornemmer baggrundsmusikkens diskrete beats, betragter udsigten gennem panoramavinduet eller tager 3D-brillerne på og læner os tilbage i biografsædet. Bogen analyserer, hvorfan ambiente oplevelser skabes, og hvilke konsekvenser det...

  5. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  6. High-dimensional quantum channel estimation using classical light

    CSIR Research Space (South Africa)

    Mabena, Chemist M

    2017-11-01

    Full Text Available stream_source_info Mabena_20007_2017.pdf.txt stream_content_type text/plain stream_size 960 Content-Encoding UTF-8 stream_name Mabena_20007_2017.pdf.txt Content-Type text/plain; charset=UTF-8 PHYSICAL REVIEW A 96, 053860... (2017) High-dimensional quantum channel estimation using classical light Chemist M. Mabena CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa and School of Physics, University of the Witwatersrand, Johannesburg 2000, South...

  7. Design of High Efficiency Illumination for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2013-01-01

    Full Text Available A high efficiency illumination for LED street lighting is proposed. For energy saving, this paper uses Class-E resonant inverter as main electric circuit to improve efficiency. In addition, single dimming control has the best efficiency, simplest control scheme and lowest circuit cost among other types of dimming techniques. Multiple serial-connected transformers used to drive the LED strings as they can provide galvanic isolation and have the advantage of good current distribution against device difference. Finally, a prototype circuit for driving 112 W LEDs in total was built and tested to verify the theoretical analysis.

  8. High resolution X-ray spectroscopy in light antiprotonic atoms

    CERN Document Server

    Borchert, G L; Augsburger, M A; Castelli, C M; Chatellard, D; Egger, J P; El-Khoury, P; Elble, M; Gorke, H; Gotta, D; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M

    2000-01-01

    At the LEAR facility, CERN, antiprotonic L alpha transitions in light elements have been investigated with a focussing crystal spectrometer. The high resolution of the experiment allowed for the first time to resolve in pH/pH the 2/sup 3/P/sub 0/ state from the close-lying states 2/sup 3/P/sub 2/, 2/sup 1/P/sub 1/, and 2/sup 3/P /sub 1/. In pD the corresponding transitions were found to be more than an order of magnitude broader. To a large extent the results for pH support the meson exchange model. (15 refs).

  9. High efficiency electrophosphorescence from bilayer organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li Minghang; Lin, Ming-Te; Shepherd, Nigel D [Department of Material Science and Engineering, University of North Texas, Denton, TX (United States); Chen, Wei-Hsuan; Oswald, Iain; Omary, Mohammad [Department of Chemeistry, University of North Texas, Denton, TX (United States)

    2011-09-14

    An electron mobility of 2.7 x 10{sup -5} cm{sup 2} V{sup -1} s{sup -1} was measured for the phosphorescent emitter bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II)(Pt(ptp)2), which prompted its evaluation as both the emissive layer and electron transport layer in organic light emitting diodes with a simple bilayer structure. Power and external quantum efficiencies of 54.0 {+-} 0.2 lm W{sup -1} and 15.9% were obtained, which as far as we could ascertain are amongst the highest reported values for bilayer devices. We ascribe the high device efficiency to the combination of the high electron mobility, short excited-state lifetime (117 ns) and high luminescence quantum yield (60%) of the bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II). The colour temperature of the devices was 2855 K at 5 V, which places the emission in the 'warm' light spectral region.

  10. Science research with high-brilliance synchrotron light source

    International Nuclear Information System (INIS)

    Sanyal, Milan K.

    2013-01-01

    Synchrotron-science has changed dramatically since the development of high brilliance electron accelerator-based light sources in 1990s. In the last twenty years or so, several such facilities have come up, particularly in developed countries, as material characterizations in relevant atmosphere and protein crystallography with tiny-crystals have strong implications in industrial competitiveness. Moreover several new techniques have been developed recently over the entire spectral range of emitted light, from infra-red to high energy X-rays, which have altered our basic understanding of various materials like biomaterials, nanomaterials, soft-matter and semiconductor quantum structures. In addition, rapid development of various X-ray imaging techniques for nondestructive evaluation of compositional/structural homogeneity of engineering materials with nanometer resolution will have tremendous impact in manufacturing industries. As India becomes a developed country, it must have access to such an advanced synchrotron facility in the country that enables knowledge generation in the ever-expanding fields of design-characterization-production of advanced materials and modern medicines. Development of such state-of-the art facility will also enable us to carry out frontier-basic-research in our own country and help us to retain and bring back Indian talents to India. Here we shall discuss briefly the characteristics of a high brilliance synchrotron source and outline the nature of basic and applied science research that can be done with such a state-of-the-art facility. (author)

  11. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  12. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    R. Fierz-Schmidhauser

    2010-03-01

    Full Text Available Ambient relative humidity (RH determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH=σsp(RH/σsp(dry from a 1-month campaign (May 2008 at the high alpine site Jungfraujoch (3580 m a.s.l., Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH is available so far. At this site, f(RH=85% varied between 1.2 and 3.3. Measured f(RH agreed well with f(RH calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

  13. Subjective quality of video sequences rendered on LCD with local backlight dimming at different lighting conditions

    DEFF Research Database (Denmark)

    Mantel, Claire; Korhonen, Jari; Pedersen, Jesper Mørkhøj

    2015-01-01

    This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low...... light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear...... preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate...

  14. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques

    Directory of Open Access Journals (Sweden)

    O. Schmid

    2006-01-01

    Full Text Available Spectral aerosol light absorption is an important parameter for the assessment of the radiation budget of the atmosphere. Although on-line measurement techniques for aerosol light absorption, such as the Aethalometer and the Particle Soot Absorption Photometer (PSAP, have been available for two decades, they are limited in accuracy and spectral resolution because of the need to deposit the aerosol on a filter substrate before measurement. Recently, a 7-wavelength (λ Aethalometer became commercially available, which covers the visible (VIS to near-infrared (NIR spectral range (λ=450–950 nm, and laboratory calibration studies improved the degree of confidence in these measurement techniques. However, the applicability of the laboratory calibration factors to ambient conditions has not been investigated thoroughly yet. As part of the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia – SMOke aerosols, Clouds, rainfall and Climate campaign from September to November 2002 in the Amazon basin we performed an extensive field calibration of a 1-λ PSAP and a 7-λ Aethalometer utilizing a photoacoustic spectrometer (PAS, 532 nm as reference device. Especially during the dry period of the campaign, the aerosol population was dominated by pyrogenic emissions. The most pronounced artifact of integrating-plate type attenuation techniques (e.g. Aethalometer, PSAP is due to multiple scattering effects within the filter matrix. For the PSAP, we essentially confirmed the laboratory calibration factor by Bond et al. (1999. On the other hand, for the Aethalometer we found a multiple scattering enhancement of 5.23 (or 4.55, if corrected for aerosol scattering, which is significantly larger than the factors previously reported (~2 for laboratory calibrations. While the exact reason for this discrepancy is unknown, the available data from the present and previous studies suggest aerosol mixing (internal versus external as a likely cause. For

  15. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions

    International Nuclear Information System (INIS)

    Zhilyaev, A.P.; Sabirov, I.; Gonzalez-Doncel, G.; Molina-Aldareguia, J.; Srinivasarao, B.; Perez-Prado, M.T.

    2011-01-01

    Research highlights: → We analyze the influence of Nb additions on the shear-induced α → ω → β phase transformations in pure Zr by high pressure torsion (HPT). → Nb reduces the transition pressures and increases the transformation kinetics. → High pressure phases are retained under ambient conditions due to the presence of an internal stress. → Post-HPT annealing allows to fabricate bimodal/biphase nanostructures with enhanced mechanical behavior. - Abstract: This paper analyzes the influence of Nb on the shear-induced α → ω → β transformation taking place when processing Zr by high pressure torsion (HPT) under suitable conditions of pressure and shear. With that purpose, pure Zr and Zr-2.5%Nb were processed by HPT at room temperature and at pressures ranging from 0.25 to 6 GPa using 5 anvil turns. Nb causes a further reduction of the transition pressures, which are already lower when applying shear besides pressure. Thus, the transition pressure to the β phase is reduced at least 100 times in the Zr-Nb alloy. Alloying with Nb decreases the grain size of the transformed phases, significantly enhances their thermal stability and increases their UTS and elongation to failure. Selected post-HPT annealing treatments lead to the development of very tough, multiphase Zr and Zr-Nb with bimodal grain size distributions. The retention of the high pressure phases under ambient conditions is explained by the development of a high internal stress during processing. This stress is measured by synchrotron radiation diffraction at HZB-BESSY II. It is proposed that the presence of Nb reduces the internal stress level required for the retention of the high pressure phases.

  17. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole

    Science.gov (United States)

    Hillers, G.; Campillo, M.; Lin, Y.-Y.; Ma, K.-F.; Roux, P.

    2012-06-01

    The Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts.

  18. Det Ambiente

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Det ambiente er iscenesættelsen af en karakteristisk sanseoplevelse, der er kendetegnet ved fornemmelsen af at være omgivet. I dag bliver begrebet om det ambiente mest anvendt i forbindelse med musikgenren ’ambient musik’. Det ambiente er dog ikke essentielt knyttet til det musikalske, men må...... forstås som et betydeligt bredere fænomen i den moderne æstetiske kultur, der spiller en væsentlig rolle i oplevelsen af moderne transportformer, arkitektur, film, lydkunst, installationskunst og digitale multimedieiscenesættelser. En forståelse af det ambiente er derfor centralt for forståelsen af en...... moderne æstetiseret oplevelseskultur i almindelighed. Da det ambiente ikke hidtil har været gjort til genstand for en mere indgående teoretisk behandling, er der dog stor usikkerhed omkring, hvad fænomenet overhovedet indebærer. Hovedformålet med Det ambiente – Sansning, medialisering, omgivelse er derfor...

  19. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  20. Ultra light weight refractory material for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Finke, V.; Kern, H. [Rath GmbH, Meissen (Germany); Springer, M. [Aug. Rath jun. GmbH, Vienna (Austria)

    2007-07-01

    The requirements on companies running high temperature processes, i.e. at temperatures about 1000 C and above, have increased dramatically within the last few years. For technological, economical and ecological purposes each application has to be checked carefully. As well the political discussion regarding environmental pollution, greenhouse effect and emission trading and the guidelines for climate and environmental protection exert massive influence on thermal process technology and pose an appropriate challenge for the companies. Next to costs of labour and raw materials the costs for energy and environmental costs play a decisive role more and more. The pressure on the management thereby incurred may have a lasting effect on innovations regarding increase of energy efficiency, decrease of CO{sub 2}-emission and often on non negligible increase of productivity. Mainly against the background of the highly scheduled European aims for emission reduction and also in consideration of the still proceeding globalisation the usage of state-of-the-art refractory technics in thermal process technology is of particular importance for business success, for reducing of environmental impact and last but not least for conservation and safeguarding of jobs in Europe and Germany. The applications for products made from high-temperature insulation wool in high temperature applications have strongly increased during the last five years. Especially the production capacities of polycrystalline wool (aluminium oxide wool e.g. Altra B72) have been doubled within the last three years. Primarily ultra light weight products made from HTIW are used in industrial furnaces with application temperatures above 1000 C and / or with high thermo-mechanical (thermal shock) and chemical exposure. The outstanding and essential advantages of these materials are obviously: Ultra light weight material with high resilience and flexibility, Optimised energy consumption (energy saving up to 50% compared

  1. The new remcounter LB6411: Measurement of neutron ambient dose equivalent H*(10) according to ICRP60 with high sensitivity

    International Nuclear Information System (INIS)

    Klett, A.; Burgkhardt, B.

    1996-01-01

    Since the International Commission on Radiological Protection has issued in publication ICRP60 new recommendations on radiation protection quantities, in neutron monitoring there is now increasing Interest in commercially available instruments optimized and calibrated for the measurement of ambient dose equivalent H*(10). Therefore within a joint cooperation between the Research Center Karlsruhe and EG ampersand G Berthold the neutron-dose-rate meter LB6411 was newly developed. The detector system with integrated electronics has a 3 He proportional counter tube centered in a moderating sphere. The response between thermal energies and 20 MeV was optimized with the help of extensive MCNP Monte-Carlo calculations. The instrument has extremely high sensitivity of approximately 3 counts per nSv and can be used both as a portable or as a stationary neutron monitor. Fluence responses and angular dependencies had been measured in monoenergetic neutron beams provided by the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The ambient dose equivalent response of the LB6411 is reported over the whole energy range

  2. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology.

    Science.gov (United States)

    Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie

    2012-07-17

    Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.

  3. Influence of the ambient temperature on the cooling efficiency of the high performance cooling device with thermosiphon effect

    Science.gov (United States)

    Nemec, Patrik; Malcho, Milan

    2018-06-01

    This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.

  4. New application of superconductors: High sensitivity cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544 Princeton, NJ (United States); Bellini, F.; Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Castellano, M.G. [Istituto di Fotonica e Nanotecnologie – CNR, Via Cineto Romano 42, 00156 Roma (Italy); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cosmelli, C.; Cruciani, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); D' Addabbo, A. [INFN – Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) 67010 (Italy); Di Domizio, S. [INFN – Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Martinez, M. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009 (Spain); Tomei, C. [INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); and others

    2017-02-11

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm{sup 2} substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  5. High-dimensional quantum cryptography with twisted light

    International Nuclear Information System (INIS)

    Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; O’Sullivan, Malcolm N; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W; Lavery, Martin P J; Padgett, Miles J; Gauthier, Daniel J

    2015-01-01

    Quantum key distribution (QKD) systems often rely on polarization of light for encoding, thus limiting the amount of information that can be sent per photon and placing tight bounds on the error rates that such a system can tolerate. Here we describe a proof-of-principle experiment that indicates the feasibility of high-dimensional QKD based on the transverse structure of the light field allowing for the transfer of more than 1 bit per photon. Our implementation uses the orbital angular momentum (OAM) of photons and the corresponding mutually unbiased basis of angular position (ANG). Our experiment uses a digital micro-mirror device for the rapid generation of OAM and ANG modes at 4 kHz, and a mode sorter capable of sorting single photons based on their OAM and ANG content with a separation efficiency of 93%. Through the use of a seven-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel capacity of 2.05 bits per sifted photon. Our experiment demonstrates that, in addition to having an increased information capacity, multilevel QKD systems based on spatial-mode encoding can be more resilient against intercept-resend eavesdropping attacks. (paper)

  6. New application of superconductors: High sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M.G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.

    2017-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm"2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  7. Core design concepts for high performance light water reactors

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.

    2007-01-01

    Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modern fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with 380 .deg. C core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around 500 .deg. C, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors

  8. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    International Nuclear Information System (INIS)

    Powell, J.; Reich, M.; Barletta, R.

    1996-01-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small (∼1 m 3 ) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ''secondary.'' The induced current in the ''secondary'' heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., ∼1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature

  9. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    Science.gov (United States)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  10. The ambient and high temperature deformation behavior of Al–Si–Cu–Mg alloy with minor Ti, Zr, Ni additions

    International Nuclear Information System (INIS)

    Hernandez-Sandoval, J.; Garza-Elizondo, G.H.; Samuel, A.M.; Valtiierra, S.; Samuel, F.H.

    2014-01-01

    Highlights: • Characterization on the precipitation of Ni- and Zr-based intermetallics. • High temperature tensile properties of 354 alloy containing Zr and Ni below 0.5%. • Quality index charts as a function of heat treatment. • Yield strength and ductility color contours as a function of aging temperature and aging time. - Abstract: The principal aim of the present work was to investigate the effects of minor additions of nickel and zirconium on the strength of cast aluminum alloy 354 at ambient and high temperatures. Tensile properties of the as-cast and heat-treated alloys were determined at room temperature and at high temperatures (190 °C, 250 °C, 350 °C). The results show that Zr reacts only with Ti, Si and Al. From the quality index charts constructed for these alloys, the quality index attains minimum and maximum values of 259 MPa and 459 MPa, in the as-cast and solution-treated conditions; also, maximum and minimum values of yield strength are observed at 345 MPa and 80 MPa, respectively, within the series of aging treatments applied. A decrease in tensile properties of ∼10% with the addition of 0.4 wt.% nickel is attributed to a nickel–copper reaction. The reduction in mechanical properties due to addition of different elements is attributed principally to the increase in the percentage of intermetallic phase particles formed during solidification; such particles act as stress concentrators, decreasing the alloy ductility. Tensile test results at ambient temperatures show a slight increase (∼10%) in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 °C. Additions of Zr and Zr + Ni increase the high temperature tensile properties, in particular for the alloy containing 0.2 wt.% Zr + 0.2 wt.% Ni, which exhibits an increase of more than 30% in the tensile properties at 300 °C compared with the base 354 alloy

  11. High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue

    International Nuclear Information System (INIS)

    Canpolat, M.; Mourant, J.R.

    2000-01-01

    Measurement of light transport in tissue has the potential to be an inexpensive and practical tool for non-invasive tissue diagnosis in medical applications because it can provide information on both morphological and biochemical properties. To capitalize on the potential of light transport as a diagnostic tool, an understanding of what information can be gleaned from light transport measurements is needed. We present data concerning the sensitivity of light transport measurements, made in clinically relevant geometries, to scattering properties. The intensity of the backscattered light at small source-detector separations is shown to be sensitive to the phase function, and furthermore the collected light intensity is found to be correlated with the amount of high-angle scattering in the medium. (author)

  12. High performance light-colored nitrile-butadiene rubber nanocomposites.

    Science.gov (United States)

    Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin

    2011-12-01

    High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.

  13. Conceptual design study of high conversion light water reactor

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Akie, Hiroshi; Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    1990-06-01

    Since 1984, R and D work has been made for high conversion light water reactors (HCLWRs), at JAERI, to improve the natural uranium saving and effective plutonium utilization by the use of conventional or extended LWR technology. This report summarizes the results of the feasibility study made mainly from the viewpoint of nuclear design in the Phase-I Program (1985∼1989). Until now, the following various types of HCLWR core concepts have been investigated; 1) homogeneous core with tight pitch lattice of fuel rods, 2) homogeneous core with semi-tight pitch lattice, 3) spectral shift core using fertile rod with semi-tight pitch lattice, 4) flat-core, 5) axial heterogeneous core. The core burnup and thermohydraulic analyses during normal operations have been performed to clear up the burnup performances and feasibility for each core. Based on the analysis results, the axial heterogeneous HCLWR core was selected as the JAERI reference core. (author)

  14. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  15. Combined low temperature-high light effects on gas exchange properties of jojoba leaves.

    Science.gov (United States)

    Loreto, F; Bongi, G

    1989-12-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO(2) were measured on jojoba leaves recovering from chilling temperature (4 degrees C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO(2) was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO(2) concentration may constitute an ecological advantage of jojoba as a crop in the future.

  16. Combined Low Temperature-High Light Effects on Gas Exchange Properties of Jojoba Leaves 1

    Science.gov (United States)

    Loreto, Francesco; Bongi, Guido

    1989-01-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO2 were measured on jojoba leaves recovering from chilling temperature (4°C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO2 was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO2 concentration may constitute an ecological advantage of jojoba as a crop in the future. PMID:16667220

  17. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.

    Science.gov (United States)

    Vu, Joseph C V; Allen, Leon H

    2009-07-15

    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially

  18. Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations.

    Science.gov (United States)

    Mohr, Claudia; Huffman, Alex; Cubison, Michael J; Aiken, Allison C; Docherty, Kenneth S; Kimmel, Joel R; Ulbrich, Ingrid M; Hannigan, Michael; Jimenez, Jose L

    2009-04-01

    Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.

  19. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  20. Handling high data rate detectors at Diamond Light Source

    Science.gov (United States)

    Pedersen, U. K.; Rees, N.; Basham, M.; Ferner, F. J. K.

    2013-03-01

    An increasing number of area detectors, in use at Diamond Light Source, produce high rates of data. In order to capture, store and process this data High Performance Computing (HPC) systems have been implemented. This paper will present the architecture and usage for handling high rate data: detector data capture, large volume storage and parallel processing. The EPICS area Detector frame work has been adopted to abstract the detectors for common tasks including live processing, file format and storage. The chosen data format is HDF5 which provides multidimensional data storage and NeXuS compatibility. The storage system and related computing infrastructure include: a centralised Lustre based parallel file system, a dedicated network and a HPC cluster. A well defined roadmap is in place for the evolution of this to meet demand as the requirements and technology advances. For processing the science data the HPC cluster allow efficient parallel computing, on a mixture of ×86 and GPU processing units. The nature of the Lustre storage system in combination with the parallel HDF5 library allow efficient disk I/O during computation jobs. Software developments, which include utilising optimised parallel file reading for a variety of post processing techniques, are being developed in collaboration as part of the Pan-Data EU Project (www.pan-data.eu). These are particularly applicable to tomographic reconstruction and processing of non crystalline diffraction data.

  1. Integrated Automotive High-Power LED-Lighting Systems in 3D-MID Technology

    NARCIS (Netherlands)

    Thomas, W.

    2014-01-01

    The growing energy consumption of lighting as well as rising luminous efficacies and -fluxes of high-power Light Emitting Diodes (LEDs) have contributed to the widespread use of LEDs in modern lighting systems. One of the most prominent users of the LED-technology is automotive (exterior) lighting.

  2. Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Y Lee; D Seoung; Y Jang; J Bai; Y Lee

    2011-12-31

    We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6% and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged

  3. Periodismo ambiental

    Directory of Open Access Journals (Sweden)

    Lucía Lemos

    2015-01-01

    Full Text Available Los periodistas toman el tema del medio ambiente cada vez más en serio. El uso de temas relacionados con el medio ambiente, debe estar ligado al análisis socio-económico y a las posibilidades de comunicación y educación de diferentes regiones del mundo. A continuación se presenta un resumen de la situación ambiental, las acciones de prensa y comunicación que se llevan a cabo en América Central (Panamá, El Salvador, Costa Rica y en Sudamérica Brasil,Colombia, Chile, México, y Perú. Se concluye en la necesidad de formar hábitos ecológicos. Los comunicadores deben presentar soluciones a los problemas, fomentar campañas comunes, compartir información y velar por el ambiente ambiente para que las generaciones futuras no tengan que perecer.

  4. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    Science.gov (United States)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  5. The thermal management of high power light emitting diodes

    Science.gov (United States)

    Hsu, Ming-Seng; Huang, Jen-Wei; Shyu, Feng-Lin

    2012-10-01

    Thermal management had an important influence not only in the life time but also in the efficiency of high power light emitting diodes (HPLEDs). 30 watts in a single package have become standard to the industrial fabricating of HPLEDs. In this study, we fabricated both of the AlN porous films, by vacuum sputtering, soldered onto the HPLEDs lamp to enhance both of the heat transfer and heat dissipation. In our model, the ceramic enables transfer the heat from electric device to the aluminum plate quickly and the porous increase the quality of the thermal dissipation between the PCB and aluminum plate, as compared to the industrial processing. The ceramic films were characterized by several subsequent analyses, especially the measurement of real work temperature. The X-Ray diffraction (XRD) diagram analysis reveals those ceramic phases were successfully grown onto the individual substrates. The morphology of ceramic films was investigated by the atomic force microscopy (AFM). The results show those porous films have high thermal conduction to the purpose. At the same time, they had transferred heat and limited work temperature, about 70°, of HPLEDs successfully.

  6. Fuselage mounted anti-collision lights utilizing high power LEDs

    Science.gov (United States)

    Lundberg, John; Machi, Nicolo; Mangum, Scott; Singer, Jeffrey

    2005-09-01

    As LEDs continue to improve in efficacy and total light output, they are increasingly finding their way in to new applications in the aviation industry as well as adjacent markets. One function that is particularly challenging and may reap substantial benefits from this new technology is the fuselage mounted anti-collision light. Anti-collision lights provide conspicuity for the aircraft by periodically emitting bright flashes of light. The color, light distribution and intensity levels for these lights are all closely regulated through Federal Aviation Regulation (FAR) documents. These lighting requirements, along with thermal, environmental and aerodynamic requirements, drive the overall design. In this paper, we will discuss the existing technologies used in anti-collision lights and the advantages and challenges associated with an LED solution. Particular attention will be given to the optical, thermal, electrical and aerodynamic aspects associated with an LED approach. A specific case study will be presented along with some of the challenges that have arisen during the design process. These challenges include the addition of an integrated covert anti-collision lighting.

  7. Application of high-brightness LEDs in aircraft position lights

    Science.gov (United States)

    Machi, Nicolo; Mangum, Scott; Singer, Jeffrey M.

    2004-10-01

    Solid state lighting devices have made their way into a number of niche markets and continue to make inroads into other markets as their price / performance ratios improve. One of these markets is aviation lighting. Although this paper will focus on the use of LEDs for aircraft position lights, much of the discussion is applicable to other installations on the interior and exterior of the aircraft. The color, light distribution and intensity levels for a position light are all closely regulated through Code of Federal Regulation (CFR; formerly Federal Aviation Regulation (FAR)) documents. These lighting requirements, along with harsh thermal and environmental requirements, drive the design. In this paper, we will look at these requirements and discuss what is required in order to use LEDs for this type of application. We will explore the optical, thermal and electrical issues associated with the use of LEDs for position lights and examine the specific case study of the Astreon forward position lights. Finally, we will discuss some of the challenges that we see with solid state lighting in current and future aircraft applications.

  8. PROTECTION, UTILIZATION AND ANALYSIS OF HIGH MAST STREET LIGHT IN RURAL AREA.

    OpenAIRE

    Bhagawati Chandra , Miss Anjali Karsh

    2017-01-01

    High Mast Light gives the several cost effective advantages and cost is a major issue for rural area general services. This project illustrates the theoretical basis and the analytical development of the high mast lighting poles. In the late 1960"s, studies were conducted to investigate the impact that high-mast lighting gives on traffic performance, driver visibility, and illumination costs. It was found that increasing the height of the lighting offered a noticeable advantage in that it pr...

  9. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  10. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael

    2016-01-01

    colors through a microlens array(MA) at the gate of ∅50 mm. Hence, it produces homogeneous color-mixed tunable white light from 3000 to6000 K that can be adjustable from flood to spot position providing 10% translational loss, whereas the correspondingloss from the halogen–Fresnel spotlight is 37...

  11. Light

    CERN Document Server

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  12. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper

    2006-01-01

    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  13. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  14. Computational model of lightness perception in high dynamic range imaging

    Science.gov (United States)

    Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter

    2006-02-01

    An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.

  15. Successful "First Light" for VLT High-Resolution Spectrograph

    Science.gov (United States)

    1999-10-01

    Great Research Prospects with UVES at KUEYEN A major new astronomical instrument for the ESO Very Large Telescope at Paranal (Chile), the UVES high-resolution spectrograph, has just made its first observations of astronomical objects. The astronomers are delighted with the quality of the spectra obtained at this moment of "First Light". Although much fine-tuning still has to be done, this early success promises well for new and exciting science projects with this large European research facility. Astronomical instruments at VLT KUEYEN The second VLT 8.2-m Unit Telescope, KUEYEN ("The Moon" in the Mapuche language), is in the process of being tuned to perfection before it will be "handed" over to the astronomers on April 1, 2000. The testing of the new giant telescope has been successfully completed. The latest pointing tests were very positive and, from real performance measurements covering the entire operating range of the telescope, the overall accuracy on the sky was found to be 0.85 arcsec (the RMS-value). This is an excellent result for any telescope and implies that KUEYEN (as is already the case for ANTU) will be able to acquire its future target objects securely and efficiently, thus saving precious observing time. This work has paved the way for the installation of large astronomical instruments at its three focal positions, all prototype facilities that are capable of catching the light from even very faint and distant celestial objects. The three instruments at KUEYEN are referred to by their acronyms UVES , FORS2 and FLAMES. They are all dedicated to the investigation of the spectroscopic properties of faint stars and galaxies in the Universe. The UVES instrument The first to be installed is the Ultraviolet Visual Echelle Spectrograph (UVES) that was built by ESO, with the collaboration of the Trieste Observatory (Italy) for the control software. Complete tests of its optical and mechanical components, as well as of its CCD detectors and of the complex

  16. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    OpenAIRE

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijfhout, Falko P.

    2015-01-01

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes a...

  17. Ambient Utopia

    NARCIS (Netherlands)

    Heylen, Dirk K.J.; Bosse, Tibor

    2012-01-01

    his chapter presents an analysis of the ambitions that lie behind the concept of Ambient Intelligence as it is presented by the advocates and researchers working in the field. In particular it looks at the ideas regarding the forms of natural and intuitive forms of interaction that are envisaged –

  18. A high throughput liquid crystal light shutter for unpolarized light using polymer polarization gratings

    Science.gov (United States)

    Komanduri, Ravi K.; Lawler, Kris F.; Escuti, Michael J.

    2011-05-01

    We report on a broadband, diffractive, light shutter with the ability to modulate unpolarized light. This polarizer-free approach employs a conventional liquid crystal (LC) switch, combined with broadband Polarization Gratings (PGs) formed with polymer LC materials. The thin-film PGs act as diffractive polarizing beam-splitters, while the LC switch operates on both orthogonal polarization states simultaneously. As an initial experimental proof-of- concept for unpolarized light with +/-7° aperture, we utilize a commercial twisted-nematic LC switch and our own polymer PGs to achieve a peak transmittance of 80% and peak contrast ratio of 230:1. We characterize the optoelectronic performance, discuss the limitations, and evaluate its use in potential nonmechanical shutter applications (imaging and non-imaging).

  19. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  20. Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening.

    Science.gov (United States)

    Lawton, Zachary E; Traub, Angelica; Fatigante, William L; Mancias, Jose; O'Leary, Adam E; Hall, Seth E; Wieland, Jamie R; Oberacher, Herbert; Gizzi, Michael C; Mulligan, Christopher C

    2017-06-01

    Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. Graphical Abstract ᅟ.

  1. Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening

    Science.gov (United States)

    Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.

    2017-06-01

    Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.

  2. Effects of high ambient temperature on ambulance dispatches in different age groups in Fukuoka, Japan.

    Science.gov (United States)

    Kotani, Kazuya; Ueda, Kayo; Seposo, Xerxes; Yasukochi, Shusuke; Matsumoto, Hiroko; Ono, Masaji; Honda, Akiko; Takano, Hirohisa

    2018-01-01

    The elderly population has been the primary target of intervention to prevent heat-related illnesses. According to the literature, the highest risks have been observed among the elderly in the temperature-mortality relationship. However, findings regarding the temperature-morbidity relationship are inconsistent. This study aimed to examine the association of temperature with ambulance dispatches due to acute illnesses, stratified by age group. Specifically, we explored the optimum temperature, at which the relative health risks were found to be the lowest, and quantified the health risk associated with higher temperatures among different age groups. We used the data for ambulance dispatches in Fukuoka, Japan, during May and September from 2005 to 2012. The data were grouped according to age in 20-year increments. We explored the pattern of the association of ambulance dispatches with temperature using a smoothing spline curve to identify the optimum temperature for each age group. Then, we applied a distributed lag nonlinear model to estimate the risks of the 85th-95th percentile temperature relative to the overall optimum temperature, for each age group. The relative risk of ambulance dispatches at the 85th and 95th percentile temperature for all ages was 1.08 [95% confidence interval (CI): 1.05, 1.12] and 1.12 (95% CI: 1.08, 1.16), respectively. In comparison, among age groups, the optimum temperature was observed as 25.0°C, 23.2°C, and 25.3°C for those aged 0-19, 60-79, and ≥80, respectively. The optimum temperature could not be determined for those aged 20-39 and 40-59. The relative risks of high temperature tended to be higher for those aged 20-39 and 40-59 than those for other age groups. We did not find any definite difference in the effect of high temperature on ambulance dispatches for different age groups. However, more measures should be taken for younger and middle-aged people to avoid heat-related illnesses.

  3. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  4. Sun Protection and Skin Examination Practices in a Setting of High Ambient Solar Radiation: A Population-Based Cohort Study.

    Science.gov (United States)

    Olsen, Catherine M; Thompson, Bridie S; Green, Adèle C; Neale, Rachel E; Whiteman, David C

    2015-09-01

    Primary prevention and early detection are integral strategies to reduce the burden of skin cancer. To describe the prevalence of sun protection and skin examination practices in a population exposed to high levels of ambient solar radiation and to identify associated factors. Cross-sectional analyses of baseline data from a prospective cohort of 40,172 adults aged 40 through 69 years from Queensland, Australia, recruited in 2011. We obtained data on all melanoma diagnoses through 2009 via record linkage with the Queensland Cancer Registry (notifications have been mandatory since 1982). We calculated prevalence proportion ratios to compare prevalence of sun protection and skin examination practices in 3 separate groups: those with a history of melanoma (group 1), those with a self-reported history of treated actinic lesions (group 2), and those without either (group 3). We used multivariate generalized linear models to identify factors associated with each practice. Participants with a previously confirmed melanoma (group 1; n = 1433) and/or treated actinic lesions (group 2; n = 24,006) were more likely than those without (group 3; n = 14,733) to report sun protection practices, including regular use of sunscreen (53.3%, 45.1%, and 38.1%, respectively) and wearing hats (74.7%, 68.2%, and 58.2%, respectively). They were also more likely to have had a whole-body skin examination by a physician in the past 3 years (93.7%, 83.4%, and 52.1%, respectively). Within all 3 groups, the strongest association with sun protection practices was with sun-sensitive skin type. Within group 3 (no history of treated skin lesions), the strongest factor associated with clinical skin examinations was self-reported nevus density at 21 years of age, whereas a family history of melanoma was a significant factor in groups 2 and 3. In this large sample exposed to high levels of ambient solar radiation, sun protection and skin examination practices were most frequent among those

  5. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

    Science.gov (United States)

    Musah, Rabi A.; Espinoza, Edgard O.; Cody, Robert B.; Lesiak, Ashton D.; Christensen, Earl D.; Moore, Hannah E.; Maleknia, Simin; Drijfhout, Falko P.

    2015-01-01

    A high throughput method for species identification and classification through chemometric processing of direct analysis in real time (DART) mass spectrometry-derived fingerprint signatures has been developed. The method entails introduction of samples to the open air space between the DART ion source and the mass spectrometer inlet, with the entire observed mass spectral fingerprint subjected to unsupervised hierarchical clustering processing. A range of both polar and non-polar chemotypes are instantaneously detected. The result is identification and species level classification based on the entire DART-MS spectrum. Here, we illustrate how the method can be used to: (1) distinguish between endangered woods regulated by the Convention for the International Trade of Endangered Flora and Fauna (CITES) treaty; (2) assess the origin and by extension the properties of biodiesel feedstocks; (3) determine insect species from analysis of puparial casings; (4) distinguish between psychoactive plants products; and (5) differentiate between Eucalyptus species. An advantage of the hierarchical clustering approach to processing of the DART-MS derived fingerprint is that it shows both similarities and differences between species based on their chemotypes. Furthermore, full knowledge of the identities of the constituents contained within the small molecule profile of analyzed samples is not required. PMID:26156000

  6. Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations.

    Science.gov (United States)

    Li, Jing; Xu, Xin; Yang, Jun; Liu, Zhidong; Xu, Lei; Gao, Jinghong; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Yu, Jieqiong; Jiang, Baofa; Liu, Qiyong

    2017-07-01

    Understanding the health consequences of continuously rising temperatures-as is projected for China-is important in terms of developing heat-health adaptation and intervention programs. This study aimed to examine the association between mortality and daily maximum (T max ), mean (T mean ), and minimum (T min ) temperatures in warmer months; to explore threshold temperatures; and to identify optimal heat indicators and vulnerable populations. Daily data on temperature and mortality were obtained for the period 2007-2013. Heat thresholds for condition-specific mortality were estimated using an observed/expected analysis. We used a generalised additive model with a quasi-Poisson distribution to examine the association between mortality and T max /T min /T mean values higher than the threshold values, after adjustment for covariates. T max /T mean /T min thresholds were 32/28/24°C for non-accidental deaths; 32/28/24°C for cardiovascular deaths; 35/31/26°C for respiratory deaths; and 34/31/28°C for diabetes-related deaths. For each 1°C increase in T max /T mean /T min above the threshold, the mortality risk of non-accidental-, cardiovascular-, respiratory, and diabetes-related death increased by 2.8/5.3/4.8%, 4.1/7.2/6.6%, 6.6/25.3/14.7%, and 13.3/30.5/47.6%, respectively. Thresholds for mortality differed according to health condition when stratified by sex, age, and education level. For non-accidental deaths, effects were significant in individuals aged ≥65 years (relative risk=1.038, 95% confidence interval: 1.026-1.050), but not for those ≤64 years. For most outcomes, women and people ≥65 years were more vulnerable. High temperature significantly increases the risk of mortality in the population of Jinan, China. Climate change with rising temperatures may bring about the situation worse. Public health programs should be improved and implemented to prevent and reduce health risks during hot days, especially for the identified vulnerable groups. Copyright

  7. Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance

    NARCIS (Netherlands)

    Cuaresma, M.; Janssen, M.G.J.; Vilchez, C.; Wijffels, R.H.

    2009-01-01

    Maximal productivity of a 14 mm light-path panel photobioreactor under high irradiance was determined. Under continuous illumination of 2,100 µmol photons m-2 s-1 with red light emitting diodes (LEDs) the effect of dilution rate on photobioreactor productivity was studied. The light intensity used

  8. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Kanayama, Hiroshi

    2010-01-01

    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  9. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    Science.gov (United States)

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  10. Non-Boussinesq turbulent buoyant jet of a low-density gas leaks into high-density ambient

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In this article, we study the problem of low-density gas jet injected into high-density ambient numerically which is important in applications such as fuel injection and leaks. It is assumed that the local rate of entrainment is consisted of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some similarity transformations. The resulting system is solved to determine the centerline quantities which are used to get the mean axial velocity, mean concentration and mean density of the jet. Therefore, the centerline and mean quantities are used together with the governing equation to determine some important turbulent quantities such as, cross-stream velocity, Reynolds stress, velocity- concentration correlation, turbulent eddy viscosity and turbulent eddy diffusivity. Throughout this paper the developed model is verified by comparing the present results with experimental results and jet/plume theory from the literature. © 2010 Elsevier Inc. All rights reserved.

  11. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Michelle L McLellan

    Full Text Available Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C and hot (27.9-40.1°C days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  12. High cortisol awakening response is associated with an impairment of the effect of bright light therapy

    DEFF Research Database (Denmark)

    Martiny, Klaus Per Juul; Lunde, Marianne Anita; Undén, M

    2009-01-01

    OBJECTIVE: We investigated the predictive validity of the cortisol awakening response (CAR) in patients with non-seasonal major depression. METHOD: Patients were treated with sertraline in combination with bright or dim light therapy for a 5-week period. Saliva cortisol levels were measured in 63...... patients, as an awakening profile, before medication and light therapy started. The CAR was calculated by using three time-points: awakening and 20 and 60 min after awakening. RESULTS: Patients with low CAR had a very substantial effect of bright light therapy compared with dim light therapy, whereas...... patients with a high CAR had no effect of bright light therapy compared with dim light therapy. CONCLUSION: High CAR was associated with an impairment of the effect of bright light therapy. This result raises the question of whether bright light acts through a mechanism different from...

  13. Long-range high-speed visible light communication system over 100-m outdoor transmission utilizing receiver diversity technology

    Science.gov (United States)

    Wang, Yiguang; Huang, Xingxing; Shi, Jianyang; Wang, Yuan-quan; Chi, Nan

    2016-05-01

    Visible light communication (VLC) has no doubt become a promising candidate for future wireless communications due to the increasing trends in the usage of light-emitting diodes (LEDs). In addition to indoor high-speed wireless access and positioning applications, VLC usage in outdoor scenarios, such as vehicle networks and intelligent transportation systems, are also attracting significant interest. However, the complex outdoor environment and ambient noise are the key challenges for long-range high-speed VLC outdoor applications. To improve system performance and transmission distance, we propose to use receiver diversity technology in an outdoor VLC system. Maximal ratio combining-based receiver diversity technology is utilized in two receivers to achieve the maximal signal-to-noise ratio. A 400-Mb/s VLC transmission using a phosphor-based white LED and a 1-Gb/s wavelength division multiplexing VLC transmission using a red-green-blue LED are both successfully achieved over a 100-m outdoor distance with the bit error rate below the 7% forward error correction limit of 3.8×10-3. To the best of our knowledge, this is the highest data rate at 100-m outdoor VLC transmission ever achieved. The experimental results clearly prove the benefit and feasibility of receiver diversity technology for long-range high-speed outdoor VLC systems.

  14. Remote-actuator used in environments for high electromagnetic interference; Actuador telecontrolado para ambientes de alta interferencia electromagnetica

    Energy Technology Data Exchange (ETDEWEB)

    Perez Abad, Carlos Alberto; Velazquez Hernandez, Jose Conrado; Montero Cervantes, Julio Cesar [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: caperez@iie.org.mx; jconrado@iie.org.mx; jcmc@iie.org.mx

    2010-11-15

    This article presents the design of an actuator telecontrolled used in environments of high electromagnetic interference, especially designed for high-power laboratories Comision Federal de Electricidad, LAPEM (Laboratorio de pruebas de equipos y materiales) basically the actuator is an electronic component in a series of hardware and software involved in short circuit tests performed LAPEM but because of its design can be used in any industry involving fire remotely due to the electromagnetic pollution caused by high currents and voltages involved in the tests, the means of communication between the actuator and programmable controller sequences (CPS) is optical fiber that ensures the integrity of the control signal that activates the device. We present the electronic modules that comprise it and the evidence and findings. [Spanish] En este articulo se presenta el diseno de un actuador telecontrolado utilizado en ambientes de alta interferencia electromagnetica, en especial fue disenado para los laboratorios de alta potencia del LAPEM (Laboratorio de pruebas de equipos y materiales), Comision Federal de Electricidad, basicamente el actuador es un componente electronico de una serie de hardware y software involucrados en las pruebas de corto circuito que realiza el LAPEM pero debido a su diseno puede ser utilizado en cualquier otra industria que involucre disparos en forma remota, debido a la contaminacion electromagnetica causada por las altas corrientes y voltajes involucradas en las pruebas, el medio de comunicacion entre el actuador y el Controlador programable de Secuencias (CPS) es fibra optica con esto se asegura la integridad de la senal de control que activa el dispositivo. Se presenta los modulos electronicos que lo componen asi como las pruebas y resultados obtenidos.

  15. A high efficiency lateral light emitting device on SOI

    NARCIS (Netherlands)

    Hoang, T.; Le Minh, P.; Holleman, J.; Zieren, V.; Goossens, M.J.; Schmitz, Jurriaan

    2005-01-01

    The infrared light emission of lateral p/sup +/-p-n/sup +/ diodes realized on SIMOX-SOI (separation by implantation of oxygen - silicon on insulator) substrates has been studied. The confinement of the free carriers in one dimension due to the buried oxide was suggested to be a key point to increase

  16. High power AlGaN ultraviolet light emitters

    International Nuclear Information System (INIS)

    Shatalov, Max; Sun, Wenhong; Jain, Rakesh; Lunev, Alex; Hu, Xuhong; Dobrinsky, Alex; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis; Garrett, Gregory A; Rodak, Lee E; Wraback, Michael; Shur, Michael

    2014-01-01

    We present the analysis of the external quantum efficiency in AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) on sapphire substrates and discuss factors affecting the output power of DUV LEDs. Performance of the LED is related to optimization of the device structure design and improvements of the epitaxial material quality. (invited article)

  17. High power AlGaN ultraviolet light emitters

    Science.gov (United States)

    Shatalov, Max; Sun, Wenhong; Jain, Rakesh; Lunev, Alex; Hu, Xuhong; Dobrinsky, Alex; Bilenko, Yuri; Yang, Jinwei; Garrett, Gregory A.; Rodak, Lee E.; Wraback, Michael; Shur, Michael; Gaska, Remis

    2014-06-01

    We present the analysis of the external quantum efficiency in AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) on sapphire substrates and discuss factors affecting the output power of DUV LEDs. Performance of the LED is related to optimization of the device structure design and improvements of the epitaxial material quality.

  18. Simulating elastic light scattering using high performance computing methods

    NARCIS (Netherlands)

    Hoekstra, A.G.; Sloot, P.M.A.; Verbraeck, A.; Kerckhoffs, E.J.H.

    1993-01-01

    The Coupled Dipole method, as originally formulated byPurcell and Pennypacker, is a very powerful method tosimulate the Elastic Light Scattering from arbitraryparticles. This method, which is a particle simulationmodel for Computational Electromagnetics, has one majordrawback: if the size of the

  19. Highly polarized light from stable ordered magnetic fields in GRB 120308A.

    Science.gov (United States)

    Mundell, C G; Kopač, D; Arnold, D M; Steele, I A; Gomboc, A; Kobayashi, S; Harrison, R M; Smith, R J; Guidorzi, C; Virgili, F J; Melandri, A; Japelj, J

    2013-12-05

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or 'jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ≈ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P =28(+4)(-4) per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = 16(+5)(-4) per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  20. Beyond peak summer temperatures, branching corals in the Gulf of Aqaba are resilient to thermal stress but sensitive to high light

    Science.gov (United States)

    Bellworthy, Jessica; Fine, Maoz

    2017-12-01

    Despite rapidly rising sea surface temperatures and recurrent positive temperature anomalies, corals in the Gulf of Aqaba (GoA) rarely experience thermal bleaching. Elsewhere, mass coral bleaching has been observed in corals when the water temperature exceeds 1-2 °C above the local maximum monthly mean (MMM). This threshold value or "bleaching rule" has been used to create predictive models of bleaching from satellite sea surface temperature observations, namely the "degree heating week" index. This study aimed to characterize the physiological changes of dominant reef building corals from the GoA in response to a temperature and light stress gradient. Coral collection and experiments began after a period of 14 consecutive days above MMM in the field. Stylophora pistillata showed negligible changes in symbiont and host physiology parameters after accumulating up to 9.4 degree heating weeks during peak summer temperatures, for which the index predicts widespread bleaching and some mortality. This result demonstrates acute thermal tolerance in S. pistillata from the GoA and deviation from the bleaching rule. In a second experiment after 4 weeks at 4 °C above peak summer temperatures, S. pistillata and Acropora eurystoma in the high-light treatment visibly paled and suffered greater midday and afternoon photoinhibition compared to corals under low-light conditions (35% of high-light treatment). However, light, not temperature (alone or in synergy with light), was the dominant factor in causing paling and the effective quantum yield of corals at 4 °C above ambient was indistinguishable from those in the ambient control. This result highlights the exceptional, atypical thermal tolerance of dominant GoA branching corals. Concomitantly, it validates the efficacy of protecting GoA reefs from local stressors if they are to serve as a coral refuge in the face of global sea temperature rise.

  1. Dietary enzymatically treated Artemisia annua L. supplementation alleviates liver oxidative injury of broilers reared under high ambient temperature

    Science.gov (United States)

    Wan, Xiaoli; Zhang, Jingfei; He, Jintian; Bai, Kaiwen; Zhang, Lili; Wang, Tian

    2017-09-01

    Heat stress induced by high ambient temperature is a major concern in commercial broiler production. To evaluate the effects of dietary enzymatically treated Artemisia annua L. (EA) supplementation on growth performance and liver oxidative injury of broilers reared under heat stress, a total of 320 22-day-old male broilers were randomly allotted into five groups with eight replicates of eight birds each. Broilers in the control group were housed at 22 ± 1 °C and fed the basal diet. Broilers in the HS, HS-EA1, HS-EA2, and HS-EA3 groups were fed basal diet supplemented with 0, 0.75, 1.00, and 1.25 g/kg EA, respectively, and reared under cyclic high temperature (34 ± 1 °C for 8 h/day and 22 ± 1 °C for 16 h/day). Broilers fed EA diets had higher final body weight, average daily body weight gain, and average daily feed intake, as well as liver concentration of reduced glutathione, activities of antioxidant enzymes, abilities to inhibit hydroxyl radical and superoxide radical (HS-EA2 and HS-EA3), and lower liver concentrations of reactive oxygen metabolites, malondialdehyde, and protein carbonyl (HS-EA1, HS-EA2, and HS-EA3) than HS group ( P proteins 70 and 90, upregulated the mRNA levels of nuclear factor erythroid 2-related factor 2 (HS-EA1, HS-EA2, and HS-EA3) and heme oxygenase 1 (HS-EA2 and HS-EA3) in liver of heat-treated broilers ( P diet is 1.00-1.25 g/kg.

  2. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices

    Science.gov (United States)

    Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.

    2016-08-01

    Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

  3. High light intensity mediates a shift from allochthonous to autochthonous carbon use in phototrophic stream biofilms

    Science.gov (United States)

    Wagner, Karoline; Bengtsson, Mia M.; Findlay, Robert H.; Battin, Tom J.; Ulseth, Amber J.

    2017-07-01

    Changes in the riparian vegetation along stream channels, diurnal light availability, and longitudinal fluctuations in the local light regime in streams influence primary production and carbon (C) cycling in benthic stream biofilms. To investigate the influence of light availability on the uptake dynamics of autochthonous and allochthonous dissolved organic carbon (DOC) in benthic biofilms, we experimentally added 13C-labeled allochthonous DOC to biofilms grown under light intensities ranging from 5 to 152 μmol photons m-2 s-1. We calculated the net C flux, which showed that benthic biofilms released autochthonous DOC across the entire light gradient. Light availability and diurnal light patterns influenced C uptake by benthic biofilms. More allochthonous DOC was respired under low light availability and at night, whereas under high light availability and during the day mainly autochthonous C was respired by the benthic biofilm community. Furthermore, phenol oxidase activity (indicative of allochthonous DOC uptake) was more elevated under low light availability, whereas beta-glucosidase activity (indicative of autochthonous DOC use) increased with light intensity. Collectively, our results suggest that biofilms exposed to high light inputs preferentially used autochthonous DOC, whereas biofilms incubated at attenuated levels showed greater use of allochthonous DOC. This has implications for the spatial dynamics of DOC uptake in streams and speaks against the occurrence of priming effects in algal-dominated stream biofilms.

  4. Growth responses of male broilers subjected to increasing air velocities at high ambient temperatures and a high dew point.

    Science.gov (United States)

    Dozier, W A; Lott, B D; Branton, S L

    2005-06-01

    This study examined live performance responses of male broilers to increasing air velocity of 120 and 180 m/min reared under high cyclic temperatures (25-35-25 degrees C) with a 23 degrees C dew point from 21 to 49 d. Birds were reared in an environmental facility containing 2 wind tunnels (4 pens/tunnel) and 6 floor pens (control). At 21 d, 53 birds were placed in each pen of the wind tunnels and control group, respectively, and growth performance was determined weekly. Increasing air velocity from 120 to 180 m/min improved BW and BW gain from 29 to 35, 36 to 42, and 43 to 49 d of age leading to a cumulative advantage of 287 g in BW gain and a 10-point difference in feed conversion from 21 to 49 d of age. Subjecting birds to air velocity improved growth rate, feed consumption, and feed conversion at each weekly interval from 28 to 49 d over the control birds. These results indicate that male broilers approximating 2.0 to 3.0 kg respond to an air velocity of 180 m/min when exposed to high cyclic temperatures.

  5. Response of Respiration of Soybean Leaves Grown at Ambient and Elevated Carbon Dioxide Concentrations to Day-to-day Variation in Light and Temperature under Field Conditions

    Science.gov (United States)

    BUNCE, JAMES A.

    2005-01-01

    • Background and Aims Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO2] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO2] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. • Methods Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO2] and at ambient plus 350 µmol mol−1 [CO2] in open top chambers. Measurements were made on pairs of leaves from both [CO2] treatments on a total of 16 d during the middle of the growing seasons of two years. • Key Results Elevated [CO2] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m−2 d−1 (1·4 µmol m−2 s−1) for both the ambient and elevated [CO2] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO2], and respiration per unit of mass was significantly lower at elevated [CO2]. Respiration increased by a factor of 2·5 between 18 and 26 °C average night temperature, for both [CO2] treatments. • Conclusions These results do not support predictions that elevated [CO2] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights. PMID:15781437

  6. Ambient diagnostics

    CERN Document Server

    Cai, Yang

    2014-01-01

    Part I. FundamentalsIntroductionWhat is Ambient Diagnostics?Diagnostic ModelsMultimedia IntelligenceCrowd SourcingSoft SensorsScience of SimplicityPersonal DiagnosesBasic AlgorithmsBasic ToolsSummaryProblemsTransformationEarly Discoveries of Heartbeat PatternsTransforms, Features, and AttributesSequential FeaturesSpatiotemporal FeaturesShape FeaturesImagery FeaturesFrequency Domain FeaturesMulti-Resolution FeaturesSummaryProblemsPattern RecognitionSimilarities and DistancesClustering MethodsClassification MethodsClassifier Accuracy MeasuresSummaryProblemsPart II. Multimedia IntelligenceSound RecognitionMicrophone AppsModern Acoustic Transducers (Microphones)Frequency Response CharacteristicsDigital Audio File FormatsHeart Sound SensingLung Sound SensingSnore MeterSpectrogram (STFT)Ambient Sound AnalysisSound RecognitionRecognizing Asthma SoundPeak ShiftFeature CompressionRegroupingNoise IssuesFuture ApplicationsSummaryProblemsColor SensorsColor SensingHuman Color VisionColor SensorsColor Matching ExperimentsC...

  7. High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise

    Science.gov (United States)

    Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group

    2018-05-01

    Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.

  8. Water cooling of high power light emitting diode

    DEFF Research Database (Denmark)

    Sørensen, Henrik

    2012-01-01

    The development in light technologies for entertainment is moving towards LED based solutions. This progress is not without problems, when more than a single LED is used. The amount of generated heat is often in the same order as in a conventional discharge lamp, but the allowable operating...... temperature is much lower. In order to handle the higher specific power (W/m3) inside the LED based lamps cold plates were designed and manufactured. 6 different designs were analyzed through laboratory experiments and their performances were compared. 5 designs cover; traditional straight mini channel, S...

  9. Designing High Efficient Solar Powered OLED Lighting Systems

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    2016-01-01

    for the 10 Wp version. Furthermore, we present measurements of state-of-the-art commercial available OLED with regards to the luminous flux, luminous efficacy, luminance homogeneity, temperature dependency and IV characteristic of the OLED panels. In addition, solar powered OLED product concepts are proposed.......OLEDs used in solar powered lighting applications is a market of the future. This paper reports the development of electronic Three-Port-Converters for PV OLED product integration in the low-power area respectively for 1-10 Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power...

  10. Effects of reducing the ambient UV-B radiation in the high Arctic on Salix arctica and Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, K.R.; Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard

    2005-01-01

    , transmitting λ > 400 nm) were used to reduce UV-B radiation and UV-B+A respectively. A UV transparent film (Teflon, transmitting λ > 280 nm) and no film were used as controls. Field measurements showed that the plants under Teflon, Mylar and Lexan received app. 91%, 39% and 17% of the ambient UV-B irradiance...

  11. Green Fluorescent Organic Light Emitting Device with High Luminance

    Directory of Open Access Journals (Sweden)

    Ning YANG

    2014-06-01

    Full Text Available In this work, we fabricated the small molecule green fluorescent bottom-emission organic light emitting device (OLED with the configuration of glass substrate/indium tin oxide (ITO/Copper Phthalocyanine (CuPc 25 nm/ N,N’-di(naphthalen-1-yl-N,N’-diphenyl-benzidine (NPB 45 nm/ tris(8-hydroxyquinoline aluminium (Alq3 60 nm/ Lithium fluoride (LiF 1 nm/Aluminum (Al 100 nm where CuPc and NPB are the hole injection layer and the hole transport layer, respectively. CuPc is introduced in this device to improve carrier injection and efficiency. The experimental results indicated that the turn-on voltage is 2.8 V with a maximum luminance of 23510 cd/m2 at 12 V. The maximum current efficiency and power efficiency are 4.8 cd/A at 100 cd/m2 and 4.2 lm/W at 3 V, respectively. The peak of electroluminance (EL spectrum locates at 530 nm which is typical emission peak of green light. In contrast, the maximum current efficiency and power efficiency of the device without CuPc are only 4.0 cd/A at 100 mA/cm2 and 4.2 lm/W at 3.6 V, respectively.

  12. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  13. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  14. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  15. Light relativistic bound states in high temperature QCD

    International Nuclear Information System (INIS)

    Zahed, Ismail

    1991-01-01

    The nonperturbative structure of high temperature QCD is combined with generalized sum-rules arguments to analyse gauge invariant correlation functions in real time. It is shown that for a plausible choice of condensates, QCD at high temperature exhibits color singlet excitations as opposed to merely screened quarks and gluons. (author). 14 refs.; 2 figs

  16. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  17. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities

    Science.gov (United States)

    Adaptability and optimum growth of cover crops in plantation crops is affected by the inherent nature of the cover crop species and the light intensity at canopy levels. Globally concentrations of atmospheric CO2 are increasing and this creates higher photosynthesis and nutrient demand by crops as l...

  18. Exploring the Limits of Crop Productivity: High Light Studies with Lettuce

    OpenAIRE

    USU Crop Physiology Lab

    2015-01-01

    There are many different leaf lettuce cultivars and they range in color from light green and yellow to deep green as a result of higher concentrations of chlorophyll in the leaves. We tested four cultivars in high light to explore the limits of lettuce productivity.

  19. A 1.5 GeV high brilliance synchrotron light source with combined function lattice

    International Nuclear Information System (INIS)

    Eriksson, M.; Lindgren, L.J.; Andersson, Aa.; Roejsel, P.; Werin, S.

    1988-01-01

    A 1.5 GeV synchrotron light source with a combined function lattice is studied. The light source will offer X-ray radiation with λc=1.0 angstrom from a superconducting wiggler and high brilliance VUV-radiation from undulators. The magnet lattice, magnet design and ring performance is discussed. (authors)

  20. Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters.

    Science.gov (United States)

    Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag

    2010-01-18

    We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.

  1. Shedding Light on Filovirus Infection with High-Content Imaging

    Directory of Open Access Journals (Sweden)

    Rekha G. Panchal

    2012-08-01

    Full Text Available Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.

  2. Semiconductive 3-D haloplumbate framework hybrids with high color rendering index white-light emission.

    Science.gov (United States)

    Wang, Guan-E; Xu, Gang; Wang, Ming-Sheng; Cai, Li-Zhen; Li, Wen-Hua; Guo, Guo-Cong

    2015-12-01

    Single-component white light materials may create great opportunities for novel conventional lighting applications and display systems; however, their reported color rendering index (CRI) values, one of the key parameters for lighting, are less than 90, which does not satisfy the demand of color-critical upmarket applications, such as photography, cinematography, and art galleries. In this work, two semiconductive chloroplumbate (chloride anion of lead(ii)) hybrids, obtained using a new inorganic-organic hybrid strategy, show unprecedented 3-D inorganic framework structures and white-light-emitting properties with high CRI values around 90, one of which shows the highest value to date.

  3. Measurement and removal of cladding light in high power fiber systems

    Science.gov (United States)

    Walbaum, Till; Liem, Andreas; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    The amount of cladding light is important to ensure longevity of high power fiber components. However, it is usually measured either by adding a cladding light stripper (and thus permanently modifying the fiber) or by using a pinhole to only transmit the core light (ignoring that there may be cladding mode content in the core area). We present a novel noninvasive method to measure the cladding light content in double-clad fibers based on extrapolation from a cladding region of constant average intensity. The method can be extended to general multi-layer radially symmetric fibers, e.g. to evaluate light content in refractive index pedestal structures. To effectively remove cladding light in high power systems, cladding light strippers are used. We show that the stripping efficiency can be significantly improved by bending the fiber in such a device and present respective experimental data. Measurements were performed with respect to the numerical aperture as well, showing the dependency of the CLS efficiency on the NA of the cladding light and implying that efficiency data cannot reliably be given for a certain fiber in general without regard to the properties of the guided light.

  4. The influence of boron on the crystal structure and properties of mullite. Investigations at ambient, high-pressure, and high-temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Luehrs, Hanna

    2013-11-21

    Mullite is one of the most important synthetic compounds for advanced structural and functional ceramic materials. The crystal structure of mullite with the composition Al{sub 2}[Al{sub 2+2x}Si{sub 2-2x}]O{sub 10-x} can incorporate a large variety of foreign cations, including (amongst others) significant amounts of boron. However, no chemical or crystal structure analyses of boron-mullites (B-mullites) were available prior to this work, thus representing the key aspects of this thesis. Furthermore, the influence of boron on selected properties of mullite under ambient, high-temperature, and high-pressure conditions are addressed. Starting from a 3:2 mullite composition (Al{sub 4.5}Si{sub 1.5}O{sub 9.75}), the initial hypothesis for this study was a 1:1 isomorphous replacement of silicon by boron according to the coupled substitution mechanism: 2 Si{sup 4+} + O{sup 2-} → 2 B{sup 3+} + □. Based on a series of compounds synthesized from sol-gel derived precursors at ambient pressure and 1200 C, the formation conditions and physical properties of B-mullites were investigated. The formation temperature for B-mullites decreases with increasing boron-content, as revealed by thermal analyses. An anisotropic development of lattice parameters is observed: Whereas lattice parameters a and b only exhibit minor changes, a linear relationship between lattice parameter c and the amount of boron in the crystal structure was established, on the basis of prompt gamma activation analyses (PGAA) and Rietveld refinements. According to this relationship about 15% of the silicon in mullite can be replaced by boron yielding single-phase B-mullite. B-mullites with significantly higher (∝ factor 3) boron-contents in the mullite structure were also observed but the respective samples contain alumina impurities. Fundamental new details regarding the response of B-mullite to high-temperature and highpressure are presented in this thesis. On the one hand, long-term thermal stability at

  5. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1994-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  6. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  7. Photocatalysis of the homogeneous water-gas shift reaction under ambient conditions by cationic iridium (III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ziessel, R [Ecole Europeenne des Hautes Etudes des Industries Chimiques, 67 - Strasbourg (France)

    1991-07-01

    We describe here our results and mechanistic analysis of the first highly efficient light-assisted WGSR, which takes place under extremely mild conditions (room temperature, ambient pressure, neutral pH, visible light) and is catalyzed by novel Ir{sup III} pentamethylcyclopentadienyl complexes containing novel 4,4'-substituted bipyridine ligands. (orig./EF).

  8. High temperature and high performance light water cooled reactors operating at supercritical pressure, research and development

    International Nuclear Information System (INIS)

    Oka, Y.; Koshizuka, S.; Katsumura, Y.; Yamada, K.; Shiga, S.; Moriya, K.; Yoshida, S.; Takahashi, H.

    2003-01-01

    The concept of supercritical-pressure, once-through coolant cycle nuclear power plant (SCR) was developed at the University of Tokyo. The research and development (R and D) started worldwide. This paper summarized the conceptual design and R and D in Japan. The big advantage of the SCR concept is that the temperatures of major components such as reactor pressure vessel, control rod drive mechanisms, containments, coolant pumps, main steam piping and turbines are within the temperatures of the components of LWR and supercritical fossil fired power plants (FPP) in spite of the high outlet coolant temperature. The experience of these components of LWR and supercritical fossil fired power plants will be fully utilized for SCR. The high temperature, supercritical-pressure light water reactor is the logical evolution of LWR. Boiling evolved from circular boilers, water tube boilers and once-through boilers. It is the reactor version of the once-through boiler. The development from LWR to SCR follows the history of boilers. The goal of the R and D should be the capital cost reduction that cannot be achieved by the improvement of LWR. The reactor can be used for hydrogen production either by catalysis and chemical decomposition of low quality hydrocarbons in supercritical water. The reactor is compatible with tight lattice fast core for breeders due to low outlet coolant density, small coolant flow rate and high head coolant pumps

  9. Photosynthetic and light-enhanced dark fixation of 14CO2 from the ambient atmosphere and 14C-bicarbonate infiltrated through vascular bundles in maize leaves

    International Nuclear Information System (INIS)

    Samejima, Muneaki; Miyachi, Shigetoh

    1978-01-01

    Preillumination of maize leaves in the absence of CO 2 greatly enhanced the capacity for fixing 14 CO 2 into malate and aspartate in the subsequent dark period. The light-enhanced dark fixation of 14 CO 2 lasted for about 1 min. The level of phosphoenolypyruvate in maize leaves in CO 2 -free air did not decrease in the dark subsequent to preillumination. These results indicate that phosphoenolpyruvate carboxylase is activated in light and quickly inactivated in the following darkness. First, labeling method is described, and next, the experiments on the analysis of 14 CO 2 fixation products, the degradation of malate, and the determination of phosphoenolpyruvate in maize leaves are explained. Oxygen-free condition in the atmosphere where the experiments were carried out did not exert any effect on the products by the light-enhanced dark fixation of 14 CO 2 provided from the atmosphere, and the major labeled compounds were malate and aspartate. This indicates that the transfer of carboxyl carbon of C 4 -acids to form 3-phosphoglycerate is light-dependent. When NaH 14 CO 3 solution was vacuum-infiltrated through vascular bundles of maize leaves, the main initial photosynthetic 14 CO 2 -fixation products were phosphate esters. This indicates that by this technique, 14 CO 2 could be directly provided to the bundle sheath cells, and was fixed via the reductive pentose phosphate cycle. While, the main initial 14 CO 2 -fixation products were malate and aspartate even when 14 CO 2 was given through vascular tissues in the dark immediately following preillumination. The possible regulatory mechanisms underlying the above findings are discussed. (Wakatsuki, Y.)

  10. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  11. Robust cladding light stripper for high-power fiber lasers using soft metals.

    Science.gov (United States)

    Babazadeh, Amin; Nasirabad, Reza Rezaei; Norouzey, Ahmad; Hejaz, Kamran; Poozesh, Reza; Heidariazar, Amir; Golshan, Ali Hamedani; Roohforouz, Ali; Jafari, S Naser Tabatabaei; Lafouti, Majid

    2014-04-20

    In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal-cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

  12. High-Redshift galaxies light from the early universe

    CERN Document Server

    Appenzeller, Immo

    2008-01-01

    This book provides a comprehensive account of the scientific results on high-redshift galaxies accumulated during the past ten years. Apart from summarizing and critically discussing the wealth of observational data, the observational methods which made it possible to study these very distant and extremely faint objects are described in detail. Moreover, the technical feasibilities and physical limitations for existing and for future ground-based and space-based telescopes are discussed. Thus, apart from summarizing the knowledge accumulated so far, the book is designed as a tool for planning future observational and instrumental programs and projects. In view of the potential importance of the observational results of the high-redshift universe for basic physics the book is written for astronomers as well as for physicists without prior astronomical knowledge. For this purpose it contains introductory chapters describing the basic concepts and notations used in modern astronomy and a brief overview of the pr...

  13. Sm , Bi phosphors with high efficiency white-light-emittin

    Indian Academy of Sciences (India)

    2017-08-29

    Aug 29, 2017 ... Therefore, researches on high efficiency red phos- phors are very important. So far ..... ing concentration and reached a maximum at y = 8 mol%. A .... [10] Xue L P, Wang Y J, Lv P W, Chen D G, Lin Z, Liang J K et al. 2009 Crystal ... [28] Liu J, Xu B, Song C, Luo H, Zou X, Han L et al 2012 Cryst-. EngComm.

  14. High spin states and backbending in the light tungsten isotopes

    International Nuclear Information System (INIS)

    Walker, P.M.; Dracoulis, G.D.; Johnston, A.; Leigh, J.R.; Slocombe, M.G.; Wright, I.F.

    1976-09-01

    High spin states in 172 W, 174 W, 175 W and 176 W have been studied with ( 16 O,xn) reactions. The ground state bands in 174 W and 176 W backbend in contrast to the more regular gsb in the N = 98 nucleus 172 W. This behaviour and the anomalies in the odd nucleus 175 W are discussed in terms of the influence of neutrons on backbending. (author)

  15. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    Science.gov (United States)

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  16. Estratégias de utilização de luz e estabilidade do desenvolvimento de plântulas de Cordia superba Cham. (Boraginaceae crescidas em diferentes ambientes luminosos Light utilization strategies and developmental stability of Cordia superba Cham. (Boraginaceae seedlings grown in different light environments

    Directory of Open Access Journals (Sweden)

    Gustavo Maia Souza

    2009-06-01

    Full Text Available A utilização fotossintética da luz é um componente fundamental para a distribuição das espécies ao longo de um gradiente de regeneração de clareiras. O trabalho teve como objetivo avaliar as estratégias de utilização da luz e como isto poderia afetar a estabilidade do desenvolvimento de plantas da espécie Cordia superba crescidas em dois ambientes com irradiações contrastantes. Para tanto, foi conduzido um experimento com plantas de 12 meses de idade de C. superba, uma espécie pioneira arbórea, crescidas a pleno sol e sombreamento de 85%. Foram avaliados aspectos fisiológicos como crescimento e fluorescência da clorofila, e aspectos da arquitetura das copas como ângulo de folha e índice de área foliar. Também foi realizada uma análise da estabilidade do desenvolvimento por meio da avaliação da simetria foliar. Os resultados mostraram que esta espécie possui a capacidade de desenvolver diferentes fenótipos em resposta a disponibilidades de luz contrastantes, apresentando características de plantas de sol bem como de sombra nos respectivos ambientes de crescimento. Todavia, as plantas crescidas no ambiente ensolarado apresentaram folhas mais simétricas, em relação às plantas de sombra. Isto sugere que, apesar do ambiente de pleno sol possuir uma maior heterogeneidade ambiental do que ambientes sombreados, o status de espécie pioneira de C. superba parece ser uma característica adaptativa suficientemente desenvolvida para permitir a formação de um fenótipo estável em um ambiente variávelPhotosynthetic light utilization plays a major role in species distribution along gap regeneration gradients. The aim of this study was to evaluate strategies of light utilization and the possible influence on developmental stability of seedlings of the woody pioneer species Cordia superba grown under contrasting light environments. To this end, an experiment was carried out with 12-month-old C. superba seedlings grown under

  17. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    International Nuclear Information System (INIS)

    Bailey, K.F.

    1980-01-01

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found

  18. High temperature electrochemistry related to light water reactor corrosion

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Balog, Janos; Schiller, Robert

    2004-01-01

    The present work deals with corrosion problems related to conditions which prevail in a WWER primary circuit. We had a two-fold aim: (A) electrochemical methods were applied to characterise the hydrothermally produced oxides of the cladding material (Zr-1%Nb) of nuclear fuel elements used in Russian made power reactors of WWER type, and (B) a number of possible reference electrodes were investigated with a view to high temperature applications. (A) Test specimens made of the cladding material, Zr-1%Nb, were immersed into an autoclave, filled with an aqueous solution typical to a WWER primary circuit, and were treated for different periods of time up to 28 weeks. The electrode potentials were measured and electrochemical impedance spectra (EIS) were taken regularly both as a function of oxidation time and temperature. This rendered information on the overall kinetics of oxide growth. By combining in situ and ex situ impedance measurements, with a particular view of the temperature dependence of EIS, we concluded that the high frequency region of impedance spectra is relevant to the presence of oxide layer on the alloy. This part of the spectra was treated in terms of a parallel CPE||R ox equivalent circuit (CPE denoting constant phase element, R ox ohmic resistor). The CPE element was understood as a dispersive resistance in terms of the continuous time random walk theory by Scher and Lax. This enabled us to tell apart electrical conductance and oxide growth with a model of charge transfer and recombination within the oxide layer as rate determining steps. (B) Three types of reference electrodes were tested within the framework of the LIRES EU5 project: (i) external Ag/AgCl, (ii) Pt/Ir alloy and (iii) Pd(Pt) double polarised active electrode. The most stable of the electrodes was found to be the Pt/Ir one. The Ag/AgCl electrode showed good stability after an initial period of some days, while substantial drifts were found for the Pd(Pt) electrode. EIS spectra of the

  19. Polarization holograms allow highly efficient generation of complex light beams.

    Science.gov (United States)

    Ruiz, U; Pagliusi, P; Provenzano, C; Volke-Sepúlveda, K; Cipparrone, Gabriella

    2013-03-25

    We report a viable method to generate complex beams, such as the non-diffracting Bessel and Weber beams, which relies on the encoding of amplitude information, in addition to phase and polarization, using polarization holography. The holograms are recorded in polarization sensitive films by the interference of a reference plane wave with a tailored complex beam, having orthogonal circular polarizations. The high efficiency, the intrinsic achromaticity and the simplicity of use of the polarization holograms make them competitive with respect to existing methods and attractive for several applications. Theoretical analysis, based on the Jones formalism, and experimental results are shown.

  20. Growth and Development Temperature Influences Level of Tolerance to High Light Stress 1

    Science.gov (United States)

    Steffen, Kenneth L.; Palta, Jiwan P.

    1989-01-01

    The influence of growth and development temperature on the relative tolerance of photosynthetic tissue to high light stress at chilling temperatures was investigated. Two tuber-bearing potato species, Solanum tuberosum L. cv Red Pontiac and Solanum commersonii were grown for 4 weeks, at either 12 or 24°C with 12 hours of about 375 micromoles per second per square meter of photosynthetically active radiation. Paired leaf discs were cut from directly across the midvein of leaflets of comparable developmental stage and light environment from each species at each growth temperature treatment. One disc of each pair was exposed to 1°C and about 1000 micromoles per second per square meter photosynthetically active radiation for 4 hours, and the other disc was held at 1°C in total darkness for the same duration. Photosynthetic tissue of S. tuberosum, developed at 12°C, was much more tolerant to high light and low temperature stress than tissue developed under 24°C conditions. Following the high light treatment, 24°C-grown S. tuberosum tissue demonstrated light-limited and light-saturated rates that were approximately 50% of their paired dark controls. In contrast, the 12°C-grown tissue from S. tuberosum that was subjected to the light stress showed only a 18 and 6% reduction in light-limited and light-saturated rates of photosynthetic oxygen evolution, respectively. Tissue from 24°C-grown S. commersonii was much less sensitive to the light stress than was tissue from S. tuberosum grown under the same conditions. The results presented here demonstrate that: (a) acclimation of S. tuberosum to lower temperature growth conditions with a constant light environment, results in the increased capacity of photosynthetic tissue to tolerate high light stress at chilling temperature and (b) following growth and development at relatively high temperatures S. commersonii, a frost- and heat-tolerant wild species, has a much greater tolerance to the high light stress at chilling

  1. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  2. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    Directory of Open Access Journals (Sweden)

    Javier Roales

    Full Text Available Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.

  3. Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes.

    Science.gov (United States)

    Derryberry, Elizabeth P

    2017-10-01

    In Focus: Da Silva, A., & Kempenaers, B. (2017). Singing from North to South: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297. doi: 10.1111/1365-2656.12739 Satellite images of the world at night show bright dots connected by glowing lines crisscrossing the globe. As these connect-the-dots become brighter and expand into more and more remote regions, much of the flora and fauna of the world are experiencing evolutionarily unprecedented levels of light at night. Light cues are essential to most physiological and behavioural processes, and so the need to measure the effects of light pollution on these processes is critical. In this issue, Da Silva and Kempenaers take on this task using an important reproductive behaviour in songbirds-dawn song. The geographic, temporal and taxonomic breadth of sampling in this study allows for a close examination of a potentially complex interaction between light pollution and natural variation in the behaviour of dawn singing across latitude, season and species. Their extensive dataset highlights complexity in how songbirds respond to light pollution. Although light pollution has a strong effect on the timing of dawn song, not all songbirds respond the same way to light pollution, and the effects of light pollution vary with changes in natural light levels. Early dawn singers show more flexibility in the timing of dawn song across the season and across latitudes than late dawn singers, and also appear less affected by light pollution at high latitudes than are late dawn singers. These findings suggest that not all songbirds are responding to artificial continuous daylight as they do to natural continuous daylight, highlighting the general need to measure the fitness effects of light pollution. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  4. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The

  5. Mobile learning and high-lighting language education

    DEFF Research Database (Denmark)

    Vinther, Jane

    Mobile learning and high-profiling language education. The number of students learning a second or foreign language and participating in instruction in languages other than English has been in decline for some time. There seems to be such a general tendency across nations albeit for a variety...... of reasons idiosyncratic to the particular national conditions. This paper gives an account of a diversified national project designed to infuse foreign language learning classes in upper secondary schools in Denmark with renewed enthusiasm through systematically experimenting with the new media by taking...... advantage of the social side in their application. The aim has been to make language classes attractive and relevant and to highlight the attractiveness and fun in learning through web 2.0 and mobile units. The overall project was supported by the Danish ministry of education as well as the individual...

  6. High power light gas helicon plasma source for VASIMR

    International Nuclear Information System (INIS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; McCaskill, Greg E.; Winter, D. Scott; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2006-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition

  7. Multielement CdZnTe detectors for high-efficiency, ambient-temperature gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Moss, C.E.; Sweet, M.R.; Ianakiev, K.; Reedy, R.C.; Li, J.; Valentine, J.D.

    1998-01-01

    CdZnTe is an attractive alternative to scintillator-based technology for ambient-temperature, gamma-ray spectroscopy. Large, single-element devices up to 3500 mm 3 have been developed for gamma-ray spectroscopy and are now available commercially. Because CdZnTe is a wide band-gap semiconductor, it can operate over a wide range of ambient temperatures with minimal power consumption. Over this range, CdZnTe detectors routinely yield better overall performance for gamma-ray spectroscopy than scintillator detectors. Manufacturing issues and material electronic properties limit the maximum size of single-element CdZnTe detectors. The authors are investigating methods to combine CdZnTe detectors together to improve detection efficiency and overall performance of gamma-ray spectroscopy. The applications include the assay and identification of radioisotopes for nuclear material safeguards and nonproliferation (over the energy range 50 keV to 1 MeV), and the analysis of elemental composition for planetary science (over the energy range 1 MeV to 10 MeV). Design issues for the two energy ranges are summarized

  8. Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH3NH3PbI3 Perovskite Devices in Ambient Atmosphere.

    Science.gov (United States)

    Yang, Fu; Kapil, Gaurav; Zhang, Putao; Hu, Zhaosheng; Kamarudin, Muhammad Akmal; Ma, Tingli; Hayase, Shuzi

    2018-05-16

    High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH 3 NH 3 PbI 3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.

  9. High-intensity light-ion beam research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Colombant, D.G.; Barker, R.J.

    1982-01-01

    High-brightness proton beams (.4 MA, 1 MV) have recently been extracted from 20 cm 2 axial pinch-reflex diodes (PRDs) mounted on the NRL Gamble II generator. A source power brightness of GT 10 TW/cm 2 rad 2 was achieved in these experiments. A new barrel-shaped equitorial PRD that can be coupled to PBFA-II has also been operated on Gamble II and has demonstrated 50% proton efficiency with predominately azimuthally-symmetric charged-particle flow. In other experiments the stopping power of deuterons in hot plasmas was measured using a PRD on Gamble II. Results show about 40% enhancement in stopping power over that in cold targets when the beam was focused to about .25 MA/cm 2 . Research is also being performed on transporting ion beams in large-diameter channels (>= 2.5 cm) and on a post-transport, plasma-filled, magnetic-focusing section to bring the beam to pellet dimensions. (author)

  10. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Aziz, Hany

    2014-01-01

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10 5  cd/m 2 is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  11. Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie; Aziz, Hany, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-07-07

    The efficiency of organic light-emitting devices (OLEDs) is shown to significantly depend on the roughness of the indium tin oxide (ITO) anode. By using rougher ITO, light trapped in the ITO/organic wave-guided mode can be efficiently extracted, and a light outcoupling enhancement as high as 40% is achieved. Moreover, contrary to expectations, the lifetime of OLEDs is not affected by ITO roughness. Finally, an OLED employing rough ITO anode that exhibits a current efficiency of 56 cd/A at the remarkably high brightness of 10{sup 5} cd/m{sup 2} is obtained. This represents the highest current efficiency at such high brightness to date for an OLED utilizing an ITO anode, without any external light outcoupling techniques. The results demonstrate the significant efficiency benefits of using ITO with higher roughness in OLEDs.

  12. Color design model of high color rendering index white-light LED module.

    Science.gov (United States)

    Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang

    2017-05-10

    The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.

  13. Virtual learning environments in the light of the Complexity Paradigm: interface, affordances and equifinality Ambientes virtuais de aprendizagem à luz do Paradigma da Complexidade: interface, affordances e equifinalidade

    Directory of Open Access Journals (Sweden)

    Valeska Virginia Soares Souza

    2013-01-01

    Full Text Available I have investigated, through the lens of the Complexity Paradigm, aligned with the premises of the Theory of General Systems and the concept of affordances, two virtual learning environments (VLEs, defining them as systems composed of digital genres, regarding a VLE as a complex adaptive system. These VLEs were reconfigured from the platforms TelEduc and Moodle and used to teach the discipline "Digital Literacy", in the course of Languages and Literature Teaching degree at the Federal University of Minas Gerais (UFMG, during the second semester of 2007 and the second semester of 2008, respectively. The analyses have indicated that the textual production of the emerging online discourse communities was influenced by the coupling of different layers of the interface, the textual genres and the communicative and pedagogical purposes and, also, by the affordances which were perceived and acted upon by teachers and learners. The analyzed VLEs have portrayed the characteristic of equifinality, regardless of the possibilities and constraints offered by the platforms TelEduc and Moodle.Investigo, através da lente do Paradigma da Complexidade, juntamente com os pressupostos da Teoria Geral dos Sistemas e do conceito de affordances, dois ambientes virtuais de aprendizagem (AVAs, definindo-os como sistemas compostos por gêneros digitais, partindo do pressuposto de que um AVA é um sistema adaptativo complexo. Esses AVAs foram reconfigurados a partir das plataformas TelEduc e Moodle e utilizados para ministrar a disciplina "Letramento Digital", no curso de Letras da Universidade Federal de Minas Gerais (UFMG, nos semestres 2007-2 e 2008-2, respectivamente. As análises indicam que a produção textual das comunidades discursivas on-line emergentes nos AVAs foi influenciada pelo acoplamento aninhado de camadas distintas da interface, dos gêneros textuais e dos propósitos comunicativos e pedagógicos, e, ainda, pelas affordances percebidas e efetivadas

  14. Acceleration of small, light projectiles (including hydrogen isotopes) to high speeds using a two-stage light gas gun

    International Nuclear Information System (INIS)

    Combs, S.K.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1989-01-01

    Small, light projectiles have been accelerated to high speeds using a two-stage light gas gun at Oak Ridge National Laboratory. With 35-mg plastic projectiles (4 mm in diameter), speeds of up to 4.5 km/s have been recorded. The ''pipe gun'' technique for freezing hydrogen isotopes in situ in the gun barrel has been used to accelerate deuterium pellets (nominal diameter of 4 mm) to velocities of up to 2.85 km/s. The primary application of this technology is for plasma fueling of fusion devices via pellet injection of hydrogen isotopes. Conventional pellet injectors are limited to pellet speeds in the range 1-2 km/s. Higher velocities are desirable for plasma fueling applications, and the two-stage pneumatic technique offers performance in a higher velocity regime. However, experimental results indicate that the use of sabots to encase the cryogenic pellets and protect them for the high peak pressures will be required to reliably attain intact pellets at speeds of ∼3 km/s or greater. In some limited tests, lithium hydride pellets were accelerated to speeds of up to 4.2 km/s. Also, repetitive operation of the two-stage gun (four plastic pellets fired at ∼0.5 Hz) was demonstrated for the first time in preliminary tests. The equipment and operation are described, and experimental results and some comparisons with a theoretical model are presented. 17 refs., 6 figs., 2 tabs

  15. Lighting and energy performance for an office using high frequency dimming controls

    International Nuclear Information System (INIS)

    Li, Danny H.W.; Lam, Tony N.T.; Wong, S.L.

    2006-01-01

    Artificial lighting is one of the major electricity consuming items in many non-domestic buildings. Recently, there has been an increasing interest in incorporating daylight in architectural and building designs to reduce the electricity use and enhance greener building developments. This paper presents field measurements for a fully air conditioned open plan office using a photoelectric dimming system. Electric lighting load, indoor illuminance levels and daylight availability were systematically measured and analyzed. The general features and characteristics of the results such as electric lighting energy savings and transmitted daylight illuminance in the forms of frequency distributions and cumulative frequency distributions are presented. Daylighting theories and regression models have been developed and discussed. It has been found that energy savings in electric lighting were over 30% using the high frequency dimming controls. The results from the study would be useful and applicable to other office spaces with similar architectural layouts and daylight linked lighting control systems

  16. Climbing plants in a temperate rainforest understorey: searching for high light or coping with deep shade?

    Science.gov (United States)

    Valladares, Fernando; Gianoli, Ernesto; Saldaña, Alfredo

    2011-08-01

    While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey. Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant. Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %). The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light.

  17. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  18. Effects of dietary on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature

    Directory of Open Access Journals (Sweden)

    Sara Mirzaie

    2018-04-01

    Full Text Available Objective Spirulina has been recognized formerly as a filamentous spiral-shaped blue-green algae but more recently as a genus of photosynthetic bacteria (Arthrospira. This microorganism is considered as a rich source of essential nutrients for human and animals. The present study was conducted to determine potential application of Spirulina for heat-exposed broilers. Methods Two hundred and fifty Cobb 500 chicks with male to female in equal ratio with average initial weight of 615.6 g at 17 days of age were divided into 5 treatments with 5 replicates of 10 chicks. Treatment groups were as follows: positive and negative controls with 0% Spirulina supplement and three Spirulina receiving groups with 5 g/kg (0.5%, 10 g/kg (1%, and 20 g/kg (2% supplementation. Spirulina receiving groups as well as positive control were exposed to high ambient temperature at 36°C for 6 h/d from 38 to 44 days of age. Biochemical variables were measured in serum samples at 35, 38, 42, and 45 days of broiler chickens age. Results The results showed that supplementation of the diet with Spirulina decreased concentration of stress hormone and some serum lipid parameters while enhanced humoral immunity response and elevated antioxidant status whereas it didn’t meaningfully affect performance characteristics. Nevertheless, feed conversion ratio was improved numerically but not statistically in broilers fed with 1% Spirulina under high ambient temperature. Conclusion Overall, the present study suggests that alleviation of adverse impacts due to high ambient temperature at biochemical level including impaired enzymatic antioxidant system, elevated stress hormone and lipid profile can be approached in broiler chickens through supplementation of the diet with Spirulina platensis.

  19. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  20. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2.

    Science.gov (United States)

    He, Bangxiang; Hou, Lulu; Dong, Manman; Shi, Jiawei; Huang, Xiaoyun; Ding, Yating; Cong, Xiaomei; Zhang, Feng; Zhang, Xuecheng; Zang, Xiaonan

    2018-01-07

    Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe 2+ are reported to be important for astaxanthin accumulation in H. pluvialis . In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL), addition of 25 mM acetate under high light (HA), addition of 20 μM Fe 2+ under high light (HF) and normal green growing cells (HG). Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO). The statistics for DEGs (differentially expressed genes) showed that there were more than 10 thousand DEGs caused by high light and 1800-1900 DEGs caused by acetate or Fe 2+ . The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe 2+ , the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  1. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by High Light with Acetate and Fe2+

    Directory of Open Access Journals (Sweden)

    Bangxiang He

    2018-01-01

    Full Text Available Haematococcus pluvialis is a commercial microalga, that produces abundant levels of astaxanthin under stress conditions. Acetate and Fe2+ are reported to be important for astaxanthin accumulation in H. pluvialis. In order to study the synergistic effects of high light stress and these two factors, we obtained transcriptomes for four groups: high light irradiation (HL, addition of 25 mM acetate under high light (HA, addition of 20 μM Fe2+ under high light (HF and normal green growing cells (HG. Among the total clean reads of the four groups, 156,992 unigenes were found, of which 48.88% were annotated in at least one database (Nr, Nt, Pfam, KOG/COG, SwissProt, KEGG, GO. The statistics for DEGs (differentially expressed genes showed that there were more than 10 thousand DEGs caused by high light and 1800–1900 DEGs caused by acetate or Fe2+. The results of DEG analysis by GO and KEGG enrichments showed that, under the high light condition, the expression of genes related to many pathways had changed, such as the pathway for carotenoid biosynthesis, fatty acid elongation, photosynthesis-antenna proteins, carbon fixation in photosynthetic organisms and so on. Addition of acetate under high light significantly promoted the expression of key genes related to the pathways for carotenoid biosynthesis and fatty acid elongation. Furthermore, acetate could obviously inhibit the expression of genes related to the pathway for photosynthesis-antenna proteins. For addition of Fe2+, the genes related to photosynthesis-antenna proteins were promoted significantly and there was no obvious change in the gene expressions related to carotenoid and fatty acid synthesis.

  2. INFLUENCE OF HIGH LIGHT INTENSITY ON THE CELLS OF CYANOBACTERIA ANABAENA VARIABILIS SP. ATCC 29413

    Directory of Open Access Journals (Sweden)

    OPRIŞ SANDA

    2012-12-01

    Full Text Available In this article is presented the result of research regardind the effect of high light intensity on the cells of Anabaena variabilis sp. ATCC 29413, the main objective is to study the adaptation of photosynthetic apparatus to light stress. Samples were analyzed in the present of herbicide diuron (DCMU which blocks electron flow from photosystem II and without diuron. During treatment maximum fluorescence and photosystems efficiency are significantly reduced, reaching very low values compared with the blank, as a result of photoinhibition installation. Also by this treatment is shown the importance of the mechanisms by which cells detect the presence of light stress and react accordingly.

  3. Temporally coherent x-ray laser with the high order harmonic light

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Kawazome, Hayato; Nagashima, Keisuke

    2005-01-01

    We obtained the neon-like manganese x-ray laser with the injection of the high order harmonic light as the seed x-ray at the wavelength of 26.9 nm for the purpose of generation of the temporally coherent x-ray laser. The x-ray amplifier, which has quite narrow spectral width, selected and amplified the temporally coherent mode of the harmonic light. The temporal coherence of the mode selected harmonic light was nearly transform limited pulse, and the obtained x-ray laser with the seed x-ray expected to be nearly temporally coherent x-ray. (author)

  4. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  5. A high-performance stand-alone solar PV power system for LED lighting

    KAUST Repository

    Huang, B. J.

    2010-06-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system using pulse width modulation (PWM) technique was developed for battery charging control which can increase the charging capacity by 78%. For high-efficiency lighting, the LED is directly driven by battery using a PWM discharge control to eliminate a DC/DC converter. Two solar-powered LED lighting systems (50W and 100W LED) were built. The long-term outdoor tests have shown that the loss of load probability for full-night lighting requirement is zero for 50W LED and 3.6% for 100W LED. © 2010 IEEE.

  6. Production of a diffuse very high reflectivity material for light collection in nuclear detectors

    CERN Document Server

    Pichler, B J; Mirzoyan, R; Weiss, L; Ziegler, S I

    2000-01-01

    A diffuse very high reflectivity material, based on polytetrafluorethylene (PTFE) for optimization of light-collection efficiency has been developed. PTFE powder was used to produce reflector block material. The powder was pressed with 525 kPa in a form and sintered at 375 deg. C. The reflectivity was above 98% within the spectral range from 350 to 1000 nm. The blocks of this material are machinable with saws, drilling and milling machines. The reflector is used as a housing for scintillating crystals in a nuclear medicine application (small animal positron emission tomograph). It is also used as a light collector in very high-energy gamma-ray astrophysicas experiments, HEGRA and MAGIC. The application of this inexpensive, easy to make diffuse reflector may allow the optimization of light collection in a wide range of low-level light-detector configurations.

  7. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Science.gov (United States)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  8. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  9. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  10. The Development of light-weight 2-link robot arm for high radiation area

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Cheol; Seo, Yong Chil; Jung, Kyung Min; Choi, Young Soo

    2009-10-15

    A light-weight 2-link robot arm which weight is less than 8kg was developed for treating the small radio-active material in the high radiation area such as nuclear power plants and NDT area. The light-weight 2-link robot arm can be attached on a small mobile robot and carry out tasks. It is a 5 DOF robot arm including a gripper

  11. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    International Nuclear Information System (INIS)

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-01-01

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  12. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    International Nuclear Information System (INIS)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-01-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  13. The rise of the photosynthetic rate when light intensity increases is delayed in ndh gene-defective tobacco at high but not at low CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Mercedes eMartin

    2015-02-01

    Full Text Available The 11 plastid ndh genes have hovered frequently on the edge of dispensability, being absent in the plastid DNA of many algae and certain higher plants. We have compared the photosynthetic activity of tobacco (Nicotiana tabacum, cv. Petit Havana with five transgenic lines (ndhF, pr-ndhF, T181D, T181A and ndhF FC and found that photosynthetic performance is impaired in transgenic ndhF-defective tobacco plants at rapidly fluctuating light intensities and higher than ambient CO2 concentrations. In contrast to wild type and ndhF FC, which reach the maximum photosynthetic rate in less than one min when light intensity suddenly increases, ndh defective plants (ndhF and T181A show up to a 5 min delay in reaching the maximum photosynthetic rate at CO2 concentrations higher than the ambient 360 ppm. Net photosynthesis was determined at different CO2 concentrations when sequences of 130, 870, 61, 870 and 130 μmol m−2 s−1 PAR sudden light changes were applied to leaves and photosynthetic efficiency and entropy production were determined as indicators of photosynthesis performance. The two ndh-defective plants, ndhF and T181A, had lower photosynthetic efficiency and higher entropy production than wt, ndhF FC and T181D tobacco plants, containing full functional ndh genes, at CO2 concentrations above 400 ppm. We propose that the Ndh complex improves cyclic electron transport by adjusting the redox level of transporters during the low light intensity stage. In ndhF-defective strains, the supply of electrons through the Ndh complex fails, transporters remain over-oxidized (specially at high CO2 concentrations and the rate of cyclic electron transport is low, impairing the ATP level required to rapidly reach high CO2 fixation rates in the following high light phase. Hence, ndh genes could be dispensable at low but not at high atmospheric concentrations of CO2.

  14. Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems

    Science.gov (United States)

    Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2012-02-01

    Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.

  15. Visible-Light-Initiated Na2-Eosin Y Catalyzed Highly Regio- and Stereoselective Difunctionalization of Alkynes with Alkyl Bromides.

    Science.gov (United States)

    Wang, Kuai; Meng, Ling-Guo; Wang, Lei

    2016-08-19

    A highly regioselective and stereoselective addition of alkyl bromides (amino-brominated aromatic β,β-dicyanoalkenes) to arylacetylenes by photoredox catalysis was developed. This difunctionalization of arylacetylenes was accomplished under ambient and metal-free conditions to produce alkenyl bromides in high efficiency with a wide range of group tolerance.

  16. Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions.

    Science.gov (United States)

    Shi, Miao-Miao; Bao, Di; Wulan, Ba-Ri; Li, Yong-He; Zhang, Yue-Fei; Yan, Jun-Min; Jiang, Qing

    2017-05-01

    As the NN bond in N 2 is one of the strongest bonds in chemistry, the fixation of N 2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H 2 and energy are largely derived from fossil fuels and thus result in large amount of CO 2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters (≈0.5 nm ) embedded on TiO 2 (Au loading is 1.542 wt%), the electrocatalytic N 2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH 3 : 21.4 µg h -1 mg -1 cat. , Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N 2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or

  18. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    Science.gov (United States)

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-09

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  19. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance.

    Science.gov (United States)

    Mills, Peter R; Tomkins, Susannah C; Schlangen, Luc J M

    2007-01-11

    The effects of lighting on the human circadian system are well-established. The recent discovery of 'non-visual' retinal receptors has confirmed an anatomical basis for the non-image forming, biological effects of light and has stimulated interest in the use of light to enhance wellbeing in the corporate setting. A prospective controlled intervention study was conducted within a shift-working call centre to investigate the effect of newly developed fluorescent light sources with a high correlated colour temperature (17000 K) upon the wellbeing, functioning and work performance of employees. Five items of the SF-36 questionnaire and a modification of the Columbia Jet Lag scale, were used to evaluate employees on two different floors of the call centre between February and May 2005. Questionnaire completion occurred at baseline and after a three month intervention period, during which time one floor was exposed to new high correlated colour temperature lighting and the other remained exposed to usual office lighting. Two sided t-tests with Bonferroni correction for type I errors were used to compare the characteristics of the two groups at baseline and to evaluate changes in the intervention and control groups over the period of the study. Individuals in the intervention arm of the study showed a significant improvement in self-reported ability to concentrate at study end as compared to those within the control arm (p wellbeing and productivity in the corporate setting, although further work is necessary in quantifying the magnitude of likely benefits.

  20. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  1. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guijun, E-mail: gliad@connect.ust.hk; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing [State Key Laboratory on Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-09

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  2. Kilowatt-level cladding light stripper for high-power fiber laser.

    Science.gov (United States)

    Yan, Ping; Sun, Junyi; Huang, Yusheng; Li, Dan; Wang, Xuejiao; Xiao, Qirong; Gong, Mali

    2017-03-01

    We designed and fabricated a high-power cladding light stripper (CLS) by combining a fiber-etched CLS with a cascaded polymer-recoated CLS. The etched fiber reorganizes the numerical aperture (NA) distribution of the cladding light, leading to an increase in the leakage power and a flatter distribution of the leakage proportion in the cascaded polymer-recoated fiber. The index distribution of the cascaded polymer-recoated fiber is carefully designed to ensure an even leakage of cladding light. More stages near the index of 1.451 are included to disperse the heat. The CLS is capable of working consistently under 1187 W of cladding light with an attenuation of 26.59 dB, and the highest local temperature is less than 35°C.

  3. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    International Nuclear Information System (INIS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-01-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  4. High-Resolution Light Transmission Spectroscopy of Nanoparticles in Real Time

    Science.gov (United States)

    Tanner, Carol; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven

    2017-04-01

    As implemented here, Light Transmission Spectroscopy (LTS) is a high-resolution real-time technique for eliminating spectral noise and systematic effects in wide band spectroscopic measurements of nanoparticles. In this work, we combine LTS with spectral inversion for the purpose of characterizing the size, shape, and number of nanoparticles in solution. The apparatus employs a wide-band multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, and the wavelength dependent light detection system ranges from 200 to 1100 nm with model the total extinction cross-section, and spectral inversion is employed to obtain quantitative particle size distributions. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired. University of Notre Dame Office of Research, College of Science, Department of Physics, and USDA.

  5. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    Science.gov (United States)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  6. Decarburization and hardness changes of Fe-C-Cr-Mn-Si steels caused by high temperature oxidation in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, J; Broz, P [Academy of Sciences, Brno (Czech Republic); Hajduga, M; Glowacki, J [Tech. Univ., Lodz (Poland). Dept. of Mater. Sci.

    1999-07-01

    In the present paper the investigation of carbon diffusion and hardness changes in Fe-C-Cr-Mn-Si steels initiated by surface oxidation are reported. The oxidation anneals were carried out in ambient air. The measurements of carbon concentration and the metallographic investigation have shown that the steels decarburize expressively in the course of the oxidation process. The evaluation of the carbon concentration curves N{sub C}(x, t) yielded diffusion coefficients D{sub C} of carbon in the given steels. The dependence of D{sub C} on the concentration N{sub i} of alloying elements i is expressed by the use of diffusion interaction coefficients {beta}{sub C}{sup i}. The decrease of carbon concentration caused the increase of grain size in subsurface layers and the decrease of hardness HV. The dependence of HV(x, t) on N{sub C}(x, t) is expressed by the general parabolic relationship y(t) = k t{sup m}. (orig.) 24 refs.

  7. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Liu, Zhi; Bluhm, Hendrik; Shao-Horn, Yang

    2013-01-01

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  8. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  9. Circadian Metabolism in the Light of Evolution

    DEFF Research Database (Denmark)

    Gerhart-Hines, Zachary; Lazar, Mitchell A.

    2015-01-01

    was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain const. ambient temp.; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes...

  10. Response of conifer species from three latitudinal populations to light spectra generated by light-emitting diodes and high-pressure sodium lamps

    Science.gov (United States)

    Kent G. Apostol; Kas Dumroese; Jeremy Pinto; Anthony S. Davis

    2015-01-01

    Light-emitting diode (LED) technology shows promise for supplementing photosynthetically active radiation (PAR) in forest nurseries because of the potential reduction in energy consumption and an ability to supply discrete wavelengths to optimize seedling growth. Our objective was to examine the effects of light spectra supplied by LED and traditional high-pressure...

  11. Emission of high-energy, light particles from intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Ball, J.B.; Auble, R.L.

    1982-01-01

    One of the early surprises in examining reaction products from heavy ion reactions at 10 MeV/nucleon and above was the large yield of light particles emitted and the high energies to which the spectra of these particles extended. The interpretation of the origin of the high energy light ions has evolved from a picture of projectile excitation and subsequent evaporation to one of pre-equilibrium (or nonequilibrium) emission. The time scale for particle emission has thus moved from one that occurs following the initial collision to one that occurs at the very early stages of the collision. Research at ORNL on this phenomenon is reviewed

  12. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance

    Directory of Open Access Journals (Sweden)

    Tomkins Susannah C

    2007-01-01

    Full Text Available Abstract Background The effects of lighting on the human circadian system are well-established. The recent discovery of 'non-visual' retinal receptors has confirmed an anatomical basis for the non-image forming, biological effects of light and has stimulated interest in the use of light to enhance wellbeing in the corporate setting. Methods A prospective controlled intervention study was conducted within a shift-working call centre to investigate the effect of newly developed fluorescent light sources with a high correlated colour temperature (17000 K upon the wellbeing, functioning and work performance of employees. Five items of the SF-36 questionnaire and a modification of the Columbia Jet Lag scale, were used to evaluate employees on two different floors of the call centre between February and May 2005. Questionnaire completion occurred at baseline and after a three month intervention period, during which time one floor was exposed to new high correlated colour temperature lighting and the other remained exposed to usual office lighting. Two sided t-tests with Bonferroni correction for type I errors were used to compare the characteristics of the two groups at baseline and to evaluate changes in the intervention and control groups over the period of the study. Results Individuals in the intervention arm of the study showed a significant improvement in self-reported ability to concentrate at study end as compared to those within the control arm (p Conclusion High correlated colour temperature fluorescent lights could provide a useful intervention to improve wellbeing and productivity in the corporate setting, although further work is necessary in quantifying the magnitude of likely benefits.

  13. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  14. Design and development of an improved traffic light control system using hybrid lighting system

    Directory of Open Access Journals (Sweden)

    Michael Osigbemeh

    2017-02-01

    Full Text Available The deployment of light emitting diodes (LEDs based traffic system control created the problem of dim displays when ambient light is similar to traffic lights. It causes some drivers' disability of seeing and obeying traffic signs. This makes drivers violate traffic rules. In this paper, an attempt to use hybrid lighting technology to mitigate this problem was developed. Incandescent lightings with deployed halogen bulbs provided an instantaneous source of highly efficacious illumination which is brighter than the drivers' ambient lights (both daylight, electrical lights and their reflections, which can help drivers get access to enough warning and help them initiate traffic safety warning as necessary. The halogen lightings also offered the required high current draw needed in electrical circuitry to help brighten the LED displays. The problem of heat generated was eliminated by aerating the T-junction traffic light control unit designed for this technology. The result of hybrid lighting system design was found to be high luminosity and capability of gaining driver attention in real-time. It also allowed enhanced sign's image detection and processing for smart based technologies by providing the “light punch” needed for a wide range of visual concerns.

  15. Acclimation responses to high light by Guazuma ulmifolia Lam. (Malvaceae) leaves at different stages of development.

    Science.gov (United States)

    Calzavara, A K; Rocha, J S; Lourenço, G; Sanada, K; Medri, C; Bianchini, E; Pimenta, J A; Stolf-Moreira, R; Oliveira, H C

    2017-09-01

    The re-composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre-existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light. The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho-anatomical measurements. After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho-physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long-term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho-anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves. Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Analysis of biodiesel and biodiesel-petrodiesel blends by high performance thin layer chromatography combined with easy ambient sonic-spray ionization mass spectrometry.

    Science.gov (United States)

    Eberlin, Livia S; Abdelnur, Patricia V; Passero, Alan; de Sa, Gilberto F; Daroda, Romeu J; de Souza, Vanderlea; Eberlin, Marcos N

    2009-08-01

    High performance thin layer chromatography (HPTLC) combined with on-spot detection and characterization via easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is applied to the analysis of biodiesel (B100) and biodiesel-petrodiesel blends (BX). HPTLC provides chromatographic resolution of major components whereas EASI-MS allows on-spot characterization performed directly on the HPTLC surface at ambient conditions. Constituents (M) are detected by EASI-MS in a one component-one ion fashion as either [M + Na](+) or [M + H](+). For both B100 and BX samples, typical profiles of fatty acid methyl esters (FAME) detected as [FAME + Na](+) ions allow biodiesel typification. The spectrum of the petrodiesel spot displays a homologous series of protonated alkyl pyridines which are characteristic for petrofuels (natural markers). The spectrum for residual or admixture oil spots is characterized by sodiated triglycerides [TAG + Na](+). The application of HPTLC to analyze B100 and BX samples and its combination with EASI-MS for on-spot characterization and quality control is demonstrated.

  17. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  18. Characterization of highly scattering media by measurement of diffusely backscattered polarized light

    Science.gov (United States)

    Hielscher, Andreas H.; Mourant, Judith R.; Bigio, Irving J.

    2000-01-01

    An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser (.lambda.=543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4.times.4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.

  19. Design of light-small high-speed image data processing system

    Science.gov (United States)

    Yang, Jinbao; Feng, Xue; Li, Fei

    2015-10-01

    A light-small high speed image data processing system was designed in order to meet the request of image data processing in aerospace. System was constructed of FPGA, DSP and MCU (Micro-controller), implementing a video compress of 3 million pixels@15frames and real-time return of compressed image to the upper system. Programmable characteristic of FPGA, high performance image compress IC and configurable MCU were made best use to improve integration. Besides, hard-soft board design was introduced and PCB layout was optimized. At last, system achieved miniaturization, light-weight and fast heat dispersion. Experiments show that, system's multifunction was designed correctly and worked stably. In conclusion, system can be widely used in the area of light-small imaging.

  20. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  1. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  2. Chlamydomonas reinhardtii responding to high light: a role for 2-propenal (acrolein).

    Science.gov (United States)

    Roach, Thomas; Baur, Theresa; Stöggl, Wolfgang; Krieger-Liszkay, Anja

    2017-09-01

    High light causes photosystem II to generate singlet oxygen ( 1 O 2 ), a reactive oxygen species (ROS) that can react with membrane lipids, releasing reactive electrophile species (RES), such as acrolein. To investigate how RES may contribute to light stress responses, Chlamydomonas reinhardtii was high light-treated in photoautotrophic and mixotrophic conditions and also in an oxygen-enriched atmosphere to elevate ROS production. The responses were compared to exogenous acrolein. Non-photochemical quenching (NPQ) was higher in photoautotrophic cells, as a consequence of a more de-epoxidized state of the xanthophyll cycle pool and more LHCSR3 protein, showing that photosynthesis was under more pressure than in mixotrophic cells. Photoautotrophic cells had lowered α-tocopherol and β-carotene contents and a higher level of protein carbonylation, indicators of elevated 1 O 2 production. Levels of glutathione, glutathione peroxidase (GPX5) and glutathione-S-transferase (GST1), important antioxidants against RES, were also increased in photoautotrophic cells. In parallel to the wild-type, the LHCSR3-deficient npq4 mutant was high light-treated, which in photoautotrophic conditions exhibited particular sensitivity under elevated oxygen, the treatment that induced the highest RES levels, including acrolein. The npq4 mutant had more GPX5 and GST1 alongside higher levels of carbonylated protein and a more oxidized glutathione redox state. In wild-type cells glutathione contents doubled after 4 h treatment, either with high light under elevated oxygen or with a non-critical dose (600 ppm) of acrolein. Exogenous acrolein also increased GST1 levels, but not GPX5. Overall, RES-associated oxidative damage and glutathione metabolism are prominently associated with light stress and potentially in signaling responses of C. reinhardtii. © 2017 Scandinavian Plant Physiology Society.

  3. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  4. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis; Enscoe, Abby

    2010-04-19

    An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.

  5. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.

    Science.gov (United States)

    Dong, Renfeng; Zhang, Qilu; Gao, Wei; Pei, Allen; Ren, Biye

    2016-01-26

    A highly efficient light-driven photocatalytic TiO2-Au Janus micromotor with wireless steering and velocity control is described. Unlike chemically propelled micromotors which commonly require the addition of surfactants or toxic chemical fuels, the fuel-free Janus micromotor (diameter ∼1.0 μm) can be powered in pure water under an extremely low ultraviolet light intensity (2.5 × 10(-3) W/cm(2)), and with 40 × 10(-3) W/cm(2), they can reach a high speed of 25 body length/s, which is comparable to common Pt-based chemically induced self-electrophoretic Janus micromotors. The photocatalytic propulsion can be switched on and off by incident light modulation. In addition, the speed of the photocatalytic TiO2-Au Janus micromotor can be accelerated by increasing the light intensity or by adding low concentrations of chemical fuel H2O2 (i.e., 0.1%). The attractive fuel-free propulsion performance, fast movement triggering response, low light energy requirement, and precise motion control of the TiO2-Au Janus photocatalytic micromotor hold considerable promise for diverse practical applications.

  6. A comparison of light-coupling into high and low index nanostructured photovoltaic thin films

    Directory of Open Access Journals (Sweden)

    T. Pfadler

    2015-06-01

    Full Text Available Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO2 electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb2S3 as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO2, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO2 active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices.

  7. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    Science.gov (United States)

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A high-performance stand-alone solar PV power system for LED lighting

    KAUST Repository

    Huang, B. J.; Hsu, P. C.; Wu, M. S.; Chen, K.Y.

    2010-01-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system

  9. Cyanobacterial high-light-inducible proteins - Protectors of chlorophyll-protein synthesis and assembly

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Sobotka, R.

    2016-01-01

    Roč. 1857, č. 3 (2016), s. 288-295 ISSN 0005-2728 R&D Projects: GA MŠk LO1416; GA ČR(CZ) GAP501/11/0377 Institutional support: RVO:61388971 Keywords : Chlorophyll * Cyanobacteria * High-light-inducible protein Subject RIV: CE - Biochemistry Impact factor: 4.932, year: 2016

  10. Highly efficient exciplex organic light-emitting diodes incorporating a heptazine derivative as an electron acceptor.

    Science.gov (United States)

    Li, Jie; Nomura, Hiroko; Miyazaki, Hiroshi; Adachi, Chihaya

    2014-06-11

    Highly efficient exciplex systems incorporating a heptazine derivative () as an electron acceptor and 1,3-di(9H-carbazol-9-yl)benzene () as an electron donor are developed. An organic light-emitting diode containing 8 wt% : as an emitting layer exhibits a maximum external quantum efficiency of 11.3%.

  11. High tunability and superluminescence in InAs mid-infrared light emitting diodes

    International Nuclear Information System (INIS)

    Sherstnev, V.V.; Krier, A.; Hill, G.

    2002-01-01

    We report on the observation of super luminescence and high spectral current tunability (181 nm) of InAs light emitting diodes operating at 3.0 μm. The source is based on an optical whispering gallery mode which is generated near the edges of the mesa and which is responsible for the superluminescence. (author)

  12. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    Science.gov (United States)

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  13. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.

    Science.gov (United States)

    Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho

    2014-06-25

    We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.

  14. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Science.gov (United States)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  15. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE: emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Directory of Open Access Journals (Sweden)

    C. E. Stockwell

    2016-09-01

    Full Text Available The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning, crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR spectroscopy, whole-air sampling (WAS, and photoacoustic extinctiometers (PAX; 405 and 870 nm based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg−1 fuel burned, single scattering albedos (SSAs, and absorption Ångström exponents (AAEs. From these data we estimate black and brown carbon (BC, BrC emission factors (g kg−1 fuel burned. The trace gas measurements provide EFs (g kg−1 for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ∼ 80 gases in all. The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68 was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10. Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg−1, organic acids (7.66 ± 6.90 g kg−1, and HCN

  16. Short-term exposure to high ambient air pollution increases airway inflammation and respiratory symptoms in chronic obstructive pulmonary disease patients in Beijing, China.

    Science.gov (United States)

    Wu, Shaowei; Ni, Yang; Li, Hongyu; Pan, Lu; Yang, Di; Baccarelli, Andrea A; Deng, Furong; Chen, Yahong; Shima, Masayuki; Guo, Xinbiao

    2016-09-01

    Few studies have investigated the short-term respiratory effects of ambient air pollution in chronic obstructive pulmonary disease (COPD) patients in the context of high pollution levels in Asian cities. A panel of 23 stable COPD patients was repeatedly measured for biomarkers of airway inflammation including exhaled nitric oxide (FeNO) and exhaled hydrogen sulfide (FeH2S) (215 measurements) and recorded for daily respiratory symptoms (794person-days) in two study periods in Beijing, China in January-September 2014. Daily ambient air pollution data were obtained from nearby central air-monitoring stations. Mixed-effects models were used to estimate the associations between exposures and health measurements with adjustment for potential confounders including temperature and relative humidity. Increasing levels of air pollutants were associated with significant increases in both FeNO and FeH2S. Interquartile range (IQR) increases in PM2.5 (76.5μg/m(3), 5-day), PM10 (75.0μg/m(3), 5-day) and SO2 (45.7μg/m(3), 6-day) were associated with maximum increases in FeNO of 13.6% (95% CI: 4.8%, 23.2%), 9.2% (95% CI: 2.1%, 16.8%) and 34.2% (95% CI: 17.3%, 53.4%), respectively; and the same IQR increases in PM2.5 (6-day), PM10 (6-day) and SO2 (7-day) were associated with maximum increases in FeH2S of 11.4% (95% CI: 4.6%, 18.6%), 7.8% (95% CI: 2.3%, 13.7%) and 18.1% (95% CI: 5.5%, 32.2%), respectively. Increasing levels of air pollutants were also associated with increased odds ratios of sore throat, cough, sputum, wheeze and dyspnea. FeH2S may serve as a novel biomarker to detect adverse respiratory effects of air pollution. Our results provide potential important public health implications that ambient air pollution may pose risk to respiratory health in the context of high pollution levels in densely-populated cities in the developing world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The light element formation: a signature of high energy nuclear astrophysics

    International Nuclear Information System (INIS)

    Audouze, J.; Meneguzzi, M.; Reeves, H.

    1976-01-01

    Light elements D, 6 Li, 9 Be, 10 B and 11 B (and possibly also 7 Li) are not produced by the general nucleosynthetic processes occurring in stars. They appear to be synthesized by high energy processes occuring either during the interaction of galactic cosmic rays with the interstellar medium or in supernovae envelopes. These formation processes are discussed. It is emphasized that the most coherent scenario regarding the formation of the light elements is obtained by taking also into account the nuclear processes which may have occurred during hot phases of the early Universe (Big Bang). Implications on chemical evolution of galaxies and on cosmology are briefly recalled. (Auth.)

  18. Ultra-high vacuum system of the Brookhaven National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Foerster, C.L.

    1995-01-01

    The rings of the National Synchrotron Light Source (NSLS) have been supplying light to numerous users for approximately a decade and recently a fully conditioned machine vacuum at design currents was obtained. A brief description of the x-ray storage ring, the VUV storage ring and their current supply is given along with some of their features. The ultra-high vacuum system employed for the storage rings and their advantages for the necessary stored beam environments are discussed including, a brief history of time. 15 refs., 2 tabs., 8 figs

  19. Inhibition of enteric pathogens and surrogates using integrated, high intensity 405nm led light on the surface of almonds

    Science.gov (United States)

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogate bacteria on the surface of almonds. High intensity monochromatic blue light (MBL) was generated from an array of narrow-band 405 nm light-emitting diodes (LE...

  20. Ultra high benefits system for electric energy saving and management of lighting energy in buildings

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Presenting a novel multi channel smart system to manage lighting energy in buildings. • Saving considerable electric energy which is converted to lighting in buildings. • Providing desired constant and adjustable luminance for each location in buildings. • Capability of working with all AC electric power sources. • To automatically control and manage lighting energy in buildings. - Abstract: This paper presents a smart system, including a multi channel dimmer and a central process unit (CPU) together with an exact multi channel feedback mechanism, which automatically regulates and manages lighting in buildings. Based on a multi channel luminance feedback, a high benefits technique is utilized to convert the electric energy to lighting energy. Saving a lot of the electric energy which should be converted to lighting energy in buildings, managing the lighting energy in buildings, providing desired constant and adjustable luminance for each room (location), and the capability of working with all AC electric power sources regardless of frequency and voltage amplitude are some advantages of using the proposed system and technique, thus it will be widely used in buildings. An experimental prototype of the proposed smart system has been constructed to validate the theoretical results and to carry out the experimental tests. Experimental results earned by utilizing the proposed smart system in a sample building are presented to prove the benefits of using the system. The experimental results explicitly show a considerable electric energy saving (about 27%) in the sample building while the proposed system has provided desired constant and adjustable luminance for each location of the building

  1. Approach to Low-Cost High-Efficiency OLED Lighting. Building Technologies Solid State Lighting (SSL) Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qibing [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering

    2017-10-06

    This project developed an integrated substrate which organic light emitting diode (OLED) panel developers could employ the integrated substrate to fabricate OLED devices with performance and projected cost meeting the MYPP targets of the Solid State Lighting Program of the Department of Energy. The project optimized the composition and processing conditions of the integrated substrate for OLED light extraction efficiency and overall performance. The process was further developed for scale up to a low-cost process and fabrication of prototype samples. The encapsulation of flexible OLEDs based on this integrated substrate was also investigated using commercial flexible barrier films.

  2. Biomimetic fabrication of WO3 for water splitting under visible light with high performance

    International Nuclear Information System (INIS)

    Yin, Chao; Zhu, Shenmin; Yao, Fan; Gu, Jiajun; Zhang, Wang; Chen, Zhixin; Zhang, Di

    2013-01-01

    Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO 3 butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol–gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO 3 butterfly wing replica calcined at 550 °C (WO 3 replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO 3 replica-550 and WO 3 powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO 3 powder, WO 3 replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O 2 evolutions from water were investigated on the ceramic butterfly wings and pure WO 3 powder under visible light (λ > 420 nm). The results showed that the amount of O 2 produced from WO 3 replica-550 is 50 % higher than that of the pure WO 3 powder. The improved photocatalytic performance of WO 3 replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO 3

  3. Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes

    Science.gov (United States)

    Yan, Fei; Xing, Jun; Xing, Guichuan; Quan, Lina; Tan, Swee Tiam; Zhao, Jiaxin; Su, Rui; Zhang, Lulu; Chen, Shi; Zhao, Yawen; Huan, Alfred; Sargent, Edward H.; Xiong, Qihua; Demir, Hilmi Volkan

    2018-05-01

    Lead-halide perovskites have been attracting attention for potential use in solid-state lighting. Following the footsteps of solar cells, the field of perovskite light-emitting diodes (PeLEDs) has been growing rapidly. Their application prospects in lighting, however, remain still uncertain due to a variety of shortcomings in device performance including their limited levels of luminous efficiency achievable thus far. Here we show high-efficiency PeLEDs based on colloidal perovskite nanocrystals (PeNCs) synthesized at room temperature possessing dominant first-order excitonic radiation (enabling a photoluminescence quantum yield of 71% in solid film), unlike in the case of bulk perovskites with slow electron-hole bimolecular radiative recombination (a second-order process). In these PeLEDs, by reaching charge balance in the recombination zone, we find that the Auger nonradiative recombination, with its significant role in emission quenching, is effectively suppressed in low driving current density range. In consequence, these devices reach a record high maximum external quantum efficiency of 12.9% reported to date and an unprecedentedly high power efficiency of 30.3 lm W-1 at luminance levels above 1000 cd m-2 as required for various applications. These findings suggest that, with feasible levels of device performance, the PeNCs hold great promise for their use in LED lighting and displays.

  4. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods.

    Science.gov (United States)

    Berisha, Arton; Dold, Sebastian; Guenther, Sabine; Desbenoit, Nicolas; Takats, Zoltan; Spengler, Bernhard; Römpp, Andreas

    2014-08-30

    An ideal method for bioanalytical applications would deliver spatially resolved quantitative information in real time and without sample preparation. In reality these requirements can typically not be met by a single analytical technique. Therefore, we combine different mass spectrometry approaches: chromatographic separation, ambient ionization and imaging techniques, in order to obtain comprehensive information about metabolites in complex biological samples. Samples were analyzed by laser desorption followed by electrospray ionization (LD-ESI) as an ambient ionization technique, by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging for spatial distribution analysis and by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) for quantitation and validation of compound identification. All MS data were acquired with high mass resolution and accurate mass (using orbital trapping and ion cyclotron resonance mass spectrometers). Grape berries were analyzed and evaluated in detail, whereas wheat seeds and mouse brain tissue were analyzed in proof-of-concept experiments. In situ measurements by LD-ESI without any sample preparation allowed for fast screening of plant metabolites on the grape surface. MALDI imaging of grape cross sections at 20 µm pixel size revealed the detailed distribution of metabolites which were in accordance with their biological function. HPLC/ESI-MS was used to quantify 13 anthocyanin species as well as to separate and identify isomeric compounds. A total of 41 metabolites (amino acids, carbohydrates, anthocyanins) were identified with all three approaches. Mass accuracy for all MS measurements was better than 2 ppm (root mean square error). The combined approach provides fast screening capabilities, spatial distribution information and the possibility to quantify metabolites. Accurate mass measurements proved to be critical in order to reliably combine data from different MS

  5. Periodic usage of low-protein methionine-fortified diets in broiler chickens under high ambient temperature conditions: effects on performance, slaughter traits, leukocyte profiles and antibody response

    Science.gov (United States)

    Ghasemi, Hossein Ali; Ghasemi, Rohollah; Torki, Mehran

    2014-09-01

    This study was performed to evaluate the effects of adding methionine supplements to low-protein diets and subsequent re-feeding with a normal diet on the productive performance, slaughter parameters, leukocyte profiles and antibody response in broiler chickens reared under heat stress conditions. During the whole experimental period (6-49 days), the birds were raised in battery cages located in high ambient temperature in an open-sided housing system. A total of 360 6-day-old male chickens were divided into six treatments in six replicates with ten chicks each. Six isoenergetic diets, with similar total sulfur amino acids levels, were formulated to provide 100 and 100 (control), 85 and 100 (85S), 70 and 100 (70S), 85 and 85 (85SG), 70 and 85 (70S85G), and 70 and 70 % (70SG) of National Research Council recommended levels for crude protein during the starter (6-21 day) and grower (22-42 day) periods, respectively. Subsequently, all groups received a diet containing the same nutrients during the finisher period (43-49 day). The results showed that, under heat stress conditions, average daily gain and feed conversion ratio and performance index from day 6 to 49, breast and thigh yields and antibody titer against Newcastle disease in the birds fed diets 85S, 70S and 85SG were similar to those of birds fed control diet, whereas feeding diets 70S85G and 70SG significantly decreased the values of above-mentioned parameters. Additionally, diets 85S, 70S and 85SG significantly decreased mortality rate and heterophil:lymphocyte ratio compared with the control diet. In conclusion, the results indicate that supplementation of methionine to diets 85S, 70S and 85SG, and then re-feeding with a conventional diet is an effective tool to maintain productive performance and to improve health indices and heat resistance in broilers under high ambient temperature conditions.

  6. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  7. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  8. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    International Nuclear Information System (INIS)

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  9. Suppressed speckle contrast of blue light emission out of white lamp with phosphors excited by blue laser diodes for high-brightness lighting applications

    Science.gov (United States)

    Kinoshita, Junichi; Ikeda, Yoshihisa; Takeda, Yuji; Ueno, Misaki; Kawasaki, Yoji; Matsuba, Yoshiaki; Heike, Atsushi

    2012-11-01

    The speckle contrast of blue light emission out of high-brightness white lamps using phosphors excited by InGaN/GaN blue laser diodes is evaluated as a measure of coherence. As a result, speckle contrast of as low as 1.7%, the same level as a blue light emitting diode, is obtained. This implies that the original blue laser light can be converted into incoherent light through lamp structures without any dynamic mechanisms. This unique speckle-free performance is considered to be realized by multiple scattering inside the lamp structure, the multi-longitudinal mode operation of the blue laser diodes, and the use of multiple laser diodes. Such almost-incoherent white lamps can be applied for general lighting without any nuisance of speckle noise and should be categorized as lamps rather than lasers in terms of laser safety regulation.

  10. All-Ambient Processed Binary CsPbBr3-CsPb2Br5 Perovskites with Synergistic Enhancement for High-Efficiency Cs-Pb-Br-Based Solar Cells.

    Science.gov (United States)

    Zhang, Xisheng; Jin, Zhiwen; Zhang, Jingru; Bai, Dongliang; Bian, Hui; Wang, Kang; Sun, Jie; Wang, Qian; Liu, Shengzhong Frank

    2018-02-28

    All-inorganic CsPbBr 3 perovskite solar cells display outstanding stability toward moisture, light soaking, and thermal stressing, demonstrating great potential in tandem solar cells and toward commercialization. Unfortunately, it is still challenging to prepare high-performance CsPbBr 3 films at moderate temperatures. Herein, a uniform, compact CsPbBr 3 film was fabricated using its quantum dot (QD)-based ink precursor. The film was then treated using thiocyanate ethyl acetate (EA) solution in all-ambient conditions to produce a superior CsPbBr 3 -CsPb 2 Br 5 composite film with a larger grain size and minimal defects. The achievement was attributed to the surface dissolution and recrystallization of the existing SCN - and EA. More specifically, the SCN - ions were first absorbed on the Pb atoms, leading to the dissolution and stripping of Cs + and Br - ions from the CsPbBr 3 QDs. On the other hand, the EA solution enhances the diffusion dynamics of surface atoms and the surfactant species. It is found that a small amount of CsPb 2 Br 5 in the composite film gives the best surface passivation, while the Br-rich surface decreases Br vacancies (V Br ) for a prolonged carrier lifetime. As a result, the fabricated device gives a higher solar cell efficiency of 6.81% with an outstanding long-term stability.

  11. High-brightness electron guns for linac-based light sources

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    Most proposed linac-based light sources, such as single-pass free-electron lasers and energy-recovery-linacs, require very high-brightness electron beams in order to achieve their design performance. These beam requirements must be achieved not on an occasional basis, but rather must be met by every bunch produced by the source over extended periods of time. It is widely assumed that the beam source will be a photocathode electron gun; the selection of accelerator technique (e.g., dc or rf) for the gun is more dependent on the application.The current state of the art of electron beam production is adequate but not ideal for the first generation of linac-based light sources, such as the Linac Coherent Light Source (LCLS) x-ray free-electron laser (X-FEL). For the next generation of linac-based light sources, an order of magnitude reduction in the transverse electron beam emittance is required to significantly reduce the cost of the facility. This is beyond the present state of the art, given the other beam properties that must be maintained. The requirements for current and future linac-based light source beam sources are presented here, along with a review of the present state of the art. A discussion of potential paths towards meeting future needs is presented at the conclusion.

  12. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    Science.gov (United States)

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  13. Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Altintas Yildirim, Ozlem, E-mail: ozlemaltintas@gmail.com [Department of Metallurgical and Materials Engineering, Selcuk University, Konya (Turkey); Arslan, Hanife; Sönmezoğlu, Savaş [Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman (Turkey); Nanotechnology R& D Laboratory, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2016-12-30

    Highlights: • Photocatalytically active Co-ZnO thin film was obtained by sol-gel method. • Co{sup 2+} doping narrowed the band gap of pure ZnO to an extent of 3.18 eV. • Co-ZnO was effective in MB degradation under visible light. • Optimum dopant content to show high performance was 3 at.%. - Abstract: Cobalt-doped zinc oxide (Co:ZnO) thin films with dopant contents ranging from 0 to 5 at.% were prepared using the sol–gel method, and their structural, morphological, optical, and photocatalytic properties were characterized. The effect of the dopant content on the photocatalytic properties of the films was investigated by examining the degradation behavior of methylene blue (MB) under visible light irradiation, and a detailed investigation of their photocatalytic activities was performed by determining the apparent quantum yields (AQYs). Co{sup 2+} ions were observed to be substitutionally incorporated into Zn{sup 2+} sites in the ZnO crystal, leading to lattice parameter constriction and band gap narrowing due to the photoinduced carriers produced under the visible light irradiation. Thus, the light absorption range of the Co:ZnO films was improved compared with that of the undoped ZnO film, and the Co:ZnO films exhibited highly efficient photocatalytic activity (∼92% decomposition of MB after 60-min visible light irradiation for the 3 at.% Co:ZnO film). The AQYs of the Co:ZnO films were greatly enhanced under visible light irradiation compared with that of the undoped ZnO thin film, demonstrating the effect of the Co doping level on the photocatalytic activity of the films.

  14. Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure.

    Directory of Open Access Journals (Sweden)

    Nuno Domingues

    Full Text Available The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII D1 protein (the main target of photoinhibition in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL acclimated cells (40 µmol photons m(-2 s(-1 subjected to high light (HL, 1,250 µmol photons m(-2 s(-1 showed rapid induction of non-photochemical quenching (NPQ and ca. 20-fold increase in diatoxanthin (DT concentration. This resulted from the conversion of diadinoxanthin (DD to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC, a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (F(v/F(m, showing a reduction of active PSII reaction centres. Partial recovery of F(v/F(m in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition.

  15. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  16. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air

    NARCIS (Netherlands)

    Khan, M. Tanweer; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2014-01-01

    The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far

  17. Nutritional status and specific leaf area of mahogany and tonka bean under two light environments Estado nutricional e área foliar específica de mogno e cumaru sob dois ambientes de luz

    Directory of Open Access Journals (Sweden)

    José Francisco de C. Gonçalves

    2005-01-01

    Full Text Available Studies on nutritional status and leaf traits were carried out in two tropical tree species Swietenia macrophylla King (mahogany and Dipetryx odorata Aubl. Willd. (tonka bean planted under contrasting light environments in Presidente Figueiredo-AM, Brazil. Leaves of S. macrophylla and D. odorata were collected in three year-old trees grown under full sunlight (about 2000 µmol m-2 s-1 and natural shade under a closed canopy of Balsa-wood plantation (Ochroma pyramidale Cav. Ex. Lam.Urb about 260 µmol m-2 s-1. The parameters analysed were leaf area (LA, leaf dry mass (LDM, specific leaf area (SLA and leaf nutrient contents. It was observed that, S. macrophylla leaves grown under full sunlight showed LA 35% lower than those grown under shade. In D. odorata leaves these differences in LA were not observed. In addition, it was observed that S. macrophylla shade leaves, for LDM, were 50% smaller than sun leaves, while in D. odorata, there differences were not observed. SLA in S. macrophylla presented that sun leaves were three times smaller than those grown under shade. In D. odorata, no differences were observed. Nutrient contents in S. macrophylla, regardless of their light environments, showed higher contents for P and Ca than those found in D. odorata. The N, K, Fe and Mn contents in S. macrophylla leaves decreased under shade. Finally, we suggest that the decreasing in leaf nutrient contents may have a negative influence on leaf growth. The results demonstrated that the tested hypothesis is true for leaf traits, which D. odorata, late-successional species, showed lower plasticity for leaf traits than Swietenia macrophylla, mid-successional species.Estudou-se a nutrição mineral e as características foliares de duas espécies arbóreas tropicais Switenia macrophylla King (mogno e Dipteryx odorata Aubl Willd (cumaru plantadas sob dois ambientes de luz em Presidente Figueiredo - AM, Brasil. Folhas de S. macrophylla e de D. odorata, com três anos

  18. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    Paul T. Fini; Shuji Nakamura

    2005-01-01

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  19. Concept of dual-resolution light field imaging using an organic photoelectric conversion film for high-resolution light field photography.

    Science.gov (United States)

    Sugimura, Daisuke; Kobayashi, Suguru; Hamamoto, Takayuki

    2017-11-01

    Light field imaging is an emerging technique that is employed to realize various applications such as multi-viewpoint imaging, focal-point changing, and depth estimation. In this paper, we propose a concept of a dual-resolution light field imaging system to synthesize super-resolved multi-viewpoint images. The key novelty of this study is the use of an organic photoelectric conversion film (OPCF), which is a device that converts spectra information of incoming light within a certain wavelength range into an electrical signal (pixel value), for light field imaging. In our imaging system, we place the OPCF having the green spectral sensitivity onto the micro-lens array of the conventional light field camera. The OPCF allows us to acquire the green spectra information only at the center viewpoint with the full resolution of the image sensor. In contrast, the optical system of the light field camera in our imaging system captures the other spectra information (red and blue) at multiple viewpoints (sub-aperture images) but with low resolution. Thus, our dual-resolution light field imaging system enables us to simultaneously capture information about the target scene at a high spatial resolution as well as the direction information of the incoming light. By exploiting these advantages of our imaging system, our proposed method enables the synthesis of full-resolution multi-viewpoint images. We perform experiments using synthetic images, and the results demonstrate that our method outperforms other previous methods.

  20. Compact RGBY light sources with high luminance for laser display applications

    Science.gov (United States)

    Paschke, Katrin; Blume, Gunnar; Werner, Nils; Müller, André; Sumpf, Bernd; Pohl, Johannes; Feise, David; Ressel, Peter; Sahm, Alexander; Bege, Roland; Hofmann, Julian; Jedrzejczyk, Daniel; Tränkle, Günther

    2018-02-01

    Watt-class visible laser light with a high luminance can be created with high-power GaAs-based lasers either directly in the red spectral region or using single-pass second harmonic generation (SHG) for the colors in the blue-yellow spectral region. The concepts and results of red- and near infrared-emitting distributed Bragg reflector tapered lasers and master oscillator power amplifier systems as well as their application for SHG bench-top experiments and miniaturized modules are presented. Examples of these high-luminance light sources aiming at different applications such as flying spot display or holographic 3D cinema are discussed in more detail. The semiconductor material allows an easy adaptation of the wavelength allowing techniques such as six-primary color 3D projection or color space enhancement by adding a fourth yellow color.

  1. Efficient and tunable high-order harmonic light sources for photoelectron spectroscopy at surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Tien; Huth, Michael; Trützschler, Andreas; Schumann, Frank O.; Kirschner, Jürgen; Widdra, Wolf

    2015-01-01

    Highlights: • An overview of photoelectron spectroscopy using high-order harmonics is presented. • Photoemission spectra on Ag(0 0 1) using megahertz harmonics are shown. • A gas recycling system for harmonic generation is presented. • Non-stop operation of megahertz harmonics up to 76 h is demonstrated. • The bandwidth and pulse duration of the harmonics are discussed. - Abstract: With the recent progress in high-order harmonic generation (HHG) using femtosecond lasers, laboratory photoelectron spectroscopy with an ultrafast, widely tunable vacuum-ultraviolet light source has become available. Despite the well-established technique of HHG-based photoemission experiments at kilohertz repetition rates, the efficiency of these setups can be intrinsically limited by the space-charge effects. Here we present recent developments of compact HHG light sources for photoelectron spectroscopy at high repetition rates up to megahertz, and examples for angle-resolved photoemission experiments are demonstrated.

  2. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    Science.gov (United States)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  3. High-efficient and brightness white organic light-emitting diodes operated at low bias voltage

    Science.gov (United States)

    Zhang, Lei; Yu, Junsheng; Yuan, Kai; Jian, Yadong

    2010-10-01

    White organic light-emitting diodes (OLEDs) used for display application and lighting need to possess high efficiency, high brightness, and low driving voltage. In this work, white OLEDs consisted of ambipolar 9,10-bis 2-naphthyl anthracene (ADN) as a host of blue light-emitting layer (EML) doped with tetrabutyleperlene (TBPe) and a thin codoped layer consisted of N, N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB) as a host of yellow light-emitting layer doped with 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) were investigated. With appropriate tuning in the film thickness, position, and dopant concentration of the co-doped layer, a white OLED with a luminance yield of 10.02 cd/A with the CIE coordinates of (0.29, 0.33) has been achieved at a bias voltage of 9 V and a luminance level of over 10,000 cd/m2. By introducing the PIN structure with both HIL and bis(10- hydroxybenzo-quinolinato)-beryllium (BeBq2) ETL, the power efficiency of white OLED was improved.

  4. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  5. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  6. A simpler sampling interface of venturi easy ambient sonic-spray ionization mass spectrometry for high-throughput screening enzyme inhibitors.

    Science.gov (United States)

    Liu, Ning; Liu, Yang; Yang, YuHan; He, Lan; Ouyang, Jin

    2016-03-24

    High-throughput screening (HTS) is often required in enzyme inhibitor drugs screening. Mass spectrometry (MS) provides a powerful method for high-throughput screening enzyme inhibitors because its high speed, sensitivity and property of lable free. However, most of the MS methods need complicated sampling interface system. Overall throughput was limited by sample loading in these cases. In this study, we develop a simple interface which coupled droplet segmented system to a venturi easy ambient sonic-spray ionization mass spectrometer. It is fabricated by using a single capillary to act as both sampling probe and the emitter, which simplifies the construction, reduces the cost and shorten the sampling time. Samples sucked by venturi effect are segmented to nanoliter plugs by air, then the plugs can be detected by MS directly. This system eliminated the need for flow injection which was popular used in classic scheme. The new system is applied to screen angiotensin converting enzyme inhibitors. High-throughput was achieved in analyzing 96 samples at 1.6 s per sample. The plugs formation was at 0.5s per sample. Carry-over between samples was less than 5%, the peak height RSD was 2.92% (n = 15). Dose-response curves of 3 known inhibitors were also measured to validate its potential in drug discovery. The calculated IC50 agreed well with reported values. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electronic transport properties of MFe2As2 (M = Ca, Eu, Sr) at ambient and high pressures up to 20 GPa

    Science.gov (United States)

    Morozova, Natalia V.; Karkin, Alexander E.; Ovsyannikov, Sergey V.; Umerova, Yuliya A.; Shchennikov, Vladimir V.; Mittal, R.; Thamizhavel, A.

    2015-12-01

    We experimentally investigated the electronic transport properties of four iron pnictide crystals, namely, EuFe2As2, SrFe2As2, and CaFe2As2 parent compounds, and superconducting CaFe1.94Co0.06As2 at ambient and high pressures up to 20 GPa. At ambient pressure we examined the electrical resistivity, Hall and magnetoresistance effects of the samples in a temperature range from 1.5 to 380 K in high magnetic fields up to 13.6 T. In this work we carried out the first simultaneous investigations of the in-plane and out-of-plane Hall coefficients, and found new peculiarities of the low-temperature magnetic and structural transitions that occur in these materials. In addition, the Hall coefficient data suggested that the parent compounds are semimetals with a multi-band conductivity that includes hole-type and electron-type bands. We measured the pressure dependence of the thermoelectric power (the Seebeck effect) of these samples up to 20 GPa, i.e. across the known phase transition from the tetragonal to the collapsed tetragonal lattice. The high-pressure behavior of the thermopower of EuFe2As2 and CaFe2As2 showing the p-n sign inversions was consistent with the semimetal model described above. By means of thermopower, we found in single-crystalline CaFe2As2 direct evidence of the band structure crossover related to the formation of As-As bonds along the c-axis on the tetragonal → collapsed tetragonal phase transition near 2 GPa. We showed that this feature is distinctly observable only in high-quality samples, and already for re-pressurization cycles this crossover was strongly smeared because of the moderate deterioration of the sample. We also demonstrated by means of thermopower that the band structure crossover that should accompany the tetragonal → collapsed tetragonal phase transition in EuFe2As2 near 8 GPa is hardly visible even in high-quality single crystals. This behavior may be related to a gradual valence change of the Eu ions under pressure that leads to

  8. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  9. Phase formation in the (1-y)BiFeO{sub 3}-yBiScO{sub 3} system under ambient and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Salak, A.N., E-mail: salak@ua.pt [Department of Materials and Ceramic Engineering and CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal); Khalyavin, D.D., E-mail: dmitry.khalyavin@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pushkarev, A.V.; Radyush, Yu.V.; Olekhnovich, N.M. [Scientific-Practical Materials Research Centre of NAS of Belarus, P. Brovka Street, 19, 220072 Minsk (Belarus); Shilin, A.D.; Rubanik, V.V. [Institute of Technical Acoustics of NAS of Belarus, Lyudnikov Avenue, 13, 210023 Vitebsk (Belarus)

    2017-03-15

    Formation and thermal stability of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO{sub 3}) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO{sub 3}-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi{sub 2}O{sub 3}. Single-phase perovskite ceramics of the BiFe{sub 1-y}Sc{sub y}O{sub 3} composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2a{sub p}×√2a{sub p}×2√3a{sub p} superstructure (a{sub p} ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2a{sub p}×4a{sub p}×2√2a{sub p}) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6a{sub p}×√2a{sub p}×√6a{sub p}) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe{sub 1-y}Sc{sub y}O{sub 3} phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectively. - Graphical abstract: Formation of perovskite phases in the BiFe{sub 1-y}Sc{sub y}O{sub 3} system when y≥0.15 requires application of pressure of several GPa. The phases formed under high pressure: R3c (0.20≤y≤0.25), Pnma (0.30≤y≤0.60) and C2/c (y≥0.70) are metastable. - Highlights: • Maximal Fe-to-Sc substitution rate in Bi

  10. Survival of high pT light and heavy flavors in a dense medium

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.

    2011-01-01

    This talk presents an attempt at a critical overview of the current status of modeling for high-p T processes in nuclei. In particular, it includes discussion of the space-time development of hadronization of highly virtual light and heavy partons, and the related time scales; the role of early production and subsequent attenuation of pre-hadrons in a dense medium. We identify several challenging problems within the current interpretation of high-p T processes and propose solutions for some of them.

  11. Far infrared spectroscopy of high-Tc superconductors at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Perkowitz, S.; Williams, G.P.

    1989-01-01

    This paper reports the first far infrared transmission spectra for micron-thick films of high-T c rare-earth superconductors such as DyBaCuO, with implications for the superconducting gap. Spectra were obtained at Brookhaven's National Synchrotron Light Source, a new high-intensity, broad-band millimeter to infrared source. The National Synchrotron Light Source at Brookhaven National Laboratory, known for powerful X-ray and UV output, is also a high-intensity (10 to 1000 times above a black body), high-brightness (intensity per solid angle), broad-band, picosecond, millimeter to infrared source. These features make it valuable for far-infrared condensed matter experiments, especially those in highly absorbing or extremely small systems. A first application has been to measure very small infrared transmissions through thick bulk-like high-T c superconducting films. Preliminary measurements through films of the conventional superconductor Nb 3 Ge established techniques. These were followed by the first measurements (to the author's knowledge) through micron-thick films of high-T c rare-earth superconductors such as DyBaCuO over 10-300 cm -1 , which includes the superconducting gap according to BCS or moderately strong-coupled theory. The authors discuss the transmission evidence bearing on the existence of a gap and other important features of high-T c superconductors, and describe the synchrotron and instrumentation features which make possible these unusual measurements

  12. Reduction of Bacterial Pathogens and Potential Surrogates on the Surface of Almonds Using High-Intensity 405-Nanometer Light.

    Science.gov (United States)

    Lacombe, Alison; Niemira, Brendan A; Sites, Joseph; Boyd, Glenn; Gurtler, Joshua B; Tyrell, Breanna; Fleck, Melissa

    2016-11-01

    The disinfecting properties of high-intensity monochromatic blue light (MBL) were investigated against Escherichia coli O157:H7, Salmonella , and nonpathogenic bacteria inoculated onto the surface of almonds. MBL was generated from an array of narrow-band 405-nm light-emitting diodes. Almonds were inoculated with higher or lower levels (8 or 5 CFU/g) of pathogenic E. coli O157:H7 and Salmonella , as well as nonpathogenic E. coli K-12 and an avirulent strain of Salmonella Typhimurium, for evaluation as potential surrogates for their respective pathogens. Inoculated almonds were treated with MBL for 0, 1, 2, 4, 6, 8, and 10 min at a working distance of 7 cm. Simultaneous to treatment, cooling air was directed onto the almonds at a rate of 4 ft 3 /min (1.89 ×10 -3 m 3 /s), sourced through a container of dry ice. An infrared camera was used to monitor the temperature readings after each run. For E. coli K-12, reductions of up to 1.85 or 1.63 log CFU/g were seen for higher and lower inoculum levels, respectively; reductions up to 2.44 and 1.44 log CFU/g were seen for E. coli O157:H7 (higher and lower inoculation levels, respectively). Attenuated Salmonella was reduced by up to 0.54 and 0.97 log CFU/g, whereas pathogenic Salmonella was reduced by up to 0.70 and 0.55 log CFU/g (higher and lower inoculation levels, respectively). Inoculation level did not significantly impact minimum effective treatment times, which ranged from 1 to 4 min. Temperatures remained below ambient throughout treatment, indicating that MBL is a nonthermal antimicrobial process. The nonpathogenic strains of E. coli and Salmonella each responded to MBL in a comparable manner to their pathogenic counterparts. These results suggest that these nonpathogenic strains may be useful in experiments with MBL in which a surrogate is required, and that MBL warrants further investigation as a potential antimicrobial treatment for low-moisture foods.

  13. Effect of very high magnetic field on the optical properties of firefly light emitter oxyluciferin

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weihang; Nakamura, Daisuke [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Wang, Yu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (China); Mochizuki, Toshimitsu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiike-dai, Koriyama, Fukushima 963-0215 (Japan); Akiyama, Hidefumi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2015-09-15

    Magnetic field effect on enzymatic reactions is under intensive study in the past decades. Recently, it was reported that firefly bioluminescence was suppressed and red-shifted significantly when exposed to external magnetic field. However in this work, by means of selective excitation, we confirmed that emission properties of firefly light emitter “oxyluciferin” are completely immune to external magnetic field of up to 53 T. These findings pose strong contrast to existing relevant results. Potential reasons for the discrepancies found and the underlying physics towards the understanding of firefly bioluminescence were discussed. - Highlights: • Effect of ultra-high magnetic field on the optical properties of firefly light emitter oxyluciferin was reported. • Emission properties of oxyluciferin were confirmed to be immune to external high magnetic fields up to 53 T. • .Potential reasons for the discrepancies between our results and previous reports and the underlying physics were discussed.

  14. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  15. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  16. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport

    Science.gov (United States)

    Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2003-06-01

    High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.

  17. Vibration compensated high-resolution scanning white-light Linnik-interferometer

    Science.gov (United States)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2017-06-01

    We present a high-resolution Linnik scanning white-light interferometer (SWLI) with integrated distance measuring interferometer (DMI) for close-to-machine applications in the presence of environmental vibrations. The distance, measured by DMI during the depth-scan, is used for vibration compensation of SWLI signals. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the DMI and subsequent trigonometrical approximation. This system is the further development of our previously presented Michelson-interferometer. We are able to compensate for arbitrary vibrations with frequencies up to several kilohertz and amplitudes in the lower micrometer range. Completely distorted SWLI signals can be reconstructed and the surface topography can be obtained with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  18. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties.

    Science.gov (United States)

    Mumin, Md Abdul; Xu, William Z; Charpentier, Paul A

    2015-08-07

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (∼65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (∼90%) and decreased UV transmission (∼75%).

  19. Ambient intelligence, ethics and privacy

    NARCIS (Netherlands)

    Hoof, van J.; Kort, H.S.M.; Markopoulos, P.; Soede, M.

    2007-01-01

    Networked and ubiquitous information and communication technologies (ICTs) and ambient intelligence are increasingly used in the home environment to facilitate independent living for older adults. These systems collect and disperse a high volume of personal data, which is used for assistance and

  20. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Banavoth, Murali; Sarmah, Smritakshi P.; Yuan, Mingjian; Sinatra, Lutfan; AlYami, Noktan; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N.; Mohammed, Omar F.; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H.; Bakr, Osman

    2016-01-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  1. Production of light fragments in hA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.; Vechernin, V.V.

    1988-12-01

    Production of fast relativistic light fragments in hA collisions at high energies is considered. Direct coalescence of produced nucleons into fragments is shown to be the main mechanism for fragment production. The influence of the nuclear field is small and is not described by the well-known Butler-Pearson formulas. The coalescence coefficient strongly depends on the angle and on the behaviour of the fragment wave function at small internucleon distances. (author). 14 refs, 7 figs

  2. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  3. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    Science.gov (United States)

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  4. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  5. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    Science.gov (United States)

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  6. The future is 'ambient'

    Science.gov (United States)

    Lugmayr, Artur

    2006-02-01

    The research field of ambient media starts to spread rapidly and first applications for consumer homes are on the way. Ambient media is the logical continuation of research around media. Media has been evolving from old media (e.g. print media), to integrated presentation in one form (multimedia - or new media), to generating a synthetic world (virtual reality), to the natural environment is the user-interface (ambient media), and will be evolving towards real/synthetic undistinguishable media (bio-media or bio-multimedia). After the IT bubble was bursting, multimedia was lacking a vision of potential future scenarios and applications. Within this research paper the potentials, applications, and market available solutions of mobile ambient multimedia are studied. The different features of ambient mobile multimedia are manifold and include wearable computers, adaptive software, context awareness, ubiquitous computers, middleware, and wireless networks. The paper especially focuses on algorithms and methods that can be utilized to realize modern mobile ambient systems.

  7. Dynamic miniature lighting system with low correlated colour temperature and high colour rendering index for museum lighting of fragile artefacts

    DEFF Research Database (Denmark)

    Thorseth, Anders; Corell, Dennis Dan; Poulsen, Peter Behrensdorff

    2013-01-01

    of historical artefacts in display cases at museums and other exhibitions, which can replace 3-5 Watt incandescent light bulbs with a correlated colour temperature (CCT) from 2000 K to 2400 K. The solution decreases the energy consumption by up to 80 %, while maintaining colour rendering indices (Ra) above 90...

  8. Specific features of an interaction between laser radiation and matter at high pressures of an ambient medium

    Energy Technology Data Exchange (ETDEWEB)

    Rykalin, N N; Uglov, A A; Nizametdinov, M M [AN SSSR, Moscow. Inst. Metallurgii

    1975-08-01

    Study of the development of a plasma cloud in the vicinity of the target in nitrogen has been performed. The mechanism of discharge propagation is discussed. Variations of physical characteristics of targets exposed to radiation are considered. Experimental data concerning interaction of a neodymium laser radiation with materials (metals, dielectrics) under high pressure are given. It is demonstrated that the environmental pressure increase over the range 30-100 atm with the flux density 10/sup 6/-10/sup 7/ w/cm/sup 2/ results in a nearly complete screening of the target by the plasma cloud. The primary mechanism of zone formation of the laser radiation absorption in a cold gas under high pressures near the target is thermal emission (when the evaporation is insignificant) and the breakdown in the vapours of the evaporated substance. The major mechanism of sustaining the plasma cloud at flux densities of 1-10 Mw/cm/sup 2/ is slow burning. It is noted that the periodic variation of brightness of plasma after the radiation effect on dielectrics has terminated can be associated with the energy production in a chemical reaction, the development of which is determined by the time of reaching the temperature that depends on the particle size. The target characteristics in the interaction zone are considered, which depend on the radiation flux density and the gas pressure in the chamber.

  9. Reducing Barriers To The Use of High-Efficiency Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Peter Morante

    2005-12-31

    With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and

  10. A design study of high electric power for fast reactor cooled by supercritical light water

    International Nuclear Information System (INIS)

    Koshizuka, Seiichi

    2000-03-01

    In order to evaluate the possibility to achieve high electric power by a fast reactor with supercritical light water, the design study was carried out on a large fast reactor core with high coolant outlet temperature (SCFR-H). Since the reactor coolant circuit uses once-through direct cycle where all feedwater flows through the core to the turbine at supercritical pressure, it is possible to design much simpler and more compact reactor systems and to achieve higher thermal efficiency than those of current light water reactors. The once-through direct cycle system is employed in current fossil-fired power plants. In the present study, three types of core were designed. The first is SCFR-H with blankets cooled by ascending flow, the second is SCFR-H with blankets cooled by descending flow and the third is SCFR-H with high thermal power. Every core was designed to achieve the thermal efficiency over 43%, positive coolant density reactivity coefficient and electric power over 1600 MW. Core characteristics of SCFR-Hs were compared with those of SCLWR-H (electric power: 1212 MW), which is a thermal neutron spectrum reactor cooled and moderated by supercritical light water, with the same diameter of the reactor pressure vessel. It was shown that SCFR-H could increase the electric power about 1.7 times maximally. From the standpoint of the increase of a reactor thermal power, a fast reactor has advantages as compared with a thermal neutron reactor, because it can increase the power density by adopting tight fuel lattices and eliminating the moderator region. Thus, it was concluded that a reactor cooled by supercritical light water could further improve the cost competitiveness by using a fast neutron spectrum and achieving a higher thermal power. (author)

  11. Biomimetic fabrication of WO{sub 3} for water splitting under visible light with high performance

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chao; Zhu, Shenmin, E-mail: smzhu@sjtu.edu.cn; Yao, Fan; Gu, Jiajun; Zhang, Wang [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites (China); Chen, Zhixin [University of Wollongong, Faculty of Engineering (Australia); Zhang, Di, E-mail: zhangdi@sjtu.edu.cn [Shanghai Jiao Tong University, State Key Laboratory of Metal Matrix Composites (China)

    2013-08-15

    Inspired by the high light-harvesting properties of typical butterfly wings, ceramic WO{sub 3} butterfly wings with hierarchical structures of bio-butterfly wings was fabricated using a template of PapilioParis butterfly wings through a sol-gel method. The effect of calcination temperatures on the structures of the ceramic butterfly wings was investigated and the results showed that the WO{sub 3} butterfly wing replica calcined at 550 Degree-Sign C (WO{sub 3} replica-550) is a single phase and has a high crystallinity and relatively fine hierarchical structure. The average grain size of WO{sub 3} replica-550 and WO{sub 3} powder are around 32.6 and 42.2 nm, respectively. Compared with pure WO{sub 3} powder, WO{sub 3} replica-550 demonstrated a higher light-harvesting capability in the region from 460 to 700 nm and more importantly the higher charge separation rate, as evidenced by electron paramagnetic resonance measurements. Photocatalytic O{sub 2} evolutions from water were investigated on the ceramic butterfly wings and pure WO{sub 3} powder under visible light ({lambda} > 420 nm). The results showed that the amount of O{sub 2} produced from WO{sub 3} replica-550 is 50 % higher than that of the pure WO{sub 3} powder. The improved photocatalytic performance of WO{sub 3} replica-550 is attributed to the quasi-honeycomb structure inherited from the PapilioParis butterfly wings, providing both high light-harvesting efficiency and efficient charge transport through the WO{sub 3}.

  12. High-Brightness Blue Light-Emitting Diodes Enabled by a Directly Grown Graphene Buffer Layer.

    Science.gov (United States)

    Chen, Zhaolong; Zhang, Xiang; Dou, Zhipeng; Wei, Tongbo; Liu, Zhiqiang; Qi, Yue; Ci, Haina; Wang, Yunyu; Li, Yang; Chang, Hongliang; Yan, Jianchang; Yang, Shenyuan; Zhang, Yanfeng; Wang, Junxi; Gao, Peng; Li, Jinmin; Liu, Zhongfan

    2018-06-08

    Single-crystalline GaN-based light-emitting diodes (LEDs) with high efficiency and long lifetime are the most promising solid-state lighting source compared with conventional incandescent and fluorescent lamps. However, the lattice and thermal mismatch between GaN and sapphire substrate always induces high stress and high density of dislocations and thus degrades the performance of LEDs. Here, the growth of high-quality GaN with low stress and a low density of dislocations on graphene (Gr) buffered sapphire substrate is reported for high-brightness blue LEDs. Gr films are directly grown on sapphire substrate to avoid the tedious transfer process and GaN is grown by metal-organic chemical vapor deposition (MOCVD). The introduced Gr buffer layer greatly releases biaxial stress and reduces the density of dislocations in GaN film and In x Ga 1- x N/GaN multiple quantum well structures. The as-fabricated LED devices therefore deliver much higher light output power compared to that on a bare sapphire substrate, which even outperforms the mature process derived counterpart. The GaN growth on Gr buffered sapphire only requires one-step growth, which largely shortens the MOCVD growth time. This facile strategy may pave a new way for applications of Gr films and bring several disruptive technologies for epitaxial growth of GaN film and its applications in high-brightness LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  14. Impact of various lighting source (incandescent, fluorescent, metal halide and high pressure sodium) on the production performance of chicken broilers

    International Nuclear Information System (INIS)

    Guffar, A.; Rahman, K.U.; Siddique, M.; Ahmad, F.

    2009-01-01

    Light is an important aspect of an animal's environment. Avian as well as mammalian species respond to light energy in a variety of ways. Recent research has indicated that light source may affect body weight, immune response, livability and health status. Broiler behavior is strongly affected by light sources. So the present project was designed to study the effect of light sources on the production performance of broilers. For this purpose, 500 day-old broilers purchased from the local market were reared for three days (adaptation period) in one group. Then these were randomly divided into five experimental groups each comprising of 100 birds. Group A was given 25 incandescent light (INC), Group B was given fluorescent light (FC), Group C was given metal halide light (MH), Group D was given high pressure sodium light (HPS) and Group E was given no light source (control). Performance trial in terms of measurement of weekly body weight, weekly feed consumption, feed conversion ratio (FCR), daily water consumption and mortality were checked. Among various lighting sources, MH proved the best light source regarding main parameters of production performance. (author)

  15. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  16. Squeezed light for the interferometric detection of high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Schnabel, R; Harms, J; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 10 6dB/20dB ∼ 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 x 10 -23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity

  17. Science from the Avo 1ST Light: the High Redshift Universe

    Science.gov (United States)

    Walton, Nicholas A.

    The Astrophysical Virtual Observatory science working group defined a number of key science drivers for which the AVO should develop capabilities. At the AVO's Jan 2003 'First Light' event the AVO prototype data access and manipulation tool was demonstrated. In particular its use in enabling discovery in deep multi wavelength data sets was highlighted. In this presentation I will describe how the AVO demonstrator has enabled investigation into the high redshift universe and in particular its use in discovering rare populations of high redshift galaxies from deep Hubble and ground based imaging data obtained through the Great Observatories Origins Deep Survey (GOODS) programme.

  18. Coherent light scattering from a buried dipole in a high-aperture optical system

    International Nuclear Information System (INIS)

    Vamivakas, A N; Mueller, T; Atatuere, M; Yurt, A; Koeklue, F H; Uenlue, M S

    2011-01-01

    We develop a theoretical formulation to calculate the absolute and differential transmission of a focused laser beam through a high-aperture optical system. The focused field interacts with a point dipole that is buried in a high-index material, and is situated at the Gaussian focus of the focusing and collection two-lens system. The derived expressions account for the vectorial nature of the focused electromagnetic field and the inhomogeneous focal region environment. The results obtained are in agreement with recent resonant light-scattering experiments where the buried emitter is an indium arsenide semiconductor quantum dot in gallium arsenide.

  19. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Zheng [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)], E-mail: z.kuang@liv.ac.uk; Perrie, Walter [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Leach, Jonathan [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Sharp, Martin; Edwardson, Stuart P. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Padgett, Miles [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Dearden, Geoff; Watkins, Ken G. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2008-12-30

    High throughput femtosecond laser processing is demonstrated by creating multiple beams using a spatial light modulator (SLM). The diffractive multi-beam patterns are modulated in real time by computer generated holograms (CGHs), which can be calculated by appropriate algorithms. An interactive LabVIEW program is adopted to generate the relevant CGHs. Optical efficiency at this stage is shown to be {approx}50% into first order beams and real time processing has been carried out at 50 Hz refresh rate. Results obtained demonstrate high precision surface micro-structuring on silicon and Ti6Al4V with throughput gain >1 order of magnitude.

  20. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  1. Printable photonic crystals with high refractive index for applications in visible light

    International Nuclear Information System (INIS)

    Calafiore, Giuseppe; Mejia, Camilo A; Munechika, Keiko; Peroz, Christophe; Piña-Hernandez, Carlos; Fillot, Quentin; Dhuey, Scott; Sassolini, Simone; Salvadori, Filippo; Cabrini, Stefano

    2016-01-01

    Nanoimprint lithography (NIL) of functional high-refractive index materials has proved to be a powerful candidate for the inexpensive manufacturing of high-resolution photonic devices. In this paper, we demonstrate the fabrication of printable photonic crystals (PhCs) with high refractive index working in the visible wavelengths. The PhCs are replicated on a titanium dioxide-based high-refractive index hybrid material by reverse NIL with almost zero shrinkage and high-fidelity reproducibility between mold and printed devices. The optical responses of the imprinted PhCs compare very well with those fabricated by conventional nanofabrication methods. This study opens the road for a low-cost manufacturing of PhCs and other nanophotonic devices for applications in visible light. (paper)

  2. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    Science.gov (United States)

    Wang, Rongbo; Li, Shengfu; Zhou, Weijun; Luo, Zhen-Xiong; Meng, Jianhua; Tian, Jianhua; He, Lihua; Cheng, Xianchao

    2017-09-01

    An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  3. Scintillating fiber tracking at high luminosities using Visible Light Photon counter readout

    International Nuclear Information System (INIS)

    Atac, M.

    1995-11-01

    This paper reviews the research work on the Visible Light Photon Counters (VLPC) that have been developed for the scintillating fiber tracking at high luminosity colliders and high rate fixed target experiments. The devices originated from the joint work between UCLA and Rockwell International Science Center. The VLPCs are capable of counting photons very efficiently down to a single photon level with high avalanche gain, producing pulses at very high rates with very short rise times. Due to small gain dispersions they can be used in counting photons with high quantum efficiencies, therefore they are excellent devices for charged particle tracking using small diameter scintillating plastic fibers. In this paper, fiber tracking for the CDF and D0 upgrades and a possible usage of the VLPC readout for the experiment E803 at Fermilab will be discussed

  4. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    Science.gov (United States)

    Kutyrev, Alexander; Arendt, R.; Dwek, E.; Moseley, S. H.; Silverberg, R.; Rapchun, D.

    2007-12-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program. The project is supported by NASA ROSES-APRA grant.

  5. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  6. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  7. Series-Connected High Frequency Converters in a DC Microgrid System for DC Light Rail Transit

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-01-01

    Full Text Available This paper studies and presents a series-connected high frequency DC/DC converter connected to a DC microgrid system to provide auxiliary power for lighting, control and communication in a DC light rail vehicle. Three converters with low voltage and current stresses of power devices are series-connected with single transformers to convert a high voltage input to a low voltage output for a DC light rail vehicle. Thus, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs with a low voltage rating and a turn-on resistance are adopted in the proposed circuit topology in order to decrease power losses on power switches and copper losses on transformer windings. A duty cycle control with an asymmetric pulse-width modulation is adopted to control the output voltage at the desired voltage level. It is also adopted to reduce switching losses on MOSFETs due to the resonant behavior from a leakage inductor of an isolated transformer and output capacitor of MOSFETs at the turn-on instant. The feasibility and effectiveness of the proposed circuit have been verified by a laboratory prototype with a 760 V input and a 24 V/60 A output.

  8. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  9. Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionary ultra-high temperature, high mechanical loading capable, oxidation resistant, durable ceramic coatings and light-weight fiber-reinforced Ceramic Matrix...

  10. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    Science.gov (United States)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  11. Environmental friendly high efficient light source. Plasma lamp. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Courret, G.

    2006-07-01

    This annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of a high-efficiency source of light based on the light emission of a plasma. The report presents a review of work done in 2006, including thermodynamics and assessment of the efficiency of the magnetron, tests with small bulbs, study of the standing wave ratio (microwave fluxes) and the development of a new coupling system to allow ignition in very small bulbs. Also, knowledge on the fillings of the bulb and induced effects of the modulator were gained. The development of a second generation of modulator to obtain higher efficiency at lower power is noted.

  12. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  13. Light-Triggered CO2 Breathing Foam via Nonsurfactant High Internal Phase Emulsion.

    Science.gov (United States)

    Zhang, Shiming; Wang, Dingguan; Pan, Qianhao; Gui, Qinyuan; Liao, Shenglong; Wang, Yapei

    2017-10-04

    Solid materials for CO 2 capture and storage have attracted enormous attention for gaseous separation, environmental protection, and climate governance. However, their preparation and recovery meet the problems of high energy and financial cost. Herein, a controllable CO 2 capture and storage process is accomplished in an emulsion-templated polymer foam, in which CO 2 is breathed-in under dark and breathed-out under light illumination. Such a process is likely to become a relay of natural CO 2 capture by plants that on the contrary breathe out CO 2 at night. Recyclable CO 2 capture at room temperature and release under light irradiation guarantee its convenient and cost-effective regeneration in industry. Furthermore, CO 2 mixed with CH 4 is successfully separated through this reversible breathing in and out system, which offers great promise for CO 2 enrichment and practical methane purification.

  14. Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress

    Directory of Open Access Journals (Sweden)

    Rumeau Dominique

    2009-11-01

    Full Text Available Abstract Background Vitamin B6 is a collective term for a group of six interconvertible compounds: pyridoxine, pyridoxal, pyridoxamine and their phosphorylated derivatives. Vitamin B6 plays essential roles as a cofactor in a range of biochemical reactions. In addition, vitamin B6 is able to quench reactive oxygen species in vitro, and exogenously applied vitamin B6 protects plant cells against cell death induced by singlet oxygen (1O2. These results raise the important question as to whether plants employ vitamin B6 as an antioxidant to protect themselves against reactive oxygen species. Results The pdx1.3 mutation affects the vitamin B6 biosynthesis enzyme, pyridoxal synthase (PDX1, and leads to a reduction of the vitamin B6 concentration in Arabidopsis thaliana leaves. Although leaves of the pdx1.3 Arabidopsis mutant contained less chlorophyll than wild-type leaves, we found that vitamin B6 deficiency did not significantly impact photosynthetic performance or shoot and root growth. Chlorophyll loss was associated with an increase in the chlorophyll a/b ratio and a selective decrease in the abundance of several PSII antenna proteins (Lhcb1/2, Lhcb6. These changes were strongly dependent on light intensity, with high light amplifying the difference between pdx1.3 and the wild type. When leaf discs were exposed to exogenous 1O2, lipid peroxidation in pdx1.3 was increased relative to the wild type; this effect was not observed with superoxide or hydrogen peroxide. When leaf discs or whole plants were exposed to excess light energy, 1O2-mediated lipid peroxidation was enhanced in leaves of the pdx1.3 mutant relative to the wild type. High light also caused an increased level of 1O2 in vitamin B6-deficient leaves. Combining the pdx1.3 mutation with mutations affecting the level of 'classical' quenchers of 1O2 (zeaxanthin, tocopherols resulted in a highly photosensitive phenotype. Conclusion This study demonstrates that vitamin B6 has a function in

  15. The use of climate information to estimate future mortality from high ambient temperature: A systematic literature review

    Science.gov (United States)

    Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete

    2017-01-01

    Background and objectives Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. Methods The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. Results A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on

  16. Electron-transporting layer doped with cesium azide for high-performance phosphorescent and tandem white organic light-emitting devices

    Science.gov (United States)

    Yu, Yaoyao; Chen, Xingming; Jin, Yu; Wu, Zhijun; Yu, Ye; Lin, Wenyan; Yang, Huishan

    2017-07-01

    Cesium azide was employed as an effective n-dopant in the electron-transporting layer (ETL) of organic light-emitting devices (OLEDs) owing to its low deposition temperature and high ambient stability. By doping cesium azide onto 4,7-diphenyl-1,10-phenanthroline, a green phosphorescent OLED having best efficiencies of 66.25 cd A-1, 81.22 lm W-1 and 18.82% was realized. Moreover, the efficiency roll-off from 1000 cd m-2 to 10 000 cd m-2 is only 12.9%, which is comparable with or even lower than that of devices utilizing the co-host system. Physical mechanisms for the improvement of device performance were studied in depth by analyzing the current density-voltage (J-V) characteristics of the electron-only devices. In particular, by comparing the J-V characteristics of the electron-only devices instead of applying the complicated ultraviolet photoelectron spectrometer measurements, we deduced the decrease in barrier height for electron injection at the ETL/cathode contact. Finally, an efficient tandem white OLED utilizing the n-doped layer in the charge generation unit (CGU) was constructed. As far as we know, this is the first report on the application of this CGU for fabricating tandem white OLEDs. The emissions of the tandem device are all in the warm white region from 1213 cd m-2 to 10870 cd m-2, as is beneficial to the lighting application.

  17. The High-Temperature Synthesis of the Nanoscaled White-Light Phosphors Applied in the White-Light LEDs

    Directory of Open Access Journals (Sweden)

    Hao-Ying Lu

    2015-01-01

    Full Text Available The white-light phosphors consisting of Dy3+ doped YPO4 and Dy3+ doped YP1-XVXO4 were prepared by the chemical coprecipitation method. After the 1200°C thermal treatment in the air atmosphere, the white-light phosphors with particle sizes around 90 nm can be obtained. In order to reduce the average particle size of phosphors, the alkaline washing method was applied to the original synthesis process, which reduces the particle sizes to 65 nm. From the PLE spectra, four absorption peaks locating at 325, 352, 366, and 390 nm can be observed in the YPO4-based phosphors. These peaks appear due to the following electron transitions: 6H15/2→4K15/2, 6H15/2→4M15/2+6P7/2, 6H15/2→4I11/2, and 6H15/2→4M19/2. Besides, the emission peaks of wavelengths 484 nm and 576 nm can be observed in the PL spectra. In order to obtain the white-light phosphors, the vanadium ions were applied to substitute the phosphorus ions to compose the YP1-XVXO4 phosphors. From the PL spectra, the strongest PL intensity can be obtained with 30% vanadium ions. As the concentration of vanadium ions increases to 40%, the phosphors with the CIE coordinates locating at the white-light area can be obtained.

  18. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    Science.gov (United States)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  19. Compact high efficiency, light weight 200-800 MHz high power RF source

    International Nuclear Information System (INIS)

    Shrader, M.B.; Preist, D.H.

    1985-01-01

    There has long been a need for a new more efficient less bulky high power RF power source to drive accelerators in the 200 to 800 MHz region. Results on a recent 5-year EIMAC sponsored R and D program which have lead to the introduction of the Klystrode for UHF television and troposcatter applications indicate that at power levels of 1MW or more efficiencies in excess of 75% can be obtained at 450 MHz. Efficiencies of this order coupled with potential size and weight parameters which are a fraction of those of existing high power UHF generators open up new applications which heretofore would have been impractical if not impossible. Measurements at 470 MHz on existing Klystrodes are given. Projected operating conditions for a 1MW 450 MHz Klystrode having an overall length of 60 inches and a total tube, circuit, and magnet weight of 250 pounds is presented

  20. Licenciamento ambiental e sustentabilidade

    Directory of Open Access Journals (Sweden)

    Marcelo Macedo Valinhas

    2011-12-01

    Full Text Available A sustentabilidade está apoiada principalmente nas dimensões econômica, ambiental e social. No entanto, sem a dimensão política ela não se constrói. Um dos principais instrumentos de comando e controle da política nacional de meio ambiente, o licenciamento ambiental é um processo contínuo de gestão ambiental pública e privada. Analisou-se o processo de licenciamento ambiental como acoplamento estrutural entre os sistemas social, econômico e ambiental. Apesar da constatação de críticas aos mecanismos de comando e controle dos últimos anos, foi verificado que o Estado do Rio de Janeiro tem buscado integrar a política ambiental do Estado à gestão ambiental privada e que esta integração busca atender às demandas dos sistemas sociais e econômicos para as questões ambientais. Em linhas gerais, este caminho segue as estratégias e ações propostas na Agenda 21 brasileira.

  1. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  2. Persuasion in Ambient Intelligence

    NARCIS (Netherlands)

    Kaptein, M.C.; Markopoulos, P.; Ruyter, de B.E.R.; Aarts, E.H.L.

    2010-01-01

    Although the field of persuasive technologies has lately attracted a lot of attention, only recently the notion of ambient persuasive technologies was introduced. Ambient persuasive technologies can be integrated into every aspect of life, and as such have greater persuasive power than the

  3. Knoop hardness of ten resin composites irradiated with high-power LED and quartz-tungsten-halogen lights.

    Science.gov (United States)

    Price, Richard B T; Felix, Corey A; Andreou, Pantelis

    2005-05-01

    This study compared a high-power light-emitting-diode (LED) curing light (FreeLight 2, 3M ESPE) with a quartz-tungsten-halogen (QTH) light (TriLight, 3M ESPE) to determine which was the better at photo-polymerising 10 resin composites. Class I preparations were prepared 4-mm deep into human teeth and filled with 10 different composites. The composites were irradiated for 50% or 100% of their recommended times using the LED light, and for 100% of their recommended times with the QTH light on either the high or medium power setting. Fifteen minutes later, the Knoop hardness of the composites was measured to a depth of 3.5 mm from the surface. When irradiated by the LED light for their recommended curing times, the Knoop hardness of all 10 composites stayed above 80% of the maximum hardness of the composite to a depth of at least 1.5 mm; three composites maintained a Knoop hardness that was more than 80% of their maximum hardness to a depth of 3.5 mm. Repeated measurements analysis of variance indicated that all the two-way and three-way interactions between the curing light, depth, and composite were significant (p hardness values. The LED light, used for the composite manufacturer's recommended time, was ranked the best at curing the composites to a depth of 3mm (p power setting.

  4. Ambient versus traditional environment in pediatric emergency department.

    Science.gov (United States)

    Robinson, Patricia S; Green, Jeanette

    2015-01-01

    We sought to examine the effect of exposure to an ambient environment in a pediatric emergency department. We hypothesized that passive distraction from ambient lighting in an emergency department would lead to reduction in patient pain and anxiety and increased caregiver satisfaction with services. Passive distraction has been associated with lower anxiety and pain in patients and affects perception of wait time. A pediatric ED was designed that optimized passive distraction techniques using colorful ambient lighting. Participants were nonrandomly assigned to either an ambient ED environment or a traditional ED environment. Entry and exit questionnaires assessed caregiver expectations and experiences. Pain ratings were obtained with age-appropriate scales, and wait times were recorded. A total of 70 participants were assessed across conditions, that is, 40 in the ambient ED group and 30 in the traditional ED group. Caregivers in the traditional ED group expected a longer wait, had higher anxiety pretreatment, and felt more scared than those in the ambient ED group. Caregivers in the ambient ED group felt more included in the care of their child and rated quality of care higher than caregivers in the traditional ED group. Pain ratings and administrations of pain medication were lower in the ambient ED group. Mean scores for the ambient ED group were in the expected direction on several items measuring satisfaction with ED experiences. Results were suggestive of less stress in caregivers, less pain in patients, and higher satisfaction levels in the ambient ED group. © The Author(s) 2015.

  5. VOC amounts in ambient areas of a high-technology science park in Taiwan: their reciprocal correlations and impact on inhabitants.

    Science.gov (United States)

    Liu, Hsin-Wang; Wu, Bei-Zen; Nian, Hung-Chi; Chen, Hsing-Jung; Lo, Jiunn-Guang; Chiu, Kong-Hwa

    2012-02-01

    This study presents bihourly, seasonal, and yearly concentration changes in volatile organic compounds (VOCs) in the inlet and effluent water of the wastewater treatment plant (WWTP) of a high-technology science park (HTIP) in Taiwan, with the VOC amounts at different sites correlated geologically. This research adopted a combination of two systems, solid-phase microextraction with a gas chromatography/flame ionization detector and an assembly of purge and trap coupled with gas chromatography/mass spectrometry, to monitor polar and nonpolar VOCs in wastewater. This paper investigated the total VOCs, acetone, isopropyl alcohol (IPA), and dimethylsulfide (DMS) concentrations in real water samples collected in the ambient area of the HTIP. The major contents of VOCs measured in the effluent of the WWTP in the HTIP and the surrounding river region were DMS (14-176 ppb), acetone (5-95 ppb), and IPA (15-316 ppb). In comparison with the total VOCs in the inlet wastewater of the WWTP, no corresponding relationship for total VOC concentration in the wastewater was observed between the inlet water and effluent water of the WWTP. The peak VOC concentrations appeared in the third season, and the correlation of different VOC amounts reflects the production situation of the factories. In addition, VOC concentrations at different sites indicate that the Ke-Ya River is seemingly an effective channel for transporting wastewater to its final destination. The data are good indications for the management of environmental pollution near the HTIP.

  6. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  7. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir

    2017-09-22

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell\\'s configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  8. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir; Daif, Ounsi El; Aï ssa, Brahim; Kivambe, Maulid; Tabet, Nouar; Seif, Johannes; Haschke, Jan; Cattin, Jean; Boccard, Mathieu; De Wolf, Stefaan; Ballif, Christophe

    2017-01-01

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell's configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  9. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    Science.gov (United States)

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-04-01

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO 2 (PDs-TiO 2 ) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO 4 ) 2 . Under visible light irradiation, the PDs-TiO 2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO 2 is 3.6 and 9.5 times higher than that of pure TiO 2 and commercial P25, respectively. In addition, the PDs-TiO 2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO 2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO 2 , therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    International Nuclear Information System (INIS)

    Domanska, Urszula; Morawski, Piotr; Piekarska, Maria

    2008-01-01

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2)} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {1-octanol (1) + CCA (2)} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  11. Preparation and characterization of mesoporous TiO{sub 2}-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lili; Huang, Shouying; Zhu, Baolin; Zhang, Shoumin; Huang, Weiping, E-mail: hwp914@nankai.edu.cn [Nankai University, College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), and Tianjin Key Lab of Metal and Molecule-based Material Chemistry (China)

    2016-11-15

    Mesoporous TiO{sub 2}-sphere-supported Au-nanoparticles (Au/m-TiO{sub 2}-spheres) catalysts have been synthesized by a simple method using tetrabutyl titanate as TiO{sub 2} precursor and characterized with XRD, BET, ICP, SEM, TEM, UV-Vis DRS, XPS, as well as FT-IR. The samples with the size in the range of 200–400 nm were almost perfectly spherical. The average diameter of pores was about 3.6 nm, and the mesopore size distribution was in the range of 2–6 nm with a narrow distribution. When the catalyst was calcined at 300 °C, the Au NPs with the size ca. 5 nm were highly dispersed on the surfaces of m-TiO{sub 2} spheres and partially embedded in the supports. Remarkably, the specific surface area of the Au/m-TiO{sub 2}-spheres was as high as 117 m{sup 2} g{sup −1}. The CO-adsorbed catalyst showed an apparent IR adsorption peak at 1714 cm{sup −1} that matched with bridging model CO. It means the catalysts should be of high catalytic activity for the CO oxidation due to they could adsorb and activate CO commendably. When Au-content was 0.48 wt.%, the Au/m-TiO{sub 2}-spheres could convert CO completely into CO{sub 2} at ambient temperature.

  12. Solubility of perfumery and fragrance raw materials based on cyclohexane in 1-octanol under ambient and high pressures up to 900 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)], E-mail: ula@ch.pw.edu.pl; Morawski, Piotr; Piekarska, Maria [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2008-04-15

    The (solid + liquid) phase equilibria (SLE) of binary mixtures containing 1-octanol and fragrance raw materials based on cyclohexane were investigated. The systems {l_brace}1-octanol (1) + cyclohexyl carboxylic acid (CCA), or cyclohexyl acetic acid (CAA), or cyclohexyl acetate (CA), or 2-cyclohexyl ethyl acetate (2CEA), or 2-cyclohexyl ethanol (2CE)(2){r_brace} have been measured by a dynamic method in wide range of temperatures from (220 to 320) K and ambient pressure. For all systems SLE diagrams were detected as eutectic mixtures with complete miscibility in the liquid phase. The experimental data were correlated by means of the Wilson and NRTL equations, utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular equation used. Additionally, the SLE in binary mixture that contain {l_brace}1-octanol (1) + CCA (2){r_brace} has been measured under very high pressures up to about 900 MPa at the temperature range from T = (303.15 to 353.15) K. The thermostatted apparatus for the measurements of transition pressures from the (liquid + solid) state was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high pressure experimental results obtained at isothermal conditions (p-x) were interpolated to more convenient T-x diagram. Data of the (pressure + temperature) composition relation at the high pressure (solid + liquid) phase equilibria was correlated by the polynomial based on the Yang model. The basic thermodynamic properties of pure substances viz. the melting point, enthalpy of fusion, enthalpy of solid-solid phase transition, and glass transition, have been determined by the differential scanning calorimetry (DSC)

  13. High-Throughput Combinatorial Development of High-Entropy Alloys For Light-Weight Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, Jeroen K [Intermolecular, Inc., San Jose, CA (United States); Koch, Carl [North Carolina State Univ., Raleigh, NC (United States); Luo, Alan [The Ohio State Univ., Columbus, OH (United States); Sample, Vivek [Arconic, Pittsburgh, PA (United States); Sachdev, Anil [General Motors, Detroit, MI (United States)

    2017-12-29

    The primary limitation of today’s lightweight structural alloys is that specific yield strengths (SYS) higher than 200MPa x cc/g (typical value for titanium alloys) are extremely difficult to achieve. This holds true especially at a cost lower than 5dollars/kg (typical value for magnesium alloys). Recently, high-entropy alloys (HEA) have shown promising SYS, yet the large composition space of HEA makes screening compositions complex and time-consuming. Over the course of this 2-year project we started from 150 billion compositions and reduced the number of potential low-density (<5g/cc), low-cost (<5dollars/kg) high-entropy alloy (LDHEA) candidates that are single-phase, disordered, solid-solution (SPSS) to a few thousand compositions. This was accomplished by means of machine learning to guide design for SPSS LDHEA based on a combination of recursive partitioning, an extensive, experimental HEA database compiled from 24 literature sources, and 91 calculated parameters serving as phenomenological selection rules. Machine learning shows an accuracy of 82% in identifying which compositions of a separate, smaller, experimental HEA database are SPSS HEA. Calculation of Phase Diagrams (CALPHAD) shows an accuracy of 71-77% for the alloys supported by the CALPHAD database, where 30% of the compiled HEA database is not supported by CALPHAD. In addition to machine learning, and CALPHAD, a third tool was developed to aid design of SPSS LDHEA. Phase diagrams were calculated by constructing the Gibbs-free energy convex hull based on easily accessible enthalpy and entropy terms. Surprisingly, accuracy was 78%. Pursuing these LDHEA candidates by high-throughput experimental methods resulted in SPSS LDHEA composed of transition metals (e.g. Cr, Mn, Fe, Ni, Cu) alloyed with Al, yet the high concentration of Al, necessary to bring the mass density below 5.0g/cc, makes these materials hard and brittle, body-centered-cubic (BCC) alloys. A related, yet multi-phase BCC alloy, based

  14. An Adaptive Intelligent Integrated Lighting Control Approach for High-Performance Office Buildings

    Science.gov (United States)

    Karizi, Nasim

    An acute and crucial societal problem is the energy consumed in existing commercial buildings. There are 1.5 million commercial buildings in the U.S. with only about 3% being built each year. Hence, existing buildings need to be properly operated and maintained for several decades. Application of integrated centralized control systems in buildings could lead to more than 50% energy savings. This research work demonstrates an innovative adaptive integrated lighting control approach which could achieve significant energy savings and increase indoor comfort in high performance office buildings. In the first phase of the study, a predictive algorithm was developed and validated through experiments in an actual test room. The objective was to regulate daylight on a specified work plane by controlling the blind slat angles. Furthermore, a sensor-based integrated adaptive lighting controller was designed in Simulink which included an innovative sensor optimization approach based on genetic algorithm to minimize the number of sensors and efficiently place them in the office. The controller was designed based on simple integral controllers. The objective of developed control algorithm was to improve the illuminance situation in the office through controlling the daylight and electrical lighting. To evaluate the performance of the system, the controller was applied on experimental office model in Lee et al.'s research study in 1998. The result of the developed control approach indicate a significantly improvement in lighting situation and 1-23% and 50-78% monthly electrical energy savings in the office model, compared to two static strategies when the blinds were left open and closed during the whole year respectively.

  15. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    DiGennaro, R.; Swain, T.

    1989-08-01

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  16. Grooved windows for scintillation crystals and light pipes of high refractive index

    International Nuclear Information System (INIS)

    Swinehart, C.F.

    1975-01-01

    Scintillation crystals are disclosed which have improved resolution and pulse height. An improved crystal has shallow grooves or spot depressions cut in the window, usually an end surface. Typical grooves are about 1.5 mm wide and about .1 mm deep. The grooves may be either horizontal, generally parallel grooves in spaced apart relationship, or concentric rings in radially spaced apart relationship. A light pipe of high refractive index, such as a crystal of pure sodium iodide, may also be improved with shallow grooves or spot depressions cut in an end surface

  17. Evaluation of some resonance self-shielding procedures employed in high conversion light water reactor design

    International Nuclear Information System (INIS)

    Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The procedures employed in the treatment of the resonance shielding effect have been identified as one of the causes of the large discrepancies found in the neutronic calculation of high conversion light water reactors (HCLWRs), indicating the need for a revision of the self-shielding procedures employed. In this work some well known techniques applied in HCLWR self-shielding calculations are evaluated; the study involves the comparison of methods for the generation of group constants, the analysis of the impact of considering some isotopes as infinitely diluted and the evaluation of the usual approximations utilized for the treatment of heterogeneities

  18. Spectrometer control subsystem with high level functionality for use at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Alberi, J.L.; Stubblefield, F.W.

    1980-11-01

    We have developed a subsystem capable of controlling stepping motors in a wide variety of vuv and x-ray spectrometers to be used at the National Sychrotron Light Source. The subsystem is capable of controlling up to 15 motors with encoder readback and ramped acceleration/deceleration. Both absolute and incremental encoders may be used in any mixture. Function commands to the subsystem are communicated via ASCII characters over an asynchronous serial link in a well-defined protocol in decipherable English. Thus the unit can be controlled via write statements in a high-level language. Details of hardware implementation will be presented

  19. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...... with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented showing good correlation with simulations. The prototypes have efficiencies up to 84 % and power...

  20. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    International Nuclear Information System (INIS)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita; Rodriguez-Abreu, Carlos

    2011-01-01

    Highlights: → Polystyrene-divinylbenzene-iron oxide nanocomposites. → Porous magnetic nanocomposites from highly concentrated emulsions. → Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m -3 , which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  1. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    Science.gov (United States)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  2. Preparation of ultra-light magnetic nanocomposites using highly concentrated emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam; Vilchez, Alejandro; Esquena, Jordi; Solans, Conxita [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Rodriguez-Abreu, Carlos, E-mail: carlos.rodriguez@inl.int [Instituto de Quimica Avanzada de Cataluna, Consejo Superior de Investigaciones Cientificas (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330 Braga (Portugal)

    2011-10-17

    Highlights: {yields} Polystyrene-divinylbenzene-iron oxide nanocomposites. {yields} Porous magnetic nanocomposites from highly concentrated emulsions. {yields} Ultralight materials with relatively high magnetic moment. - Abstract: Hybrid inorganic-organic ultra-light magnetic solid foams with iron oxide nanoparticles embedded in a divinylbenzene-polystyrene matrix were prepared using a highly concentrated emulsion polymerization method. Iron oxide nanoparticles with diameters of 3 and 10 nm were synthesized using two different methods. For comparison purposes, nanocomposites with magnetite nanoparticles dispersed in a non-porous polymeric matrix obtained by bulk polymerization were also investigated. Materials were characterized using several techniques such as dynamic light scattering (DLS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), small angle X-ray scattering (SAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and magnetization measurements. SEM and TEM images showed that solid foams are made of well-defined macro pores with nanoparticles embedded in the walls. The density of the solid foams was ca. 50-70 kg m{sup -3}, which is about 20 times lighter than the non-porous monoliths. The magnetic measurements show that both nanocomposites are superparamagnetic, and that there are differences regarding the interparticle interactions depending on matrix porosity. The synthesized materials may find applications in adsorbents, tissue reparation, enzyme supports, microreactors, or in water decontamination.

  3. Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Scott, David; Hamer, John

    2017-06-30

    In this project, OLEDWorks developed and demonstrated the innovative high-performance deposition technology required to deliver dramatic reductions in the cost of manufacturing OLED lighting in production equipment. The current high manufacturing cost of OLED lighting is the most urgent barrier to its market acceptance. The new deposition technology delivers solutions to the two largest parts of the manufacturing cost problem – the expense per area of good product for organic materials and for the capital cost and depreciation of the equipment. Organic materials cost is the largest expense item in the bill of materials and is predicted to remain so through 2020. The high-performance deposition technology developed in this project, also known as the next generation source (NGS), increases material usage efficiency from 25% found in current Gen2 deposition technology to 60%. This improvement alone results in a reduction of approximately $25/m2 of good product in organic materials costs, independent of production volumes. Additionally, this innovative deposition technology reduces the total depreciation cost from the estimated value of approximately $780/m2 of good product for state-of-the-art G2 lines (at capacity, 5-year straight line depreciation) to $170/m2 of good product from the OLEDWorks production line.

  4. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  5. High-power light-emitting diode based facility for plant cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Tamulaitis, G [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Duchovskis, P [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Bliznikas, Z [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Breive, K [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Ulinskaite, R [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Brazaityte, A [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Novickovas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Zukauskas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania)

    2005-09-07

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  6. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  7. High-power light-emitting diode based facility for plant cultivation

    International Nuclear Information System (INIS)

    Tamulaitis, G; Duchovskis, P; Bliznikas, Z; Breive, K; Ulinskaite, R; Brazaityte, A; Novickovas, A; Zukauskas, A

    2005-01-01

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated

  8. Problems of natural lighting for deepened buildings and underground premises under screen effect of high-rise construction

    Directory of Open Access Journals (Sweden)

    Larionova Kira

    2018-01-01

    Full Text Available The main rationale and objective of the submitted research work is to create a quality lighting environment in the premises of deepened buildings and below-ground structures under screen effect of high-rise construction (high-rise buildings. It is noted, that in modern megapolises, a deficiency of vacant urban territories leads to the increased density of urban development with increased amount of high-rise construction and tendency to increase efficiency in the use of underground space. The natural lighting of premises in underground buildings and structures is the most efficient way, but it can be implemented only under use of roof lighting system in the form of roof monitors or skylights. In this case the levels of indoor natural lighting will be affected with serious screening effect of high-rise buildings in surrounding development. Such an situation is not regulated, or even considered by the contemporary building Codes and Regulations on natural lighting of interiors. The authors offered a new formula for a daylight factor calculation with roof lighting system in the described cases. The results of theoretical calculations and experimental studies showed very similar values. This proved the truth of the offered formula and elaborated method of calculation on the basis of an offered hypothesis. It prooves, that it is possible to use some factor and guide points in the daylight factors design under system of side natural lighting in the same design for a system of roof lighting.

  9. High-light acclimation in Quercus robur L.seedlings upon over-topped a shaded environment

    Science.gov (United States)

    Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn

    2012-01-01

    High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a...

  10. Problems of natural lighting for deepened buildings and underground premises under screen effect of high-rise construction

    Science.gov (United States)

    Larionova, Kira; Stetsky, Sergey

    2018-03-01

    The main rationale and objective of the submitted research work is to create a quality lighting environment in the premises of deepened buildings and below-ground structures under screen effect of high-rise construction (high-rise buildings). It is noted, that in modern megapolises, a deficiency of vacant urban territories leads to the increased density of urban development with increased amount of high-rise construction and tendency to increase efficiency in the use of underground space. The natural lighting of premises in underground buildings and structures is the most efficient way, but it can be implemented only under use of roof lighting system in the form of roof monitors or skylights. In this case the levels of indoor natural lighting will be affected with serious screening effect of high-rise buildings in surrounding development. Such an situation is not regulated, or even considered by the contemporary building Codes and Regulations on natural lighting of interiors. The authors offered a new formula for a daylight factor calculation with roof lighting system in the described cases. The results of theoretical calculations and experimental studies showed very similar values. This proved the truth of the offered formula and elaborated method of calculation on the basis of an offered hypothesis. It prooves, that it is possible to use some factor and guide points in the daylight factors design under system of side natural lighting in the same design for a system of roof lighting.

  11. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications

    KAUST Repository

    Shen, Chao

    2016-05-25

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3 dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. © 2016 Optical Society of America.

  12. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications

    KAUST Repository

    Shen, Chao; Ng, Tien Khee; Leonard, John T.; Pourhashemi, Arash; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.; Alyamani, Ahmed Y.; El-desouki, Munir M.; Ooi, Boon S.

    2016-01-01

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3 dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. © 2016 Optical Society of America.

  13. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels.

    Science.gov (United States)

    Boesgaard, Kristine S; Albert, Kristian R; Ro-Poulsen, Helge; Michelsen, Anders; Mikkelsen, Teis N; Schmidt, Niels M

    2012-08-01

    Full recovery of the ozone layer is not expected for several decades and consequently, the incoming level of solar ultraviolet-B (UV-B) will only slowly be reduced. Therefore to investigate the structural and photosynthetic responses to changes in solar UV-B we conducted a 5-year UV-B exclusion study in high arctic Greenland. During the growing season, the gas exchange (H₂O and CO₂) and chlorophyll-a fluorescence were measured in Vaccinium uliginosum. The leaf dry weight, carbon, nitrogen, stable carbon isotope ratio, chlorophyll and carotenoid content were determined from a late season harvest. The net photosynthesis per leaf area was on average 22% higher in 61% reduced UV-B treatment across the season, but per ground area photosynthesis was unchanged. The leaf level increase in photosynthesis was accompanied by increased leaf nitrogen, higher stomatal conductance and F(v)/F(m). There was no change in total leaf biomass, but reduction in total leaf area caused a pronounced reduction of specific leaf area and leaf area index in reduced UV-B. This demonstrates the structural changes to counterbalance the reduced plant carbon uptake seen per leaf area in ambient UV-B as the resulting plant carbon uptake per ground area was not affected. Thus, our understanding of long-term responses to UV-B reduction must take into account both leaf level processes as well as structural changes to understand the apparent robustness of plant carbon uptake per ground area. In this perspective, V. uliginosum seems able to adjust plant carbon uptake to the present amount of solar UV-B radiation in the High Arctic. Copyright © Physiologia Plantarum 2011.

  14. Interfacial Energy-Level Alignment for High-Performance All-Inorganic Perovskite CsPbBr3 Quantum Dot-Based Inverted Light-Emitting Diodes.

    Science.gov (United States)

    Subramanian, Alagesan; Pan, Zhenghui; Zhang, Zhenbo; Ahmad, Imtiaz; Chen, Jing; Liu, Meinan; Cheng, Shuang; Xu, Yijun; Wu, Jun; Lei, Wei; Khan, Qasim; Zhang, Yuegang

    2018-04-18

    All-inorganic perovskite light-emitting diode (PeLED) has a high stability in ambient atmosphere, but it is a big challenge to achieve high performance of the device. Basically, device design, control of energy-level alignment, and reducing the energy barrier between adjacent layers in the architecture of PeLED are important factors to achieve high efficiency. In this study, we report a CsPbBr 3 -based PeLED with an inverted architecture using lithium-doped TiO 2 nanoparticles as the electron transport layer (ETL). The optimal lithium doping balances the charge carrier injection between the hole transport layer and ETL, leading to superior device performance. The device exhibits a current efficiency of 3 cd A -1 , a luminance efficiency of 2210 cd m -2 , and a low turn-on voltage of 2.3 V. The turn-on voltage is one of the lowest values among reported CsPbBr 3 -based PeLEDs. A 7-fold increase in device efficiencies has been obtained for lithium-doped TiO 2 compared to that for undoped TiO 2 -based devices.

  15. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  16. Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation

    International Nuclear Information System (INIS)

    Ahmad, M.; Ahmed, E.; Hong, Z.L.; Khalid, N.R.; Ahmed, W.; Elhissi, A.

    2013-01-01

    , great adsorption of dyes, enhanced visible light absorption and fast transfer processes. This research has the potential to provide new avenues for the in situ fabrication of the Graphene–Ag/ZnO composites as highly efficient photocatalysts

  17. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  18. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application

    Science.gov (United States)

    Zhou, Peng; Zheng, Gaige

    2018-04-01

    The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.

  19. High-precision predictions for the light CP-even Higgs boson mass of the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, T.; Hollik, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Rzehak, H. [Freiburg Univ. (Germany). Physikalisches Inst.; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2014-03-15

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minimal Supersymmetric SM (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, M{sub h}, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for M{sub h} in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.