WorldWideScience

Sample records for high altitude flying

  1. Design of a high altitude long endurance flying-wing solar-powered unmanned air vehicle

    Science.gov (United States)

    Alsahlani, A. A.; Johnston, L. J.; Atcliffe, P. A.

    2017-06-01

    The low-Reynolds number environment of high-altitude §ight places severe demands on the aerodynamic design and stability and control of a high altitude, long endurance (HALE) unmanned air vehicle (UAV). The aerodynamic efficiency of a §ying-wing configuration makes it an attractive design option for such an application and is investigated in the present work. The proposed configuration has a high-aspect ratio, swept-wing planform, the wing sweep being necessary to provide an adequate moment arm for outboard longitudinal and lateral control surfaces. A design optimization framework is developed under a MATLAB environment, combining aerodynamic, structural, and stability analysis. Low-order analysis tools are employed to facilitate efficient computations, which is important when there are multiple optimization loops for the various engineering analyses. In particular, a vortex-lattice method is used to compute the wing planform aerodynamics, coupled to a twodimensional (2D) panel method to derive aerofoil sectional characteristics. Integral boundary-layer methods are coupled to the panel method in order to predict §ow separation boundaries during the design iterations. A quasi-analytical method is adapted for application to flyingwing con¦gurations to predict the wing weight and a linear finite-beam element approach is used for structural analysis of the wing-box. Stability is a particular concern in the low-density environment of high-altitude flight for flying-wing aircraft and so provision of adequate directional stability and control power forms part of the optimization process. At present, a modified Genetic Algorithm is used in all of the optimization loops. Each of the low-order engineering analysis tools is validated using higher-order methods to provide con¦dence in the use of these computationally-efficient tools in the present design-optimization framework. This paper includes the results of employing the present optimization tools in the design of a

  2. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing Landing during First

    Science.gov (United States)

    1997-01-01

    A quarter-scale model of the future Centurion solar-powered high-altitude research aircraft settles in for landing after a March 1997 test flight at El Mirage Dry Lake, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft, said he

  3. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing in Flight during Firs

    Science.gov (United States)

    1997-01-01

    Framed by wispy contrails left by passing jets high above, a quarter-scale model of the Centurion solar-electric flying wing shows off its graceful lines during a March 1997 test flight at El Mirage Dry Lake in California's Mojave Desert. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate

  4. Quarter-scale Model of Solar-powered Centurion Ultra-high-altitude Flying Wing on Lakebed

    Science.gov (United States)

    1997-01-01

    A quarter-scale model of the Centurion solar-powered flying wing rests on the clay of El Mirage Dry Lake in Southern California's high desert after completion of of a March 1997 flight test. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar

  5. Bat flies (Diptera: Streblidae, Nycteribiidae) and mites (Acari) associated with bats (Mammalia: Chiroptera) in a high-altitude region in southern Minas Gerais, Brazil.

    Science.gov (United States)

    Moras, Ligiane Martins; Bernardi, Leopoldo Ferreira de Oliveira; Graciolli, Gustavo; Gregorin, Renato

    2013-12-01

    A total of 71 bat flies belonging to families Nycteribiidae and Streblidae, and 37 mites were collected on 12 species of bats (Phyllostomidae and Vespertilionidae) from the Chapada do Abanador (Minas Gerais, Brazil), between July 2009 and April 2010. Two new occurrences of ectoparasites were recorded on Histiotus velatus (bat fly Basilia producta) and on Carollia perspicillata (mite Parichoronyssus bakeri). Five new occurrences were recorded for the state of Minas Gerais, increasing the range for bat flies Anatrichobius passosi, Paraeuctenodes similis, Basilia juquiensis, Basilia producta and for mite Periglischrus vargasi. Moreover, two new species of mites were recorded for Brazil (P. bakeri and Macronyssus aff. leislerianus). With regard to infracommunities, the most frequent association was between Anastrebla modestini and Exastinion clovisi on bat Anoura geoffroyi. This study contributed to characterize the fauna of bat ectoparasites in representative but poorly-sampled environments of the Atlantic Forest, the campos de altitude (high altitude grasslands) and cloud forests of southern Minas Gerais.

  6. ELAHA - ELASTIC AIRCRAFT FOR HIGH ALTITUDES

    OpenAIRE

    Wlach, Sven; Balmer, Georg Robert; Hermann, Milan; Wüsthoff, Tilo

    2017-01-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircraft. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS) or High Altitude Platforms (HAP). After the successful flight of HABLEG, which was presented at ESA PAC 2015, work continued with the goal to reach the stratosphere under own power with a reasonable ...

  7. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  8. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  9. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  10. High altitude organic gold

    DEFF Research Database (Denmark)

    Pouliot, Mariève; Pyakurel, Dipesh; Smith-Hall, Carsten

    2018-01-01

    . Heightened demand in China over the past 15 years, coupled with limited production, has led to a price hike and increased economic importance of harvests to rural households throughout the species’ range. There is, however, limited knowledge on the actors and profit distribution in the O. sinensis production...... by collectors, limited value enhancement, and a high degree of network and territorial embeddedness. Conclusions O. sinensis income is of major economic importance for rural households at the margin of its distribution range in Nepal. Production networks operated by informal actors establishing trust......Ethnopharmacological relevance Ophiocordyceps sinensis (Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora, a high altitude Himalayan fungus-caterpillar product found in alpine meadows in China, Bhutan, Nepal, and India, has been used in the Traditional Chinese Medicine system for over 2000 years...

  11. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  12. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  13. Acute high-altitude sickness

    Directory of Open Access Journals (Sweden)

    Andrew M. Luks

    2017-02-01

    Full Text Available At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases.

  14. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  15. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  16. Measuring high-altitude adaptation.

    Science.gov (United States)

    Moore, Lorna G

    2017-11-01

    High altitudes (>8,000 ft or 2,500 m) provide an experiment of nature for measuring adaptation and the physiological processes involved. Studies conducted over the past ~25 years in Andeans, Tibetans, and, less often, Ethiopians show varied but distinct O 2 transport traits from those of acclimatized newcomers, providing indirect evidence for genetic adaptation to high altitude. Short-term (acclimatization, developmental) and long-term (genetic) responses to high altitude exhibit a temporal gradient such that, although all influence O 2 content, the latter also improve O 2 delivery and metabolism. Much has been learned concerning the underlying physiological processes, but additional studies are needed on the regulation of blood flow and O 2 utilization. Direct evidence of genetic adaptation comes from single-nucleotide polymorphism (SNP)-based genome scans and whole genome sequencing studies that have identified gene regions acted upon by natural selection. Efforts have begun to understand the connections between the two with Andean studies on the genetic factors raising uterine blood flow, fetal growth, and susceptibility to Chronic Mountain Sickness and Tibetan studies on genes serving to lower hemoglobin and pulmonary arterial pressure. Critical for future studies will be the selection of phenotypes with demonstrable effects on reproductive success, the calculation of actual fitness costs, and greater inclusion of women among the subjects being studied. The well-characterized nature of the O 2 transport system, the presence of multiple long-resident populations, and relevance for understanding hypoxic disorders in all persons underscore the importance of understanding how evolutionary adaptation to high altitude has occurred. NEW & NOTEWORTHY Variation in O 2 transport characteristics among Andean, Tibetan, and, when available, Ethiopian high-altitude residents supports the existence of genetic adaptations that improve the distribution of blood flow to vital

  17. Mood States at 1600 and 4300 Meters High Terrestrial Altitude,

    Science.gov (United States)

    ATTITUDES(PSYCHOLOGY), *STRESS(PSYCHOLOGY), *ALTITUDE SICKNESS, ACCLIMATIZATION, BASE LINES, ARRIVAL, DAY, SCALE, STANDARDIZATION, ASCENT TRAJECTORIES, HIGH ALTITUDE, ALTITUDE, INTERPERSONAL RELATIONS , TIME, BEHAVIOR.

  18. Design study for remotely piloted, high-altitude airplanes powered by microwave energy

    Science.gov (United States)

    Morris, C. E. K., Jr.

    1983-01-01

    A design study has been conducted for unmanned, microwave-powered airplanes that must fly with long endurance at high altitude. They are proposed to conduct communications-relay, observation, or various scientific missions above approximately 55,000 feet altitude. The special characteristics of the microwave-power system and high-altitude, low-speed vehicle are reviewed. Examples of both sizing and performance analysis are used to suggest design procedure guidelines.

  19. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  20. Child health and living at high altitude.

    Science.gov (United States)

    Niermeyer, S; Andrade Mollinedo, P; Huicho, L

    2009-10-01

    The health of children born and living at high altitude is shaped not only by the low-oxygen environment, but also by population ancestry and sociocultural determinants. High altitude and the corresponding reduction in oxygen delivery during pregnancy result in lower birth weight with higher elevation. Children living at high elevations are at special risk for hypoxaemia during infancy and during acute lower respiratory infection, symptomatic high-altitude pulmonary hypertension, persistence of fetal vascular connections, and re-entry high-altitude pulmonary oedema. However, child health varies from one population group to another due to genetic adaptation as well as factors such as nutrition, intercurrent infection, exposure to pollutants and toxins, socioeconomic status, and access to medical care. Awareness of the risks uniquely associated with living at high altitude and monitoring of key health indicators can help protect the health of children at high altitude. These considerations should be incorporated into the scaling-up of effective interventions for improving global child health and survival.

  1. Paschen Considerations for High Altitude Airships

    Science.gov (United States)

    Ferguson, D. C.; Hillard, G. B.

    2004-01-01

    Recently, there have been several proposals submitted to funding agencies for long-lived high altitude (about 70,000 feet) airships for communications, surveillance, etc. In order for these airships to remain at altitude, high power, high efficiency, lightweight solar arrays must be used, and high efficiency power management and distribution systems must be employed. The needs for high power and high efficiency imply high voltage systems. However, the air pressure at these extreme altitudes is such that electrical power systems will be near the Paschen discharge minimum over a wide range of electrode separations. In this paper, preliminary calculations are made for acceptable high voltage design practices under ambient, hydrogen and helium gas atmospheres.

  2. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    Science.gov (United States)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  3. High flying physics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Cosmic ray physicists have always had to aim high. In the constant search for interactions produced as close as possible to the immensely high primary particles entering the earth's atmosphere from outer space, they have installed experiments on high mountain peaks and flown detectors aloft in balloons. In these studies, there have been periodic sightings of remarkable configurations of secondary particles. These events, many of which bear exotic names like Centauro, Andromeda, Texas Lone Star, etc., frequently defy explanation in terms of conventional physics ideas and give a glimpse of what may lie beyond the behaviour seen so far under laboratory conditions

  4. High-Altitude Cirrus Clouds and Climate

    Indian Academy of Sciences (India)

    2002-12-03

    Dec 3, 2002 ... High-Altitude Cirrus Clouds and Climate. S Veerabuthiran. Introduction. Clouds are aesthetically appealing. Without them, there would be no rain or snow, thunder or lightning, rainbows or halos. A cloud is a visible aggregate of tiny water droplets or ice crystals suspended in the air. Most clouds result from ...

  5. Physiology of High-Altitude Acclimatization

    Indian Academy of Sciences (India)

    IAS Admin

    alkalosis due to HVR is offset by increased excretion of sodium and bicarbonate ions in the urine and retention of hydrogen ions. (shifting towards acidosis). Hormonal responses play very important regulatory functions during high altitude exposure. Under this, the role of renin– angiotensin–aldosterone axis as an important ...

  6. Ocular morbidity among porters at high altitudes.

    Science.gov (United States)

    Gnyawali, Subodh; Shrestha, Gauri Shankar; Khanal, Safal; Dennis, Talisa; Spencer, John C

    2017-01-01

    High altitude, often characterized by settings over 2400m, can be detrimental to the human body and pose a significant risk to ocular health. Reports concerning various ocular morbidities occurring as a consequence of high altitude are limited in the current literature. This study was aimed at evaluating the ocular health of porters working at high altitudesof Himalayas in Nepal. A mobile eye clinic was set up in Ghat and patient data were collected from its out- patient unit by a team of seven optometrists which was run for five days. Ghat is a small village in north-eastern Nepal, located at 2860 m altitude. Travellers walking through the trekking route were invited to get their eyes checked at the clinic. Comprehensive ocular examinations were performed, including visual acuities, objective and subjective refraction, anterior and posterior segment evaluations, and intraocular pressure measurements; blood pressure and blood glucose levels were also measured as required. Ocular therapeutics, prescription glasses, sunglasses and ocular health referrals were provided free of cost as necessary. A total of 1890 people visited the eye clinic, among which 57.4% (n=1084) were porters. Almost half of the porters had an ocular morbidity. Correctable refractive error was most prevalent, with other ocular health-related complications, including dry eye disease, infectious disorders, glaucoma and cataract. Proper provision of regular and effective eye care services should be made more available for those residing at these high altitudes in Nepal. © NEPjOPH.

  7. Mesenteric ischemia, high altitude and Hill's criteria

    African Journals Online (AJOL)

    Acute occlusive mesenteric ischemia in high altitude of southwestern region of Saudi Arabia. Ann Afr Med 2012;11: 5-10. Source of Support: Nil, Conflict of Interest: None declared. .... Relocation of residence to sea level, which in most cases in this area involves a distance of less than 50 km such as from Abha to. Ad Darb or ...

  8. Acute high-altitude illness | Hofmeyr | South African Medical Journal

    African Journals Online (AJOL)

    A substantial proportion of South Africa (SA)'s population lives at high altitude (>1 500 m), and many travel to very high altitudes (>3 500 m) for tourism, business, recreation or religious pilgrimages every year. Despite this, knowledge of acute altitude illnesses is poor among SA doctors. At altitude, the decreasing ambient ...

  9. Predator-prey interaction reveals local effects of high-altitude insect migration

    Science.gov (United States)

    High-altitude nocturnal insect migrations represent significant pulses of resources, yet are difficult to study and poorly understood. Predator-prey interactions, specifically migratory moth consumption by high-flying bats, potentially reveal flows of migratory insects across a landscape. In North...

  10. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  11. Magion-4 High-Altitude Cusp Study

    Czech Academy of Sciences Publication Activity Database

    Merka, J.; Šafránková, J.; Němeček, Z.; Šimůnek, Jiří

    2005-01-01

    Roč. 26, č. 1-3 (2005), s. 57-69 ISSN 0169-3298 R&D Projects: GA ČR(CZ) GA205/02/0947 Institutional research plan: CEZ:AV0Z30420517 Keywords : cusp-like plasma * dipole tilt angle * high-altitude cusp * magnetopause * magnetopause * reconnection Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.975, year: 2005

  12. The High Altitude Gamma Ray Observatory, HAWC

    Science.gov (United States)

    González, M. M.

    2011-10-01

    The Volcano Sierra Negra in Puebla, Mexico was selected to host HAWC (High Altitude Water Cherenkov), a unique obervatory of wide field of view (2π sr) capable of observing the sky continously at energies from 0.5 TeV to 100 TeV. HAWC is an array of 300 large water tanks (7.3 m diameter × 5 m depth) at an altitude of 4100 m. a. s. l. Each tank is instrumented with three upward-looking photomultipliers tubes. The full array will be capable of observing the most energetic gamma rays from the most violent events in the universe. HAWC will be 15 times more sensitive than its predecesor, Milagro. We present HAWC, the scientific case and capabilities.

  13. HIGH ALTITUDES EFFECTS ON HEMATOLOGIC BLOOD PARAMETERS

    Directory of Open Access Journals (Sweden)

    Hasim Rushiti

    2015-05-01

    Full Text Available The approach and the objective of this experiment are consistent with the determination of changes of blood parameters after the stay of the students at an altitude of 1800-2300 meters, for a ten-day long ski course. In this paper are included a total of 64 students of the Faculty of Sport Sciences in Prishtina, of the age group of 19-25 (the average age is 21. All students previously have undergone a medical check for TA, arterial pulse and respiratory rate. In particular, the health situation is of subjects was examined, then, all students, at the same time, gave blood for analysis. In this experiment, three main hematologic parameters were taken in consideration: such as hemoglobin, hematocrit and red blood cells. The same analyses were carried out after the 10-day stay at a high altitude. The results of the experiment have shown significant changes after the ten-day stay at high altitude, despite the previous results that show changes only after the twenty-day stay in such elevations.

  14. CAMEX-4 ER-2 HIGH ALTITUDE DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 High Altitude Dropsonde dataset was collected by the ER-2 High Altitude Dropsonde System (EHAD), which used dropwinsondes fitted with Global...

  15. GRIP HIGH-ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP High-Altitude MMIC Sounding Radiometer (HAMSR) dataset was collectd by the High Altitude monolithic microwave integrated Circuit (MMIC) Sounding Radiometer...

  16. Trajectory Control For High Altitude Balloons

    Science.gov (United States)

    Aaron, K.; Nock, K.; Heun, M.; Wyszkowski, C.

    We will discuss the continuing development of the StratoSailTM Balloon Trajectory Control System presented at the 33rd COSPAR in 2000. A vertical wing suspended on a 15-km tether from a high altitude balloon uses the difference in wind velocity between the altitude of the balloon and the altitude of the wing to create an aerodynamic sideforce. This sideforce, transmitted to the balloon gondola via the tether, causes the balloon to move laterally. Although the balloon's resultant drift velocity is quite small (a few meters per second), the effect becomes significant over long periods of time (hours to days). Recently, a full-scale wing, rudder and boom assembly has been fabricated, a winch system testbed has been completed, and a lightweight tether with reduced susceptibility to ultraviolet damage has been developed. The development effort for this invention, with pending international patents, has been funded by the NASA/SBIR program in support of the Ultra Long Duration Balloon (ULDB) program.

  17. The yak genome and adaptation to life at high altitude

    DEFF Research Database (Denmark)

    Qiu, Qiang; Zhang, Guojie; Ma, Tao

    2012-01-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude...

  18. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    Science.gov (United States)

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented

  19. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    Science.gov (United States)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then

  20. Anticoagulation Considerations for Travel to High Altitude.

    Science.gov (United States)

    DeLoughery, Thomas G

    2015-09-01

    DeLoughery, Thomas G. Anticoagulation considerations for travel to high altitude. High Alt Med Biol 16:181-185, 2015.-An increasing percentage of the population are on anticoagulation medicine for clinical reasons ranging from stroke prevention in atrial fibrillation to long term prevention of deep venous thrombosis. In recent years, several new direct oral anticoagulants have entered the market. The key questions that should be kept in mind when approaching a potential traveler on anticoagulation are: 1) why is the patient on anticoagulation? 2) do they need to stay on anticoagulation? 3) what are the choices for their anticoagulation? 4) will there be any drug interactions with medications needed for travel? and 5) how will they monitor their anticoagulation while traveling? Knowing the answers to these questions then can allow for proper counseling and planning for the anticoagulated traveler's trip.

  1. Power Budget Analysis for High Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.

    2006-01-01

    The High Altitude Airship (HAA) has various potential applications and mission scenarios that require onboard energy harvesting and power distribution systems. The energy source considered for the HAA s power budget is solar photon energy that allows the use of either photovoltaic (PV) cells or advanced thermoelectric (ATE) converters. Both PV cells and an ATE system utilizing high performance thermoelectric materials were briefly compared to identify the advantages of ATE for HAA applications in this study. The ATE can generate a higher quantity of harvested energy than PV cells by utilizing the cascaded efficiency of a three-staged ATE in a tandem mode configuration. Assuming that each stage of ATE material has the figure of merit of 5, the cascaded efficiency of a three-staged ATE system approaches the overall conversion efficiency greater than 60%. Based on this estimated efficiency, the configuration of a HAA and the power utility modules are defined.

  2. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    Andrew T. Taylor

    2011-01-01

    Full Text Available High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.

  3. Oviposition of aquatic insects in a tropical high altitude stream.

    Science.gov (United States)

    Rios-Touma, Blanca; Encalada, A C; Prat, N

    2012-12-01

    The persistence of aquatic insect populations in streams depends on the recruitment of larval populations from egg masses deposited by adults, especially after disturbance. However, recruitment of aquatic populations by oviposition is a process that remains unstudied in streams and rivers. The objectives of our study were to document flying and oviposition patterns of aquatic insects in a high altitude tropical stream during both dry and wet seasons. In particular we studied 1) richness and abundance of adult forms of aquatic insects flying and ovipositing; 2) number of eggs (oviposition pattern), egg mass identity, and morphology; and 3) substrate preferences by ovipositing females. We found 2,383 aquatic insects corresponding to 28 families, with dipterans representing 89% of total individuals collected. Adult insects had lower richness (28 taxa) than larval diversity (up to 52 taxa) and distinct community composition. Richness and relative abundance of most taxa (adults) were not significantly different between seasons, behaviors, diel period, or all three. During both sampling periods we found females with eggs in a total of 15 different families (13 in the dry season and 14 in the wet season). There were no significant differences in the proportion of females with eggs between seasons, diel periods, or different behaviors (flying versus ovipositing traps) of the different female taxa. Few types of egg masses were found in rocks at the stream during both seasons, and most egg masses found corresponded to families Baetidae and Chironomidae. Finally, we provide the first description of eggs masses (size, shape, color, and number of eggs per female) of gravid females (10 taxa) and those found in the stream substrate (six taxa) of Andean macroinvertebrates. This is the first study reporting oviposition, adult diversity, and oviposition patterns of aquatic insects in the Andean region.

  4. HAWC: The high altitude water Cherenkov observatory

    Science.gov (United States)

    Goodman, Jordan A.

    2013-02-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed at 4100m above sea level on the Vulcan Sierra Negra near Puebla, Mexico. The HAWC observatory will consist of 250-300 Water Cherenkov Detectors totaling approximately 22,000 m2 of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma-ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals, instrument performance and status of the HAWC observatory will be presented.

  5. Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds.

    Science.gov (United States)

    Scott, Graham R; Richards, Jeffrey G; Milsom, William K

    2009-10-01

    Bar-headed geese fly at altitudes of up to 9,000 m on their biannual migration over the Himalayas. To determine whether the flight muscle of this species has evolved to facilitate exercise at high altitude, we compared the respiratory properties of permeabilized muscle fibers from bar-headed geese and several low-altitude waterfowl species. Respiratory capacities were assessed for maximal ADP stimulation (with single or multiple inputs to the electron transport system) and cytochrome oxidase excess capacity (with an exogenous electron donor) and were generally 20-40% higher in bar-headed geese when creatine was present. When respiration rates were extrapolated to the entire pectoral muscle mass, bar-headed geese had a higher mass-specific aerobic capacity. This may represent a surplus capacity that counteracts the depressive effects of hypoxia on mitochondrial respiration. However, there were no differences in activity for mitochondrial or glycolytic enzymes measured in homogenized muscle. The [ADP] leading to half-maximal stimulation (K(m)) was approximately twofold higher in bar-headed geese (10 vs. 4-6 microM), and, while creatine reduced K(m) by 30% in this species, it had no effect on K(m) in low-altitude birds. Mitochondrial creatine kinase may therefore contribute to the regulation of oxidative phosphorylation in flight muscle of bar-headed geese, which could promote efficient coupling of ATP supply and demand. However, this was not based on differences in creatine kinase activity in isolated mitochondria or homogenized muscle. The unique differences in bar-headed geese existed without prior exercise or hypoxia exposure and were not a result of phylogenetic history, and may, therefore, be important evolutionary specializations for high-altitude flight.

  6. Multicentric Chemodectomata at High Altitude | Nathanson | South ...

    African Journals Online (AJOL)

    Multicentric chemodectomata in the right glomus intravagale and both carotid bodies were excised from a 74year-old woman. These are rare tumours. The patient was born and lived at an altitude of 1 800 m above sea level. The effects of altitude and chronic hypoxia on the carotid bodies are discussed.

  7. Multi-sensor field trials for detection and tracking of multiple small unmanned aerial vehicles flying at low altitude

    Science.gov (United States)

    Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank

    2017-05-01

    Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.

  8. Aspirated Compressors for High Altitude Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  9. GRIP HIGH-ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Altitude monolithic microwave integrated Circuit (MMIC) Sounding Radiometer (HAMSR) is a microwave atmospheric sounder developed by JPL under the NASA...

  10. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  11. The high-altitude water Cherenkov Observatory

    International Nuclear Information System (INIS)

    Mostafa, Miguel A.

    2014-01-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  12. The High-Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  13. The High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  14. [Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].

    Science.gov (United States)

    Gonzales, Gustavo F

    2011-03-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.

  15. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  16. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  17. Simulating the Effects of the Airborne Lidar Scanning Angle, Flying Altitude, and Pulse Density for Forest Foliage Profile Retrieval

    Directory of Open Access Journals (Sweden)

    Haiming Qin

    2017-07-01

    Full Text Available Foliage profile is a key biophysical parameter for forests. Airborne Light Detection and Ranging is an effective tool for vegetation parameter retrieval. Data acquisition conditions influence the estimation of biophysical parameters. To acquire accurate foliage profiles at the lowest cost, we used simulations to explore the effects of data acquisition conditions on forest foliage profile retrieval. First, a 3-D forest scene and the airborne small-footprint full-waveform LiDAR data were simulated by the DART model. Second, the foliage profile was estimated from LiDAR data based on a Geometric Optical and Radiative Transfer model. Lastly, the effects of the airborne LiDAR scanning angle, flying altitude, and pulse density on foliage profile retrieval were explored. The results indicated that the scanning angle was an important factor in the foliage profile retrieval, and the optimal scanning angle was 20°. The optimal scanning angle was independent of flying altitude and pulse density, and combinations of multiple scanning angles could improve the accuracy of the foliage profile estimation. The flying altitude and pulse density had little influence on foliage profile retrieval at plot level and could be ignored. In general, our study provides reliable information for selecting the optimal instrument operational parameters to acquire more accurate foliage profiles and minimize data acquisition costs.

  18. Perseus High Altitude Remotely Piloted Aircraft on Ramp

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle waits on Rogers Dry Lake in the pre-dawn darkness before a test flight at the Dryden Flight Research Center, Edwards, California. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the

  19. High energy astrophysics and high-altitude laboratories

    International Nuclear Information System (INIS)

    Lipari, P.; University La Sapienza, Rome

    2001-01-01

    These are some summary remarks given at the Chacaltaya meeting on cosmic ray physics, held in La Paz (Bolivia), July 23-27, 2000. The meeting covered a wide range of topics in cosmic ray physics and high energy astrophysics. This contribution briefly touches on some of the highlights of the meeting, and discusses the important role that high-altitude laboratories can have in the future of these fundamental fields

  20. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation.

    Science.gov (United States)

    Luo, Yongjun; Yang, Xiaohong; Gao, Yuqi

    2013-08-01

    Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.

  1. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  2. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  3. Development of High Altitude UAV Weather Radars for Hurricane Research

    Science.gov (United States)

    Heymsfield, Gerald; Li, Li-Hua

    2005-01-01

    precipitation, the surface return over a single 360 degree sweep over -25 h-diameter region provides information on the surface wind speed and direction within the scan circle. In precipitation regions, the conical scan with appropriate mapping and analysis provides the 3D structure of reflectivity beneath the plane and the horizontal winds. The use of conical scanning in hurricanes has recently been demonstrated for measuring inner core winds with the IWRAP system flying on the NOAA P3's. In this presentation, we provide a description of the URAD system hardware, status, and future plans. In addition to URAD, NASA SBIR activity is supporting a Phase I study by Remote Sensing Solutions and the University of Massachusetts for a dual-frequency IWRAP for a high altitude UAV that utilizes solid state transmitters at 14 and 35 GHz, the same frequencies that are planned for the radar on the Global Precipitation System satellite. This will be discussed elsewhere at the meeting.

  4. Accuracy of handheld blood glucose meters at high altitude.

    Directory of Open Access Journals (Sweden)

    Pieter de Mol

    Full Text Available BACKGROUND: Due to increasing numbers of people with diabetes taking part in extreme sports (e.g., high-altitude trekking, reliable handheld blood glucose meters (BGMs are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior studies reported bias in blood glucose measurements using different BGMs at high altitude. We hypothesized that glucose-oxidase based BGMs are more influenced by the lower atmospheric oxygen pressure at altitude than glucose dehydrogenase based BGMs. METHODOLOGY/PRINCIPAL FINDINGS: Glucose measurements at simulated altitude of nine BGMs (six glucose dehydrogenase and three glucose oxidase BGMs were compared to glucose measurement on a similar BGM at sea level and to a laboratory glucose reference method. Venous blood samples of four different glucose levels were used. Moreover, two glucose oxidase and two glucose dehydrogenase based BGMs were evaluated at different altitudes on Mount Kilimanjaro. Accuracy criteria were set at a bias 6.5 mmol/L and <1 mmol/L from reference glucose (when <6.5 mmol/L. No significant difference was observed between measurements at simulated altitude and sea level for either glucose oxidase based BGMs or glucose dehydrogenase based BGMs as a group phenomenon. Two GDH based BGMs did not meet set performance criteria. Most BGMs are generally overestimating true glucose concentration at high altitude. CONCLUSION: At simulated high altitude all tested BGMs, including glucose oxidase based BGMs, did not show influence of low atmospheric oxygen pressure. All BGMs, except for two GDH based BGMs, performed within predefined criteria. At true high altitude one GDH based BGM had best precision and accuracy.

  5. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  6. Evaluation of an Oxygen Concentrator for Use at High Altitude

    National Research Council Canada - National Science Library

    Forte, Vincent

    1999-01-01

    Supplying medical oxygen at high altitude sites is a major logistical problem. Oxygen concentrators based on molecular sieve technology provide an almost inexhaustible source of medical grade oxygen at a relatively low cost...

  7. Physiology and pathophysiology at high altitude: considerations for the anesthesiologist.

    Science.gov (United States)

    Leissner, Kay B; Mahmood, Feroze U

    2009-01-01

    Millions of people live in, work in, and travel to areas of high altitude (HA). Skiers, trekkers, and mountaineers reach altitudes of 2500 m to more than 8000 m for recreation, and sudden ascents to high altitude without the benefits of acclimatization are increasingly common. HA significantly affects the human body, especially the cardiovascular and pulmonary systems, because of oxygen deprivation due to decreased ambient barometric pressure. Rapid ascents may lead to high-altitude diseases that sometimes have fatal consequences. Other factors, such as severe cold, dehydration, high winds, and intense solar radiation, increase the morbidity of patients at HA. Anesthesiologists working in or visiting areas of higher elevations should become familiar with the human physiology, altered pharmacology, and disease pattern of HA.

  8. Obesity as a Conditioning Factor for High-Altitude Diseases

    Directory of Open Access Journals (Sweden)

    Rocío San Martin

    2017-08-01

    Full Text Available Obesity, a worldwide epidemic, has become a major health burden because it is usually accompanied by an increased risk for insulin resistance, diabetes, hypertension, cardiovascular diseases, and even some kinds of cancer. It also results in associated increases in healthcare expenditures and labor and economic consequences. There are also other fields of medicine and biology where obesity or being overweight play a major role, such as high-altitude illnesses (acute mountain sickness, hypoxic pulmonary hypertension, and chronic mountain sickness, where an increasing relationship among these two morbid statuses has been demonstrated. This association could be rooted in the interactions between obesity-related metabolic alterations and critical ventilation impairments due to obesity, which would aggravate hypobaric hypoxia at high altitudes, leading to hypoxemia, which is a trigger for developing high-altitude diseases. This review examines the current literature to support the idea that obesity or overweight could be major conditioning factors at high altitude.

  9. NAMMA HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA High Altitude MMIC Sounding Radiometer (HAMSR) dataset consists of data collected by HAMSR, which is a 25-channel microwave atmospheric sounder operating...

  10. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  11. Kajian Teknologi High Altitude Platform (HAP [Study of High Altitude Platform (HAP Technology

    Directory of Open Access Journals (Sweden)

    Amry Daulat Gultom

    2016-07-01

    Full Text Available High Altitude Platform (HAP merupakan solusi alternatif untuk mengatasi keterbatasan infrastruktur terestrial maupun satelit. HAP merupakan pesawat ataupun balon udara yang ditempatkan pada ketinggian 20-50 km di atas permukaan bumi. Kelebihan yang utama dari HAP adalah kemudahan dalam penempatan, fleksibilitas, biaya operasionalnya rendah, delay  propagasi rendah, sudut elevasi lebar, cakupan yang luas. Penelitian ini dilakukan untuk mengetahui potensi HAP untuk komunikasi pita lebar dan perkembangannya di Indonesia. Analisis dilakukan secara deskriptif dengan mengolah data literatur yang didapat. Hasil penelitian menunjukkan bahwa di Indonesia terdapat potensi teknologi HAP untuk komunikasi pita lebar dengan lebar pita 2x300 MHz di band 27,9-28,2 GHz dan 31-31,3 GHz. Namun, belum ada peraturan yang mengatur alokasi frekuensi untuk HAP secara khusus di Indonesia.*****High Altitude Platform (HAP has been developed as an alternative solution in order to overcome limitation of terrestrial and satellite communication system. HAP is an aircraft or balloon situated on 20-50 km above the earth. Main advantages of HAP are flexibility in deployment, low propagation delay, wide elevation angle and broad coverage. The research is conducted to gather HAP potential for broadband communication and its development in Indonesia. Analysis is conducted by descriptive analysis from literature study gather. The research result shows that in Indonesia, there is potential of HAP technology for broadband communication with 2x300 MHz bandwidth within 27,9-28,2 GHz and 31-31,3 GHz. Yet, there are no specific regulations managing frequency allocation for HAP in Indonesia.

  12. Evolutionary adaptation to high altitude: a view from in utero

    Science.gov (United States)

    Julian, Colleen Glyde; Wilson, Megan J.; Moore, Lorna G.

    2010-01-01

    A primary focus within biological anthropology has been to elucidate the processes of evolutionary adaptation. A. Roberto Frisancho helped move anthropology towards more mechanistic explanations of human adaptation by drawing attention to the importance of the functional relevance of human variation. Using the natural laboratory of high altitude, he and others asked whether the unique physiology of indigenous high-altitude residents was the result of acclimatization, developmental plasticity and/or genetic adaptation in response to the high-altitude environment. We approach the question of human adaptation to high altitude from a somewhat unique vantage point; namely, by examining physiological characteristics – pregnancy and pregnancy outcome -- that are most closely associated with reproductive fitness. Here we review the potent example of high-altitude native population’s resistance to hypoxia-associated reductions in birth weight, which is often associated with higher infant morbidity and mortality at high altitude. With the exception of two recent publications, these comparative birth weight studies have utilized surnames, self-identification and/or linguistic characteristics to assess ancestry, and none have linked ‘advantageous’ phenotypes to specific genetic variations. Recent advancements in genetic and statistical tools have enabled us to assess individual ancestry with higher resolution, identify the genetic basis of complex phenotypes and to infer the effect of natural selection on specific gene regions. Using these technologies our studies are now directed to determine the genetic variations that underlie the mechanisms by which high-altitude ancestry protects fetal growth and, in turn, to further our understanding of evolutionary processes involved in human adaptation to high altitude. PMID:19367578

  13. Can people with Raynaud's phenomenon travel to high altitude?

    Science.gov (United States)

    Luks, Andrew M; Grissom, Colin K; Jean, Dominique; Swenson, Erik R

    2009-01-01

    To determine whether high altitude travel adversely affects mountain enthusiasts with Raynaud's phenomenon. Volunteers with Raynaud's phenomenon were recruited using announcements disseminated by organizations dedicated to climbing or wilderness travel and Internet discussion boards dedicated to mountain activities to complete an online, anonymous survey. Survey questions addressed demographic variables, aspects of their Raynaud's phenomenon, and features of their mountain activities. Respondents compared experiences with Raynaud's phenomenon between high (>2440 m; 8000 feet) and low elevations and rated agreement with statements concerning their disease and the effects of high altitude. One hundred forty-two people, 98% of whom had primary Raynaud's phenomenon, completed the questionnaire. Respondents spent 5 to 7 days per month at elevations above 2440 m and engaged in 5.4 +/- 2.0 different activities. Eighty-nine percent of respondents engaged in winter sports and only 22% reported changing their mountain activities because of Raynaud's phenomenon. Respondents reported a variety of tactics to prevent and treat Raynaud's attacks, but only 12% used prophylactic medications. Fifteen percent of respondents reported an episode of frostbite following a Raynaud's phenomenon attack at high altitude. There was considerable heterogeneity in participants' perceptions of the frequency, duration, and severity of attacks at high altitude compared to their home elevation. Motivated individuals with primary Raynaud's phenomenon, employing various prevention and treatment strategies, can engage in different activities, including winter sports, at altitudes above 2440 m. Frostbite may be common in this population at high altitude, and care must be taken to prevent its occurrence.

  14. Reentry High Altitude Pulmonary Edema in the Himalayas.

    Science.gov (United States)

    Baniya, Santosh; Holden, Christopher; Basnyat, Buddha

    2017-12-01

    Baniya, Santosh, Christopher Holden, and Buddha Basnyat. Reentry high altitude pulmonary edema in the Himalayas. High Alt Med Biol. 18:425-427, 2017.-Reentry high altitude pulmonary edema (HAPE), a subset of HAPE, is a well recognized, life-threatening illness documented almost exclusively in the North and South Americans, who live at high altitude (>2500 m) and return to their homes after a brief sojourn of days to months at lower altitude. This phenomenon has not been reported in Sherpas or other people of Tibetan origin in Nepal or India. And it has rarely been reported from Tibet. In this study we document a case of reentry HAPE in Manang region (3500 m) of Nepal in a 7-year-old Nepali boy of Tibetan ancestry who fell ill when he ascended to his village (Manang, 3500 m) from Besisahar (760 m) in 1 day in a motor vehicle after spending the winter (December to March) at Besisahar with his family. With more motorable road access to high altitude settlements in the Himalayas, reentry HAPE may need to be strongly considered by healthcare professionals in local residents of high altitude; otherwise life-threatening complications may ensue as in our case report.

  15. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  16. The radiation protection problems of high altitude and space flight

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1993-04-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  17. The radiation protection problems of high altitude and space flight

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers.

  18. Plants at high altitude exhibit higher component of alternative respiration.

    Science.gov (United States)

    Kumar, Narinder; Vyas, Dhiraj; Kumar, Sanjay

    2007-01-01

    Total respiration, capacities of cytochrome (CytR) and alternative respiration (AR) were studied in two varieties of barley (Horedum vulgare) and wheat (Triticum aestivum) each and one variety of pea (Pisum sativum) at low (Palampur; 1300 m) and high altitudes (Kibber; 4200 m). Similar studies were carried out in naturally growing Rumex nepalensis and Trifoilum repenses at Palampur, Palchan (2250 m) and Marhi (3250 m). All the plants species exhibited lower CytR but significantly higher AR capacity at high altitude (HA) (72-1117% higher) as compared to those at low altitude (LA). Glycolytic product, pyruvate and tricarboxylic acid cycle intermediate, citrate increased with increase in altitude. While the role of these metabolites in relation to HA biology is discussed, significantly higher AR at HA is proposed to be an adaptive mechanism against the metabolic perturbations wherein it might act to lower reactive oxygen species and also provides metabolic homeostasis to plants under the environment of HA.

  19. Analysis of high-altitude de-acclimatization syndrome after exposure to high altitudes: a cluster-randomized controlled trial.

    Science.gov (United States)

    He, Binfeng; Wang, Jianchun; Qian, Guisheng; Hu, Mingdong; Qu, Xinming; Wei, Zhenghua; Li, Jin; Chen, Yan; Chen, Huaping; Zhou, Qiquan; Wang, Guansong

    2013-01-01

    The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥ 100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.

  20. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L.A.; Balachandran, S.; Batbayar, N.; Butler, P.J.; Chua, B.; Douglas, D.C.; Frappell, P.B.; Hou, Y.; Milsom, W.K.; Newman, S.H.; Prosser, D.J.; Sathiyaselvam, P.; Scott, G.R.; Takekawa, John Y.; Natsagdorj, T.; Wikelski, M.; Witt, M.J.; Yan, B.; Bishop, C.M.

    2012-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima.

  1. Andean and Tibetan patterns of adaptation to high altitude.

    Science.gov (United States)

    Bigham, Abigail W; Wilson, Megan J; Julian, Colleen G; Kiyamu, Melisa; Vargas, Enrique; Leon-Velarde, Fabiola; Rivera-Chira, Maria; Rodriquez, Carmelo; Browne, Vaughn A; Parra, Esteban; Brutsaert, Tom D; Moore, Lorna G; Shriver, Mark D

    2013-01-01

    High-altitude hypoxia, or decreased oxygen levels caused by low barometric pressure, challenges the ability of humans to live and reproduce. Despite these challenges, human populations have lived on the Andean Altiplano and the Tibetan Plateau for millennia and exhibit unique circulatory, respiratory, and hematological adaptations to life at high altitude. We and others have identified natural selection candidate genes and gene regions for these adaptations using dense genome scan data. One gene previously known to be important in cellular oxygen sensing, egl nine homolog 1 (EGLN1), shows evidence of positive selection in both Tibetans and Andeans. Interestingly, the pattern of variation for this gene differs between the two populations. Continued research among Tibetan populations has identified statistical associations between hemoglobin concentration and single nucleotide polymorphism (SNP) genotype at EGLN1 and a second gene, endothelial PAS domain protein 1 (EPAS1). To measure for the effects of EGLN1 and EPAS1 altitude genotypes on hemoglobin concentration among Andean highlanders, we performed a multiple linear regression analysis of 10 candidate SNPs in or near these two genes. Our analysis did not identify significant associations between EPAS1 or EGLN1 SNP genotypes and hemoglobin concentration in Andeans. These results contribute to our understanding of the unique set of adaptations developed in different highland groups to the hypoxia of high altitude. Overall, the results provide key insights into the patterns of genetic adaptation to high altitude in Andean and Tibetan populations. Copyright © 2013 Wiley Periodicals, Inc.

  2. High-altitude headache and acute mountain sickness.

    Science.gov (United States)

    Carod-Artal, F J

    2014-01-01

    Headache is the most common complication associated with exposure to high altitude, and can appear as an isolated high-altitude headache (HAH) or in conjunction with acute mountain sickness (AMS). The purpose of this article is to review several aspects related to diagnosis and treatment of HAH. HAH occurs in 80% of all individuals at altitudes higher than 3000 meters. The second edition of ICHD-II includes HAH in the chapter entitled "Headaches attributed to disorder of homeostasis". Hypoxia elicits a neurohumoral and haemodynamic response that may provoke increased capillary pressure and oedema. Hypoxia-induced cerebral vasodilation is a probable cause of HAH. The main symptom of AMS is headache, frequently accompanied by sleep disorders, fatigue, dizziness and instability, nausea and anorexia. Some degree of individual susceptibility and considerable inter-individual variability seem to be present in AMS. High-altitude cerebral oedema is the most severe form of AMS, and may occur above 2500 meters. Brain MRI studies have found variable degrees of oedema in subcortical white matter and the splenium of the corpus callosum. HAH can be treated with paracetamol or ibuprofen. Pharmacological treatment of AMS is intended to increase ventilatory drive with drugs such as acetazolamide, and reduce inflammation and cytokine release by means of steroids. Symptom escalation seems to be present along the continuum containing HAH, AMS, and high-altitude cerebral oedema. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  3. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...

  4. The Impact of Altitude on Sleep-Disordered Breathing in Children Dwelling at High Altitude: A Crossover Study.

    Science.gov (United States)

    Hughes, Benjamin H; Brinton, John T; Ingram, David G; Halbower, Ann C

    2017-09-01

    Sleep-disordered breathing (SDB) is prevalent among children and is associated with adverse health outcomes. Worldwide, approximately 250 million individuals reside at altitudes higher than 2000 meters above sea level (masl). The effect of chronic high-altitude exposure on children with SDB is unknown. This study aims to determine the impact of altitude on sleep study outcomes in children with SDB dwelling at high altitude. A single-center crossover study was performed to compare results of high-altitude home polysomnography (H-PSG) with lower altitude laboratory polysomnography (L-PSG) in school-age children dwelling at high altitude with symptoms consistent with SDB. The primary outcome was apnea-hypopnea index (AHI), with secondary outcomes including obstructive AHI; central AHI; and measures of oxygenation, sleep quality, and pulse rate. Twelve participants were enrolled, with 10 included in the final analysis. Median altitude was 1644 masl on L-PSG and 2531 masl on H-PSG. Median AHI was 2.40 on L-PSG and 10.95 on H-PSG. Both obstructive and central respiratory events accounted for the difference in AHI. Oxygenation and sleep fragmentation were worse and pulse rate higher on H-PSG compared to L-PSG. These findings reveal a clinically substantial impact of altitude on respiratory, sleep, and cardiovascular outcomes in children with SDB who dwell at high altitude. Within this population, L-PSG underestimates obstructive sleep apnea and central sleep apnea compared to H-PSG. Given the shortage of high-altitude pediatric sleep laboratories, these results suggest a role for home sleep apnea testing for children residing at high altitude. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  5. AltitudeOmics: Resetting of cerebrovascular CO2 reactivity following acclimatization to high altitude

    Directory of Open Access Journals (Sweden)

    Jui-Lin eFan

    2016-01-01

    Full Text Available Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv responses to modified rebreathing at sea level (SL, upon ascent (ALT1 and following 16 days of acclimatization (ALT16 to 5,260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95% vs. 129%, SL vs. ALT1, 95% confidence intervals (CI [77, 112], [111, 145], respectively, P=0.024 and the slope of the sigmoid response (4.5 vs. 7.5 %/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P=0.026 to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177%, 95% CI [139, 215], P<0.001; slope: 10.3 %/mmHg, 95% CI [8.2, 12.5], P=0.003 compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P=0.982, while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P=0.001 vs. SL, indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2 following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.

  6. High-Altitude, Long-Endurance Airships for Coastal Surveillance

    Science.gov (United States)

    Dolce, James L.; Collozza, Anthony

    2005-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines applications and background of this type of concept vehicle, reviews the history of high altitude flight and provides a point design analysis. The capabilities and limitations of the airship are demonstrated and possible solutions are proposed. Factors such as time of year, latitude, wind speeds, and payload are considered in establishing the capabilities of the airship. East and west coast operation is evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. Results on power system requirements for year long operation is presented.

  7. Bell's palsy at high altitude -- an unsuspected finding.

    Science.gov (United States)

    Kumar, K V S Hari; Shijith, K P; Ahmad, F M H

    2016-01-01

    Bell's palsy is a common condition seen in clinical practice. The aetiology of this condition is not clearly defined and neuroimaging is essential to exclude intracranial causes of infra-nuclear facial palsy. We report a young soldier, who presented with Bell's palsy and neuroimaging revealed an unsuspected finding of multiple intracranial calcifications. Detailed evaluation revealed the additional diagnosis of vitamin D deficiency and secondary hyperparathyroidism due to lack of sun exposure at high altitude area. The health care practitioners, looking after the soldiers at high altitude areas should be aware of the measures to prevent vitamin D deficiency. Intracranial calcifications are uncommon in hyperparathyroidism and Bell's palsy.

  8. [Medical certification for high altitude travel and scuba diving].

    Science.gov (United States)

    Wuillemin, Timothée; Dos Santos Bragança, Angel; Ziltener, Jean-Luc; Berney, Jean-Yves; Lanier, Cédric

    2014-09-24

    People are more and more looking for adventures and discovery of unusual locations. Journeys to high altitude and scuba diving are part of these activities and their access has become easier for a lot of people not necessarily experienced with their dangers. The general practitioner will have to be able to deliver some advices and recommendations to his patients about the risks related to these activities and their ability to practice them. He will also have to deliver some certificates of medical fitness to dive. This paper proposes a brief review of the most important medical aspects to know about high altitude and scuba diving.

  9. Rare Particle Searches with the high altitude SLIM experiment

    CERN Document Server

    Balestra, S; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Margiotta, A; Medinaceli, E; Nogales, J; Patrizii, L; Popa, V; Quereshi, I; Saavedra, O; Sher, G; Shahzad, M; Spurio, M; Ticona, R; Togo, V; Velarde, A; Zanini, A

    2005-01-01

    The search for rare particles in the cosmic radiation remains one of the main aims of non-accelerator particle astrophysics. Experiments at high altitude allow lower mass thresholds with respect to detectors at sea level or underground. The SLIM experiment is a large array of nuclear track detectors located at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.). The preliminary results from the analysis of a part of the first 236 sq.m exposed for more than 3.6 y are here reported. The detector is sensitive to Intermediate Mass Magnetic Monopoles and to SQM nuggets and Q-balls, which are possible Dark Matter candidates.

  10. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals.

    Science.gov (United States)

    Zhang, Zhigang; Xu, Dongming; Wang, Li; Hao, Junjun; Wang, Jinfeng; Zhou, Xin; Wang, Weiwei; Qiu, Qiang; Huang, Xiaodan; Zhou, Jianwei; Long, Ruijun; Zhao, Fangqing; Shi, Peng

    2016-07-25

    Studies of genetic adaptation, a central focus of evolutionary biology, most often focus on the host's genome and only rarely on its co-evolved microbiome. The Qinghai-Tibetan Plateau (QTP) offers one of the most extreme environments for the survival of human and other mammalian species. Yaks (Bos grunniens) and Tibetan sheep (T-sheep) (Ovis aries) have adaptations for living in this harsh high-altitude environment, where nomadic Tibetan people keep them primarily for food and livelihood [1]. Adaptive evolution affects energy-metabolism-related genes in a way that helps these ruminants live at high altitude [2, 3]. Herein, we report convergent evolution of rumen microbiomes for energy harvesting persistence in two typical high-altitude ruminants, yaks and T-sheep. Both ruminants yield significantly lower levels of methane and higher yields of volatile fatty acids (VFAs) than their low-altitude relatives, cattle (Bos taurus) and ordinary sheep (Ovis aries). Ultra-deep metagenomic sequencing reveals significant enrichment in VFA-yielding pathways of rumen microbial genes in high-altitude ruminants, whereas methanogenesis pathways show enrichment in the cattle metagenome. Analyses of RNA transcriptomes reveal significant upregulation in 36 genes associated with VFA transport and absorption in the ruminal epithelium of high-altitude ruminants. Our study provides novel insights into the contributions of microbiomes to adaptive evolution in mammals and sheds light on the biological control of greenhouse gas emissions from livestock enteric fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  12. Arterial thrombosis at high altitude resulting in loss of limb.

    Science.gov (United States)

    Fagenholz, Peter J; Gutman, Jonathan A; Murray, Alice F; Noble, Vicki E; Wu, Anette; Zeimer, Gerhard; Harris, N Stuart

    2007-01-01

    Vascular thrombosis is an uncommon but recognized peril of high altitude travel. Traditionally, this has been associated with prolonged exposure to extreme altitudes where dehydration, hemoconcentration, cold, use of constrictive clothing, and enforced stasis due to severe weather have been named as contributing factors. It is widely hypothesized that hypoxia itself alters the coagulation cascade to create a prothrombotic milieu, though evidence thus far is limited and frequently conflicting. Case reports have described venous thrombosis, pulmonary embolism, cerebrovascular accidents, transient ischemic attacks, and thromboses of the portal circulation at altitude. We report a unique case of aortic thrombosis presenting with critical lower extremity ischemia in a previously healthy individual after a brief exposure to altitudes up to 4620 m. None of the frequently invoked risk factors of dehydration, cold, enforced use of constrictive clothing, weather-imposed inactivity, or extreme altitude were present, and no medical predisposition to thrombosis was identified, suggesting hypoxia as the most likely prothrombotic stimulus. We discuss the treatment of this problem and the application of Doppler ultrasonography in a wilderness setting.

  13. The genetic architecture of adaptations to high altitude in Ethiopia.

    Science.gov (United States)

    Alkorta-Aranburu, Gorka; Beall, Cynthia M; Witonsky, David B; Gebremedhin, Amha; Pritchard, Jonathan K; Di Rienzo, Anna

    2012-01-01

    Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  14. Description of SHARC: The Strategic High-Altitude Radiance Code

    Science.gov (United States)

    Sharma, R. D.; Ratkowski, A. J.; Sundberg, R. L.; Duff, J. W.; Bernstein, L. S.

    1989-08-01

    The Strategic High-Altitude Radiance Code (SHARC) is a new computer code that calculates atmospheric radiation and transmittance for paths from 60 to 300 km altitude in the 2 to 40 microns spectral region. It models radiation due to NLTE (Non-Local Thermodynamic Equilibrium) molecular emissions. This initial version of SHARC includes the five strongest IR radiators, NO, CO, H2, O3, and CO2. This report describes the code and models used to calculate the NLTE molecular populations and the resulting atmospheric radiance. The SHARC Manual is reproduced in the appendix.

  15. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  16. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    DEFF Research Database (Denmark)

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...... oedema in the brain and oedema in the lungs....

  17. Commentary: Mesenteric ischemia, high altitude and Hill's criteria ...

    African Journals Online (AJOL)

    Commentary: Mesenteric ischemia, high altitude and Hill's criteria. R Sanda. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  18. Civilian Training in High-Altitude Flight Physiology

    Science.gov (United States)

    1991-08-01

    A survey was conducted to determine if training in high-altitude physiology should : be required for civilian pilots; what the current status of such training was; and, : if required, what should be included in an ideal curriculum. The survey include...

  19. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  20. Acute occlusive mesenteric ischemia in high altitude of ...

    African Journals Online (AJOL)

    Background and Objectives: Mesenteric ischemia which can be acute or chronic depending on the rapidity of compromised blood flow produces bowel ischemia, infarction, bacterial transmigration, endotoxemia, multisystem organ failure and death. High altitude can precipitate thrombosis because of hypobaric hypoxia and ...

  1. SPECIES COMPOSITION OF CARRION BLOW FLIES IN NORTHERN THAILAND: ALTITUDE APPRAISAL

    Science.gov (United States)

    Moophayak, Kittikhun; Klong-Klaew, Tunwadee; Sukontason, Kom; Kurahashi, Hiromu; Tomberlin, Jeffery K.; Sukontason, Kabkaew L.

    2014-01-01

    Distribution and occurrence of blow flies of forensic importance was performed during 2007 and 2008 in Chiang Mai and Lampang Provinces, northern Thailand. Surveys were conducted in forested areas for 30 minutes using a sweep net to collected flies attracted to a bait. A total of 2,115 blow flies belonging to six genera and 14 species were collected; Chrysomya megacephala (Fabricius) (44.7%), C. pinguis (Walker) (15.1%), C. chani Kurahashi (9.3%), C. thanomthini Kurahashi & Tumrasvin (0.3%); Achoetandrus rufifacies (Macquart) (10.5%), A. villeneuvi (Patton) (2.2%); Lucilia papuensis Macquart (2.2%), L. porphyrina (Walker) (12.4%), L. sinensis Aubertin (0.7%); Hemipyrellia ligurriens (Wiedemann) (1.3%), H. pulchra (Wiedemann) (0.1%); Hypopygiopsis infumata (Bigot) (0.6%), Hy. tumrasvini Kurahashi (0.2%) and Ceylonomyia nigripes Aubertin (0.4%). Among them, C. megacephala was the predominant species collected, particularly in the summer. The species likely to prevail in highland areas are C. pinguis, C. thanomthini, Hy. tumrasvini, L. papuensis and L. porphyrina. PMID:24626423

  2. Species composition of carrion blow flies in northern Thailand: altitude appraisal.

    Science.gov (United States)

    Moophayak, Kittikhun; Klong-Klaew, Tunwadee; Sukontason, Kom; Kurahashi, Hiromu; Tomberlin, Jeffery K; Sukontason, Kabkaew L

    2014-01-01

    Distribution and occurrence of blow flies of forensic importance was performed during 2007 and 2008 in Chiang Mai and Lampang Provinces, northern Thailand. Surveys were conducted in forested areas for 30 minutes using a sweep net to collected flies attracted to a bait. A total of 2,115 blow flies belonging to six genera and 14 species were collected; Chrysomya megacephala (Fabricius) (44.7%), C. pinguis (Walker) (15.1%), C. chani Kurahashi (9.3%), C. thanomthini Kurahashi & Tumrasvin (0.3%); Achoetandrus rufifacies (Macquart) (10.5%), A. villeneuvi (Patton) (2.2%); Lucilia papuensis Macquart (2.2%), L. porphyrina (Walker) (12.4%), L. sinensis Aubertin (0.7%); Hemipyrellia ligurriens (Wiedemann) (1.3%), H. pulchra (Wiedemann) (0.1%); Hypopygiopsis infumata (Bigot) (0.6%), Hy. tumrasvini Kurahashi (0.2%) and Ceylonomyia nigripes Aubertin (0.4%). Among them, C. megacephala was the predominant species collected, particularly in the summer. The species likely to prevail in highland areas are C. pinguis, C. thanomthini, Hy. tumrasvini, L. papuensis and L. porphyrina.

  3. SPECIES COMPOSITION OF CARRION BLOW FLIES IN NORTHERN THAILAND: ALTITUDE APPRAISAL

    Directory of Open Access Journals (Sweden)

    Kittikhun Moophayak

    2014-04-01

    Full Text Available Distribution and occurrence of blow flies of forensic importance was performed during 2007 and 2008 in Chiang Mai and Lampang Provinces, northern Thailand. Surveys were conducted in forested areas for 30 minutes using a sweep net to collected flies attracted to a bait. A total of 2,115 blow flies belonging to six genera and 14 species were collected; Chrysomya megacephala (Fabricius (44.7%, C. pinguis (Walker (15.1%, C. chani Kurahashi (9.3%, C. thanomthini Kurahashi & Tumrasvin (0.3%; Achoetandrus rufifacies (Macquart (10.5%, A. villeneuvi (Patton (2.2%; Lucilia papuensis Macquart (2.2%, L. porphyrina (Walker (12.4%, L. sinensis Aubertin (0.7%; Hemipyrellia ligurriens(Wiedemann (1.3%, H. pulchra(Wiedemann (0.1%; Hypopygiopsis infumata (Bigot (0.6%, Hy. tumrasvini Kurahashi (0.2% and Ceylonomyia nigripes Aubertin (0.4%. Among them, C. megacephala was the predominant species collected, particularly in the summer. The species likely to prevail in highland areas are C. pinguis, C. thanomthini, Hy. tumrasvini, L. papuensis and L. porphyrina.

  4. Effect of oxygen supplementation in a hatchery at high altitude and ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of oxygen supplementation on broiler eggs in a hatchery at high altitude on the growth performance and ascites syndrome of broilers reared at low altitude. The treatment groups were low altitude with no oxygen supplemented in the hatchery (LA-NOX); high altitude with ...

  5. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  6. Training-dependent cognitive advantage is suppressed at high altitude.

    Science.gov (United States)

    Li, Peng; Zhang, Gang; You, Hai-Yan; Zheng, Ran; Gao, Yu-Qi

    2012-06-25

    Ascent to high altitude is associated with decreases in cognitive function and work performance as a result of hypoxia. Some workers with special jobs typically undergo intensive mental training because they are expected to be agile, stable and error-free in their job performance. The purpose of this study was to determine the risk to cognitive function acquired from training following hypoxic exposure. The results of WHO neurobehavioral core tests battery (WHO-NCTB) and Raven's standard progressive matrices (RSPM) tests of a group of 54 highly trained military operators were compared with those of 51 non-trained ordinary people and were investigated at sea level and on the fifth day after arrival at high altitudes (3900m). Meanwhile, the plasma levels of brain-derived neurotrophic factor (BDNF), interleukin 1β (IL-1β) and vascular endothelial growth factor (VEGF) were examined. The result showed that at sea level, the trained group exhibited significantly better performance on neurobehavioral and RSPM tests. At high altitude, both groups had decreased accuracy in most cognitive tests and took longer to finish them. More importantly, the highly trained subjects showed more substantial declines than the non-trained subjects in visual reaction accuracy, auditory reaction speed, digit symbol scores, ability to report correct dots in a pursuit aiming test and total RSPM scores. This means that the training-dependent cognitive advantages in these areas were suppressed at high altitudes. The above phenomenon maybe associated with decreased BDNF and elevated inflammatory factor during hypoxia, and other mechanisms could not be excluded. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Evaluating the Capability of High-Altitude Infrasound Platforms to Cover Gaps in Existing Networks.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at the Earth's surface. The experiments have been limited to at most two stations at altitude, limiting their utility in acoustic event detection and localization. We describe the deployment of five drifting microphone stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic broad band signals similar to those seen on previous flights in the same region were noted as well, but their source remains unclear. Background noise levels were commensurate with those on infrasound stations in the International Monitoring System (IMS) below 2 seconds, but sensor self noise appears to dominate at higher frequencies.

  8. The University of Alberta High Altitude Balloon Program

    Science.gov (United States)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  9. First year results of the High Altitude Water Cherenkov observatory

    International Nuclear Information System (INIS)

    Carramiñana, Alberto

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory. (paper)

  10. First year results of the High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  11. A new method for aerodynamic test of high altitude propellers

    Directory of Open Access Journals (Sweden)

    Xiying Gong

    Full Text Available A ground test system is designed for aerodynamic performance tests of high altitude propellers. The system is consisted of stable power supply, servo motors, two-component balance constructed by tension-compression sensors, ultrasonic anemometer, data acquisition module. It is loaded on a truck to simulate propellers’ wind-tunnel test for different wind velocities at low density circumstance. The graphical programming language LABVIEW for developing virtual instrument is used to realize the test system control and data acquisition. Aerodynamic performance test of a propeller with 6.8 m diameter was completed by using this system. The results verify the feasibility of the ground test method. Keywords: High altitude propeller, Ground test, Virtual instrument control system

  12. Wilderness medicine at high altitude: recent developments in the field

    OpenAIRE

    Shah, Neeraj M; Hussain, Sidra; Cooke, Mark; O’Hara, John P; Mellor, Adrian

    2015-01-01

    Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly p...

  13. S-40: Acute Phase Protein Increse in High Altitude Mountaineers

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    2017-03-01

    Full Text Available “Erciyes Tigers” are an elite group of high altitude climbers. They have been climbing ErciyesMountain (3500 m, in Kayseri, Turkey once a week at least for ten years. When they climb Erciyes in winter, they also take a snow bath. This study investigated the effects of regular high altitude climbing on the metabolic and hematological responses of mountaineers. Venous blood samples were taken to investigate hematological, biochemical parameters and some hormone values from 21 mountaineers and 16 healthy age-matched sedentary volunteers at resting condition. The neutrophil/lymphocyte (N/L ratio was calculated. The N/L was associated with an increased risk of long-term mortality and it could provide a good measure of exercise stress and subsequent recovery. Most of the hematological and biochemical parameters i.e., erythrocyte, leukocyte, hemoglobin and hematocrit values did not change significantly. The neutrophil to lymphocyte (N/L ratio was significantly (p<0.04 decreased in the mountaineer compared with the sedentary group. Total protein (p<0.000 and albumin (0.001 were lower, while ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase levels (p<0.01 were higher in mountaineers. Our results show that regular high altitude climbing increased serum levels of some acute-phase proteins and these increments were not transient.

  14. Differentiation of pulmonary embolism from high altitude pulmonary edema

    International Nuclear Information System (INIS)

    Khan, D.A.; Hashim, R.; Mirza, T.M.; Matloob-ur-Rehman, M.

    2003-01-01

    Objective: To differentiate the high altitude pulmonary edema (HAPE) from pulmonary embolism (PE) by clinical probability model of PE, lactate dehydrogenase (LDH), aspartate transaminase (AST) and D-dimer assays at high altitude. Subjects and Methods: Consecutive 40 patients evacuated from height > 3000 meters with symptoms of PE or HAPE were included. Clinical pretest probabilities scores of PE, Minutex D-dimer assay (Biopool international) and cardiac enzymes estimation by IFCC approved methods, were used for diagnosis. Mann-Whitney U test was applied by using SPSS and level of significance was taken at (p 500 ng/ml. Plasma D-dimer of 500 ng/ml was considered as cut-off value; 6(66.7%) patients of PE could be diagnosed and 30 (96.7%) cases of HAPE excluded indicating very good negative predictive value. Serum LDH, AST and CK were raised above the reference ranges in 8 (89%), 7 (78%) and 3 (33%) patients of PE as compared to 11 (35%), 6 (19%) and 9 (29%) of HAPE respectively. Conclusion: Clinical assessment in combination with D-dimer assay, LDH and AST can be used for timely differentiation of PE from HAPE at high altitude where diagnostic imaging procedures are not available. (author)

  15. Schistosomiasis transmission at high altitude crater lakes in western Uganda.

    Science.gov (United States)

    John, Rubaihayo; Ezekiel, Moghusu; Philbert, Clouds; Andrew, Abaasa

    2008-08-11

    Contrary to previous reports which indicated no transmission of schistosomiasis at altitude >1,400 m above sea level in Uganda, in this study it has been established that schistosomiasis transmission can take place at an altitude range of 1487-1682 m above sea level in western Uganda. An epidemiological survey of intestinal schistosomiasis was carried out in school children staying around 13 high altitude crater lakes in Western Uganda. Stool samples were collected and then processed with the Kato-Katz technique using 42 mg templates. Thereafter schistosome eggs were counted under a microscope and eggs per gram (epg) of stool calculated. A semi-structured questionnaire was used to obtain demographic data and information on risk factors. 36.7% of the pupils studied used crater lakes as the main source of domestic water and the crater lakes studied were at altitude ranging from 1487-1682 m above sea level. 84.6% of the crater lakes studied were infective with over 50% of the users infected. The overall prevalence of Schistosoma mansoni infection was 27.8% (103/370) with stool egg load ranging from 24-6048 per gram of stool. 84.3%( 312) had light infections (400 egg/gm of stool). Prevalence was highest in the age group 12-14 years (49.5%) and geometric mean intensity was highest in the age group 9-11 years (238 epg). The prevalence and geometric mean intensity of infection among girls was lower (26%; 290 epg) compared to that of boys (29.6%; 463 epg) (t = 4.383, p model, altitude and water source (crater lakes) were significantly associated with infection. The altitudinal threshold for S. mansoni transmission in Uganda has changed and use of crater water at an altitude higher than 1,400 m above sea level poses a risk of acquiring S. mansoni infection in western Uganda. However, further research is required to establish whether the observed altitudinal threshold change is as a result of climate change or other factors. It is also necessary to establish the impact this

  16. Adaptive-Repetitive Visual-Servo Control of Low-Flying Aerial Robots via Uncalibrated High-Flying Cameras

    Science.gov (United States)

    Guo, Dejun; Bourne, Joseph R.; Wang, Hesheng; Yim, Woosoon; Leang, Kam K.

    2017-08-01

    This paper presents the design and implementation of an adaptive-repetitive visual-servo control system for a moving high-flying vehicle (HFV) with an uncalibrated camera to monitor, track, and precisely control the movements of a low-flying vehicle (LFV) or mobile ground robot. Applications of this control strategy include the use of high-flying unmanned aerial vehicles (UAVs) with computer vision for monitoring, controlling, and coordinating the movements of lower altitude agents in areas, for example, where GPS signals may be unreliable or nonexistent. When deployed, a remote operator of the HFV defines the desired trajectory for the LFV in the HFV's camera frame. Due to the circular motion of the HFV, the resulting motion trajectory of the LFV in the image frame can be periodic in time, thus an adaptive-repetitive control system is exploited for regulation and/or trajectory tracking. The adaptive control law is able to handle uncertainties in the camera's intrinsic and extrinsic parameters. The design and stability analysis of the closed-loop control system is presented, where Lyapunov stability is shown. Simulation and experimental results are presented to demonstrate the effectiveness of the method for controlling the movement of a low-flying quadcopter, demonstrating the capabilities of the visual-servo control system for localization (i.e.,, motion capturing) and trajectory tracking control. In fact, results show that the LFV can be commanded to hover in place as well as track a user-defined flower-shaped closed trajectory, while the HFV and camera system circulates above with constant angular velocity. On average, the proposed adaptive-repetitive visual-servo control system reduces the average RMS tracking error by over 77% in the image plane and over 71% in the world frame compared to using just the adaptive visual-servo control law.

  17. Thermal stability of nano structured fly ash synthesized by high ...

    African Journals Online (AJOL)

    In this paper, an attempt has been made to modify the micro sized fly ash into nano structured fly ash using High Energy Ball Mill. The smooth, glassy and an inert surface of the fly ash can be altered to a rough and more reactive state by this technique. Ball milling was carried out for the total duration of 30 hours. The sample ...

  18. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Science.gov (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  19. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  20. Strength and Cycle Time of Ventilatory Oscillations in Unacclimatized Humans at High Altitude,

    Science.gov (United States)

    1983-03-04

    altitude chamber at simulated high altitudes of 8,000, 9,000, 11,000 and 14,000 feet. Periodic breathing which was strong enough to include apnea at the time...feet. Periodic breathing which was strong enough to include apnea at the time of minimum ventilation was seen in all subjects at high altitude. The cycle...respiration, is brought about by various conditions of stress, specifically heart disorders, neurological disord- ers, premature birth and high altitude (3

  1. When should oxygen be given to children at high altitude? A systematic review to define altitude-specific hypoxaemia.

    Science.gov (United States)

    Subhi, Rami; Smith, Katherine; Duke, Trevor

    2009-01-01

    Acute respiratory infections (ARI) cause 3 million deaths in children worldwide each year. Most of these deaths occur from pneumonia in developing countries, and hypoxaemia is the most common fatal complication. Simple and adaptable indications for oxygen therapy are important in the management of ARI. The current WHO definition of hypoxaemia as any arterial oxygen saturation (SpO(2)) oxygen saturation with altitude. This study aimed to define normal oxygen saturation and to estimate the threshold of hypoxaemia for children permanently living at different altitudes. We carried out a systematic review of the literature addressing normal values of oxygen saturation in children aged 1 week to 12 years. Hypoxaemia was defined as any SpO(2) at or below the 2.5th centile for a population of healthy children at a given altitude. Meta-regression analysis was performed to estimate the change in mean SpO(2) and the hypoxaemia threshold with increasing altitude. 14 studies were reviewed and analysed to produce prediction equations for estimating the expected mean SpO(2) in normal children, and the threshold SpO(2) indicating hypoxaemia at various altitudes. An SpO(2) of 90% is the 2.5th centile for a population of healthy children living at an altitude of approximately 2500 m above sea level. This decreases to 85% at an altitude of approximately 3200 m. For health facilities at very high altitudes, giving oxygen to all children with an SpO(2) oxygen supplies are limited. In such settings, Spo(2) children most in need of oxygen supplementation.

  2. Snow chemistry of high altitude glaciers in the French Alps

    OpenAIRE

    MAUPETIT, FRANÇOIS; DELMAS, ROBERT J.

    2011-01-01

    Snow samples were collected as snowcores in the accumulation zone of four high altitude glaciers (2980–3540 m.a.s.l.) from each of the 4 highest mountain areas of the French Alps, during 3 consecutive years: 1989, 1990 and 1991. Sampling was performed in spring (∼ May), before the onset of late spring–summer percolation. The accumulated snow therefore reflects winter and spring conditions. A complementary sampling of fresh-snow was performed on an event basis, on one of the studied glaciers, ...

  3. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  4. High-altitude electromagnetic pulse environment over the lossy ground

    International Nuclear Information System (INIS)

    Xie Yanzhao; Wang Zanji

    2003-01-01

    The electromagnetic field above ground produced by an incident high-altitude electromagnetic pulse plane wave striking the ground plane was described in this paper in terms of the Fresnel reflection coefficients and the numerical FFT. The pulse reflected from the ground plane always cancel the incident field for the horizontal field component, but the reflected field adds to the incident for the vertical field component. The results of several cases for variations in the observation height, angle of incidence and lossy ground electrical parameters were also presented showing different e-field components above the earth

  5. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  6. Breathlessness at High Altitude: First Episode of Bronchoconstriction in an Otherwise Healthy Sojourner.

    Science.gov (United States)

    Bhandari, Sanjeeb Sudarshan; Koirala, Pranawa; Lohani, Sadichhya; Phuyal, Pratibha; Basnyat, Buddha

    2017-06-01

    Bhandari, Sanjeeb Sudarshan, Pranawa Koirala, Sadichhya Lohani, Pratibha Phuyal, and Buddha Basnyat. Breathlessness at high altitude: first episode of bronchoconstriction in an otherwise healthy sojourner. High Alt Med Biol.. 18:179-181, 2017-High-altitude illness is a collective term for less severe acute mountain sickness and more severe high-altitude pulmonary edema (HAPE) and high-altitude cerebral edema, which we can experience while traveling to high altitude. These get better when we get down to the lower altitudes. People with many comorbidities also have been traveling to high altitudes from the dawn of civilization. Obstructive airway diseases can be confused with HAPE at high altitude. Asthma is one of those obstructive pulmonary diseases, but it is shown to get better with travel to the altitudes higher than the residing altitude. We present a case of 55-year-old nonsmoker, athletic, female, a lowland resident who developed difficulty breathing for the first time at high altitude. She did not get better with the descent to lower altitude and timely intake of acetazolamide. Her pulmonary function test showed obstructive airway pattern, which got better with salbutamol/ipratropium nebulization and oxygen.

  7. High altitude and pre-eclampsia: Adaptation or protection.

    Science.gov (United States)

    Ahmed, Sarah I Y; Ibrahim, Muntaser E; Khalil, Eltahir A G

    2017-07-01

    Adaptive genes of high altitude can also be protective in diseases like preeclampsia, hypertension, and diabetes mellitus, Alzheimer, Parkinson Disease and Cancer, which may result from deregulation of hypoxia pathway. The example of pre-eclampsia and normal pregnancy were studied to see if the hypoxia-induced disorders can be dragged towards adaptation. Here, we analyse the genetic variants that are known to be associated with adaptation to high altitude hypoxia. Our results demonstrated that the genetic variants of EPAS1, ADAM9, and EGLN1 increased approximately three-fold in the cases of preeclampsia compared to normal pregnancy. This may suggest the ability of the hypoxic cells of preeclampsia to respond to the high selective pressure of hypoxia with a higher degree of genetic variability, which can lead to adaptation. Signs of "acclimatisation" were seen both in cases and controls but with higher frequencies in controls. This can be a new approach that follows patients' genetic selection and susceptibility of individuals for adaptability, which could be enhanced by drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations

    Science.gov (United States)

    Jha, Aashish R.; Zhou, Dan; Brown, Christopher D.; Kreitman, Martin; Haddad, Gabriel G.; White, Kevin P.

    2016-01-01

    The ability to withstand low oxygen (hypoxia tolerance) is a polygenic and mechanistically conserved trait that has important implications for both human health and evolution. However, little is known about the diversity of genetic mechanisms involved in hypoxia adaptation in evolving populations. We used experimental evolution and whole-genome sequencing in Drosophila melanogaster to investigate the role of natural variation in adaptation to hypoxia. Using a generalized linear mixed model we identified significant allele frequency differences between three independently evolved hypoxia-tolerant populations and normoxic control populations for approximately 3,800 single nucleotide polymorphisms. Around 50% of these variants are clustered in 66 distinct genomic regions. These regions contain genes that are differentially expressed between hypoxia-tolerant and normoxic populations and several of the differentially expressed genes are associated with metabolic processes. Additional genes associated with respiratory and open tracheal system development also show evidence of directional selection. RNAi-mediated knockdown of several candidate genes’ expression significantly enhanced survival in severe hypoxia. Using genomewide single nucleotide polymorphism data from four high-altitude human populations—Sherpas, Tibetans, Ethiopians, and Andeans, we found that several human orthologs of the genes under selection in flies are also likely under positive selection in all four high-altitude human populations. Thus, our results indicate that selection for hypoxia tolerance can act on standing genetic variation in similar genes and pathways present in organisms diverged by hundreds of millions of years. PMID:26576852

  9. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    Directory of Open Access Journals (Sweden)

    He Chuan

    2012-01-01

    Full Text Available The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA. Then, a novel swarm intelligence algorithm named propagation algorithm (PA is combined with the key node search algorithm (KNSA to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  10. Cooperative scheduling of imaging observation tasks for high-altitude airships based on propagation algorithm.

    Science.gov (United States)

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible.

  11. High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments

    Science.gov (United States)

    2008-07-21

    against HEMP effects resulting from a nuclear exchange.40 The Limited Test Ban Treaty of 1963 prohibits nuclear explosions in the atmosphere, in space, and...Order Code RL32544 High Altitude Electromagnetic Pulse ( HEMP ) and High Power Microwave (HPM) Devices: Threat Assessments Updated July 21, 2008 Clay...2008 to 00-00-2008 4. TITLE AND SUBTITLE High Altitude Electromagnetic Pulse ( HEMP ) and High Power Microwave (HPM) Devices: Threat Assessments 5a

  12. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  13. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-12-01

    Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.

  14. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    OpenAIRE

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training c...

  15. High altitude pulmonary edema, down syndrome, and obstructive sleep apneas.

    Science.gov (United States)

    Richalet, Jean-Paul; Chenivesse, Cécile; Larmignat, Philippe; Meille, Laurent

    2008-01-01

    A 24-year-old adult with a Down syndrome was admitted in December 2006 at the Moutiers hospital in the French Alps for an acute inaugural episode of high altitude pulmonary edema (HAPE) that occurred in the early morning of day 3 after his arrival to La Plagne (2000 m). This patient presented an interventricular septal defect operated on at the age of 7, a hypothyroidism controlled by 50 microg levothyrox, a state of obesity (BMI 37.8 kg/m(2)), and obstructive sleep apneas with a mean of 42 obstructive apneas or hypopneas per hour, treated with continuous positive airway pressure (CPAP). The patient refused to use his CPAP during his stay in La Plagne. At echocardiography, resting parameters were normal, with a left ventricular, ejection fraction of 60%, a normokinetic right ventricle, and an estimated systolic pulmonary artery pressure (sPAP) of 30 mmHg. At exercise, sPAP rose to 45 mmHg and the right ventricle was still normokinetic and not dilated. An exercise hypoxic tolerance test performed at 60 W and at the equivalent altitude of 3300 m revealed a severe drop in arterial oxygen saturation down to 60%, with an abnormal low ventilatory response to hypoxia, suggesting a defect in peripheral chemosensitivity to hypoxia. In conclusion, patients with Down syndrome, including adults with no cardiac dysfunction and regular physical activity, are at risk of HAPE even at moderate altitude when they suffer from obstructive sleep apneas associated with obesity and low chemoresponsiveness. This observation might be of importance since an increasing number of young adults with Down syndrome participate in recreational or sport activities, including skiing and mountaineering.

  16. Semianalytic Integration of High-Altitude Orbits under Lunisolar Effects

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2012-01-01

    Full Text Available The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

  17. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  18. ER-2 High Altitude Solar Cell Calibration Flights

    Science.gov (United States)

    Myers, Matthew; Wolford, David; Snyder, David; Piszczor, Michael

    2015-01-01

    Evaluation of space photovoltaics using ground-based simulators requires primary standard cells which have been characterized in a space or near-space environment. Due to the high cost inherent in testing cells in space, most primary standards are tested on high altitude fixed wing aircraft or balloons. The ER-2 test platform is the latest system developed by the Glenn Research Center (GRC) for near-space photovoltaic characterization. This system offers several improvements over GRC's current Learjet platform including higher altitude, larger testing area, onboard spectrometers, and longer flight season. The ER-2 system was developed by GRC in cooperation with NASA's Armstrong Flight Research Center (AFRC) as well as partners at the Naval Research Laboratory and Air Force Research Laboratory. The system was designed and built between June and September of 2014, with the integration and first flights taking place at AFRC's Palmdale facility in October of 2014. Three flights were made testing cells from GRC as well as commercial industry partners. Cell performance data was successfully collected on all three flights as well as solar spectra. The data was processed using a Langley extrapolation method, and performance results showed a less than half a percent variation between flights, and less than a percent variation from GRC's current Learjet test platform.

  19. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  20. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  1. Scientific verification of High Altitude Water Cherenkov observatory

    International Nuclear Information System (INIS)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ∼200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m 2 , the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active

  2. Scientific verification of High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  3. Scientific verification of High Altitude Water Cherenkov observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Antonio, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); Sparks, Kathryne [Department of Physics, Pennsylvania State University, University Park, PA (United States); Alfaro, Ruben [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); González, María Magdalena; Patricelli, Barbara; Fraija, Nissim [Instituto de Astronomia, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico)

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ∼200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m{sup 2}, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  4. Radiation Safety Issues in High Altitude Commercial Aircraft

    Science.gov (United States)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  5. Anti-Fatigue Effects of Methazolamide in High- Altitude Hypoxic Mice ...

    African Journals Online (AJOL)

    altitude anoxic mice. Methods: Mice fatigued by high-altitude hypoxia were housed in a hypobaric chamber (equivalent to a low pressure chamber of 5000 m altitude) for 10 consecutive days. The anti-fatigue property of MTZ was evaluated by ...

  6. Snow sublimation on a high-altitude Himalayan glacier

    Science.gov (United States)

    Stigter, E.; Litt, M.; Steiner, J. F.; Bonekamp, P. N. J.; Bierkens, M. F.; Shea, J.; Immerzeel, W. W.

    2017-12-01

    Snow sublimation is a loss of water from a snowpack to the atmosphere due to direct phase transition of snow to water vapour. Conditions at high elevations in the Himalaya favour sublimation, i.e. low atmospheric pressure, high wind speed, dry air and high incoming solar radiation. Snow sublimation is a potential important component of the high-altitude water and glacier mass balance, but measurements are non-existent in the Himalaya and models generally ignore this process. Hence, we measured surface latent heat fluxes with an eddy covariance system on Yala Glacier (5350 m a.s.l) in the Nepalese Himalaya to quantify the role snow sublimation plays in the water budget. A one-month data set from October to November 2016 reveals that cumulative sublimation is substantial relative to the dry season precipitation (31 mm for a 32-day period). Sublimation parameterizations of different complexity were subsequently tested against our field measurements to quantify sublimation patterns in space and over longer periods based on nominal meteorological measurements. Results show that a multiple linear regression on wind speed and humidity performed best and this is used to simulate snow sublimation spatially distributed on Yala Glacier for the winter season 2016-2017. Averaged over an entire winter and over the entire glacier surface, sublimation plays a crucial role in the high altitude water balance and in the mass balance of glaciers. Future research should focus on quantifying the role of sublimation at the catchment scale, the development of larger scale parametrizations and efficient measurement strategies to validate the results.

  7. Detection of EASs at high altitude with ARGO-YBJ

    International Nuclear Information System (INIS)

    Di Sciascio, Giuseppe

    2017-01-01

    The ARGO-YBJ experiment has been in stable data taking for about 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm 2 ). With a duty-cycle greater than 86% the detector collected about 5×10 11 events in a wide energy range, from few hundreds GeV up to about 10 PeV. Exploiting the full coverage approach with a high segmentation of the readout at high altitude, ARGO-YBJ imaged the front of Extensive Air Showers (EAS) with unprecedented resolution and detail. A number of important problems in galactic cosmic ray physics has been faced through different analyses. In this contribution we summarize the latest results in gamma-ray astronomy and in cosmic ray physics. (paper)

  8. Radiation Physics for Space and High Altitude Air Travel

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  9. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  10. Women at Altitude: Effects of Menstrual Cycle Phase and Alpha-Adrenergic Blockade on High Altitude Acclimatization

    Science.gov (United States)

    1999-10-01

    and venous tone. Alpha 1-adrenergic blockade with prazosin attenuated the rise in SNS activity at 4,300 m and prevented the increase in PNS activity in...Physiol 1991;70(3):1129-36. 4. Zamudio S., S.K. Palmer, T.E. Dahms, et al. Blood volume expansion, preeclampsia , and infant birth weight at high altitude

  11. The High-Altitude Water Cherenkov Observatory: First Light

    Science.gov (United States)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  12. Large high altitude air shower observatory (LHAASO) project

    International Nuclear Information System (INIS)

    He Huihai

    2010-01-01

    The Large High Altitude Air Shower Observatory (LHAASO) project focuses mainly on the study of 40 GeV-1 PeV gamma ray astronomy and 10 TeV-1 EeV cosmic ray physics. It consists of a 1 km 2 extensive air shower array with 40 000 m 2 muon detectors, 90,000m 2 water Cerenkov detector array, 5 000 m 2 shower core detector array and an air Cerenkov/fluorescence telescope array. Prototype detectors are designed with some of them already in operation. A prototype array of 1% size of LHAASO will be built at the Yangbajing Cosmic Ray Observatory and used to coincidently measure cosmic rays with the ARGO-YBJ experiment. (authors)

  13. High-Altitude Platforms - Present Situation and Technology Trends

    Directory of Open Access Journals (Sweden)

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  14. Anthropometric survey of high-altitude Bolivian porters.

    Science.gov (United States)

    Leatherman, T L; Thomas, R B; Greksa, L P; Haas, J D

    1984-01-01

    This paper presents the results of an anthropometric survey of 138 rural Aymaran high-altitude males who were working as porters in La Paz, Bolivia (3700 m). All subjects were measured for stature, weight, upper arm circumference, and triceps skinfolds. The body size and composition of the porters were then compared to an Aymaran rural population from the Bolivian highlands, and urban mestizo labourers from La Paz. The porters were smaller than the urban sample, but appeared to be generally representative of rural Aymaran natives with respect to body size and composition, and nutritional status. It is suggested that towards one extreme of nutritional variability, some degree of undernutrition may be indicated, which should be considered in future studies of adaptation to hypoxia among these Andean highlanders.

  15. Status of the large high altitude air shower observatory project

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Min, E-mail: zham@ihep.ac.cn [Key Laboratory of Astroparticle and Cosmic Ray, Institute of High Energy Physics, YuQuan Road 19 B, 100049 Beijing (China)

    2012-11-11

    The Large High Altitude Air Shower Observatory (LHAASO) project is a multipurpose project. The main scientific tasks can be summarized as follows: (1) searching for galactic cosmic ray origins through gamma ray source detection above 30 TeV; (2) wide field of view survey for gamma ray sources at energies higher than 100 GeV; (3) energy spectrum measurements for individual cosmic ray species from 30 TeV to 10 PeV. To target above tasks, a complex detector array is designed. This paper describes the progress on the research and development of all kind of detectors. Construction and operation of a prototype detector array at Tibet site with 4300 m a.s.l. are also presented.

  16. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  17. Effect of high altitude cosmic irradiation upon cell generation time

    International Nuclear Information System (INIS)

    Soleilhavoup, J.P.; Croute, F.; Tixador, R.; Blanquet, Y.; Planel, H.

    1975-01-01

    Paramecia cultures placed at 3800 meter altitude show a proliferating activity acceleration compared to control cultures placed at low altitude under the same environment conditions. These results confirm the cosmic irradiation influence upon the activating effect produced by the natural ionizing radiations on living organisms [fr

  18. The HAMMER: High altitude multiple mission environmental researcher

    Science.gov (United States)

    Hayashi, Darren; Zylla, Cara; Amaro, Ernesto; Colin, Phil; Klause, Thomas; Lopez, Bernardo; Williamson, Danna

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number is maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  19. Effect of simulated high-altitude hypoxia on Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jing-jing HUANG

    2012-04-01

    Full Text Available Objective To investigate the effects of simulated high-altitude hypoxia on the detection rate and endotoxin level of Porphyromonas gingivalis (Pg of subgingival bacterial plagues in rabbit periodontitis models. Methods Forty male rabbits were randomly divided into four groups, namely, normoxia control group (group A1, normoxia experimental group (group A2, hypoxia control group (group B1, and hypoxia experimental group (group B2. Each group included 10 rabbits. Periodontitis models was established in groups A2 and B2 combined by ligating both lower central incisors with steel ligature and feeding periodontitis diets, and then the animals were housed in a hypoxia chamber (simulating 5000m altitude, 23h per day. Groups A1 and A2 were raised normal diet in normoxia environment. After eight weeks, the rabbit periodontitis model was evaluated by observing radiographic features of the X-ray films and histopathologic changes under a light microscope. Subgingival plague sample from periodontal pockets on both lower central incisors were collected for isolation, culture and identification of Pg, and for detection of the endotoxin level. Results The histopathologic observation and X-ray examination results showed that the periodontitis of rabbits in group B2 was significantly more severe than that in group A2. The detection rates of Pg in group A1, A2, B1 and B2 was 0%, 50%, 55% and 95% (P < 0.05. Pg detection rate and endotoxin level were higher in group B2 (95%, 0.46±0.04EU/ml than in group A2 (50%, 0.38±0.02EU/ml, P < 0.05. Conclusions The process speed and damage degree of periodontitis in hypoxic environment is higher than that in normoxic environment. Moreover, the hypoxic environment is more suitable in the colonization of Pg with higher endotoxin level in subgingival plague.

  20. Adaptation of an epilithic ecosystem to harsh high altitude environment

    Science.gov (United States)

    de La Torre Noetzel, R.; Horneck, G.; García Sancho, L.; Scherer, K.; Facius, R.; Urlings, T.; Rettberg, P.; Reina, M.; Pintado, A.

    2003-04-01

    Epilithic ecosystems in high mountains are exposed to an extreme microclimate characterized by intense solar UV radiation, high temperature fluctuations and high aridity. Using the epilithic ecosystem Rhizocarpon geographicum, the most abundant lichen at the Plataforma de Gredos (Sierra de Gredos, Central Spain, 1.895 m a.s.l.) as model system, we have investigated whether the cortex protects the photobiont against impacts by this extreme environment. The UV radiation climate was measured optoelectronically as well by use of the biological dosimeter DLR-Biofilm, and the microclimate (temperature, relative humidity, PAR) by a microclimatic station (Squirrel, U.K.). The photosynthetic activity of the lichens was periodically determined by use of a photosynthesis yield analyser MINI PAM. Using lichen samples with- and without cortex during different periods of a growing season, showed a substantial protection by the cortex against environmental stress conditions, especially at summer solstice. Solar UV radiation and desiccation exerted the most damaging effects in lichens without cortex. Because of the high resistance of the intact lichen against the harsh high altitude climate, R. geographicum has been selected as test system for survival studies in space to be performed during the upcoming BIOPAN mission of ESA.

  1. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.

  2. Risk Stratification for Athletes and Adventurers in High-Altitude Environments: Recommendations for Preparticipation Evaluation.

    Science.gov (United States)

    Campbell, Aaron D; McIntosh, Scott E; Nyberg, Andy; Powell, Amy P; Schoene, Robert B; Hackett, Peter

    2015-12-01

    High-altitude athletes and adventurers face a number of environmental and medical risks. Clinicians often advise participants or guiding agencies before or during these experiences. Preparticipation evaluation (PPE) has the potential to reduce risk of high-altitude illnesses in athletes and adventurers. Specific conditions susceptible to high-altitude exacerbation also important to evaluate include cardiovascular and lung diseases. Recommendations by which to counsel individuals before participation in altitude sports and adventures are few and of limited focus. We reviewed the literature, collected expert opinion, and augmented principles of a traditional sport PPE to accommodate the high-altitude wilderness athlete/adventurer. We present our findings with specific recommendations on risk stratification during a PPE for the high-altitude athlete/adventurer. Copyright © 2015. Published by Elsevier Inc.

  3. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    Science.gov (United States)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  4. Cerebrovascular responses to hypoxia and hypocapnia in Ethiopian high altitude dwellers.

    Science.gov (United States)

    Claydon, Victoria E; Gulli, Giosué; Slessarev, Marat; Appenzeller, Otto; Zenebe, Guta; Gebremedhin, Amha; Hainsworth, Roger

    2008-02-01

    Cerebrovascular responses to hypoxia and hypocapnia in Peruvian altitude dwellers are impaired. This could contribute to the high incidence of altitude-related illness in Andeans. Ethiopian high altitude dwellers may show a different pattern of adaptation to high altitude. We aimed to examine cerebral reactivity to hypoxia and hypocapnia in healthy Ethiopian high altitude dwellers. Responses were compared with our previous data from Peruvians. We studied 9 Ethiopian men at their permanent residence of 3622 m, and one day after descent to 794 m. We continuously recorded cerebral blood flow velocity (CBFV; transcranial Doppler). End-tidal oxygen (P(ET)o(2)) was decreased from 100 mm Hg to 50 mm Hg with end-tidal carbon dioxide (P(ET)co(2)) clamped at the subject's resting level. P(ET)co(2) was then manipulated by voluntary hyper- and hypoventilation, with P(ET)o(2) clamped at 100 mm Hg (normoxia) and 50 mm Hg (hypoxia). During spontaneous breathing, P(ET)co(2) increased after descent, from 38.2+/-1.0 mm Hg to 49.8+/-0.6 mm Hg (Phypoxia at either high (-0.19+/-3.1%) or low (1.1+/-2.9%) altitudes. Cerebrovascular reactivity to normoxic hypocapnia at high and low altitudes was 3.92+/-0.5%.mm Hg(-1) and 3.09+/-0.4%.mm Hg(-1); reactivity to hypoxic hypocapnia was 4.83+/-0.7%.mm Hg(-1) and 2.82+/-0.5%.mm Hg(-1). Responses to hypoxic hypocapnia were significantly smaller at low altitude. The cerebral circulation of Ethiopian high altitude dwellers is insensitive to hypoxia, unlike Peruvian high altitude dwellers. Cerebrovascular responses to P(ET)co(2) were greater in Ethiopians than Peruvians, particularly at high altitude. This, coupled with their high P(ET)co(2) levels, would lead to high cerebral blood flows, and may be advantageous for altitude living.

  5. Using High-Altitude Pseudo Satellites as an innovative technology platform for climate measurements

    Science.gov (United States)

    Coulon, A.; Johnson, S.

    2017-12-01

    Climate scientists have been using for decades either remotely observed data, mainly from (un)manned aircraft and satellites, or ground-based measurements. High-Altitude Pseudo Satellites (HAPS) are emerging as a disruptive technology that will be used for various "Near Space" applications at altitudes between 15 and 23 km (i.e. above commercial airlines). This new generation of electric solar-powered unmanned aerial vehicles flying in the stratosphere aim to persistently monitor regional areas (with high temporal, spatial and spectral resolution) as well as perform in-situ Near Space observations. The two case studies presented will highlight the advantages of using such an innovative platform. First, calculations were performed to compare the use of a constellation of Low Earth Orbit satellites and a fleet of HAPS for surface monitoring. Using stratospheric drones has a clear advantage for revisiting a large zone (10'000km2 per day) with higher predictability and accuracy. User is free to set time over a location, avoid cloud coverage and obtain Ground Sampling Distance of 30cm using commercially of the shelf sensors. The other impact study focuses on in-situ measurements. Using HAPS will indeed help to closely observe stratospheric compounds, such as aerosols or volcano plumes. Simulations were performed to show how such a drone could collect samples and provide high-accuracy evaluations of compounds that, so far, are only remotely observed. The performed impact studies emphasize the substantial advantages of using HAPS for future stratospheric campaigns. Deploying month-long unmanned missions for monitoring stratospheric aerosols will be beneficial for future research projects such as climate engineering.

  6. Health and Work at High Altitude - a Study of the Mauna-Kea Observatories

    Science.gov (United States)

    Forster, P. J. G.

    1984-06-01

    The low oxygen environment of high altitude decreases the efficiency and poses risks to the health of personnel manning telescopes at high altitudes. In a study at the Mauna Kea observatories (4200 m) in Hawaii, symptoms of acute mountain sickness were prevalent amongst telescope staff. Memory and psychomotor ability deteriorated on initial exposure to high altitude. Altitude-sickness symptoms abated and performance improved after several days on the mountain. Individual workers reacted to the stress of hypoxia in a reproducible manner on each ascent. Episodes of potentially fatal altitude sickness (pulmonary and cerebral edema) were unexpectedly rare. Provision for immediate descent and awareness of the hazards of hypoxia are the most effective precautions to ensure safe working at high-altitude-based observatories.

  7. Nationwide network of total solar eclipse high altitude balloon flights

    Science.gov (United States)

    Des Jardins, A. C.

    2017-12-01

    Three years ago we envisioned tapping into the strength of the National Space Grant Program to make the most of a rare astronomical event to engage the general public through education and to create meaningful long-lasting partnerships with other private and public entities. We believe strongly in giving student participants career-making opportunities through the use of the most cutting edge tools, resources, and communication. The NASA Space Grant network was in a unique position to engage the public in the eclipse in an awe-inspiring and educational way at a surprisingly small cost. In addition to public engagement, the multidisciplinary project presented an in-depth hands-on learning opportunity for the thousands of student participants. The project used a network of high altitude ballooning teams positioned along the path of totality from Oregon to South Carolina to conduct coordinated collaborative activities during the eclipse. These activities included 1) capturing and streaming live video of the eclipse from near space, 2) partnering with NASA Ames on a space biology experiment, and 3) conducting high-resolution atmospheric radiosonde measurements. This presentation will summarize the challenges, results, lessons learned, and professional evaluation from developing, training, and coordinating the collaboration. Details of the live streaming HD video and radiosonde activities are described in separate submissions to this session.

  8. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    International Nuclear Information System (INIS)

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  9. Wear Resistance of High-Volume Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Rafat SIDDIQUE

    2010-12-01

    Full Text Available Wear resistance of high-volume fly ash concrete (HVFA intended for pavement applications is presented in this paper. In India, yearly production of fly ash is more than 100 million tons. Majority of fly ash is of Class F type. Out of which 20-25% is being utilized in cement-based materials. In order to increase its percentage utilization, an investigation was carried out for its large scale utilization. Concrete mixtures were prepared by replacing cement with 40, 50, and 60% of fly ash. Experiments were conducted for fresh concrete properties, compressive strength and wear resistance. Test results indicated that wear resistance of concrete having cement replacement up to 40% was comparable to the normal concrete. Beyond 40% fly ash content, concretes exhibited slightly lower resistance to wear in relation non-fly ash concretes. There is very good correlation between wear resistance and compressive strength (R2 value between 0.8482 and 0.9787 depending upon age.

  10. Fit for high altitude: are hypoxic challenge tests useful?

    Directory of Open Access Journals (Sweden)

    Matthys Heinrich

    2011-02-01

    Full Text Available Abstract Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax, sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient. Instead of the hypoxia altitude simulation test (HAST, which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists including mechanical aids to

  11. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.

    Science.gov (United States)

    Chapman, Robert F; Karlsen, Trine; Resaland, Geir K; Ge, R-L; Harber, Matthew P; Witkowski, Sarah; Stray-Gundersen, James; Levine, Benjamin D

    2014-03-15

    Chronic living at altitudes of ∼2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hematological acclimatization, compared with athletes living at lower altitudes. After 4 wk of group sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m). All athletes trained together daily at a common altitude from 1,250-3,000 m following a modified live high-train low model. Subjects completed hematological, metabolic, and performance measures at sea level, before and after altitude training; EPO was assessed at various time points while at altitude. On return from altitude, 3,000-m time trial performance was significantly improved in groups living at the middle two altitudes (2,085 and 2,454 m), but not in groups living at 1,780 and 2,800 m. EPO was significantly higher in all groups at 24 and 48 h, but returned to sea level baseline after 72 h in the 1,780-m group. Erythrocyte volume was significantly higher within all groups after return from altitude and was not different between groups. These data suggest that, when completing a 4-wk altitude camp following the live high-train low model, there is a target altitude between 2,000 and 2,500 m that produces an optimal acclimatization response for sea level performance.

  12. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  13. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Directory of Open Access Journals (Sweden)

    Pandey P

    2015-11-01

    Full Text Available Priyanka Pandey,1,2 Ghulam Mohammad,1,3 Yogendra Singh,1,2 MA Qadar Pasha1,2 1Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, Maharashtra, 3Department of Medicine, SNM Hospital, Leh, Ladakh, Jammu and Kashmir, IndiaObjective: To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early, and morbid disorder, high altitude pulmonary edema (HAPE. This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation.Methods: For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225, HAPE controls (n=210, and highlanders (n=259 by Sequenom MS (TOF-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups.Results: A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728 with HAPE (P=0.03 and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336 with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively. ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009. MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006 and lower association with adaptation (P=1E–06, whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001 and higher association with adaptation (P=1E–06. Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working

  14. The body weight loss during acute exposure to high-altitude hypoxia in sea level residents.

    Science.gov (United States)

    Ge, Ri-Li; Wood, Helen; Yang, Hui-Huang; Liu, Yi-Ning; Wang, Xiu-Juan; Babb, Tony

    2010-12-25

    Weight loss is frequently observed after acute exposure to high altitude. However, the magnitude and rate of weight loss during acute exposure to high altitude has not been clarified in a controlled prospective study. The present study was performed to evaluate weight loss at high altitude. A group of 120 male subjects [aged (32±6) years] who worked on the construction of the Golmud-Lhasa Railway at Kunlun Mountain (altitude of 4 678 m) served as volunteer subjects for this study. Eighty-five workers normally resided at sea level (sea level group) and 35 normally resided at an altitude of 2 200 m (moderate altitude group). Body weight, body mass index (BMI), and waist circumference were measured in all subjects after a 7-day stay at Golmud (altitude of 2 800 m, baseline measurements). Measurements were repeated after 33-day working on Kunlun Mountain. In order to examine the daily rate of weight loss at high altitude, body weight was measured in 20 subjects from the sea level group (sea level subset group) each morning before breakfast for 33 d at Kunlun Mountain. According to guidelines established by the Lake Louise acute mountain sickness (AMS) consensus report, each subject completed an AMS self-report questionnaire two days after arriving at Kunlun Mountain. After 33-day stay at an altitude of 4 678 m, the average weight loss for the sea level group was 10.4% (range 6.5% to 29%), while the average for the moderate altitude group was 2.2% (-2% to 9.1%). The degree of weight loss (Δ weight loss) after a 33-day stay at an altitude of 4 678 m was significantly correlated with baseline body weight in the sea level group (r=0.677, P0.05). In the sea level subset group, a significant weight loss was observed within 20 d, but the weight remained stable thereafter. AMS-score at high altitude was significantly higher in the sea level group (4.69±2.48) than that in the moderate altitude group (2.97±1.38), and was significantly correlated with baseline body weight

  15. Objective Versus Self-Reported Sleep Quality at High Altitude.

    Science.gov (United States)

    Anderson, Paul J; Wood-Wentz, Christina M; Bailey, Kent R; Johnson, Bruce D

    2017-11-27

    Anderson, Paul J., Christina M. Wood-Wentz, Kent R. Bailey, and Bruce D. Johnson. Objective versus self-reported sleep quality at high altitude. High Alt Med Biol. 16:000-000, 2017. Previous studies have found little relationship between polysomnography and a diagnosis of acute mountain sickness (AMS) using the Lake Louise Symptom Questionnaire (LLSQ). The correlation between sleep question responses on the LLSQ and polysomnography results has not been explored. We compared LLSQ sleep responses and polysomnography data from our previous study of workers rapidly transported to the South Pole. Sixty-three subjects completed a 3-hour flight from sea level to the South Pole (3200 m, 9800 ft). Participants completed limited overnight polysomnography on their first night and completed LLSQ upon awakening. We compared polysomnography results at the South Pole with sleep question responses on the LLSQ to assess their degree of correspondence. Twenty-two (30%) individuals reported no sleep problems whereas 20 (32%) reported some problems and 20 (33%) individuals reported poor sleep and 1 reported no sleep (n = 1). Median sleep efficiency was (94%) among response groups and mean overnight oxygen saturation was 81%. Median apnea hypopnea index (AHI; events/hour) was 10.2 in those who reported no problems sleeping, 5.1 in those reporting some problems sleeping, and 13.7 in those who reported poor sleep. These differences were not statistically significant. Self-reported sleep quality varied but there were no associated significant differences in sleep efficiency, overnight oxygen saturation, nor AHI. Studies that explore the role of objective sleep quality in the development of AMS should remove the sleep question on the LLSQ from AMS scoring algorithms.

  16. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  17. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  18. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Directory of Open Access Journals (Sweden)

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  19. Special problems and capabilities of high altitude lighter than air vehicles

    Science.gov (United States)

    Wessel, P. R.; Petrone, F. J.

    1975-01-01

    Powered LTA vehicles have historically been limited to operations at low altitudes. Conditions exist which may enable a remotely piloted unit to be operated at an altitude near 70,000 feet. Such systems will be launched like high altitude balloons, operate like nonrigid airships, and have mission capabilities comparable to a low altitude stationary satellite. The limited lift available and the stratospheric environment impose special requirements on power systems, hull materials and payloads. Potential nonmilitary uses of the vehicle include communications relay, environmental monitoring and ship traffic control.

  20. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude.

    Science.gov (United States)

    Jia, C L; He, L J; Li, P C; Liu, H Y; Wei, Z H

    2016-07-01

    Tibetan chickens have good adaptation to hypoxic conditions, which can be reflected by higher hatchability than lowland breeds when incubated at high altitude. The objective of this trial was to study changes in egg composition and metabolism with regards the adaptation of Tibetan chickens to high altitude. We measured the dry weight of chicken embryos, egg yolk, and egg albumen, and the activity of lactate dehydrogenase (LDH) and succinic dehydrogenase (SDH) in breast muscle, heart, and liver from embryos of Tibetan chicken and Dwarf chicken (lowland breed) incubated at high (2,900 m) and low (100 m) altitude. We found that growth of chicken embryos was restricted at high altitude, especially for Dwarf chicken embryos. In Tibetan chicken, the egg weight was lighter, but the dry weight of egg yolk was heavier than that of Dwarf chicken. The LDH activities of the three tissues from the high altitude groups were respectively higher than those of the lowland groups from d 15 to hatching, except for breast muscle of Tibetan chicken embryos on d 15. In addition, under the high altitude environment, the heart tissue from Tibetan chicken had lower LDH activity than that from Dwarf chicken at d 15 and 18. The lactic acid content of blood from Tibetan chicken embryos was lower than that of Dwarf chicken at d 12 and 15 of incubation at high altitude. There was no difference in SDH activity in the three tissues between the high altitude groups and the lowland groups except in three tissues of hatchlings and at d 15 of incubation in breast muscle, nor between the two breeds at high altitude except in the heart of hatchlings. Consequently, the adaptation of Tibetan chicken to high altitude may be associated with higher quantities of yolk in the egg and a low metabolic oxygen demand in tissue, which illuminate the reasons that the Tibetan chicken have higher hatchability with lower oxygen transport ability. © 2016 Poultry Science Association Inc.

  1. Organics, Meteoritic Material, and other Elements in High Altitude Aerosols

    Science.gov (United States)

    Mahoney, M.; Murphy, D. M.; Thomson, D. S.

    1998-01-01

    Recent in situ measurements of the chemical composition of single aerosol particles at altitudes up to 19 km have revealed a number of surprising features about ambient particles. Upper tropospheric aerosols in the study region often contained more organic material than sulfate.

  2. Bats aloft: Variation in echolocation call structure at high altitudes

    Science.gov (United States)

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  3. PHYSICAL ADAPTATION OF CHILDREN TO LIFE AT HIGH-ALTITUDE

    NARCIS (Netherlands)

    DEMEER, K; HEYMANS, HSA; ZIJLSTRA, WG

    Children permanently exposed to hypoxia at altitudes of > 3000 m above sea level show a phenotypical form of adaptation. Under these environmental conditions, oxygen uptake in the lungs is enhanced by increases in ventilation, lung compliance, and pulmonary diffusion. Lung and thorax volumes in

  4. SCC with high volume of fly ash content

    Directory of Open Access Journals (Sweden)

    Bakhrakh Anton

    2017-01-01

    Full Text Available Self-compacting concrete is a very perspective building material. It provides great benefits during the construction of heavily reinforced buildings. SCC has outstanding properties such as high flowability, dense structure and high strength due to specific quality of aggregates, fillers, their proportion in mix, use of polycarboxylate-based superplasticizers. Main disadvantages of SCC are high price and the difficulty of obtaining a proper mix. Use of fillers, such as fly ash type F, is a way to make SCC cheaper by replacing part of cement. Fly ash also provides some technological and operating advantages. In this paper the influence of high volume (60% from cement fly ash type F on the properties of concrete mixture and hardened concrete is investigated. The result of the work shows the possibility of reduction the cost of SCC using ordinary fillers and high amount of fly ash. The investigated SCC has low speed of hardening (7-day compressive strength at the range of 41.8 MPa and high volume of entrained air content (3.5%.

  5. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    Science.gov (United States)

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  6. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    Science.gov (United States)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  7. Snow chemistry of high altitude glaciers in the French Alps

    Science.gov (United States)

    Maupetit, François; Delmas, Robert J.

    1994-09-01

    Snow samples were collected as snowcores in the accumulation zone of four high altitude glaciers (2980 3540m.a.s.l.) from each of the 4 highest mountain areas of the French Alps, during 3 consecutive years: 1989, 1990 and 1991. Sampling was performed in spring (˜ May), before the onset of late spring summer percolation. The accumulated snow therefore reflects winter and spring conditions. A complementary sampling of fresh-snow was performed on an event basis, on one of the studied glaciers, in 1990 and 1991. All samples were analysed for major ions (but also for total formate and acetate in fresh-snow samples) using ion chromatography. The acidity-alkalinity was accurately determined with a titration technique. The ion balance of alpine snow has been achieved from those analyses. High alpine snow is slightly acid (H+ 3 20 μeq 11), but is episodically affected by alkaline saharan dust events. The different sources (pollution, seasalt and soil dust) affecting the impurity content of snow were identified using principal component analysis. The measured free acidity, mainly from anthropogenic origin, originates from nitric acid scavenging while sulfuric acidity is partially neutralized by atmospheric ammonia and by alkaline soil dust derived species, the contribution of hydrochloric acid being negligible. All ions exhibit higher concentrations in spring than in winter snow, indicating most likely the influence of increased vertical transport from the lower troposphere at this time. The transport of saharan dust is described through three major events reaching the Alps during March 1990 and 1991. Very high concentrations of Ca2+ and HCO3 were measured in corresponding samples, indicating that the solubilisation of CaCO3 represents the major influence of saharan dust on the impurity content of alpine snow, shifting the pH from acid towards alkaline values. Chemical analysis suggests that during their transport, mineral alkaline particles can react through acid

  8. User’s Manual For SHARC-4 The Strategic High-Altitude Radiance Code

    Science.gov (United States)

    1997-03-31

    The Strategic High-Altitude Radiance Code, SHARC -4, calculates atmospheric radiance and transmission over a 1 - 40 micrometers spectral region for...the dominant sources at these altitudes. This fourth release of SHARC has been upgraded to model atmospheric structure due to stochastic processes

  9. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  10. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  11. Model of Atmospheric Links on Optical Communications from High Altitude

    Science.gov (United States)

    Subich, Christopher

    2004-01-01

    Optical communication links have the potential to solve many of the problems of current radio and microwave links to satellites and high-altitude aircraft. The higher frequency involved in optical systems allows for significantly greater signal bandwidth, and thus information transfer rate, in excess of 10 Gbps, and the highly directional nature of laser-based signals eliminates the need for frequency-division multiplexing seen in radio and microwave links today. The atmosphere, however, distorts an optical signal differently than a microwave signal. While the ionosphere is one of the most significant sources of noise and distortion in a microwave or radio signal, the lower atmosphere affects an optical signal more significantly. Refractive index fluctuations, primarily caused by changes in atmospheric temperature and density, distort the incoming signal in both deterministic and nondeterministic ways. Additionally, suspended particles, such as those in haze or rain, further corrupt the transmitted signal. To model many of the atmospheric effects on the propagating beam, we use simulations based on the beam-propagation method. This method, developed both for simulation of signals in waveguides and propagation in atmospheric turbulence, separates the propagation into a diffraction and refraction problem. The diffraction step is an exact solution, within the limits of numerical precision, to the problem of propagation in free space, and the refraction step models the refractive index variances over a segment of the propagation path. By applying refraction for a segment of the propagation path, then diffracting over that same segment, this method forms a good approximation to true propagation through the atmospheric medium. Iterating over small segments of the total propagation path gives a good approximation to the problem of propagation over the entire path. Parameters in this model, such as initial beam profile and atmospheric constants, are easily modified in a

  12. HYDRA: High Speed Simulation Architecture for Precision Spacecraft Formation Flying

    Science.gov (United States)

    Martin, Bryan J.; Sohl, Garett A.

    2003-01-01

    This viewgraph presentation describes HYDRA, which is architecture to facilitate high-fidelity and real-time simulation of formation flying missions. The contents include: 1) Motivation; 2) Objective; 3) HYDRA-Description and Overview; 4) HYDRA-Hierarchy; 5) Communication in HYDRA; 6) Simulation Specific Concerns in HYDRA; 7) Example application (Formation Acquisition); and 8) Sample Problem Results.

  13. Women at Altitude: Effects of Menstrual Cycle Phase and Alpha-Adrenergic Blockade on High Altitude Acclimatization.

    Science.gov (United States)

    1996-10-01

    Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, vA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction...Palmer SK, Dahms TE, et al. Blood volume expansion, preeclampsia , and infant birth weight at high altitude. J Appl Physiol 1993;74:1566- 73. Contract...is Ms. Virginia Miller at DSN 343-7327 or by email at virginia.miller@det.amedd.army.mil. FOR THE COMMANDER: PHYL IM. RINEHART Deputy Chief of, Staff for Information Management

  14. Civilian Training in High-Altitude Flight Physiology

    Science.gov (United States)

    1991-08-01

    wequote the following. and above. This concern is escalated by the follow- ing quote from an article entitled "HYPOXIA: the Bioastronautics Data Book NASA ...decrementwhen Air Force or Navy Base or NASA facility. In the altitude is combined with stress, age, sleep dep- event the chamber training is not possible...required fordifferent A-8 situations in flight. A familia ;zation with 3. Aging: regulators and masks, equipment checks, and other general rules is

  15. DEVELOPMENT OF A HIGH ALTITUDE LOW OPENING HUMANITARIAN AIRDROP SYSTEM

    Science.gov (United States)

    2017-07-12

    design of a delivery system (airdrop and helicopter sling load), and development of both an analytical model to characterize deployed aid item...easier rigging. The cargo net system has shown that delivering humanitarian aid from the cargo hook of a helicopter is a viable solution. 41 4...ALTITUDE LOW OPENING HUMANITARIAN AIRDROP SYSTEM by Marc N. Tardiff July 2017 Final Report October 2010 – July

  16. Wind Compensation by Radiometer Arrays in High Altitude Propulsion

    Science.gov (United States)

    2012-05-01

    échauffés execent sur les autres à des distances sensibles. Annales de Chimie et de Physique 29:57-62 2. Crookes W (1874) On attraction and repulsion...For both altitudes, the computational domain is approximately 40 mean free paths in the radial direction. Since radial coordinate of the radiometer...is assumed to be 10 K and 30 K for 60 and 80 km, respectively. Comparison of the flow velocity profiles along the radial coordinate , obtained by

  17. Effect of oxygen supplementation in a hatchery at high altitude and ...

    African Journals Online (AJOL)

    PCRT

    2014-11-19

    Visschedijk, 1991). Growth increases the ... supplementation to the hatchery at high altitude resulted in a slightly higher hatching weight of chicks and ... high metabolic rate, both of which require more O2 (Acar et al., 1995). The peak ...

  18. High altitude medicine education in China: exploring a new medical education reform.

    Science.gov (United States)

    Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi

    2012-03-01

    China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education.

  19. The 2009 Space Science Component of UNH Project SMART and High School Students Building a High-Altitude Balloon Payload

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Chen, L.; Farrugia, C. J.; Frederick-Frost, K.; Goelzer, S.; Kucharek, H.; Messeder, R.; Moebius, E.; Puhl-Quinn, P. A.; Torbert, R. B.

    2009-12-01

    For the past 19 years the University of New Hampshire has offered a unique research and education opportunity to motivated high-school students called Project SMART (Science and Mathematics Achievement through Research Training). The Space Science module is strongly research based. Students work in teams of two on real research projects carved from the research programs of the faculty. The projects are carefully chosen to match the abilities of the students. The students receive classes in basic physics as well as lectures in space science to help them with their work. This year the research included the analysis of magnetic reconnection observations and Crater FTE observation, both by the CLUSTER spacecraft, the building of Faraday cups for thermal ion measurements in our thermal vacuum facility, and analysis of the IBEX star sensor. In addition to this, the students work on one combined project and for the past several years this project has been the building of a payload for a high-altitude balloon. The students learn to integrate telemetry and GPS location hardware while they build several small experiments that they then fly to the upper reaches of the Earth's atmosphere. This year the payload included a small video camera and the payload flew to 96,000 feet, capturing images of weather patterns as well as the curvature of the Earth, thickness of the atmosphere, and black space. In addition to still photos, we will be showing 2- and 7-minute versions of the 90-minute flight video that include footage from peak altitude, the bursting of the balloon, and initial descent.

  20. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  1. Persistent organic pollutants (POPs) as environmental risk factors in remote high-altitude ecosystems.

    Science.gov (United States)

    Kallenborn, Roland

    2006-01-01

    Persistent organic pollutants (POPs), and their transformation products, are the most investigated organic environmental contaminants within the past five decades. Organochlorines have been found in virtually all environmental compartments on the globe. Severe environmental implications have been shown to be associated with the presence of the POP group of contaminants in the environment. However, in the late 1990s, Canadian scientists first pinpointed the implication of POPs for high-altitude environments in a comprehensive way (Blais et al., 1998, Nature 395, 585-588). Under certain meteorological and geographic conditions, high-altitude environments can serve as "cold condensers" for atmospheric POP loadings. Subsequent investigations in high-altitude environments in Asia, Europe, and North and South America have confirmed suspicions that high-altitude mountainous regions have the potential to serve as focus regions for POPs and even for nonpersistent, medium-lived contaminants, such as "currently used pesticides", due to cold condensation and deposition in high altitudes. Although the presence and the altitude-dependent increase of POP levels in mountainous regions are confirmed by many international studies, the ecotoxicological consequences still remain largely unknown. At present, only a few studies have been published describing the biological effects in high-altitude environments due to increased POP exposure. Therefore, in this early stage of the international research effort on the ecotoxicological risk evaluation of persistent contaminants in high-altitude, pristine ecosystems, the present review intends to summarize the current state of research on POPs in high-altitude environments and draw preliminary conclusions on possible consequences of the presence of POPs in mountainous ecosystems based on currently available information from alpine and related Arctic environments.

  2. Synthesis of high ion exchange zeolites from coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Moreno, N.; Alastuey, A.; Juan, R.; Andres, J.M.; Lopez-Soler, A.; Ayora, C.; Medinaceli, A.; Valero, A. [CSIC, Barcelona (Spain)

    2007-07-01

    This study focuses on the synthesis at a pilot plant scale of zeolitic material obtained from the coal fly ashes of the Teruel and Narcea power plants in Spain. After the optimisation of the synthesis parameters at laboratory scale, the Teruel and Narcea fly ashes were selected as low and high glass fly ashes. The pilot plant scale experiments were carried out in a 10 m{sup 3} reactor of Clariant SA (Barcelona, Spain). The results allowed obtaining 1.1 and 2.2 tonnes of zeolitic material with 40 and 55% of NaP1 content, in two single batch experiments of 24 and 8 hours, for Teruel and Narcea fly ashes, respectively. The cation exchange capacities (CEC) of the final product reached 2.0 and 2.7 meq g{sup -1} for Teruel and Narcea zeolitic material, respectively, which are very close to the usual values reached by the high quality natural zeolitic products. Finally, with the aim of testing possible applications of the commercial NaP1-IQE and pilot plant NaP1-Narcea zeolitic products in water decontamination, efficiency for metal uptake from waste waters from electroplating baths was investigated.

  3. United States high-altitude test experiences. A review emphasizing the impact on the environment

    International Nuclear Information System (INIS)

    Hoerlin, H.

    1976-06-01

    The US high-altitude nuclear explosions of the 1955-1962 period are listed chronologically; dates, locations, and yields are given. The major physical phases of the interactions of the weapon outputs with the atmosphere are described, such as the formation of fireballs at the low high-altitudes and the partition of energies and their distribution over very large spaces at the higher high-altitudes. The effects of these explosions on the normal activities of populations and the protective measures taken are documented. Many scientific observations, together with their significance and values, are reviewed. 109 refs

  4. Lipid Profiles, Glycated Hemoglobin, and Diabetes in People Living at High Altitude in Nepal.

    Science.gov (United States)

    Aryal, Nirmal; Weatherall, Mark; Bhatta, Yadav Kumar Deo; Mann, Stewart

    2017-09-10

    This study aimed to describe lipid profiles and the distribution of glycated hemoglobin (HbA1c) in a sample of a high altitude population of Nepal and to explore associations between these metabolic risk variables and altitude. A cross-sectional survey of cardiovascular disease and associated risk factors was conducted among 521 people living at four different altitude levels, all above 2800 m, in the Mustang and Humla districts of Nepal. Urban participants (residents at 2800 m and 3620 m) had higher total cholesterol (TC) and triglyceride (TG) than rural participants. A high ratio of TC to high-density lipoprotein-cholesterol (HDL) (TC/HDL ≥ 5.0) was found in 23.7% (95% CI 19.6, 28.2) and high TG (≥1.7 mmol/L) in 43.3% (95% CI 38.4, 48.3) of participants overall. Mean HbA1c levels were similar at all altitude levels although urban participants had a higher prevalence of diabetes. Overall, 6.9% (95% CI 4.7, 9.8) of participants had diabetes or were on hypoglycaemic treatment. There was no clear association between lipid profiles or HbA1c and altitude in a multivariate analysis adjusted for possible confounding variables. Residential settings and associated lifestyle practices are more strongly associated with lipid profiles and HbA1c than altitude amongst high altitude residents in Nepal.

  5. Hemosiderin deposition in the brain as footprint of high-altitude cerebral edema.

    Science.gov (United States)

    Schommer, Kai; Kallenberg, Kai; Lutz, Kira; Bärtsch, Peter; Knauth, Michael

    2013-11-12

    Based on recent findings of microhemorrhages (MHs) in the corpus callosum (CC) in 3 individuals after nonfatal high-altitude cerebral edema (HACE), we hypothesized that hemosiderin depositions in the brain after high-altitude exposure are specific for HACE and remain detectable over many years. This was a cross-sectional study involving 37 mountaineers in 4 groups: 10 had experienced HACE, 8 high-altitude pulmonary edema, 11 severe acute mountain sickness, and 8 had climbed to altitudes ≥6,962 m without developing any high-altitude illness. HACE was defined as ataxia necessitating assistance with walking and/or decreased consciousness. Within hemosiderin depositions, which were quantified by a score. Unequivocal MHs located in the splenium of the CC were found in 8 subjects and questionable MHs were found in 2 subjects 1 to 35 months after HACE. They were located outside the CC in 5 more severe cases. MHs remained unchanged in those reexamined after 12 to 50 months. A few unequivocal MHs in the splenium of the CC were found in one subject after severe acute mountain sickness, while one subject with high-altitude pulmonary edema and 2 of the extreme altitude climbers had questionable lesions. In all other subjects, MHs were unequivocally absent. MHs detectable by susceptibility-weighted MRI predominantly in the splenium of the CC are long-lasting footprints of HACE.

  6. HURRICANE AND SEVERE STORM SENTINEL (HS3) HIGH-ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) High-Altitude Imaging Wind and Rain dataset was collected from the High-altitude Imaging Wind and Rain Airborne...

  7. GPM GROUND VALIDATION HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) MC3E dataset was collected by the High-Altitude Imaging Wind and Rain...

  8. Domain specific changes in cognition at high altitude and its correlation with hyperhomocysteinemia.

    Directory of Open Access Journals (Sweden)

    Vijay K Sharma

    Full Text Available Though acute exposure to hypobaric hypoxia is reported to impair cognitive performance, the effects of prolonged exposure on different cognitive domains have been less studied. The present study aimed at investigating the time dependent changes in cognitive performance on prolonged stay at high altitude and its correlation with electroencephalogram (EEG and plasma homocysteine. The study was conducted on 761 male volunteers of 25-35 years age who had never been to high altitude and baseline data pertaining to domain specific cognitive performance, EEG and homocysteine was acquired at altitude ≤240 m mean sea level (MSL. The volunteers were inducted to an altitude of 4200-4600 m MSL and longitudinal follow-ups were conducted at durations of 03, 12 and 18 months. Neuropsychological assessment was performed for mild cognitive impairment (MCI, attention, information processing rate, visuo-spatial cognition and executive functioning. Total homocysteine (tHcy, vitamin B12 and folic acid were estimated. Mini Mental State Examination (MMSE showed temporal increase in the percentage prevalence of MCI from 8.17% on 03 months of stay at high altitude to 18.54% on 18 months of stay. Impairment in visuo-spatial executive, attention, delayed recall and procedural memory related cognitive domains were detected following prolonged stay in high altitude. Increase in alpha wave amplitude in the T3, T4 and C3 regions was observed during the follow-ups which was inversely correlated (r = -0.68 to MMSE scores. The tHcy increased proportionately with duration of stay at high altitude and was correlated with MCI. No change in vitamin B12 and folic acid was observed. Our findings suggest that cognitive impairment is progressively associated with duration of stay at high altitude and is correlated with elevated tHcy in the plasma. Moreover, progressive MCI at high altitude occurs despite acclimatization and is independent of vitamin B12 and folic acid.

  9. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.

    Science.gov (United States)

    Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C

    2017-01-01

    Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).

  10. High-altitude mountaineering and brain function: neuropsychological testing of members of a Mount Everest expedition.

    Science.gov (United States)

    Jason, G W; Pajurkova, E M; Lee, R G

    1989-02-01

    Concern has been raised regarding the possibility that hypoxic conditions encountered during high-altitude mountaineering may have lasting harmful effects on the human brain. Members of an expedition to Mount Everest completed a series of neuropsychological tests before and after the expedition. Exposure to altitudes above 7,200 m was limited to a maximum of four consecutive nights, separated by rest periods at lower altitudes. No significant decline in performance was observed on any test. The subjects also completed a short series of tests at different altitudes during the expedition. No significant deterioration was observed at altitudes up to 7,500 m. There do not appear to be lasting harmful effects on brain function under these conditions.

  11. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    OpenAIRE

    Gaurav Sikri, Gaurav; Bhattacharya,Anirban

    2015-01-01

    Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-alti...

  12. Exploring the Limits of High Altitude GPS for Future Lunar Missions

    Science.gov (United States)

    Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael

    2018-01-01

    An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.

  13. Computations of ideal and real gas high altitude plume flows

    Science.gov (United States)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  14. Sequencing of 50 human exomes reveals adaptation to high altitude

    DEFF Research Database (Denmark)

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia

    2010-01-01

    Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which...... difference between Tibetan and Han samples, representing the fastest allele frequency change observed at any human gene to date. This SNP's association with erythrocyte abundance supports the role of EPAS1 in adaptation to hypoxia. Thus, a population genomic survey has revealed a functionally important locus...

  15. Attempt to measure the cosmic background radiation at high altitude

    International Nuclear Information System (INIS)

    Labeyrie, Jacques; Le Boiteux, Henri

    1959-01-01

    Results are given of the measurement by G.M. tubes of hard component of cosmic background between o and 60 km of altitude, at 43 deg. N latitude, on january 27, 1959 (17 h. GMT). The counting rate starts at 0.3 pulses per second (sea level) reaches a maximum value of 15.6 (18 km) and remains constant at 5.7 above 40 km. Reprint of a paper published in Le Journal de Physique et le Radium, t. 20, p. 573, may 1959

  16. Shape memory alloy resistance behaviour at high altitude for feedback control

    Science.gov (United States)

    Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.

    2017-12-01

    Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.

  17. Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes

    Science.gov (United States)

    Ader, Marilyn; Bergman, Richard N.

    2015-01-01

    Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133

  18. Living High and Feeling Low: Altitude, Suicide, and Depression.

    Science.gov (United States)

    Kious, Brent M; Kondo, Douglas G; Renshaw, Perry F

    After participating in this activity, learners should be better able to:• Assess epidemiologic evidence that increased altitude of residence is linked to increased risk of depression and suicide• Evaluate strategies to address hypoxia-related depression and suicidal ideation ABSTRACT: Suicide and major depressive disorder (MDD) are complex conditions that almost certainly arise from the influences of many interrelated factors. There are significant regional variations in the rates of MDD and suicide in the United States, suggesting that sociodemographic and environmental conditions contribute. Here, we review epidemiological evidence that increases in the altitude of residence are linked to the increased risk of depression and suicide. We consider the possibility that chronic hypobaric hypoxia (low blood oxygen related to low atmospheric pressure) contributes to suicide and depression, which is suggested by animal models, short-term studies in humans, and the effects of hypoxic medical conditions on suicide and depression. We argue that hypobaric hypoxia could promote suicide and depression by altering serotonin metabolism and brain bioenergetics; both of these pathways are implicated in depression, and both are affected by hypoxia. Finally, we briefly examine treatment strategies to address hypoxia-related depression and suicidal ideation that are suggested by these findings, including creatine monohydrate and the serotonin precursors tryptophan and 5-hydroxytryptophan.

  19. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  20. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  1. SPLENIC INFARCTION: an intriguing and important cause of pain abdomen in high altitude

    Directory of Open Access Journals (Sweden)

    P. K. Hota

    2015-01-01

    Full Text Available Background: Patients with Sickle cell trait (SCT are usually asymptomatic. They are usually unaware of their condition unless they have a family history. There are specific situations, where these people suffer from the effects of sickle cell trait. Splenic syndrome at high altitude is one of the specific problems. It is usually seen after a patient with SCT has been inducted to high altitude like in case of mountaineers and military personnel deployed in high altitude warfare. Pain abdomen due to splenic infarction in individuals with SCT is one of the manifestations. These patients, if diagnosed in time, they can be spared from unnecessary surgical interventions. We present herewith our experience of splenic infarction due to SCT in high altitude and their management.

  2. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons

    Data.gov (United States)

    National Aeronautics and Space Administration — The project objective is to develop and test a sub-scale version of the Maraia Entry Capsule on a high altitude balloon. The capsule is released at 100,000 ft. The...

  3. GRIP HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-frequency (Ka- and Ku-band) conical scan system, configured with a nadir viewing antenna...

  4. Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space...

  5. Unmanned Aerial Vehicles: Progress Toward Meeting High Altitude Endurance Aircraft Price Goals

    National Research Council Canada - National Science Library

    1998-01-01

    ...) High Altitude Endurance (HAE) Unmanned Aerial Vehicle (UAV) program to determine whether the average flyaway cost for the Global Hawk and DarkStar HAE alr vehicles will be within DOD's cost goal...

  6. High altitude pulmonary edema. Report of a case with familiar history

    International Nuclear Information System (INIS)

    Velasquez, Jurg Niederbacher; Rueda Manrique, Adriana L; Sanabria Pico, Carmen E

    1998-01-01

    We report the case of a ten years old child, who presented a high altitude pulmonary edema. His father had the same disorder ten years ago. In addition we review the physiopathology, diagnosis and management of this disease

  7. Response to Comments on ?High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition?

    OpenAIRE

    Whitlow, Kenneth S.

    2015-01-01

    We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions.

  8. GPM Ground Validation High Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) OLYMPEX V1a

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Altitude Wind and Rain Airborne Profiler (HIWRAP) instrument is a Doppler radar designed to measure tropospheric winds through deriving Doppler profiles...

  9. Predator-prey interaction reveals local effects of high-altitude insect migration.

    Science.gov (United States)

    Krauel, Jennifer J; Brown, Veronica A; Westbrook, John K; McCracken, Gary F

    2018-01-01

    High-altitude nocturnal insect migrations are ubiquitous and represent significant pulses of biomass, which impact large areas and multiple trophic levels, yet are difficult to study and poorly understood. Predation on migratory insects by high-flying bats provides potential for investigating flows of migratory insects across a landscape. Brazilian free-tailed bats, Tadarida brasiliensis, provide valuable ecosystem services by consuming migratory pests, and research suggests migratory insects are an important resource to bats in autumn. We sequenced insect DNA from bat feces collected during the 2010-2012 autumn migrations of insects over southern Texas, and tested the utility of predator-prey interactions for monitoring migratory insect populations by asking: 1) how extensively do bats consume migratory insects during autumn? (2) does the prey community reflect known drivers of insect migrations, e.g. cold fronts? and (3) are migratory insects increasingly important to bats when local food resources decline in autumn? Bats consumed at least 21 species of migratory insects and 44 species of agricultural pests. Prey community richness increased with cold front passage. Bats consumed migratory moths over the entire autumn season, and the proportion of migratory moths in the bat diet increased over the course of the autumn season in all 3 years. This study confirms extensive consumption of migratory insects by bats, links patterns in prey communities to mechanisms driving insect migration, and documents a novel approach to tracking patterns of migratory insect movement. As an important resource for T. brasiliensis in autumn, migratory insects provide stabilizing effects to the local animal community.

  10. High altitude hypoxia, a mask and a Street. Donation of an aviation BLB oxygen mask apparatus from World War 2.

    Science.gov (United States)

    Cooper, M G; Street, N E

    2017-03-01

    The history of hypoxia prevention is closely inter-related with high altitude mountain and aviation physiology. One pioneering attempt to overcome low inspired oxygen partial pressures in aviation was the BLB mask-named after the three designers-Walter M Boothby, W Randolph Lovelace II and Arthur H Bulbulian. This mask and its variations originated just prior to World War 2 when aircraft were able to fly higher than 10,000 feet and pilot hypoxia affecting performance was an increasing problem. We give a brief description of the mask and its designers and discuss the donation of a model used by the British War Office in October 1940 and donated to the Harry Daly Museum at the Australian Society of Anaesthetists by the family of Dr Fred Street. Dr Street was a pioneering paediatric surgeon in Australia and served as a doctor in the Middle East and New Guinea in World War 2. He received the Military Cross.

  11. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  12. Tracking performance with two breathing oxygen concentrations after high altitude rapid decompression

    Science.gov (United States)

    Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.

    1992-01-01

    Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.

  13. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    Science.gov (United States)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  14. Using ultrasound lung comets in the diagnosis of high altitude pulmonary edema: fact or fiction?

    Science.gov (United States)

    Wimalasena, Yashvi; Windsor, Jeremy; Edsell, Mark

    2013-06-01

    High altitude pulmonary edema is a life-threatening condition that remains a concern for climbers and clinicians alike. Within the last decade, studies have shown ultrasonography to be valuable in the accurate diagnosis of a variety of lung pathologies, including cardiogenic pulmonary edema, pleural effusion, pneumothorax, and lung consolidation. Recently, studies conducted in remote areas have demonstrated that ultrasound lung comets can be used as a measure of subacute pulmonary edema and high altitude pulmonary edema in climbers ascending to altitude. This clinical review article provides an overview of lung ultrasonography and its relevance as a diagnostic aid to respiratory pathology. In addition, we describe a standardized technique for identifying ultrasound lung comets and its utility in recognizing the presence of extravascular lung water, as well as the results of studies that have used this approach at sea level and high altitude. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  15. Point-of-Care Ultrasound Utility and Potential for High Altitude Crew Recovery Missions.

    Science.gov (United States)

    Galdamez, Laura A; Clark, Jonathan B; Antonsen, Erik L

    2017-02-01

    Flights to high altitude can lead to exposure and unique pathology not seen in normal commercial aviation. This paper assesses the potential for point-of-care ultrasound to aid in management and disposition of injured crewmembers from a high altitude incident. This was accomplished through a systematic literature review regarding current diagnostic and therapeutic uses of ultrasound for injuries expected in high altitude free fall and parachuting. While current research supports its utility in diagnostics, therapeutic procedures, and triage decisions, little research has been done regarding its utility in high altitude specific pathology, but its potential has been demonstrated. An algorithm was created for use in high altitude missions, in the event of an emergency descent and traumatic landing for an unconscious and hypotensive pilot, to rule out most life threatening causes. Each endpoint includes disposition, allowing concise decision-making.Galdamez LA, Clark JB, Antonsen EL. Point-of-care ultrasound utility and potential for high altitude crew recovery missions. Aerosp Med Hum Perform. 2017; 88(2):128-136.

  16. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  17. Strategic high-altitude atmospheric radiation code (SHARC) user instructions. Technical report, September 1987-January 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R.L.; Duff, J.W.; Bernstein, L.S.; Acharya, P.K.; Gruninger, J.H.

    1989-02-03

    This report describes how to implement and use the Strategic High-Altitude Radiance Code (SHARC). SHARC calculates atmospheric radiation for paths from 60 to 300 km altitude in the 2-40 micrometer spectral region. It models radiation due to NLTE (Non-Local Thermodynamic Equilibrium) molecular emissions which are the dominant sources at these altitudes. This initial version of SHARC includes the five strongest IR radiators, CO/sub 2/, NO, O/sub 3/, H/sub 2/O, and CO. The code is available on magnetic tape and can be obtained by written request to AFGL/OPB.

  18. The Strategic High-Altitude Atmospheric Radiation Code (SHARC) user instructions

    Science.gov (United States)

    Sundberg, R. L.; Duff, J. W.; Bernstein, L. S.; Acharya, P. K.; Gruninger, J. H.; Robertson, D. C.

    1989-02-01

    This report describes how to implement and use the Strategic High-Altitude Radiance Code (SHARC). SHARC calculates atmospheric radiation for paths from 60 to 300 km altitude in the 2 to 40 micron spectral region. It models radiation due to NLTE (Non-Local Thermodynamic Equilibrium) molecular emissions which are the dominant sources at these altitudes. This initial version of SHARC includes the five strongest IR radiators, CO2, NO, O3, H2O, and CO. The code is available on magnetic tape and can be obtained by written request to AFGL/OPB.

  19. The hydration status of backpackers at high altitude.

    Science.gov (United States)

    Rozier, L H

    1998-01-01

    The purpose of the descriptive study was to determine the hydration status of recreational backpackers (n = 201) hiking at altitudes between 7,500 and 14,000 feet. Urine specific gravity was used to document the level of hydration of each subject entering or leaving the Bridger-Teton Wilderness. Demographic, risk, and knowledge factors were also obtained from the sample. Both pre-hike and post-hike subjects were dehydrated; pre-hike mean specific gravity was 1.018, and the post-hike mean was 1.023, showing a significant difference (t = -4.671, p < 0.0000). A small subset group (n = 10) entered both pre- and post-hike data and the findings were similar to the large group, showing a significant increase in specific gravity post-hike (t = -4.881, p < 0.0009). Interestingly, 24% (n = 130) of the post-hike males presented with hematuria.

  20. High altitude-related hypertensive crisis and acute kidney injury in an asymptomatic healthy individual.

    Science.gov (United States)

    Gilbert-Kawai, Edward; Martin, Daniel; Grocott, Michael; Levett, Denny

    2016-01-01

    High-altitude exposure causes a mild to moderate rise in systolic and diastolic blood pressure. This case report describes the first documented case of a hypertensive crisis at altitude, as well as the first report of the occurrence of acute kidney injury in the context of altitude-related hypertension. A healthy, previously normotensive 30-year old, embarked on a trek to Everest Base Camp (5300 m). During his 11-day ascent the subject developed increasingly worsening hypertension. In the absence of symptoms, the individual initially elected to remain at altitude as had previously been the plan. However, an increase in the severity of his hypertension to a peak of 223/119 mmHg resulted in a decision to descend. On descent he was found to have an acute kidney injury that subsequently resolved spontaneously. His blood pressure reverted to normal at sea level and subsequent investigations including a transthoracic echocardiogram, cardiac magnetic resonance imaging, renal ultrasound, and urinary catecholamines were normal. This report challenges the view that transient rises in blood pressure at altitude are without immediate risk. We review the evidence that altitude induces hypertension and discuss the implications for the management of hypertension at altitude.

  1. Development and application of procedures to evaluate air quality and visibility impacts of low-altitude flying operations

    Energy Technology Data Exchange (ETDEWEB)

    Liebsch, E.J.

    1990-08-01

    This report describes the development and application of procedures to evaluate the effects of low-altitude aircraft flights on air quality and visibility. The work summarized in this report was undertaken as part of the larger task of assessing the various potential environmental impacts associated with low-altitude military airspaces. Accomplishing the air quality/visibility analysis for the GEIS included (1) development and application of an integrated air quality model and aircraft emissions database specifically for Military Training Route (MTR) or similar flight operations, (2) selection and application of an existing air quality model to analyze the more widespread and less concentrated aircraft emissions from military Operations Areas (MOAs) and Restricted Areas (RAs), and (3) development and application of procedures to assess impacts of aircraft emissions on visibility. Existing air quality models were considered to be inadequate for predicting ground-level concentrations of pollutants emitted by aircraft along MTRs; therefore, the Single-Aircraft Instantaneous Line Source (SAILS) and Multiple-Aircraft Instantaneous Line Source (MAILS) models were developed to estimate potential impacts along MTRs. Furthermore, a protocol was developed and then applied in the field to determine the degree of visibility impairment caused by aircraft engine exhaust plumes. 19 refs., 2 figs., 3 tabs.

  2. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600

    Directory of Open Access Journals (Sweden)

    Martin Buchheit

    2015-03-01

    Full Text Available To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS and 6 high-altitude (a Bolivian U18 team, BOL native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1 was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h-1 (D>14.4 km·h-1 and >80% of vYo-YoIR1 (D>80%vYo-YoIR1 were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen’s d +1.0, 90%CL ± 0.8 and D>14.4 km·h-1 (+0.5 ± 0.8 in AUS. D>14.4 km.h-1 was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8. Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h-1 increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7; conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2. In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in ‘fitness’ do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity.

  3. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A.S.H.; Dommen, J.; Furger, M.; Graber, W.K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  4. Assessment of the Brainstem-Mediated Stapedius Muscle Reflex in Andean Children Living at High Altitudes.

    Science.gov (United States)

    Counter, S Allen; Buchanan, Leo H; Ortega, Fernando; Jacobs, Anthony B; Laurell, Göran

    2017-03-01

    Counter, S. Allen, Leo H. Buchanan, Fernando Ortega, Anthony B. Jacobs, and Göran Laurell. Assessment of the brainstem-mediated stapedius muscle reflex in Andean children living at high altitudes. High Alt Med Biol. 18:37-45, 2017.-This study examined the physiological thresholds, amplitude growth, and contraction duration of the acoustic stapedius reflex (ASR) in Andean children aged 2-17 years living at altitudes of 2850 m (Altitude I Group) and 3973 m (Altitude II Group) as part of a general medical assessment of the health status of the children. The brainstem-mediated ASR reveals the integrity of the neuronal components of the auditory reflex arc, including the cochlea receptors, eight cranial nerves, and brainstem neural projections to the cochlear nuclei, bilateral superior olivary nuclei, facial nerve nuclei, and facial nerve and its stapedius branch. Uncrossed (ipsilateral) and crossed (contralateral) ASR thresholds (ASRT), ASR amplitude growth (ASRG) function, and ASR muscle contraction duration (decay/fatigue) (ASRD) were measured noninvasively with 500, 1000 Hz and broadband (bandwidth = 125-4000 Hz) noise stimulus activators using a middle ear immittance system. Oxygen saturation (SaO 2 ) level and heart rate were measured in a subsample of the study group. Statistical analyses revealed that the Altitude I and Altitude II groups had ASRT, ASRG function, and ASRD rates comparable to children at sea level and that the two groups were not significantly different for any of the ASR measures. No significant association was found between SaO 2 or heart rate and ASRT, growth, and muscle fatigue rate. In conclusion, the assessment of the ASR in children in the high-altitude groups revealed normal function. Furthermore, the results indicate no adverse oto-physiological effects of altitude on the brainstem-mediated ASR at elevations between 2850 and 4000 m and suggest normal middle ear and auditory brainstem function.

  5. Description of the Strategic High-Altitude Atmospheric Radiation Code (SHARC)

    Science.gov (United States)

    Duff, J. W.; Sundberg, R. L.; Gruninger, J. H.; Bernstein, L. S.; Robertson, D. C.; Healey, R. J.

    1990-11-01

    The report describes an upgraded version of the strategic high-altitude radiance code, SHARC-2. The SHARC calculates atmospheric radiance and transmittance over the 2 to 40 micrometer spectral region for arbitrary paths within 50 and 300 km altitude, including space viewing. It models radiation due to non-local thermodynamic equilibrium (NLTE) molecular emissions which are the dominant sources at these altitudes. This new version, which is now ready for distribution, has been upgraded to include a fully integrated auroral model with time-dependent chemistry, extention down to 50 km altitude, and radiation from the minor isotopes of CO2. In addition, there have been numerous internal upgrades to the various modules. These include a Voigt lineshape for the radiative excitation module; embedding of the auroral region into a quiescent atmosphere; and improvements in the radiation transport algorithms.

  6. Radiological and material characterization of high volume fly ash concrete.

    Science.gov (United States)

    Ignjatović, I; Sas, Z; Dragaš, J; Somlai, J; Kovács, T

    2017-03-01

    The main goal of research presented in this paper was the material and radiological characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural radionuclide content and radon emanation and exhalation coefficients. All concrete samples were made with a fly ash content between 50% and 70% of the total amount of cementitious materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete density) and mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity) of concrete were tested. The radionuclide content ( 226 Ra, 232 Th and 40 K) and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. Determination of massic exhalation rates of HVFAC and its components using radon accumulation chamber techniques combined with a radon monitor was performed. The results show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in an increase in compressive strength of HVFAC by approximately 20% for the same mass of cement used in the mixtures. On the basis of the obtained radionuclide content of concrete components the I -indices of different HVFAC samples were calculated and compared with measured values (0.27-0.32), which were significantly below the recommended 1.0 index value. The prediction was relatively close to the measured values as the ratio between the calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical and radiological properties and performed calculations clearly prove that all 10 designed concretes with a certain type of fly ash are suitable for structural and non-structural applications both from a material and radiological point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants

    Directory of Open Access Journals (Sweden)

    Gao eHu

    2016-02-01

    Full Text Available Most insect migrants fly at considerable altitudes (hundreds of meters above the ground where they utilize fast-flowing winds to achieve rapid and comparatively long-distance transport. The nocturnal aerial migrant fauna has been well studied with entomological radars, and many studies have demonstrated that flight orientations are frequently grouped around a common direction in a range of nocturnal insect migrants. Common orientation typically occurs close to the downwind direction (thus ensuring that a large component of the insects’ self-powered speed is directed downstream, and in nocturnal insects at least, the downwind headings are seemingly maintained by direct detection of wind-related turbulent cues. Despite being far more abundant and speciose, the day-flying windborne migrant fauna has been much less studied by radar; thus the frequency of wind-related common orientation patterns and the sensory mechanisms involved in their formation remain to be established. Here we analyze a large dataset of >600,000 radar-detected ‘medium-sized’ windborne insect migrants (body mass from 10 to 70 mg, flying hundreds of meters above southern UK, during the afternoon, in the period around sunset, and in the middle of the night. We found that wind-related common orientation was almost ubiquitous during the day (present in 97% of all ‘migration events’ analyzed, and was also frequent at sunset (85% and at night (81%. Headings were systematically offset to the right of the flow at night-time (as predicted from the use of turbulence cues for flow assessment, but there was no directional bias in the offsets during the day or at sunset. Orientation ‘performance’ significantly increased with increasing flight altitude throughout the day and night. We conclude by discussing sensory mechanisms which most likely play a role in the selection and maintenance of wind-related flight headings.

  8. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  10. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.

    Science.gov (United States)

    Koundal, Sunil; Gandhi, Sonia; Kaur, Tanzeer; Mazumder, Avik; Khushu, Subash

    2015-12-01

    High altitude medicine is an emerging subspecialty that has crosscutting relevance for 21(st) century science and society: from sports medicine and aerospace industry to urban and rural communities living in high altitude. Recreational travel to high altitude has also become increasingly popular. Rarely has the biology of high altitude biology been studied using systems sciences and omics high-throughput technologies. In the present study, 1H-NMR-based metabolomics, along with multivariate analyses, were employed in a preclinical rat model to characterize the urinary metabolome under hypobaric hypoxia stress. Rats were exposed to simulated altitude of 6700 m above the sea level. The urine samples were collected from pre- and post-exposure (1, 3, 7, and 14 days) of hypobaric hypoxia. Metabolomics urinalysis showed alterations in TCA cycle metabolites (citrate, α-ketoglutarate), cell membrane metabolism (choline), gut micro-flora metabolism (hippurate, phenylacetylglycine), and others (N-acetyl glutamate, creatine, taurine) in response to hypobaric hypoxia. Taurine, a potential biomarker of hepatic function, was elevated after 3 days of hypobaric hypoxia, which indicates altered liver functioning. Liver histopathology confirmed the damage to tissue architecture due to hypobaric hypoxia. The metabolic pathway analysis identified taurine metabolism and TCA as important pathways that might have contributed to hypobaric hypoxia-induced pathophysiology. This study demonstrates the use of metabolomics as a promising tool for discovery and understanding of novel biochemical responses to hypobaric hypoxia exposure, providing new insight in the field of high altitude medicine and the attendant health problems that occur in response to high altitude. The findings reported here also have potential relevance for sports medicine and aviation sciences.

  11. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  12. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    Science.gov (United States)

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  13. No Change in Running Mechanics With Live High-Train Low Altitude Training in Elite Distance Runners.

    Science.gov (United States)

    Stickford, Abigail S L; Wilhite, Daniel P; Chapman, Robert F

    2017-01-01

    Investigations into ventilatory, metabolic, and hematological changes with altitude training have been completed; however, there is a lack of research exploring potential gait-kinematic changes after altitude training, despite a common complaint of athletes being a lack of leg "turnover" on return from altitude training. To determine if select kinematic variables changed in a group of elite distance runners after 4 wk of altitude training. Six elite male distance runners completed a 28-d altitude-training intervention in Flagstaff, AZ (2150 m), following a modified "live high-train low" model, wherein higherintensity runs were performed at lower altitudes (945-1150 m) and low-intensity sessions were completed at higher altitudes (1950-2850 m). Gait parameters were measured 2-9 d before departure to altitude and 1 to 2 d after returning to sea level at running speeds of 300-360 m/min. No differences were found in ground-contact time, swing time, or stride length or frequency after altitude training (P > .05). Running mechanics are not affected by chronic altitude training in elite distance runners. The data suggest that either chronic training at altitude truly has no effect on running mechanics or completing the live high-train low model of altitude training, where higher-velocity workouts are completed at lower elevations, mitigates any negative mechanical adaptations that may be associated with chronic training at slower speeds.

  14. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  15. Butterflies of the high-altitude Atacama Desert: habitat use and conservation.

    Science.gov (United States)

    Despland, Emma

    2014-01-01

    The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 5000 m asl (prepuna, puna and Andean steppe habitats) as well as in high and low-altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life history strategies and relationships with host plants.

  16. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  17. Childhood anemia at high altitude: risk factors for poor outcomes in severe pneumonia.

    Science.gov (United States)

    Moschovis, Peter P; Banajeh, Salem; MacLeod, William B; Saha, Samir; Hayden, Douglas; Christiani, David C; Mino, Greta; Santosham, Mathuram; Thea, Donald M; Qazi, Shamim; Hibberd, Patricia L

    2013-11-01

    Pneumonia is the leading cause of mortality in young children globally, and factors that affect tissue delivery of oxygen may affect outcomes of pneumonia. We studied whether altitude and anemia influence disease severity and outcomes in young children with World Health Organization-defined severe pneumonia. We analyzed data from the SPEAR (Severe Pneumonia Evaluation Antimicrobial Research) study, a World Health Organization- and USAID-sponsored multinational randomized controlled trial of antibiotics for severe pneumonia among children aged 2 to 59 months in resource-poor settings. The trial enrolled 958 children in 8 sites at varying elevations, classified as high (≥ 2000 m) or low (risk: 4.07; 95% confidence interval: 2.60-6.38) but not at low altitude (relative risk: 1.12; 95% confidence interval: 0.96-1.30). Children at high altitude took longer to reach normoxemia than did children at lower altitudes (5.25 vs 0.75 days; P risk of poor outcome when being treated for severe pneumonia. Given the high global prevalence of anemia among young children, prevention and treatment of anemia should be a priority in children living at high altitude and could improve outcomes of pneumonia.

  18. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  19. Semi-physical simulation of aerodynamic effect on quartz optical window in the high-altitude and high-speed environment

    Science.gov (United States)

    Fan, Da; Ming, Xing; Liu, Xinyue; Wang, Guoming; Guo, Wenji

    2017-04-01

    Under the semi-physical simulation model, the aerodynamic pressure, aerodynamic heat effect taking place on the outer surface of optical window in the high-altitude and high-speed environment are analyzed. The first step, based on Reynolds Averaged Navier-Stokes equations, combining CFD simulation technology, aerodynamic pressure and aerodynamic heat loading on optical window were computed in different flying situation. Then, based on the calculated pressure and temperature data caused by aerodynamic effect on the optical window, experiments on aerodynamic effect simulation equipment were conducted. Theoretical and practical simulation results showed that the imaging performance of optical system was not affected by the deformation of Fused quartz glass under the aerodynamic circumstance. The semi-physical simulation model makes advices for the optical window design work and the detection of aviation spectral camera imaging performance.

  20. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS

    Science.gov (United States)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason

    2014-01-01

    NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The

  1. Simple Mechanical Beneficiation Method of Coarse Fly Ash with High LOI for Making HVFA Mortar

    Directory of Open Access Journals (Sweden)

    Antoni ,

    2015-01-01

    Full Text Available This study focusses on the effect of milling of fly ash obtained from four different sources on the properties of high volume fly ash (HVFA mortar. Two fly ash samples with low loss-on-ignition (LOI were taken from a coal-fired power plant, while the other two with high LOIs were obtained from a textile factory and from a paper mill, respectively. Milling was performed using a rod mill at a certain period of time. The workability of HVFA mortar with constant water to cementitious ratio was controlled by adjusting the superplasticizer content. The results show that the specific gravity of fly ash increases after milling. Utilizing milled fly ash ends up with significant strength increase of HVFA mortar, especially those utilizing high LOI fly ash. This shows that milling is an excellent fly ash beneficiation technique, especially on the one with high LOI value.

  2. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    . Global cerebral blood flow at rest and during exercise on a bicycle ergometer was measured by the Kety-Schmidt technique. Cerebral metabolic rates of oxygen, glucose, and lactate were calculated by the Fick principle. Cerebral function was assessed by a computer-based measurement of reaction time...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow......The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level...

  3. Periodic breathing and oxygen supplementation in Chilean miners at high altitude (4200m).

    Science.gov (United States)

    Moraga, Fernando A; Jiménez, Daniel; Richalet, Jean Paul; Vargas, Manuel; Osorio, Jorge

    2014-11-01

    Our objective was to determine the nocturnal ventilatory pattern and characterize the effect of oxygen enrichment on nocturnal ventilatory pattern and sleep quality in miners exposed to intermittent hypobaric hypoxia at 4200m. A total of 16 acclimatized miners were studied. Nocturnal ventilatory pattern (plethysmographic inductance), arterial oxygen saturation and heart rate (pulse oximetry) were performed in 9/16 subjects. Sleep quality at high altitude was assessed by self-questionnaires in 16/16 subjects. All measurements were performed during at least 7h of sleep. Subjects were studied while sleeping at high altitude without (control, C) and with oxygen supplementation (FiO2=0.25, treated, T). Periodic breathing (%) C: 25±18 vs T: 6.6±5.6 (pbreathing with apneas was present in miners exposed to high altitude for 1 to 4 years and was reduced by treatment with supplementary oxygen. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    -consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA......) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite......Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen...

  5. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  6. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    Science.gov (United States)

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.

  7. Pulmonary capillary reserve and exercise capacity at high altitude in healthy humans.

    Science.gov (United States)

    Taylor, Bryan J; Coffman, Kirsten E; Summerfield, Douglas T; Issa, Amine N; Kasak, Alex J; Johnson, Bruce D

    2016-02-01

    We determined whether well-acclimatized humans have a reserve to recruit pulmonary capillaries in response to exercise at high altitude. At sea level, lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (DmCO), and pulmonary capillary blood volume (V c) were measured at rest before maximal oxygen consumption ([Formula: see text]) was determined in seven adults. Then, DLCO, DmCO and V c were measured pre- and post-exhaustive incremental exercise at 5150 m after ~40 days of acclimatization. Immediately after exercise at high altitude, there was an increase in group mean DmCO (14 ± 10%, P = 0.040) with no pre- to post-exercise change in group mean DLCO (46.9 ± 5.8 vs. 50.6 ± 9.6 ml/min/mmHg, P = 0.213) or V c (151 ± 28 vs. 158 ± 37 ml, P = 0.693). There was, however, a ~20% increase in DLCO from pre- to post-exercise at high altitude (51.2 ± 0.2 vs. 61.1 ± 0.2 ml/min/mmHg) with a concomitant increase in DmCO (123 ± 2 vs. 156 ± 4 ml/min/mmHg) and V c (157 ± 3 vs. 180 ± 8 ml) in 2 of the 7 participants. There was a significant positive relationship between the decrease in [Formula: see text] from sea level to high altitude and the change in DLCO and lung diffusing capacity for nitric oxide (DLNO) from rest to end-exercise at high altitude. These data suggest that recruitment of the pulmonary capillaries in response to exercise at high altitude is limited in most well-acclimatized humans but that any such a reserve may be associated with better exercise capacity.

  8. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations.

    Science.gov (United States)

    Bigham, Abigail W; Mao, Xianyun; Mei, Rui; Brutsaert, Tom; Wilson, Megan J; Julian, Colleen Glyde; Parra, Esteban J; Akey, Joshua M; Moore, Lorna G; Shriver, Mark D

    2009-12-01

    High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor ( HIF ) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF -targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude.

  9. Fly Eye radar: detection through high scattered media

    Science.gov (United States)

    Molchanov, Pavlo; Gorwara, Ashok

    2017-05-01

    Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.

  10. The High Altitude Water Čerenkov (HAWC) TeV Gamma Ray Observatory

    Science.gov (United States)

    de la Fuente, Eduardo; Oceguera-Becerra, Tomas; García-Torales, Guillermo; García-Luna, José Luis

    The High Altitude Water Čerenkov observatory is a second generation ground based very high-energy γ-ray detector under construction in Sierra Negra, Puebla, México at an altitude of 4,100m. Higher altitude, improved design and a larger physical size used to reject cosmic ray background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view (˜2sr) and over 90% duty cycle make it ideal to search for several types of TeV astronomical γ-ray sources, diffuse emission, cosmic anisotropy, and transients. Details and status of HAWC at date, and a galactic star formation application are here presented.

  11. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  12. Effects of antioxidant vitamins on newborn and placental traits in gestations at high altitude: comparative study in high and low altitude native sheep.

    Science.gov (United States)

    Parraguez, Víctor H; Atlagich, Miljenko; Araneda, Oscar; García, Carlos; Muñoz, Andrés; De Los Reyes, Mónica; Urquieta, Bessie

    2011-01-01

    The present study evaluated the hypothesis that the effects of hypoxia on sheep pregnancies at high altitude (HA) are mediated by oxidative stress and that antioxidant vitamins may prevent these effects. Both HA native and newcomer ewes were maintained at an altitude of 3,589 m during mating and pregnancy. Control low altitude (LA) native ewes were maintained at sea level. Half of each group received daily oral supplements of vitamins C (500 mg) and E (350 IU) during mating and gestation. Near term, maternal plasma vitamin levels and oxidative stress biomarkers were measured. At delivery, lambs were weighed and measured, and placentas were recovered for macroscopic and microscopic evaluation. Vitamin concentrations in supplemented ewes were two- or threefold greater than in non-supplemented ewes. Plasma carbonyls and malondialdehyde in non-supplemented ewes were consistent with a state of oxidative stress, which was prevented by vitamin supplementation. Vitamin supplementation increased lamb birthweight and cotyledon number in both HA native and newcomer ewes, although placental weight and cotyledon surface were diminished. Placentas from vitamin-supplemented HA ewes were similar to those from ewes at sea level, making these placental traits (weight, number and diameter of cotyledons) similar to those from ewes at sea level. Vitamin supplementation had no effect on LA pregnancies. In conclusion, supplementation with vitamins C and E during pregnancy at HA prevents oxidative stress, improving pregnancy outcomes.

  13. The Use of Dexamethasone in Support of High-Altitude Ground Operations and Physical Performance: Review of the Literature

    Science.gov (United States)

    2014-12-01

    HAPE), and high-altitude cerebral edema (HACE). Although AMS is short lived and normally subsides within 2 to 7 days, HAPE and HACE are potentially...mountain sickness (AMS) treatment, high-altitude pulmonary edema (HAPE) treatment, and high-altitude cerebral edema (HACE). This review iden- tified...of treating cerebral edema derived from multiple etiologies. It is also used as a potent antiemetic for cancer chemotherapy patients. Several

  14. [Adaptive mechanisms and behavioural recommendations: playing football in heat, cold and high altitude conditions].

    Science.gov (United States)

    Born, D-P; Hoppe, M W; Lindner, N; Freiwald, J; Holmberg, H-C; Sperlich, B

    2014-03-01

    Football is played worldwide and players often have to cope with hot and cold temperatures as well as high altitude conditions. The upcoming and past world championships in Brazil, Qatar and South Africa illustrate the necessity for behavioural strategies and adaptation to extreme environmental conditions. When playing football in the heat or cold, special clothing, hydration and nutritional and acclimatisation strategies are vital for high-level performance. When playing at high altitude, the reduced oxygen partial pressure impairs endurance performance and alters the technical and tactical requirements. Special high-altitude adaptation and preparation strategies are essential for football teams based at sea-level in order to perform well and compete successfully. Therefore, the aim of the underlying review is: 1) to highlight the difficulties and needs of football teams competing in extreme environmental conditions, 2) to summarise the thermoregulatory, physiological, neuronal and psychological mechanism, and 3) to provide recommendations for coping with extreme environmental conditions in order to perform at a high level when playing football in the heat, cold and at high altitude. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Comparison of muscle force, muscle endurance, and electromyogram activity during an expedition at high altitude

    Science.gov (United States)

    Terasawa, K.; Fujiwara, T.; Sakai, A.; Yanagidaira, N.; Asano, K.; Yanagisawa, K.; Kashimura, N.; Ueda, G.; Wu, T.; Zhang, Y.

    1996-09-01

    Handgrip force (HF), maximal pinch force (MF), muscle endurance (ME), and the median power frequency (MdPF) of the activity shown in the electromyogram (EMG) were studied at various altitudes in eight normal healthy subjects. MF and ME were measured between the index finger and thumb, and all measurements were obtained at altitudes ranging from 610 to 4860 m during an expedition in the Qinghai Plateau in China. With the change in altitude HF, ME, and MF showed no significant change. Compared to the MdPF at 2260 m on ascent, the MdPF at other altitudes showed a significant decrease ( Pmuscle performance (HF, MF, and ME) was not affected by the environment at high altitude. However, MdPF was affected and the mean MdPF at 610 m after the expedition did not recover to initial values of MdPF. We suggest these results may have been affected by fatigue and chronic exposure to the hypobaric hypoxic environment, since the members of the expedition party expressed feelings of sluggishness and fatigue after the expedition.

  16. Evaluation of promising sweetpotato genotypes for high altitude ...

    African Journals Online (AJOL)

    The trials were set up to identify sweetpotato genotypes with adaptation to highland agroecologies with special reference to resistance to Ahemaria blight ... growth and at harvest, four genotypes and the local check, Magabari, bad high levels of resistance toA/Jemaria blight. Eight genotypes had total storage root yield ...

  17. Low-resolution ship detection from high-altitude aerial images

    Science.gov (United States)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  18. Chasing the Great American 2017 Total Solar Eclipse: Coronal Results from NASA's WB-57F High-Altitude Research Aircraft

    Science.gov (United States)

    Caspi, A.; Tsang, C.; DeForest, C. E.; Seaton, D. B.; Bryans, P.; Burkepile, J.; Casey, T. A.; Collier, J.; Darrow, D.; DeLuca, E.; Durda, D. D.; Gallagher, P.; Golub, L.; Judge, P. G.; Laurent, G. T.; Lewis, J.; Mallini, C.; Parent, T.; Propp, T.; Steffl, A.; Tomczyk, S.; Warner, J.; West, M. J.; Wiseman, J.; Zhukov, A.

    2017-12-01

    Total solar eclipses present rare opportunities to study the complex solar corona, down to altitudes of just a few percent of a solar radius above the surface, using ground-based and airborne observatories that would otherwise be dominated by the intense solar disk and high sky brightness. Studying the corona is critical to gaining a better understanding of physical processes that occur on other stars and astrophysical objects, as well as understanding the dominant driver of space weather that affects human assets at Earth and elsewhere. For example, it is still poorly understood how the corona is heated to temperatures of 1-2 MK globally and up to 5-10 MK above active regions, while the underlying chromosphere is 100 times cooler; numerous theories abound, but are difficult to constrain due to the limited sensitivities and cadences of prior measurements. The origins and stability of coronal fans, and the extent of their reach to the middle and outer corona, are also not well known, limited in large part by sensitivities and fields of view of existing observations. Airborne observations during the eclipse provide unique advantages; by flying in the stratosphere at altitudes of 50 kft or higher, they avoid all weather, the seeing quality is enormously improved, and additional wavelengths such as near- IR also become available due to significantly reduced water absorption. For an eclipse, an airborne observatory can also follow the shadow, increasing the total observing time by 50% or more. We present results of solar coronal measurements from airborne observations of the 2017 Great American Total Solar Eclipse using two of NASA's WB-57 high-altitude research aircraft, each equipped with two 8.7" telescopes feeding high-sensitivity visible (green-line) and medium-wave IR (3-5 μm) cameras operating at high cadence (30 Hz) with 3 arcsec/pixel platescale and ±3 R_sun fields of view. The aircraft flew along the eclipse path, separated by 110 km, to observe a summed 7

  19. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    Science.gov (United States)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  20. Development of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

    Science.gov (United States)

    Heymsfield, G. M.; Carswell, J. R.; Li, L.; Schaubert, D.; Heymsfield, J. C.

    2006-12-01

    A dual-wavelength (Ku and Ka band) High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is under development for measuring tropospheric winds within precipitation regions and ocean surface winds in rain-free to light rain regions. This instrument is being designed for operation on high-altitude manned aircraft and the Global Hawk UAV. Proposed lidar-based systems provide measurements in cloud-free regions globally. Since many of the weather systems are in disturbed regions that contain precipitation and clouds, microwave based techniques are more suitable in these regions. Airborne radars at NASA and elsewhere have shown the ability to measure winds in precipitation and clouds. These radars have not generally been suitable for deriving the full horizontal wind from above cloud systems (high-altitude or space) that would require conical scan. HIWRAP is conical scan radar that uses new technologies that utilize solid state rather than tube based transmitters. The presentation will discuss the motivation for the instrument, key system level technologies, status, and planned flight testing of the prototype sensor on the high-altitude WB-57 aircraft to demonstrate the system level performance of the instrument.

  1. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Science.gov (United States)

    Xing, Jinchuan; Wuren, Tana; Simonson, Tatum S; Watkins, W Scott; Witherspoon, David J; Wu, Wilfred; Qin, Ga; Huff, Chad D; Jorde, Lynn B; Ge, Ri-Li

    2013-01-01

    Deedu (DU) Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR), neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1), as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG). Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1) shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  2. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Directory of Open Access Journals (Sweden)

    Jinchuan Xing

    Full Text Available Deedu (DU Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR, neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1, as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG. Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1 shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  3. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.

    Science.gov (United States)

    Cheviron, Zachary A; Bachman, Gwendolyn C; Connaty, Alex D; McClelland, Grant B; Storz, Jay F

    2012-05-29

    In response to hypoxic stress, many animals compensate for a reduced cellular O(2) supply by suppressing total metabolism, thereby reducing O(2) demand. For small endotherms that are native to high-altitude environments, this is not always a viable strategy, as the capacity for sustained aerobic thermogenesis is critical for survival during periods of prolonged cold stress. For example, survivorship studies of deer mice (Peromyscus maniculatus) have demonstrated that thermogenic capacity is under strong directional selection at high altitude. Here, we integrate measures of whole-organism thermogenic performance with measures of metabolic enzyme activities and genomic transcriptional profiles to examine the mechanistic underpinnings of adaptive variation in this complex trait in deer mice that are native to different elevations. We demonstrate that highland deer mice have an enhanced thermogenic capacity under hypoxia compared with lowland conspecifics and a closely related lowland species, Peromyscus leucopus. Our findings suggest that the enhanced thermogenic performance of highland deer mice is largely attributable to an increased capacity to oxidize lipids as a primary metabolic fuel source. This enhanced capacity for aerobic thermogenesis is associated with elevated activities of muscle metabolic enzymes that influence flux through fatty-acid oxidation and oxidative phosphorylation pathways in high-altitude deer mice and by concomitant changes in the expression of genes in these same pathways. Contrary to predictions derived from studies of humans at high altitude, our results suggest that selection to sustain prolonged thermogenesis under hypoxia promotes a shift in metabolic fuel use in favor of lipids over carbohydrates.

  4. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  5. Cardiac adaptation to chronic high-altitude hypoxia: Beneficial and adverse effects

    Czech Academy of Sciences Publication Activity Database

    Ošťádal, Bohuslav; Kolář, František

    2007-01-01

    Roč. 158, 2-3 (2007), s. 224-236 ISSN 1569-9048 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/07/0875 Institutional research plan: CEZ:AV0Z50110509 Keywords : heart * high altitude * adaptation Subject RIV: ED - Physiology Impact factor: 2.202, year: 2007

  6. Hypoxia augments LPS-induced inflammation and triggers high altitude cerebral edema in mice.

    Science.gov (United States)

    Zhou, Yanzhao; Huang, Xin; Zhao, Tong; Qiao, Meng; Zhao, Xingnan; Zhao, Ming; Xu, Lun; Zhao, Yongqi; Wu, Liying; Wu, Kuiwu; Chen, Ruoli; Fan, Ming; Zhu, Lingling

    2017-08-01

    High altitude cerebral edema (HACE) is a life-threatening illness that develops during the rapid ascent to high altitudes, but its underlying mechanisms remain unclear. Growing evidence has implicated inflammation in the susceptibility to and development of brain edema. In the present study, we investigated the inflammatory response and its roles in HACE in mice following high altitude hypoxic injury. We report that acute hypobaric hypoxia induced a slight inflammatory response or brain edema within 24h in mice. However, the lipopolysaccharide (LPS)-induced systemic inflammatory response rapidly aggravated brain edema upon acute hypobaric hypoxia exposure by disrupting blood-brain barrier integrity and activating microglia, increasing water permeability via the accumulation of aquaporin-4 (AQP4), and eventually leading to impaired cognitive and motor function. These findings demonstrate that hypoxia augments LPS-induced inflammation and induces the occurrence and development of cerebral edema in mice at high altitude. Here, we provide new information on the impact of systemic inflammation on the susceptibility to and outcomes of HACE. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Water level changes of high altitude lakes in Himalaya–Karakoram ...

    Indian Academy of Sciences (India)

    2007; Ramanathan and Feng 2009; UNEP 2009;. Singh et al. 2011). Water melts from the Himalayan glaciers and seasonal snow packs are one of the water sources for high altitude wetlands and lakes (Xu et al. 2009) and to Himalayan rivers. (Immerzeel et al. 2010). Several studies have assessed the status of glaciers in ...

  8. Comments on “High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition”

    OpenAIRE

    Sikri, Gaurav

    2015-01-01

    We appreciate the letter to the editor and are pleased to respond regarding our recent case study regarding high altitude pulmonary edema in an experienced mountaineer. The letter raises some valid questions regarding our treatment decisions. With this, as with most emergency department (ED) patients, it must be understood that the initial treatment reflected the breadth of our differential diagnosis.

  9. High energy nucleonic component of cosmic rays at mountain altitudes

    CERN Document Server

    Stora, Raymond Félix

    The diffusion equations describing the unidimensional propagation of .the high energy nucleonic component of cosmic rays throughout the atmosphere are sol"V'ed under two assumptions: (l) The nucleon-nucleon collisions are described according to Fermi's therlnOdynamical model involving completely inelastic pion and.nucleon-antinucleon pair production. (2) A somewhat opposite assumption is made assuming partially elastic collisions without nucleon-anti.nucleon pair production. Due to the present inaccuracy of experiments, we are able to derive only tentati v.e conclusions. The values computed under both hypotheses for the absorption mean free path and the charged to neutral particles ratio are found in acceptable ranges when compared to experimental data. The diffeential energy spectrum at a given depth is always found steeper than the primary, and steeper than indicated by experimental values if the primary is taken proportional to the 2.5 inverse power of energy.

  10. High-Altitude Aeolian Research on the Tibetan Plateau

    Science.gov (United States)

    Dong, Zhibao; Hu, Guangyin; Qian, Guangqiang; Lu, Junfeng; Zhang, Zhengcai; Luo, Wanyin; Lyu, Ping

    2017-12-01

    Aeolian processes and their role in desertification have been studied extensively at low elevations but have been rarely studied at high elevations in areas such as the Tibetan Plateau, where aeolian processes were active in the geologic past and remain active today. In this review, we summarize research that improves our understanding of aeolian processes on the Tibetan Plateau, including the distribution, characteristics, and provenance of aeolian sediments; the history of aeolian activity; aeolian geomorphology; and wind-driven land degradation. Contemporary aeolian processes primarily occur in dry basins, in wide river valleys, on lakeshores, on mountain slopes, and on gravel pavements. Sediment characteristics suggest a local origin and provide interesting contrasts with those of China's Loess Plateau. The history of aeolian activity and its paleoclimatic implications, reconstructed based on aeolian archives, is short (mostly since the Late Glacial) and shows wide regional differences. Aeolian geomorphology is simple and suggests short formation time. Wind-driven land degradation is less severe than previously thought, driven by different factors in different areas, and exhibited complex interactions with freeze-thaw processes. Aeolian research has been conducted within the general framework of aeolian science but addresses issues specific to the Tibetan Plateau that arise due to the low air temperature, low air density, and the presence of a cryosphere. We propose six priorities for future research: aeolian physics, the effect of freeze-thaw cycles, comparisons with other areas, regional differences, effects of wind-driven land degradation, and integrated observation and monitoring.

  11. The light and shadow in high altitude observations: the observation with Subaru telescope and the acute mountain sickness.

    Science.gov (United States)

    Nishimura, M.

    The Subaru-telescope observatory is located at an elevation of 4200 m high. The acute mountain sickness (AMS) is one impediment of observations at high altitude. Among symptoms of AMS, high altitude pulmonary edema (HAPE) is the most dangerous one. The author mentions the symptoms of HAPE and other AMS related problems.

  12. Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment.

    Science.gov (United States)

    Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin

    2016-04-01

    Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of high altitude on sensitivity to the taste of phenylthiocarbamide

    Science.gov (United States)

    Singh, S. B.; Chatterjee, A.; Panjwani, U.; Yadav, D. K.; Selvamurthy, W.; Sharma, K. N.

    Sensitivity to the taste of phenylthiocarbamide (PTC) was studied using the Harris-Kalmus method in healthy human volunteers at sea level and then subsequently at an altitude of 3500 m over a period of 3 weeks, after which they were brought back to sea level. Blood sugar, insulin and blood cortisol levels were estimated weekly. The results indicated that, out of 51 subjects studied, 26 (55%) were PTC tasters at sea level. Eight of those unable to taste PTC at sea level tested as tasters at high altitude, and 2 of them reverted to being non-tasters on return to sea level. In the blood, an increase in cortisol and blood insulin levels was seen without any significant change in sugar levels. All the changes recorded at high altitude tended to return to basal values after re-induction to sea level. The study suggests that high-altitude hypoxia in some way, possibly involving changes in hormonal profile among other factors, causes an alteration in sensitivity to the taste of PTC, resulting in some of the individuals shifting to lower PTC sensitivity.

  14. Evidence of JEV inCulex tritaeniorhynchusand pigs from high altitude regions of Tibet, China.

    Science.gov (United States)

    Zhang, Hui; Luo, Houqiang; Ur Rehman, Mujeeb; Nabi, Fazul; Li, Kun; Lan, Yanfang; Huang, Shucheng; Zhang, Lihong; Mehmood, Khalid; Shahzad, Muhammad; Li, Jiakui

    2017-01-01

    Culex tritaeniorhynchus is the primary vector of Japanese encephalitis virus (JEV) which is a major threat to animals and humans health. This virus has been reported earlier from low altitude regions of Tibet, in mosquitoes, Tibetan pigs and local Tibetans, but no reports are available for the probable propagation of JE to high altitude regions (3100 m) of Tibet. This study aimed to find the evidence of JEV in Cx. tritaeniorhynchus and pigs from high altitude regions of Tibet, China. In total, 102 porcine serum samples and eight pools of Cx. tritaeniorhynchus were subjected to real-time PCR (RT-PCR) for the amplification of a fragment (~ 420 bp) of the NS1 gene. The resultant amplicons of the genes were subsequently analyzed and sequenced. Overall seroprevalence of JE in Tibetan pigs was 6.86%, while five pools of Cx. tritaeniorhynchus were found positive for JEV. Results showed genotype III as the most prevalent (100%) among JEV positive isolates. Furthermore, phylogenetic analysis of the JEV positive strains showed 98.8-99% similarity to four reference strains from China (JEV-Hubei, Whe, HYZ and CQ11-66). The present study revealed that JEV has extended its geographic range to high altitude regions of Tibet. The factors like increased tourism and transportation might play key role in the transmission of JE that comprises a potential health risk for humans and animals.

  15. Results from the High Resolution Fly's Eye Experiment

    International Nuclear Information System (INIS)

    Jui, C. C. H.

    2011-01-01

    The High Resolution Fly's Eye (HiRes) Experiment operated two fluorescence detector sites in the western Utah desert between 1997 and 2006. The HiRes results on the cosmic ray spectrum are consistent with the GZK Suppression predicted at 10 19.8 eV and observe an ankle structure at 10 18.5 eV. These spectral features are consistent with a proton-dominated composition for cosmic rays at the highest energies. The HiRes composition studies of both the mean and the variance of the shower maximum depth (X max ) also give results that are completely consistent with a predominately protonic composition, and inconsistent with heavy nuclei such as iron. We also report on the result of anisotropy studies.

  16. Control of breathing and ventilatory acclimatization to hypoxia in deer mice native to high altitudes.

    Science.gov (United States)

    Ivy, C M; Scott, G R

    2017-12-01

    We compared the control of breathing and heart rate by hypoxia between high- and low-altitude populations of Peromyscus mice, to help elucidate the physiological specializations that help high-altitude natives cope with O 2 limitation. Deer mice (Peromyscus maniculatus) native to high altitude and congeneric mice native to low altitude (Peromyscus leucopus) were bred in captivity at sea level. The F1 progeny of each population were raised to adulthood and then acclimated to normoxia or hypobaric hypoxia (12 kPa, simulating hypoxia at ~4300 m) for 5 months. Responses to acute hypoxia were then measured during stepwise reductions in inspired O 2 fraction. Lowlanders exhibited ventilatory acclimatization to hypoxia (VAH), in which hypoxia acclimation enhanced the hypoxic ventilatory response, made breathing pattern more effective (higher tidal volumes and lower breathing frequencies at a given total ventilation), increased arterial O 2 saturation and heart rate during acute hypoxia, augmented respiratory water loss and led to significant growth of the carotid body. In contrast, highlanders did not exhibit VAH - exhibiting a fixed increase in breathing that was similar to hypoxia-acclimated lowlanders - and they maintained even higher arterial O 2 saturations in hypoxia. However, the carotid bodies of highlanders were not enlarged by hypoxia acclimation and were similar in size to those of normoxic lowlanders. Highlanders also maintained consistently higher heart rates than lowlanders during acute hypoxia. Our results suggest that highland deer mice have evolved high rates of alveolar ventilation and respiratory O 2 uptake without the significant enlargement of the carotid bodies that is typical of VAH in lowlanders, possibly to adjust the hypoxic chemoreflex for life in high-altitude hypoxia. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  17. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    Science.gov (United States)

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  18. Nutrição para os praticantes de exercício em grandes altitudes Nutritional strategy for exercising in high altitudes

    Directory of Open Access Journals (Sweden)

    Caroline Buss

    2006-02-01

    Full Text Available Quando o atleta ascende a uma grande altitude, ele é exposto a uma pressão barométrica reduzida, e os efeitos fisiológicos que acompanham estas mudanças da pressão atmosférica podem ter grande influência sobre o seu organismo e seu desempenho físico. Acredita-se que a hipóxia seja responsável pelo início de uma cascata de eventos sinalizadores que, ao final, levam à adaptação à altitude. A exposição aguda à hipóxia provoca sonolência, fadiga mental e muscular e prostração. Cefaléia, náusea e anorexia são sintomas provocados pela Doença Aguda das Montanhas, que pode ocorrer nos primeiros dias de permanência na altitude. Uma estratégia nutricional adequada é fundamental para que o organismo não sofra nenhum estresse adicional. O objetivo deste trabalho foi apresentar os principais efeitos da altitude sobre o organismo e sobre o desempenho físico, discutir e/ou sugerir recomendações nutricionais para esta situação e, se possível, apresentar uma orientação nutricional prática para o atleta na altitude. Algumas das principais conclusões encontradas foram: o consumo energético deve ser aumentado; é fundamental monitorar a quantidade de líquidos ingeridos e escolher alimentos agradáveis ao paladar, ricos em energia e nutrientes. Recomenda-se trabalhar com um nutricionista do esporte com antecedência, para que um plano alimentar individual seja elaborado e colocado em prática antes mesmo da viagem à altitude.When athletes are subject to high altitudes, they are exposed to a lower barometric pressure and the physiological effects that accompany these atmospheric pressure changes can have a strong influence on their bodies and performance. Hypoxia is thought to be responsible for triggering a cascade of signaling events that eventually leads to altitude acclimatization. Acute exposure to hypoxia causes sleepiness, mental and muscle fatigue and prostration. Headache, nausea and anorexia are some of the

  19. Hemodynamic characteristics of high-altitude headache following acute high altitude exposure at 3700 m in young Chinese men.

    Science.gov (United States)

    Bian, Shi-Zhu; Jin, Jun; Li, Qian-Ning; Yu, Jie; Tang, Cai-Fa; Rao, Rong-Sheng; Yu, Shi-Yong; Zhao, Xiao-Hui; Qin, Jun; Huang, Lan

    2015-01-01

    This study aimed to identify the systemic and cerebral hemodynamic characteristics and their roles in high-altitude headache (HAH) among young Chinese men following acute exposure. The subjects (n = 385) were recruited in June and July of 2012. They completed case report form questionnaires, as well as heart rate (HR), blood pressure, echocardiogram and transcranial Doppler examinations at 3700 m following a two-hour plane flight. A subgroup of 129 participants was examined at two altitudes (500 and 3700 m). HAH was characterized by increased HR and cardiac output (CO) and lower saturation pulse oxygen (SpO(2)) (all p V(m)), systolic (V(s)) and diastolic (V(d)) velocities in the basilar artery (BA; all p V(d) ( 25.96 ± 4.97 cm/s vs. 24.76 ± 4.76 cm/s, p = 0.045) in the left vertebral artery (VA). The bilateral VA asymmetry was also significantly different between the two groups. The pulsatility index (PI) and resistance index (RI) of left VA were lower in the HAH subjects (p p V(d) difference between bilateral VAs) were independent risk factors for HAH at 3700 m. HAH was characterized, in part, by increased systemic hemodynamics and posterior cerebral circulation, which was reflected by the BA and left VA velocities, and lower arterial resistance and compliance. Furthermore, baseline CO and V(m) in left VA or right MCA at sea level were independent predictors for HAH, whilst bilateral VA asymmetry may contribute to the development of HAH at high altitude.

  20. High anthropogenic volatile organic compounds over a high altitude Himalayan station in eastern India

    Science.gov (United States)

    Sarkar, Chirantan; Chatterjee, Abhijit; Ghosh, Sanjay; Raha, Sibaji; Majumdar, Dipanjali; Srivastava, Anjali

    A first ever study on the characterization of anthropogenic volatile organic compounds has been made over eastern part of Himalaya in India. Measurements were carried out for a year-long period (2010- 2011) over Darjeeling (27.01 (°) N, 88.15 (°) E), a high altitude (2200 a msl) station over eastern Himalaya. A total of 96 samples were collected separately for day (6 A.M - 6 P.M.) and night time (6 P.M. - 6 A.M.) and anlysed for 20 VOCs using GC-MS. The annual average concentration of total anthropogenic VOC was 871 muµgm-3. VOC shows a distinct seasonal variation with the maximum concentration of 3254 muµgm-3 during postmonsoon (October-November) followed by 120 muµgm-3 during monsoon (June-September), 72 muµgm-3 during winter (December-February) and minimum concentration of 39 muµgm-3 during premonsoon (March-May). Styrene was found to be the most abundant VOC followed by benzene, toluene, ethyl benzene, xylene (BTEX) and chloroform. Styrene alone contributed 50 % to the total VOC whereas BTEX contributed 47 %. Styrene was found to be much higher in concentration compared to other high altitude stations and metro-cities in India. Earlier, biomass burning during night-time was used to be a common practice over Darjeeling like any other hill stations, but now-a-days, burning of plastics, tyres and other polystyrene products has become a common practice to get warmth against cold. This could significantly generate styrene in the atmosphere. Night time concentration was found to be higher than day time concentration for most of the VOCs through out the year. Higher solar radiation, high surface ozone and OH radical concentration could oxidise/destruct VOCs resulting to minimum concentration during premonsoon. Very high mixing layer depth and higher wind speed during premonsoon compared to other seasons favours ventilation and dispersion of VOCs from the sampling station. On the other hand, higher vehicular activities associated to high influx of tourists and

  1. Isolated psychosis during exposure to very high and extreme altitude - characterisation of a new medical entity.

    Science.gov (United States)

    Hüfner, Katharina; Brugger, Hermann; Kuster, Eva; Dünsser, Franziska; Stawinoga, Agnieszka E; Turner, Rachel; Tomazin, Iztok; Sperner-Unterweger, Barbara

    2017-12-05

    Psychotic episodes during exposure to very high or extreme altitude have been frequently reported in mountain literature, but not systematically analysed and acknowledged as a distinct clinical entity. Episodes reported above 3500 m altitude with possible psychosis were collected from the lay literature and provide the basis for this observational study. Dimensional criteria of the Diagnostic and Statistical Manual of Mental Disorders were used for psychosis, and the Lake Louise Scoring criteria for acute mountain sickness and high-altitude cerebral oedema (HACE). Eighty-three of the episodes collected underwent a cluster analysis to identify similar groups. Ratings were done by two independent, trained researchers (κ values 0.6-1). Findings Cluster 1 included 51% (42/83) episodes without psychosis; cluster 2 22% (18/83) cases with psychosis, plus symptoms of HACE or mental status change from other origins; and cluster 3 28% (23/83) episodes with isolated psychosis. Possible risk factors of psychosis and associated somatic symptoms were analysed between the three clusters and revealed differences regarding the factors 'starvation' (χ2 test, p = 0.002), 'frostbite' (p = 0.024) and 'supplemental oxygen' (p = 0.046). Episodes with psychosis were reversible but associated with near accidents and accidents (p = 0.007, odds ratio 4.44). Episodes of psychosis during exposure to high altitude are frequently reported, but have not been specifically examined or assigned to medical diagnoses. In addition to the risk of suffering from somatic mountain illnesses, climbers and workers at high altitude should be aware of the potential occurrence of psychotic episodes, the associated risks and respective coping strategies.

  2. High altitude environmental monitoring: the SHARE project and CEOP-HE

    Science.gov (United States)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP

  3. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  4. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12

  5. High-altitude hypoxia and periodic breathing during sleep: gender-related differences.

    Science.gov (United States)

    Lombardi, Carolina; Meriggi, Paolo; Agostoni, Piergiuseppe; Faini, Andrea; Bilo, Grzegorz; Revera, Miriam; Caldara, Gianluca; Di Rienzo, Marco; Castiglioni, Paolo; Maurizio, Bussotti; Gregorini, Francesca; Mancia, Giuseppe; Parati, Gianfranco

    2013-06-01

    High-altitude exposure is characterized by the appearance of periodic breathing during sleep. Only limited evidence is available, however, on the presence of gender-related differences in this breathing pattern. In 37 healthy subjects, 23 male and 14 female, we performed nocturnal cardio-respiratory monitoring in the following conditions: (1) sea level; (2) first/second night at an altitude of 3400 m; (3) first/second night at an altitude of 5400 m and after a 10 day sojourn at 5400 m. At sea level, a normal breathing pattern was observed in all subjects throughout the night. At 3400 m the apnea-hypopnea index was 40.3 ± 33.0 in males (central apneas 77.6%, central hypopneas 22.4%) and 2.4 ± 2.8 in females (central apneas 58.2%, central hypopneas 41.8%; P breathing affects males more than females. Females started to present a significant number of central sleep apneas only at the highest reached altitude. After 10 days at 5400 m gender differences in the apnea-hypopnea index similar to those observed after acute exposure were still observed, accompanied by differences in respiratory cycle length. © 2013 European Sleep Research Society.

  6. A statistical study of high-altitude electric fields measured on the Viking satellite

    International Nuclear Information System (INIS)

    Lindqvist, P.A.; Marklund, G.T.

    1990-01-01

    Characteristics of high-altitude data from the Viking electric field instrument are presented in a statistical study based on 109 Viking orbits. The study is focused in particular on the signatures of and relationships between various parameters measured by the electric field instrument, such as the parallel and transverse (to B) components of the electric field instrument, such as electric field variability. A major goal of the Viking mission was to investigate the occurrence and properties of parallel electric fields and their role in the auroral acceleration process. The results in this paper on the altitude distribution of the electric field variability confirm earlier findings on the distribution of small-scale electric fields and indicate the presence of parallel fields up to about 11,000 km altitude. The directly measured parallel electric field is also investigated in some detail. It is in general directed upward with an average value of 1 mV/m, but depends on, for example, altitude and plasma density. Possible sources of error in the measurement of the parallel field are also considered and accounted for

  7. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  8. Observational Study of Neural Respiratory Drive During Sleep at High Altitude.

    Science.gov (United States)

    Steier, Joerg; Cade, Nic; Walker, Ben; Moxham, John; Jolley, Caroline

    2017-09-01

    Steier, Joerg, Nic Cade, Ben Walker, John Moxham, and Caroline Jolley. Observational study of neural respiratory drive during sleep at high altitude. High Alt Med Biol. 18:242-248, 2017. Ventilation at altitude changes due to altered levels of pO 2 , pCO 2 and the effect on blood pH. Nocturnal ventilation is particularly exposed to these changes. We hypothesized that an increasing neural respiratory drive (NRD) is associated with the severity of sleep-disordered breathing at altitude. Mountaineers were studied at sea level (London, United Kingdom), and at altitude at the Aconcagua (Andes, Argentina). NRD was measured as electromyogram of the diaphragm (EMGdi) overnight by a transesophageal multi-electrode catheter; results were reported for sea level, 3,380 m, 4,370 m, and 5,570 m. Four healthy subjects (3 men, age 31(3)years, body mass index 23.6(0.9)kg/m 2 , neck circumference 37.0(2.7)cm, forced expiratory volume in 1 second 111.8(5.1)%predicted, and forced vital capacity 115.5(6.3)%predicted) were studied. No subject had significant sleep abnormalities at sea level. Time to ascent to 3,380 m was 1 day, to 4,370 m was 5 days, and the total nights at altitude were 21 days. The oxygen desaturation index (4% oxygen desaturation index [ODI] 0.8(0.4), 22.0 (7.2), 61.4 (26.9), 144.9/hour, respectively) and the EMGdi (5.2 (1.9), 12.8 (5.1), 14.1 (3.4), 18.5%, respectively) increased with the development of periodic breathing at altitude, whereas the average SpO 2 declined (97.5 (1.3), 84.8 (0.5), 81.0 (4.1), 68.5%, respectively). The average EMGdi correlated well with the 4%ODI (r = 0.968, p = 0.032). NRD sleep increases at altitude in relation to the severity of periodic breathing.

  9. Disposal of low-level radioactive waste using high-calcium fly ash. Final report

    International Nuclear Information System (INIS)

    Cogburn, C.O.; Hodgson, L.M.; Ragland, R.C.

    1986-04-01

    The feasibility of using calcium-rich fly ash from coal-fired power plants in the disposal of low-level radioactive waste was examined. The proposed areas of use were: (1) fly-ash cement as a trench lining material; (2) fly ash as a backfill material; and (3) fly ash as a liquid waste solidifier. The physical properties of fly-ash cement were determined to be adequate for trench liner construction, with compressive strengths attaining greater than 3000 psi. Hydraulic conductivities were determined to be less than that for clay mineral deposits, and were on the order of 10 -7 cm/sec, with some observed values as low as 10 -9 cm/sec. Removal of radioisotopes from acidified solutions by fly ash was good for all elements tested except cesium. The removal of cesium by fly ash was similar to that of montmorillonite clay. The corrosive effects on metals in fly ash environments was determined to be slight, if not non-existent. Coatings at the fly-ash/metal interfaces were observed which appeared to inhibit or diminish corrosion. The study has indicated that high-calcium fly ash appears to offer considerable potential for improved retention of low-level radioactive wastes in shallow land disposal sites. Further tests are needed to determine optimum methods of use. 8 refs., 4 figs., 7 tabs

  10. Synthesis and sintering of high-temperature composites based on mechanically activated fly ash

    OpenAIRE

    Terzić, Anja; Pavlović, Ljubica; Obradović, Nina; Pavlović, Vladimir B.; Stojanović, J.; Miličić, Lj.; Radojević, Z.; Ristić, Momčilo

    2012-01-01

    Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products). As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation pro...

  11. Laboratory Investigations on Mechanical Properties of High Volume Fly Ash Concrete and Composite Sections

    OpenAIRE

    Aravindkumar B. Harwalkar; S. S. Awanti

    2013-01-01

    Use of fly ash as a supplementary cementing material in large volumes can bring both technological and economic benefits for concrete industry. In this investigation mix proportions for high volume fly ash concrete were determined at cement replacement levels of 50%, 55%, 60% and 65% with low calcium fly ash. Flexural and compressive strengths of different mixes were measured at ages of 7, 28 and 90 days. Flexural strength of composite section prepared from pavement quali...

  12. Sensitivity of the High Altitude Water Cherenkov Experiment to observe Gamma-Ray Bursts

    Science.gov (United States)

    González, M. M.

    Ground based telescopes have marginally observed very high energy emission (>100GeV) from gamma-ray bursts(GRB). For instance, Milagrito observed GRB970417a with a significance of 3.7 sigmas over the background. Milagro have not yet observed TeV emission from a GRB with its triggered and untriggered searches or GeV emission with a triggered search using its scalers. These results suggest the need of new observatories with higher sensitivity to transient sources. The HAWC (High Altitute Water Cherenkov) observatory is proposed as a combination of the Milagro tecnology with a very high altitude (>4000m over see level) site. The expected HAWC sensitivity for GRBs is at least >10 times the Milagro sensitivity. In this work HAWC sensitivity for GRBs is discussed for different detector configurations such as altitude, distance between PMTs, depth under water of PMTs, number of PMTs required for a trigger, etc.

  13. Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland.

    Science.gov (United States)

    Okumiya, Kiyohito; Sakamoto, Ryota; Ishimoto, Yasuko; Kimura, Yumi; Fukutomi, Eriko; Ishikawa, Motonao; Suwa, Kuniaki; Imai, Hissei; Chen, Wenling; Kato, Emiko; Nakatsuka, Masahiro; Kasahara, Yoriko; Fujisawa, Michiko; Wada, Taizo; Wang, Hongxin; Dai, Qingxiang; Xu, Huining; Qiao, Haisheng; Ge, Ri-Li; Norboo, Tsering; Tsering, Norboo; Kosaka, Yasuyuki; Nose, Mitsuhiro; Yamaguchi, Takayoshi; Tsukihara, Toshihiro; Ando, Kazuo; Inamura, Tetsuya; Takeda, Shinya; Ishine, Masayuki; Otsuka, Kuniaki; Matsubayashi, Kozo

    2016-02-23

    To clarify the association between glucose intolerance and high altitudes (2900-4800 m) in a hypoxic environment in Tibetan highlanders and to verify the hypothesis that high altitude dwelling increases vulnerability to diabetes mellitus (DM) accelerated by lifestyle change or ageing. Cross-sectional epidemiological study on Tibetan highlanders. We enrolled 1258 participants aged 40-87 years. The rural population comprised farmers in Domkhar (altitude 2900-3800 m) and nomads in Haiyan (3000-3100 m), Ryuho (4400 m) and Changthang (4300-4800 m). Urban area participants were from Leh (3300 m) and Jiegu (3700 m). Participants were classified into six glucose tolerance-based groups: DM, intermediate hyperglycaemia (IHG), normoglycaemia (NG), fasting DM, fasting IHG and fasting NG. Prevalence of glucose intolerance was compared in farmers, nomads and urban dwellers. Effects of dwelling at high altitude or hypoxia on glucose intolerance were analysed with the confounding factors of age, sex, obesity, lipids, haemoglobin, hypertension and lifestyle, using multiple logistic regression. The prevalence of DM (fasting DM)/IHG (fasting IHG) was 8.9% (6.5%)/25.1% (12.7%), respectively, in all participants. This prevalence was higher in urban dwellers (9.5% (7.1%)/28.5% (11.7%)) and in farmers (8.5% (6.1%)/28.5% (18.3%)) compared with nomads (8.2% (5.7%)/15.7% (9.7%)) (p=0.0140/0.0001). Dwelling at high altitude was significantly associated with fasting IHG+fasting DM/fasting DM (ORs for >4500 and 3500-4499 m were 3.59/4.36 and 2.07/1.76 vs intolerance. Socioeconomic factors, hypoxaemia and the effects of altitudes >3500 m play a major role in the high prevalence of glucose intolerance in highlanders. Tibetan highlanders may be vulnerable to glucose intolerance, with polycythaemia as a sign of poor hypoxic adaptation, accelerated by lifestyle change and ageing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  14. Contribution of a mutational hot spot to hemoglobin adaptation in high-altitude Andean house wrens.

    Science.gov (United States)

    Galen, Spencer C; Natarajan, Chandrasekhar; Moriyama, Hideaki; Weber, Roy E; Fago, Angela; Benham, Phred M; Chavez, Andrea N; Cheviron, Zachary A; Storz, Jay F; Witt, Christopher C

    2015-11-10

    A key question in evolutionary genetics is why certain mutations or certain types of mutation make disproportionate contributions to adaptive phenotypic evolution. In principle, the preferential fixation of particular mutations could stem directly from variation in the underlying rate of mutation to function-altering alleles. However, the influence of mutation bias on the genetic architecture of phenotypic evolution is difficult to evaluate because data on rates of mutation to function-altering alleles are seldom available. Here, we report the discovery that a single point mutation at a highly mutable site in the β(A)-globin gene has contributed to an evolutionary change in hemoglobin (Hb) function in high-altitude Andean house wrens (Troglodytes aedon). Results of experiments on native Hb variants and engineered, recombinant Hb mutants demonstrate that a nonsynonymous mutation at a CpG dinucleotide in the β(A)-globin gene is responsible for an evolved difference in Hb-O2 affinity between high- and low-altitude house wren populations. Moreover, patterns of genomic differentiation between high- and low-altitude populations suggest that altitudinal differentiation in allele frequencies at the causal amino acid polymorphism reflects a history of spatially varying selection. The experimental results highlight the influence of mutation rate on the genetic basis of phenotypic evolution by demonstrating that a large-effect allele at a highly mutable CpG site has promoted physiological differentiation in blood O2 transport capacity between house wren populations that are native to different elevations.

  15. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  16. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build climate change and ways to mitigate global warming, and the excitement of taking measurements in a much uncharted region of our atmosphere. Teaching the scientific method or learning cycle (theory, research, instrumentation, operations, data analysis, and presentation) is a significant pedagogical building block that stimulates and retains students

  17. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  18. An Analysis of Helicopter Pilot Scan Techniques While Flying at Low Altitudes and High Speed

    Science.gov (United States)

    2012-09-01

    videos based on the world-view recreation created by the FaceLab system. FaceLab, using a world-view program, was able to re-create a simulation that...Yesavage, J., Otto Leirer, V., Denari, M., & Hollister, L. (November 1985). Carry-over effects of marijuana intoxication on aircraft pilot

  19. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  20. Psychophysiological Response and Fine Motor Skills in High-Altitude Parachute Jumps.

    Science.gov (United States)

    Clemente-Suárez, Vicente Javier; Robles-Pérez, José Juan; Herrera-Mendoza, Ketty; Herrera-Tapias, Beliña; Fernández-Lucas, Jesús

    2017-12-01

    Clemente-Suárez, Vicente Javier, José Juan Robles-Pérez, Ketty Herrera-Mendoza, Beliña Herrera-Tapias, and Jesús Fernández-Lucas. Psychophysiological response and fine motor skills in high-altitude parachute jumps. High Alt Med Biol 18:392-399, 2017.-We analyzed the psychophysiological response and specific fine motor skill of an experienced jumper in HALO (high altitude low opening) and HAHO (high altitude high opening) parachute jumps. Eight HALO and eight HAHO jumpers were analyzed. They jumped at 5500 m, HALO jumpers opened the parachute at 500 m and HAHO jumpers at 4300 m of altitude. Before and after the jumps, parameters of muscle strength, cortical arousal, blood creatine kinase (CK) and glucose, blood oxygen saturation, rate of perceived exertion (RPE), and specific fine motor skills of an experienced jumper were assessed; during the jump, heart rate (HR), HR variability, and speed were evaluated. HALO and HAHO jumps produced a significant increase in CK, lactate, and RPE, and a decrease in glucose. HAHO decreased cortical arousal, presented a higher sympathetic modulation, and a higher HR during the jump than HALO. HALO and HAHO produced an increase in the physiological, sympathetic modulation and muscle destruction, and a decrease in cortical arousal and a higher blood lactate concentration only in the HAHO jump. Also, somatic and cognitive anxiety correlated with higher strength manifestation and muscle destruction. This novel research could be used to improve actual training systems in both civil and military parachute jumpers.

  1. Changes in body fluid compartments on re-induction to high altitude and effect of diuretics

    Science.gov (United States)

    Singh, M. V.; Rawal, S. B.; Tyagi, A. K.; Bhagat, Maj J. K.; Parshad, R.; Divekar, H. M.

    1988-03-01

    Studies were carried out in 29 healthy young adults in the Indian Army stationed in the plains and posted at an elevation of 3500 m for more than 6 months. After exposure to a low elevation in Delhi (260 m) for 3 weeks they were reinduced to a height of 3500 m. The subjects were divided into three groups, each of which was treated with either placebo or acetazolamide or spironolactone. The drug treatment was started immediately after their landing at high altitude and continued for 2 days only. Total body water, extracellular fluid, intracellular fluid, plasma volume, blood pH, PaO2, PaCO2 and blood viscosity were determined on exposure at Delhi and on re-induction to high altitude. Plasma volume was increased after the descent from high altitude and remained high for up to 21 day's study. This increased plasma volume may have some significance in the pathogenesis of pulmonary oedema. Total body water and intracellular fluid content were increased at 260 m elevation, while extracellular fluid decreased. On re-induction there was a decrease in total body water with no change in the extracellular fluid content.

  2. Extensive Microhemorrhages of the Cerebellar Peduncles After High-Altitude Cerebral Edema.

    Science.gov (United States)

    Pichler Hefti, Jacqueline; Hoigné-Perret, Philipp; Kottke, Raimund

    2017-06-01

    Pichler Hefti, Jacqueline, Philipp Hoigné-Perret, and Raimund Kottke. Extensive microhemorrhages of the cerebellar peduncles after high-altitude cerebral edema. High Alt Med Biol. 18:182-184, 2017.-Neuromagnetic resonance imaging (MRI) of subjects who suffered from high-altitude cerebral edema (HACE) typically shows cerebral microhemorrhages (MH) of the corpus callosum, in particular the splenium, and supratentorial white matter. This is a case report of a 43-year-old male, who suffered from unusually prolonged severe ataxia and amnesia after having been rescued during the ascent to Mount Everest at 6400 m. MRI of the brain 63 days after the incident showed the typical MH in the corpus callosum, but, in addition, extensive MH were found in the middle cerebellar peduncles. These infratentorial MH might reflect the pronounced atactic gait disorder. This case describes the first HACE-associated MH in the cerebellar peduncles in a high-altitude mountaineer indicating a potential vulnerability of infratentorial brain areas to hypobaric hypoxia.

  3. X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform

    Science.gov (United States)

    Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon

    2007-01-01

    The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar

  4. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    OpenAIRE

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone pow...

  5. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  6. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2015-08-01

    Full Text Available Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  7. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  8. Long term picoplankton dynamics in a warm-monomictic, tropical high altitude lake

    OpenAIRE

    Alfonso LUGO VÁZQUEZ; Gloria VILACLARA FATJÓ; Laura PERALTA SORIANO; María Elena MARTÍNEZ-PÉREZ; Javier ALCOCER; Miroslav MACEK

    2009-01-01

    Long term analyses of the microbial loop, centred on the picoplankton dynamics, were carried out over a five-year (1998 to 2002) period in Lake Alchichica (Puebla, Mexico), a high altitude tropical athalassohaline lake. The hydrodynamics of the lake followed a warm-monomictic pattern with mixing at a minimum temperature during the early dry season while the stratification was pronounced in the late dry season and throughout the rainy season; anoxic conditions in the hypolimnion lasted

  9. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    OpenAIRE

    Mendonça,Tania dos Reis; Mota,Renata Vieira da; Souza,Claudia Rita de; Dias,Frederico Alcântara Novelli; Pimentel,Rodrigo Meireles de Azevedo; Regina,Murillo de Albuquerque

    2016-01-01

    ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot) on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of a...

  10. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas.

    Directory of Open Access Journals (Sweden)

    Masayuki Hanaoka

    Full Text Available Sherpas comprise a population of Tibetan ancestry in the Himalayan region that is renowned for its mountaineering prowess. The very small amount of available genetic information for Sherpas is insufficient to explain their physiological ability to adapt to high-altitude hypoxia. Recent genetic evidence has indicated that natural selection on the endothelial PAS domain protein 1 (EPAS1 gene was occurred in the Tibetan population during their occupation in the Tibetan Plateau for millennia. Tibetan-specific variations in EPAS1 may regulate the physiological responses to high-altitude hypoxia via a hypoxia-inducible transcription factor pathway. We examined three significant tag single-nucleotide polymorphisms (SNPs, rs13419896, rs4953354, and rs4953388 in the EPAS1 gene in Sherpas, and compared these variants with Tibetan highlanders on the Tibetan Plateau as well as with non-Sherpa lowlanders. We found that Sherpas and Tibetans on the Tibetan Plateau exhibit similar patterns in three EPAS1 significant tag SNPs, but these patterns are the reverse of those in non-Sherpa lowlanders. The three SNPs were in strong linkage in Sherpas, but in weak linkage in non-Sherpas. Importantly, the haplotype structured by the Sherpa-dominant alleles was present in Sherpas but rarely present in non-Sherpas. Surprisingly, the average level of serum erythropoietin in Sherpas at 3440 m was equal to that in non-Sherpas at 1300 m, indicating a resistant response of erythropoietin to high-altitude hypoxia in Sherpas. These observations strongly suggest that EPAS1 is under selection for adaptation to the high-altitude life of Tibetan populations, including Sherpas. Understanding of the mechanism of hypoxia tolerance in Tibetans is expected to provide lights to the therapeutic solutions of some hypoxia-related human diseases, such as cardiovascular disease and cancer.

  11. Thoracic skeletal morphology and high-altitude hypoxia in Andean prehistory.

    Science.gov (United States)

    Weinstein, Karen J

    2007-09-01

    Living humans from the highland Andes exhibit antero-posteriorly and medio-laterally enlarged chests in response to high-altitude hypoxia. This study hypothesizes that morphological responses to high-altitude hypoxia should also be evident in pre-Contact Andean groups. Thoracic skeletal morphology in four groups of human skeletons (N = 347) are compared: two groups from coastal regions (Ancón, Peru, n = 79 and Arica, Chile, n = 123) and two groups from high altitudes (San Pedro de Atacama, Chile, n = 102 and Machu Picchu and Cuzco, Peru, n = 43). Osteometric variables that represent proportions of chest width and depth include sternal and clavicular lengths and breadths and rib length, curvature, and area. Each variable was measured relative to body size, transformed into logarithmic indices, and compared across sex-specific groups using ANOVA and Tukey multiple comparison tests. Atacama highlanders have the largest sternal and clavicular proportions and ribs with the greatest area and least amount of curvature, features that suggest an antero-posteriorly deep and mediolaterally wide thoracic skeleton. Ancón lowlanders exhibit proportions indicating narrower and shallower chests. Machu Picchu and Cuzco males cluster with the other highland group in rib curvature and area at the superior levels of the thorax, whereas chest proportions in Machu Picchu and Cuzco females resemble those of lowlanders. The variation in Machu Picchu and Cuzco males and females is interpreted as the result of population migrations. The presence of morphological traits indicative of enlarged chests in some highland individuals suggests that high-altitude hypoxia was an environmental stressor shaping the biology of highland Andean groups during the pre-Contact period. (c) 2007 Wiley-Liss, Inc.

  12. Reducing pulmonary injury by hyperbaric oxygen preconditioning during simulated high altitude exposure in rats.

    Science.gov (United States)

    Li, Zhuo; Gao, Chunjin; Wang, Yanxue; Liu, Fujia; Ma, Linlin; Deng, Changlei; Niu, Ko-Chi; Lin, Mao-Tsun; Wang, Chen

    2011-09-01

    Hyperbaric oxygen preconditioning (HBO₂P + HAE) has been found to be beneficial in preventing the occurrence of ischemic damage to brain, spinal cord, heart, and liver in several disease models. In addition, pulmonary inflammation and edema are associated with a marked reduction in the expression levels of both aquaporin (AQP) 1 and AQP5 in the lung. Here, the aims of this study are first to ascertain whether acute lung injury can be induced by simulated high altitude in rats and second to assess whether HBO2P + HAE is able to prevent the occurrence of the proposed high altitude-induced ALI. Rats were randomly divided into the following three groups: the normobaric air (NBA; 21% O₂ at 1 ATA) group, the HBO₂P + high altitude exposure (HAE) group, and the NBA + HAE group. In HBO₂P + HAE group, animals received 100% O₂ at 2.0 ATA for 1 hour per day, for five consecutive days. In HAE groups, animals were exposed to a simulated HAE of 6,000 m in a hypobaric chamber for 24 hours. Right after being taken out to the ambient, animals were anesthetized generally and killed and thoroughly exsanguinated before their lungs were excised en bloc. The lungs were used for both histologic and molecular evaluation and analysis. In NBA + HAE group, the animals displayed higher scores of alveolar edema, neutrophil infiltration, and hemorrhage compared with those of NBA controls. In contrast, the levels of both AQP1 and AQP5 proteins and mRNA expression in the lung in the NBA + HAE group were significantly lower than those of NBA controls. However, the increased lung injury scores and the decreased levels of both AQP1 and AQP5 proteins and mRNA expression in the lung caused by HAE was significantly reduced by HBO₂P + HAE. Our results suggest that high altitude pulmonary injury may be prevented by HBO2P + HAE in rats.

  13. The Italian Spacegate: Study and innovative approaches to future generation transportation based on High Altitude Flight

    Science.gov (United States)

    Santoro, Francesco; Bellomo, Alessandro; Bolle, Andrea; Vittori, Roberto

    2014-08-01

    This paper summarizes the results of the pre-feasibility studies carried out in 2012 on the concept of sub orbital and hypersonic, high altitude flight in support of future generation transportation. Currently, while the High Altitude Flight is mostly instrumental to touristic purposes and emphasizes the so called Spaceports as futuristic, customers-luring airports featured with all the support services, the “Spacegate” concept deals with scheduled traveling in the upper part of the atmosphere between two points over the Earth surface, with significant reduction of the transfer time. The first part of the paper provides a theoretical approach to the matter, by proposing an “operational” mapping of the atmosphere as well as of the different kinds of flight occurring at High Altitude. The second part of the paper addresses the problem of the limited human capability of maintaining an active control of the vehicle during the re-entry phase and introduces the “Spacegate” concept as the conical portion of the atmosphere above the landing site, whose surface delimits the spiral-descending trajectories that the pilot can travel for a safe re-entry. This paper further outlines the results of the preliminary definition of top level operational requirements and derived architecture functional modules in support to the “Spacegate” implementation. Special attention was given to the favorable geographic and climatic conditions of Italy that make this Country suitable enough for future experimental sub orbital flights and related operations. An initial analysis was performed on the regulatory backbone that has to be built to properly operate High Altitude Flight vehicles in Italy according to the concept of an Italian “Spacegate”. A Preliminary Master Plan/Road Map for the “Spacegate” has been laid out, with special emphasis to selected near term activities and support infrastructures necessary to be carried out to better refine the study in preparation

  14. A conceptual design methodology for low speed high altitude long endurance unmanned aerial vehicles

    OpenAIRE

    Altman, Aaron

    2000-01-01

    A conceptual design methodology was produced and subsequently coded into a Visual C++ (GUI) environment to facilitate the rapid comparison of several possible configurations to satisfy High Altitude Long Endurance (FIALE) unmanned aircraft (UAV) missions in the Low Speed (propeller driven aircraft) regime. Several comparative studies were performed to verify the applicability of traditional design methods. The traditional computational design methodologies fail in several areas...

  15. Mountain Warfare and Other Lofty Problems: Foreign Perspectives on High-Altitude Combat

    Science.gov (United States)

    2011-01-01

    hunted the Sendero Luminoso guerrillas in the Andes Mountains throughout the 1980s. India and Pakistan have continually battled for possession of the...smuggling routes. This has been the pattern for a number of high-altitude disputes such as the Mau Mau uprising, Soviet- Afghan war, Sendero Luminoso in...Afghanistan’s Hindu Kush mountains from 1979 to 1989, the Peruvian government’s clashes with Sendero Luminoso guerrillas in the Andes throughout the 1980s

  16. Color Vision Changes and Effects of High Contrast Visor Use at Simulated Cabin Altitudes

    Science.gov (United States)

    2016-06-08

    contrast by blocking short wavelength colors from entering the eye , thus increasing the contrast of non-blue objects when seen against a blue...AFRL-SA-WP-SR-2016-0017 Color Vision Changes and Effects of High Contrast Visor Use at Simulated Cabin Altitudes Lt Col Tory... person or corporation or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them. Qualified

  17. Low latitude ice core evidence for dust deposition on high altitude glaciers

    Science.gov (United States)

    Gabrielli, P.; Thompson, L. G.

    2017-12-01

    Polar ice cores from Antarctica and Greenland have provided a wealth of information on dust emission, transport and deposition over glacial to interglacial timescales. These ice cores mainly entrap dust transported long distances from source areas such as Asia for Greenland and South America for Antarctica. Thus, these dust records provide paleo-information about the environmental conditions at the source and the strength/pathways of atmospheric circulation at continental scales. Ice cores have also been extracted from high altitude glaciers in the mid- and low-latitudes and provide dust records generally extending back several centuries and in a few cases back to the last glacial period. For these glaciers the potential sources of dust emission include areas that are close or adjacent to the drilling site which facilitates the potential for a strong imprinting of local dust in the records. In addition, only a few high altitude glaciers allow the reconstruction of past snow accumulation and hence the expression of the dust records in terms of fluxes. Due to their extreme elevation, a few of these high altitude ice cores offer dust histories with the potential to record environmental conditions at remote sources. Dust records (in terms of dust concentration/size, crustal trace elements and terrigenous cations) from Africa, the European Alps, South America and the Himalayas are examined over the last millennium. The interplay of the seasonal atmospheric circulation (e.g. westerlies, monsoons and vertical convection) is shown to play a major role in determining the intensity and origin of dust fallout to the high altitude glaciers around the world.

  18. Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations.

    Science.gov (United States)

    Huerta-Sánchez, Emilia; Degiorgio, Michael; Pagani, Luca; Tarekegn, Ayele; Ekong, Rosemary; Antao, Tiago; Cardona, Alexia; Montgomery, Hugh E; Cavalleri, Gianpiero L; Robbins, Peter A; Weale, Michael E; Bradman, Neil; Bekele, Endashaw; Kivisild, Toomas; Tyler-Smith, Chris; Nielsen, Rasmus

    2013-08-01

    The Tibetan and Andean Plateaus and Ethiopian highlands are the largest regions to have long-term high-altitude residents. Such populations are exposed to lower barometric pressures and hence atmospheric partial pressures of oxygen. Such "hypobaric hypoxia" may limit physical functional capacity, reproductive health, and even survival. As such, selection of genetic variants advantageous to hypoxic adaptation is likely to have occurred. Identifying signatures of such selection is likely to help understanding of hypoxic adaptive processes. Here, we seek evidence of such positive selection using five Ethiopian populations, three of which are from high-altitude areas in Ethiopia. As these populations may have been recipients of Eurasian gene flow, we correct for this admixture. Using single-nucleotide polymorphism genotype data from multiple populations, we find the strongest signal of selection in BHLHE41 (also known as DEC2 or SHARP1). Remarkably, a major role of this gene is regulation of the same hypoxia response pathway on which selection has most strikingly been observed in both Tibetan and Andean populations. Because it is also an important player in the circadian rhythm pathway, BHLHE41 might also provide insights into the mechanisms underlying the recognized impacts of hypoxia on the circadian clock. These results support the view that Ethiopian, Andean, and Tibetan populations living at high altitude have adapted to hypoxia differently, with convergent evolution affecting different genes from the same pathway.

  19. First Cluster results of the magnetic field structure of the mid- and high-altitude cusps

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    2001-09-01

    Full Text Available Magnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000. Evidence for field-aligned currents (FACs was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence.Key words. Magnetospheric physics (current systems; magnetopause, cusp, and boundary layers – Space plasma physics (discontinuities

  20. Effects of erythrocyte infusion on VO2max at high altitude

    DEFF Research Database (Denmark)

    Young, Jette Feveile; Sawka, M N; Muza, S R

    1996-01-01

    This study investigated whether autologous erythrocyte infusion would ameliorate the decrement in maximal O2 uptake (VO2max) experienced by lowlanders when they ascend to high altitude. VO2max was measured in 16 men (treadmill running) at sea level (SL) and on the 1st (HA1) and 9th (HA9) days...... of high-altitude (4,300 m) residence. After VO2max was measured at SL, subjects were divided into two matched groups (n = 8). Twenty-four hours before ascent to high altitude, the experimental group received a 700-ml infusion of autologous erythrocytes and saline (42% hematocrit), whereas the control...... group received only saline. The VO2max of erythrocyte-infused [54 +/- 1 (SE) ml.kg-1.min-1] and control subjects (52 +/- 2 ml.kg-1.min-1) did not differ at SL before infusion. The decrement in VO2max on HA1 did not differ between groups, averaging 26% overall, despite higher (P

  1. Correlations between the simulated military tasks performance and physical fitness tests at high altitude

    Directory of Open Access Journals (Sweden)

    Eduardo Borba Neves

    2017-11-01

    Full Text Available The aim of this study was to investigate the Correlations between the Simulated Military Tasks Performance and Physical Fitness Tests at high altitude. This research is part of a project to modernize the physical fitness test of the Colombian Army. Data collection was performed at the 13th Battalion of Instruction and Training, located 30km south of Bogota D.C., with a temperature range from 1ºC to 23ºC during the study period, and at 3100m above sea level. The sample was composed by 60 volunteers from three different platoons. The volunteers start the data collection protocol after 2 weeks of acclimation at this altitude. The main results were the identification of a high positive correlation between the 3 Assault wall in succession and the Simulated Military Tasks performance (r = 0.764, p<0.001, and a moderate negative correlation between pull-ups and the Simulated Military Tasks performance (r = -0.535, p<0.001. It can be recommended the use of the 20-consecutive overtaking of the 3 Assault wall in succession as a good way to estimate the performance in operational tasks which involve: assault walls, network of wires, military Climbing Nets, Tarzan jump among others, at high altitude.

  2. Hemoglobin and hematocrit values of Saudi newborns in the high altitude of Abha, Saudi Arabia

    International Nuclear Information System (INIS)

    Bassuni, W.; Asindi, A.A.; Mustafa, F.S.; Hassan, B.; Din, Z.S.; Kumar, R.K.

    1996-01-01

    A study was designed to determine the red cell values (hemoglobin and hematocrit) of neonates born in the high altitude of Abha and to compare these values with known values of other lowland areas of Saudi Arabia. From the cord blood of 587 normal, appropriate for gestational age and term infants born in 1993 in Abha Maternity Hospital, the ranges of Hb and Hct were 130 to 240 g/L and 0.24 to 0.79 L/L respectively. The mean Hb was 187 g/L. There was no significant difference between the male and female values. Also, 17% of the infants in this study were polycythemic, while no polycythemia was recorded in these lowland areas and only 2% to 4% in the general global newborn population. It was therefore revealed that Abha newborns had higher red cell values at the birth when compared to other newborns in the low altitude areas of Riyadh and Jeddah (P<0.001). We postulate that high altitude (2700 meters above sea level) of Abha, and therefore its relative hypoxia, has induced high red cell values in infants born in the city. The phenomenon therefore warrants the adoption of higher red cell reference values and not necessarily those already documented in other Saudi new born populations. (author)

  3. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    Directory of Open Access Journals (Sweden)

    Hu Quanjun

    2012-11-01

    Full Text Available Abstract Background The yak (Bos grunniens is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  4. New insights of aquaporin 5 in the pathogenesis of high altitude pulmonary edema

    Science.gov (United States)

    2013-01-01

    Background High altitude pulmonary edema (HAPE) affects individuals and is characterized by alveolar flooding with protein-rich edema as a consequence of blood-gas barrier disruption. In this study, we hypothesized that aquaporin 5 (AQP5) which is one kind of water channels may play a role in preservation of alveolar epithelial barrier integrity in high altitude pulmonary edema (HAPE). Methods Therefore, we established a model in Wildtype mice and AQP5 −/− mice were assingned to normoxic rest (NR), hypoxic rest (HR) and hypoxic exercise (HE) group. Mice were produced by training to walk at treadmill for exercising and chamber pressure was reduced to simulate climbing an altitude of 5000 m for 48 hours. Studies using BAL in HAPE mice to demonstrated that edema is caused leakage of albumin proteins and red cells across the alveolarcapillary barrier in the absence of any evidence of inflammation. Results In this study, the Lung wet/dry weight ratio and broncholalveolar lavage protein concentrations were slightly increased in HE AQP5 −/− mice compared to wildtype mice. And histologic evidence of hemorrhagic pulmonary edema was distinctly shown in HE group. The lung Evan’s blue permeability of HE group was showed slightly increased compare to the wildtype groups, and HR group was showed a medium situation from normal to HAPE development compared with NR and HE group. Conclusions Deletion of AQP5 slightly increased lung edema and lung injury compared to wildtype mice during HAPE development, which suggested that the AQP5 plays an important role in HAPE formation induced by high altitude simulation. PMID:24274330

  5. A randomized trial of temazepam versus acetazolamide in high altitude sleep disturbance.

    Science.gov (United States)

    Tanner, John B; Tanner, Sarah M E; Thapa, Ghan Bahadur; Chang, Yuchiao; Watson, Kirsty L M; Staunton, Eamon; Howarth, Claire; Basnyat, Buddha; Harris, N Stuart

    2013-09-01

    This study is the first comparative trial of sleep medications at high altitude. We performed a randomized, double-blind trial of temazepam and acetazolamide at an altitude of 3540 meters. 34 healthy trekkers with self-reports of high-altitude sleep disturbance were randomized to temazepam 7.5 mg or acetazolamide 125 mg taken at bedtime for one night. The primary outcome was sleep quality on a 100 mm visual analog scale. Additional measurements were obtained with actigraphy; pulse oximetry; and questionnaire evaluation of sleep, daytime drowsiness, daytime sleepiness, and acute mountain sickness. Sixteen subjects were randomized to temazepam and 18 to acetazolamide. Sleep quality on the 100 mm visual analog scale was higher for temazepam (59.6, SD 20.1) than acetazolamide (46.2, SD 20.2; p=0.048). Temazepam also demonstrated higher subjective sleep quality on the Groningen Sleep Quality Scale (3.5 vs. 6.8, p=0.009) and sleep depth visual analog scale (60.3 vs. 41.4, p=0.028). The acetazolamide group reported significantly more awakenings to urinate (1.8 vs. 0.5, p=0.007). No difference was found with regards to mean nocturnal oxygen saturation (84.1 vs. 84.4, p=0.57), proportion of the night spent in periodic breathing, relative desaturations, sleep onset latency, awakenings, wake after sleep onset, sleep efficiency, Stanford Sleepiness Scale scores, daytime drowsiness, or change in self-reported Lake Louise Acute Mountain Sickness scores. We conclude that, at current recommended dosing, treatment of high-altitude sleep disturbance with temazepam is associated with increased subjective sleep quality compared to acetazolamide.

  6. Durability Study on High Calcium Fly Ash Based Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Ganesan Lavanya

    2015-01-01

    Full Text Available This study presents an investigation into the durability of geopolymer concrete prepared using high calcium fly ash along with alkaline activators when exposed to 2% solution of sulfuric acid and 5% magnesium sulphate for up to 45 days. The durability was also assessed by measuring water absorption and sorptivity. Ordinary Portland cement concrete was also prepared as control concrete. The grades chosen for the investigation were M20, M40, and M60. The alkaline solution used for present study is the combination of sodium silicate and sodium hydroxide solution with the ratio of 2.50. The molarity of sodium hydroxide was fixed as 12. The test specimens were 150×150×150 mm cubes, 100×200 mm cylinders, and 100×50 mm discs cured at ambient temperature. Surface deterioration, density, and strength over a period of 14, 28, and 45 days were observed. The results of geopolymer and ordinary Portland cement concrete were compared and discussed. After 45 days of exposure to the magnesium sulfate solution, the reduction in strength was up to 12% for geopolymer concrete and up to 25% for ordinary Portland cement concrete. After the same period of exposure to the sulphuric acid solution, the compressive strength decrease was up to 20% for geopolymer concrete and up to 28% for ordinary Portland cement concrete.

  7. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  8. Men traveling away from home are more likely to bring malaria into high altitude villages, northwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Kassahun Alemu

    Full Text Available BACKGROUND: Information about malaria risk factors at high altitudes is scanty. Understanding the risk factors that determine the risk of malaria transmission at high altitude villages is important to facilitate implementing sustainable malaria control and prevention programs. METHODS: An unmatched case control study was conducted among patients seeking treatment at health centers in high altitude areas. Either microscopy or rapid diagnostic tests were used to confirm the presence of plasmodium species. A generalized linear model was used to identify the predictors of malaria transmission in high altitude villages. RESULTS: Males (AOR = 3.11, 95%CI: 2.28, 4.23, and those who traveled away from the home in the previous month (AOR = 2.01, 95% CI: 1.56, 2.58 were strongly associated with presence of malaria in high altitude villages. Other significant factors, including agriculture in occupation (AOR = 1.41, 95% CI: 1.05, 1.93, plants used for fencing (AOR = 1.70, 95% CI: 1.18, 2.52 and forests near the house (AOR = 1.60, 95% CI: 1.15, 2.47, were found predictors for malaria in high altitude villages. CONCLUSION: Travel outside of their home was an important risk of malaria infections acquisition. Targeting males who frequently travel to malarious areas can reduce malaria transmission risks in high altitude areas.

  9. Global dose to man from proposed NNTRP high altitude nuclear tests

    International Nuclear Information System (INIS)

    Peterson, K.R.

    1975-05-01

    Radionuclide measurements from past high altitude nuclear testing have enabled development of a model to estimate surface deposition and doses from 400 kt of fission products injected in winter within the Pacific Test Area at altitudes in excess of 50 km. The largest 30-year average dose to man is about 10 millirem and occurs at 30 0 to 50 0 N latitude. The principal contributor to this dose is external gamma radiation from gross fission products. Individual doses from 90 Sr via the forage-cow-milk pathway and 137 Cs via the pasture-meat pathway are about 1/5 the gross fission product doses. The global 30-year population dose is 3 x 10 7 person-rem, which compares with a 30-year natural background population dose of 1 X 10 10 person-rem. Due in large part to the global distribution of population, over 98 percent of the global person-rem from the proposed high altitude tests is received in the Northern Hemisphere, while about 75 percent of the total population dose occurs within the 30 0 --50 0 N latitude belt. Detonations in summer would decrease the global dose by about a factor of three. (U.S.)

  10. Protective effect of ginkgolide B on high altitude cerebral edema of rats.

    Science.gov (United States)

    Botao, Yu; Ma, Jie; Xiao, Wenjing; Xiang, Qingyu; Fan, Kaihua; Hou, Jun; Wu, Juan; Jing, Weihua

    2013-03-01

    Ginkgolide B (GB) is one of the ginkgolides isolated from leaves of the Ginkgo biloba tree. The aim of this study was to investigate whether GB has a protective effect on high altitude cerebral edema (HACE) of rats. HACE was induced by hypobaric hypoxia exposure for 24 hours in an animal decompression chamber with the chamber pressure of 267 mmHg to simulate an altitude of 8000 m. Before the exposure, three doses (3, 6, and 12 mg·kg(-1)) of GB were given intraperitoneally (ip) daily for 3 days. Effects of GB on brain water content (BWC), activity of superoxide dismutase (SOD), concentration of glutathione (GSH) and malondialdehyde (MDA), expression of active caspase-3 and poly(ADP-ribose) polymerase (PARP) were measured. In GB pretreatment groups (6 and 12 mg·kg(-1), but not 3 mg·kg(-1)), BWC, the concentration of MDA, the expression of active caspase-3 and PARP were reduced significantly, while the activity of SOD and concentration of GSH were significantly increased. In conclusion, these results indicate that GB has a protective effect on cerebral edema caused by high altitude in rats. The protective effect of GB might be attributed to its antioxidant properties and suppression of the caspase-dependent apoptosis pathway.

  11. Long term observation of low altitude atmosphere by high precision polarization lidar

    Science.gov (United States)

    Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo

    2011-11-01

    Prediction of weather disaster such as heavy rain and light strike is an earnest desire. Successive monitoring of the low altitude atmosphere is important to predict it. The weather disaster often befalls with a steep change in a local area. It is hard for usual meteorological equipments to capture and alert it speedily. We have been developed the near range lidar to capture and analyze the low altitude atmosphere. In this study, high precision polarization lidar was developed to observe the low altitude atmosphere. This lidar has the high extinction ratio of polarization of >30dB to detect the small polarization change of the atmosphere. The change of the polarization in the atmosphere leads to the detection of the depolarization effect and the Faraday effect, which are caused by ice-crystals and lightning discharge, respectively. As the lidar optics is "inline" type, which means common use of optics for transmitter and receiver, it can observe the near range echo with the narrow field of view. The long-term observation was accomplished at low elevation angle. It aims to monitor the low altitude atmosphere under the cloud base and capture its spatial distribution and convection process. In the viewpoint of polarization, the ice-crystals' flow and concentration change of the aerosols are monitored. The observation has been continued in the cloudy and rainy days. The thunder cloud is also a target. In this report, the system specification is explained to clear the potential and the aims. The several observation data including the long-term observation will be shown with the consideration of polarization analysis.

  12. High-Energy Astrophysics with the High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Pretz, John; HAWC Collaboration

    2013-04-01

    The High Altitude Water Cherenkov (HAWC) observatory, under construction at Sierra Negra in the state of Puebla, Mexico, consists of a 22500 square meter area of water Cherenkov detectors: water tanks instrumented with light-sensitive photomultiplier tubes. The experiment is used to detect energetic secondary particles reaching the ground when a 50 GeV to 100 TeV cosmic ray or gamma ray interacts in the atmosphere above the experiment. By timing the arrival of particles on the ground, the direction of the original primary particle may be resolved with an error of between 1.0 (50 GeV) and 0.1 (10 TeV) degrees. Gamma-ray primaries may be distinguished from cosmic ray background by identifying the penetrating particles characteristic of a hadronic particle shower. The instrument is 10% complete and is performing as expected, with 30% of the channels anticipated by the summer of 2013. HAWC will complement existing Imaging Atmospheric Cherenkov Telescopes and space-based gamma-ray telescopes with its extreme high-energy sensitivity and its large field-of-view. The observatory will be used to study particle acceleration in Pulsar Wind Nebulae, Supernova Remnants, Active Galactic Nuclei and Gamma-ray Bursts. Additionally, the instrument can be used to probe dark matter annihilation in halo and sub-halos of the galaxy. We will present the sensitivity of the HAWC instrument in the context of the main science objectives. We will also present the status of the deployment including first data from the instrument and prospects for the future.

  13. Properties of High-Volume Fly Ash Concrete Reinforced with Natural Fibres

    Directory of Open Access Journals (Sweden)

    Rafat SIDDIQUE

    2012-12-01

    Full Text Available Properties of high-volume fly ash concrete incorporating san fibres are presented in this paper. For this investigation, initially, three concrete mixtures were made with 35%, 45%, and 55% of Class F fly as partial replacement of cement. After this, three percentages (0.25, 0.50, and 0.75% of san fibres (25 mm length were added in each of the fly ash concrete mixtures. San is a natural bast fibre, and is also known as Sunn Hemp (Botanical name: Crotalaria Juncea. It is grown in Indian Sub-Continent, Brazil, Eastern and Southern Africa, and also in some parts of U.S.A. Tests were performed for compressive strength, splitting tensile strength, flexural strength, and impact strength at the ages of 28, 91 and 365 days. Tests were also performed for fresh concrete properties. 28 days test results indicated that san fibres reduced the compressive strength of high-volume fly ash concrete by 2 to 13%, increased splitting tensile strength by 6 to 26%, flexural strength by 5 to 14%, and enhanced impact strength tremendously (by 100 to 300% depending upon the fly ash content and fibre percentage. Later age (91 and 365 days results showed continuous increase in strength properties of high-volume fly ash concrete. This was probably be possible due to the pozzolanic action of fly ash, leading to more densification of the concrete matrix, and development of more effective bond between fibres and fly ash concrete matrix.

  14. High altitude airship configuration and power technology and method for operation of same

    Science.gov (United States)

    Choi, Sang H. (Inventor); Elliott, Jr., James R. (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Chu, Sang-Hyon (Inventor)

    2011-01-01

    A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.

  15. Student-Built High-Altitude Balloon Payload with Sensor Array and Flight Computer

    Science.gov (United States)

    Jeffery, Russell; Slaton, William

    A payload was designed for a high-altitude weather balloon. The flight controller consisted of a Raspberry Pi running a Python 3.4 program to collect and store data. The entire payload was designed to be versatile and easy to modify so that it could be repurposed for other projects: The code was written with the expectation that more sensors and other functionality would be added later, and a Raspberry Pi was chosen as the processor because of its versatility, its active support community, and its ability to interface easily with sensors, servos, and other such hardware. For this project, extensive use was made of the Python 3.4 libraries gps3, PiCamera, and RPi.GPIO to collect data from a GPS breakout board, a Raspberry Pi camera, a geiger counter, two thermocouples, and a pressure sensor. The data collected clearly shows that pressure and temperature decrease as altitude increases, while β-radiation and γ-radiation increase as altitude increases. These trends in the data follow those predicted by theoretical calculations made for comparison. This payload was developed in such a way that future students could easily alter it to include additional sensors, biological experiments, and additional error monitoring and management. Arkansas Space Grant Consortium (ASGC) Workforce Development Grant.

  16. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    Science.gov (United States)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2018-03-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  17. Effects of High Altitude on Sleep and Respiratory System and Theirs Adaptations

    Directory of Open Access Journals (Sweden)

    Turhan San

    2013-01-01

    Full Text Available High-altitude (HA environments have adverse effects on the normal functioning body of people accustomed to living at low altitudes because of the change in barometric pressure which causes decrease in the amount of oxygen leading to hypobaric hypoxia. Sustained exposure to hypoxia has adverse effects on body weight, muscle structure and exercise capacity, mental functioning, and sleep quality. The most important step of acclimatization is the hyperventilation which is achieved by hypoxic ventilatory response of the peripheral chemoreceptors. Hyperventilation results in increase in arterial carbondioxide concentration. Altitude also affects sleep and cardiac output, which is the other determinant of oxygen delivery. Upon initial exposure to HA, the resting pulse rate increases rapidly, but with acclimatization, heart rate and cardiac output tend to fall. Another important component that leads to decrease in cardiac output is the reduction in the stroke volume with acclimatization. During sleep at HA, the levels of CO2 in the blood can drop very low and this can switch off the drive to breathe. Only after the body senses a further drop in O2 levels breathing is started again. Periodic breathing is thought to result from instability in the control system through the hypoxic drive or the response to CO2.

  18. Appetite at "high altitude" [Operation Everest III (Comex-'97)]: a simulated ascent of Mount Everest.

    Science.gov (United States)

    Westerterp-Plantenga, M S; Westerterp, K R; Rubbens, M; Verwegen, C R; Richelet, J P; Gardette, B

    1999-07-01

    We hypothesized that progressive loss of body mass during high-altitude sojourns is largely caused by decreased food intake, possibly due to hypobaric hypoxia. Therefore we assessed the effect of long-term hypobaric hypoxia per se on appetite in eight men who were exposed to a 31-day simulated stay at several altitudes up to the peak of Mt. Everest (8,848 m). Palatable food was provided ad libitum, and stresses such as cold exposure and exercise were avoided. At each altitude, body mass, energy, and macronutrient intake were measured; attitude toward eating and appetite profiles during and between meals were assessed by using questionnaires. Body mass reduction of an average of 5 +/- 2 kg was mainly due to a reduction in energy intake of 4.2 +/- 2 MJ/day (P < 0.01). At 5,000- and 6,000-m altitudes, subjects had hardly any acute mountain sickness symptoms and meal size reductions (P < 0.01) were related to a more rapid increase in satiety (P < 0.01). Meal frequency was increased from 4 +/- 1 to 7 +/- 1 eating occasions per day (P < 0. 01). At 7,000 m, when acute mountain sickness symptoms were present, uncoupling between hunger and desire to eat occurred and prevented a food intake necessary to meet energy balance requirements. On recovery, body mass was restored up to 63% after 4 days; this suggests physiological fluid retention with the return to sea level. We conclude that exposure to hypobaric hypoxia per se appears to be associated with a change in the attitude toward eating and with a decreased appetite and food intake.

  19. Carbon accumulation in high-altitude peatlands of the Central Andes of Peru

    Science.gov (United States)

    Llanos, Romina; Moreira-Turcq, Patricia; Huaman, Yizet; Espinoza, Raul; Apaestegui, James; Turcq, Bruno; Willems, Bram

    2017-04-01

    Despite covering only 6 - 8% of the world's land surface, peatlands contain around one third of the global organic soil carbon (C) and are an important component of the global C cycle. Most studies of peatland C dynamics have been carried out on boreal and subarctic peatlands, but less is known about peatlands at lower latitudes, yet there are significant peatland C stocks in these regions that may be more vulnerable to future climate change because they are closer to the climatic limit of peatland distribution. In South America, peatlands in high altitudes called "bofedales" represent one of the most important water resources and also provide key environmental services that support both Andean mountain biodiversity and the wellbeing of human populations. Nowdays, the need for conservation and wise use of these ecosystems is increasingly being recognized. So, a useable assessment of peatlands in the global C cycle requires accurate estimates of carbon pools and fluxes. In order to understand the impact of different altitudes on the growth, production and carbon accumulation, several short (about 30 cm) peatlands cores were collected in the headwater of the Cachi river basin, in the Central Andes of Peru. Two Distichia muscoides cushion plant-dominated "bofedales" which elevations exceed 4000 m were studied. The sedimentation rates, based on radiocarbon dating of peat samples from the two sites studied, were very variable. Cores from the bofedal located at 4200 m present an age of approximately 55 years, while the site at the highest altitude site has an age of approximately about 450 years. Our results point out very different rates of sedimentation in the two peatlands that may be related to the climatic changes observed during the recent past, with a direct consequence on the carbon accumulation rates. In the determination of the annual growth, we observed that this one presented smaller values in the first centimeters of the peatland with lower elevation, while

  20. The Effects of High Alkaline Fly Ash on Strength Behaviour of a Cohesive Soil

    Directory of Open Access Journals (Sweden)

    A. Binal

    2016-01-01

    Full Text Available Contemporarily, there are 16 coal-burning thermal power plants currently operating in Turkey. This number is expected to rise to 46 in the future. Annually, about 15 million tons of fly ash are removed from the existing thermal power plants in Turkey, but a small proportion of it, 2%, is recyclable. Turkey’s plants are fired by lignite, producing Class C fly ash containing a high percentage of lime. Sulfate and alkali levels are also higher in Class C fly ashes. Therefore, fly ash is, commonly, unsuitable as an additive in cement or concrete in Turkey. In this study, highly alkaline fly ash obtained from the Yeniköy thermal power plants is combined with soil samples in different proportions (5%, 10%, 15%, 20%, and 25% and changes in the geomechanical properties of Ankara clay were investigated. The effect of curing time on the physicomechanical properties of the fly ash mixed soil samples was also analyzed. The soil classification of Ankara clay changed from CH to MH due to fly ash additives. Free swelling index values showed a decrease of 92.6%. Direct shear tests on the cohesion value of Ankara clay have shown increases by multiples of 15.85 and 3.01 in internal friction angle values. The California bearing ratio has seen a more drastic increase in value (68.7 times for 25% fly ash mix.

  1. [Application of lung ultrasound examination in severe high altitude pulmonary edema].

    Science.gov (United States)

    Ma, Dehua; Bao, Haiyong; Zhang, Hong; Shi, Haixia; Li, Chengrong; Li, Wantai; Zhong, Shengnian; Liu, Mei; Hou, Ming

    2017-09-01

    To investigate the application value of lung ultrasonic on severe high altitude pulmonary edema. A prospective, single-blind, case-control study was conducted. Sixty patients with severe high altitude pulmonary edema admitted to Qinghai University Affiliated Hospital from February 2015 to May 2017 were enrolled. The patients were divided into 2 500-3 000 m group, 3 000-3 500 m group and 3 500-4 200 m group according to different altitudes,with 20 patients in each group. The acute physiology and chronic health evaluation II (APACHE II) score was recorded before and 12 hours and 24 hours after treatment. The arterial partial pressure of oxygen (PaO 2 ) was determined by blood gas analysis, and the oxygenation index (PaO 2 /FiO 2 ) was calculated. Bedside ultrasound scanning was used to determine B line number and pulmonary artery pressure (PAP), and B line score was calculated to reflect lung water content. The correlation between B line score and PaO 2 /FiO 2 , PAP and APACHE II scores at each time point was analyzed by Pearson correlation analysis. None of 60 patients died or exited, all of them were enrolled in the final analysis. There was no significant difference in PaO 2 /FiO 2 , PAP, APACHE II score or B line score among different altitudes groups (all P > 0.05). Repeated measurement variance analysis showed that the effects of different altitudes on PaO 2 /FiO 2 , PAP, APACHE II score and B line score were not statistically significant (F value was 0.312, 0.014, 1.098, 0.236, and P value was 0.340, 0.791, 0.733, and 0.986, respectively). The PaO 2 /FiO 2 , PAP, APACHE II score and B line score in all groups were improved obviously from 12 hours after treatment, and the improvements at 24 hours were more than those at 12 hours (all P pulmonary edema, and the worse the oxygenation; with the decrease in B line after treatment, the pulmonary edema was gradually alleviated, and oxygenation was gradually improved. There was a significant positive correlation

  2. Current-use pesticide transport to Costa Rica's high-altitude tropical cloud forest.

    Science.gov (United States)

    Shunthirasingham, Chubashini; Gouin, Todd; Lei, Ying D; Ruepert, Clemens; Castillo, Luisa E; Wania, Frank

    2011-12-01

    To gain insight into the atmospheric transport and deposition of organic contaminants in high-altitude forests in the humid tropics, pesticides were analyzed in air, water, and soil samples from Costa Rica. Passive samplers deployed across the country revealed annually averaged air concentrations of chlorothalonil, endosulfan, and pendimethalin that were higher in areas with intensive agricultural activities than in more remote areas. Atmospheric concentrations were particularly high in the intensively cultivated central valley. Only endosulfan and its degradation products were found in soils sampled along an altitudinal transect on the northern side of Volcano Turrialba, which is facing heavily cultivated coastal plains. Consistent with calculations of cold trapping in tropical mountains, concentrations of endosulfan sulfate increased with altitude. Pesticide levels in lake, creek, fog, and arboreal water samples from high-elevation cloud forests were generally below 10 ng · L(-1). Endosulfan sulfate was the most abundant pesticide in water, with concentrations ranging from 0.4 to 9.4 ng · L(-1). Its levels were highest in water sampled from bromeliads. Levels of total endosulfan in water are much lower than the reported median lethal concentration (LC50) value for acute toxicity of α-endosulfan to tadpoles. Although this suggests that the presence of pesticide might not have a direct impact on amphibian populations, the possibility of effects of chronic exposure to a mixture of substances cannot be excluded. Fog was relatively enriched in some of the analyzed pesticides, such as dacthal and chlorothalonil, and may constitute an important deposition pathway to high-altitude tropical cloud forest. Copyright © 2011 SETAC.

  3. High-Altitude Airborne Platform Characterisation of Adaptive Optic Corrected Ground Based Laser

    Science.gov (United States)

    Bennet, F.; Petkovic, M.; Sheard, B.; Greene, B.

    Adaptive optics can be used for more than astronomical imaging with large telescopes. The Research School of Astronomy and Astrophysics (RSAA) and the Space Environment Management Research Centre (SERC) at the Mount Stromlo Observatory in Canberra, Australia, have been developing adaptive optics (AO) for space environment management. Turbulence in the atmosphere causes optical signals to become degraded during propagation, which reduces the effective aperture of your transmitting or receiving telescope. An AO system measures and corrects for the turbulence in the atmosphere, allowing for greater resolution of optical signals. AO can be used to correct a laser beam propagating from the ground into space, or high-altitude airborne platform. The AO system performance depends heavily on the chosen site and system design. In order to properly design and implement a cost-effective AO system to propagate a laser into orbit, we propose using high-altitude platforms to measure AO system performance directly as a precursor in-orbit measurements. SERC plan on demonstrating remote manoeuvre of an orbiting object using photon pressure from an AO corrected high power ground based laser. The manoeuvre target will be a suitable piece of debris, or a dedicated satellite mission which is instrumented and tracked to measure the applied photon pressure and resulting orbit perturbation. High-altitude airborne platforms such as weather balloons or UAVs enable us to efficiently de-risk elements of this program by validating our numerical simulations of AO system performance with actual measurements. We are then able to confidently move towards in-orbit measurement of an AO corrected ground based laser, and remote manoeuvre with photon pressure. We present simulations along with experimental results for the development of array detectors which can be used to directly measure AO system performance.

  4. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    Science.gov (United States)

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area

  5. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk High Altitude MMIC Sounding Radiometer (HAMSR) dataset includes measurements gathered by the HAMSR...

  6. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK HIGH ALTITUDE MMIC SOUNDING RADIOMETER (HAMSR) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk High Altitude MMIC Sounding Radiometer (HAMSR) datasets include measurements gathered by the HAMSR...

  7. Creation of a Dynamical Stratospheric Turbulence Forecasting and Nowcasting Tool for High Altitude Airships and Other Aircraft

    National Research Council Canada - National Science Library

    Fritts, David C

    2008-01-01

    ... for which significant wave and turbulence activity may pose an operational or functional risk. The specific goal for MDA purposes was to create a forecasting methodology for turbulence activity at the expected High Altitude Airship (HAA...

  8. GPM GROUND VALIDATION HIGH ALTITUDE IMAGING WIND AND RAIN AIRBORNE PROFILER (HIWRAP) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a dual-frequency (Ka- and Ku-band) conical scan system, configured with a nadir viewing antenna...

  9. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.

  10. High-altitude diving in river otters: coping with combined hypoxic stresses

    Science.gov (United States)

    Crait, Jamie R.; Prange, Henry D.; Marshall, Noah A.; Harlow, Henry J.; Cotton, Clark J.; Ben-David, Merav

    2012-01-01

    SUMMARY River otters (Lontra canadensis) are highly active, semi-aquatic mammals indigenous to a range of elevations and represent an appropriate model for assessing the physiological responses to diving at altitude. In this study, we performed blood gas analyses and compared blood chemistry of river otters from a high-elevation (2357 m) population at Yellowstone Lake with a sea-level population along the Pacific coast. Comparisons of oxygen dissociation curves (ODC) revealed no significant difference in hemoglobin-oxygen (Hb-O2) binding affinity between the two populations - potentially because of demands for tissue oxygenation. Instead, high-elevation otters had greater Hb concentrations (18.7 g dl-1) than sea-level otters (15.6 g dl-1). Yellowstone otters displayed higher levels of the vasodilator nitric oxide (NO), and half the concentration of the serum protein albumin, possibly to compensate for increased blood viscosity. Despite compensation in several hematological and serological parameters, theoretical aerobic dive limits (ADL) were similar between high-elevation and sea-level otters because of the lower availability of O2 at altitude. Our results suggest that recent disruptions to the Yellowstone Lake food web could be detrimental to otters because at this high elevation, constraints on diving may limit their ability to switch to prey in a deep-water environment. PMID:22189769

  11. An Investigation of Ice Surface Albedo and Its Influence on the High-Altitude Lakes of the Tibetan Plateau

    OpenAIRE

    Jiahe Lang; Shihua Lyu; Zhaoguo Li; Yaoming Ma; Dongsheng Su

    2018-01-01

    Most high-altitude lakes are more sensitive to global warming than the regional atmosphere. However, most existing climate models produce unrealistic surface temperatures on the Tibetan Plateau (TP) lakes, and few studies have focused on the influence of ice surface albedo on high-altitude lakes. Based on field albedo measurements, moderate resolution imaging spectrometer (MODIS) albedo products and numerical simulation, this study evaluates the ice albedo parameterization schemes in existing...

  12. Optic Nerve Sheath Diameter Increase on Ascent to High Altitude: Correlation With Acute Mountain Sickness.

    Science.gov (United States)

    Kanaan, Nicholas C; Lipman, Grant S; Constance, Benjamin B; Holck, Peter S; Preuss, James F; Williams, Sarah R

    2015-09-01

    Elevated optic nerve sheath diameter on sonography is known to correlate with increased intracranial pressure and is observed in acute mountain sickness. This study aimed to determine whether optic nerve sheath diameter changes on ascent to high altitude are associated with acute mountain sickness incidence. Eighty-six healthy adults enrolled at 1240 m (4100 ft), drove to 3545 m (11,700 ft) and then hiked to and slept at 3810 m (12,500 ft). Lake Louise Questionnaire scores and optic nerve sheath diameter measurements were taken before, the evening of, and the morning after ascent. The incidence of acute mountain sickness was 55.8%, with a mean Lake Louise Questionnaire score ± SD of 3.81 ± 2.5. The mean maximum optic nerve sheath diameter increased on ascent from 5.58 ± 0.79 to 6.13 ± 0.73 mm, a difference of 0.91 ± 0.55 mm (P = .09). Optic nerve sheath diameter increased at high altitude regardless of acute mountain sickness diagnosis; however, compared to baseline values, we observed a significant increase in diameter only in those with a diagnosis of acute mountain sickness (0.57 ± 0.77 versus 0.21 ± 0.76 mm; P = .04). This change from baseline, or Δ optic nerve sheath diameter, was associated with twice the odds of developing acute mountain sickness (95% confidence interval, 1.08-3.93). The mean optic nerve sheath diameter increased on ascent to high altitude compared to baseline values, but not to a statistically significant degree. The magnitude of the observed Δ optic nerve sheath diameter was positively associated with acute mountain sickness diagnosis. No such significant association was found between acute mountain sickness and diameter elevation above standard cutoff values, limiting the utility of sonography as a diagnostic tool. © 2015 by the American Institute of Ultrasound in Medicine.

  13. First Cluster results of the magnetic field structure of the mid- and high-altitude cusps

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available Magnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000. Evidence for field-aligned currents (FACs was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence.

    Key words. Magnetospheric physics (current systems; magnetopause, cusp, and boundary layers – Space plasma physics (discontinuities

  14. Effects of high-altitude exercise training on contractile function of rat skinned cardiomyocyte.

    Science.gov (United States)

    Cazorla, O; Aït Mou, Y; Goret, L; Vassort, G; Dauzat, M; Lacampagne, A; Tanguy, S; Obert, P

    2006-09-01

    Previous studies have questioned whether there is an improved cardiac function after high-altitude training. Accordingly, the present study was designed specifically to test whether this apparent blunted response of the whole heart to training can be accounted for by altered mechanical properties at the cellular level. Adult rats were trained for 5 weeks under normoxic (N, NT for sedentary and trained animals, respectively) or hypobaric hypoxic (H, HT) conditions. Cardiac morphology and function were evaluated by echocardiography. Calcium Ca2+ sensitivity of the contractile machinery was estimated in skinned cardiomyocytes isolated from the left ventricular (LV) sub-epicardium (Epi) and sub-endocardium (Endo) at short and long sarcomere lengths (SL). Cardiac remodelling was harmonious (increase in wall thickness with chamber dilatation) in NT rats and disharmonious (hypertrophy without chamber dilatation) in HT rats. Contrary to NT rats, HT rats did not exhibit enhancement in global cardiac performance evaluated by echocardiography. Stretch- dependent Ca2+ sensitization of the myofilaments (cellular index of the Frank-Starling mechanism) increased from Epi to Endo in N rats. Training in normoxic conditions further increased this stretch-dependent Ca2+ sensitization. Chronic hypoxia did not significantly affect myofibrilar Ca2+ sensitivity. In contrast, high-altitude training decreased Ca2+ sensitivity of the myofilaments at both SL, mostly in Endo cells, resulting in a loss of the transmural gradient of the stretch-dependent Ca2+ sensitization. Expression of myosin heavy chain isoforms was affected both by training and chronic hypoxia but did not correlate with mechanical data. Training at sea level increased the transmural gradient of stretch-dependent Ca2+ sensitization of the myofilaments, accounting for an improved Frank-Starling mechanism. High-altitude training depressed myofilament response to Ca2+, especially in the Endo layer. This led to a reduction in

  15. High levels of insecticide resistance in introduced horn fly (Diptera: Muscidae) populations and implications for management.

    Science.gov (United States)

    Oyarzún, M P; Li, A Y; Figueroa, C C

    2011-02-01

    The horn fly, Haematobia irritans (L.) (Diptera: Muscidae), was introduced to Chile in the beginning of the 1990s. Since its introduction, farmers have controlled this pest almost exclusively with insecticides. To understand the consequences of different control strategies on the development of insecticide resistance and their persistence, a field survey was conducted at eight farms in the south of Chile to characterize insecticide resistance in field populations and resistance mechanisms. Horn fly samples were assayed to determine levels of resistance to pyrethroids and diazinon, genotyped for kdr and HialphaE7 mutations, and tested for general esterase activity. All field populations, including ones that were not treated with insecticides for the past 5 yr, showed high levels of cypermethrin resistance and high frequencies of the kdr mutation. None of the fly populations demonstrated resistance to diazinon and the HialphaE7 mutation was not detected in any of the fly samples. Esterase activities in all populations were comparable to those found in the susceptible reference strain. The findings of high frequencies of homozygous resistant and heterozygous individuals both in insecticide treated horn fly populations and in the untreated fly populations suggests complex interactions among field populations of the horn fly in Chile.

  16. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... Global cerebral blood flow at rest and during exercise on a bicycle ergometer was measured by the Kety-Schmidt technique. Cerebral metabolic rates of oxygen, glucose, and lactate were calculated by the Fick principle. Cerebral function was assessed by a computer-based measurement of reaction time...

  17. The ionization effects from nuclear explosions in high-altitude and their effect to radio propagation

    International Nuclear Information System (INIS)

    Guan Rongsheng; Li Qin

    1997-01-01

    A high-altitude nuclear explosions releases large quantities of energetic particles and electromagnetic radiation capable of producing ionization in the atmosphere. These particles and rays radiation character in the atmosphere are discussed. Ionizations due to explosion X rays, γ rays, neutrons and β particles are considered separately. The time-space distribution of additional electron density is computed and its nature is analyzed. The effects of explosion-induced ionization on the absorption of radio wave is considered and the dependence of the absorption on explosion characteristics, distance from the earth's atmosphere, and frequency of the radio wave is determined

  18. NUCLEOTIDE COMPARISON OF GDF9 GENE IN INDIAN YAK AND GADDI GOAT: HIGH ALTITUDE LIVESTOCK ANIMALS

    Directory of Open Access Journals (Sweden)

    Lakshya Veer Singh

    2013-06-01

    Full Text Available The present study was undertaken to characterize exon 1 and exon 2 sequence of one of fecundity genes: GDF9 (Growth differentiation factor 9, in high altitude livestock animal (Yak and Gaddi goat. Six nucleotide differences were identified between sheep (AF078545 and goats (EF446168 in exon 1 and exon 2. Sequencing revealed nine novel single nucleotide mutations in exon 1 and exon 2 of Indian yak that compared with Bos taurus (GQ922451. These results preliminarily showed that the GDF9 gene might be a major gene that influences prolificacy of Gaddi goats and Indian yak.

  19. The molecular basis of convergence in hemoglobin function in high-altitude Andean birds

    DEFF Research Database (Denmark)

    Storz, Jay; Natarajan, Chandrasekhar; Witt, Christopher C.

    2016-01-01

    was correct that adaptive modifications of Hb function are typically attributable to a small number of substitutions at key positions, then the clear prediction is that the same mutations will be preferentially fixed in different species that have independently evolved Hbs with similar functional properties....... For example, in high-altitude ertebrates that have convergently evolved elevated Hb-O2 affinities, Perutz’s hypothesis predicts that parallel amino acid substitutions should be pervasive. We investigated the predictability of genetic adaptation by examining the molecular basis of convergence in hemoglobin (Hb...

  20. Corneal Opacity in a Participant of a 161-km Mountain Bike Race at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Torres, David R

    2016-06-01

    Visual dysfunction is a relatively uncommon complaint among athletes during ultraendurance races. The pathophysiology of most of these cases is unknown. Corneal opacity has been speculated as the etiology for most of reported cases. We are presenting a case of a 56-year-old man with a partial unilateral corneal opacity and edema at kilometer 150 of a 161-km mountain bike race in high altitude. He was not able to finish the race (12-hour cutoff) because of his visual symptoms. He completely recovered in 3 days with no sequelae. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  1. Current status of SHARC, the Strategic High-Altitude Radiance Code, and description of its new auroral module

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.; Ratkowski, A.; Duff, J.; Bernstein, L.; Gruninger, J.

    1990-04-20

    The Strategic High-Altitude Radiance Code (SHARC) is a new computer code that calculates atmospheric radiation in the mesosphere and thermosphere. The initial version, SHARC-1, is available for distribution. This talk discusses the capabilities of this code and describes the new auroral model which will be incorporated in the next version. SHARC calculates radiance and transmittance for paths from 60 to 300 km altitude in the 2-40 microns spectral region. It models radiation due to NLTE (Non-Local Thermodynamic Equilibrium) molecular emissions which are the dominant sources at these altitudes.

  2. Current status of SHARC, the strategic high altitude radiance code, and description of its new auroral module

    Science.gov (United States)

    Sharma, Ramesh; Ratkowski, Anthony; Duff, James; Bernstein, Lawrence; Gruninger, John; Sundberg, Robert; Robertson, David; Healey, Rebecca

    1990-04-01

    The Strategic High-Altitude Radiance Code (SHARC) is a new computer code that calculates atmospheric radiation in the mesosphere and thermosphere. The initial version, SHARC-1, is available for distribution. This talk discusses the capabilities of this code and describes the new auroral model which will be incorporated in the next version. SHARC calculates radiance and transmittance for paths from 60 to 300 km altitude in the 2 to 40 microns spectral region. It models radiation due to NLTE (Non-Local Thermodynamic Equilibrium) molecular emissions which are the dominant sources at these altitudes.

  3. INFLUENCES OF SUPERPLASTICIZER, MIXING TIME, MIXING TEMPERATURE AND CEMENT CONTENT ON HIGH-VOLUME FLY ASH CONCRETE

    OpenAIRE

    Nobuhiro, KAWAGUCHI; Kiyoshi, KOHNO; Masakazu, MITA; Department of Civil Engineering, Faculty of Engineering, The University of Tokushima; Department of Civil Engineering, Faculty of Engineering, The University of Tokushima; Department of Civil Engineering, Faculty of Engineering, The University of Tokushima

    1996-01-01

    The influences of superplasticizers, mixing time, mixing temperature and cement content on high-volume fly ash concrete were investigated in order to use the industrial by-product, fly ash from coal thermal power plant, more actively for concrete. The slump, air content, compressive strength and tensile strength of high-volume fly ash concrete were investigated using different mixtures. The results of these investigations indicate that the properties of fly ash concrete are influenced by the ...

  4. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    OpenAIRE

    Choi, Yun-Wang; Park, Man-Seok; Choi, Byung-Keol; Oh, Sung-Rok

    2015-01-01

    In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high...

  5. Establishment of extracorporeal circulation of artificial liver support system in high altitude region

    Directory of Open Access Journals (Sweden)

    Ming-sen ZHANG

    2011-01-01

    Full Text Available Objective To establish extracorporeal circulation in big animal suitable for the research on artificial liver support system in high altitude region.Methods Under the anesthesia of ketamine hydrochloride/diazepam IV,cannulation of common carotid artery/external jugular vein(n=3 and inferior vena cava via the left external jugular vein/right external jugular vein(n=3,was respectively performed on six healthy Chang-Bai piglets adapted to native environment(altitude 3700m.One day after that,the extracorporeal circulation was performed at a progressively elevated blood current velocity,and the general condition of the animals,blood pressure,HR,bleeding tendoncy of the experimental pigs and coagulation in the cannulae were observed.Results On the premise that the hemodynamics was not influenced,the highest blood current velocity was 133.33±28.87ml/min,the lowest heparin maintaining speed amounted to 138.67±12.22mg/h,and the bleeding tendency and blood coagulation in the cannula was significant in the group of common carotid artery/external jugular vein intubation.While the highest blood current velocity was 400ml/min,the lowest heparin maintaining speed was 26.67±9.24mg/h,no bleeding tendency or obvious cannular blood coagulation were observed in the group of cannulation of inferior vena cava via the left external jugular vein/right external jugular vein.These untoward results were significantly less or slight than that of the former group(P < 0.01.Conclusion It is suitable to perform research of artificial liver support system on piglets in high altitude region by establishing extracorporeal circulation by the way of inferior vena cava with cannulation passing through the left external jugular vein/right external jugular vein with the blood current velocity of 400ml/min.

  6. X- and gamma ray observations in high-altitude thunderstorms in Mexico

    Science.gov (United States)

    Kelley, N. A.; Smith, D. M.; Lara, A.

    2014-12-01

    High-energy emission from lightning is more easily measured at high altitudes, close to or within the electric fields accelerating the energetic particles. Gamma rays from long duration glows and x-rays from stepped leaders attenuate with distance. From mountaintops, it may be possible to measure an amplified version of the x-rays commonly seen from stepped leaders. These amplified x-rays could arise from the thunderstorm electric field multiplying the energetic particles via Relativistic Runaway Electron Avalanches (RREA). Amplified stepped leaders may be similar or even the same as terrestrial gamma-ray flashes (TGFs), which need long-range electric fields to produce the intensities seen from space. We deployed two gamma-ray detectors at the High Altitude Water Cherenkov (HAWC) Observatory site on the northeastern slope of the Sierra Negra near Puebla, Mexico at 4100 meters to search for amplified leader events and also for the minutes-long gamma-ray glows observed from thunderstorms by other groups from the ground, balloons, and aircraft. We will also examine the data from HAWC itself, a large array of water tanks viewed by photomultiplier tubes, to look for signals simultaneous with any in our scintillators. In principle, large Cherenkov detectors and small scintillators can give complementary data about the radiation field, emphasizing the total energy content and the number flux of particles, respectively. We will present results from the summer 2014 deployment and talk about future lightning gamma-ray detectors to be deployed at HAWC.

  7. The impact of high altitude aircraft on the ozone layer in the stratosphere

    Science.gov (United States)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  8. Effects of high altitude training on exercise capacity: fact or myth.

    Science.gov (United States)

    de Paula, Paula; Niebauer, Josef

    2012-03-01

    High altitude training has become a mainstay in endurance sports, with live high-train low as the current protocol of choice. Athletes either live or sleep in artificial or natural hypoxic conditions with the aim to increase serum erythropoietin concentrations, which are thought to improve maximum oxygen uptake and thus exercise performance. Changes, however, are not very striking and only apparent in so-called responders, who are not a well-defined group and may be as little as 50% of the trained study population. Whereas some studies show minor improvement, others report no change or even worsening. Furthermore, the mechanisms behind the proposed beneficial changes remain obscure and are far from being proven. There is an evident lack of sufficiently powered randomized, double-blinded studies, with training protocols that are identical for all groups and groups that are indeed comparable. Several studies discriminate between responders and non-responders, without clearly assessing the characteristics of the so-called responders. Until this has been done, it remains unclear if such a group really exists and how these subjects are characterized. This, however, would be of immense value, so protocols could be tailored to athletes' needs. Taken together, the current literature on natural or artificial hypoxia somewhat documents improved performance at high but not low altitude.

  9. The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes.

    Science.gov (United States)

    Habibi, Ghader; Ajory, Neda

    2015-11-01

    Photosynthesis is a biological process most affected by water deficit. Plants have various photosynthetic mechanisms that are matched to specific climatic zones. We studied the photosynthetic plasticity of C3 plants at water deficit using ecotypes of Marrubium vulgare L. from high (2,200 m) and low (1,100 m) elevation sites in the Mishou-Dagh Mountains of Iran. Under experimental drought, high-altitude plants showed more tolerance to water stress based on most of the parameters studied as compared to the low-altitude plants. Increased tolerance in high-altitude plants was achieved by lower levels of daytime stomatal conductance (g s) and reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v /F m ) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). High-altitude plants exhibited higher water use efficiency (WUE) than that in low-altitude plants depending on the presence of thick leaves and the reduced daytime stomatal conductance. Additionally, we have studied the oscillation in H(+) content and diel gas exchange patterns to determine the occurrence of C3 or weak CAM (Crassulacean acid metabolism) in M. vulgare through 15 days drought stress. Under water-stressed conditions, low-altitude plants exhibited stomatal conductance and acid fluctuations characteristic of C3 photosynthesis, though high-altitude plants exhibited more pronounced increases in nocturnal acidity and phosphoenolpyruvate carboxylase (PEPC) activity, suggesting photosynthetic flexibility. These results indicated that the regulation of carotenoids, NPQ, stomatal conductance and diel patterns of CO2 exchange presented the larger differences among studied plants at different altitudes and seem to be the protecting mechanisms controlling the photosynthetic performance of M. vulgare plants under drought conditions.

  10. Hazard Avoidance Products for Convectively-Induced Turbulence in Support of High-Altitude Global Hawk Aircraft Missions

    Science.gov (United States)

    Griffin, Sarah M.; Velden, Christopher S.

    2018-01-01

    A combination of satellite-based and ground-based information is used to identify regions of intense convection that may act as a hazard to high-altitude aircraft. Motivated by concerns that Global Hawk pilotless aircraft, flying near 60,000 feet, might encounter significant convectively-induced turbulence during research overflights of tropical cyclones, strict rules were put in place to avoid such hazards. However, these rules put constraints on science missions focused on sampling convection with onboard sensors. To address these concerns, three hazard avoidance tools to aid in real-time mission decision support are used to more precisely identify areas of potential turbulence: Satellite-derived Cloud-top height and tropical overshooting tops, and ground-based global network lightning flashes. These tools are used to compare an ER-2 aircraft overflight of tropical cyclone Emily in 2005, which experienced severe turbulence, to Global Hawk overflights of tropical cyclones Karl and Matthew in 2010 that experienced no turbulence. It is found that the ER-2 overflew the lowest cloud tops and had the largest vertical separation from them compared to the Global Hawk flights. Therefore, cold cloud tops alone cannot predict turbulence. Unlike the overflights of Matthew and Karl, Emily exhibited multiple lightning flashes and a distinct overshooting top coincident with the observed turbulence. Therefore, these tools in tandem can better assist in identifying likely regions/periods of intense active convection. The primary outcome of this study is an altering of the Global Hawk overflight rules to be more flexible based on the analyzed conditions.

  11. Development of a Compact High Altitude Imager and Sounding Radiometer (CHAISR)

    Science.gov (United States)

    Choi, R. K. Y.; Min, S.; Cho, Y. J.; Kim, K. H.; Ha, J. C.; Joo, S. W.

    2017-12-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, Korea, has approved a technology demonstration project for developing a lightweight HALE UAV (High-Altitude, Long Endurance). It aims to operate at lower stratosphere, i.e. altitude of 16 20 km, offering unique observational platform to atmospheric research community as pseudo-satellite. NIMS (National Institute of Meteorological Sciences, Korea) is responsible for a payload for atmospheric science, a Compact High Altitude Imager and Sounding Radiometer (CHAISR) to demonstrate scientific observations at lower stratosphere in the interest of improving numerical weather prediction model. CHAISR consists of three microwave radiometers (MWR) with 16 channel, and medium resolution cameras operating in a visible and infrared spectrum. One of the technological challenges for CHAISR is to accommodate those instruments within 50 W of power consumption. CHAISR will experience temperature up to -75°C, while pressure as low as 50 hPa at operational altitude. It requires passive thermal control of the payload to keep electronic subsystems warm enough for instrument operation with minimal power available. Safety features, such as payload power management and thermal control, are considered with minimal user input. Three radiometers measure atmospheric brightness temperature at frequency at around 20, 40, and 50 GHz. Retrieval process yields temperature and humidity profiles with cross track scan along the flight line. Estimated total weight of all radiometer hardware, from the antennas to data acquisition system, is less than 0.8 kg and a maximum power consumption is 15.2 W. With not enough power for blackbody calibration target, radiometers use zenith sky view at lower stratosphere as an excellent calibration target for a conventional tipping-curve calibration. Spatial distributions of clouds from visible and surface temperature from thermal cameras are used as additional information for

  12. Properties of High-Volume Fly Ash Concrete Reinforced with Natural Fibres

    OpenAIRE

    Rafat SIDDIQUE; El-Hadj KADRI

    2012-01-01

    Properties of high-volume fly ash concrete incorporating san fibres are presented in this paper. For this investigation, initially, three concrete mixtures were made with 35%, 45%, and 55% of Class F fly as partial replacement of cement. After this, three percentages (0.25, 0.50, and 0.75%) of san fibres (25 mm length) were added in each of the fly ash concrete mixtures. San is a natural bast fibre, and is also known as Sunn Hemp (Botanical name: Crotalaria Juncea). It is grown in Indian Sub...

  13. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training.

    Science.gov (United States)

    Chen, Chung-Yu; Hou, Chien-Wen; Bernard, Jeffrey R; Chen, Chiu-Chou; Hung, Ta-Cheng; Cheng, Lu-Ling; Liao, Yi-Hung; Kuo, Chia-Hua

    2014-09-01

    High altitude training is a widely used strategy for improving aerobic exercise performance. Both Rhodiola crenulata (R) and Cordyceps sinensis (C) supplements have been reported to improve exercise performance. However, it is not clear whether the provision of R and C during high altitude training could further enhance aerobic endurance capacity. In this study, we examined the effect of R and C based supplementation on aerobic exercise capacity following 2-week high altitude training. Alterations to autonomic nervous system activity, circulatory hormonal, and hematological profiles were investigated. Eighteen male subjects were divided into two groups: Placebo (n=9) and R/C supplementation (RC, n=9). Both groups received either RC (R: 1400 mg+C: 600 mg per day) or the placebo during a 2-week training period at an altitude of 2200 m. After 2 weeks of altitude training, compared with Placebo group, the exhaustive run time was markedly longer (Placebo: +2.2% vs. RC: +5.7%; paltitude training (paltitude training provides greater training benefits in improving aerobic performance. This beneficial effect of RC treatment may result from better maintenance of PNS activity and accelerated physiological adaptations during high altitude training.

  14. The High Teperature Influence on Geopolymer Fly Ash Mixture’s Compressisive Strength with Insudtrial Waste Material Substitution

    Science.gov (United States)

    Bayuaji, R.; Wibowo, B.; Subekti, S.; Santoso, S. E.; Hardiyanto, E.; Kaelani, Y.; Mallu, L. L.

    2017-11-01

    This research aimed to figure out the influence of fly ash mixture from the industrial waste at the temperatures of 150°C, 450°C, 750°C viewed from the strength and resistance of geopolymer paste. As a result, cement will be substituted by industrial waste like fly ash. This experimental research was conducted on the mix design of geopolymer concrete which was made by dimension with 2.5 cm in diameter and 5 cm in height from four mixture composition of fly ash and industrial waste i.e. 100% fly ash, 50% fly ash+50% bottom ash, 50% fly ash+50% sandblast, and 50% fly ash+50% carbide waste. Each mixture was tested in terms of porosity and compressive strength. In conclusion, in the mixture of 50% fly ash+50% Sandblast and 50% fly ash+50% bottom ash in 12 molars, 1.5 activator comparison can be used to substitute fly ash at high temperature. Meanwhile, the mixture of 50% fly ash+50% carbide waste in 8 molars, 0.5 activator comparison has very small strength remaining if it is compared to the mixture of fly ash and other industrial waste (Bottom ash and Sandblast). The performance of mixture paste of 50% fly ash+50% carbide waste was very vulnerable after being burnt. Consequently, it cannot be used as the main structure at high temperature.

  15. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  16. A presentation of base heating data obtained from the 25-O space shuttle model at high altitude

    Science.gov (United States)

    Hendershot, K. C.

    1974-01-01

    During development of the 25-O space shuttle model, several test firings were made in a vacuum chamber at simulated altitude conditions in order to verify satisfactory ignition and operation of the model in a high altitude environment. In conjunction with these firings, heating rate and pressure measurements were obtained at several locations in the orbiter base region on a piggy-back basis. Data obtained during these experiments are summarized, the 25-O space shuttle model is described.

  17. Research on the sewage treatment in high altitude region based on Lhasa Sewage Treatment Plant

    Science.gov (United States)

    Xu, Jin; Li, Shuwen

    2017-12-01

    Sewage treatment is of great significance to enhance environmental quality, consolidate pollution prevention and ecological protection, and ensure sustainable economic and social development in high altitude region. However, there are numerous difficulties in sewage treatment due to the alpine climate, the relatively low economic development level, and the backward operation and management styles, etc. In this study, the characteristics of influent quality in the sewage treatment plant in Lhasa are investigated by analysing the influent BOD5/COD and BOD5/TN, comparing key indexes recorded from 2014 to 2016 with the hinterland. Results show that the concentration of influent COD, BOD5, NH3-N and SS in the Lhasa sewage treatment plant, in which the sewage belongs to low-concentration urban sewage, is smaller than that in the domestic sewage treatment plants in the mainland. The concentration ratio of BOD5/COD and BOD5/TN is below 0.4 and 4, which indicates that the biodegradation is poor and the carbon sources are in bad demand. The consequences obtained play a vital role in the design, operation and management of sewage treatment plants in high altitude region.

  18. Interaction between the low altitude atmosphere and clouds by high-precision polarization lidar

    Science.gov (United States)

    Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo

    2012-11-01

    Lidar is a powerful remote sensing tool to monitor the weather changes and the environmental issues. This technique should not been restricted in those fields. In this study, the authors aim to be apply it to the prediction of weather disaster. The heavy rain and the lightning strike are our targets. The inline typed MPL (micro pulse lidar) has been accomplished to grasp the interaction between the low altitude cloud and the atmosphere and to predict the heavy rain, while it was hard to catch the sign of lightning strike. The authors introduced a new algorism to catch the direct sign of the lightning strike. Faraday effect is caused by lightning discharge in the ionized atmosphere. This effect interacts with the polarization of the propagating beam, that is, the polarization plane is rotated by the effect. In this study, high precision polarization lidar was developed to grasp the small rotation angle of the polarization of the propagating beam. In this report, the interaction between the low altitude cloud and the atmosphere was monitored by the high precision polarization lidar. And the observation result of the lightning discharge were analyzed.

  19. Genotyping the High Altitude Mestizo Ecuadorian Population Affected with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Andrés López-Cortés

    2017-01-01

    Full Text Available Prostate cancer (PC is the second most commonly diagnosed type of cancer in males with 1,114,072 new cases in 2015. The MTHFR enzyme acts in the folate metabolism, which is essential in methylation and synthesis of nucleic acids. MTHFR C677T alters homocysteine levels and folate assimilation associated with DNA damage. Androgens play essential roles in prostate growth. The SRD5A2 enzyme metabolizes testosterone and the V89L polymorphism reduces in vivo SRD5A2 activity. The androgen receptor gene codes for a three-domain protein that contains two polymorphic trinucleotide repeats (CAG, GGC. Therefore, it is essential to know how PC risk is associated with clinical features and polymorphisms in high altitude Ecuadorian mestizo populations. We analyzed 480 healthy and 326 affected men from our three retrospective case-control studies. We found significant association between MTHFR C/T (odds ratio [OR] = 2.2; P=0.009, MTHFR C/T+T/T (OR = 2.22; P=0.009, and PC. The SRD5A2 A49T substitution was associated with higher pTNM stage (OR = 2.88; P=0.039 and elevated Gleason grade (OR = 3.15; P=0.004. Additionally, patients with ≤21 CAG repeats have an increased risk of developing PC (OR = 2.99; P<0.001. In conclusion, genotype polymorphism studies are important to characterize genetic variations in high altitude mestizo populations.

  20. Dual wavelength lidar observation of tropical high-altitude cirrus clouds during the ALBATROSS 1996 Campaign

    Science.gov (United States)

    Beyerle, G.; Schäfer, H.-J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel “POLARSTERN” on the Atlantic ocean in October-November 1996. On the basis of 57 hours of night-time observations between 23.5°N and 23.5°S we find in 72% of the altitude profiles indications of the presence of cirrus cloud layers. This percentage drops to 32% at subtropical latitudes (23.5°-30°) based on 15 hours of data. About one-half of the subtropical and tropical cirrus layers are subvisual with an optical depth of less than 0.03 at a wavelength of 532 nm. In general the clouds exhibit high spatial and temporal variability on scales of a few tens of meters vertically and a few hundred meters horizontally. No clouds are observed above the tropopause. An abrupt change in the relation between the color ratios of the parallel and perpendicular backscatter coefficients at about 240 K is interpreted in terms of changes of particle shape and/or size distribution. At temperatures between 195 and 255 K only a small fraction of the observations are consistent with the presence of small particles with dimensions of less than 0.1 µm.

  1. Ontogenic development of spermatids during spermiogenesis in the high altitude bunchgrass lizard (Sceloporus bicanthalis).

    Science.gov (United States)

    Rheubert, Justin; Touzinsky, Katherine; Hernández-Gallegos, Oswaldo; Granados-González, Gisela; Gribbins, Kevin

    2012-04-01

    The body of ultrastructural data on spermatid characters during spermiogenesis continues to grow in reptiles, but is still relatively limited within the squamates. This study focuses on the ontogenic events of spermiogenesis within a viviparous and continually spermatogenic lizard, from high altitude in Mexico. Between the months of June and August, testicular tissues were collected from eight spermatogenically active bunchgrass lizards (Sceloporus bicanthalis) from Nevado de Toluca, México. The testicular tissues were processed for transmission electron microscopy and analyzed to access the ultrastructural differences between spermatid generations during spermiogenesis. Interestingly, few differences exist between S. bicanthalis spermiogenesis when compared with what has been described for other saurian squamates. Degrading and coiling membrane structures similar to myelin figures were visible within the developing acrosome that are likely remnants from Golgi body vesicles. During spermiogenesis, an electron lucent area between the subacrosomal space and the acrosomal medulla was observed, which has been observed in other squamates but not accurately described. Thus, we elect to term this region the acrosomal lucent ridge. This study furthers the existing knowledge of spermatid development in squamates, which could be useful in future work on the reproductive systems in high altitude viviparous lizard species.

  2. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice.

    Science.gov (United States)

    Tate, Kevin B; Ivy, Catherine M; Velotta, Jonathan P; Storz, Jay F; McClelland, Grant B; Cheviron, Zachary A; Scott, Graham R

    2017-10-15

    We examined the circulatory mechanisms underlying adaptive increases in thermogenic capacity in deer mice ( Peromyscus maniculatus ) native to the cold hypoxic environment at high altitudes. Deer mice from high- and low-altitude populations were born and raised in captivity to adulthood, and then acclimated to normoxia or hypobaric hypoxia (simulating hypoxia at ∼4300 m). Thermogenic capacity [maximal O 2 consumption ( V̇ O 2 ,max ), during cold exposure] was measured in hypoxia, along with arterial O 2 saturation ( S a O 2 ) and heart rate ( f H ). Hypoxia acclimation increased V̇ O 2 ,max by a greater magnitude in highlanders than in lowlanders. Highlanders also had higher S a O 2  and extracted more O 2 from the blood per heartbeat (O 2 pulse= V̇ O 2 ,max / f H ). Hypoxia acclimation increased f H , O 2 pulse and capillary density in the left ventricle of the heart. Our results suggest that adaptive increases in thermogenic capacity involve integrated functional changes across the O 2 cascade that augment O 2 circulation and extraction from the blood. © 2017. Published by The Company of Biologists Ltd.

  3. The molecular basis of high-altitude adaptation in deer mice.

    Directory of Open Access Journals (Sweden)

    Jay F Storz

    2007-03-01

    Full Text Available Elucidating genetic mechanisms of adaptation is a goal of central importance in evolutionary biology, yet few empirical studies have succeeded in documenting causal links between molecular variation and organismal fitness in natural populations. Here we report a population genetic analysis of a two-locus alpha-globin polymorphism that underlies physiological adaptation to high-altitude hypoxia in natural populations of deer mice, Peromyscus maniculatus. This system provides a rare opportunity to examine the molecular underpinnings of fitness-related variation in protein function that can be related to a well-defined selection pressure. We surveyed DNA sequence variation in the duplicated alpha-globin genes of P. maniculatus from high- and low-altitude localities (i to identify the specific mutations that may be responsible for the divergent fine-tuning of hemoglobin function and (ii to test whether the genes exhibit the expected signature of diversifying selection between populations that inhabit different elevational zones. Results demonstrate that functionally distinct protein alleles are maintained as a long-term balanced polymorphism and that adaptive modifications of hemoglobin function are produced by the independent or joint effects of five amino acid mutations that modulate oxygen-binding affinity.

  4. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema.

    Science.gov (United States)

    Sagoo, Ravjit S; Hutchinson, Charles E; Wright, Alex; Handford, Charles; Parsons, Helen; Sherwood, Victoria; Wayte, Sarah; Nagaraja, Sanjoy; Ng'Andwe, Eddie; Wilson, Mark H; Imray, Christopher He

    2017-01-01

    Rapid ascent to high altitude commonly results in acute mountain sickness, and on occasion potentially fatal high-altitude cerebral edema. The exact pathophysiological mechanisms behind these syndromes remain to be determined. We report a study in which 12 subjects were exposed to a FiO 2  = 0.12 for 22 h and underwent serial magnetic resonance imaging sequences to enable measurement of middle cerebral artery velocity, flow and diameter, and brain parenchymal, cerebrospinal fluid and cerebral venous volumes. Ten subjects completed 22 h and most developed symptoms of acute mountain sickness (mean Lake Louise Score 5.4; p Cerebral oxygen delivery was maintained by an increase in middle cerebral artery velocity and diameter (first 6 h). There appeared to be venocompression at the level of the small, deep cerebral veins (116 cm 3 at 2 h to 97 cm 3 at 22 h; p cerebral oxygen delivery was maintained by increased arterial inflow and this preceded the development of cerebral edema. Venous outflow restriction appeared to play a contributory role in the formation of cerebral edema, a novel feature that has not been observed previously. © The Author(s) 2016.

  5. High altitude hypoxia as a factor that promotes tibial growth plate development in broiler chickens.

    Directory of Open Access Journals (Sweden)

    Shucheng Huang

    Full Text Available Tibial dyschondroplasia (TD is one of the most common problems in the poultry industry and leads to lameness by affecting the proximal growth plate of the tibia. However, due to the unique environmental and geographical conditions of Tibet, no case of TD has been reported in Tibetan chickens (TBCs. The present study was designed to investigate the effect of high altitude hypoxia on blood parameters and tibial growth plate development in chickens using the complete blood count, morphology, and histological examination. The results of this study showed an undesirable impact on the overall performance, body weight, and mortality of Arbor Acres chickens (AACs exposed to a high altitude hypoxic environment. However, AACs raised under hypoxic conditions showed an elevated number of red blood cells (RBCs and an increase in hemoglobin and hematocrit values on day 14 compared to the hypobaric normoxia group. Notably, the morphology and histology analyses showed that the size of tibial growth plates in AACs was enlarged and that the blood vessel density was also higher after exposure to the hypoxic environment for 14 days, while no such change was observed in TBCs. Altogether, our results revealed that the hypoxic environment has a potentially new role in increasing the blood vessel density of proximal tibial growth plates to strengthen and enhance the size of the growth plates, which may provide new insights for the therapeutic manipulation of hypoxia in poultry TD.

  6. The Large Aperture Gamma Ray Observatory as an Observational Alternative at High Altitude

    Science.gov (United States)

    Rosales, M.

    2011-10-01

    Although satellite observations have revealed some mysteries about the origin and location of cosmic rays at low energies, questions remain to be resolved in higher energy ranges (>1 GeV). However, the flow of particles at high energies is very low, large sensitive areas are necessary, so that the detection of secondary particles from observatories on the surface of the earth is a technically viable solution. While the Pierre Auger Observatory has such capacity given its 16000 m^2 of detectors, low height above sea level greatly reduces its detection capability. The Large Aperture Gamma Ray Observatory (LAGO) is an observational alternative that attempts to overcome this limitation. This project was started in 2005, placing water Cherenkov Detectors at high altitude. Observation sites have been selected with some basic requirements: altitude, academic and technical infrastructure, existence of a research group responsible for assembly and maintenance of the detectors and the analysis, visualization, divulgation and data storage. This paper presents the general status of the observatories of Sierra Negra-México, Chacaltaya-Bolívia, Marcapomacocha-Perú, Mérida-Venezuela and Bucaramanga-Colombia.

  7. Vector soup: high-throughput identification of Neotropical phlebotomine sand flies using metabarcoding.

    Science.gov (United States)

    Kocher, Arthur; Gantier, Jean-Charles; Gaborit, Pascal; Zinger, Lucie; Holota, Helene; Valiere, Sophie; Dusfour, Isabelle; Girod, Romain; Bañuls, Anne-Laure; Murienne, Jerome

    2017-03-01

    Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological-based methods for sand fly species identifications are time-consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1-ha forest plot in French Guiana. Besides providing reliable molecular data for species-level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high-throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco-epidemiological studies. © 2016 John Wiley & Sons Ltd.

  8. Properties and Microstructure of Roller Compacted Concrete With High Volume Low Quality Fly Ash

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-08-01

    Full Text Available The properties of roller compacted concrete (RCC with high dosage low quality fly ash are investigated, including strength, elastic modulus, ultimate tensile strain, drying shrinkage, autogenous deformation and durability, meanwhile the microstructure of the same paste containing low quality fly ash and ground low quality fly ash are studied, too. The properties of RCC containing 60% or more ground fly ash meet the design requirement. The microstructure is also tested by using X-ray diffraction (XRD, scanning electron microscopy (SEM, thermogravimetry-differential thermal analysis (TG-DTA and Mercury Intrusion Porosimetry (MIP. The results indicate that ground fly ash plays the role of active component besides the physical filling effect at early age, while after 90 days, the surface of the glass beads is erroded and a lot of calcium silicate hydrate and calcium hydroxide staggered as storied dense structure. Low quality fly ash can accelerate the formation of hydration products, resulting in higher degree of cement hydration and denser microstructure, while the hydration heat in total is reduced. At the age of 90 days, fly ash has significant chemical activity and the properties of RCC will be improved at the later stage.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16318

  9. HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin

    2011-01-01

    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at

  10. Food Abundance Is the Main Determinant of High-Altitude Range Use in Snub-Nosed Monkeys

    Directory of Open Access Journals (Sweden)

    Cyril C. Grueter

    2012-01-01

    Full Text Available High-altitude dwelling primates have to optimize navigating a space that contains both a vertical and horizontal component. Black-and-white or Yunnan snub-nosed monkeys (Rhinopithecus bieti are extreme by primate standards in inhabiting relatively cold subalpine temperate forests at very high altitudes where large seasonal variation in climate and food availability is expected to profoundly modulate their ranging strategies so as to ensure a positive energy balance. A “semi-nomadic” group of R. bieti was followed for 20 months in the montane Samage Forest, Baimaxueshan Nature Reserve, Yunnan, PRC, which consisted of evergreen conifers, oaks, and deciduous broadleaf trees. The aim of this study was to disentangle the effects of climate and phenology on patterns of altitudinal range use. Altitude used by the group ranged from a maximum of 3550 m in July 2007 to a minimum of 3060 m in April 2006. The proportional use of lichen, the monkeys’ staple fallback food, in the diet explained more variation in monthly use of altitudes than climatic factors and availability of flush and fruit. The abundance of lichens at high altitudes, the lack of alternative foods in winter, and the need to satisfy the monkey's basal energetic requirements explain the effect of lichenivory on use of altitudes.

  11. Properties of Fine Aggregate-Replaced High Volume Class F Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Rafat SIDDIQUE

    2013-06-01

    Full Text Available This study focused on evaluating the effects of replacement of fine aggregate (sand with high percentages of Class F fly ash on the properties of concrete. A Control mixture was designed to have 28 days cube compressive strength of 30 MPa, and then fine aggregate was replaced with three percentages (35, 45, and 55% of Class F fly ash by mass. Tests were performed for compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, and abrasion resistance. Test results indicated that replacement of fine aggregate with high volumes of Class F fly ash increased 28 days compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, and abrasion resistance depending upon the fly ash content, and showed continuous improvement at later ages (91 and 365 days.

  12. Combined treatment of SO2 and high resistivity fly ash using a pulse energized electron reactor

    International Nuclear Information System (INIS)

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The combined removal of SO 2 and high resistivity fly ash has been demonstrated in a pulse energized electron reactor (PEER). The PEER system which was originally developed for the removal of SO 2 utilizes a positive pulse streamer corona discharge in a non-uniform field geometry. In performance tests on SO 2 , more than 90% was removed with an advantageously small power requirement. Combined treatment performance was demonstrated by introducing high resistivity fly ash into the test gas and the PEER is significantly more efficient than a conventional electrostatic precipitator operated with a dc voltage. Observations show that the PEER agglomerates the fly ash and further that the SO 2 removal efficiency is improved by the presence of fly ash. The electrode configuration and performance results make retrofit consideration attractive

  13. Yoga Practice Improves Physiological and Biochemical Status at High Altitudes: A Prospective Case-control Study.

    Science.gov (United States)

    Himashree, Gidugu; Mohan, Latika; Singh, Yogesh

    2016-09-01

    Context • High altitude (HA) is a psychophysiological stressor for natives of lower altitudes. Reducing the morbidity and optimizing the performance of individuals deployed in an HA region has been attempted and reported with varied results. Objective • The present study intended to explore the effects of comprehensive yogic practices on the health and performance of Indian soldiers deployed at HAs. Design • The research team designed a prospective, randomized, case-control study. The study was done at Karu, Leh, India, at an altitude of 3445 m. Participants • Fully acclimatized soldiers in the Indian army were randomly selected from those posted to HA regions (ie, altitudes >3000 m). Intervention • The soldiers were divided into 2 groups of equal size. The first group, the control group, carried out the routine activities for physical training in the Indian army. The second group, the intervention group practiced a comprehensive yoga package, including physical asanas, pranayama, and meditation, and did not perform the physical training that the first group did. Both groups were monitored during their activities. Outcome Measures • A wide and comprehensive range of anthropometrical, physiological, biochemical, and psychological parameters were measured: (1) height and weight; (2) body fat percentage (BFP); (3) heart rate (HR); (4) respiratory rate (RR); (5) systolic and diastolic blood pressure (DPB); (6) peripheral saturation of oxygen; (7) end tidal CO2 (EtCO2); (8) chest expansion; (9) pulmonary function; (10) physical work capacity (VO2Max); (11) hematological variables; (12) lipid profile; (13) serum urea; (14) creatinine; (15) liver enzymes; (16) blood glucose; and (17) anxiety scores. Measurements were made at baseline and postintervention. Results • Two-hundred soldiers took part in the study. The yoga group showed a significant improvement in health indices and performance as compared with the control group. They had lower weights, BFPs, RRs

  14. Compression Behavior of Confined Columns with High-Volume Fly Ash Concrete

    OpenAIRE

    Sung-Won Yoo; Young Cheol Choi; Wonchang Choi

    2017-01-01

    The use of fly ash in ordinary concrete provides practical benefits to concrete structures, such as a gain in long-term strength, reduced hydration heat, improved resistance to chloride, and enhanced workability. However, few studies with high-volume fly ash (HVFA) concrete have been conducted that focus on the structural applications such as a column. Thus, there is a need to promote field applications of HVFA concrete as a sustainable construction material. To this end, this study investiga...

  15. Description of the strategic high-altitude atmospheric radiation code (SHARC). Scientific report, Jan 89-Oct 90

    Energy Technology Data Exchange (ETDEWEB)

    Duff, J.W.; Sundberg, R.L.; Gruninger, J.H.; Bernstein, L.S.; Robertson, D.C.

    1990-11-27

    The report describes an upgraded version of the strategic high-altitude radiance code, SHARC-2. SHARC calculates atmospheric radiance and transmittance over the 2-40 micrometer spectral region for arbitrary paths within 50 and 300 km altitude, including space viewing. It models radiation due to NLTE (Non-Local Thermodynamic Equilibrium) molecular emissions which are the dominant sources at these altitudes. This new version, which is now ready for distribution, has been upgraded to include a fully integrated auroral model with time-dependent chemistry, extention down to 50 km altitude, and radiation from the minor isotopes of CO2. In addition, there have been numerous internal upgrades to the various modules. These include a Voigt lineshape for the radiative excitation module; embedding of the auroral region into a quiescent atmosphere; and improvements in the radiation transport algorithms.

  16. Store-operated channels in the pulmonary circulation of high- and low-altitude neonatal lambs.

    Science.gov (United States)

    Parrau, Daniela; Ebensperger, Germán; Herrera, Emilio A; Moraga, Fernando; Riquelme, Raquel A; Ulloa, César E; Rojas, Rodrigo T; Silva, Pablo; Hernandez, Ismael; Ferrada, Javiera; Diaz, Marcela; Parer, Julian T; Cabello, Gertrudis; Llanos, Aníbal J; Reyes, Roberto V

    2013-04-15

    We determined whether store-operated channels (SOC) are involved in neonatal pulmonary artery function under conditions of acute and chronic hypoxia, using newborn sheep gestated and born either at high altitude (HA, 3,600 m) or low altitude (LA, 520 m). Cardiopulmonary variables were recorded in vivo, with and without SOC blockade by 2-aminoethyldiphenylborinate (2-APB), during basal or acute hypoxic conditions. 2-APB did not have effects on basal mean pulmonary arterial pressure (mPAP), cardiac output, systemic arterial blood pressure, or systemic vascular resistance in both groups of neonates. During acute hypoxia 2-APB reduced mPAP and pulmonary vascular resistance in LA and HA, but this reduction was greater in HA. In addition, isolated pulmonary arteries mounted in a wire myograph were assessed for vascular reactivity. HA arteries showed a greater relaxation and sensitivity to SOC blockers than LA arteries. The pulmonary expression of two SOC-forming subunits, TRPC4 and STIM1, was upregulated in HA. Taken together, our results show that SOC contribute to hypoxic pulmonary vasoconstriction in newborn sheep and that SOC are upregulated by chronic hypoxia. Therefore, SOC may contribute to the development of neonatal pulmonary hypertension. We propose SOC channels could be potential targets to treat neonatal pulmonary hypertension.

  17. Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau.

    Science.gov (United States)

    Shao, Jun-Juan; Liu, Cheng-Bin; Zhang, Qing-Hua; Fu, Jian-Jie; Yang, Rui-Qiang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-06-01

    The accumulation and species of mercury (Hg) in mosses and lichens collected from high-altitude Tibetan Plateau were studied. The altitudes of the sampling sites spanned from 1983 to 5147 m, and a total of 130 mosses and 52 lichens were analyzed. The total mercury (THg) contents in mosses and lichens were in the ranges of 13.1-273.0 and 20.2-345.9 ng/g, respectively. The average ratios of methylmercury (MeHg) in THg in mosses and lichens were 2.4 % (0.3-11.1 %) and 2.7 % (0.4-9.6 %), respectively, which were higher than those values reported in other regions. The contents of THg in both mosses and lichens were not correlated with the THg in soils (p > 0.05). The lipid contents displayed a significantly positive correlation with concentrations of MeHg in mosses (r = 0.461, p Tibetan Plateau.

  18. Pruning management of Chardonnay grapevines at high altitude in Brazilian southeast

    Directory of Open Access Journals (Sweden)

    Tania dos Reis Mendonça

    2016-03-01

    Full Text Available ABSTRACT The agronomical responses of Chardonnay, a variety indicated for sparkling wine production, is influenced by the vineyard management and the edaphoclimatic conditions of the region. The objective of this study was to evaluate the effects of two pruning types (Royat and double Guyot on vegetative and reproductive development of Chardonnay vine growing at high altitude in the Brazilian southeastern region. The experiment was carried out in a commercial vineyard located at 1,280 m of altitude in Divinolândia, São Paulo State, Brazil. The Chardonnay vines (clone 96, grafted onto 1103 Paulsen rootstock and trained in a vertical shoot positioning trellis system, were assessed. Vegetative vigor, bud fruitfulness, production and physicochemical composition of grapes were evaluated during 2014 and 2015 growing seasons. The Royat pruning induced higher vegetative vigor and increased the bud fruitfulness, the cluster number and the productivity of Chardonnay vine when compared to Guyot pruning. Even though the increase on yield was observed, there was no effect of pruning type on grape final quality. Therefore, the choice of pruning method in function of variety genetic characteristics and their interaction with environment can optimize the vineyard profitability. In the Brazilian southeast, the Royat system is the most suitable one to grow Chardonnay for sparkling wines production.

  19. Performance of high-altitude, long-endurance, turboprop airplanes using conventional or cryogenic fuels

    Science.gov (United States)

    Liu, G. C.; Morris, C. E. K., Jr.; Koenig, R. W.

    1983-01-01

    An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report.

  20. Electrolyte-carbohydrate beverage prevents water loss in the early stage of high altitude training.

    Science.gov (United States)

    Yanagisawa, Kae; Ito, Osamu; Nagai, Satsuki; Onishi, Shohei

    2012-01-01

    To prevent water loss in the early stage of high altitude training, we focused on the effect of electrolyte-carbohydrate beverage (EC). Subjects were 16 male university students who belonged to a ski club. They had ski training at an altitude of 1,800 m. The water (WT) group drank only water, and the EC group drank only an electrolyte-carbohydrate beverage. They arrived at the training site in the late afternoon. The study started at 7 pm on the day of arrival and continued until noon of the 4(th) day. In the first 12 hours, 1 L of beverages were given. On the second and third days, 2.5 L of beverages were given. All subjects ate the same meals. Each morning while in fasting condition, subjects were weighed and blood was withdrawn for various parameters (hemoglobin, hematocrit, sodium, potassium and aldosterone). Urine was collected at 12 hour intervals for a total 60 hours (5 times). The urine volume, gravity, sodium and potassium concentrations were measured. Peripheral oxygen saturation and heart rate were measured during sleep with a pulse oximeter. Liquid intakes in both groups were similar, hence the electrolytes intake was higher in the EC group than in the WT group. The total urine volume was lower in the EC group than in the WT group, respectively (paltitude training may be effective in decreasing urinary output and preventing loss of blood plasma volume.

  1. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Emergency Telecommunications

    Directory of Open Access Journals (Sweden)

    Deaton JuanD

    2008-01-01

    Full Text Available Abstract Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  2. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  3. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Providing Emergency Telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Juan D. Deaton

    2008-05-01

    Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  4. High Altitude Platforms for Disaster Recovery: Capabilities, Strategies, and Techniques for Emergency Telecommunications

    Directory of Open Access Journals (Sweden)

    Juan D. Deaton

    2008-09-01

    Full Text Available Natural disasters and terrorist acts have significant potential to disrupt emergency communication systems. These emergency communication networks include first-responder, cellular, landline, and emergency answering services such as 911, 112, or 999. Without these essential emergency communications capabilities, search, rescue, and recovery operations during a catastrophic event will be severely debilitated. High altitude platforms could be fitted with telecommunications equipment and used to support these critical communications missions once the catastrophic event occurs. With the ability to be continuously on station, HAPs provide excellent options for providing emergency coverage over high-risk areas before catastrophic incidents occur. HAPs could also provide enhanced 911 capabilities using either GPS or reference stations. This paper proposes potential emergency communications architecture and presents a method for estimating emergency communications systems traffic patterns for a catastrophic event.

  5. Cane pruning on Chardonnay grapevine in the high-altitude regions of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Filho José Luiz Marcon

    2016-01-01

    Full Text Available High-altitude regions of southern Brazil, located above 900 m above sea level, the cordon training with spur pruning is widely used because of easier application. In these regions, Chardonnay wine grape shows potential to produce quality wines, however, in commercial vineyards, the training system used has not provided productivities that makes economically viable the cultivation of this variety. Given this, the present study aimed to evaluate the effect of different cane-pruning systems on the vegetative, productive and enological potential of Chardonnay grapevines grown in the high-altitude region of Southern Brazil. The experiment was conducted in a commercial Chardonnay vineyard, located in São Joaquim – Santa Catarina State (28o17 ′39”S and 49∘ 55′56” W, to 1230 m a.s.l during 2015 and 2016 vintages. Chardonnay vines (grafted on 1103 Paulsen were planted in 2010, with a 3.0 m (row × 1.0 m (vine spacing. The treatments consisted of different cane-pruning systems: Cordon spur-pruning (control; Sylvoz; Cazenave; Capovolto; single Guyot and double Guyot. Pruning was performed in August of each year when the buds were in the green tip developmental stage. Data was analyzed by Scott Knott test (p < 0.05 following a randomized block design with four replicates, each consisting of 12 vines per plot. We observed higher yield in the Cazenave and double Guyot training system with three and two more tons of grapes than spur-pruning respectively. The bud fertility was higher in plants trained in double Guyot. Vines spur-pruned showed higher relation of leaf area: production, with values above 100 cm2 g−1 grape at 2016 vintage. Commercial maturity of grapes (soluble solids, acidity and polyphenols did not differ among training systems studied. The results suggest that cane-pruning systems could be an alternative to increase production efficiency of Chardonnay in high-altitude region of southern Brazil.

  6. Reduced blood flow through intrapulmonary arteriovenous anastomoses during exercise in lowlanders acclimatizing to high altitude.

    Science.gov (United States)

    Boulet, Lindsey M; Lovering, Andrew T; Tymko, Michael M; Day, Trevor A; Stembridge, Mike; Nguyen, Trang Anh; Ainslie, Philip N; Foster, Glen E

    2017-06-01

    What is the central question of this study? The aim was to determine, using the technique of agitated saline contrast echocardiography, whether exercise after 4-7 days at 5050 m would affect blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) compared with exercise at sea level. What is the main finding and its importance? Despite a significant increase in both cardiac output and pulmonary pressure during exercise at high altitude, there is very little Q̇IPAVA at rest or during exercise after 4-7 days of acclimatization. Mathematical modelling suggests that bubble instability at high altitude is an unlikely explanation for the reduced Q̇IPAVA. Blood flow through intrapulmonary arteriovenous anastomoses (Q̇IPAVA) is elevated during exercise at sea level (SL) and at rest in acute normobaric hypoxia. After high altitude (HA) acclimatization, resting Q̇IPAVA is similar to that at SL, but it is unknown whether this is true during exercise at HA. We reasoned that exercise at HA (5050 m) would exacerbate Q̇IPAVA as a result of heightened pulmonary arterial pressure. Using a supine cycle ergometer, seven healthy adults free from intracardiac shunts underwent an incremental exercise test at SL [25, 50 and 75% of SL peak oxygen consumption (V̇O2 peak )] and at HA (25 and 50% of SL V̇O2 peak ). Echocardiography was used to determine cardiac output (Q̇) and pulmonary artery systolic pressure (PASP), and agitated saline contrast was used to determine Q̇IPAVA (bubble score; 0-5). The principal findings were as follows: (i) Q̇ was similar at SL rest (3.9 ± 0.47 l min -1 ) compared with HA rest (4.5 ± 0.49 l min -1 ; P = 0.382), but increased from rest during both SL and HA exercise (P exercise (P = 0.003); (iii) Q̇IPAVA was increased from SL rest (0) to HA rest (median = 1; P = 0.04) and increased from resting values during SL exercise (P exercise (P = 0.91), despite significant increases in Q̇ and PASP. Theoretical

  7. Hemoglobin correction factors for estimating the prevalence of iron deficiency anemia in pregnant women residing at high altitudes in Bolivia

    Directory of Open Access Journals (Sweden)

    Jennifer Hadary Cohen

    1999-12-01

    Full Text Available This study had two primary objectives: 1 to derive a method to determine hemoglobin cutoffs that could be used to better estimate the prevalence of iron deficiency anemia in pregnancy at high altitudes and 2 to estimate the prevalence of anemia in a sample of pregnant women residing in two cities in Bolivia, La Paz (3 600 meters and El Alto (4 000 meters. We derived a hemoglobin-altitude curve from previously published data on the mean hemoglobin concentrations of nonanemic women of childbearing age at various altitudes. In addition, we abstracted data on hemoglobin concentration during pregnancy from medical records of women from La Paz and El Alto who had given birth at a maternity hospital in La Paz between January and June of 1996. Using our approach and two other previously published, currently used methods, we calculated and compared prevalences of iron deficiency anemia in this population using hemoglobin cutoffs determined from a hemoglobin-altitude curve corrected for pregnancy. The hemoglobin-altitude curve derived in this study provided a better fit to data for women of childbearing age than the two other models. Those models used cutoffs based on non-iron-replete populations of children or men, both of which were residing below 4 000 m, and then extrapolated to women and higher altitudes. The estimated prevalences of iron deficiency anemia in pregnancy using the hemoglobin cutoffs determined in this study were higher than those estimated by the two other approaches.

  8. Microelement content of bone tissue in transosseous osteosynthesis by II-izarov technique in high-altitude destinations (experimental research

    Directory of Open Access Journals (Sweden)

    Erokhin A.N.

    2014-03-01

    Full Text Available Aim: To study the redistribution of microelements in bone tissue in osteosynthesis in high-altitude destinations. Material and Methods. The study was performed on 72 mongrel dogs of both sexes aged 1-3 years, weighing 10—15 kg. 32 dogs have been experienced the extended leg in lowlands destinations, another group of 32 animals have been experienced elongation produced in high-altitude destinations. The control group consisted of 8 healthy dogs of low mountain areas. The standard technique of surgery has been used in the research. Microelement composition has been studied by atomic absorption spectrophotometer AAS-1 N (Germany in the long bones and the distraction regenerate. Shapiro —Wilk test was applied to analyze the normality. The data evaluation has been done by Student's t-test for unpaired samples. Results. Calcium and microelement imbalance has been obtained during transosseous osteosynthesis in high-altitude destinations, which causes functional changes in the musculoskeletal system, with similar clinical picture of Kashin — Beck. In the conditions of high-altitude destinations elongation of bones causes changes in microelements in the distraction regenerate. Conclusion. During distraction osteosynthesis in high-altitude destinations phase changes of microelements have been formed in the bone regenerate, which prognoses physiologically the formation of a false joint.

  9. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the páramo.

    Science.gov (United States)

    Hendrickson, Sher L

    2013-12-17

    Life at high altitude results in physiological and metabolic challenges that put strong evolutionary pressure on performance due to oxidative stress, UV radiation and other factors dependent on the natural history of the species. To look for genes involved in altitude adaptation in a large herbivore, this study explored genome differentiation between a feral population of Andean horses introduced by the Spanish in the 1500s to the high Andes and their Iberian breed relatives. Using allelic genetic models and Fst analyses of ~50 K single nucleotide polymorphisms (SNPs) across the horse genome, 131 candidate genes for altitude adaptation were revealed (Bonferoni of p ≤ 2 × 10(-7)). Significant signals included the EPAS1 in the hypoxia-induction-pathway (HIF) that was previously discovered in human studies (p = 9.27 × 10(-8)); validating the approach and emphasizing the importance of this gene to hypoxia adaptation. Strong signals in the cytochrome P450 3A gene family (p = 1.5 ×10(-8)) indicate that other factors, such as highly endemic vegetation in altitude environments are also important in adaptation. Signals in tenuerin 2 (TENM2, p = 7.9 × 10(-14)) along with several other genes in the nervous system (gene categories representation p = 5.1 × 10(-5)) indicate the nervous system is important in altitude adaptation. In this study of a large introduced herbivore, it becomes apparent that some gene pathways, such as the HIF pathway are universally important for high altitude adaptation in mammals, but several others may be selected upon based on the natural history of a species and the unique ecology of the altitude environment.

  10. Hypoxia triggers high-altitude headache with migraine features: A prospective trial.

    Science.gov (United States)

    Broessner, Gregor; Rohregger, Johanna; Wille, Maria; Lackner, Peter; Ndayisaba, Jean-Pierre; Burtscher, Martin

    2016-07-01

    Given the high prevalence and clinical impact of high-altitude headache (HAH), a better understanding of risk factors and headache characteristics may give new insights into the understanding of hypoxia being a trigger for HAH or even migraine attacks. In this prospective trial, we simulated high altitude (4500 m) by controlled normobaric hypoxia (FiO2 = 12.6%) to investigate acute mountain sickness (AMS) and headache characteristics. Clinical symptoms of AMS according to the Lake Louise Scoring system (LLS) were recorded before and after six and 12 hours in hypoxia. O2 saturation was measured using pulse oximetry at the respective time points. History of primary headache, especially episodic or chronic migraine, was a strict exclusion criterion. In total 77 volunteers (43 (55.8%) males, 34 (44.2%) females) were enrolled in this study. Sixty-three (81.18%) and 40 (71.4%) participants developed headache at six or 12 hours, respectively, with height and SpO2 being significantly different between headache groups at six hours (p headache development (p headache according to the International Classification of Headache Disorders (ICHD-3 beta) in n = 5 (8%) or n = 6 (15%), at six and 12 hours, respectively. Normobaric hypoxia is a trigger for HAH and migraine-like headache attacks even in healthy volunteers without any history of migraine. Our study confirms the pivotal role of hypoxia in the development of AMS and beyond that suggests hypoxia may be involved in migraine pathophysiology. © International Headache Society 2015.

  11. Effect of high volume of fly ash from 5 sources on compressive strength and acid resistance of concrete

    Directory of Open Access Journals (Sweden)

    Vivatanachang, N.

    2004-03-01

    Full Text Available The purpose of this research was to examine the effect of high volume of fly ash from various sources on compressive strength and acid resistance of concrete. Fly ashes from 5 sources were collected and classified by an air classifier into 3 groups of different degree of fineness; low, medium, and high fineness. Portland cement type I was replaced by fly ash at the rate of 50% by weight of cementitious materials (Portland cement type I and fly ash to cast concrete cylinders of 10 cm in diameter and 20 cm in height. After fly ash concreteswere cured in water for 28 days, they were tested to determine the compressive strength. In addition, the specimens were immersed in 3% of sulfuric acid solution and the weight losses of concretes were measured from 3 to 90 days. It was found that the compressive strengths of fly ash concretes were more than 77% of the control concrete when the high fineness fly ashes were used. Each source of the fly ash had different effect on the compressive strength as well as on the sulfuric acid resistance of concrete. The compressive strength of fly ash concrete was improved with the use of high fineness fly ash; however, the sulfuric acid resistance of the concrete tended to decrease as the fineness of fly ash increased.

  12. Findings of Cognitive Impairment at High Altitude: Relationships to Acetazolamide Use and Acute Mountain Sickness.

    Science.gov (United States)

    Phillips, Lara; Basnyat, Buddha; Chang, Yuchiao; Swenson, Erik R; Harris, N Stuart

    2017-06-01

    Phillips, Lara, Buddha Basnyat, Yuchiao Chang, Erik R. Swenson, and N. Stuart Harris. Findings of cognitive impairment at high altitude: relationships to acetazolamide use and acute mountain sickness. High Alt Med Biol. 18:121-127, 2017. Acute mountain sickness (AMS) is defined by patient-reported symptoms using the Lake Louise Score (LLS), which provides limited insight into any possible underlying central nervous system (CNS) dysfunction. Some evidence suggests AMS might coexist with altered neural functioning. Cognitive impairment (CI) may go undetected unless a sensitive test is applied. Our hypothesis was that a standardized test for mild CI would provide an objective measure of CNS dysfunction, which may correlate with the symptoms of AMS and so provide a potential new tool to better characterize altitude-related CNS dysfunction. We compared a cognitive screening tool with the LLS to see if it correlated with CNS dysfunction. Adult native English-speaking subjects visiting Himalayan Rescue Association aid stations in Nepal at 3520 m (11,548 ft) and 4550 m (14,927 ft) were recruited. Subjects were administered the LLS and a slightly modified version of the environmental Quick mild cognitive impairment screen (eQmci). Medication use for altitude illness was recorded. Scores were compared using the Spearman's correlation coefficient. Data also included medication use. Seventy-nine subjects were enrolled. A cut-off of three or greater was used for the LLS to diagnose AMS and 67 or less for the eQmci to diagnose CI. There were 22 (28%) subjects who met criteria for AMS and 17 (22%) subjects who met criteria for CI. There was a weak correlation (r 2  = 0.06, p = 0.04) between eQmci score and LLS. In matched subjects with identical LLS, recent acetazolamide use was associated with significantly more CI. Field assessment of CI using a rapid standardized tool demonstrated that a substantial number of subjects were found to have mild CI following rapid

  13. Ecological status of high altitude medicinal plants and their sustainability: Lingshi, Bhutan.

    Science.gov (United States)

    Lakey; Dorji, Kinley

    2016-10-11

    Human beings use plants for a multitude of purposes of which a prominent one across the globe is for their medicinal values. Medicinal plants serve as one of the major sources of income for high altitude inhabitants in the Himalaya, particularly in countries like Nepal, and Bhutan. People here harvest huge volumes of medicinal plants indiscriminately, risking their sustainability. This paper attempts to identify some of the priority medicinal plant species harvested in the wild and assess their ecological status for their judicious utilization, and to help provide policy guidance for possible domestication and support strategic conservation frameworks. Out of the 16 priority species identified by the expert group, collectors' perception on ecological status of the priority species differed from survey findings. Chrysosplenium nudicaule (clumps) ranked as most threatened species followed by Corydalis dubia, and Meconopsis simplicifolia. Onosma hookeri, Corydalis crispa and Delphinium glaciale were some of the species ranked as threatened species followed by Halenia elliptica (not in priority list). Percent relative abundance showed irregular pattern of species distribution. High species evenness was recorded among Nardostachys grandiflora, Chrysosplenium nudicaule, Saussurea gossypiphora and Aconitum orochryseum with average species density of 8 plant m -2 . Rhodiola crenulata, and Dactylorhiza hatagirea followed by Meconopsis horridula and Meconopsis simplicifolia were ranked as most threatened species with average species density of 0.4, 0.4, 5.6 and 6.0 plant m -2 , respectively. The most abundant (common) species was Onosma hookeri (plant m -2 ). Species composition and density also differed with vegetation, altitude, slope and its aspects. Priority species identified by expert group were found vulnerable and patchy in distribution. Survey results and collectors' perceptions tally to an extent. Some of the species (Dactylorhiza hatagirea, Rhodiola crenulata

  14. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Qian [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou (China); Shao, Yuan; Wang, Ying Zhen [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Jing, Yu Hong [Institute of Anatomy, School of Basic Medicine, Lanzhou University, Lanzhou (China); Zhang, You Cheng, E-mail: zhangychmd@126.com [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China)

    2014-04-04

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  15. Rhodiola crenulata- and Cordyceps sinensis-Based Supplement Boosts Aerobic Exercise Performance after Short-Term High Altitude Training

    Science.gov (United States)

    Chen, Chung-Yu; Hou, Chien-Wen; Bernard, Jeffrey R.; Chen, Chiu-Chou; Hung, Ta-Cheng; Cheng, Lu-Ling; Liao, Yi-Hung

    2014-01-01

    Abstract Chen, Chung-Yu, Chien-Wen Hou, Jeffrey R. Bernard, Chiu-Chou Chen, Ta-Cheng Hung, Lu-Ling Cheng, Yi-Hung Liao, and Chia-Hua Kuo. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt Med Biol 15:371–379, 2014.—High altitude training is a widely used strategy for improving aerobic exercise performance. Both Rhodiola crenulata (R) and Cordyceps sinensis (C) supplements have been reported to improve exercise performance. However, it is not clear whether the provision of R and C during high altitude training could further enhance aerobic endurance capacity. In this study, we examined the effect of R and C based supplementation on aerobic exercise capacity following 2-week high altitude training. Alterations to autonomic nervous system activity, circulatory hormonal, and hematological profiles were investigated. Eighteen male subjects were divided into two groups: Placebo (n=9) and R/C supplementation (RC, n=9). Both groups received either RC (R: 1400 mg+C: 600 mg per day) or the placebo during a 2-week training period at an altitude of 2200 m. After 2 weeks of altitude training, compared with Placebo group, the exhaustive run time was markedly longer (Placebo: +2.2% vs. RC: +5.7%; p<0.05) and the decline of parasympathetic (PNS) activity was significantly prevented in RC group (Placebo: −51% vs. RC: −41%; p<0.05). Red blood cell, hematocrit, and hemoglobin levels were elevated in both groups to a comparable extent after high altitude training (p<0.05), whereas the erythropoietin (EPO) level remained higher in the Placebo group (∼48% above RC values; p<0.05). The provision of an RC supplement during altitude training provides greater training benefits in improving aerobic performance. This beneficial effect of RC treatment may result from better maintenance of PNS activity and accelerated physiological adaptations during high altitude training. PMID

  16. Time evolution of high-altitude plasma bubbles imaged at geomagnetic conjugate points

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2004-09-01

    Full Text Available Temporal and spatial evolution of two high-altitude plasma bubbles (evening and midnight was observed on 4 April 2002, at geomagnetic conjugate points at Sata, Japan (magnetic latitude 24° N, and Darwin, Australia (magnetic latitude 22° S, using two 630-nm airglow imagers. The apex height of the bubbles reached ~1500km. The upward velocity of the evolution was faster in the evening (~170m/s at 20:00-21:00 LT than around midnight (~28m/s at 23:00-00:00 LT. Bifurcating features of the bubbles into a smaller scale size of ~50km were clearly seen for both the evening and midnight bubbles, showing fairly good conjugacy between the Northern and Southern Hemispheres.

  17. Fatalities Among Iranian High-altitude Outdoor Enthusiasts: Causes and Mechanisms.

    Science.gov (United States)

    Kordi, Ramin; Rostami, Mohsen; Heidari, Pedram; Ameli, Sanaz; Foroughifard, Lotfali; Kordi, Mahboobeh

    2012-12-01

    This study was performed to determine the possible causes and mechanisms of fatalities among Iranian mountaineers during climbing. By contacting several sources, deceased mountaineers were identified. Data about the causes and mechanism of death was retrospectively obtained using a standard questionnaire for each case. A total of 29 deaths were identified from March 2006 to June 2010. Deceased subjects had a mean age of 39 years (SD: 12.8, Range: 20-67). Falling was the most common accident leading to death of outdoor enthusiasts (n = 14, 48%). Asphyxia (n = 6, 24%) was the most common cause of death among the subjects, followed by heart attack, internal bleeding, cerebral hemorrhage and hypothermia (17%, 17%, 17% and 10%, respectively). Our findings suggest that education of medical service providers of the climbing groups on facing victims in high altitude areas, where they have limited resources, can be particularly helpful. In addition, a national program to educate mountaineers might help to reduce fatalities.

  18. The Channel Estimation and Modeling in High Altitude Platform Station Wireless Communication Dynamic Network

    Directory of Open Access Journals (Sweden)

    Xiaoyang Liu

    2017-01-01

    Full Text Available In order to analyze the channel estimation performance of near space high altitude platform station (HAPS in wireless communication system, the structure and formation of HAPS are studied in this paper. The traditional Least Squares (LS channel estimation method and Singular Value Decomposition-Linear Minimum Mean-Squared (SVD-LMMS channel estimation method are compared and investigated. A novel channel estimation method and model are proposed. The channel estimation performance of HAPS is studied deeply. The simulation and theoretical analysis results show that the performance of the proposed method is better than the traditional methods. The lower Bit Error Rate (BER and higher Signal Noise Ratio (SNR can be obtained by the proposed method compared with the LS and SVD-LMMS methods.

  19. Status and updates from the High Altitude Water Cherenkov (HAWC) Observatory

    International Nuclear Information System (INIS)

    Baughman, B.M.

    2013-01-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed on the slopes of Volcan Sierra Negra, Puebla, Mexico. The HAWC observatory will consist of 300 Water Cherenkov Detectors totaling approximately 22,000 m 2 of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals and performance of the HAWC observatory as well as how it will complement contemporaneous space and ground-based detectors will be presented

  20. Status and updates from the High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Baughman, B. M.

    2013-06-01

    The High Altitude Water Cherenkov Observatory (HAWC) is currently being deployed on the slopes of Volcan Sierra Negra, Puebla, Mexico. The HAWC observatory will consist of 300 Water Cherenkov Detectors totaling approximately 22,000 m of instrumented area. The water Cherenkov technique allows HAWC to have a nearly 100% duty cycle and large field of view, making the HAWC observatory an ideal instrument for the study of transient phenomena. With its large effective area, excellent angular and energy resolutions, and efficient gamma-hadron separation, HAWC will survey the TeV gamma ray sky, measure spectra of galactic sources from 1 TeV to beyond 100 TeV, and map galactic diffuse gamma ray emission. The science goals and performance of the HAWC observatory as well as how it will complement contemporaneous space and ground-based detectors will be presented.

  1. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  2. Avionics and Power Management for Low-Cost High-Altitude Balloon Science Platforms

    Science.gov (United States)

    Chin, Jeffrey; Roberts, Anthony; McNatt, Jeremiah

    2016-01-01

    High-altitude balloons (HABs) have become popular as educational and scientific platforms for planetary research. This document outlines key components for missions where low cost and rapid development are desired. As an alternative to ground-based vacuum and thermal testing, these systems can be flight tested at comparable costs. Communication, solar, space, and atmospheric sensing experiments often require environments where ground level testing can be challenging or impossible in certain cases. When performing HAB research the ability to monitor the status of the platform and gather data is key for both scientific and recoverability aspects of the mission. A few turnkey platform solutions are outlined that leverage rapidly evolving open-source engineering ecosystems. Rather than building custom components from scratch, these recommendations attempt to maximize simplicity and cost of HAB platforms to make launches more accessible to everyone.

  3. Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P floristic communities rhizospheres on their soil bacterial communities.

  4. The dynamic change of CT radiopathology of high altitude pulmonary edema

    International Nuclear Information System (INIS)

    Wang Wei; Wei Jingguo; Lu Zhou; Cui Guangbin; Chen Huiwu; Wang Jingwu; Liu Zihui; Zhao Yao; Tang Jian

    2004-01-01

    Objective: To observe the CT manifestations and their radiological features of high altitude pulmonary edema (HAPE), and to compare the detection rate of abnormal findings between CT and chest X-ray film. Methods: Thirty-two subjects (male=19, female=13; age range 19-54 years, median age=35.5) were included in this study. Nine of the patients had continuous CT scans and X-ray examinations. Results: (1) CT scan manifestations: 28 of the 32 patients demonstrated more significant pathological changes in their right lungs (χ 2 =93.08, P 2 =11.46, P 2 =2.12, P>0.05). Conclusion: CT scan can detect HAPE in the early stage, and it can also accurately determine the course of the disease, assess the treatment effects, and improve the prevention and management of HAPE. (author)

  5. Engineering assessment of in situ sulfate production onboard aircraft at high altitude

    Science.gov (United States)

    Smith, J.; Dykema, J. A.; Keith, D.

    2016-12-01

    Stratospheric injection of scattering aerosols has been proposed as a way to reduce global temperature increases by decreasing net atmospheric radiative forcing. Several methods have been suggested as a means of implementing solar geoengineering, and high altitude aircraft have been identified as an accessible means delivering sulfate aerosols to the lower and mid-stratosphere. This research initiative analyzes the design features of an onboard open cycle chemical plant capable of in situ sulfur to sulfate conversion, and compares the required mass to that of transporting pre-fabricated gaseous or liquid sulfate aerosol precursors. Scaling from aero-derivative gas turbine engines, commercial catalytic converters, and existing aerospace materials indicate that aircraft equipped with such a system could provide a substantial mass benefit compared to direct transport of compound sulfate products.

  6. Patent foramen ovale: a novel cardiovascular risk factor in patients with sleep disordered breathing and high altitude dwellers?

    Science.gov (United States)

    Rexhai, Emrush; Scherrer, Urs; Rimoldi, Stefano F

    2016-01-01

    Diseases associated with chronic hypoxaemia are a leading cause of morbidity and mortality in Western countries. Epidemiological data indicate that cardiovascular diseases contribute substantially to this problem, but the underlying mechanisms are incompletely understood. Sleep disordered breathing and high altitude exposure are frequent conditions associated with hypoxaemia. Recent evidence suggests that in these conditions the concomitant presence of a patent foramen ovale plays an important pathogenic role. For example, in patients with obstructive sleep apnoea the presence of a patent foramen ovale is associated with more severe sleep disordered breathing, nocturnal oxygen desaturation, generalised endothelial dysfunction and arterial hypertension. After patent foramen ovale closure, both sleep disordered breathing and cardiovascular phenotype improve, suggesting the existence of a possible causal link. During short-term high altitude exposure, the presence of a patent foramen ovale, by aggravating altitude-induced hypoxaemia, facilitates exaggerated pulmonary hypertension. Interestingly, there is increasing evidence showing that in high-altitude dwellers a patent foramen ovale also alters the cardiovascular phenotype. In this article we will summarise recent evidence demonstrating how a patent foramen ovale alters the cardiovascular phenotype and increases cardiovascular risk in patients with sleep disordered breathing and high-altitude dwellers.

  7. Discovery of microRNAs of the stable fly (Diptera: Muscidae) by High-throughput sequencing.

    Science.gov (United States)

    Tuckow, Alexander P; Temeyer, Kevin B; Olafson, Pia U; Pérez de Léon, Adalberto A

    2013-07-01

    The stable fly, Stomoxys calcitrans (L.), is a serious ectoparasite affecting animal production and health of both animals and humans. Stable fly control relies largely on chemical insecticides; however, the development of insecticide resistance as well as environmental considerations requires continued discovery research to develop novel control technologies. MicroRNAs (miRNAs) are a class of short noncoding RNAs that have been shown to be important regulators of gene expression across a wide variety of organisms, and may provide an innovative approach with regard to development of safer more targeted control technologies. The current study reports discovery ad initial comparative analysis of 88 presumptive miRNA sequences from the stable fly, obtained using high-throughput sequencing of small RNAs. The majority of stable fly miRNAs were 22-23 nt in length. Many miRNAs were arthropod specific, and several mature miRNA sequences showed greater sequence identity to miRNAs from other blood-feeding dipterans such as mosquitoes rather than to Drosophilids. This initial step in characterizing the stable fly microRNAome provides a basis for further analyses of life stage-specific and tissue-specific expression to elucidate their functional roles in stable fly biology.

  8. Manipulating API and AOD data to distinguish transportation of aerosol at high altitude in Penang, Malaysia

    International Nuclear Information System (INIS)

    Tan, F; Lim, H S; Abdullah, K; Yoon, T L; Matjafri, M Z; Holben, B

    2014-01-01

    Air pollution index (API) is an index commonly used in Malaysia to determine the air quality level. It is a ground truth data measurement which is unable to unambiguously quantify air quality level at higher atmosphere. On the other hand, aerosol optical depth (AOD) from AERONET data obtained using sun photometer provides reading of the air quality for a column of atmosphere from ground surface. We first determine the quantitative correlation between the API and AOD data collected in Penang, Malaysia, between January – September, 2012, using two independent methods, one based on regression analysis and the other interpolation. Our purpose is to establish a systematic numerical procedure to determine whether aerosol transported in high altitude from other location has occurred. Two independent methods for establishing the quantitative relationship between the API and AOD data were used as a way to facilitate the verification of our approach. In our method, data from southwest monsoon period (August to September) were used as ''calibration dataset'' to establish the quantitative correlation between the AOD and API data. The established calibrated coefficients is then used to predict the AOD of other months, which are then compared against the data actually measured. Discrepancy between the predicted and measured AOD data can then be interpreted as an indication of whether the atmosphere at high altitude is polluted by aerosol transported from other location. If the predicted AOD is much larger than that measured, back trajectory analysis was applied to identify the aerosol transported source. This procedure is very helpful to investigate the aerosol transportation and distribution patterns during monsoon and non monsoon periods

  9. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Directory of Open Access Journals (Sweden)

    Zhang Jiaxing

    2011-09-01

    Full Text Available Abstract Background The impact of long term residence on high altitude (HA on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA residents as compared to native sea level (SL residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD functional Magnetic Resonance Imaging (fMRI data were acquired from them. Results Compared to SL controls, the HA group showed generally decreased cerebrovascular reactivity and longer delay in hemodynamic response. Clusters showing significant differences in the former aspect were located at the bilateral primary motor cortex, the right somatosensory association cortex, the right thalamus and the right caudate, the bilateral precuneus, the right cingulate gyrus and the right posterior cingulate cortex, as well as the left fusiform gyrus and the right lingual cortex; clusters showing significant differences in the latter aspect were located at the precuneus, the insula, the superior frontal and temporal gyrus, the somatosensory cortex (the postcentral gyrus and the cerebellar tonsil. Inspiratory reserve volume (IRV, which is an important aspect of pulmonary function, demonstrated significant correlation with the amount of BOLD signal change in multiple brain regions, particularly at the bilateral insula among the HA group. Conclusions Native-born HA residents generally showed reduced cerebrovascular reactivity as demonstrated in the hemodynamic response during a visual cue guided maximum inspiration task conducted with BOLD-fMRI. This effect was particularly manifested among brain regions that are typically involved in cerebral modulation of respiration.

  10. PHYTOCHEMICAL AND PROTEOMIC ANALYSIS OF A HIGH ALTITUDE MEDICINAL MUSHROOM CORDYCEPS SINENSIS

    Directory of Open Access Journals (Sweden)

    Rakhee

    2016-09-01

    Full Text Available Cordyceps sinensis (C. sinensis is well established as a traditional Chinese medicine (TCM that has been valued as a health food for centuries. It is an entomopathogenic fungus in Ascomycetes that naturally occurs at high altitude in Himalayan region and has received considerable attention due to the abundance of various biologically active compounds. Despite having reported health benefits and economic importance, qualitative phytochemical analysis, proximate composition and proteome study of Indian isolates of C. sinensis grown at high altitude remains untapped. In the present study, qualitative phytochemical analysis was carried on powdered whole body of C. sinensis (CSWb and its aqueous extract (CSAq prepared by accelerated solvent extraction technique which indicated the presence of several bioactive constituents such as alkaloids, amino acids and proteins, carbohydrates, flavonoids and phenols, gums, mucilages and saponins. We evaluated chemical composition of the Indian Himalayan medicinal mushroom C. sinensis in terms of its carbohydrate (55.68% content, crude fiber (6.40%, fat (1.80%, moisture (7.18%, protein (21.46% and total ash (7.48%. Furthermore, soluble protein identification of both CSWb and CSAq by SDS-PAGE followed by MALDI-TOF-TOF analysis revealed the presence of various types of most abundant proteins such as P-type II A ATPase, TE1b [Blumeriagraminis f. sp. hordei], Chitin synthase Chs [Penicilliummarneffei ATCC 18224], Serine/threonine-protein kinase CLA4, DEHA2C06820p [Debaryomyceshansenii CBS767], YALI0E29887p [Yarrowialipolytica] etc. In conclusion, the present study provides a comprehensive qualitative phytochemical analysis, proximate composition and proteome study on Indian isolate of C. sinensis which could endorse its use as a functional food.

  11. Supercharging system behavior for high altitude operation of an aircraft 2-stroke Diesel engine

    International Nuclear Information System (INIS)

    Carlucci, Antonio Paolo; Ficarella, Antonio; Laforgia, Domenico; Renna, Alessandro

    2015-01-01

    Highlights: • Different supercharging architectures have been compared for an aircraft 2T engine. • The supercharging architectures are compared to minimize the fuel consumption. • The architecture with the highest conversion efficiency was determined. - Abstract: Different studies on both 2- and 4-stroke engines have shown how the choice of different supercharging architectures can influence engine performance. Among them, architectures coupling one turbocharger with a mechanical compressor or two turbochargers are found to be the most performing in terms of engine output power and efficiency. However, defining the best supercharging architecture for aircraft 2-stroke engines is a quite complex task because the supercharging system as well as the ambient conditions influence the engine performance/efficiency. This is due to the close interaction between supercharging, trapping, scavenging and combustion processes. The aim of the present work is the comparison between different architectures (single turbocharger, double turbocharger, single turbocharger combined with a mechanical compressor, single turbocharger with an electrically-assisted turbocharger, with intercooler or aftercooler) designed to supercharge an aircraft 2-stroke Diesel engine for general aviation and unmanned aerial vehicles characterized by a very high altitude operation and long fuel distance. A 1D model of the engine purposely designed has been used to compare the performance of the different supercharging systems in terms of power, fuel consumption, and their effect on trapping and scavenging efficiency at different altitudes. The analysis shows that the engine target power is reached by a 2 turbochargers architecture; in this way, in fact, the cylinder filling, and consequently the engine performance, are maximized. Moreover, it is shown that the performance of a 2 turbochargers architecture performance can be further improved connecting electrically and not mechanically the low

  12. High-altitude and high-latitude O+ and H+ outflows: the effect of finite electromagnetic turbulence wavelength

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2007-11-01

    , consistent with the observations of H+ and O+ ions in the auroral region at high altitudes.

  13. High Altitude Affects Nocturnal Non-linear Heart Rate Variability: PATCH-HA Study

    Directory of Open Access Journals (Sweden)

    Christopher J. Boos

    2018-04-01

    Full Text Available Background: High altitude (HA exposure can lead to changes in resting heart rate variability (HRV, which may be linked to acute mountain sickness (AMS development. Compared with traditional HRV measures, non-linear HRV appears to offer incremental and prognostic data, yet its utility and relationship to AMS have been barely examined at HA. This study sought to examine this relationship at terrestrial HA.Methods: Sixteen healthy British military servicemen were studied at baseline (800 m, first night and over eight consecutive nights, at a sleeping altitude of up to 3600 m. A disposable cardiac patch monitor was used, to record the nocturnal cardiac inter-beat interval data, over 1 h (0200–0300 h, for offline HRV assessment. Non-linear HRV measures included Sample entropy (SampEn, the short (α1, 4–12 beats and long-term (α2, 13–64 beats detrend fluctuation analysis slope and the correlation dimension (D2. The maximal rating of perceived exertion (RPE, during daily exercise, was assessed using the Borg 6–20 RPE scale.Results: All subjects completed the HA exposure. The average age of included subjects was 31.4 ± 8.1 years. HA led to a significant fall in SpO2 and increase in heart rate, LLS and RPE. There were no significant changes in the ECG-derived respiratory rate or in any of the time domain measures of HRV during sleep. The only notable changes in frequency domain measures of HRV were an increase in LF and fall in HFnu power at the highest altitude. Conversely, SampEn, SD1/SD2 and D2 all fell, whereas α1 and α2 increased (p < 0.05. RPE inversely correlated with SD1/SD2 (r = -0.31; p = 0.002, SampEn (r = -0.22; p = 0.03, HFnu (r = -0.27; p = 0.007 and positively correlated with LF (r = 0.24; p = 0.02, LF/HF (r = 0.24; p = 0.02, α1 (r = 0.32; p = 0.002 and α2 (r = 0.21; p = 0.04. AMS occurred in 7/16 subjects (43.8% and was very mild in 85.7% of cases. HRV failed to predict AMS.Conclusion: Non-linear HRV is more sensitive to the

  14. Syndrome of Acute Anxiety Among Marines After Recent Arrival at High Altitude

    Science.gov (United States)

    2014-05-01

    initial presentation. Case 4 A male Marine in his late teens was brought to the BAS from a higher altitude because of cotnplaints of acute chest pain...there was no traditional altitude-associated cerebral symptomatology. Upon reporting suicidal ideation and an inability to contract for safety, and

  15. Imaging Findings of a Survivor of Avalanche without Any Life Support at Very High Altitude and Extreme Low Temperatures

    Directory of Open Access Journals (Sweden)

    Abhishek Dwivedi

    2016-10-01

    Full Text Available Survival at high altitude is very challenging and in spite of adequate training and acclimatization, injuries are frequent. The fate of mountaineers and soldiers at such areas largely depends on the mercy of the climate. An avalanche causes physical trauma, cold injury and asphyxia to the victim. The patient in our report had diffuse cerebral edema, bilateral pulmonary consolidation and pneumothorax. In spite of the best efforts the victim succumbed to the injuries. There are many incidents of high altitude accidents in India. This case report is of a soldier deployed at the high altitude, is a lone ever reported survivor above 5000 meters, under 35 feet snow and below - 45°C for greater than 5 days of exposure to an avalanche

  16. Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.

    Directory of Open Access Journals (Sweden)

    Daniel Radiloff

    Full Text Available Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.

  17. Frequent subclinical high-altitude pulmonary edema detected by chest sonography as ultrasound lung comets in recreational climbers.

    Science.gov (United States)

    Pratali, Lorenza; Cavana, Marco; Sicari, Rosa; Picano, Eugenio

    2010-09-01

    The ultrasound lung comets detected by chest sonography are a simple, noninvasive, semiquantitative sign of increased extravascular lung water. The aim of this study was to evaluate, by chest sonography, the incidence of interstitial pulmonary edema in recreational high-altitude climbers. Observational study. Eighteen healthy subjects (mean age 45 +/- 10 yrs, ten males) participating in a high-altitude trek in Nepal. Chest and cardiac sonography at sea level and at different altitudes during ascent. Ultrasound lung comets were evaluated on anterior chest at 28 predefined scanning sites. At individual patient analysis, ultrasound lung comets during ascent appeared in 15 of 18 subjects (83%) at 3440 m above sea level and in 18 of 18 subjects (100%) at 4790 m above sea level in the presence of normal left and right ventricular function and pulmonary artery systolic pressure rise (sea level = 24 +/- 5 mm Hg vs. peak ascent = 42 +/- 11 mm Hg, p comets were absent at baseline (day 2, altitude 1350 m, 1.06 +/- 1.3), increased progressively during the ascent (day 14, altitude 5130 m: 16.5 +/- 8; p comet score showed a negative correlation with O(2) saturation (R = -.7; p < .0001). In recreational climbers, chest sonography revealed a high prevalence of clinically silent interstitial pulmonary edema mirrored by decreased O(2) saturation, whereas no statistically significant relationship with pulmonary artery systolic pressure was observed during ascent.

  18. Chemical Analysis of Pottery Demonstrates Prehistoric Origin for High-Altitude Alpine Dairying.

    Science.gov (United States)

    Carrer, Francesco; Colonese, André Carlo; Lucquin, Alexandre; Petersen Guedes, Eduardo; Thompson, Anu; Walsh, Kevin; Reitmaier, Thomas; Craig, Oliver E

    2016-01-01

    The European high Alps are internationally renowned for their dairy produce, which are of huge cultural and economic significance to the region. Although the recent history of alpine dairying has been well studied, virtually nothing is known regarding the origins of this practice. This is due to poor preservation of high altitude archaeological sites and the ephemeral nature of transhumance economic practices. Archaeologists have suggested that stone structures that appear around 3,000 years ago are associated with more intense seasonal occupation of the high Alps and perhaps the establishment of new economic strategies. Here, we report on organic residue analysis of small fragments of pottery sherds that are occasionally preserved both at these sites and earlier prehistoric rock-shelters. Based mainly on isotopic criteria, dairy lipids could only be identified on ceramics from the stone structures, which date to the Iron Age (ca. 3,000-2,500 BP), providing the earliest evidence of this practice in the high Alps. Dairy production in such a marginal environment implies a high degree of risk even by today's standards. We postulate that this practice was driven by population increase and climate deterioration that put pressure on lowland agropastoral systems and the establishment of more extensive trade networks, leading to greater demand for highly nutritious and transportable dairy products.

  19. Silver and lead in high-altitude lake sediments: Proxies for climate changes and human activities

    International Nuclear Information System (INIS)

    Garçon, Marion; Chauvel, Catherine; Chapron, Emmanuel; Faïn, Xavier; Lin, Mingfang; Campillo, Sylvain; Bureau, Sarah; Desmet, Marc; Bailly-Maître, Marie-Christine; Charlet, Laurent

    2012-01-01

    High-altitude lake sediments are often used as archives for environmental changes and their chemical and isotopic compositions provide significant constraints on natural and anthropogenic long-term changes that have occurred in their catchment area. Here, trace-element concentrations and Pb isotopes are presented for two sedimentary cores from Lake Blanc Huez in the French Alps, to trace the impact of climate changes and human activities over the Holocene. Lead and Ag contents are very high and clearly dominated by input from a Pb–Ag vein located a few meters from the lakeshore, a vein that also buffers the Pb isotopes. Mining of this vein in medieval times is recorded in the corresponding lake sediments with high Ag content coupled with high Pb/U ratio. These chemical characteristics can be used to constrain the major Holocene climate changes. Significant advances of glaciers next to the lake produced sediments with Ag and Pb concentration peaks and high Pb/U ratios due to accelerated erosion of the Pb–Ag vein, similar to the effects of the medieval mining. In contrast, reduced glacier activity led to the formation of organic-rich sediments with high U and As contents and low Pb/U ratios. More generally, the observed combination of chemical changes could be used elsewhere to decipher environmental changes over long periods of time.

  20. Usefulness of training camps at high altitude for well-trained adolescents

    Directory of Open Access Journals (Sweden)

    Jiří Suchý

    2015-03-01

    Full Text Available Objective: Opinions on the suitability of sports training at altitudes of 1800-2200 m above sea level (ASL for increasing performance in youth are not unanimous. The objective of this study was to test the influence of a ten day altitude training camp on performance in well-trained adolescent cross-country skiers. Methods: A running test of 3 × 2 km (aerobic, anaerobic and critical intensity was used with a rest interval of 10 minutes. The test was performed 4 times - an initial test at a lowland (900 m ASL prior to departure for altitude, two tests at altitude (1850 m ASL, a final test ten days after returning to lower altitudes. The aerobic, anaerobic and critical load intensities were set by graded a load test. For all individual tests, the participants maintained the same heart rate individually defined for the various segments using a heart rate monitor. Changes in speed between the tests were compared. The body's internal response was also monitored by the concentration of lactate (2 and 8 minutes after each exertion. Participants: Well-trained adolescent cross-country skiers (N = 11, age: 14.4 ± 1.2 years, weight: 54.4 ± 8.6 kg, height: 170 ± 7 cm, fat: 13 ± 2.6%. Results: The average times attained in the first altitude test for aerobic and anaerobic load were higher (p < .05 than in the entry test at low altitude. In the second altitude test the average times for all intensities were significantly (p < .05 higher than in the first altitude test. In the tests after returning to the lower altitudes the times attained for all intensities were on average higher than at altitude. The average lactate concentration levels following the various intensities were similar (p > .05. The dynamics of the cool-down monitored via the lactate value at the eighth minute after completing the relevant segment showed that at altitude the adolescents cooled down significantly (p < .05 slower rate following the aerobic and anaerobic intensity than at

  1. Simple solar systems for heating, hot water and cooking in high altitude regions with high solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Schwarzer, K. [Solar-Inst., Juelich (Germany); Kleine-Hering, H. [Ecoandina, Salta (Argentina)

    2004-07-01

    In connection with a BMBF research project (FKZ 17104.01), a new system has been developed to provide solar heating and hot water. The system is designed to be used in areas with high solar radiation and low ambient temperatures, conditions which occur typically in high altitude regions. The main considerations in developing this system were robust technology, low cost and easy maintenance. To ensure robustness, air is used as the heat transfer medium. Air has the advantage of a low thermal capacity and enables the system to be immediately ready for use, and does not have the disadvantages of water at temperatures below the freezing point. The units were installed in two public buildings in the Argentinean Altiplano at an altitude of 3600 m, as part of a BMZ (Ministry for Cooperation) project. The local partner in the project was Ecoandina. Because of the high level of direct solar insolation in this area, concentrating solar cookers for families and institutions have a very high acceptance. As part of the BMZ project, four community cookers with Fixed-Focus reflectors (Scheffler reflectors) each with 3 kW power were installed. Further installations included solar hot water systems, drip irrigation systems with solar pumps and parabolic cookers for families. One of the villages equipped with these units is now to receive an award for being the first Solar Village in Argentina. (orig.)

  2. Aerosol chemistry over a high altitude station at northeastern Himalayas, India.

    Directory of Open Access Journals (Sweden)

    Abhijit Chatterjee

    Full Text Available BACKGROUND: There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. METHODOLOGY/PRINCIPAL FINDINGS: An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl, latitude 27 degrees 01'N and longitude 88 degrees 15'E, a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3 and 19.6+/-11.1 microg m(-3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4NO(3 in fine mode aerosol during winter and as NaNO(3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4(2- in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. CONCLUSIONS/SIGNIFICANCE: The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over

  3. Genome wide expression analysis suggests perturbation of vascular homeostasis during high altitude pulmonary edema.

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    Full Text Available BACKGROUND: High altitude pulmonary edema (HAPE is a life-threatening form of non-cardiogenic edema which occurs in unacclimatized but otherwise normal individuals within two to four days after rapid ascent to altitude beyond 3000 m. The precise pathoetiology and inciting mechanisms regulating HAPE remain unclear. METHODOLOGY/PRINCIPLE FINDINGS: We performed global gene expression profiling in individuals with established HAPE compared to acclimatized individuals. Our data suggests concurrent modulation of multiple pathways which regulate vascular homeostasis and consequently lung fluid dynamics. These pathways included those which regulate vasoconstriction through smooth muscle contraction, cellular actin cytoskeleton rearrangements and endothelial permeability/dysfunction. Some notable genes within these pathways included MYLK; rho family members ARGEF11, ARHGAP24; cell adhesion molecules such as CLDN6, CLDN23, PXN and VCAM1 besides other signaling intermediates. Further, several important regulators of systemic/pulmonary hypertension including ADRA1D, ECE1, and EDNRA were upregulated in HAPE. We also observed significant upregulation of genes involved in paracrine signaling through chemokines and lymphocyte activation pathways during HAPE represented by transcripts of TNF, JAK2, MAP2K2, MAP2K7, MAPK10, PLCB1, ARAF, SOS1, PAK3 and RELA amongst others. Perturbation of such pathways can potentially skew vascular homeostatic equilibrium towards altered vascular permeability. Additionally, differential regulation of hypoxia-sensing, hypoxia-response and OXPHOS pathway genes in individuals with HAPE were also observed. CONCLUSIONS/SIGNIFICANCE: Our data reveals specific components of the complex molecular circuitry underlying HAPE. We show concurrent perturbation of multiple pathways regulating vascular homeostasis and suggest multi-genic nature of regulation of HAPE.

  4. Lung function and breathing pattern in subjects developing high altitude pulmonary edema.

    Directory of Open Access Journals (Sweden)

    Christian F Clarenbach

    Full Text Available INTRODUCTION: The purpose of the study was to comprehensively evaluate physiologic changes associated with development of high altitude pulmonary edema (HAPE. We tested whether changes in pulmonary function and breathing pattern would herald clinically overt HAPE at an early stage. METHODS: In 18 mountaineers, spirometry, diffusing capacity, nitrogen washout, nocturnal ventilation and pulse oximetry were recorded at 490 m and during 3 days after rapid ascent to 4559 m. Findings were compared among subjects developing HAPE and those remaining well (controls. RESULTS: In 8 subjects subsequently developing radiographically documented HAPE at 4559 m, median FVC declined to 82% of low altitude baseline while closing volume increased to 164% of baseline (P<0.05, both instances. In 10 controls, FVC decreased slightly (to 93% baseline, P<0.05 but significantly less than in subjects with HAPE and closing volume remained unchanged. Sniff nasal pressure was reduced in both subjects with and without subsequent HAPE. During nights at 4559 m, mean nocturnal oxygen saturation dropped to lower values while minute ventilation, the number of periodic breathing cycles and heart rate were higher (60%; 8.6 L/min; 97 cycles/h; 94 beats/min, respectively in subjects subsequently developing HAPE than in controls (73%; 5.1 L/min; 48 cycles/h; 79 beats/min; P<0.05 vs. HAPE, all instances. CONCLUSION: The results comprehensively represent the pattern of physiologic alterations that precede overt HAPE. The changes in lung function are consistent with reduced lung compliance and impaired gas exchange. Pronounced nocturnal hypoxemia, ventilatory control instability and sympathetic stimulation are further signs of subsequent overt HAPE.

  5. Efficacy of ibuprofen on prevention of high altitude headache: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Juan Xiong

    Full Text Available Ibuprofen is used to prevent high altitude headache (HAH but its efficacy remains controversial. We conducted a systematic review and meta-analysis of randomized, placebo-controlled trials (RCTs of ibuprofen for the prevention of HAH.Studies reporting efficacy of ibuprofen for prevention of HAH were identified by searching electronic databases (until December 2016. The primary outcome was the difference in incidence of HAH between ibuprofen and placebo groups. Risk ratios (RR were aggregated using a Mantel-Haenszel random effect model. Heterogeneity of included trials was assessed using the I2 statistics.In three randomized-controlled clinical trials involving 407 subjects, HAH occurred in 101 of 239 subjects (42% who received ibuprofen and 96 of 168 (57% who received placebo (RR = 0.79, 95% CI 0.66 to 0.96, Z = 2.43, P = 0.02, I2 = 0%. The absolute risk reduction (ARR was 15%. Number needed to treat (NNT to prevent HAH was 7. Similarly, The incidence of severe HAH was significant in the two groups (RR = 0.40, 95% CI 0.17 to 0.93, Z = 2.14, P = 0.03, I2 = 0%. Severe HAH occurred in 3% treated with ibuprofen and 10% with placebo. The ARR was 8%. NNT to prevent severe HAH was 13. Headache severity using a visual analogue scale was not different between ibuprofen and placebo. Similarly, the difference between the two groups in the change in SpO2 from baseline to altitude was not different. One included RCT reported one participant with black stools and three participants with stomach pain in the ibuprofen group, while seven participants reported stomach pain in the placebo group.Based on a limited number of studies ibuprofen seems efficacious for the prevention of HAH and may therefore represent an alternative for preventing HAH with acetazolamide or dexamethasone.

  6. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species.

    Directory of Open Access Journals (Sweden)

    Jiří Flousek

    Full Text Available Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše, where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta. It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.

  7. Changes in labial capillary density on ascent to and descent from high altitude [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Edward Gilbert-Kawai

    2016-08-01

    Full Text Available Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site.  Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman’s rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021. There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017. Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area, despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains

  8. Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus).

    Science.gov (United States)

    Song, Shen; Yao, Na; Yang, Min; Liu, Xuexue; Dong, Kunzhe; Zhao, Qianjun; Pu, Yabin; He, Xiaohong; Guan, Weijun; Yang, Ning; Ma, Yuehui; Jiang, Lin

    2016-02-18

    The Tibetan cashmere goat (Capra hircus), one of the most ancient breeds in China, has historically been a critical source of meat and cashmere production for local farmers. To adapt to the high-altitude area, extremely harsh climate, and hypoxic environment that the Tibetan cashmere goat lives in, this goat has developed distinct phenotypic traits compared to lowland breeds. However, the genetic components underlying this phenotypic adaptation remain largely unknown. We obtained 118,700 autosomal SNPs through exome sequencing of 330 cashmere goats located at a wide geographic range, including the Tibetan Plateau and low-altitude regions in China. The great majority of SNPs showed low genetic differentiation among populations; however, approximately 2-3% of the loci showed more genetic differentiation than expected under a selectively neutral model. Together with a combined analysis of high- and low-altitude breeds, we revealed 339 genes potentially under high-altitude selection. Genes associated with cardiovascular system development were significantly enriched in our study. Among these genes, the most evident one was endothelial PAS domain protein 1 (EPAS1), which has been previously reported to be involved in complex oxygen sensing and significantly associated with high-altitude adaptation of human, dog, and grey wolf. The missense mutation Q579L that we identified in EPAS1, which occurs next to the Hypoxia-Inducible Factor-1 (HIF-1) domain, was exclusively enriched in the high-altitude populations. Our study provides insights concerning the population variation in six different cashmere goat populations in China. The variants in cardiovascular system-related genes may explain the observed phenotypic adaptation of the Tibetan cashmere goat.

  9. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    International Nuclear Information System (INIS)

    Mohammed, H A; Sibley, M J N; Mather, P J

    2012-01-01

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  10. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  11. Galling Insects of the Brazilian Páramos: Species Richness and Composition Along High-Altitude Grasslands.

    Science.gov (United States)

    Coelho, Marcel S; Carneiro, Marco Antônio Alves; Branco, Cristina A; Borges, Rafael Augusto Xavier; Fernandes, G Wilson

    2017-12-08

    In this work, we investigated the factors that determine the distribution of galling insects in high-altitude grasslands, locally called 'campos de altitude' of Mantiqueira Range and tested whether 1) richness of galling insects decreases with altitude, 2) galling insect richness increases with plant richness, 3) variation in galling insect diversity is predominantly a consequence of its β component, and 4) turnover is the main mechanism driving the beta diversity of both galling insects and plants. Galling insect richness did not exhibit a negative relationship with altitude, but it did increase with plant richness. The additive partition of regional richness (γ) into its local and beta components showed that local diversity (α) of galling insects and plants was relatively low in relation to regional diversity; the β component incorporated most of the regional diversity. This pattern was also found in the multiscale analysis of the additive partition for galling insects and plants. The beta diversity of galling insects and plants was driven predominantly by the process of turnover and minimally by nesting. The results reported here point out that the spatial distribution of galling insects is best explained by historical factors, such as the distribution of genera and species of key host plants, as well as their relation to habitat, than ecological effects such as hygrothermal stress - here represented by altitude. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  13. Isotopic composition of dissolved inorganic nitrogen in high mountain lakes: variation with altitude in the Pyrenees

    Science.gov (United States)

    Bartrons, M.; Camarero, L.; Catalan, J.

    2010-05-01

    Nitrogen deposition in remote areas has increased, but the effect on ecosystems is still poorly understood. For aquatic systems, knowledge of the main processes driving the observed variation is limited, as is knowledge of how changes in nitrogen supply affect lake biogeochemical and food web processes. Differences in dissolved inorganic nitrogen (DIN) between lakes cannot be understood without considering catchment characteristics. In mountains, catchment features (e.g., thermal conditions, land cover) vary considerably with elevation. The isotopic composition of nitrogen (δ15N) is increasingly used to study aquatic ecosystem dynamics. Here we explore the variability of δ15N in DIN in high mountain lakes and show that environmental conditions that change with altitude can affect the isotopic ratio. We measured ammonium and nitrate δ15N values in atmospheric deposition, epilimnetic water, deep chlorophyll maximum water (DCMW) and sediment pore water (SPW) from eight mountain lakes in the Pyrenees, both above and below the treeline. Lakes showed relatively uniform δ15N-NH4+ values in SPW (2.2±1.6‰), with no variation corresponding to catchment or lake characteristics. We suggest that organic matter diagenesis under similar sediment conditions is responsible for the low variation between the lakes. In the water column, the range of δ15N values was larger for ammonium (-9.4‰ to 7.4‰) than for nitrate (-11.4‰ to -3.4‰), as a result of higher variation both between and within lakes (epilimnetic vs. DCM water). For both compounds part of the difference correlated with altitude or catchment features (e.g., scree proportion). Based on concentration, chemical and isotopic tendencies, we suggest that patterns arise from the distinct relative contributions of two types of water flow paths to the lakes: one from snowpack melting, with little soil interaction; and another highly influenced by soil conditions. The snow-type flow path contributes low DIN

  14. Porosity of Self-Compacting Concrete (SCC) incorporating high volume fly ash

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Murti, G. Y.

    2017-02-01

    Degradation of concrete could be triggered by the presence of aggressive agents from the environment into the body of concrete. The penetration of these agents is influenced by the pore characteristics of the concrete. Incorporating a pozzolanic material such as fly ash could modify the pore characteristic of the concrete. This research aims to investigate the influence of incorporating fly ash at high volume level on the porosity of Self-Compacting Concrete (SCC). Laboratory investigations were carried out following the ASTM C642 for measuring density and volume of permeable pores (voids) of the SCC with varying fly ash contents (50-70% by weight of total binder). In addition, a measurement of permeable voids by saturation method was carried out to obtain an additional volume of voids that could not be measured by the immersion and boiling method of ASTM C642. The results show that the influence of fly ash content on the porosity appears to be dependent on age of SCC. At age less than 56 d, fly ash tends to cause an increase of voids but at 90 d of age it reduces the pores. The additional pores that can be penetrated by vacuum saturation method counts about 50% of the total voids.

  15. Fresh State and Mechanical Properties of Self Compacting Concrete Incorporating High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Mohamad N.

    2016-01-01

    Full Text Available Self-compacting concrete is considered as a concrete which can be placed and compacted under its own weight without vibration. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This paper investigates the fresh state and mechanical properties of self-compacting concrete incorporating high volume fly ash. Fly Ash (FA was mixed into self-compacting concrete (SCC as a replacement for cement. Portland cement (PC was partially replaced with 0%, 20%, 40% and 60% FA. The water to binder ratio was fixed at 0.4 for all mixtures. Tests were carried out on all mixtures to obtain the workability of self-compacting concrete in terms of viscosity by slump flow test (Diameter and T500, V-funnel and J-ring. The mechanical property tests were conducted on SCC cubes and cylinders to determine its compressive strength and modulus of elasticity. The results indicate that replacement of 40% fly ash is the optimum result for the workability and mechanical properties test. The highest compressive strength which is 27.2 MPa was achieved by SCC with 40% FA replacement. Modulus of elasticity increased with the increased percentage of fly ash except for 60% fly ash.

  16. Elevation of circulating miR-210-3p in high-altitude hypoxic environment

    Directory of Open Access Journals (Sweden)

    Yan eYan

    2016-03-01

    Full Text Available Background: The induction of miR-210-3p, a master hypoxamir, is a consistent feature of the hypoxic response in both normal and malignant cells. However, whether miR-210-3p acts as a circulating factor in response to a hypoxic environment remains unknown. The current study aimed to examine the effect of a high-altitude hypoxic environment on circulating miR-210-3p.Methods: We examined and compared the levels of miR-210-3p using TaqMan-based qRT-PCR in both peripheral blood cells and plasma from 84 ethnic Chinese Tibetans residing at 3560 m, 46 newly arrived migrant Han Chinese (Tibet Han and 82 Han Chinese residing at 8.9 m (Nanjing Han. Furthermore, we analyzed the correlations of miR-210-3p with hematological indices. Results: The relative concentrations of miR-210-3p to internal reference U6 in blood cells were significantly higher in the Tibet Han group (1.01±0.11, P<0.001 and in the Tibetan group (1.17±0.09, P<0.001 than in the Nanjing Han group (0.51±0.04. The absolute concentrations of plasma miR-210-3p were also markedly elevated in the Tibet Han group (503.54±42.95 fmol/L, P=0.004 and in the Tibetan group (557.78±39.84 fmol/L, P<0.001 compared to the Nanjing Han group (358.39±16.16 fmol/L. However, in both blood cells and plasma, miR-210-3p levels were not significantly different between the Tibet Han group and the Tibetan group (P=0.280, P=0.620, respectively. Plasma miR-210-3p concentrations were positively correlated with miR-210-3p levels in blood cells (r=0.192, P=0.005. Furthermore, miR-210-3p levels in both blood cells and plasma showed strong positive correlations with red blood cell counts and hemoglobin and hematocrit values. Conclusion: These data demonstrated, for the first time, that miR-210-3p might act as a circulating factor in response to hypoxic environments and could be associated with human adaptation to life at high altitudes.

  17. Rating of perceived exertion and acute mountain sickness during a high-altitude trek.

    Science.gov (United States)

    Mellor, Adrian J; Woods, David R; O'Hara, John; Howley, Mark; Watchorn, James; Boos, Christopher

    2014-12-01

    There is a widely held belief that strenuous exercise should be avoided on arrival at high altitude (HA) and during acclimatization. Data from chamber studies are contradictory and the studies are usually of short duration, therefore differing from the "real world." We studied 48 trekkers during a 10-d ascent to 16,827 ft (5129 m) in the Cordillera Real area of Bolivia. Borg Rating of Perceived Exertion (RPE) scores were recorded for the hardest perceived exertion during the day after ascents to 12,576, 14,600, and 16,827 ft (3833, 4450, and 5129 m). Heart rate, Spo2, and Lake Louise Score (LLS) were recorded simultaneously. Statistical testing was performed using SPSS 21 software. A P-value of ≤ 0.05 was deemed significant. Acute mountain sickness (AMS) rates were higher after trekking days with higher levels of perceived exertion. The LLS was higher in those with a Borg RPE score ≥ 15 both following exercise (mean LLS 2.6 vs. 1.7) and at rest the following day (mean LLS 2.7 vs. 1.7). Heart rate was higher in those with high Borg RPE scores (80 vs. 87) and oxygen saturations lower at rest (86 vs. 83) the following morning. This data lends weight to the advice of moderate exertion during a trek to HA and suggests that reducing perceived exertion may reduce AMS.

  18. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    Science.gov (United States)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  19. Plasma proteomic study in patients with high altitude pulmonary edema (HAPE

    Directory of Open Access Journals (Sweden)

    Yong-jun LUO

    2012-01-01

    Full Text Available Objective  To investigate the differential expressions of protein in the plasma proteome in patients suffering from high altitude pulmonary edema (HAPE and their implications. Methods  The plasmas of six HAPE patients and six healthy controls were studied. The high-abundant proteins in the plasma were removed. The low-abundant proteins in the plasma/serum were segregated by 2-DE. MALDI-TOF/MS was adopted to measure the peptide fingerprints after the differential protein spots were digested by enzymes. Comparison and analysis were made in the GenBank. Results  The immunoglobulin K1 light chain, serum transferrin protein precursor, and α-trypsin inhibitor heavy chain-related protein expressions were upregulated in HAPE patients compared with the control group. However the human fibrin glue coagulation protein 3 was down-regulated. Conclusion  The differential expression of the above four proteins in the plasma of HAPE patients may be related to the occurrence of HAPE and can be used as the target point for the prediction of HAPE.

  20. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau.

    Science.gov (United States)

    Liu, Yongqin; Priscu, John C; Xiong, Jinbo; Conrad, Ralf; Vick-Majors, Trista; Chu, Haiyan; Hou, Juzhi

    2016-03-01

    Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world's highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes. Statistical analysis inferred that salinity was the major driver of community composition, and that archaeal diversity increased with salinity. Sediments with the highest salinities were mostly dominated by Halobacteria. Crenarchaeota dominated at intermediate salinities, and methanogens were present in all lake sediments, albeit most abundant at low salinities. The distribution patterns of the three functional types of methanogens (hydrogenotrophic, acetotrophic and methylotrophic) were also related to changes in salinity. Our results show that salinity is a key factor controlling archaeal community diversity and composition in lake sediments on a spatial scale that spans nearly 2000 km on the Tibetan Plateau. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Origin of the turbulent spectra in the high-altitude cusp: Cluster spacecraft observations

    Directory of Open Access Journals (Sweden)

    K. Nykyri

    2006-05-01

    Full Text Available High-resolution magnetic field data from Cluster Flux Gate Magnetometer (FGM and the Spatio-Temporal Analysis of Field Fluctuations (STAFF instruments are used to study turbulent magnetic field fluctuations during the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence whose power correlates with the field-aligned ion plasma flux. The magnetic field wave spectra shows power law behavior with both double and single slopes with break in the spectra usually occurring in the vicinity of the local ion cyclotron frequency. Strong peaks in the wave power close to local ion cyclotron frequency were sometimes observed, with secondary peaks at higher harmonics indicative of resonant processes between protons and the waves. We show that the observed spectral break point may be caused partly by damping of obliquely propagating kinetic Alfvén (KAW waves and partly by cyclotron damping of ion cyclotron waves.

  2. Cosmic Ray Astrophysics using The High Altitude Water Cherenkov (HAWC Observatory in México

    Directory of Open Access Journals (Sweden)

    de la Fuente Eduardo

    2017-01-01

    Full Text Available The High-Altitude Water Cherenkov (HAWC TeV gamma–ray Observatory in México is ready to search and study gamma-ray emission regions, extremely high-energy cosmic-ray sources, and to identify transient phenomena. With a better Gamma/Hadron rejection method than other similar experiments, it will play a key role in triggering multi–wavelength and multi–messenger studies of active galaxies (AGN, gamma-ray bursts (GRB, supernova remnants (SNR, pulsar wind nebulae (PWN, Galactic Plane Sources, and Cosmic Ray Anisotropies. It has an instantaneous field-of-view of ∼2 str, equivalent to 15% of the whole sky and continuous operation (24 hours per day. The results obtained by HAWC–111 (111 detectors in operation were presented on the proceedings of the International Cosmic Ray Conference 2015 and in [1]. The results obtained by HAWC–300 (full operation are now under analysis and will be published in forthcoming papers starting in 2017 (see preliminary results on http://www.hawc-observatory.org/news/. Here we present the HAWC contributions on cosmic ray astrophysics via anisotropies studies, summarizing the HAWC detector and its upgrading by the installation of “outriggers”.

  3. Dirrofilariasis in Shepherd Dogs of High Altitudes Areas in West Azerbaijan-Iran

    Directory of Open Access Journals (Sweden)

    Mojtaba Hadian

    2011-03-01

    Full Text Available Although the biology and ecology of the arthropod vectors are different, some factors, such as global warming, the increasing abundance of mosquitoes, the movement of domestic hosts, and the abundance of wild reservoirs, can act as favourable factors for the distribution of infections. The aim of this study was to determine the prevalence of Dirofilaria immitis infection in shepherd dogs living in the high altitude of mountainous area (i.e.1200 meters above the sea level. The study group was comprised of 160 shepherd dogs living in 4 mountainous regions (Targavar, Margavar, Kolshin and Hovarchin of west Azerbaijan where continuous movement of sheep and goat flocks resulted to have a little information about shepherd dogs in these regions. Additionally, arduous pathways have made impossible any access by car to some territories of these areas. The dogs were mostly mixed raced with different ages (from 1 to 10 years and sexes (male = 136, female = 24. Blood samples were collected from cephalic vein. Direct thin and thick blood smears and modified knott’s technique were used for detecting D.immitis microfilariae and other blood parasites. The results indicated that 40 (25 % of dogs were infected with D. immitis microfilariae. In examination of the dogs, no severe life threatening feature of the disease was diagnosed. There were no significant differences (P > 0.05 of Dirrofilaria infection among gender, age groups and geographical areas. High prevalence of asymptomatic Dirrofilariasis in shepherd dogs in this area highlights the need of controlling and preventive programs.

  4. Cluster observations of magnetic field fluctuations in the high-altitude cusp

    Directory of Open Access Journals (Sweden)

    K. Nykyri

    2004-07-01

    Full Text Available High-resolution (22 vector/s magnetic field data from Cluster FGM instrument are presented for the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence for much of the crossing. Large-scale fluctuations show some correlation between spacecraft but the higher frequency fluctuations show no correlation, indicating that the length scales of these waves are smaller than the spacecraft separation (500km. In many intervals, there are clear peaks in the wave power around the ion cyclotron frequency (~1Hz, and there is some evidence for waves at the first harmonic of this frequency. Both left- and right-hand polarised waves are found, with angles of propagation with respect to the ambient magnetic field that range from parallel to perpendicular. The regions of enhanced magnetic field fluctuations appear to be associated with plasma flows possibly originating from a lobe reconnection site. The most coherent, long lasting wave trains with frequencies close to local ion cyclotron frequency occur at a boundary between a sheared flow and a stagnant plasma.

  5. ON THE ORIGIN OF HIGH-ALTITUDE OPEN CLUSTERS IN THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Medina, L. A.; Pichardo, B.; Moreno, E.; Peimbert, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Velazquez, H., E-mail: lamartinez@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, 22860 Ensenada, B.C., México (Mexico)

    2016-01-20

    We present a dynamical study of the effect of the bar and spiral arms on the simulated orbits of open clusters in the Galaxy. Specifically, this work is devoted to the puzzling presence of high-altitude open clusters in the Galaxy. For this purpose we employ a very detailed observationally motivated potential model for the Milky Way and a careful set of initial conditions representing the newly born open clusters in the thin disk. We find that the spiral arms are able to raise an important percentage of open clusters (about one-sixth of the total employed in our simulations, depending on the structural parameters of the arms) above the Galactic plane to heights beyond 200 pc, producing a bulge-shaped structure toward the center of the Galaxy. Contrary to what was expected, the spiral arms produce a much greater vertical effect on the clusters than the bar, both in quantity and height; this is due to the sharper concentration of the mass on the spiral arms, when compared to the bar. When a bar and spiral arms are included, spiral arms are still capable of raising an important percentage of the simulated open clusters through chaotic diffusion (as tested from classification analysis of the resultant high-z orbits), but the bar seems to restrain them, diminishing the elevation above the plane by a factor of about two.

  6. Adaptive Influence of Long Term High Altitude Residence on Spatial Working Memory: An fMRI Study

    Science.gov (United States)

    Yan, Xiaodan; Zhang, Jiaxing; Gong, Qiyong; Weng, Xuchu

    2011-01-01

    With an increasing population living at a high altitude (HA), the impact of HA residence on human cognitive function has raised concerns. We recruited two groups of college students with one group born and grew up at HA until early adulthood and the control group born and grew up at near sea level (SL); the two groups were matched at age, gender…

  7. Tolerance of organ transplant recipients to physical activity during a high-altitude expedition: climbing Mount Kilimanjaro

    NARCIS (Netherlands)

    Edwin van Adrichem; Marion J. Siebelink; Janneke M. Dilling; Greetje Kuiken; Dr. C.P. van der Schans; Erik A.M. Verschuuren; Bart L. Rottier

    2015-01-01

    Background: It is generally unknown to what extent organ transplant recipients can be physically challenged. During an expedition to Mount Kilimanjaro, the tolerance for strenuous physical activity and high-altitude of organ transplant recipients after various types of transplantation was compared

  8. Tolerance of Organ Transplant Recipients to Physical Activity during a High-Altitude Expedition : Climbing Mount Kilimanjaro

    NARCIS (Netherlands)

    van Adrichem, Edwin J.; Siebelink, Marion J.; Rottier, Bart L.; Dilling, Janneke M.; Kuiken, Greetje; van der Schans, Cees P.; Verschuuren, Erik A. M.

    2015-01-01

    Background It is generally unknown to what extent organ transplant recipients can be physically challenged. During an expedition to Mount Kilimanjaro, the tolerance for strenuous physical activity and high-altitude of organ transplant recipients after various types of transplantation was compared to

  9. Psychological and cognitive impairment of long-term migrators to high altitudes and the relationship to physiological and biochemical changes.

    Science.gov (United States)

    Gao, Y-X; Li, P; Jiang, C-H; Liu, C; Chen, Y; Chen, L; Ruan, H-Z; Gao, Y-Q

    2015-10-01

    The present study aimed to examine how long-term migration to high-altitude regions affects mentality and cognition, and the correlation with various physiological and biochemical changes. The WHO Neurobehavioral Core Test Battery, Raven's Standard Progressive Matrices (RSPM) and Pittsburgh Sleep Quality Index questionnaire were used to assess 141 young male subjects who lived in plain regions and 217 young male subjects who had migrated to a 4500 m high-altitude region and lived there for 1-5 years. Arterial oxyhemoglobin saturation, cerebral tissue oxygenation indices (TOIs), serum S100B and brain-derived neurotrophic factor (BDNF) were also measured. Long-term migrators to a high-altitude region exhibited exacerbated mood disorders, retarded color discrimination ability, decreased visual memory capacity, and impaired perceptual motor skill and motion stability. In addition, the migrators exhibited lower RSPM scores and lower sleep quality. Further analyses revealed significant correlations between sleep quality and cerebral TOIs, mood and sleep quality, mood and certain cognitive functions, mood and serum BDNF levels, and RSPM scores and serum S100B levels. Long-term living at high altitudes causes significant impairment of psychological and cognitive function. Cerebral hypoxic extent, sleep quality and biochemical dysfunction are major influencing factors. © 2014 EAN.

  10. Chest circumference and sitting height among children and adolescents from Lhasa, tibet compared to other high altitude populations.

    Science.gov (United States)

    Xi, Huanjiu; Chen, Zhao; Li, Wenhui; Wen, Youfeng; Zhang, Hailong; Xiao, Yanjie; Liu, Suwei; Pei, Linguo; Zhang, Meizhi; Lv, Po; Ren, Fu; Huang, Keqiang; Ye, Liping; Li, Chunshan; Zhao, Liguang

    2016-01-01

    The adaptation of human beings to a high altitude environment during growth has been reported in several populations but is less known for Tibetans. The objective of this study was to investigate similarities and differences of Tibetans in patterns and characteristics of physical growth and development in comparison to other high altitude populations. We measured the stature, weight, chest circumference and sitting height of 2,813 healthy children and adolescents aged 6- to 21-year-old living at 3,658-4,500 m in Tibet, China, and compared them with published data from other high altitude populations. Eligible participants must have been born and raised in Tibet, and both their parents' families have to be Tibetan for at least the past three generations. The physical growth and development of children and adolescents in Tibet and the Andes followed similar patterns, such as delayed growth, short stature and sitting height, and large chest dimensions. Relative to stature, Tibetan sitting heights are similar to Andeans, but chest circumferences are smaller. Findings from this study reinforce the conclusion that Tibetan and Andean populations have adapted differently to high altitude hypoxia. The physical features of each population may result from unique adaptation to hypoxia, as well as socio-ecological factors, such as poor nutrition. © 2015 Wiley Periodicals, Inc.

  11. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    Science.gov (United States)

    J.A. Hribljan; D.J. Cooper; J. Sueltenfuss; E.C. Wolf; K.A. Heckman; Erik Lilleskov; R.A. Chimner

    2015-01-01

    The high-altitude (4,500+ m) Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia:...

  12. MECHANICAL PROPERTIES AND SULFURIC ACID RESISTANCE OF HIGH VOLUME CLASS C FLY ASH CONCRETE

    Directory of Open Access Journals (Sweden)

    Halit YAZICI

    2005-03-01

    Full Text Available In this study, some physical and mechanical properties of concrete mixtures containing high volume Class C fly ash have been investigated. Two different curing conditions, standard curing in water and curing in air were applied to the specimens in which 40 to 70 % cement was replaced with fly ash. Compressive strength, splitting tensile strength, modulus of elasticity and sulfuric acid resistance of concrete mixes, the volume stability of mortar bar specimens and setting times of pastes were investigated. Test results are presented comparatively with control specimens which have only Portland cement as a binder.

  13. [Physical performance of older adults living in rural areas at sea level and at high altitude in Peru].

    Science.gov (United States)

    Estela-Ayamamani, David; Espinoza-Figueroa, Jossué; Columbus-Morales, Mauricio; Runzer-Colmenares, Fernando; Parodi, José F; Mayta-Tristán, Percy

    2015-01-01

    Living at high altitudes requires the inhabitants to adapt biologically and socially to the environment. The objective of this study was to determine the difference in physical performance (PP) in rural populations at sea level and at high altitude. A cross-sectional study was conducted in rural communities in Ancash, Peru, located at 3.345 meters above sea level (m.a.s.l.) and also in communities located in coastal areas at 6m.a.s.l. PP was measured by the Short Physical Performance Battery (SPPB) and other associated factors. Adjusted prevalence ratios (aPR) were calculated. A total of 130 older adults were assessed in the high altitude communities and 129 on the coast. The median age was 71.4 years, and 55.6% were female. Low physical performance (SPPB ≤ 6) was 10.0% at high altitude and 19.4% on the coast (p<0.05). Factors associated with low physical performance were residing at the coast (aPR: 2.10, 95% CI 1.02 to 4.33), self-reported poor health (aPR: 2.48, 95% CI 1.21 -5.08), hypertension (aPR: 1.73, 95% CI 1.01 to 2.98), and age (aPR: 1.04, 95% CI 1.01 to 1.07), while being a farmer (aPR: 0.49, 95% CI 0.25 to 0.97), and being independent (aPR: 0.37, 95% CI 0,20-, 072) were found to be protective factors. It was also found that the inhabitants of the coast have a mean of 0.86 points lower total SPPB than the high altitude ones (p=0.004). There is an association between altitude of residence and PP in older adults. The prevalence of a low PP in older adults in rural areas at sea level is twice as high compared to those living in high altitude rural communities. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.

  14. High altitude agriculture in the Titicaca basin (800 BCE-200 CE): Impacts on nutrition and disease load.

    Science.gov (United States)

    Juengst, Sara L; Hutchinson, Dale L; Chávez, Sergio J

    2017-07-08

    This study investigates the biological impacts of sedentism and agriculture on humans living in the high altitude landscape of the Titicaca Basin between 800 BCE and CE 200. The transition to agriculture in other global areas resulted in increases in disease and malnutrition; the high altitude of the Titicaca Basin could have exacerbated this. Our objective is to test whether the high altitude of the Titicaca Basin created a marginal environment for early agriculturalists living there, reflected through elevated rates of malnutrition and/or disease. To test this, we analyzed human remains excavated from seven archaeological sites on the Copacabana Peninsula for markers of diet and disease. These markers included dental caries, dental abscesses, cribra orbitalia, porotic hyperostosis, periosteal reactions, osteomyelitis, and linear enamel hypoplasia. Results showed that markers of diet did not support malnutrition or micronutrient deficiencies but instead, indicated a relatively diverse diet for all individuals. Markers of disease also did not vary significantly but were common, indicating circulation of pathogens or chronic bodily stress. We interpret these results as an indication that while diets remained nutritious, investment in the landscape exposed populations to issues of sanitation and disease. The high-altitude of the Titicaca Basin did not exacerbate the biological impacts of agriculture in terms of increased malnutrition. Additionally, disease load was likely related to problems faced by many sedentary groups as opposed to unique challenges posed by high altitude. In sum, despite the high elevation, the Titicaca Basin is not truly a marginal environment for humans. © 2017 Wiley Periodicals, Inc.

  15. Analysis of physiology and biochemistry indicators of garrison and field training troops at high altitude

    Directory of Open Access Journals (Sweden)

    Lu LIU

    2017-11-01

    Full Text Available Objective To investigate the effects of plateau hypoxia environment on the physiology and biochemistry indicators of troops executing different combat mission. Methods Troops included the soldiers in camp (station altitude 4030m and 4600m and those soldiers in field training (altitude 4300m for one month. Blood samples were collected and the physiology and biochemistry indicators were detected including heart rate (HR, blood pressure (BP, oxygen saturation (SpO2 and the concentrations of hemoglobin (Hb, serum total protein (TP, albumin (ALB and globulin (GLB, the ratio of albumin and globulin (A/G, concentrations of total cholesterol (TC, triglycerides (TG, high-density lipoprotein cholesterol (HDL-C and low density lipoprotein cholesterol (LDL-C, creatine kinase (CK, lactic dehydrogenase (LDH, aspartate aminotransferase (AST, alanine aminotransferase (ALT and AST/ALT. Results The HR was significantly higher in soldiers of field training (82.25±14.10 beats/min than in soldiers stationed in camp (74.18±9.02 beats/min, P0.05. The concentration of Hb and the prevalence of plateau polycythemia were significantly higher in soldiers of field training (211.6±17.4g/L and 55.6% than in soldiers stationed in camp (199.3±22.7g/L and 25.7%, P0.05. The concentration of serum LDH was significantly higher and the abnormality rate of LDH was also higher in soldiers of field training (273.70±136.74U/L and 72.7% than in soldiers stationed in camp (205.19±77.94 U/L and 51.1%, P<0.01 and P<0.05. Conclusions The protein nutrition in plateau soldiers is sufficient, but the prevalence of plateau polycythemia, dyslipidemia and the abnormality rate of LDH were higher in soldiers of field training than in soldiers stationed in camp. Regular physical examination should be taken into consideration, early prevention and treatment is also important. DOI: 10.11855/j.issn.0577-7402.2017.10.13

  16. Extraction and recovery of polycyclic aromatic hydrocarbons from highly sorptive matrices such as fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W. H.; Caton, J. E.; Guerin, M. R.; Yeatts, Jr., L. B.; Higgins, C. E.

    1979-01-01

    The highly sorptive nature of some potentially environmentally significant materials such as fly ash may seriously hinder quantitative extraction of their sorbed organic content. Radiolabeled tracers offer a convenient means of probing the sorptive nature of such matrices and of obtaining the corrections for extraction and handling recoveries which are necessary to quantitative analysis.

  17. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  18. [Relationship between occupational stress and working ability of workers in a petroleum processing enterprise in high altitude area].

    Science.gov (United States)

    Ma, X M; Kang, H L; Shi, C B; Li, Y; Wu, Y F; Liu, Z H; Wang, G; Lei, H Y

    2017-12-20

    Objective: To investigate the relationship between occupational stress and working ability of workers in a petroleum processing enterprise in a high altitude area. Methods: A total of 728 workers in a petroleum processing enterprise at an altitude of 2850 m were subjected to a survey using Occupational Stress Inventory (OSI) , Work Ability Index (WAI) Scale, Occupational Role Questionnaire (ORQ) , Personal Strain Questionnaire (PSQ) , and Personal Resource Questionnaire (PRQ) from May 2014 to August 2016. Results: Of the 728 workers, 55 (7.6%) had a poor working ability, moderate in 262 (35.9%) , and good in 411 (56.5%). There were significant differences in WAI between the workers with different types of work, sexes, ages, and working years ( P enterprise in the high altitude area. Hypoxia in high altitude area may further reduce the working ability. In order to reduce occupational stress and improve work ability, it should be considered to strengthen skills training, improve the working environment, and pay attention to mental health.

  19. Altered Left Ventricular Geometry and Torsional Mechanics in High Altitude-Induced Pulmonary Hypertension: A Three-Dimensional Echocardiographic Study.

    Science.gov (United States)

    De Boeck, Bart W; Toma, Aurel; Kiencke, Stephanie; Dehnert, Christoph; Zügel, Stefanie; Siebenmann, Christoph; Auinger, Katja; Buser, Peter T; Maggiorini, Marco; Kaufmann, Beat A

    2018-03-01

    Changes in left ventricular (LV) torsion have been related to LV geometry in patients with concomitant long-standing myocardial disease or pulmonary hypertension (PH). We evaluated the effect of acute high altitude-induced isolated PH on LV geometry, volumes, systolic function, and torsional mechanics. Twenty-three volunteers were prospectively studied at low altitude and after the second (D3) and third night (D4) at high altitude (4,559 m). LV ejection fraction, multidirectional strains and torsion, LV volumes, sphericity, and eccentricity were derived by speckle-tracking on three-dimensional echocardiographic data sets. Pulmonary pressure was estimated from the transtricuspid pressure gradient (TRPG), LV preload from end-diastolic LV volume, and transmitral over mitral annular E velocity (E/e'). At high altitude, oxygen saturation decreased by 15%-20%, heart rate and cardiac index increased by 15%-20%, and TRPG increased from 21 ± 2 to 37 ± 9 mm Hg (P geometry and torsional mechanics. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  20. Chemoreceptor Responsiveness at Sea Level Does Not Predict the Pulmonary Pressure Response to High Altitude.

    Science.gov (United States)

    Hoiland, Ryan L; Foster, Glen E; Donnelly, Joseph; Stembridge, Mike; Willie, Chris K; Smith, Kurt J; Lewis, Nia C; Lucas, Samuel J E; Cotter, Jim D; Yeoman, David J; Thomas, Kate N; Day, Trevor A; Tymko, Mike M; Burgess, Keith R; Ainslie, Philip N

    2015-07-01

    The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA), HVR at SL may not predict PASP at HA. We hypothesized that resting oxygen saturation as measured by pulse oximetry (Spo₂) at HA would correlate better than HVR at SL with PASP at HA. In 20 participants at SL, we measured normobaric, isocapnic HVR (L/min · -%Spo₂⁻¹) and resting PASP using echocardiography. Both resting Spo₂ and PASP measures were repeated on day 2 (n = 10), days 4 to 8 (n = 12), and 2 to 3 weeks (n = 8) after arrival at 5,050 m. These data were also collected at 5,050 m in life-long HA residents (ie, Sherpa [n = 21]). Compared with SL, Spo₂ decreased from 98.6% to 80.5% (P HVR at SL was not related to Spo₂ or PASP at any time point at 5,050 m (all P > .05). Sherpa had lower PASP (P .50), there was a weak relationship in the Sherpa (R² = 0.16, P = .07). We conclude that neither HVR at SL nor resting Spo₂ at HA correlates with elevations in PASP at HA.