WorldWideScience

Sample records for high altitude diving

  1. High-altitude diving in river otters: coping with combined hypoxic stresses.

    Science.gov (United States)

    Crait, Jamie R; Prange, Henry D; Marshall, Noah A; Harlow, Henry J; Cotton, Clark J; Ben-David, Merav

    2012-01-15

    River otters (Lontra canadensis) are highly active, semi-aquatic mammals indigenous to a range of elevations and represent an appropriate model for assessing the physiological responses to diving at altitude. In this study, we performed blood gas analyses and compared blood chemistry of river otters from a high-elevation (2357 m) population at Yellowstone Lake with a sea-level population along the Pacific coast. Comparisons of oxygen dissociation curves (ODC) revealed no significant difference in hemoglobin-oxygen (Hb-O(2)) binding affinity between the two populations - potentially because of demands for tissue oxygenation. Instead, high-elevation otters had greater Hb concentrations (18.7 g dl(-1)) than sea-level otters (15.6 g dl(-1)). Yellowstone otters displayed higher levels of the vasodilator nitric oxide (NO), and half the concentration of the serum protein albumin, possibly to compensate for increased blood viscosity. Despite compensation in several hematological and serological parameters, theoretical aerobic dive limits (ADL) were similar between high-elevation and sea-level otters because of the lower availability of O(2) at altitude. Our results suggest that recent disruptions to the Yellowstone Lake food web could be detrimental to otters because at this high elevation, constraints on diving may limit their ability to switch to prey in a deep-water environment.

  2. High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins.

    Science.gov (United States)

    Meir, Jessica U; Ponganis, Paul J

    2009-10-01

    The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500 m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O2) transport and depletion while diving, we characterized the O2-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O2 depletion during diving, by applying the dissociation curve to previously collected partial pressure of O2 (PO2) profiles to estimate in vivo Hb saturation (SO2) changes during dives. This investigation revealed enhanced Hb-O2 affinity (P50=28 mmHg, pH 7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O2 at low blood PO2 levels during diving and more complete depletion of the respiratory O2 store. SO2 profiles during diving demonstrated that arterial SO2 levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous SO2 values were widely distributed and optimization of the venous blood O2 store resulted from arterialization and near complete depletion of venous blood O2 during longer dives. The estimated contribution of the blood O2 store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O2 from the lungs into the blood during diving, and variable rates of tissue O2 uptake.

  3. A forensic diving medicine examination of a highly publicised scuba diving fatality.

    Science.gov (United States)

    Edmonds, Carl

    2012-12-01

    A high-profile diving death occurred in 2003 at the site of the wreck of the SS Yongala off the Queensland coast. The victim's buddy, her husband, was accused of her murder and found guilty of manslaughter in an Australian court. A detailed analysis of all the evidence concerning this fatality suggests alternative medical reasons for her death. The value of decompression computers in determining the diving details and of CT scans in clarifying autopsy findings is demonstrated. The victim was medically, physically and psychologically unfit to undertake the fatal dive. She was inexperienced and inadequately supervised. She was over-weighted and exposed for the first time to difficult currents. The analysis of the dive demonstrates how important it is to consider the interaction of all factors and to not make deductions from individual items of information. It also highlights the importance of early liaison between expert divers, technicians, diving clinicians and pathologists, if inappropriate conclusions are to be avoided.

  4. Physiological and Genetic Adaptations to Diving in Sea Nomads

    DEFF Research Database (Denmark)

    Ilardo, Melissa A; Moltke, Ida; Korneliussen, Thorfinn S

    2018-01-01

    Understanding the physiology and genetics of human hypoxia tolerance has important medical implications, but this phenomenon has thus far only been investigated in high-altitude human populations. Another system, yet to be explored, is humans who engage in breath-hold diving. The indigenous Bajau...

  5. [Decompression problems in diving in mountain lakes].

    Science.gov (United States)

    Bühlmann, A A

    1989-08-01

    The relationship between tolerated high-pressure tissue nitrogen and ambient pressure is practically linear. The tolerated nitrogen high pressure decreases at altitude, as the ambient pressure is lower. Additionally, tissues with short nitrogen half-times have a higher tolerance than tissues which retain nitrogen for longer duration. For the purpose of determining safe decompression routines, the human body can be regarded as consisting of 16 compartments with half-times from 4 to 635 minutes for nitrogen. The coefficients for calculation of the tolerated nitrogen-high pressure in the tissues can be deduced directly from the half-times for nitrogen. We show as application the results of 573 simulated air dives in the pressure-chamber and 544 real dives in mountain lakes in Switzerland (1400-2600 m above sea level) and in Lake Titicaca (3800 m above sea level). They are in accordance with the computed limits of tolerance.

  6. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  7. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  8. High altitude illness

    Science.gov (United States)

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  9. Ketogenic diet for high partial pressure oxygen diving.

    Science.gov (United States)

    Valadao, Jason M; Vigilante, John A; DiGeorge, Nicholas W; O'Connor, Sunila E; Bear, Alexandria; Kenyon, Jeffrey; Annis, Heather; Dituri, Joseph; Dituri, Amy E; Whelan, Harry T

    2014-01-01

    A ketogenic diet (KD) may decrease central nervous system oxygen toxicity symptoms in divers, and in view of this implication a feasibility/ toxicity pilot study was performed to demonstrate tolerance of KD while performing normal diving profiles. The exact mechanism of neuroprotection from the KD remains unknown; however, evidence to support the efficacy of the KD in reducing seizures is present in epilepsy and oxygen toxicity studies, and may provide valuable insight in diving activities. Three divers (two males and one female ages 32-45 with a history of deep diving and high pO2 exposure) on the KD made dives to varying depths in Hawaii using fully closed-circuit MK-15 and Inspiration rebreathers. These rebreathers have an electronically controlled set point, allowing the divers to monitor and control the oxygen level in the breathing loop, which can be varied manually by the divers. Oxygen level was varied during descent, bottom depth and ascent (decompression). Divers fasted for 12-18 hours before diet initiation. The ketosis level was verified by urinating on a Ketostix (reagent strips for urinalysis). Ketosis was achieved and was easily monitored with Ketostix in the simulated operational environment. The KD did not interfere with the diving mission; no seizure activity or signs or symptoms of CNS toxicity were observed, and there were no adverse effects noted by the divers while on the KD.

  10. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  11. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  12. Diving behavior of the Atlantic walrus in high Arctic Greenland and Canada

    DEFF Research Database (Denmark)

    Garde, Eva; Jung-Madsen, Signe; Ditlevsen, Susanne

    2018-01-01

    Investigations of diving behavior of the Atlantic walrus (Odobenus rosmarus rosmarus) in the high Arctic Greenland and Canada are important for understanding behavioral adaptations and area utilization of this Arctic benthic feeder. Furthermore, such information along with estimations of annual......% CI: 1.0–2.6). Based on dive rates, time at depth, haul-out and percentage of feeding dives Alexandra Fjord and Princess Mary Bay in NE Canada and Carey Island in NW Greenland were identified as the most important areas for walrus feeding during summer. Walrus predation on the standing bivalve biomass...

  13. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  14. [Diving accidents. Emergency treatment of serious diving accidents].

    Science.gov (United States)

    Schröder, S; Lier, H; Wiese, S

    2004-11-01

    Decompression injuries are potentially life-threatening incidents mainly due to a rapid decline in ambient pressure. Decompression illness (DCI) results from the presence of gas bubbles in the blood and tissue. DCI may be classified as decompression sickness (DCS) generated from the liberation of gas bubbles following an oversaturation of tissues with inert gas and arterial gas embolism (AGE) mainly due to pulmonary barotrauma. People working under hyperbaric pressure, e.g. in a caisson for general construction under water, and scuba divers are exposed to certain risks. Diving accidents can be fatal and are often characterized by organ dysfunction, especially neurological deficits. They have become comparatively rare among professional divers and workers. However, since recreational scuba diving is gaining more and more popularity there is an increasing likelihood of severe diving accidents. Thus, emergency staff working close to areas with a high scuba diving activity, e.g. lakes or rivers, may be called more frequently to a scuba diving accident. The correct and professional emergency treatment on site, especially the immediate and continuous administration of normobaric oxygen, is decisive for the outcome of the accident victim. The definitive treatment includes rapid recompression with hyperbaric oxygen. The value of adjunctive medication, however, remains controversial.

  15. Breath-Hold Diving.

    Science.gov (United States)

    Fitz-Clarke, John R

    2018-03-25

    Breath-hold diving is practiced by recreational divers, seafood divers, military divers, and competitive athletes. It involves highly integrated physiology and extreme responses. This article reviews human breath-hold diving physiology beginning with an historical overview followed by a summary of foundational research and a survey of some contemporary issues. Immersion and cardiovascular adjustments promote a blood shift into the heart and chest vasculature. Autonomic responses include diving bradycardia, peripheral vasoconstriction, and splenic contraction, which help conserve oxygen. Competitive divers use a technique of lung hyperinflation that raises initial volume and airway pressure to facilitate longer apnea times and greater depths. Gas compression at depth leads to sequential alveolar collapse. Airway pressure decreases with depth and becomes negative relative to ambient due to limited chest compliance at low lung volumes, raising the risk of pulmonary injury called "squeeze," characterized by postdive coughing, wheezing, and hemoptysis. Hypoxia and hypercapnia influence the terminal breakpoint beyond which voluntary apnea cannot be sustained. Ascent blackout due to hypoxia is a danger during long breath-holds, and has become common amongst high-level competitors who can suppress their urge to breathe. Decompression sickness due to nitrogen accumulation causing bubble formation can occur after multiple repetitive dives, or after single deep dives during depth record attempts. Humans experience responses similar to those seen in diving mammals, but to a lesser degree. The deepest sled-assisted breath-hold dive was to 214 m. Factors that might determine ultimate human depth capabilities are discussed. © 2018 American Physiological Society. Compr Physiol 8:585-630, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  16. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea.

    Science.gov (United States)

    Hasler, Harald; Ott, Jörg A

    2008-10-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world's most dived (>30,000 dives y(-1)). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined by the point intercept sampling method in the reef crest zone (3m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance of corallivorous and herbivorous fish was evident. At heavily used dive sites, diver-related sedimentation rates significantly decreased with increasing distance from the entrance, indicating poor buoyancy regulation at the initial phase of the dive. The results show a high negative impact of current SCUBA diving intensities on coral communities and coral condition. Corallivorous and herbivorous fishes are apparently not yet affected, but are endangered if coral cover decline continues. Reducing the number of dives per year, ecologically sustainable dive plans for individual sites, and reinforcing the environmental education of both dive guides and recreational divers are essential to conserve the ecological and the aesthetic qualities of these dive sites.

  17. Acute high-altitude sickness

    Directory of Open Access Journals (Sweden)

    Andrew M. Luks

    2017-02-01

    Full Text Available At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases.

  18. Diagnostic criteria of high-altitude de-adaptation for high-altitude migrants returning to the plains: a multicenter, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Qi-quan ZHOU

    2012-02-01

    Full Text Available Objective  To investigate the diagnostic method of high-altitude de-adaptation and constitute the diagnostic criteria of high-altitude de-adaptation for people returning to the plains from high-altitude. Methods  Epidemiological survey and clinical multicenter randomized controlled studies were used to determine/perform blood picture, routine urine analysis, routine stool examination, myocardial enzymes, liver and kidney functions, nerve function, sex hormone, microalbuminuria, ECG, echocardiography, pulmonary function tests, and so on, in 3011 subjects after they returned to the plains from high-altitude. The diagnostic criteria of high-altitude de-adaptation were formulated by a comparative analysis of the obtained data with those of healthy subjects living in the same area, altitude, and age. The regularity and characteristics of high-altitude de-adaptation syndrome were found and diagnostic criteria for high-altitude de-adaptation was established based on the results. Results  The investigative results showed that the incidence of high-altitude de-adaptation syndrome was found in 84.36% of population returning to the plains from high-altitude. About 60% of them were considered to have mild reactions, 30% medium, and only 10% were severe. The lower the altitude they returned to, the longer the duration of stay in highland, and the heavier the labor they engaged in high altitude, the higher the incidence rate of high-altitude de-adaptation syndrome was. Patients with high-altitude de-adaptation syndrome exhibited hematological abnormality and abnormal ventricular function, especially the right ventricular diastolic function after returning for 1 year to 5 years. Long-term hypoxia exposure often caused obvious change in cardiac morphology with left and right ventricular hypertrophy, particularly the right ventricle. In addition, low blood pressure and low pulse pressure were found at times. Microalbuminuria was found in some high-altitude de

  19. Analysis of high-altitude de-acclimatization syndrome after exposure to high altitudes: a cluster-randomized controlled trial.

    Science.gov (United States)

    He, Binfeng; Wang, Jianchun; Qian, Guisheng; Hu, Mingdong; Qu, Xinming; Wei, Zhenghua; Li, Jin; Chen, Yan; Chen, Huaping; Zhou, Qiquan; Wang, Guansong

    2013-01-01

    The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥ 100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.

  20. Blood oxygen depletion is independent of dive function in a deep diving vertebrate, the northern elephant seal.

    Directory of Open Access Journals (Sweden)

    Jessica U Meir

    Full Text Available Although energetics is fundamental to animal ecology, traditional methods of determining metabolic rate are neither direct nor instantaneous. Recently, continuous blood oxygen (O2 measurements were used to assess energy expenditure in diving elephant seals (Mirounga angustirostris, demonstrating that an exceptional hypoxemic tolerance and exquisite management of blood O2 stores underlie the extraordinary diving capability of this consummate diver. As the detailed relationship of energy expenditure and dive behavior remains unknown, we integrated behavior, ecology, and physiology to characterize the costs of different types of dives of elephant seals. Elephant seal dive profiles were analyzed and O2 utilization was classified according to dive type (overall function of dive: transit, foraging, food processing/rest. This is the first account linking behavior at this level with in vivo blood O2 measurements in an animal freely diving at sea, allowing us to assess patterns of O2 utilization and energy expenditure between various behaviors and activities in an animal in the wild. In routine dives of elephant seals, the blood O2 store was significantly depleted to a similar range irrespective of dive function, suggesting that all dive types have equal costs in terms of blood O2 depletion. Here, we present the first physiological evidence that all dive types have similarly high blood O2 demands, supporting an energy balance strategy achieved by devoting one major task to a given dive, thereby separating dive functions into distinct dive types. This strategy may optimize O2 store utilization and recovery, consequently maximizing time underwater and allowing these animals to take full advantage of their underwater resources. This approach may be important to optimizing energy expenditure throughout a dive bout or at-sea foraging trip and is well suited to the lifestyle of an elephant seal, which spends > 90% of its time at sea submerged making diving its

  1. Shilajit: A panacea for high-altitude problems.

    Science.gov (United States)

    Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan

    2010-01-01

    High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.

  2. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.

  3. Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    Science.gov (United States)

    Hooker, S. K.; Fahlman, A.; Moore, M. J.; Aguilar de Soto, N.; Bernaldo de Quirós, Y.; Brubakk, A. O.; Costa, D. P.; Costidis, A. M.; Dennison, S.; Falke, K. J.; Fernandez, A.; Ferrigno, M.; Fitz-Clarke, J. R.; Garner, M. M.; Houser, D. S.; Jepson, P. D.; Ketten, D. R.; Kvadsheim, P. H.; Madsen, P. T.; Pollock, N. W.; Rotstein, D. S.; Rowles, T. K.; Simmons, S. E.; Van Bonn, W.; Weathersby, P. K.; Weise, M. J.; Williams, T. M.; Tyack, P. L.

    2012-01-01

    Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years. PMID:22189402

  4. High Altitude Launch for a Practical SSTO

    Science.gov (United States)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  5. CERN Scuba Diving Club

    CERN Multimedia

    Club Subaquatique du CERN

    2017-01-01

    Interested in scuba diving? Fancy a fun trial dive? Like every year, the CERN Scuba Diving Club is organizing two free trial dive sessions. Where? Varembé Swimming Pool, Avenue Giuseppe Motta 46, 1202 Genève When? 25th October and 1st November at 19:15 (one session per participant) Price? Trial dives are FREE! Swimming pool entrance 5,40 CHF. What to bring? Swimwear, towel, shower necessities and a padlock – diving equipment will be provided by the CSC. For more information and to subscribe, follow the link below: http://cern.ch/csc-baptemes-2017 Looking forward to meeting you!

  6. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  7. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  8. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    Andrew T. Taylor

    2011-01-01

    Full Text Available High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.

  9. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  10. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  11. The Impact of Altitude on Sleep-Disordered Breathing in Children Dwelling at High Altitude: A Crossover Study.

    Science.gov (United States)

    Hughes, Benjamin H; Brinton, John T; Ingram, David G; Halbower, Ann C

    2017-09-01

    Sleep-disordered breathing (SDB) is prevalent among children and is associated with adverse health outcomes. Worldwide, approximately 250 million individuals reside at altitudes higher than 2000 meters above sea level (masl). The effect of chronic high-altitude exposure on children with SDB is unknown. This study aims to determine the impact of altitude on sleep study outcomes in children with SDB dwelling at high altitude. A single-center crossover study was performed to compare results of high-altitude home polysomnography (H-PSG) with lower altitude laboratory polysomnography (L-PSG) in school-age children dwelling at high altitude with symptoms consistent with SDB. The primary outcome was apnea-hypopnea index (AHI), with secondary outcomes including obstructive AHI; central AHI; and measures of oxygenation, sleep quality, and pulse rate. Twelve participants were enrolled, with 10 included in the final analysis. Median altitude was 1644 masl on L-PSG and 2531 masl on H-PSG. Median AHI was 2.40 on L-PSG and 10.95 on H-PSG. Both obstructive and central respiratory events accounted for the difference in AHI. Oxygenation and sleep fragmentation were worse and pulse rate higher on H-PSG compared to L-PSG. These findings reveal a clinically substantial impact of altitude on respiratory, sleep, and cardiovascular outcomes in children with SDB who dwell at high altitude. Within this population, L-PSG underestimates obstructive sleep apnea and central sleep apnea compared to H-PSG. Given the shortage of high-altitude pediatric sleep laboratories, these results suggest a role for home sleep apnea testing for children residing at high altitude. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. Acute high-altitude illness | Hofmeyr | South African Medical Journal

    African Journals Online (AJOL)

    A substantial proportion of South Africa (SA)'s population lives at high altitude (>1 500 m), and many travel to very high altitudes (>3 500 m) for tourism, business, recreation or religious pilgrimages every year. Despite this, knowledge of acute altitude illnesses is poor among SA doctors. At altitude, the decreasing ambient ...

  13. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-12-01

    Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.

  14. Preacclimatization in hypoxic chambers for high altitude sojourns.

    Science.gov (United States)

    Küpper, Thomas E A H; Schöffl, Volker

    2010-09-01

    Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.

  15. The effect of pre-dive ingestion of dark chocolate on endothelial function after a scuba dive.

    Science.gov (United States)

    Theunissen, Sigrid; Balestra, Costantino; Boutros, Antoine; De Bels, David; Guerrero, François; Germonpré, Peter

    2015-03-01

    The aim of the study was to observe the effects of dark chocolate on endothelial function after scuba diving. Forty-two male scuba divers were divided into two groups: a control (n=21) and a chocolate group (n=21). They performed a 33-metres deep scuba-air dive for 20 minutes in a diving pool (Nemo 33, Brussels). Water temperature was 33⁰C. The chocolate group ingested 30 g of dark chocolate (86% cocoa) 90 minutes before the dive. Flow-mediated dilatation (FMD), digital photoplethysmography and nitric oxide (NO) and peroxynitrites (ONOO-) levels were measured before and after the scuba dive in both groups. A significant decrease in FMD was observed in the control group after the dive (91±7% (mean±95% confidence interval) of pre-dive values; Pchocolate group (105±5% of pre-dive values; Pchocolate group (154±73% of pre-dive values; P=0.04). A significant reduction in ONOO- was observed in the control group (84±12% of pre-dive values; P=0.003) whereas no variation was shown after the dive with chocolate intake (100±28% of pre-dive values; ns). Ingestion of 30 g of dark chocolate 90 minutes before scuba diving prevented post-dive endothelial dysfunction, as the antioxidants contained in dark chocolate probably scavenge free radicals.

  16. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  17. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  18. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  19. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    Science.gov (United States)

    2015-09-30

    highly variable. Venous oxygen content can actually increase during short duration dives. This suggests very little muscle blood flow and evven the use...the sea lion, the emperor penguin (Aptenodytes forsteri), another animal that dives on inspiration with a large respiratory O2 store, also can...in deep-diving emperor penguins (Wright et al. 2014), and in deep-diving bottlenose dolphins (Tursiops truncatus), which also dive on inspiration

  20. Comparative incidences of decompression illness in repetitive, staged, mixed-gas decompression diving: is 'dive fitness' an influencing factor?

    Science.gov (United States)

    Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D

    2008-06-01

    Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.

  1. Underwater laboratory: Teaching physics through diving practice

    International Nuclear Information System (INIS)

    Favale, F.

    2013-01-01

    Diving education and diving science and technology may be a useful tool in teaching physics in non–physics-oriented High School courses. In this paper we present an activity which combines some simple theoretical aspects of fluid statics, fluid dynamics and gas behavior under pressure with diving experience, where the swimming pool and the sea are used as a laboratory. This topic had previously been approached in a pure experimental way in school laboratory, but some particular experiments became much more attractive and meaningful to the students when they could use their bodies to perform them directly in water. The activity was carried out with groups of students from Italian High School classes in different situations.

  2. [Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].

    Science.gov (United States)

    Gonzales, Gustavo F

    2011-03-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.

  3. Pathology of high altitude pulmonary oedema

    International Nuclear Information System (INIS)

    Saleem, N.

    2014-01-01

    Objective: To describe autopsy findings in fatal cases of high altitude pulmonary oedema. Study Design: Descriptive study. Place and Duration of Study: The study was carried out between 1999 and 2002 at an army field medical unit in Baltistan, Armed Forces Institute of Pathology, Rawalpindi and Army Medical College, Rawalpindi, Pakistan. Patients and Methods:Autopsies were performed in 17 fatal cases of High Altitude Pulmonary Edema (HAPE) occurring among soldiers serving in Siachen. Results:All cases were males with a mean age of 26.8 years (19-35). The mean altitude at which HAPE occurred was 5192 meters (2895-6492), and the mean duration of stay at these altitudes was 15.3 days (1-30). Eleven individuals had undergone proper acclimatization. The commonest clinical findings were cough (70%), dyspnoea (53%), nausea (47%), headache (41%), vomiting (35%), chest pain (35%) and tightness in chest (24%). Cyanosis and frothy secretions in the nostrils and mouth were present in all but one case. Mean combined weight of lungs was 1470 grams (1070-1810). There was marked congestion of outer and cut surfaces. Interstitial oedema was present in all cases. RBCs and leukocyte infiltrates were seen in 13 and alveolar hyaline membranes in 9 cases. Thrombi were seen in 2 cases. Cerebral oedema was present in 9 cases. Conclusion:HAPE can occur after more than two weeks of stay at high altitudes despite proper acclimatization. Concomitant cerebral oedema is frequently present. Our autopsy findings are consistent with what has been reported previously. (author)

  4. Scuba Diving Safety

    Science.gov (United States)

    ... a no-decompression dive, even in a pressurized airplane. If your dive required decompression stops, don’t ... Alert Network Last Updated: May 1, 2017 This article was contributed by: familydoctor.org editorial staff Categories: ...

  5. Diving down the reefs? Intensive diving tourism threatens the reefs of the northern Red Sea

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Ott, Jörg A.

    2008-01-01

    Intensive recreational SCUBA diving threatens coral reef ecosystems. The reefs at Dahab, South Sinai, Egypt, are among the world’s most dived (>30,000dives y−1). We compared frequently dived sites to sites with no or little diving. Benthic communities and condition of corals were examined...... to intensive SCUBA diving showed a significantly higher number of broken and damaged corals and significantly lower coral cover. Reef crest coral communities were significantly more affected than those of the reef slope: 95% of the broken colonies were branching ones. No effect of diving on the abundance...... by the point intercept sampling method in the reef crest zone (3 m) and reef slope zone (12 m). Additionally, the abundance of corallivorous and herbivorous fish was estimated based on the visual census method. Sediments traps recorded the sedimentation rates caused by SCUBA divers. Zones subject...

  6. High altitude organic gold

    DEFF Research Database (Denmark)

    Pouliot, Mariève; Pyakurel, Dipesh; Smith-Hall, Carsten

    2018-01-01

    Ethnopharmacological relevance Ophiocordyceps sinensis (Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora, a high altitude Himalayan fungus-caterpillar product found in alpine meadows in China, Bhutan, Nepal, and India, has been used in the Traditional Chinese Medicine system for over 2000 years...

  7. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  8. Short- and long-term effects of diving on pulmonary function

    Directory of Open Access Journals (Sweden)

    Kay Tetzlaff

    2017-03-01

    Full Text Available The diving environment provides a challenge to the lung, including exposure to high ambient pressure, altered gas characteristics and cardiovascular effects on the pulmonary circulation. Several factors associated with diving affect pulmonary function acutely and can potentially cause prolonged effects that may accumulate gradually with repeated diving exposure. Evidence from experimental deep dives and longitudinal studies suggests long-term adverse effects of diving on the lungs in commercial deep divers, such as the development of small airways disease and accelerated loss of lung function. In addition, there is an accumulating body of evidence that diving with self-contained underwater breathing apparatus (scuba may not be associated with deleterious effects on pulmonary function. Although changes in pulmonary function after single scuba dives have been found to be associated with immersion, ambient cold temperatures and decompression stress, changes in lung function were small and suggest a low likelihood of clinical significance. Recent evidence points to no accelerated loss of lung function in military or recreational scuba divers over time. Thus, the impact of diving on pulmonary function largely depends on factors associated with the individual diving exposure. However, in susceptible subjects clinically relevant worsening of lung function may occur even after single shallow-water scuba dives.

  9. CAMEX-4 ER-2 HIGH ALTITUDE DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 High Altitude Dropsonde dataset was collected by the ER-2 High Altitude Dropsonde System (EHAD), which used dropwinsondes fitted with Global...

  10. Extracting Databases from Dark Data with DeepDive.

    Science.gov (United States)

    Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng

    2016-01-01

    DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.

  11. Recreational technical diving part 1: an introduction to technical diving methods and activities.

    Science.gov (United States)

    Mitchell, Simon J; Doolette, David J

    2013-06-01

    Technical divers use gases other than air and advanced equipment configurations to conduct dives that are deeper and/or longer than typical recreational air dives. The use of oxygen-nitrogen (nitrox) mixes with oxygen fractions higher than air results in longer no-decompression limits for shallow diving, and faster decompression from deeper dives. For depths beyond the air-diving range, technical divers mix helium, a light non-narcotic gas, with nitrogen and oxygen to produce 'trimix'. These blends are tailored to the depth of intended use with a fraction of oxygen calculated to produce an inspired oxygen partial pressure unlikely to cause cerebral oxygen toxicity and a nitrogen fraction calculated to produce a tolerable degree of nitrogen narcosis. A typical deep technical dive will involve the use of trimix at the target depth with changes to gases containing more oxygen and less inert gas during the decompression. Open-circuit scuba may be used to carry and utilise such gases, but this is very wasteful of expensive helium. There is increasing use of closed-circuit 'rebreather' devices. These recycle expired gas and potentially limit gas consumption to a small amount of inert gas to maintain the volume of the breathing circuit during descent and the amount of oxygen metabolised by the diver. This paper reviews the basic approach to planning and execution of dives using these methods to better inform physicians of the physical demands and risks.

  12. The marine mammal dive response is exercise modulated to maximize aerobic dive duration.

    Science.gov (United States)

    Davis, Randall W; Williams, Terrie M

    2012-08-01

    When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.

  13. Effects of altitude and exercise on pulmonary capillary integrity: evidence for subclinical high-altitude pulmonary edema.

    Science.gov (United States)

    Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F

    2006-03-01

    Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.

  14. Accident rates at a busy diving centre.

    Science.gov (United States)

    Davis, Michael; Malcolm, Kate

    2008-06-01

    Dear Editor, The Poor Knights Islands in Northland, New Zealand, is a world-famous, temperate-water, diving tourism destination, popularised many years ago by Jacques Cousteau. By far the largest dive operator there is Dive! Tutukaka, with five vessels carrying up to 30 divers, operating on a regular basis throughout the year. Dive! Tutukaka is required to keep a detailed, daily vessel manifest. Thus, the number of divers is known accurately and all incidents are recorded by the Skipper or the Chief Divemaster on board. Although all dives are logged (time in, time out and maximum depth for every diver) and kept permanently, these data were not utilised for this brief report. Each customer does two dives on a trip and there are between one and four divemasters on board who may do one, two or more dives a day (van der Hulst G, unpublished observations). Thus the accident rate per diver is known, and it is assumed that the rate per dive is very close to half this figure. In addition, under health and safety regulations all non-diving injuries both on shore and on board are documented, but these will include some non-divers. For the three financial years between July 2005 and 14 June 2008, 32,302 customers dived with Dive! Tutukaka, approximately 63,000 dives (a small minority did only one dive). Over the same period, there were an estimated 7,600 dives conducted by the divemasters. The injuries documented during this time are shown in Table 1. There were seven cases of decompression illness (DCI), a rate of about 1 per 10,000 divers (0.5 per 10,000 dives). Two of the seven DCI cases involved serious neurological injury. There was one further possible case of DCI who did not seek medical advice. If this diver is included then the rate is 1.14 per 10,000 divers. More minor diving injuries and incidents occurred at a rate of approximately 2 per 10,000 divers. Non-diving injuries occurred rarely, the most common being various musculo-skeletal injuries to staff, requiring

  15. Effect of oxygen supplementation in a hatchery at high altitude and ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of oxygen supplementation on broiler eggs in a hatchery at high altitude on the growth performance and ascites syndrome of broilers reared at low altitude. The treatment groups were low altitude with no oxygen supplemented in the hatchery (LA-NOX); high altitude with ...

  16. Chernobyl radioactivity and high altitude air-particulate monitoring at Islamabad

    International Nuclear Information System (INIS)

    Bhatti, M.S.; Ihsanullah; Shafiq, M.; Perveen, N.; Orfi, S.D.

    1987-11-01

    High altitude sampling of air particulates for radioactivity monitoring was conducted at Islamabad after the CHERNOBYL accident. Smears from aeroplanes flying at varying altitudes were collected and analysed for fresh fission products mainly gamma emitters e.g. Ru-103 and Cs-137 etc. The maximum radioactivity observed was of the order of 15Bq/sample for Ru-103 and 9Bq/sample for Cs-137 respectively. The study was purely qualitative in nature indicated the presence of fresh fission radioactivity at high altitudes over Islamabad. For quantitative measurements at high altitudes sophisticated instrumentation/procedure needs to be adopted. (author)

  17. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus.

    Directory of Open Access Journals (Sweden)

    Benjamin Ponitz

    Full Text Available This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

  18. Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation

    OpenAIRE

    Gonzales, Gustavo F.; Jefe de la Unidad de Reproducción, Instituto de Investigaciones de la Altura y Jefe del Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Doctor en Medicina y Doctor en Ciencias. Especialista en Endocrinología.

    2011-01-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulti...

  19. Can people with Raynaud's phenomenon travel to high altitude?

    Science.gov (United States)

    Luks, Andrew M; Grissom, Colin K; Jean, Dominique; Swenson, Erik R

    2009-01-01

    To determine whether high altitude travel adversely affects mountain enthusiasts with Raynaud's phenomenon. Volunteers with Raynaud's phenomenon were recruited using announcements disseminated by organizations dedicated to climbing or wilderness travel and Internet discussion boards dedicated to mountain activities to complete an online, anonymous survey. Survey questions addressed demographic variables, aspects of their Raynaud's phenomenon, and features of their mountain activities. Respondents compared experiences with Raynaud's phenomenon between high (>2440 m; 8000 feet) and low elevations and rated agreement with statements concerning their disease and the effects of high altitude. One hundred forty-two people, 98% of whom had primary Raynaud's phenomenon, completed the questionnaire. Respondents spent 5 to 7 days per month at elevations above 2440 m and engaged in 5.4 +/- 2.0 different activities. Eighty-nine percent of respondents engaged in winter sports and only 22% reported changing their mountain activities because of Raynaud's phenomenon. Respondents reported a variety of tactics to prevent and treat Raynaud's attacks, but only 12% used prophylactic medications. Fifteen percent of respondents reported an episode of frostbite following a Raynaud's phenomenon attack at high altitude. There was considerable heterogeneity in participants' perceptions of the frequency, duration, and severity of attacks at high altitude compared to their home elevation. Motivated individuals with primary Raynaud's phenomenon, employing various prevention and treatment strategies, can engage in different activities, including winter sports, at altitudes above 2440 m. Frostbite may be common in this population at high altitude, and care must be taken to prevent its occurrence.

  20. Analytical approximations of diving-wave imaging in constant-gradient medium

    KAUST Repository

    Stovas, Alexey

    2014-06-24

    Full-waveform inversion (FWI) in practical applications is currently used to invert the direct arrivals (diving waves, no reflections) using relatively long offsets. This is driven mainly by the high nonlinearity introduced to the inversion problem when reflection data are included, which in some cases require extremely low frequency for convergence. However, analytical insights into diving waves have lagged behind this sudden interest. We use analytical formulas that describe the diving wave’s behavior and traveltime in a constant-gradient medium to develop insights into the traveltime moveout of diving waves and the image (model) point dispersal (residual) when the wrong velocity is used. The explicit formulations that describe these phenomena reveal the high dependence of diving-wave imaging on the gradient and the initial velocity. The analytical image point residual equation can be further used to scan for the best-fit linear velocity model, which is now becoming a common sight as an initial velocity model for FWI. We determined the accuracy and versatility of these analytical formulas through numerical tests.

  1. Ocular morbidity among porters at high altitudes.

    Science.gov (United States)

    Gnyawali, Subodh; Shrestha, Gauri Shankar; Khanal, Safal; Dennis, Talisa; Spencer, John C

    2017-01-01

    High altitude, often characterized by settings over 2400m, can be detrimental to the human body and pose a significant risk to ocular health. Reports concerning various ocular morbidities occurring as a consequence of high altitude are limited in the current literature. This study was aimed at evaluating the ocular health of porters working at high altitudesof Himalayas in Nepal. A mobile eye clinic was set up in Ghat and patient data were collected from its out- patient unit by a team of seven optometrists which was run for five days. Ghat is a small village in north-eastern Nepal, located at 2860 m altitude. Travellers walking through the trekking route were invited to get their eyes checked at the clinic. Comprehensive ocular examinations were performed, including visual acuities, objective and subjective refraction, anterior and posterior segment evaluations, and intraocular pressure measurements; blood pressure and blood glucose levels were also measured as required. Ocular therapeutics, prescription glasses, sunglasses and ocular health referrals were provided free of cost as necessary. A total of 1890 people visited the eye clinic, among which 57.4% (n=1084) were porters. Almost half of the porters had an ocular morbidity. Correctable refractive error was most prevalent, with other ocular health-related complications, including dry eye disease, infectious disorders, glaucoma and cataract. Proper provision of regular and effective eye care services should be made more available for those residing at these high altitudes in Nepal. © NEPjOPH.

  2. Shape memory alloy resistance behaviour at high altitude for feedback control

    Science.gov (United States)

    Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.

    2017-12-01

    Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.

  3. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.

    Science.gov (United States)

    Storz, Jay F; Scott, Graham R; Cheviron, Zachary A

    2010-12-15

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.

  4. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    International Nuclear Information System (INIS)

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  5. Research progress on high altitude retinopathy and application of Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Hai-Xiang Huang

    2014-11-01

    Full Text Available High altitude retinopathy(HARrefers to the body which can't adapt to the hypobaric hypoxia environment at high altitude leading to retinal diseases, which typically manifested as retinal hemorrhages, optic disc edema and cotton wool spots. With the development of high altitude medicine, HAR become a hot topic of eye research in recent years. New researches show a significantly higher incidence of HAR, and HAR has a close contact with acute mountain sickness, high altitude cerebral edema and high altitude pulmonary edema. A further study in pathogenesis and prevention measures of HAR will promote the prevention of altitude sickness. Traditional Chinese Medicine has achieved good effects in the prevention of altitude sickness, but the effect and mechanism of herbs on HAR has not been reported. Through read and summarize the relevant literatures and reports, the author will give an overview of the research advances on HAR's pathogenesis and application of Traditional Chinese Medicine.

  6. Scuba diving accidents.

    Science.gov (United States)

    Dembert, M L

    1977-08-01

    The principal scuba diving medical problems of barotrauma, air embolism and decompression sickness have as their pathophysiologic basis the Ideal Gas Law and Boyle's Law. Hyperbaric chamber recompression therapy is the only definitive treatment of air embolism and decompression sickness. However, with a basic knowledge of diving medicine, the family physician can provide effective supportive care to the patient prior to initiation of hyperbaric therapy.

  7. Exploring the Limits of High Altitude GPS for Future Lunar Missions

    Science.gov (United States)

    Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael

    2018-01-01

    An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.

  8. AltitudeOmics: Resetting of cerebrovascular CO2 reactivity following acclimatization to high altitude

    Directory of Open Access Journals (Sweden)

    Jui-Lin eFan

    2016-01-01

    Full Text Available Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv responses to modified rebreathing at sea level (SL, upon ascent (ALT1 and following 16 days of acclimatization (ALT16 to 5,260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95% vs. 129%, SL vs. ALT1, 95% confidence intervals (CI [77, 112], [111, 145], respectively, P=0.024 and the slope of the sigmoid response (4.5 vs. 7.5 %/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P=0.026 to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177%, 95% CI [139, 215], P<0.001; slope: 10.3 %/mmHg, 95% CI [8.2, 12.5], P=0.003 compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P=0.982, while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P=0.001 vs. SL, indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2 following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.

  9. Radiation exposure and high-altitude flight. NCRP Commentary No. 12

    International Nuclear Information System (INIS)

    1995-01-01

    Enhanced air crew and public radiation exposure while flying at current altitudes and speeds has not been adequately addressed. However, the commercial aircraft industry continues to expand with greater numbers of passengers and more air crews year by year. With the expected expansions in high-altitude flight in the next two decades there will be many more people exposed to higher levels of ionizing radiation than currently. The equivalent dose rates at the higher altitudes are of the order of two to three times those received at current aircraft altitudes, but are not known very well, partly because of limitations in the knowledge of the component radiations, especially the high-energy neutron component. The risks are also more uncertain than for low-LET exposures on the ground because of uncertainty in an average W R to use for high-LET radiations. Exposures of current air crew are presently comparable with the average exposures of other radiation workers on the ground (EPA, 1995). Substantially higher exposures must be expected at high altitudes to air crew (perhaps approaching or possibly exceeding the current limit for workers on the ground). Higher exposures to sensitive groups of the population such as the fetuses carried by pregnant women are of special concern. Therefore, steps must be taken to improve our knowledge base with respect to dose levels and risks at these high altitudes. Following acquisition of this knowledge, modifications in radiation protection practices with respect to air crew and passengers will need to be considered and recommended to assure that adequate radiation protection is provided with respect to high-altitude flight

  10. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.

  11. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  12. Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes

    Science.gov (United States)

    Ader, Marilyn; Bergman, Richard N.

    2015-01-01

    Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133

  13. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  14. Hemorrhages and hemostasis in guinea-pigs exposed to irradiation at high altitude

    International Nuclear Information System (INIS)

    Tartakovskij, V.N.; Daniyarov, S.B.

    1988-01-01

    Hemorrhagic intensity, hemostasis and blood vessel wall resistance to mechanical effects were studied in guinea-pigs exposed to whole-body irradiation (3.0 Gy). The animals were irradiated at low altitude (760 m above sea level) and at high altitude (3200 m above sea level) after 1 and 31 days of adaptation. It was demonstrated that hemorrhagic intensity in both groups of guinea-pigs irradiated at high altitude was significantly reduced in comparison with that at low altitude. The decrease of radiation-induced hemorrhages at high altitude is associated with less severe changes in thrombopoiesis, blood vessel wall and blood coagulation

  15. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.

    Science.gov (United States)

    Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C

    2017-01-01

    Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).

  16. High altitude medicine education in China: exploring a new medical education reform.

    Science.gov (United States)

    Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi

    2012-03-01

    China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education.

  17. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  18. Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.

    Science.gov (United States)

    Keyes, Linda E; Hackett, Peter H; Luks, Andrew M

    2016-06-01

    To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. HIGH ALTITUDES EFFECTS ON HEMATOLOGIC BLOOD PARAMETERS

    Directory of Open Access Journals (Sweden)

    Hasim Rushiti

    2015-05-01

    Full Text Available The approach and the objective of this experiment are consistent with the determination of changes of blood parameters after the stay of the students at an altitude of 1800-2300 meters, for a ten-day long ski course. In this paper are included a total of 64 students of the Faculty of Sport Sciences in Prishtina, of the age group of 19-25 (the average age is 21. All students previously have undergone a medical check for TA, arterial pulse and respiratory rate. In particular, the health situation is of subjects was examined, then, all students, at the same time, gave blood for analysis. In this experiment, three main hematologic parameters were taken in consideration: such as hemoglobin, hematocrit and red blood cells. The same analyses were carried out after the 10-day stay at a high altitude. The results of the experiment have shown significant changes after the ten-day stay at high altitude, despite the previous results that show changes only after the twenty-day stay in such elevations.

  20. [Physiological aspects of altitude training and the use of altitude simulators].

    Science.gov (United States)

    Ranković, Goran; Radovanović, Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatisation, which improves oxygen transport and/or utilisation, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training through hypoxia), and live high and train low (the new trend). In an effort to reduce the financial and logistical challenges of travelling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters). Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarised.

  1. Physiological aspects of altitude training and the use of altitude simulators

    Directory of Open Access Journals (Sweden)

    Ranković Goran

    2005-01-01

    Full Text Available Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training, live low and train high (training through hypoxia, and live high and train low (the new trend. In an effort to reduce the financial and logistical challenges of traveling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters. Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarized.

  2. Low-resolution ship detection from high-altitude aerial images

    Science.gov (United States)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  3. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  4. Persistent (patent) foramen ovale (PFO): implications for safe diving.

    Science.gov (United States)

    Germonpré, Peter

    2015-06-01

    order to reduce the incidence of VGE. It has been convincingly shown that conservative dive profiles reduce DCI incidence even in divers with large PFOs, just as PFO closure does not protect completely from DCI if the dive profiles are aggressive. Prospective studies should not only focus on the reduction of DCI incidence after closure, but should take into account the costs and side effects of the procedure, as has been done in the cardiology and neurology studies. Imagine lung transplants becoming a routine operation, costly but with a high success rate; imagine also a longterm smoker suffering from a mild form of obstructive lung disease and exercise-limiting dyspnoea. Which of two options would you recommend: having a lung transplant and continue smoking as before, or quit smoking and observe a progressive improvement of pulmonary and cardiac pathology? As opposed to patients with thrombotic disease and migraine, divers can choose to reduce DCI risk. In fact, all it takes is acceptance that some types of diving carry too high a health risk - whether it is because of a PFO or another 'natural' factor. It would be unethical to promote PFO closure in divers solely on the basis of its efficacy of shunt reduction. Unfortunately, at least one device manufacturer has already done so in the past, citing various publications to specifically target recreational divers. Some technical diving organizations even have recommended preventive PFO closure in order to undertaking high-risk dive training. As scientists, we must not allow ourselves to be drawn into intuitive diver fears and beliefs. Nor should we let ourselves be blinded by the ease and seemingly low risk of the procedure. With proper and objective information provided by their diving medicine specialist, divers could make an informed decision, rather than focus on the simplistic idea that they need 'to get it fixed' in order to continue diving. A significant relationship between PFO and cerebral damage, in the absence

  5. 29 CFR 1910.410 - Qualifications of dive team.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Qualifications of dive team. 1910.410 Section 1910.410... Requirements § 1910.410 Qualifications of dive team. (a) General. (1) Each dive team member shall have the experience or training necessary to perform assigned tasks in a safe and healthful manner. (2) Each dive team...

  6. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  7. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  8. Functional properties of myoglobins from five whale species with different diving capacities.

    Science.gov (United States)

    Helbo, Signe; Fago, Angela

    2012-10-01

    Whales show an exceptionally wide range of diving capabilities and many express high amounts of the O(2) carrier protein myoglobin (Mb) in their muscle tissues, which increases their aerobic diving capacity. Although previous studies have mainly focused on the muscle Mb concentration and O(2) carrying capacity as markers of diving behavior in whales, it still remains unexplored whether whale Mbs differ in their O(2) affinities and nitrite reductase and peroxidase enzymatic activities, all functions that could contribute to differences in diving capacities. In this study, we have measured the functional properties of purified Mbs from five toothed whales and two baleen whales and have examined their correlation with average dive duration. Results showed that some variation in functional properties exists among whale Mbs, with toothed whale Mbs having higher O(2) affinities and nitrite reductase activities (similar to those of horse Mb) compared with baleen whale Mbs. However, these differences did not correlate with average dive duration. Instead, a significant correlation was found between whale Mb concentration and average duration and depth of dives, and between O(2) affinity and nitrite reductase activity when including horse Mb. Despite the fact that the functional properties showed little species-specific differences in vitro, they may still contribute to enhancing diving capacity as a result of the increased muscle Mb concentration found in extreme divers. In conclusion, Mb concentration rather than specific functional reactivities may support whale diving performance.

  9. Optimal diving under the risk of predation.

    Science.gov (United States)

    Heithaus, Michael R; Frid, Alejandro

    2003-07-07

    Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.

  10. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  11. High-altitude haematology: Quechua-Aymara comparisons.

    Science.gov (United States)

    Arnaud, J; Quilici, J C; Rivière, G

    1981-01-01

    Haematological studies have been carried out at various altitudes between 450 m and 4800 m, on two separate human groups (Quechuas and Aymaras) living in South America. Changes in the haematological parameters do not develop linearly in relation to the attitude. Th impact of chronic hypoxia on erythropoiesis is greater above 3000 m. The haemogram varies quantitatively and not qualitatively (mean corpuscular volume and mean haemoglobin concentration remain constant). The haematological study also reveals the greater adaptability to high altitude of the Aymaras, an adaptability characterized by an increase in red cell count and concentration and a decrease in red cell volume. The adaptative phenomena observed in the Quechuas are reversible, whereas they persist in the Aymaras when they migrate to the lowlands (450 m).

  12. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  13. Surfacers change their dive tactics depending on the aim of the dive: evidence from simultaneous measurements of breaths and energy expenditure

    Science.gov (United States)

    Okuyama, Junichi; Tabata, Runa; Nakajima, Kana; Arai, Nobuaki; Kobayashi, Masato; Kagawa, Shiro

    2014-01-01

    Air-breathing divers are assumed to have evolved to apportion their time between surface and underwater periods to maximize the benefit gained from diving activities. However, whether they change their time allocation depending on the aim of the dive is still unknown. This may be particularly crucial for ‘surfacers’ because they dive for various purposes in addition to foraging. In this study, we counted breath events at the surface and estimated oxygen consumption during resting, foraging and other dives in 11 green turtles (Chelonia mydas) in the wild. Breath events were counted by a head-mounted acceleration logger or direct observation based on an animal-borne video logger, and oxygen consumption was estimated by measuring overall dynamic body acceleration. Our results indicate that green turtles maximized their submerged time, following this with five to seven breaths to replenish oxygen for resting dives. However, they changed their dive tactic during foraging and other dives; they surfaced without depleting their estimated stores of oxygen, followed by only a few breaths for effective foraging and locomotion. These dichotomous surfacing tactics would be the result of behavioural modifications by turtles depending on the aim of each dive. PMID:25297856

  14. Risk Stratification for Athletes and Adventurers in High-Altitude Environments: Recommendations for Preparticipation Evaluation.

    Science.gov (United States)

    Campbell, Aaron D; McIntosh, Scott E; Nyberg, Andy; Powell, Amy P; Schoene, Robert B; Hackett, Peter

    2015-12-01

    High-altitude athletes and adventurers face a number of environmental and medical risks. Clinicians often advise participants or guiding agencies before or during these experiences. Preparticipation evaluation (PPE) has the potential to reduce risk of high-altitude illnesses in athletes and adventurers. Specific conditions susceptible to high-altitude exacerbation also important to evaluate include cardiovascular and lung diseases. Recommendations by which to counsel individuals before participation in altitude sports and adventures are few and of limited focus. We reviewed the literature, collected expert opinion, and augmented principles of a traditional sport PPE to accommodate the high-altitude wilderness athlete/adventurer. We present our findings with specific recommendations on risk stratification during a PPE for the high-altitude athlete/adventurer. Copyright © 2015. Published by Elsevier Inc.

  15. Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.

    Science.gov (United States)

    Butaric, Lauren N; Klocke, Ross P

    2018-05-01

    High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018

  16. Mast cells in the human lung at high altitude

    Science.gov (United States)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  17. Risso's dolphins plan foraging dives.

    Science.gov (United States)

    Arranz, Patricia; Benoit-Bird, Kelly J; Southall, Brandon L; Calambokidis, John; Friedlaender, Ari S; Tyack, Peter L

    2018-02-28

    Humans remember the past and use that information to plan future actions. Lab experiments that test memory for the location of food show that animals have a similar capability to act in anticipation of future needs, but less work has been done on animals foraging in the wild. We hypothesized that planning abilities are critical and common in breath-hold divers who adjust each dive to forage on prey varying in quality, location and predictability within constraints of limited oxygen availability. We equipped Risso's dolphins with sound-and-motion recording tags to reveal where they focus their attention through their externally observable echolocation and how they fine tune search strategies in response to expected and observed prey distribution. The information from the dolphins was integrated with synoptic prey data obtained from echosounders on an underwater vehicle. At the start of the dives, whales adjusted their echolocation inspection ranges in ways that suggest planning to forage at a particular depth. Once entering a productive prey layer, dolphins reduced their search range comparable to the scale of patches within the layer, suggesting that they were using echolocation to select prey within the patch. On ascent, their search range increased, indicating that they decided to stop foraging within that layer and started searching for prey in shallower layers. Information about prey, learned throughout the dive, was used to plan foraging in the next dive. Our results demonstrate that planning for future dives is modulated by spatial memory derived from multi-modal prey sampling (echoic, visual and capture) during earlier dives. © 2018. Published by The Company of Biologists Ltd.

  18. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  19. Circulatory adaptation to long-term high altitude exposure in Aymaras and Caucasians.

    Science.gov (United States)

    Stuber, Thomas; Scherrer, Urs

    2010-01-01

    About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

  20. Cerebral venous system and anatomical predisposition to high-altitude headache

    NARCIS (Netherlands)

    Wilson, Mark H.; Davagnanam, Indran; Holland, Graeme; Dattani, Raj S.; Tamm, Alexander; Hirani, Shashivadan P.; Kolfschoten, Nicky; Strycharczuk, Lisa; Green, Cathy; Thornton, John S.; Wright, Alex; Edsell, Mark; Kitchen, Neil D.; Sharp, David J.; Ham, Timothy E.; Murray, Andrew; Holloway, Cameron J.; Clarke, Kieran; Grocott, Mike P. W.; Montgomery, Hugh; Imray, Chris; Ahuja, V.; Aref-Adib, G.; Burnham, R.; Chisholm, A.; Clarke, K.; Coates, D.; Coates, M.; Cook, D.; Cox, M.; Dhillon, S.; Dougall, C.; Doyle, P.; Duncan, P.; Edsell, M.; Edwards, L.; Evans, L.; Gardiner, P.; Grocott, M.; Gunning, P.; Hart, N.; Harrington, J.; Harvey, J.; Holloway, C.; Howard, D.; Hurlbut, D.; Imray, C.; Ince, C.; Jonas, M.; van der Kaaij, J.

    2013-01-01

    As inspired oxygen availability falls with ascent to altitude, some individuals develop high-altitude headache (HAH). We postulated that HAH results when hypoxia-associated increases in cerebral blood flow occur in the context of restricted venous drainage, and is worsened when cerebral compliance

  1. Training-dependent cognitive advantage is suppressed at high altitude.

    Science.gov (United States)

    Li, Peng; Zhang, Gang; You, Hai-Yan; Zheng, Ran; Gao, Yu-Qi

    2012-06-25

    Ascent to high altitude is associated with decreases in cognitive function and work performance as a result of hypoxia. Some workers with special jobs typically undergo intensive mental training because they are expected to be agile, stable and error-free in their job performance. The purpose of this study was to determine the risk to cognitive function acquired from training following hypoxic exposure. The results of WHO neurobehavioral core tests battery (WHO-NCTB) and Raven's standard progressive matrices (RSPM) tests of a group of 54 highly trained military operators were compared with those of 51 non-trained ordinary people and were investigated at sea level and on the fifth day after arrival at high altitudes (3900m). Meanwhile, the plasma levels of brain-derived neurotrophic factor (BDNF), interleukin 1β (IL-1β) and vascular endothelial growth factor (VEGF) were examined. The result showed that at sea level, the trained group exhibited significantly better performance on neurobehavioral and RSPM tests. At high altitude, both groups had decreased accuracy in most cognitive tests and took longer to finish them. More importantly, the highly trained subjects showed more substantial declines than the non-trained subjects in visual reaction accuracy, auditory reaction speed, digit symbol scores, ability to report correct dots in a pursuit aiming test and total RSPM scores. This means that the training-dependent cognitive advantages in these areas were suppressed at high altitudes. The above phenomenon maybe associated with decreased BDNF and elevated inflammatory factor during hypoxia, and other mechanisms could not be excluded. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...... the mean weight-specific respiratory rate of macroinvertebrates declined by only 50%, from 400 to 3800 m. We suggest that this disproportionately large gap between availability and demand of oxygen at high altitudes may imply a potential oxygen deficiency for the fauna, and we discuss how oxygen deficiency...

  3. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    Science.gov (United States)

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  4. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  5. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. EFFECT OF HIGH ALTITUDE ON ERECTILE FUNCTION IN OTHERWISE HEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Usama Bin Zubair

    2016-06-01

    Full Text Available Objective: To determine the effect of high altitude on Erectile function in otherwise healthy individuals and associated socio demographic factors. Study Design: Cross sectional descriptive study. Place and Duration of Study: January 2014 to March 2014 at Goma, Siachin. Material and Methods: One hundred & twenty two married male subjects living at an altitude of more than 15000 feet for more than 3 month and less than one year were included in the study. Erectile dysfunction (ED was assessed using International Index of Erectile Function-5 (IIEF-5. Age, education, smoking, monthly income, any drug intake, altitude, duration of stay and weather conditions were correlated independently with ED. Results: Out of 122, 26 (21.3% had no ED, 18 had mild, 28 (14.8% had mild to moderate, 36(29.5% had moderate and 14 (11.5% had severe ED. Advancing age, low monthly income, smoking, high altitude, cold weather and longer duration of stay had significant association with ED (p-value<0.05 while education and use of any drug were not found significantly associated in our study. Conclusion: This study showed a high prevalence of erectile dysfunction among otherwise healthy individuals when exposed to high altitude. Special attention should be paid on individuals with more age, less income and those working or residing at higher altitudes in peak winter season. Smoking and stay for longer durations should also be discouraged.

  7. Impacts of Artificial Reefs and Diving Tourism

    Directory of Open Access Journals (Sweden)

    Sandra Jakšić

    2013-10-01

    Full Text Available Coral reefs are currently endangered throughout the world. One of the main activities responsible for this is scuba-diving. Scuba-diving on coral reefs was not problematic in the begging, but due to popularization of the new sport, more and more tourists desired to participate in the activity. Mass tourism, direct contact of the tourists with the coral reefs and unprofessional behavior underwater has a negative effect on the coral reefs. The conflict between nature preservation and economy benefits related to scuba-diving tourism resulted in the creation of artificial reefs, used both to promote marine life and as tourists attractions, thereby taking the pressure off the natural coral reefs. Ships, vehicles and other large structures can be found on the coastal sea floor in North America, Australia, Japan and Europe. The concept of artificial reefs as a scuba-diving attraction was developed in Florida. The main goal was to promote aquaculture, with the popularization of scuba-diving attractions being a secondary effect. The aim of this paper is to determine the effects of artificial reefs on scuba-diving tourism, while taking into account the questionnaire carried out among 18 divers

  8. Physiological aspects of altitude training and the use of altitude simulators

    OpenAIRE

    Ranković Goran; Radovanović Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training thr...

  9. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  10. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...

  11. Design study for remotely piloted, high-altitude airplanes powered by microwave energy

    Science.gov (United States)

    Morris, C. E. K., Jr.

    1983-01-01

    A design study has been conducted for unmanned, microwave-powered airplanes that must fly with long endurance at high altitude. They are proposed to conduct communications-relay, observation, or various scientific missions above approximately 55,000 feet altitude. The special characteristics of the microwave-power system and high-altitude, low-speed vehicle are reviewed. Examples of both sizing and performance analysis are used to suggest design procedure guidelines.

  12. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  13. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  14. Kajian Teknologi High Altitude Platform (HAP [Study of High Altitude Platform (HAP Technology

    Directory of Open Access Journals (Sweden)

    Amry Daulat Gultom

    2016-07-01

    Full Text Available High Altitude Platform (HAP merupakan solusi alternatif untuk mengatasi keterbatasan infrastruktur terestrial maupun satelit. HAP merupakan pesawat ataupun balon udara yang ditempatkan pada ketinggian 20-50 km di atas permukaan bumi. Kelebihan yang utama dari HAP adalah kemudahan dalam penempatan, fleksibilitas, biaya operasionalnya rendah, delay  propagasi rendah, sudut elevasi lebar, cakupan yang luas. Penelitian ini dilakukan untuk mengetahui potensi HAP untuk komunikasi pita lebar dan perkembangannya di Indonesia. Analisis dilakukan secara deskriptif dengan mengolah data literatur yang didapat. Hasil penelitian menunjukkan bahwa di Indonesia terdapat potensi teknologi HAP untuk komunikasi pita lebar dengan lebar pita 2x300 MHz di band 27,9-28,2 GHz dan 31-31,3 GHz. Namun, belum ada peraturan yang mengatur alokasi frekuensi untuk HAP secara khusus di Indonesia.*****High Altitude Platform (HAP has been developed as an alternative solution in order to overcome limitation of terrestrial and satellite communication system. HAP is an aircraft or balloon situated on 20-50 km above the earth. Main advantages of HAP are flexibility in deployment, low propagation delay, wide elevation angle and broad coverage. The research is conducted to gather HAP potential for broadband communication and its development in Indonesia. Analysis is conducted by descriptive analysis from literature study gather. The research result shows that in Indonesia, there is potential of HAP technology for broadband communication with 2x300 MHz bandwidth within 27,9-28,2 GHz and 31-31,3 GHz. Yet, there are no specific regulations managing frequency allocation for HAP in Indonesia.

  15. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  16. Civilian Training in High-Altitude Flight Physiology

    Science.gov (United States)

    1991-08-01

    A survey was conducted to determine if training in high-altitude physiology should : be required for civilian pilots; what the current status of such training was; and, : if required, what should be included in an ideal curriculum. The survey include...

  17. Aspirated Compressors for High Altitude Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  18. Physiological constraints and energetic costs of diving behaviour in marine mammals: a review of studies using trained Steller sea lions diving in the open ocean.

    Science.gov (United States)

    Rosen, David A S; Hindle, Allyson G; Gerlinsky, Carling D; Goundie, Elizabeth; Hastie, Gordon D; Volpov, Beth L; Trites, Andrew W

    2017-01-01

    Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO 2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.

  19. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  20. Climate Change Impacts on High-Altitude Ecosystems

    OpenAIRE

    Harald Pauli

    2016-01-01

    Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  1. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude.

    Science.gov (United States)

    Jia, C L; He, L J; Li, P C; Liu, H Y; Wei, Z H

    2016-07-01

    Tibetan chickens have good adaptation to hypoxic conditions, which can be reflected by higher hatchability than lowland breeds when incubated at high altitude. The objective of this trial was to study changes in egg composition and metabolism with regards the adaptation of Tibetan chickens to high altitude. We measured the dry weight of chicken embryos, egg yolk, and egg albumen, and the activity of lactate dehydrogenase (LDH) and succinic dehydrogenase (SDH) in breast muscle, heart, and liver from embryos of Tibetan chicken and Dwarf chicken (lowland breed) incubated at high (2,900 m) and low (100 m) altitude. We found that growth of chicken embryos was restricted at high altitude, especially for Dwarf chicken embryos. In Tibetan chicken, the egg weight was lighter, but the dry weight of egg yolk was heavier than that of Dwarf chicken. The LDH activities of the three tissues from the high altitude groups were respectively higher than those of the lowland groups from d 15 to hatching, except for breast muscle of Tibetan chicken embryos on d 15. In addition, under the high altitude environment, the heart tissue from Tibetan chicken had lower LDH activity than that from Dwarf chicken at d 15 and 18. The lactic acid content of blood from Tibetan chicken embryos was lower than that of Dwarf chicken at d 12 and 15 of incubation at high altitude. There was no difference in SDH activity in the three tissues between the high altitude groups and the lowland groups except in three tissues of hatchlings and at d 15 of incubation in breast muscle, nor between the two breeds at high altitude except in the heart of hatchlings. Consequently, the adaptation of Tibetan chicken to high altitude may be associated with higher quantities of yolk in the egg and a low metabolic oxygen demand in tissue, which illuminate the reasons that the Tibetan chicken have higher hatchability with lower oxygen transport ability. © 2016 Poultry Science Association Inc.

  2. Sports-related lung injury during breath-hold diving

    Directory of Open Access Journals (Sweden)

    Tanja Mijacika

    2016-12-01

    Full Text Available The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise. In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition. According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  3. Incidence and Symptoms of High Altitude Illness in South Pole Workers: Antarctic Study of Altitude Physiology (ASAP

    Directory of Open Access Journals (Sweden)

    Paul J. Anderson

    2011-01-01

    Full Text Available Introduction Each year, the US Antarctic Program rapidly transports scientists and support personnel from sea level (SL to the South Pole (SP, 2835 m providing a unique natural laboratory to quantify the incidence of acute mountain sickness (AMS, patterns of altitude related symptoms and the field effectiveness of acetazolamide in a highly controlled setting. We hypothesized that the combination of rapid ascent (3 hr, accentuated hypobarism (relative to altitude, cold, and immediate exertion would increase altitude illness risk. Methods Medically screened adults (N = 246, age = 37 ± 11 yr, 30% female, BMI = 26 ± 4 kg/m 2 were recruited. All underwent SL and SP physiological evaluation, completed Lake Louise symptom questionnaires (LLSQ, to define AMS, and answered additional symptom related questions (eg, exertional dyspnea, mental status, cough, edema and general health, during the 1st week at altitude. Acetazolamide, while not mandatory, was used by 40% of participants. Results At SP, the barometric pressure resulted in physiological altitudes that approached 3400 m, while T ° C averaged -42, humidity 0.03%. Arterial oxygen saturation averaged 89% ± 3%. Overall, 52% developed LLSQ defined AMS. The most common symptoms reported were exertional dyspnea-(87%, sleeping difficulty-(74%, headache-(66%, fatigue-(65%, and dizziness/lightheadedness-(46%. Symptom severity peaked on days 1-2, yet in >20% exertional dyspnea, fatigue and sleep problems persisted through day 7. AMS incidence was similar between those using acetazolamide and those abstaining (51 vs. 52%, P = 0.87. Those who used acetazolamide tended to be older, have less altitude experience, worse symptoms on previous exposures, and less SP experience. Conclusion The incidence of AMS at SP tended to be higher than previously reports in other geographic locations at similar altitudes. Thus, the SP constitutes a more intense altitude exposure than might be expected considering physical

  4. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  5. Dive In! Immersion in Science Practices for High School Students

    Science.gov (United States)

    Graham, Karen J.; Gengarelly, Lara M.; Hopkins, Barbara A.; Lombard, Melissa A.

    2017-01-01

    What is it really like to plunge into the world of science learning and teaching? Find out in this unique book. "Dive In!" grew out of a teacher-scientist project at the University of New Hampshire that promoted active learning and using science practices in the classroom. That experience yielded this book's reason for being: to provide…

  6. High altitude-induced albuminuria in normal man is enhanced by infusion of low-dose dopamine

    DEFF Research Database (Denmark)

    Hansen, J M; Kanstrup, I L; Richalet, J P

    1996-01-01

    -85) (median with quartiles in parentheses) at high altitude. High altitude hypoxia increased Ualb from 3.2 micrograms min-1 (2.7-3.5) to 5.0 micrograms min-1 (3.3-6.6) (p ... flow (ERPF) from 465 ml min-1 (412-503) to 410 ml min-1 (385-451) (p high altitude. Dopamine...... increased ERPF, GFR, CLi, CNa, and decreased the filtration fraction in both environments. Infusion of dopamine further increased Ualb to 10.5 micrograms min-1 (5.5-64.8) (p high altitude, but had no effect on Ualb at sea level. In conclusion, high altitude hypoxia per se increases the urinary...

  7. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  8. DeepDive: Declarative Knowledge Base Construction.

    Science.gov (United States)

    De Sa, Christopher; Ratner, Alex; Ré, Christopher; Shin, Jaeho; Wang, Feiran; Wu, Sen; Zhang, Ce

    2016-03-01

    The dark data extraction or knowledge base construction (KBC) problem is to populate a SQL database with information from unstructured data sources including emails, webpages, and pdf reports. KBC is a long-standing problem in industry and research that encompasses problems of data extraction, cleaning, and integration. We describe DeepDive, a system that combines database and machine learning ideas to help develop KBC systems. The key idea in DeepDive is that statistical inference and machine learning are key tools to attack classical data problems in extraction, cleaning, and integration in a unified and more effective manner. DeepDive programs are declarative in that one cannot write probabilistic inference algorithms; instead, one interacts by defining features or rules about the domain. A key reason for this design choice is to enable domain experts to build their own KBC systems. We present the applications, abstractions, and techniques of DeepDive employed to accelerate construction of KBC systems.

  9. SPLENIC INFARCTION: an intriguing and important cause of pain abdomen in high altitude

    Directory of Open Access Journals (Sweden)

    P. K. Hota

    2015-01-01

    Full Text Available Background: Patients with Sickle cell trait (SCT are usually asymptomatic. They are usually unaware of their condition unless they have a family history. There are specific situations, where these people suffer from the effects of sickle cell trait. Splenic syndrome at high altitude is one of the specific problems. It is usually seen after a patient with SCT has been inducted to high altitude like in case of mountaineers and military personnel deployed in high altitude warfare. Pain abdomen due to splenic infarction in individuals with SCT is one of the manifestations. These patients, if diagnosed in time, they can be spared from unnecessary surgical interventions. We present herewith our experience of splenic infarction due to SCT in high altitude and their management.

  10. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  11. Text mining and network analysis to find functional associations of genes in high altitude diseases.

    Science.gov (United States)

    Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar

    2018-05-02

    Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Diving accidents in sports divers in Orkney waters.

    Science.gov (United States)

    Trevett, A J; Forbes, R; Rae, C K; Sheehan, C; Ross, J; Watt, S J; Stephenson, R

    2001-12-01

    Scapa Flow in Orkney is one of the major world centres for wreck diving. Because of the geography of Orkney and the nature of the diving, it is possible to make relatively accurate estimates of the number of dives taking place. The denominator of dive activity allows the unusual opportunity of precise calculation of accident rates. In 1999, one in every 178 sports divers visiting Orkney was involved in a significant accident, in 2000 the figure was one in 102. Some of these accidents appear to have been predictable and could be avoided by better education and preparation of visiting divers.

  13. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  14. How man-made interference might cause gas bubble emboli in deep diving whales

    Directory of Open Access Journals (Sweden)

    Andreas eFahlman

    2014-01-01

    Full Text Available Recent cetacean mass strandings in close temporal and spatial association with sonar activity has raised the concern that anthropogenic sound may harm breath-hold diving marine mammals. Necropsy results of the stranded whales have shown evidence of bubbles in the tissues, similar to those in human divers suffering from decompression sickness (DCS. It has been proposed that changes in behavior or physiological responses during diving could increase tissue and blood N2 levels, thereby increasing DCS risk. Dive data recorded from sperm, killer, long-finned pilot, Blainville’s beaked and Cuvier’s beaked whales before and during exposure to low- (1-2 kHz and mid- (2-7 kHz frequency active sonar were used to estimate the changes in blood and tissue N2 tension (PN2. Our objectives were to determine if differences in 1 dive behavior or 2 physiological responses to sonar are plausible risk factors for bubble formation. The theoretical estimates indicate that all species may experience high N2 levels. However, unexpectedly, deep diving generally result in higher end-dive PN2 as compared with shallow diving. In this focused review we focus on three possible explanations: 1 We revisit an old hypothesis that CO2, because of its much higher diffusivity, form bubble precursors that continue to grow in N2 supersaturated tissues. Such a mechanism would be less dependent on the alveolar collapse depth but affected by elevated levels of CO2 following a burst of activity during sonar exposure. 2 During deep dives, a greater duration of time might be spent at depths where gas exchange continues as compared with shallow dives. The resulting elevated levels of N2 in deep diving whales might also make them more susceptible to anthropogenic disturbances. 3 Extended duration of dives even at depths beyond where the alveoli collapse could result in slow continuous accumulation of N2 in the adipose tissues that eventually becomes a liability.

  15. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  16. Effect of phosphate supplementation on oxygen delivery at high altitude

    Science.gov (United States)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  17. Field validation of Tasmania's aquaculture industry bounce-diving schedules using Doppler analysis of decompression stress.

    Science.gov (United States)

    Smart, David R; Van den Broek, Cory; Nishi, Ron; Cooper, P David; Eastman, David

    2014-09-01

    Tasmania's aquaculture industry produces over 40,000 tonnes of fish annually, valued at over AUD500M. Aquaculture divers perform repetitive, short-duration bounce dives in fish pens to depths up to 21 metres' sea water (msw). Past high levels of decompression illness (DCI) may have resulted from these 'yo-yo' dives. This study aimed to assess working divers, using Doppler ultrasonic bubble detection, to determine if yo-yo diving was a risk factor for DCI, determine dive profiles with acceptable risk and investigate productivity improvement. Field data were collected from working divers during bounce diving at marine farms near Hobart, Australia. Ascent rates were less than 18 m·min⁻¹, with routine safety stops (3 min at 3 msw) during the final ascent. The Kisman-Masurel method was used to grade bubbling post dive as a means of assessing decompression stress. In accordance with Defence Research and Development Canada Toronto practice, dives were rejected as excessive risk if more than 50% of scores were over Grade 2. From 2002 to 2008, Doppler data were collected from 150 bounce-dive series (55 divers, 1,110 bounces). Three series of bounce profiles, characterized by in-water times, were validated: 13-15 msw, 10 bounces inside 75 min; 16-18 msw, six bounces inside 50 min; and 19-21 msw, four bounces inside 35 min. All had median bubble grades of 0. Further evaluation validated two successive series of bounces. Bubble grades were consistent with low-stress dive profiles. Bubble grades did not correlate with the number of bounces, but did correlate with ascent rate and in-water time. These data suggest bounce diving was not a major factor causing DCI in Tasmanian aquaculture divers. Analysis of field data has improved industry productivity by increasing the permissible number of bounces, compared to earlier empirically-derived tables, without compromising safety. The recommended Tasmanian Bounce Diving Tables provide guidance for bounce diving to a depth of 21 msw

  18. Differentiation of pulmonary embolism from high altitude pulmonary edema

    International Nuclear Information System (INIS)

    Khan, D.A.; Hashim, R.; Mirza, T.M.; Matloob-ur-Rehman, M.

    2003-01-01

    Objective: To differentiate the high altitude pulmonary edema (HAPE) from pulmonary embolism (PE) by clinical probability model of PE, lactate dehydrogenase (LDH), aspartate transaminase (AST) and D-dimer assays at high altitude. Subjects and Methods: Consecutive 40 patients evacuated from height > 3000 meters with symptoms of PE or HAPE were included. Clinical pretest probabilities scores of PE, Minutex D-dimer assay (Biopool international) and cardiac enzymes estimation by IFCC approved methods, were used for diagnosis. Mann-Whitney U test was applied by using SPSS and level of significance was taken at (p 500 ng/ml. Plasma D-dimer of 500 ng/ml was considered as cut-off value; 6(66.7%) patients of PE could be diagnosed and 30 (96.7%) cases of HAPE excluded indicating very good negative predictive value. Serum LDH, AST and CK were raised above the reference ranges in 8 (89%), 7 (78%) and 3 (33%) patients of PE as compared to 11 (35%), 6 (19%) and 9 (29%) of HAPE respectively. Conclusion: Clinical assessment in combination with D-dimer assay, LDH and AST can be used for timely differentiation of PE from HAPE at high altitude where diagnostic imaging procedures are not available. (author)

  19. Measurements of radioactive dust in high altitude air

    International Nuclear Information System (INIS)

    Kobayashi, Mika; Kohara, Eri; Muronoi, Naohiro; Masuda, Yousuke; Midou, Tomotaka; Ishida, Yukiko; Shimizu, Toshihiko; Saga, Minoru; Endo, Hiromu

    2012-01-01

    The radioactivity in samples of airborne dust was measured. The samples had been collected at high altitude by the Japan Air Self-Defense Force. The data were obtained for the gross beta activity, gamma nuclide determination and radiochemical analysis. It was shown that there was no appreciable difference between the activity levels obtained in this time and in the year before. Seasonal variations were not very pronounced. It was found that the radioactivity at high altitude had been stable at a low level. Radioactive gases (gaseous radioiodine and xenon gas) were not detected. This report does not include the result on radionuclide measurements that Technical Research and Development Institute executed for examining the nuclear emergency situation at Fukushima Daiichi and Daini nuclear power plants after Tohoku Region Pacific Ocean Earthquake on March 11, 2011. (author)

  20. Rare Particle Searches with the high altitude SLIM experiment

    CERN Document Server

    Balestra, S; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Margiotta, A; Medinaceli, E; Nogales, J; Patrizii, L; Popa, V; Quereshi, I; Saavedra, O; Sher, G; Shahzad, M; Spurio, M; Ticona, R; Togo, V; Velarde, A; Zanini, A

    2005-01-01

    The search for rare particles in the cosmic radiation remains one of the main aims of non-accelerator particle astrophysics. Experiments at high altitude allow lower mass thresholds with respect to detectors at sea level or underground. The SLIM experiment is a large array of nuclear track detectors located at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.). The preliminary results from the analysis of a part of the first 236 sq.m exposed for more than 3.6 y are here reported. The detector is sensitive to Intermediate Mass Magnetic Monopoles and to SQM nuggets and Q-balls, which are possible Dark Matter candidates.

  1. Paralysis from sport and diving accidents.

    Science.gov (United States)

    Schmitt, H; Gerner, H J

    2001-01-01

    To examine the causes of sport-related spinal cord injuries that developed into paraplegia or tetraplegia, and to compare data from different sports with previous studies in the same geographical region. A retrospective epidemiological study and comparison with previous studies. The Orthopedic Department, specializing in the treatment and rehabilitation of paralyzed patients, at the University of Heidelberg, Germany. Between 1985 and 1997, 1,016 cases of traumatic spinal cord injury presented at the Orthopedic Department at the University of Heidelberg: 6.8% were caused by sport and 7.7% by diving accidents. Sport-related spinal cord injuries with paralysis. A total of 1.016 cases of traumatic spinal cord injury were reviewed. Of these, 14.5% were caused by sport accidents (n = 69) or diving accidents (n = 78). Age of patients ranged from 9 to 52 years. 83% were male. 77% of the patients developed tetraplegia, and 23%, paraplegia. 16 of the sport accidents resulted from downhill skiing, 9 resulted from horseback riding, 7 from modern air sports, 6 from gymnastics, 5 from trampolining, and 26 from other sports. Previous analyses had revealed that paraplegia had mainly occurred from gymnastics, trampolining, or high diving accidents. More recently, however, the number of serious spinal injuries caused by risk-filled sports such as hang gliding and paragliding has significantly increased (p = 0.095), as it has for horseback riding and skiing. Examinations have shown that all patients who were involved in diving accidents developed tetraplegia. An analysis of injury from specific sports is still under way. Analysis of accidents resulting in damage to the spinal cord in respect to different sports shows that sports that have become popular during the last 10 years show an increasing risk of injury. Modern air sports hold the most injuries. Injury-preventing strategies also are presented.

  2. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  3. Sequencing of 50 human exomes reveals adaptation to high altitude

    DEFF Research Database (Denmark)

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia

    2010-01-01

    Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which repres...... in genetic adaptation to high altitude.......Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which...... represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency...

  4. Dive Tourism and the Entrepreneurial Process in the Perhentian Islands, Malaysia

    OpenAIRE

    Jeyacheya, Julia; Hampton, Mark P.

    2016-01-01

    Dive tourism is a high growth, niche sector for island and coastal developing nations and is propelled predominantly by local tourism entrepreneurs and small businesses. This chapter examines dive tourism in peninsula Malaysia and particularly the factors influencing the entrepreneurial process. Much research on tourism entrepreneurs is derived from analysing business in the developed world, and has focused on the individual, not the process. Significantly less research exists for middle inco...

  5. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600).

    Science.gov (United States)

    Buchheit, Martin; Hammond, Kristal; Bourdon, Pitre C; Simpson, Ben M; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J; Aughey, Robert J

    2015-03-01

    To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h(-1) (D>14.4 km·h(-1)) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen's d +1.0, 90%CL ± 0.8) and D>14.4 km·h(-1) (+0.5 ± 0.8) in AUS. D>14.4 km.h(-1) was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h(-1) increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in 'fitness' do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity. Key pointsWhen playing at high-altitude, players may alter their activities during matches in relation to their transient maximal physical capacities, possibly to maintain a 'tolerable' relative exercise intensity.While there is no doubt that running performance per se in not the main determinant of match outcomes (Carling, 2013), fitness levels influence relative match intensity (Buchheit et al., 2012, Mendez-Villanueva et al., 2013), which in-turn may impact on decision making and skill performance (Rampinini et al., 2008).In the context of

  6. Nutrição para os praticantes de exercício em grandes altitudes Nutritional strategy for exercising in high altitudes

    Directory of Open Access Journals (Sweden)

    Caroline Buss

    2006-02-01

    Full Text Available Quando o atleta ascende a uma grande altitude, ele é exposto a uma pressão barométrica reduzida, e os efeitos fisiológicos que acompanham estas mudanças da pressão atmosférica podem ter grande influência sobre o seu organismo e seu desempenho físico. Acredita-se que a hipóxia seja responsável pelo início de uma cascata de eventos sinalizadores que, ao final, levam à adaptação à altitude. A exposição aguda à hipóxia provoca sonolência, fadiga mental e muscular e prostração. Cefaléia, náusea e anorexia são sintomas provocados pela Doença Aguda das Montanhas, que pode ocorrer nos primeiros dias de permanência na altitude. Uma estratégia nutricional adequada é fundamental para que o organismo não sofra nenhum estresse adicional. O objetivo deste trabalho foi apresentar os principais efeitos da altitude sobre o organismo e sobre o desempenho físico, discutir e/ou sugerir recomendações nutricionais para esta situação e, se possível, apresentar uma orientação nutricional prática para o atleta na altitude. Algumas das principais conclusões encontradas foram: o consumo energético deve ser aumentado; é fundamental monitorar a quantidade de líquidos ingeridos e escolher alimentos agradáveis ao paladar, ricos em energia e nutrientes. Recomenda-se trabalhar com um nutricionista do esporte com antecedência, para que um plano alimentar individual seja elaborado e colocado em prática antes mesmo da viagem à altitude.When athletes are subject to high altitudes, they are exposed to a lower barometric pressure and the physiological effects that accompany these atmospheric pressure changes can have a strong influence on their bodies and performance. Hypoxia is thought to be responsible for triggering a cascade of signaling events that eventually leads to altitude acclimatization. Acute exposure to hypoxia causes sleepiness, mental and muscle fatigue and prostration. Headache, nausea and anorexia are some of the

  7. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  8. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives

    DEFF Research Database (Denmark)

    Lundby, Carsten; Sander, Mikael; van Hall, Gerrit

    2006-01-01

    , and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle...... O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia....... The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min(-1) mmHg(-1)) 55.2+/-3.7 (SL), 48...

  9. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  10. Diving Simulation concerning Adélie Penguin

    Science.gov (United States)

    Ito, Shinichiro; Harada, Masanori

    Penguins are sea birds that swim using lift and drag forces by flapping their wings like other birds. Although diving data can be obtained using a micro-data logger which has improved in recent years, all the necessary diving conditions for analysis cannot be acquired. In order to determine all these hard-to-get conditions, the posture and lift and drag forces of penguins were theoretically calculated by the technique used in the analysis of the optimal flight path of aircrafts. In this calculation, the actual depth and speed of the dive of an Adélie penguin (Pygoscelis adeliae) were utilized. Then, the calculation result and experimental data were compared, and found to be in good agreement. Thus, it is fully possible to determine the actual conditions of dive by this calculation, even those that cannot be acquired using a data logger.

  11. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    Science.gov (United States)

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  12. Dive and Explore: An Interactive Web Visualization that Simulates Making an ROV Dive to an Active Submarine Volcano

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.

    2004-12-01

    Several years ago we created an exciting and engaging multimedia exhibit for the Hatfield Marine Science Center that lets visitors simulate making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. The public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. We are now completing a revision to the project that will make this engaging virtual exploration accessible to a much larger audience. With minor modifications we will be able to put the exhibit onto the world wide web so that any person with internet access can view and learn about exciting volcanic and hydrothermal activity at Axial Seamount on the Juan de Fuca Ridge. The modifications address some cosmetic and logistic ISSUES confronted in the museum environment, but will mainly involve compressing video clips so they can be delivered more efficiently over the internet. The web version, like the museum version, will allow users to choose from 1 of 3 different dives sites in the caldera of Axial Volcano. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the computer mouse. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are

  13. High altitude environmental monitoring: the SHARE project and CEOP-HE

    Science.gov (United States)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP

  14. Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels

    Science.gov (United States)

    Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J

    1956-01-01

    Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.

  15. Human Bone Matrix Changes During Deep Saturation Dives

    Science.gov (United States)

    2008-08-08

    urine concentrations of Ntx have been demonstrated in bone diseases such as osteoporosis, primary hyperthyroidism , and Paget’s disease. Also... loss in divers, and that the differentials likely came from the gas- induced osmosis model.30 4 The same facility was used for both dives and...Other demographic data such as age, height, weight , and diving experience were also collected for later correlational analyses. The dive took place

  16. Dive Into Python 3

    CERN Document Server

    Pilgrim, Mark

    2009-01-01

    Mark Pilgrim's Dive Into Python 3 is a hands-on guide to Python 3 (the latest version of the Python language) and its differences from Python 2. As in the original book, Dive Into Python, each chapter starts with a real, complete code sample, proceeds to pick it apart and explain the pieces, and then puts it all back together in a summary at the end. This book includes: * Example programs completely rewritten to illustrate powerful new concepts now available in Python 3: sets, iterators, generators, closures, comprehensions, and much more* A detailed case study of porting a major library from

  17. Diving bradycardia: a mechanism of defence against hypoxic damage.

    Science.gov (United States)

    Alboni, Paolo; Alboni, Marco; Gianfranchi, Lorella

    2011-06-01

    A feature of all air-breathing vertebrates, diving bradycardia is triggered by apnoea and accentuated by immersion of the face or whole body in cold water. Very little is known about the afferents of diving bradycardia, whereas the efferent part of the reflex circuit is constituted by the cardiac vagal fibres. Diving bradycardia is associated with vasoconstriction of selected vascular beds and a reduction in cardiac output. The diving response appears to be more pronounced in mammals than in birds. In humans, the bradycardic response to diving varies greatly from person to person; the reduction in heart rate generally ranges from 15 to 40%, but a small proportion of healthy individuals can develop bradycardia below 20 beats/min. During prolonged dives, bradycardia becomes more pronounced because of activation of the peripheral chemoreceptors by a reduction in the arterial partial pressure of oxygen (O2), responsible for slowing of heart rate. The vasoconstriction is associated with a redistribution of the blood flow, which saves O2 for the O2-sensitive organs, such as the heart and brain. The results of several investigations carried out both in animals and in humans show that the diving response has an O2-conserving effect, both during exercise and at rest, thus lengthening the time to the onset of serious hypoxic damage. The diving response can therefore be regarded as an important defence mechanism for the organism.

  18. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae, a lizard dwell at altitudes higher than any other living lizards in the world.

    Directory of Open Access Journals (Sweden)

    Xiaolong Tang

    Full Text Available Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae, which inhabits high altitudes (4500 m and Phrynocephalusprzewalskii (Lacertilia: Agamidae, which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD and the HOAD/citrate synthase (CS ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.

  19. The GRAD high-altitude balloon flight over Antarctica

    International Nuclear Information System (INIS)

    Eichhorn, G.; Coldwell, R.L.; Dunnam, F.E.; Rester, A.C.; Trombka, J.I.; Starr, R.; Lasche, G.P.

    1989-01-01

    The Gamma Ray Advanced Detector(GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high altitude balloon at 36 km altitude at a latitude of 78 degree S over Antarctica for observations of gamma radiation emitted by the radioactive decay of 56 Co in the Supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software

  20. Coca: High Altitude Remedy of the Ancient Incas.

    Science.gov (United States)

    Biondich, Amy Sue; Joslin, Jeremy D

    2015-12-01

    The use of coca leaf for medicinal purposes is a centuries-old tradition of the native peoples of South America. Coca products are thought by many laypersons to provide risk-free benefits to users participating in strenuous activities at high altitude. Physiologic studies of coca have increased understanding of its possible mechanism of action as well as its potential impact on high altitude activities. This present work explores the role of coca throughout the history of the Andean peoples and explores whether this ancient remedy has a place in modern medicine. A focused summary of research articles with particular relevance to the field of wilderness medicine is also included to better provide the reader with lessons not only from history but also from another culture. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  1. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    Science.gov (United States)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  2. High Altitude Warfare: The Kargil Conflict and the Future

    National Research Council Canada - National Science Library

    Acosta, Marcus

    2003-01-01

    The unique combination of thin air, freezing temperatures, and mountainous terrain that forms the high altitude environment has resisted advances in military technology for centuries, The emergence...

  3. Optimal diving behaviour and respiratory gas exchange in birds.

    Science.gov (United States)

    Halsey, Lewis G; Butler, Patrick J

    2006-11-01

    This review discusses the advancements in our understanding of the physiology and behaviour of avian diving that have been underpinned by optimal foraging theory and the testing of optimal models. To maximise their foraging efficiency during foraging periods, diving birds must balance numerous factors that are directly or indirectly related to the replenishment of the oxygen stores and the removal of excess carbon dioxide. These include (1) the time spent underwater (which diminishes the oxygen supply, increases carbon dioxide levels and may even include a build up of lactate due to anaerobic metabolism), (2) the time spent at the surface recovering from the previous dive and preparing for the next (including reloading their oxygen supply, decreasing their carbon dioxide levels and possibly also metabolising lactate) and (3) the trade-off between maximising oxygen reserves for consumption underwater by taking in more air to the respiratory system, and minimising the energy costs of positive buoyancy caused by this air, to maximise the time available underwater to forage. Due to its importance in avian diving, replenishment of the oxygen stores has become integral to models of optimal diving, which predict the time budgeting of animals foraging underwater. While many of these models have been examined qualitatively, such tests of predictive trends appear fallible and only quantifiable support affords strong evidence of their predictive value. This review describes how the quantification of certain optimal diving models, using tufted ducks, indeed demonstrates some predictive success. This suggests that replenishment of the oxygen stores and removal of excess carbon dioxide have significant influences on the duration of the surface period between dives. Nevertheless, present models are too simplistic to be robust predictors of diving behaviour for individual animals and it is proposed that they require refinement through the incorporation of other variables that also

  4. Poor flight performance in deep-diving cormorants.

    Science.gov (United States)

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  5. Lens autofluorescence is not increased at high altitude

    DEFF Research Database (Denmark)

    Kessel, Line; Kofoed, Peter Kristian; Zubieta-Calleja, Gustavo

    2010-01-01

    in Denmark. RESULTS: No significant differences in lens fluorescence or transmittance were found between Bolivian and Danish volunteers. CONCLUSION: Age-corrected lens fluorescence and transmittance were comparable for healthy participants living at high altitude near the equator and healthy volunteers...

  6. Board Diving Regulations in Public Swimming Pools and Risk of Injury.

    Science.gov (United States)

    Williams, David; Odin, Louise

    2016-06-01

    Public session access to diving boards is one of the stepping stones for those wishing to develop their skills in the sport of diving. The extent to which certain dive forms are considered risky (forward/backward/rotations) and therefore not permitted is a matter for local pool managers. In Study 1, 20 public pools with diving facilities responded to a U.K. survey concerning their diving regulation policy and related injury incidence in the previous year. More restrictive regulation of dive forms was not associated with a decrease in injuries (rs [42] = -0.20, p = 0.93). In Study 2, diving risk perception and attitudes towards regulation were compared between experienced club divers (N = 22) and nondivers (N = 22). Risk was perceived to be lower for those with experience, and these people favored less regulation. The findings are interpreted in terms of a risk thermostat model, where for complex physical performance activities such as diving, individuals may exercise caution in proportion to their ability and previous experience of success and failure related to the activity. Though intuitively appealing, restrictive regulation of public pool diving may be ineffective in practice because risk is not simplistically associated with dive forms, and divers are able to respond flexibly to risk by exercising caution where appropriate. © 2015 Society for Risk Analysis.

  7. Diving of great shearwaters (Puffinus gravis in cold and warm water regions of the South Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Robert A Ronconi

    Full Text Available BACKGROUND: Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis, the largest member of this genus. This study reports the first high sampling rate (2 s of depth and diving behaviour for Puffinus shearwaters. METHODOLOGY/PRINCIPAL FINDINGS: Time-depth recorders (TDRs were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50% dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. CONCLUSIONS/SIGNIFICANCE: General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving.

  8. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  9. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    Science.gov (United States)

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  10. Right ventricular morphology and function in chronic obstructive pulmonary disease patients living at high altitude.

    Science.gov (United States)

    Güvenç, Tolga Sinan; Erer, Hatice Betül; Kul, Seref; Perinçek, Gökhan; Ilhan, Sami; Sayar, Nurten; Yıldırım, Binnaz Zeynep; Doğan, Coşkun; Karabağ, Yavuz; Balcı, Bahattin; Eren, Mehmet

    2013-01-01

    Pulmonary vasculature is affected in patients with chronic pulmonary obstructive disease (COPD). As a result of increased pulmonary resistance, right ventricular morphology and function are altered in COPD patients. High altitude and related hypoxia causes pulmonary vasoconstriction, thereby affecting the right ventricle. We aimed to investigate the combined effects of COPD and altitude-related chronic hypoxia on right ventricular morphology and function. Forty COPD patients living at high altitude (1768 m) and 41 COPD patients living at sea level were enrolled in the study. All participants were diagnosed as COPD by a pulmonary diseases specialist depending on symptoms, radiologic findings and pulmonary function test results. Detailed two-dimensional echocardiography was performed by a cardiologist at both study locations. Oxygen saturation and mean pulmonary artery pressure were higher in the high altitude group. Right ventricular end diastolic diameter, end systolic diameter, height and end systolic area were significantly higher in the high altitude group compared to the sea level group. Parameters of systolic function, including tricuspid annular systolic excursion, systolic velocity of tricuspid annulus and right ventricular isovolumic acceleration were similar between groups, while fractional area change was significantly higher in the sea level groups compared to the high altitude group. Indices of diastolic function and myocardial performance index were similar between groups. An increase in mean pulmonary artery pressure and right ventricular dimensions are observed in COPD patients living at high altitude. Despite this increase, systolic and diastolic functions of the right ventricle, as well as global right ventricular performance are similar in COPD patients living at high altitude and sea level. Altitude-related adaptation to chronic hypoxia could explain these findings. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic

  11. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  12. High altitude and hemoglobin function in the vultures Gyps rueppelli and Aegypius monachus

    DEFF Research Database (Denmark)

    Weber, Roy E.; Hiebl, Inge; Braunitzer, Gerhard

    1988-01-01

    Functional characteristics of the stripped composite hemoglobins (Hbs) of lhevultures Gyps rueppellii and Aegypills monachus that can fly at extremely high altitudes, and of component Hbs of G. rueppellii are reported, in relation to influences of pH, temperalure and inositol hexaphosphate. G...... structures of the constituent polypeptide chains to trace molecular adaptations to high-altitude respiration, and to physiological factors (pulmonary hypoxia and hypocapnia, body temperature shifts, and lung and nasal gas and heat exchange) to discern their possible survival value at altitudes of 11300 m....

  13. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Directory of Open Access Journals (Sweden)

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  14. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  15. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  16. Effects of erythrocyte infusion on VO2max at high altitude

    DEFF Research Database (Denmark)

    Young, Jette Feveile; Sawka, M N; Muza, S R

    1996-01-01

    This study investigated whether autologous erythrocyte infusion would ameliorate the decrement in maximal O2 uptake (VO2max) experienced by lowlanders when they ascend to high altitude. VO2max was measured in 16 men (treadmill running) at sea level (SL) and on the 1st (HA1) and 9th (HA9) days...... of high-altitude (4,300 m) residence. After VO2max was measured at SL, subjects were divided into two matched groups (n = 8). Twenty-four hours before ascent to high altitude, the experimental group received a 700-ml infusion of autologous erythrocytes and saline (42% hematocrit), whereas the control...... group received only saline. The VO2max of erythrocyte-infused [54 +/- 1 (SE) ml.kg-1.min-1] and control subjects (52 +/- 2 ml.kg-1.min-1) did not differ at SL before infusion. The decrement in VO2max on HA1 did not differ between groups, averaging 26% overall, despite higher (P

  17. [Diagnosis and treatment of diving accidents. New German guidelines for diving accidents 2014-2017].

    Science.gov (United States)

    Jüttner, B; Wölfel, C; Liedtke, H; Meyne, K; Werr, H; Bräuer, T; Kemmerer, M; Schmeißer, G; Piepho, T; Müller, O; Schöppenthau, H

    2015-06-01

    In 2015 the German Society for Diving and Hyperbaric Medicine (GTÜM) and the Swiss Underwater and Hyperbaric Medical Society (SUHMS) published the updated guidelines on diving accidents 2014-2017. These multidisciplinary guidelines were developed within a structured consensus process by members of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI), the Sports Divers Association (VDST), the Naval Medical Institute (SchiffMedInst), the Social Accident Insurance Institution for the Building Trade (BG BAU), the Association of Hyperbaric Treatment Centers (VDD) and the Society of Occupational and Environmental Medicine (DGAUM). This consensus-based guidelines project (development grade S2k) with a representative group of developers was conducted by the Association of Scientific Medical Societies in Germany. It provides information and instructions according to up to date evidence to all divers and other lay persons for first aid recommendations to physician first responders and emergency physicians as well as paramedics and all physicians at therapeutic hyperbaric chambers for the diagnostics and treatment of diving accidents. To assist in implementing the guideline recommendations, this article summarizes the rationale, purpose and the following key action statements: on-site 100% oxygen first aid treatment, still patient positioning and fluid administration are recommended. Hyperbaric oxygen (HBO) recompression remains unchanged the established treatment in severe cases with no therapeutic alternatives. The basic treatment scheme recommended for diving accidents is hyperbaric oxygenation at 280 kPa. For quality management purposes there is a need in the future for a nationwide register of hyperbaric therapy.

  18. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    Science.gov (United States)

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  19. Thoracic skeletal morphology and high-altitude hypoxia in Andean prehistory.

    Science.gov (United States)

    Weinstein, Karen J

    2007-09-01

    Living humans from the highland Andes exhibit antero-posteriorly and medio-laterally enlarged chests in response to high-altitude hypoxia. This study hypothesizes that morphological responses to high-altitude hypoxia should also be evident in pre-Contact Andean groups. Thoracic skeletal morphology in four groups of human skeletons (N = 347) are compared: two groups from coastal regions (Ancón, Peru, n = 79 and Arica, Chile, n = 123) and two groups from high altitudes (San Pedro de Atacama, Chile, n = 102 and Machu Picchu and Cuzco, Peru, n = 43). Osteometric variables that represent proportions of chest width and depth include sternal and clavicular lengths and breadths and rib length, curvature, and area. Each variable was measured relative to body size, transformed into logarithmic indices, and compared across sex-specific groups using ANOVA and Tukey multiple comparison tests. Atacama highlanders have the largest sternal and clavicular proportions and ribs with the greatest area and least amount of curvature, features that suggest an antero-posteriorly deep and mediolaterally wide thoracic skeleton. Ancón lowlanders exhibit proportions indicating narrower and shallower chests. Machu Picchu and Cuzco males cluster with the other highland group in rib curvature and area at the superior levels of the thorax, whereas chest proportions in Machu Picchu and Cuzco females resemble those of lowlanders. The variation in Machu Picchu and Cuzco males and females is interpreted as the result of population migrations. The presence of morphological traits indicative of enlarged chests in some highland individuals suggests that high-altitude hypoxia was an environmental stressor shaping the biology of highland Andean groups during the pre-Contact period. (c) 2007 Wiley-Liss, Inc.

  20. Sponge divers of the Aegean and medical consequences of risky compressed-air dive profiles.

    Science.gov (United States)

    Toklu, Akin Savas; Cimsit, Maide

    2009-04-01

    Historically, Turkey once had a substantial number of professional sponge divers, a population known for a relatively high incidence of diving-related conditions such as decompression sickness (DCS) and dysbaric osteonecrosis (DON). Sponge diving ended in the mid-1980s when nearly all of the sponges in the Aegean and Mediterranean Seas contracted a bacterial disease and the occupation became unprofitable. We reviewed the records of Turkish sponge divers for information on their level of knowledge, diving equipment, dive profiles, and occupational health problems. Information was collected by: 1) interviewing former sponge divers near Bodrum, where most of them had settled; 2) reviewing the relevant literature; and 3) examining the medical records of sponge divers who underwent recompression treatment. These divers used three types of surface-supplied equipment, including hard helmets, Fernez apparatus, and hookahs; the latter were preferred because they allowed divers the greatest freedom of movement while harvesting sponges underwater. These divers used profiles that we now know involved a high risk for DCS and DON. We were able to access the records of 58 divers who had received recompression treatment. All of the cases involved severe DCS and delays from dive to recompression that averaged 72 h. Complete resolution of symptoms occurred in only 11 cases (19%). Thus, we were able to document the several factors that contributed to the risks in this occupational group, including unsafe dive profiles, resistance to seeking treatment, long delays before recompression, and the fact that recompression treatment used air rather than oxygen.

  1. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  2. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  3. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    Science.gov (United States)

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  4. Increased Cardiometabolic Risk and Worsening Hypoxemia at High Altitude.

    Science.gov (United States)

    Miele, Catherine H; Schwartz, Alan R; Gilman, Robert H; Pham, Luu; Wise, Robert A; Davila-Roman, Victor G; Jun, Jonathan C; Polotsky, Vsevolod Y; Miranda, J Jaime; Leon-Velarde, Fabiola; Checkley, William

    2016-06-01

    Miele, Catherine H., Alan R. Schwartz, Robert H. Gilman, Luu Pham, Robert A. Wise, Victor G. Davila-Roman, Jonathan C. Jun, Vsevolod Y. Polotsky, J. Jaime Miranda, Fabiola Leon-Velarde, and William Checkley. Increased cardiometabolic risk and worsening hypoxemia at high altitude. High Alt Med Biol. 17:93-100, 2016.-Metabolic syndrome, insulin resistance, diabetes, and dyslipidemia are associated with an increased risk of cardiovascular disease. While excessive erythrocytosis is associated with cardiovascular complications, it is unclear how worsening hypoxemia of any degree affects cardiometabolic risk factors in high-altitude populations. We studied the relationship between daytime resting oxyhemoglobin saturation and cardiometabolic risk factors in adult participants living in Puno, Peru (3825 m above sea level). We used multivariable logistic regression models to study the relationship between having a lower oxyhemoglobin saturation and markers of cardiometabolic risk. Nine hundred and fifty-four participants (mean age 55 years, 52% male) had information available on pulse oximetry and markers of cardiometabolic risk. Average oxyhemoglobin saturation was 90% (interquartile range 88%-92%) and 43 (4.5%) had excessive erythrocytosis. Older age, decreased height-adjusted lung function, and higher body mass index (BMI) were associated with having an oxyhemoglobin saturation ≤85%. When adjusting for age, sex, socioeconomic status, having excessive erythrocytosis, and site, we found that each 5% decrease in oxyhemoglobin saturation was associated with a higher adjusted odds of metabolic syndrome (OR = 1.35, 95% CI: 1.07-1.72, p 2 mass units (OR = 1.29, 95% CI: 1.00-1.67, p < 0.05), hemoglobin A1c ≥6.5% (OR = 1.66, 95% CI: 1.09-2.51, p < 0.04), and high sensitivity C-reactive protein (hs-CRP) ≥3 mg/L (OR = 1.46, 95% CI: 1.09-1.96, p < 0.01). In high-altitude populations in Puno, Peru, a higher BMI and lower pulmonary function were

  5. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  6. ACUTE PHASE PROTEIN INCREASE IN HIGH ALTITUDE MOUNTAINEERS

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    Full Text Available ABSTRACT Introduction: Many middle-aged Turks go hiking in mountains to breathe some fresh air or to maintain fitness. Objective: This study investigated the effects of regular high altitude mountain climbing on the metabolic and hematological responses of mountaineers. Methods: Hematological and biochemical parameters were studied, as well as some hormonal values of 21 mountaineers and 16 healthy age-matched sedentary volunteers. Results: The neutrophil to lymphocyte ratio (NLR was significantly lower (p<0.04 in mountaineers compared with the sedentary group. Total protein (p<0.001 and albumin (p<0.001 were lower, while the levels of ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase (p<0.01 were higher in mountaineers. Other hematological and biochemical parameters, i.e., erythrocytes, leukocytes, hemoglobin and hematocrit, did not change significantly. Conclusion: Our results show that regular exposure to high altitude increased the serum levels of some acute phase proteins with anti-inflammatory properties.

  7. United States high-altitude test experiences. A review emphasizing the impact on the environment

    International Nuclear Information System (INIS)

    Hoerlin, H.

    1976-06-01

    The US high-altitude nuclear explosions of the 1955-1962 period are listed chronologically; dates, locations, and yields are given. The major physical phases of the interactions of the weapon outputs with the atmosphere are described, such as the formation of fireballs at the low high-altitudes and the partition of energies and their distribution over very large spaces at the higher high-altitudes. The effects of these explosions on the normal activities of populations and the protective measures taken are documented. Many scientific observations, together with their significance and values, are reviewed. 109 refs

  8. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  9. Syndrome of Acute Anxiety Among Marines After Recent Arrival at High Altitude

    Science.gov (United States)

    2014-05-01

    Naval Health Research Center Syndrome of Acute Anxiety Among Marines After Recent Arrival at High Altitude Michael K. Sracic Darren Thomas...Allen Pate Jacob Norris Marc Norman, Jeffrey H. Gertsch Report No. 13-29 The views expressed in this article are those of the authors...MEDICINE, 179, 5:559, 2014 Syndrome of Acute Anxiety Among Marines After Recent Arrival at High Altitude LT Michael K. Sracic, MC USN*; LT Darren Thomas

  10. Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving.

    Science.gov (United States)

    Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R

    2015-08-15

    Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.

  11. Dark chocolate reduces endothelial dysfunction after successive breath-hold dives in cool water.

    Science.gov (United States)

    Theunissen, Sigrid; Schumacker, Julie; Guerrero, François; Tillmans, Frauke; Boutros, Antoine; Lambrechts, Kate; Mazur, Aleksandra; Pieri, Massimo; Germonpré, Peter; Balestra, Costantino

    2013-12-01

    The aim of this study is to observe the effects of dark chocolate on endothelial function after a series of successive apnea dives in non-thermoneutral water. Twenty breath-hold divers were divided into two groups: a control group (8 males and 2 females) and a chocolate group (9 males and 1 female). The control group was asked to perform a series of dives to 20 m adding up to 20 min in the quiet diving pool of Conflans-Ste-Honorine (Paris, France), water temperature was 27 °C. The chocolate group performed the dives 1 h after ingestion of 30 g of dark chocolate. Flow-mediated dilatation (FMD), digital photoplethysmography, nitric oxide (NO), and peroxynitrite ONOO−) levels were measured before and after each series of breath-hold dives. A significant decrease in FMD was observed in the control group after the dives (95.28 ± 2.9 % of pre-dive values, p chocolate group (104.1 ± 2.9 % of pre-dive values, p chocolate group (98.44 ± 31.86 %, p > 0.05). No differences in digital photoplethysmography and peroxynitrites were observed between before and after the dives. Antioxidants contained in dark chocolate scavenge free radicals produced during breath-hold diving. Ingestion of 30 g of dark chocolate 1 h before the dive can thus prevent endothelial dysfunction which can be observed after a series of breath-hold dives.

  12. μ-'Diving suit' for liquid-phase high-Q resonant detection.

    Science.gov (United States)

    Yu, Haitao; Chen, Ying; Xu, Pengcheng; Xu, Tiegang; Bao, Yuyang; Li, Xinxin

    2016-03-07

    A resonant cantilever sensor is, for the first time, dressed in a water-proof 'diving suit' for real-time bio/chemical detection in liquid. The μ-'diving suit' technology can effectively avoid not only unsustainable resonance due to heavy liquid-damping, but also inevitable nonspecific adsorption on the cantilever body. Such a novel technology ensures long-time high-Q resonance of the cantilever in solution environment for real-time trace-concentration bio/chemical detection and analysis. After the formation of the integrated resonant micro-cantilever, a patterned photoresist and hydrophobic parylene thin-film are sequentially formed on top of the cantilever as sacrificial layer and water-proof coat, respectively. After sacrificial-layer release, an air gap is formed between the parylene coat and the cantilever to protect the resonant cantilever from heavy liquid damping effect. Only a small sensing-pool area, located at the cantilever free-end and locally coated with specific sensing-material, is exposed to the liquid analyte for gravimetric detection. The specifically adsorbed analyte mass can be real-time detected by recording the frequency-shift signal. In order to secure vibration movement of the cantilever and, simultaneously, reject liquid leakage from the sensing-pool region, a hydrophobic parylene made narrow slit structure is designed surrounding the sensing-pool. The anti-leakage effect of the narrow slit and damping limited resonance Q-factor are modelled and optimally designed. Integrated with electro-thermal resonance excitation and piezoresistive frequency readout, the cantilever is embedded in a micro-fluidic chip to form a lab-chip micro-system for liquid-phase bio/chemical detection. Experimental results show the Q-factor of 23 in water and longer than 20 hours liquid-phase continuous working time. Loaded with two kinds of sensing-materials at the sensing-pools, two types of sensing chips successfully show real-time liquid-phase detection to ppb

  13. Foraging dives by post-breeding northern pintails

    Science.gov (United States)

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  14. Energy management strategy for solar-powered high-altitude long-endurance aircraft

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Liu, Jian-Xia; Chen, Xiao-Qian

    2013-01-01

    Highlights: ► A new Energy Management Strategy (EMS) for high-altitude solar-powered aircraft is purposed. ► The simulations show that the aircraft can always keep the altitude above 16 km with the proposed EMS. ► The proposed EMS is capable to alleviate the power consumed for aircraft during night. ► The main technologies to improve the flight performance of aircraft are analyzed. - Abstract: Development of solar-powered High-Altitude Long-Endurance (HALE) aircraft has a great impact on both military and civil aviation industries since its features in high-altitude and energy source can be considered inexhaustible. Owing to the development constraints of rechargeable batteries, the solar-powered HALE aircraft must take amount of rechargeable batteries to fulfill the energy requirement in night, which greatly limits the operation altitude of aircraft. In order to solve this problem, a new Energy Management Strategy (EMS) is proposed based on the idea that the solar energy can be partly stored in gravitational potential in daytime. The flight path of HALE aircraft is divided into three stages. During the stage 1, the solar energy is stored in both lithium–sulfur battery and gravitational potential. The gravitational potential is released in stage 2 by gravitational gliding and the required power in stage 3 is supplied by lithium–sulfur battery. Correspondingly, the EMS is designed for each stage. The simulation results show that the aircraft can always keep the altitude above 16 km with the proposed EMS, and the power consumed during night can be also alleviated. Comparing with the current EMS, about 23.5% energy is remained in batteries with the proposed EMS during one day–night cycle. The sensitivities of the improvement of crucial technologies to the performance of aircraft are also analyzed. The results show that the enhancement of control and structural system, lithium–sulfur battery, and solar cell are ranked in descending order for the

  15. Peripheral blood lymphocytes: a model for monitoring physiological adaptation to high altitude.

    Science.gov (United States)

    Mariggiò, Maria A; Falone, Stefano; Morabito, Caterina; Guarnieri, Simone; Mirabilio, Alessandro; Pilla, Raffaele; Bucciarelli, Tonino; Verratti, Vittore; Amicarelli, Fernanda

    2010-01-01

    Depending on the absolute altitude and the duration of exposure, a high altitude environment induces various cellular effects that are strictly related to changes in oxidative balance. In this study, we used in vitro isolated peripheral blood lymphocytes as biosensors to test the effect of hypobaric hypoxia on seven climbers by measuring the functional activity of these cells. Our data revealed that a 21-day exposure to high altitude (5000 m) (1) increased intracellular Ca(2+) concentration, (2) caused a significant decrease in mitochondrial membrane potential, and (3) despite possible transient increases in intracellular levels of reactive oxygen species, did not significantly change the antioxidant and/or oxidative damage-related status in lymphocytes and serum, assessed by measuring Trolox-equivalent antioxidant capacity, glutathione peroxidase activity, vitamin levels, and oxidatively modified proteins and lipids. Overall, these results suggest that high altitude might cause an impairment in adaptive antioxidant responses. This, in turn, could increase the risk of oxidative-stress-induced cellular damage. In addition, this study corroborates the use of peripheral blood lymphocytes as an easily handled model for monitoring adaptive response to environmental challenge.

  16. The Laddermill : Innovative Wind Energy from High Altitudes in Holland and Australia

    NARCIS (Netherlands)

    Lansdorp, B.; Williams, P.

    2006-01-01

    The Laddermill is a novel concept to harvest electricity from high altitude winds. The concept's operating principle is to drive an electric generator using tethered kites. Several kites are deployed to altitudes of more than 1 km by means of a single cable that is connected to a drum on the

  17. Diving response in rats: role of the subthalamic vasodilator area.

    Directory of Open Access Journals (Sweden)

    Eugene Golanov

    2016-09-01

    Full Text Available Diving response is a powerful integrative response targeted toward survival of the hypoxic/anoxic conditions. Being present in all animals and humans it allows to survive adverse conditions like diving. Earlier we discovered that forehead stimulation affords neuroprotective effect decreasing infarction volume triggered by permanent occlusion of the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead induces diving response in rats, which, in turn, exerts neuroprotection. We compared autonomic (AP, HR, CBF and EEG responses to the known diving response-triggering stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses in AP, HR, CBF and EEG to cold stimulation of the forehead and ammonia vapors instillation into the nasal cavity were comparable and differed significantly from responses to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator area, which is known to participate in CBF regulation and to afford neuroprotection upon excitation, failed to affect autonomic components of the diving response evoked by forehead cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimulation of the forehead triggers physiological response comparable to the response evoked by ammonia vapor instillation into the nasal cavity, which considered as stimulus triggering protective diving response. These observations may explain the neuroprotective effect of the forehead stimulation. Data demonstrate that subthalamic vasodilator area does not directly participate in the autonomic adjustments accompanying diving response, however, it is involved in diving-evoked modulation of EEG. We suggest that forehead stimulation can be employed as a stimulus capable of triggering oxygen-conserving diving response and can be used for neuroprotective therapy.

  18. The structure of high altitude O+ energization and outflow: a case study

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2004-07-01

    Full Text Available Multi-spacecraft observations from the CIS ion spectrometers on board the Cluster spacecraft have been used to study the structure of high-altitude oxygen ion energization and outflow. A case study taken from 12 April 2004 is discussed in more detail. In this case the spacecraft crossed the polar cap, mantle and high-altitude cusp region at altitudes between 4RE and 8RE and 2 of the spacecraft provided data. The oxygen ions were seen as a beam with narrow energy distribution, and increasing field-aligned velocity and temperature at higher altitude further in the upstream flow direction. The peak O+ energy was typically just above the highest energy of observed protons. The observed energies reached the upper limit of the CIS ion spectrometer, i.e. 38keV. Moment data from the spacecraft have been cross-correlated to determine cross-correlation coefficients, as well as the phase delay between the spacecraft. Structures in ion density, temperature and field-aligned flow appear to drift with the observed field-perpendicular drift. This, together with a velocity dispersion analysis, indicates that much of the structure can be explained by transverse heating well below the spacecraft. However, temperature isotropy and the particle flux as a function of field-aligned velocity are inconsistent with a single altitude Maxwellian source. Heating over extended altitude intervals, possibly all the way up to the observation point, seem consistent with the observations.

  19. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  20. Numerical research on the thermal performance of high altitude scientific balloons

    International Nuclear Information System (INIS)

    Dai, Qiumin; Xing, Daoming; Fang, Xiande; Zhao, Yingjie

    2017-01-01

    Highlights: • A model is presented to evaluate the IR radiation between translucent surfaces. • Comprehensive ascent and thermal models of balloons are established. • The effect of IR transmissivity on film temperature distribution is unneglectable. • Atmospheric IR radiation is the primary thermal factor of balloons at night. • Solar radiation is the primary thermal factor of balloons during the day. - Abstract: Internal infrared (IR) radiation is an important factor that affects the thermal performance of high altitude balloons. The internal IR radiation is commonly neglected or treated as the IR radiation between opaque gray bodies. In this paper, a mathematical model which considers the IR transmissivity of the film is proposed to estimate the internal IR radiation. Comprehensive ascent and thermal models for high altitude scientific balloons are established. Based on the models, thermal characteristics of a NASA super pressure balloon are simulated. The effects of film IR property on the thermal behaviors of the balloon are discussed in detail. The results are helpful for the design and operation of high altitude scientific balloons.

  1. 29 CFR 1926.1076 - Qualifications of dive team.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Qualifications of dive team. 1926.1076 Section 1926.1076 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1076 Qualifications of dive team. Note: The requirements applicable to construction work under...

  2. Winter and spring diving behavior of bowhead whales relative to prey

    KAUST Repository

    Heide-Jørgensen, Mads

    2013-10-23

    Background Little is known about bowhead whale (Balaena mysticetus) foraging behavior and what concentrations of prey are required to balance the energetic trade-offs of feeding. We used satellite telemetry, archival depth recorders, and water column echo sounding data to study bowhead whale diving behavior relative to prey depth and concentration in Disko Bay, West Greenland. Results Between March and May 2008 to 2011, nine bowhead whales were tagged in Disko Bay, West Greenland with instruments that collected data on location and diving over a period of 1 to 33 days. The frequency of U-dives (presumed to be foraging dives) was low during winter months but more than doubled in spring concurrent with a decrease in diving depth. The mean speed of the horizontal bottom phase of the U-dives was 0.9 ms-1 and on average, whales spent 37% of their time at the bottom phase of the dive. In March, bowhead whales presumably fed on copepods (Calanus spp.) close to the seabed (between 100 and 400 m). In April and May, after the copepods ascended to shallower depths, bowhead whales also dove to shallower depths (approximately 30 m) more often. However, echo sounding surveys in the vicinity of feeding whales in early May indicated that patches of copepods could still be found close to the seabed. Conclusions There was a marked change in diving behavior from winter through spring and this was likely in response to the changes in sea ice conditions, primary production and potential copepod abundance in the upper part of the water column. Depth and duration of dives changed significantly during this period; however, other dive parameters (for example the proportion of time spent feeding on the bottom of U-dives) remained fairly constant indicating a constant feeding effort. Bowhead whales target copepods at or close to the seabed in winter months in Disko Bay and continue feeding on copepods when they migrate to the surface. However, bowhead whales leave West Greenland before peak

  3. Suicidal nitrogen inhalation by use of scuba full-face diving mask.

    Science.gov (United States)

    Straka, Lubomir; Novomesky, Frantisek; Gavel, Anton; Mlynar, Juraj; Hejna, Petr

    2013-09-01

    A 29-year-old man was found dead lying on the bed in a hotel room in a famous Slovak mountain resort. He had a full-face diving mask on his face, connected through a diving breath regulator to a valve of an industrial (nondiving) high-pressure tank containing pure 100% nitrogen. The breath regulator (open-circuit type) used allowed inhalation of nitrogen without addition of open air, and the full-face diving mask assured aspiration of the gas even during the time of unconsciousness. At autopsy, we found the typical signs of suffocation. Toxicological analysis revealed 94.7% content of nitrogen in alveolar air. Following the completion of the police investigation, the manner of death was classified as a suicide. Within the medico-legal literature, there has been only one similar case of suicidal nitrogen inhalation described. © 2013 American Academy of Forensic Sciences.

  4. Dose-response of altitude training: how much altitude is enough?

    Science.gov (United States)

    Levine, Benjamin D; Stray-Gundersen, James

    2006-01-01

    Altitude training continues to be a key adjunctive aid for the training of competitive athletes throughout the world. Over the past decade, evidence has accumulated from many groups of investigators that the "living high--training low" approach to altitude training provides the most robust and reliable performance enhancements. The success of this strategy depends on two key features: 1) living high enough, for enough hours per day, for a long enough period of time, to initiate and sustain an erythropoietic effect of high altitude; and 2) training low enough to allow maximal quality of high intensity workouts, requiring high rates of sustained oxidative flux. Because of the relatively limited access to environments where such a strategy can be practically applied, numerous devices have been developed to "bring the mountain to the athlete," which has raised the key issue of the appropriate "dose" of altitude required to stimulate an acclimatization response and performance enhancement. These include devices using molecular sieve technology to provide a normobaric hypoxic living or sleeping environment, approaches using very high altitudes (5,500m) for shorter periods of time during the day, and "intermittent hypoxic training" involving breathing very hypoxic gas mixtures for alternating 5 minutes periods over the course of 60-90 minutes. Unfortunately, objective testing of the strategies employing short term (less than 4 hours) normobaric or hypobaric hypoxia has failed to demonstrate an advantage of these techniques. Moreover individual variability of the response to even the best of living high--training low strategies has been great, and the mechanisms behind this variability remain obscure. Future research efforts will need to focus on defining the optimal dosing strategy for these devices, and determining the underlying mechanisms of the individual variability so as to enable the individualized "prescription" of altitude exposure to optimize the performance of

  5. No Change in Running Mechanics With Live High-Train Low Altitude Training in Elite Distance Runners.

    Science.gov (United States)

    Stickford, Abigail S L; Wilhite, Daniel P; Chapman, Robert F

    2017-01-01

    Investigations into ventilatory, metabolic, and hematological changes with altitude training have been completed; however, there is a lack of research exploring potential gait-kinematic changes after altitude training, despite a common complaint of athletes being a lack of leg "turnover" on return from altitude training. To determine if select kinematic variables changed in a group of elite distance runners after 4 wk of altitude training. Six elite male distance runners completed a 28-d altitude-training intervention in Flagstaff, AZ (2150 m), following a modified "live high-train low" model, wherein higherintensity runs were performed at lower altitudes (945-1150 m) and low-intensity sessions were completed at higher altitudes (1950-2850 m). Gait parameters were measured 2-9 d before departure to altitude and 1 to 2 d after returning to sea level at running speeds of 300-360 m/min. No differences were found in ground-contact time, swing time, or stride length or frequency after altitude training (P > .05). Running mechanics are not affected by chronic altitude training in elite distance runners. The data suggest that either chronic training at altitude truly has no effect on running mechanics or completing the live high-train low model of altitude training, where higher-velocity workouts are completed at lower elevations, mitigates any negative mechanical adaptations that may be associated with chronic training at slower speeds.

  6. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  7. Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians.

    Directory of Open Access Journals (Sweden)

    Jinchuan Xing

    Full Text Available Deedu (DU Mongolians, who migrated from the Mongolian steppes to the Qinghai-Tibetan Plateau approximately 500 years ago, are challenged by environmental conditions similar to native Tibetan highlanders. Identification of adaptive genetic factors in this population could provide insight into coordinated physiological responses to this environment. Here we examine genomic and phenotypic variation in this unique population and present the first complete analysis of a Mongolian whole-genome sequence. High-density SNP array data demonstrate that DU Mongolians share genetic ancestry with other Mongolian as well as Tibetan populations, specifically in genomic regions related with adaptation to high altitude. Several selection candidate genes identified in DU Mongolians are shared with other Asian groups (e.g., EDAR, neighboring Tibetan populations (including high-altitude candidates EPAS1, PKLR, and CYP2E1, as well as genes previously hypothesized to be associated with metabolic adaptation (e.g., PPARG. Hemoglobin concentration, a trait associated with high-altitude adaptation in Tibetans, is at an intermediate level in DU Mongolians compared to Tibetans and Han Chinese at comparable altitude. Whole-genome sequence from a DU Mongolian (Tianjiao1 shows that about 2% of the genomic variants, including more than 300 protein-coding changes, are specific to this individual. Our analyses of DU Mongolians and the first Mongolian genome provide valuable insight into genetic adaptation to extreme environments.

  8. Prevalence of high altitude pulmonary hypertension among the natives of Spiti Valley--a high altitude region in Himachal Pradesh, India.

    Science.gov (United States)

    Negi, Prakash Chand; Marwaha, Rajeev; Asotra, Sanjeev; Kandoria, Arvind; Ganju, Neeraj; Sharma, Rajesh; Kumar, Ravi V; Bhardwaj, Rajeev

    2014-12-01

    The study aimed to determine the prevalence of high altitude pulmonary hypertension (HAPH) and its predisposing factors among natives of Spiti Valley. A cross-sectional survey study was done on the permanent natives of Spiti Valley residing at an altitude of 3000 m to 4200 m. Demographic characteristics, health behavior, anthropometrics, and blood pressure were recorded. Investigations included recording of 12 lead electrocardiogram (ECG), SaO2 with pulse oximeter, spirometry and echocardiography study, and measurement of Hb levels using the cynmethhemoglobin method. HAPH was diagnosed using criteria; tricuspid regurgitation (TR) gradient of ≥46 mmHg. ECG evidence of RV overload on 12 lead ECG was documented based on presence of 2 out of 3 criteria; R>S in V1, right axis deviation or RV strain, T wave inversion in V1 and V2. Data of 1087 subjects were analyzed who were free of cardiorespiratory diseases to determine the prevalence of HAPH and its predisposing factors. HAPH was recorded in 3.23% (95% C.I. of 0.9-8.1%) and ECG evidence of right ventricular (RV) overload was 1.5% in the study population. Prevalence of HAPH was not different in men and women 2.63% vs. 3.54% p<0.2. Age (Z statistics of 3.4 p<0.0006), hypoxemia (Z statistics of 2.9 p<0.002), and erythrocythemia (Z statistics of 4.7 p<0.003) were independently associated with HAPH. Altitude of residence was not found to be significantly associated with HAPH, although there was a trend of increasing prevalence with increasing altitude. It can be concluded that HAPH is prevalent in 3.23% of natives of Spiti Valley. Increasing age, erythrocythemia and hypoxemia are independent predisposing factors.

  9. Tests of the Daimler D-IVa Engine at a High Altitude Test Bench

    Science.gov (United States)

    Noack, W G

    1920-01-01

    Reports of tests of a Daimler IVa engine at the test-bench at Friedrichshafen, show that the decrease of power of that engine, at high altitudes, was established, and that the manner of its working when air is supplied at a certain pressure was explained. These tests were preparatory to the installation of compressors in giant aircraft for the purpose of maintaining constant power at high altitudes.

  10. Asthma in Patients Climbing to High and Extreme Altitudes in the Tibetan Everest Region

    NARCIS (Netherlands)

    Huismans, Henrike K.; Douma, W. Rob; Kerstjens, Huib A. M.; Renkema, Tineke E. J.

    Objectives: The aim of this study was to investigate the behavior of asthma in patients traveling to high and extreme altitudes. Methods: Twenty-four Dutch patients with mild asthma did a trekking at high and extreme altitudes (up to 6410 m = 21030 ft) in the Tibetan Everest region. Asthma symptoms,

  11. Mental abilities and performance efficacy under a simulated 480 meters helium-oxygen saturation diving

    Directory of Open Access Journals (Sweden)

    gonglin ehou

    2015-07-01

    Full Text Available Stress in extreme environment severely disrupts human physiology and mental abilities. The present study investigated the cognition and performance efficacy of four divers during a simulated 480 meters helium-oxygen saturation diving. We analyzed the spatial memory, 2D/3D mental rotation functioning, grip strength, and hand-eye coordination ability in four divers during the 0 – 480 meters compression and decompression processes of the simulated diving. The results showed that except for its mild decrease on grip strength, the high atmosphere pressure condition significantly impaired the hand-eye coordination (especially at 300 meters, the reaction time and correct rate of mental rotation, as well as the spatial memory (especially as 410 meters, showing high individual variability. We conclude that the human cognition and performance efficacy are significantly affected during deep water saturation diving.

  12. A method for sampling microbial aerosols using high altitude balloons.

    Science.gov (United States)

    Bryan, N C; Stewart, M; Granger, D; Guzik, T G; Christner, B C

    2014-12-01

    Owing to the challenges posed to microbial aerosol sampling at high altitudes, very little is known about the abundance, diversity, and extent of microbial taxa in the Earth-atmosphere system. To directly address this knowledge gap, we designed, constructed, and tested a system that passively samples aerosols during ascent through the atmosphere while tethered to a helium-filled latex sounding balloon. The sampling payload is ~ 2.7 kg and comprised of an electronics box and three sampling chambers (one serving as a procedural control). Each chamber is sealed with retractable doors that can be commanded to open and close at designated altitudes. The payload is deployed together with radio beacons that transmit GPS coordinates (latitude, longitude and altitude) in real time for tracking and recovery. A cut mechanism separates the payload string from the balloon at any desired altitude, returning all equipment safely to the ground on a parachute. When the chambers are opened, aerosol sampling is performed using the Rotorod® collection method (40 rods per chamber), with each rod passing through 0.035 m3 per km of altitude sampled. Based on quality control measurements, the collection of ~ 100 cells rod(-1) provided a 3-sigma confidence level of detection. The payload system described can be mated with any type of balloon platform and provides a tool for characterizing the vertical distribution of microorganisms in the troposphere and stratosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Signatures of electric fields from high and low altitude particle distributions

    International Nuclear Information System (INIS)

    Mizera, P.F.; Fennell, J.F.

    1977-01-01

    Measurements of high altitude (<1.3 R/sub e/) ions and electrons at auroral energies are used to provide evidence of parallel electric field acceleration over the dusk to midnight auroral regions for both the north and south hemispheres. The data, taken on August 12, 1976 by charged particle spectrometers on the S3-3 satellite, show evidence of potential differences of approx.2 kV below and approx.1 kV above a satellite altitude of 7300 km

  14. Certification and safety aspects relating to the transport of passengers on high altitude balloons in Europe

    Science.gov (United States)

    Schoenmaker, Annelie

    2014-07-01

    High-altitude balloons typically fly between 25 and 50 km in altitude, which, while below the Karman line of 100 km, is yet far above the altitudes typically flown by aircraft. For example, the highest-flying commercial aircraft - the Concorde - had a maximum cruising altitude of only 18 km. zero2infinity, a Spanish company, is currently developing a pressurized pod named “bloon” which will be capable of lifting six people, including two pilot crew members and four paying passengers, to an altitude of 36 km through the use of high-altitude balloons. The boundary between Airspace and Outer Space has never been legally defined, mostly because of the lack of activities taking place between the altitude where airplanes fly and the lowest orbiting spacecraft. High-altitude balloons do fly at these in-between altitudes and the prospect of commercializing access to these parts of the stratosphere poses some questions in a new light. Given the relatively low altitude at which they fly, it may well be that these types of balloons would be considered to operate exclusively within air space. However, given the technology involved in crewed high altitude balloon flights, which is more similar to spacecraft engineering than to traditional hot-air or gas ballooning, it is necessary to evaluate the various legal regimes, codes, and regulations that would apply to such flights, especially regarding licenses and liabilities. For high altitude balloon flights commencing in Europe, the European Aviation Safety Agency (EASA) would very likely be the competent certification or licensing agency for these flights, although there would likely be input from various national aviation authorities as well. However, because the European Commission (EC) has not yet issued regulations regarding commercial spaceflight, particularly the use of high altitude balloons, new rules and regulations governing such flights may still need to be drafted and promulgated. With the development of

  15. First aid kits for recreational dive boats, what should they contain?

    Science.gov (United States)

    Pye, Jacqueline; Greenhalgh, Trisha

    2010-09-01

    Well-equipped first-aid kits are necessary but not always provided on recreational dive boats. We aimed to review the types of illness and injury likely to be encountered on such boats and inform a content list for such kits. We conducted a 3-round Delphi study by email using a volunteer panel of 18 experts drawn from diving, dive medicine and nursing. In round 1, panellists shared examples of illnesses and injuries they had come across personally. These scenarios were circulated along with findings from a literature review, including existing recommendations. In rounds 2 and 3, the list of kit for dive boats in different settings was iteratively refined through online discussion and feedback. Passengers and crew on recreational dive boats may encounter a range of medical problems from minor injuries to serious accidents and non-dive-related illnesses. Recommended kit varied depending on context and setting (e.g. distance from land, qualifications and experience of crew). Consensus was quickly reached on key first-aid items but experts' views on emergency medicines differed. The study highlights the diversity of medical problems encountered on recreational dive boats. We offer preliminary guidance on the content of suitable first-aid kits and suggest areas for further research. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. S-40: Acute Phase Protein Increse in High Altitude Mountaineers

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    2017-03-01

    Full Text Available “Erciyes Tigers” are an elite group of high altitude climbers. They have been climbing ErciyesMountain (3500 m, in Kayseri, Turkey once a week at least for ten years. When they climb Erciyes in winter, they also take a snow bath. This study investigated the effects of regular high altitude climbing on the metabolic and hematological responses of mountaineers. Venous blood samples were taken to investigate hematological, biochemical parameters and some hormone values from 21 mountaineers and 16 healthy age-matched sedentary volunteers at resting condition. The neutrophil/lymphocyte (N/L ratio was calculated. The N/L was associated with an increased risk of long-term mortality and it could provide a good measure of exercise stress and subsequent recovery. Most of the hematological and biochemical parameters i.e., erythrocyte, leukocyte, hemoglobin and hematocrit values did not change significantly. The neutrophil to lymphocyte (N/L ratio was significantly (p<0.04 decreased in the mountaineer compared with the sedentary group. Total protein (p<0.000 and albumin (0.001 were lower, while ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase levels (p<0.01 were higher in mountaineers. Our results show that regular high altitude climbing increased serum levels of some acute-phase proteins and these increments were not transient.

  17. Judging complex movement performances for excellence: a principal components analysis-based technique applied to competitive diving.

    Science.gov (United States)

    Young, Cole; Reinkensmeyer, David J

    2014-08-01

    Athletes rely on subjective assessment of complex movements from coaches and judges to improve their motor skills. In some sports, such as diving, snowboard half pipe, gymnastics, and figure skating, subjective scoring forms the basis for competition. It is currently unclear whether this scoring process can be mathematically modeled; doing so could provide insight into what motor skill is. Principal components analysis has been proposed as a motion analysis method for identifying fundamental units of coordination. We used PCA to analyze movement quality of dives taken from USA Diving's 2009 World Team Selection Camp, first identifying eigenpostures associated with dives, and then using the eigenpostures and their temporal weighting coefficients, as well as elements commonly assumed to affect scoring - gross body path, splash area, and board tip motion - to identify eigendives. Within this eigendive space we predicted actual judges' scores using linear regression. This technique rated dives with accuracy comparable to the human judges. The temporal weighting of the eigenpostures, body center path, splash area, and board tip motion affected the score, but not the eigenpostures themselves. These results illustrate that (1) subjective scoring in a competitive diving event can be mathematically modeled; (2) the elements commonly assumed to affect dive scoring actually do affect scoring (3) skill in elite diving is more associated with the gross body path and the effect of the movement on the board and water than the units of coordination that PCA extracts, which might reflect the high level of technique these divers had achieved. We also illustrate how eigendives can be used to produce dive animations that an observer can distort continuously from poor to excellent, which is a novel approach to performance visualization. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. 50 CFR 640.22 - Gear and diving restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear and diving restrictions. 640.22... ATLANTIC Management Measures § 640.22 Gear and diving restrictions. (a) Prohibited gear and methods. (1) A spiny lobster may not be taken in the EEZ with a spear, hook, or similar device, or gear containing such...

  19. Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.

    Science.gov (United States)

    Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori

    2017-08-01

    Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.

  20. THE INFLUENCE OF AUTONOMOUS DIVING ON SENSES AND MENTAL PROCESSES

    OpenAIRE

    Dragan Krivokapić

    2010-01-01

    Diving is classified within a group of sports accompanied with an increased risk, yet it is a sport of full biological significance. Diving implies change of immediate human environment. Water, as the natural ambient for diving issues specific demands to the organism, which in turn influence decrease in psychophysical abilities when underwater, and in some instances, immediately after emerging from it. The most important factors influencing decrease in psychophysical abilities are: immersion,...

  1. Water level changes of high altitude lakes in Himalaya–Karakoram ...

    Indian Academy of Sciences (India)

    2Department of Geology, University of Pune, Pune 411 007, India. 3Chhattisgarh Council of .... influenced by three climate patterns as categorized by precipitation regime: (1) ... Water level changes of high altitude lakes in Himalaya–Karakoram. 1535 ...... mate warming and growth of high elevation inland lakes on the ...

  2. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.

    Science.gov (United States)

    Chapman, Robert F; Karlsen, Trine; Resaland, Geir K; Ge, R-L; Harber, Matthew P; Witkowski, Sarah; Stray-Gundersen, James; Levine, Benjamin D

    2014-03-15

    Chronic living at altitudes of ∼2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hematological acclimatization, compared with athletes living at lower altitudes. After 4 wk of group sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m). All athletes trained together daily at a common altitude from 1,250-3,000 m following a modified live high-train low model. Subjects completed hematological, metabolic, and performance measures at sea level, before and after altitude training; EPO was assessed at various time points while at altitude. On return from altitude, 3,000-m time trial performance was significantly improved in groups living at the middle two altitudes (2,085 and 2,454 m), but not in groups living at 1,780 and 2,800 m. EPO was significantly higher in all groups at 24 and 48 h, but returned to sea level baseline after 72 h in the 1,780-m group. Erythrocyte volume was significantly higher within all groups after return from altitude and was not different between groups. These data suggest that, when completing a 4-wk altitude camp following the live high-train low model, there is a target altitude between 2,000 and 2,500 m that produces an optimal acclimatization response for sea level performance.

  3. Food Abundance Is the Main Determinant of High-Altitude Range Use in Snub-Nosed Monkeys

    Directory of Open Access Journals (Sweden)

    Cyril C. Grueter

    2012-01-01

    Full Text Available High-altitude dwelling primates have to optimize navigating a space that contains both a vertical and horizontal component. Black-and-white or Yunnan snub-nosed monkeys (Rhinopithecus bieti are extreme by primate standards in inhabiting relatively cold subalpine temperate forests at very high altitudes where large seasonal variation in climate and food availability is expected to profoundly modulate their ranging strategies so as to ensure a positive energy balance. A “semi-nomadic” group of R. bieti was followed for 20 months in the montane Samage Forest, Baimaxueshan Nature Reserve, Yunnan, PRC, which consisted of evergreen conifers, oaks, and deciduous broadleaf trees. The aim of this study was to disentangle the effects of climate and phenology on patterns of altitudinal range use. Altitude used by the group ranged from a maximum of 3550 m in July 2007 to a minimum of 3060 m in April 2006. The proportional use of lichen, the monkeys’ staple fallback food, in the diet explained more variation in monthly use of altitudes than climatic factors and availability of flush and fruit. The abundance of lichens at high altitudes, the lack of alternative foods in winter, and the need to satisfy the monkey's basal energetic requirements explain the effect of lichenivory on use of altitudes.

  4. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    Science.gov (United States)

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  5. The lactate paradox revisited in lowlanders during acclimatization to 4100 m and in high-altitude natives

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Lundby, C; Araoz, M

    2009-01-01

    Chronic hypoxia has been proposed to induce a closer coupling in human skeletal muscle between ATP utilization and production in both lowlanders (LN) acclimatizing to high altitude and high-altitude natives (HAN), linked with an improved match between pyruvate availability and its use...... and remained at this higher level during the acclimatization period. HAN had similar high values; however, at the moment of exhaustion their muscle lactate, ADP and IMP content and Cr/PCr ratio were higher than in LN. In conclusion, sea-level residents in the course of acclimatization to high altitude did...... not exhibit a reduced capacity for the active muscle to produce lactate. Thus, the lactate paradox concept could not be demonstrated. High-altitude natives from the Andes actually exhibit a higher anaerobic energy production than lowlanders after 8 weeks of acclimatization reflected by an increased muscle...

  6. Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS

    Directory of Open Access Journals (Sweden)

    A. Korth

    2005-07-01

    Full Text Available The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE and high-latitude (from 70 to ~90 deg invariant latitude, ILAT polar region. The principal results are: (1 Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2 at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft; (3 however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region. Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions

  7. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  8. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming...

  9. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    OpenAIRE

    Gaurav Sikri, Gaurav; Bhattacharya,Anirban

    2015-01-01

    Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-alti...

  10. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons

    Data.gov (United States)

    National Aeronautics and Space Administration — The project objective is to develop and test a sub-scale version of the Maraia Entry Capsule on a high altitude balloon. The capsule is released at 100,000 ft. The...

  11. Antioxidants may Attenuate Plasma Erythropoietin Decline after Hyperbaric Oxygen Diving.

    Science.gov (United States)

    Mutzbauer, T S; Schneider, M; Neubauer, B; Weiss, M; Tetzlaff, K

    2015-11-01

    According to previous studies, plasma erythropoietin (EPO) may decrease after hyperbaric oxygen exposure due to oxidative stress. It is hypothesized that the decrease of EPO can be attenuated by oxygen free radical scavengers.The aim of the present study was to evaluate whether EPO plasma levels can be influenced by oral application of vitamin C and E before repeated hyperbaric oxygen exposure during diving. 16 healthy male police task force divers performed 3 morning dives on oxygen within a regular diving schedule on 3 consecutive days. They were randomized into either the placebo group or the vitamin group, receiving 1 g ascorbic acid and 600 IU D-α-tocopherol orally 60 min before the dive. Blood samples for EPO measurement were taken on days 1, 2, and 3 at T1, T3 and T5 60 min before and at T2, T4 and T6 60 min after each dive, respectively. A moderate decrease of EPO was observed beginning at T3 until T6 in the placebo group. The EPO concentrations in the vitamin group did not show relevant variations compared to baseline. Radical scavenging vitamins C and D may counteract hyperbaric oxygen related mechanisms reducing EPO production in hyperbaric oxygen exposure during diving. © Georg Thieme Verlag KG Stuttgart · New York.

  12. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    Science.gov (United States)

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  13. Diving under a microscope--a new simple and versatile in vitro diving device for fluorescence and confocal microscopy allowing the controls of hydrostatic pressure, gas pressures, and kinetics of gas saturation.

    Science.gov (United States)

    Wang, Qiong; Belhomme, Marc; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Theron, Michaël

    2013-06-01

    How underwater diving effects the function of the arterial wall and the activities of endothelial cells is the focus of recent studies on decompression sickness. Here we describe an in vitro diving system constructed to achieve real-time monitoring of cell activity during simulated dives under fluorescent microscopy and confocal microscopy. A 1-mL chamber with sapphire windows on both sides and located on the stage of an inverted microscope was built to allow in vitro diving simulation of isolated cells or arteries in which activities during diving are monitored in real-time via fluorescent microscopy and confocal microscopy. Speed of compression and decompression can range from 20 to 2000 kPa/min, allowing systemic pressure to range up to 6500 kPa. Diving temperature is controlled at 37°C. During air dive simulation oxygen partial pressure is optically monitored. Perfusion speed can range from 0.05 to 10 mL/min. The system can support physiological viability of in vitro samples for real-time monitoring of cellular activity during diving. It allows regulations of pressure, speeds of compression and decompression, temperature, gas saturation, and perfusion speed. It will be a valuable tool for hyperbaric research.

  14. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a

  15. Scuba Diving and Kinesiology: Development of an Academic Program

    Science.gov (United States)

    Kovacs, Christopher R.; Walter, Daniel

    2015-01-01

    The use of scuba diving as a recreational activity within traditional university instructional programs has been well established. Departments focusing on kinesiology, physical education, or exercise science have often provided scuba diving lessons as part of their activity-based course offerings. However, few departments have developed an…

  16. Predator-prey interaction reveals local effects of high-altitude insect migration

    Science.gov (United States)

    High-altitude nocturnal insect migrations represent significant pulses of resources, yet are difficult to study and poorly understood. Predator-prey interactions, specifically migratory moth consumption by high-flying bats, potentially reveal flows of migratory insects across a landscape. In North...

  17. Key issues of ultraviolet radiation of OH at high altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing [State Key Laboratory of High Temperature Gasdynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  18. THE INFLUENCE OF AUTONOMOUS DIVING ON SENSES AND MENTAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2010-09-01

    Full Text Available Diving is classified within a group of sports accompanied with an increased risk, yet it is a sport of full biological significance. Diving implies change of immediate human environment. Water, as the natural ambient for diving issues specific demands to the organism, which in turn influence decrease in psychophysical abilities when underwater, and in some instances, immediately after emerging from it. The most important factors influencing decrease in psychophysical abilities are: immersion, increased ambient pressure, characteristics of diving equipment and atmosphere separation. The senses and the mental processes of the diver are significantly altered during the autonomous diving. Loss of self-weight perception and pressure put on joints cause disorders in function of kinesthetic senses and vestibular apparatus, which in turn becomes reflected on proprioception. Coldness of water, especially at grater depths, induces decline in pain sensation as well as in aptness and mobility of fingers. Sight remains normal, but the image received is slightly changed due to refraction of light on boundary surfaces. Visual field is narrowed down to fit the limited diving mask field of view. At the same time, diffusion of light and color absorption brings about the loss of both ability to perceive things and contrasts when at depths .Objects tend to appear bigger and closer underwater. Hearing is changed owing to the fact that the sound is not carried through the air but through the water, yet the speed of transmission causes only slight difference of left and right ear stimulation. Mental processes, informationassessment, creation of clear mental images of the actual moment, abstract thinking, decision making, etc. are not effective and precise. This state can be partly ascribed to the above mentioned problems with senses, partly to the greater influence of emotional as opposed to rational, but also to the narcotic effect of nitrogen that is produced while

  19. High Altitude Remains Associated with Elevated Suicide Rates after Adjusting for Socioeconomic Status: A Study from South Korea

    OpenAIRE

    Kim, Jaelim; Choi, Nari; Lee, Yu-Jin; An, Hyonggin; Kim, Namkug; Yoon, Ho-Kyoung; Lee, Heon-Jeong

    2014-01-01

    There have been several studies supporting a possible relationship between high suicide rate and high altitude. However socioeconomic status may confound this association because low socioeconomic status, which is known to be related to a high suicide rate, is also associated with living at high altitude. This study aims to explore whether the relationship between high altitude and high suicide rate remains after adjusting for socioeconomic status in South Korea. We collected demographic data...

  20. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  1. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.

    Science.gov (United States)

    Mahalingam, Sajeni; McClelland, Grant B; Scott, Graham R

    2017-07-15

    Mitochondrial function changes over time at high altitudes, but the potential benefits of these changes for hypoxia resistance remains unclear. We used high-altitude-adapted populations of deer mice, which exhibit enhanced aerobic performance in hypoxia, to examine whether changes in mitochondrial physiology or intracellular distribution in the muscle contribute to hypoxia resistance. Permeabilized muscle fibres from the gastrocnemius muscle had higher respiratory capacities in high-altitude mice than in low-altitude mice. Highlanders also had higher mitochondrial volume densities, due entirely to an enriched abundance of subsarcolemmal mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. There were several effects of hypoxia acclimation on mitochondrial function, some of which were population specific, but they differed from the evolved changes in high-altitude natives, which probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. High-altitude natives that have evolved to live in hypoxic environments provide a compelling system to understand how animals can overcome impairments in oxygen availability. We examined whether these include changes in mitochondrial physiology or intracellular distribution that contribute to hypoxia resistance in high-altitude deer mice (Peromyscus maniculatus). Mice from populations native to high and low altitudes were born and raised in captivity, and as adults were acclimated to normoxia or hypobaric hypoxia (equivalent to 4300 m elevation). We found that highlanders had higher respiratory capacities in the gastrocnemius (but not soleus) muscle than lowlanders (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), due in large part to higher mitochondrial volume densities in the gastrocnemius. The latter was attributed to an increased abundance of subsarcolemmal

  2. To what extent might N2 limit dive performance in king penguins?

    Science.gov (United States)

    Fahlman, A; Schmidt, A; Jones, D R; Bostrom, B L; Handrich, Y

    2007-10-01

    A mathematical model was used to explore if elevated levels of N2, and risk of decompression sickness (DCS), could limit dive performance (duration and depth) in king penguins (Aptenodytes patagonicus). The model allowed prediction of blood and tissue (central circulation, muscle, brain and fat) N2 tensions (P(N2)) based on different cardiac outputs and blood flow distributions. Estimated mixed venous P(N2) agreed with values observed during forced dives in a compression chamber used to validate the assumptions of the model. During bouts of foraging dives, estimated mixed venous and tissue P(N2) increased as the bout progressed. Estimated mean maximum mixed venous P(N2) upon return to the surface after a dive was 4.56+/-0.18 atmospheres absolute (ATA; range: 4.37-4.78 ATA). This is equivalent to N2 levels causing a 50% DCS incidence in terrestrial animals of similar mass. Bout termination events were not associated with extreme mixed venous N2 levels. Fat P(N2) was positively correlated with bout duration and the highest estimated fat P(N2) occurred at the end of a dive bout. The model suggested that short and shallow dives occurring between dive bouts help to reduce supersaturation and thereby DCS risk. Furthermore, adipose tissue could also help reduce DCS risk during the first few dives in a bout by functioning as a sink to buffer extreme levels of N2.

  3. NEURO ENGINEERING TECHNOLOGY TO ACCELERATE THE HUMAN ADAPTATION TO HIGH ALTITUDE HYPOXIA

    Directory of Open Access Journals (Sweden)

    Mukhamed T. Shaov

    2018-01-01

    Full Text Available Abstract. The aim is to study the influence of neuro-information signals modulated by pulse hypoxia on the rhythm of cardiac contractions in low-mountain and high-mountain conditions. Methods. Heart rate was measured using the pulse oxymetry device ELOX-01M2. The impact analysis of information-wave signals was carried out with the help of the neuro-protector "Anthropotherapist", non-invasively (remotely at a distance of up to 5 meters for 5 min. /day during 10 days. The investigations were carried out in lowmountain conditions (city of Nalchik, 550 m above sea level and highlands, Mount Elbrus (site of "Garabashi", 3780 m. above sea level. Participants in the study were divided into groups: control group – 18 participants; experimental group - 18 participants. In the low-mountain and high-mountain conditions, the control group was not affected by the neuro-protector. In high-mountain conditions, the participants in the control group experienced only the effects of high-altitude hypoxia sessions. The experimental group was exposed to the neuro-information signals from the neuro-protector. High-altitude studies were carried out in the following mode: heart rate was recorded at the altitudes of Nalchik - exit to Elbrus – on the way to the site of "Garabashi" - return route to Nalchik. Results. It was found that with frequency exposure, there is a significant decrease and fluctuations in heart rate in low-mountain inhabitants. The stability of these changes in the rhythm of cardiac activity can also be seen in conditions of high-altitude hypoxia. Conclusion. Consequently, the proposed mode of frequency impact, implemented using the "Anthropotherapist" neuro-protector technology, can form a stage of adaptation to hypoxia and unfavorable climatic and environmental factors.

  4. Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment.

    Science.gov (United States)

    Zhou, Baozhu; Li, Maoxing; Cao, Xinyuan; Zhang, Quanlong; Liu, Yantong; Ma, Qiang; Qiu, Yan; Luan, Fei; Wang, Xianmin

    2016-04-01

    Exposure to hypobaric hypoxia causes oxidative stress, neuronal degeneration and apoptosis that leads to memory impairment. Though oxidative stress contributes to neuronal degeneration and apoptosis in hypobaric hypoxia, the ability for phenylethanoid glycosides of Pedicularis muscicola Maxim (PhGs) to reverse high altitude memory impairment has not been studied. Rats were supplemented with PhGs orally for a week. After the fourth day of drug administration, rats were exposed to a 7500 m altitude simulation in a specially designed animal decompression chamber for 3 days. Spatial memory was assessed by the 8-arm radial maze test before and after exposure to hypobaric hypoxia. Histological assessment of neuronal degeneration was performed by hematoxylin-eosin (HE) staining. Changes in oxidative stress markers and changes in the expression of the apoptotic marker, caspase-3, were assessed in the hippocampus. Our results demonstrated that after exposure to hypobaric hypoxia, PhGs ameliorated high altitude memory impairment, as shown by the decreased values obtained for reference memory error (RME), working memory error (WME), and total error (TE). Meanwhile, administration of PhGs decreased hippocampal reactive oxygen species levels and consequent lipid peroxidation by elevating reduced glutathione levels and enhancing the free radical scavenging enzyme system. There was also a decrease in the number of pyknotic neurons and a reduction in caspase-3 expression in the hippocampus. These findings suggest that PhGs may be used therapeutically to ameliorate high altitude memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Diving and Environmental Simulation Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Diving and Environmental Simulation Team focuses on ways to optimize the performance and safety of Navy divers. Our goal is to increase mission effectiveness by...

  6. Decompression sickness among diving fishermen in Mexico: observational retrospective analysis of DCS in three sea cucumber fishing seasons.

    Science.gov (United States)

    Huchim-Lara, Oswaldo; Chin, Walter; Salas, Silvia; Rivera-Canul, Normando; Cordero-Romero, Salvador; Tec, Juan; Joo, Ellie; Mendez-Dominguez, Nina

    2017-01-01

    The probabilities of decompression sickness (DCS) among diving fishermen are higher than in any other group of divers. Diving behavior of artisanal fishermen has been directed mainly to target high-value species. The aim of this study was to learn about the occurrence of DCS derived from sea cucumber harvesting in the Yucatán Peninsula, Mexico. We conducted a retrospective chart review of diving fishermen treated at a multiplace hyperbaric chamber in Tizimín, Mexico. In total, 233 recompression therapies were rendered to 166 diving fishermen from 2014 to 2016. The average age was 36.7 ± 9.2 years (range: 20-59 years); 84.3% had experienced at least one DCS event previously. There was a correlation between age and DCS incidents (F: 8.3; R2: 0.07) and differences in the fishing depth between seasons (H: 9.99; p⟨0.05). Musculoskeletal pain was the most frequently reported symptom. Three divers, respectively, suffered permanent hearing loss, spinal cord injury and fatal outcome. Diving fishermen experience DCS at an alarmingly high rate, probably due to the type of species targeted, given the requirements in each case. Understanding divers' behaviors and their incentives while in pursuit of high-value species such as sea cucumber could help to find ways to mitigate health risks and help enforce regulation. Copyright© Undersea and Hyperbaric Medical Society.

  7. Children’s Understanding of No Diving Warning Signs: Implications for Preventing Childhood Injury

    Directory of Open Access Journals (Sweden)

    Barbara A. Morrongiello

    2016-07-01

    Full Text Available The current study examined children’s understanding of No Diving warning signs. Normally-developing 7 to 10 year olds were asked questions to assess their understanding of text, images, and main messages on No Diving warning signs. These structured interviews were audio recorded and responses were later coded. Results revealed that children understood the behavior advised against (diving, why it is prohibited (can hit head on the bottom, and what can happen (serious injury including hospitalization. They understood that breaking your neck results in limitations in mobility and can occur from diving, but they did not anticipate that such an injury is likely to occur. There were no gender and few age differences, but diving experience was associated with children significantly downplaying their risk of injury. The findings suggest that having No Diving warning signs explicitly mention a broken neck, may serve to remind children of this potential consequence at the time of decision making. Active adult supervision is particularly important for children who have prior positive diving experiences.

  8. Common metabolic constraints on dive duration in endothermic and ectothermic vertebrates

    Directory of Open Access Journals (Sweden)

    April Hayward

    2016-10-01

    Full Text Available Dive duration in air-breathing vertebrates is thought to be constrained by the volume of oxygen stored in the body and the rate at which it is consumed (i.e., “oxygen store/usage hypothesis”. The body mass-dependence of dive duration among endothermic vertebrates is largely supportive of this model, but previous analyses of ectothermic vertebrates show no such body mass-dependence. Here we show that dive duration in both endotherms and ectotherms largely support the oxygen store/usage hypothesis after accounting for the well-established effects of temperature on oxygen consumption rates. Analyses of the body mass and temperature dependence of dive duration in 181 species of endothermic vertebrates and 29 species of ectothermic vertebrates show that dive duration increases as a power law with body mass, and decreases exponentially with increasing temperature. Thus, in the case of ectothermic vertebrates, changes in environmental temperature will likely impact the foraging ecology of divers.

  9. Comparative study of acetazolamide and spironolactone on body fluid compartments on induction to high altitude

    Science.gov (United States)

    Singh, M. V.; Jain, S. C.; Rawal, S. B.; Divekar, H. M.; Parshad, Rajinder; Tyagi, A. K.; Sinha, K. C.

    1986-03-01

    Studies were conducted on 29 male healthy subjects having no previous experience of living at high altitude. These subjects were divided into three groups, i.e., subjects treated with placebo, acetazolamide and spironolactone. These subjects were first studied in Delhi. The drug schedule was started 24 hour prior to the airlift of these subjects to an altitude of 3,500 m and was continued for 48 hour after arrival at high altitude. Total body water, extra cellular water, plasma volume, blood electrolytes, pH, pO2, pCO2 and blood viscosity were determined on 3rd and 12th day of their stay at high altitude. Total body water, extra cellular water intracellular water and plasma volume decreased on high altitude exposure. There was a further slight decrease in these compartments with acetazolamide and spironolactone. It was also observed that spironolactone drives out more water from the extracellular compartment. Loss of plasma water was also confirmed by increased plasma osmolality. Increase in arterial blood pH was noticed on hypoxic exposure but the increase was found less in acetazolamide and spironolactone cases. This decrease in pH is expected to result in better oxygen delivery to the tissues at the low oxygen tension. It was also confirmed because blood pO2 increased in both the groups. No significant change in plasma electrolytes was observed in subjects of various groups. Blood viscosity slightly increased on exposure to high altitude. The degree of rise was found less in the group treated with spironolactone. This study suggests that both the drugs are likely to be beneficial in ameliorating/prevention of AMS syndrome.

  10. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training.

    Science.gov (United States)

    Chen, Chung-Yu; Hou, Chien-Wen; Bernard, Jeffrey R; Chen, Chiu-Chou; Hung, Ta-Cheng; Cheng, Lu-Ling; Liao, Yi-Hung; Kuo, Chia-Hua

    2014-09-01

    High altitude training is a widely used strategy for improving aerobic exercise performance. Both Rhodiola crenulata (R) and Cordyceps sinensis (C) supplements have been reported to improve exercise performance. However, it is not clear whether the provision of R and C during high altitude training could further enhance aerobic endurance capacity. In this study, we examined the effect of R and C based supplementation on aerobic exercise capacity following 2-week high altitude training. Alterations to autonomic nervous system activity, circulatory hormonal, and hematological profiles were investigated. Eighteen male subjects were divided into two groups: Placebo (n=9) and R/C supplementation (RC, n=9). Both groups received either RC (R: 1400 mg+C: 600 mg per day) or the placebo during a 2-week training period at an altitude of 2200 m. After 2 weeks of altitude training, compared with Placebo group, the exhaustive run time was markedly longer (Placebo: +2.2% vs. RC: +5.7%; paltitude training (paltitude training provides greater training benefits in improving aerobic performance. This beneficial effect of RC treatment may result from better maintenance of PNS activity and accelerated physiological adaptations during high altitude training.

  11. Investigation of the I-40 Jet-Propulsion Engine in the Cleveland Altitude Wind Tunnel. V - Operational Characteristics. 5; Operational Characteristics

    Science.gov (United States)

    Golladay, Richard L.; Gendler, Stanley L.

    1947-01-01

    An investigation has been conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of the I-40 jet-propulsion engine over a range of pressure altitudes from 10,000 to 50,000 feet and ram-pressure ratios from 1.00 to 1.76. Engine operational data were obtained with the engine in the standard configuration and with various modifications of the fuel system, the electrical system, and the combustion chambers. The effects of altitude and airspeed on operating speed range, starting, windmilli.ng, acceleration, speed regulation, cooling, and vibration of the standard and modified engines were determined, and damage to parts was noted. Maximum engine speed was obtainable at all altitudes and airspeeds wi th each fuel-control system investigated. The minimum idling speed was raised by increases in altitude and airspeed. The lowest minimum stable speeds were obtained with the standard configuration using 40-gallon nozzles with individual metering plugs. The engine was started normally at altitudes as high as 20,000 feet with all of the fuel systems and ignition combinations except one. Ignition at 70,000 feet was difficult and, although successful ignition occurred, acceleration was slow and usually characterized by excessive tail-pipe temperature. During windmilling investigations of the engine equipped with the standard fuel system, the engine could not be started at ram-pressure ratios of 1.1 to 1.7 at altitudes of 10,000, 20,000 and 30,000 feet. When equipped with the production barometric and Monarch 40-gallon nozzles, the engine accelerated in 12 seconds from an engine speed of 6000 rpm to 11,000 rpm at 20,000 feet and an average tail-pipe temperature of 11000 F. At the same altitude and temperature, all the engine configurations had approximately the same rate of acceleration. The Woodward governor produced the safest accelerations, inasmuch as it could be adjusted to automatically prevent acceleration blow out. The engine speed was

  12. Winter and spring diving behavior of bowhead whales relative to prey

    KAUST Repository

    Heide-Jø rgensen, Mads; Laidre, Kristin L; Nielsen, Nynne H; Hansen, Rikke G; Rø stad, Anders

    2013-01-01

    There was a marked change in diving behavior from winter through spring and this was likely in response to the changes in sea ice conditions, primary production and potential copepod abundance in the upper part of the water column. Depth and duration of dives changed significantly during this period; however, other dive parameters (for example the proportion of time spent feeding on the bottom of U-dives) remained fairly constant indicating a constant feeding effort. Bowhead whales target copepods at or close to the seabed in winter months in Disko Bay and continue feeding on copepods when they migrate to the surface. However, bowhead whales leave West Greenland before peak abundance of copepods occurs at the surface.

  13. Circulation, metabolism, and ventilation during prolonged exposure to carbon monoxide and to high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Klausen, K.; Rasmussen, B; Gjellerod, H.; Madsen, H.; Petersen, E.

    1968-01-01

    Eight volunteers were exposed to CO (13% COHb) or high altitude (3454 m). There was no change in circulation, metabolism, or ventilation during CO exposure. With similar arterial O/sub 2/ concentration from high-altitude, V/sub e/ (BTPS) increased, Pa/sub CO/sub 2// decreased. Regulating mechanisms respond to a decrease in Pa/sub CO/sub 2// rather than a gereral lack in tissue O/sub 2/ per se.

  14. Provisional report on diving-related fatalities in Australian waters 2008.

    Science.gov (United States)

    Lippmann, John; Walker, Douglas; Lawrence, Chris; Fock, Andrew; Wodak, Thomas; Harris, Richard; Jamieson, Scott

    2013-03-01

    An individual case review of diving-related deaths, reported as occurring in Australia in 2008, was conducted as part of the DAN Asia-Pacific dive fatality reporting project. The case studies were compiled using reports from witnesses, the police and coroners. In each case, the particular circumstances of the accident and details from the post-mortem examination, where available, are provided. In total, there were 19 reported fatalities (the same as for 2007), 17 involving males. Twelve deaths occurred while snorkelling and/or breath-hold diving,and six while scuba diving. One diver died while using surface-supply breathing apparatus. Two breath-hold divers appear to have died as a result of apnoeic hypoxia, at least one case likely associated with hyperventilation. Two deaths resulted from trauma: one from impact with a boat and the other from an encounter with a great white shark. Cardiac-related issues were thought to have contributed to the deaths of five snorkellers and at least two, possibly three, scuba divers. Trauma from a marine creature, snorkelling or diving alone, apnoeic hypoxia and pre-existing medical conditions were once again features in several deaths in this series.

  15. Increase of cerebral blood flow at high altitude

    DEFF Research Database (Denmark)

    Lassen, N A

    1992-01-01

    but rather somewhat sharpened over five days at almost 4000 meters of altitude. This, along with other evidence, shows that CBF does not in itself adapt to chronic hypoxia. Nevertheless, a decrease in CBF is seen over days at constant altitude primarily due to increase in the hematocrit. The cerebral...

  16. Usefulness of training camps at high altitude for well-trained adolescents

    Directory of Open Access Journals (Sweden)

    Jiří Suchý

    2015-03-01

    Full Text Available Objective: Opinions on the suitability of sports training at altitudes of 1800-2200 m above sea level (ASL for increasing performance in youth are not unanimous. The objective of this study was to test the influence of a ten day altitude training camp on performance in well-trained adolescent cross-country skiers. Methods: A running test of 3 × 2 km (aerobic, anaerobic and critical intensity was used with a rest interval of 10 minutes. The test was performed 4 times - an initial test at a lowland (900 m ASL prior to departure for altitude, two tests at altitude (1850 m ASL, a final test ten days after returning to lower altitudes. The aerobic, anaerobic and critical load intensities were set by graded a load test. For all individual tests, the participants maintained the same heart rate individually defined for the various segments using a heart rate monitor. Changes in speed between the tests were compared. The body's internal response was also monitored by the concentration of lactate (2 and 8 minutes after each exertion. Participants: Well-trained adolescent cross-country skiers (N = 11, age: 14.4 ± 1.2 years, weight: 54.4 ± 8.6 kg, height: 170 ± 7 cm, fat: 13 ± 2.6%. Results: The average times attained in the first altitude test for aerobic and anaerobic load were higher (p < .05 than in the entry test at low altitude. In the second altitude test the average times for all intensities were significantly (p < .05 higher than in the first altitude test. In the tests after returning to the lower altitudes the times attained for all intensities were on average higher than at altitude. The average lactate concentration levels following the various intensities were similar (p > .05. The dynamics of the cool-down monitored via the lactate value at the eighth minute after completing the relevant segment showed that at altitude the adolescents cooled down significantly (p < .05 slower rate following the aerobic and anaerobic intensity than at

  17. The STAR Data Reporting Guidelines for Clinical High Altitude Research.

    Science.gov (United States)

    Brodmann Maeder, Monika; Brugger, Hermann; Pun, Matiram; Strapazzon, Giacomo; Dal Cappello, Tomas; Maggiorini, Marco; Hackett, Peter; Bärtsch, Peter; Swenson, Erik R; Zafren, Ken

    2018-03-01

    Brodmann Maeder, Monika, Hermann Brugger, Matiram Pun, Giacomo Strapazzon, Tomas Dal Cappello, Marco Maggiorini, Peter Hackett, Peter Baärtsch, Erik R. Swenson, Ken Zafren (STAR Core Group), and the STAR Delphi Expert Group. The STARdata reporting guidelines for clinical high altitude research. High AltMedBiol. 19:7-14, 2018. The goal of the STAR (STrengthening Altitude Research) initiative was to produce a uniform set of key elements for research and reporting in clinical high-altitude (HA) medicine. The STAR initiative was inspired by research on treatment of cardiac arrest, in which the establishment of the Utstein Style, a uniform data reporting protocol, substantially contributed to improving data reporting and subsequently the quality of scientific evidence. The STAR core group used the Delphi method, in which a group of experts reaches a consensus over multiple rounds using a formal method. We selected experts in the field of clinical HA medicine based on their scientific credentials and identified an initial set of parameters for evaluation by the experts. Of 51 experts in HA research who were identified initially, 21 experts completed both rounds. The experts identified 42 key parameters in 5 categories (setting, individual factors, acute mountain sickness and HA cerebral edema, HA pulmonary edema, and treatment) that were considered essential for research and reporting in clinical HA research. An additional 47 supplemental parameters were identified that should be reported depending on the nature of the research. The STAR initiative, using the Delphi method, identified a set of key parameters essential for research and reporting in clinical HA medicine.

  18. The role of oxygen-increased respirator in humans ascending to high altitude

    Directory of Open Access Journals (Sweden)

    Shen Guanghao

    2012-08-01

    Full Text Available Abstract Background Acute mountain sickness (AMS is common for people who live in low altitude areas ascending to the high altitude. Many instruments have been developed to treat mild cases of AMS. However, long-lasting and portable anti-hypoxia equipment for individual is not yet available. Methods Oxygen-increased respirator (OIR has been designed to reduce the risk of acute mountain sickness in acute exposure to low air pressure. It can increase the density of oxygen by increasing total atmospheric pressure in a mask. Male subjects were screened, and eighty-eight were qualified to perform the experiments. The subjects were divided into 5 groups and were involved in some of the tests at 4 different altitudes (Group 1, 2: 3700 m; Group 3,4,5: 4000 m, 4700 m, 5380 m with and without OIR. These tests include heart rate, saturation of peripheral oxygen (SpO2, malondialdehyde (MDA, superoxide dismutase (SOD, blood lactate (BLA and PWC (physical work capacity -170. Results The results showed that higher SpO2, lower heart rate (except during exercise and better recovery of heart rate were observed from all the subjects ’with OIR’ compared with ’without OIR’ (P Conclusions We suggested that OIR may play a useful role in protecting people ascending to high altitude before acclimatization.

  19. Medical Management and Risk Reduction of the Cardiovascular Effects of Underwater Diving.

    Science.gov (United States)

    Whayne, Thomas F

    2017-06-20

    Undersea diving is a sport and commercial industry. Knowledge of potential problems began with Caisson disease or "the bends", first identified with compressed air in the construction of tunnels under rivers in the 19th century. Subsequently, there was the commercially used old-fashioned diving helmet attached to a suit, with compressed air pumped down from the surface. Breathhold diving, with no supplementary source of air or other breathing mixture, is also a sport as well as a commercial fishing tool in some parts of the world. There has been an evolution to self-contained underwater breathing apparatus (SCUBA) diving with major involvement as a recreational sport but also of major commercial importance. Knowledge of the physiology and cardiovascular plus other medical problems associated with the various forms of diving have evolved extensively. The major medical catastrophes of SCUBA diving are air embolism and decompression sickness (DCS). Understanding of the essential referral to a hyperbaric recompression chamber for these problems is critical, as well as immediate measures until that recompression is achieved. These include the administration of 100% oxygen and rehydration with intravenous normal saline. Undersea diving continues to expand, especially as a sport, and a basic understanding of the associated preventive and emergency medicine will decrease complications and save lives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    DEFF Research Database (Denmark)

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...

  1. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus

    Science.gov (United States)

    Hawkes, L. A.; Balachandran, S.; Batbayar, N.; Butler, P. J.; Chua, B.; Douglas, D. C.; Frappell, P. B.; Hou, Y.; Milsom, W. K.; Newman, S. H.; Prosser, D. J.; Sathiyaselvam, P.; Scott, G. R.; Takekawa, J. Y.; Natsagdorj, T.; Wikelski, M.; Witt, M. J.; Yan, B.; Bishop, C. M.

    2013-01-01

    Bar-headed geese are renowned for migratory flights at extremely high altitudes over the world's tallest mountains, the Himalayas, where partial pressure of oxygen is dramatically reduced while flight costs, in terms of rate of oxygen consumption, are greatly increased. Such a mismatch is paradoxical, and it is not clear why geese might fly higher than is absolutely necessary. In addition, direct empirical measurements of high-altitude flight are lacking. We test whether migrating bar-headed geese actually minimize flight altitude and make use of favourable winds to reduce flight costs. By tracking 91 geese, we show that these birds typically travel through the valleys of the Himalayas and not over the summits. We report maximum flight altitudes of 7290 m and 6540 m for southbound and northbound geese, respectively, but with 95 per cent of locations received from less than 5489 m. Geese travelled along a route that was 112 km longer than the great circle (shortest distance) route, with transit ground speeds suggesting that they rarely profited from tailwinds. Bar-headed geese from these eastern populations generally travel only as high as the terrain beneath them dictates and rarely in profitable winds. Nevertheless, their migration represents an enormous challenge in conditions where humans and other mammals are only able to operate at levels well below their sea-level maxima. PMID:23118436

  2. Movements and diving behavior of internesting green turtles along Pacific Costa Rica.

    Science.gov (United States)

    Blanco, Gabriela S; Morreale, Stephen J; Seminoff, Jeffrey A; Paladino, Frank V; Piedra, Rotney; Spotila, James R

    2013-09-01

    Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  3. King penguins adjust their diving behaviour with age.

    Science.gov (United States)

    Le Vaillant, Maryline; Wilson, Rory P; Kato, Akiko; Saraux, Claire; Hanuise, Nicolas; Prud'homme, Onésime; Le Maho, Yvon; Le Bohec, Céline; Ropert-Coudert, Yan

    2012-11-01

    Increasing experience in long-lived species is fundamental to improving breeding success and ultimately individual fitness. Diving efficiency of marine animals is primarily determined by their physiological and mechanical characteristics. This efficiency may be apparent via examination of biomechanical performance (e.g. stroke frequency and amplitude, change in buoyancy or body angle, etc.), which itself may be modulated according to resource availability, particularly as a function of depth. We investigated how foraging and diving abilities vary with age in a long-lived seabird. During two breeding seasons, small accelerometers were deployed on young (5 year old) and older (8/9 year old) brooding king penguins (Aptenodytes patagonicus) at the Crozet Archipelago, Indian Ocean. We used partial dynamic body acceleration (PDBA) to quantify body movement during dive and estimate diving cost. During the initial part of the descent, older birds exerted more effort for a given speed but younger penguins worked harder in relation to performance at greater depths. Younger birds also worked harder per unit speed for virtually the whole of the ascent. We interpret these differences using a model that takes into account the upthrust and drag to which the birds are subjected during the dive. From this, we suggest that older birds inhale more at the surface but that an increase in the drag coefficient is the factor leading to the increased effort to swim at a given speed by the younger birds at greater depths. We propose that this higher drag may be the result of young birds adopting less hydrodynamic postures or less direct trajectories when swimming or even having a plumage in poorer condition.

  4. Increased Cardiometabolic Risk and Worsening Hypoxemia at High Altitude

    OpenAIRE

    Miele, Catherine H.; Schwartz, Alan R.; Gilman, Robert H.; Pham, Luu; Wise, Robert A.; Davila-Roman, Victor G.; Jun, Jonathan C.; Polotsky, Vsevolod Y.; Miranda, J. Jaime; Leon-Velarde, Fabiola; Checkley, William

    2016-01-01

    Miele, Catherine H., Alan R. Schwartz, Robert H. Gilman, Luu Pham, Robert A. Wise, Victor G. Davila-Roman, Jonathan C. Jun, Vsevolod Y. Polotsky, J. Jaime Miranda, Fabiola Leon-Velarde, and William Checkley. Increased cardiometabolic risk and worsening hypoxemia at high altitude. High Alt Med Biol. 17:93���100, 2016.���Metabolic syndrome, insulin resistance, diabetes, and dyslipidemia are associated with an increased risk of cardiovascular disease. While excessive erythrocytosis is associated...

  5. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    NARCIS (Netherlands)

    Wingelaar, Thijs T.; van Ooij, Pieter-Jan A. M.; van Hulst, Rob A.

    2017-01-01

    In Special Operations Forces (SOF) closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2) could cause damage to the central nervous system (CNS) and pulmonary system. Longer exposure time and higher PO2 leads

  6. Perseus A High Altitude Remotely Piloted Aircraft being Towed in Flight

    Science.gov (United States)

    1994-01-01

    Perseus A, a remotely piloted, high-altitude research vehicle designed by Aurora Flight Sciences Corp., takes off from Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California. The Perseus was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the

  7. Diving center contribution in preventing radioactive pollution

    International Nuclear Information System (INIS)

    Rus, Simona; Flesteriu, Catalin; Diaconu, Mihai

    2004-01-01

    Applying and developing constructive environment protection measures offers real and long lasting solutions that consolidate our future. In this context the Diving Center contribution in preventing radioactive pollution is enrolled. Our Center performed high quality services with authorised personal. Using their rich human, technological and scientific resources, the armed forces in general and our unity in this case, plays already an important role in supporting the development and natural environment, but results could be even greater and of high impact if the military and civilian requirements would be aligned, valorizing the qualified resources belonging to the military. The environment protection measures are an essential component of the sustainable development, which correctly and duly applied may provide a necessary and realistic option in the eternal confrontation between human activity and correct exploitation of environment. During pressure tests performed over years at the nuclear reactor from Cernavoda, the divers provided: - pressure test at Unit 1 reactor containment (test performed at a pressure of 128 kPa) in order to evaluate the loss rate; - solving previous problems of the sealing system of reactor containment and tracks of electrical cables, pipes, etc; - providing safety procedures for the Cernavoda NPP specialised personnel, after their entering the working area through the small transfer gate; - technical assistance and first aid in case of diving accidents, using the bi-place chamber (fitted with medication transfer sass) provided on site; - supervising the enforcement of legal procedures concerning training, organising and work protection in diving activities; - in case of a collective decompression accident, we had the responsibility to provide necessary treatment of personnel affected in the hyperbaric laboratory. All these activities, even though developed for specific military requirements, may satisfy the saving and protecting needs

  8. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    OpenAIRE

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  9. Isothermal pumping analysis for high-altitude tethered balloons.

    Science.gov (United States)

    Kuo, Kirsty A; Hunt, Hugh E M

    2015-06-01

    High-altitude tethered balloons have potential applications in communications, surveillance, meteorological observations and climate engineering. To maintain balloon buoyancy, power fuel cells and perturb atmospheric conditions, fluids could be pumped from ground level to altitude using the tether as a hose. This paper examines the pumping requirements of such a delivery system. Cases considered include delivery of hydrogen, sulfur dioxide (SO2) and powders as fluid-based slurries. Isothermal analysis is used to determine the variation of pressures and velocities along the pipe length. Results show that transport of small quantities of hydrogen to power fuel cells and maintain balloon buoyancy can be achieved at pressures and temperatures that are tolerable in terms of both the pipe strength and the current state of pumping technologies. To avoid solidification, transport of SO2 would require elevated temperatures that cannot be tolerated by the strength fibres in the pipe. While the use of particle-based slurries rather than SO2 for climate engineering can reduce the pipe size significantly, the pumping pressures are close to the maximum bursting pressure of the pipe.

  10. Human nutrition in cold and high terrestrial altitudes

    Science.gov (United States)

    Srivastava, K. K.; Kumar, Ratan

    1992-03-01

    The calorie and nutritional requirements for a man working in an alien hostile environment of cold regions and high altitude are described and compared to those of normal requirements. Carbohydrates, fats and vitamins fulfilling the caloric and nutritional requirements are generally available in adequate amounts except under conditions of appetite loss. However, the proteins and amino acids should be provided in such a way as to meet the altered behavioral and metabolic requirements. Work in extreme cold requires fulfilling enhanced calorie needs. In high mountainous regions, cold combined with hypoxia produced loss of appetite and necessitated designing of special foods.

  11. Calling under pressure: Short-finned pilot whales make social calls during deep foraging dives

    DEFF Research Database (Denmark)

    Jensen, Frants Havmand; Marrero Perez, Jacobo; Johnson, Mark

    2011-01-01

    Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species...... among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic...... DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows...

  12. Short-term adaptation and chronic cardiac remodelling to high altitude in lowlander natives and Himalayan Sherpa.

    Science.gov (United States)

    Stembridge, Mike; Ainslie, Philip N; Shave, Rob

    2015-11-01

    What is the topic of this review? At high altitude, the cardiovascular system must adapt in order to meet the metabolic demand for oxygen. This review summarizes recent findings relating to short-term and life-long cardiac adaptation to high altitude in the context of exercise capacity. What advances does it highlight? Both Sherpa and lowlanders exhibit smaller left ventricular volumes at high altitude; however, myocardial relaxation, as evidenced by diastolic untwist, is reduced only in Sherpa, indicating that short-term hypoxia does not impair diastolic relaxation. Potential remodelling of systolic function, as evidenced by lower left ventricular systolic twist in Sherpa, may facilitate the requisite sea-level mechanical reserve required during exercise, although this remains to be confirmed. Both short-term and life-long high-altitude exposure challenge the cardiovascular system to meet the metabolic demand for O2 in a hypoxic environment. As the demand for O2 delivery increases during exercise, the circulatory component of oxygen transport is placed under additional stress. Acute adaptation and chronic remodelling of cardiac structure and function may occur to facilitate O2 delivery in lowlanders during sojourn to high altitude and in permanent highland residents. However, our understanding of cardiac structural and functional adaption in Sherpa remains confined to a higher maximal heart rate, lower pulmonary vascular resistance and no differences in resting cardiac output. Ventricular form and function are intrinsically linked through the left ventricular (LV) mechanics that facilitate efficient ejection, minimize myofibre stress during contraction and aid diastolic recoil. Recent examination of LV mechanics has allowed detailed insight into fundamental cardiac adaptation in high-altitude Sherpa. In this symposium report, we review recent advances in our understanding of LV function in both lowlanders and Sherpa at rest and discuss the potential consequences

  13. Aero-thermo-dynamic analysis of the Spaceliner-7.1 vehicle in high altitude flight

    Science.gov (United States)

    Zuppardi, Gennaro; Morsa, Luigi; Sippel, Martin; Schwanekamp, Tobias

    2014-12-01

    SpaceLiner, designed by DLR, is a visionary, extremely fast passenger transportation concept. It consists of two stages: a winged booster, a vehicle. After separation of the two stages, the booster makes a controlled re-entry and returns to the launch site. According to the current project, version 7-1 of SpaceLiner (SpaceLiner-7.1), the vehicle should be brought at an altitude of 75 km and then released, undertaking the descent path. In the perspective that the vehicle of SpaceLiner-7.1 could be brought to altitudes higher than 75 km, e.g. 100 km or above and also for a speculative purpose, in this paper the aerodynamic parameters of the SpaceLiner-7.1 vehicle are calculated in the whole transition regime, from continuum low density to free molecular flows. Computer simulations have been carried out by three codes: two DSMC codes, DS3V in the altitude interval 100-250 km for the evaluation of the global aerodynamic coefficients and DS2V at the altitude of 60 km for the evaluation of the heat flux and pressure distributions along the vehicle nose, and the DLR HOTSOSE code for the evaluation of the global aerodynamic coefficients in continuum, hypersonic flow at the altitude of 44.6 km. The effectiveness of the flaps with deflection angle of -35 deg. was evaluated in the above mentioned altitude interval. The vehicle showed longitudinal stability in the whole altitude interval even with no flap. The global bridging formulae verified to be proper for the evaluation of the aerodynamic coefficients in the altitude interval 80-100 km where the computations cannot be fulfilled either by CFD, because of the failure of the classical equations computing the transport coefficients, or by DSMC because of the requirement of very high computer resources both in terms of the core storage (a high number of simulated molecules is needed) and to the very long processing time.

  14. Global dose to man from proposed NNTRP high altitude nuclear tests

    International Nuclear Information System (INIS)

    Peterson, K.R.

    1975-05-01

    Radionuclide measurements from past high altitude nuclear testing have enabled development of a model to estimate surface deposition and doses from 400 kt of fission products injected in winter within the Pacific Test Area at altitudes in excess of 50 km. The largest 30-year average dose to man is about 10 millirem and occurs at 30 0 to 50 0 N latitude. The principal contributor to this dose is external gamma radiation from gross fission products. Individual doses from 90 Sr via the forage-cow-milk pathway and 137 Cs via the pasture-meat pathway are about 1/5 the gross fission product doses. The global 30-year population dose is 3 x 10 7 person-rem, which compares with a 30-year natural background population dose of 1 X 10 10 person-rem. Due in large part to the global distribution of population, over 98 percent of the global person-rem from the proposed high altitude tests is received in the Northern Hemisphere, while about 75 percent of the total population dose occurs within the 30 0 --50 0 N latitude belt. Detonations in summer would decrease the global dose by about a factor of three. (U.S.)

  15. Diving-related visual loss in the setting of angioid streaks: report of two cases.

    Science.gov (United States)

    Angulo Bocco, Maria I; Spielberg, Leigh; Coppens, Greet; Catherine, Janet; Verougstraete, Claire; Leys, Anita M

    2012-01-01

    The purpose of this study was to report diving-related visual loss in the setting of angioid streaks. Observational case reports of two patients with angioid streaks suffering sudden visual loss immediately after diving. Two young adult male patients presented with visual loss after diving headfirst. Funduscopy revealed angioid streaks, peau d'orange, subretinal hemorrhages, and ruptures of Bruch membrane. Choroidal neovascularization developed during follow-up. Both patients had an otherwise uneventful personal and familial medical history. In patients with angioid streaks, diving headfirst can lead to subretinal hemorrhages and traumatic ruptures in Bruch membrane and increase the risk of maculopathy. Ophthalmologists should caution patients with angioid streaks against diving headfirst.

  16. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Vincent Souday

    Full Text Available To test the hypothesis whether enriched air nitrox (EAN breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression.Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2 in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes. Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler.Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001. Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217. Weak correlations were observed between bubble scores and age or body mass index, respectively.EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing.ISRCTN 31681480.

  17. The Effect of a Diving Mask on Intraocular Pressure in a Healthy Population

    Directory of Open Access Journals (Sweden)

    Catherina Josephine Goenadi

    2016-06-01

    Full Text Available Purpose: Swimming goggles increase the intraocular pressure (IOP via the periorbital frame pressure and suction effect. In comparison, diving masks have a larger frame rim and incorporate the nose. The exact effect(s of diving masks on IOP is unknown. This study evaluates the influence of diving masks on IOP in normal, healthy subjects. Methods: Tonometry was performed in both eyes of all subjects with an AVIA®Tono-Pen by a single investigator. Measurements were taken at baseline without the diving mask and with the subjects wearing a small-volume, double-window diving mask, but with the mask lenses removed. Two IOP readings in each eye were measured, and an additional reading was measured if the difference between the initial 2 was ≥2 mm Hg. Central corneal thickness (CCT was also measured in each eye, using a contact pachymeter (OcuScan®Alcon. Results: Forty eyes of 20 healthy volunteers (age 29.7 ± 9.3 years; range 21–52 were included. The mean CCT was 544.4 ± 43.5 µm. The mean IOP before the diving mask was worn had been 17.23 ± 2.18 mm Hg (n = 40. The IOP decreased by 0.43 mm Hg (p < 0.05 to 16.80 ± 2.57 mm Hg after the diving mask had been put on. There was no correlation between IOP change and age (r = 0.143, p = 0.337, gender (r = –0.174, p = 0.283 or CCT (r = –0.123, p = 0.445. Conclusion: There was no increase in IOP after the diving mask had been worn. A small but statistically significant decrease in IOP was observed. This study demonstrates that unlike swimming goggles, the strap tension and frame pressure on the periorbital tissue from a diving mask does not increase IOP. Diving masks may be a suitable alternative to swimming goggles for patients with advanced glaucoma or glaucoma filtration surgery.

  18. [Arterial hypertension due to altitude].

    Science.gov (United States)

    Domej, Wolfgang; Trapp, Michael; Miggitsch, Eva Maria; Krakher, Tiziana; Riedlbauer, Rita; Roher, Peter; Schwaberger, Günther

    2008-01-01

    The behavior of blood pressure under hypoxic conditions depends on individual factors, altitude and duration of stay at altitude. While most humans are normotensive at higher altitudes, a few will react with moderate hypertension or hypotension. Excessive elevation of arterial blood pressure is not even to be expected below 4,000 m. Rather, several weeks' stay at higher altitude will decrease systolic and diastolic blood pressure at rest as well as during physical exertion. A high-altitude treatment for rehabilitation purposes at moderate altitude may be recommended for patients with cardio-circulatory disorders. Improvements can last several months even after returning to accustomed altitudes. Furthermore, endurance-trained hypertensive patients with pharmacologically controlled arterial blood pressure might be able to participate in mountain treks without additional health risk.

  19. The influence of oxygen and carbon dioxide on diving behaviour of tufted ducks, Aythya fuligula.

    Science.gov (United States)

    Halsey, Lewis; Reed, Jane Z; Woakes, Anthony; Butler, Patrick

    2003-01-01

    While optimal diving models focus on the diver's oxygen (O(2)) stores as the predominant factor influencing diving behaviour, many vertebrate species surface from a dive before these stores are exhausted and may commence another dive well after their O(2) stores have been resaturated. This study investigates the influence of hypoxia and also hypercapnia on the dive cycle of tufted ducks, Aythya fuligula, in terms of surface duration and dive duration. The birds were trained to surface into a respirometer box after each dive to a feeding tray so that rates of O(2) uptake (VO2) and carbon dioxide output (VCO2) at the surface could be measured. Although Vco2 initially lagged behind Vo2, both respiratory gas stores were close to full adjustment after the average surface duration, indicating that they probably had a similar degree of influence on surface duration. Chemoreceptors, which are known to influence diving behaviour, detect changes in O(2) and CO(2) partial pressures in the arterial blood. Thus, the need to restore blood gas levels appears to be a strong stimulus to continue ventilation. Mean surface duration coincided with peak instantaneous respiratory exchange ratio due to predive anticipatory hyperventilation causing hypocapnia. For comparison, the relationship between surface duration and O(2) uptake in reanalysed data for two grey seals indicated that one animal tended to dive well after fully restocking its O(2) stores, while the other dived at the point of full restocking. More CO(2) is exchanged than O(2) in tufted ducks during the last few breaths before the first dive of a bout, serving to reduce CO(2) stores and suggesting that hypercapnia rather than hypoxia is more often the limiting factor on asphyxia tolerance during dives. Indeed, according to calculations of O(2) stores and O(2) consumption rates over modal diving durations, a lack of O(2) does not seem to be associated with the termination of a dive in tufted ducks. However, factors other

  20. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  1. Molecular mechanisms regulating oxygen transport and consumption in high altitude and hibernating mammals

    DEFF Research Database (Denmark)

    Revsbech, Inge Grønvall

    2016-01-01

    The aim of this thesis is to broaden the knowledge of molecular mechanisms of adjustment in oxygen (O2) uptake, conduction, delivery and consumption in mammals adapted to extreme conditions. For this end, I have worked with animals living at high altitude as an example of environmental hypoxia...... of the repeatedly found adaptive traits in animals living at high altitude and in hibernating mammals during hibernation compared with the active state. Factors that affect O2 affinity of Hb include temperature, H+/CO2 via the Bohr effect as well as Cl- and organic phosphates, in mammals mainly 2...

  2. Rationale and operational plan for a U.S. high-altitude magnetic survey

    Science.gov (United States)

    Hildenbrand, Thomas G.; Acuna, Mario; Bracken, Robert E.; Hardwick, Doug; Hinze, William J.; Keller, Gordon R.; Phillips, Jeff; Roest, Walter

    2002-01-01

    On August 8, 2002, twenty-one scientists from the federal, private and academic sectors met at a workshop in Denver, Co., to discuss the feasibility of collecting magnetic anomaly data on a Canberra aircraft (Figure 1). The need for this 1-day workshop arose because of an exciting and cost-effective opportunity to collect invaluable magnetic anomaly data during a Canberra mission over the U.S. in 2003 and 2004. High Altitude Mapping Missions (HAMM) is currently planning a mission to collect Interferometric Synthetic Aperture Radar (IFSAR) imagery at an altitude of about 15 km and with a flight-line spacing of about 18 km over the conterminous U.S. and Alaska. The additional collection of total and vector magnetic field data would represent a secondary mission objective (i.e., a "piggy-back" magnetometer system). Because HAMM would fund the main flight costs of the mission, the geomagnetic community would obtain invaluable magnetic data at a nominal cost. These unique data would provide new insights on fundamental tectonic and thermal processes and give a new view of the structural and lithologic framework of the crust and possibly the upper mantle. This document highlights: (1) the reasons to conduct this national survey and (2) a preliminary operational plan to collect high-altitude magnetic data of a desired quality and for the expected resources. Although some operational plan issues remain to be resolved, the important conclusions of the workshop are that the Canberra is a very suitable platform to measure the magnetic field and that the planned mission will result in quality high-altitude magnetic data to greatly expand the utility of our national magnetic database.

  3. Short-term cardiorespiratory adaptation to high altitude in children compared with adults.

    Science.gov (United States)

    Kriemler, S; Radtke, T; Bürgi, F; Lambrecht, J; Zehnder, M; Brunner-La Rocca, H P

    2016-02-01

    As short-term cardiorespiratory adaptation to high altitude (HA) exposure has not yet been studied in children, we assessed acute mountain sickness (AMS), hypoxic ventilatory response (HVR) at rest and maximal exercise capacity (CPET) at low altitude (LA) and HA in pre-pubertal children and their fathers. Twenty father-child pairs (11 ± 1 years and 44 ± 4 years) were tested at LA (450 m) and HA (3450 m) at days 1, 2, and 3 after fast ascent (HA1/2/3). HVR was measured at rest and CPET was performed on a cycle ergometer. AMS severity was mild to moderate with no differences between generations. HVR was higher in children than adults at LA and increased at HA similarly in both groups. Peak oxygen uptake (VO2 peak) relative to body weight was similar in children and adults at LA and decreased significantly by 20% in both groups at HA; maximal heart rate did not change at HA in children while it decreased by 16% in adults (P < 0.001). Changes in HVR and VO2 peak from LA to HA were correlated among the biological child-father pairs. In conclusion, cardiorespiratory adaptation to altitude seems to be at least partly hereditary. Even though children and their fathers lose similar fractions of aerobic capacity going to high altitude, the mechanisms might be different. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. High altitude pulmonary edema. Report of a case with familiar history

    International Nuclear Information System (INIS)

    Velasquez, Jurg Niederbacher; Rueda Manrique, Adriana L; Sanabria Pico, Carmen E

    1998-01-01

    We report the case of a ten years old child, who presented a high altitude pulmonary edema. His father had the same disorder ten years ago. In addition we review the physiopathology, diagnosis and management of this disease

  5. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning.

    Science.gov (United States)

    Hu, Shengli; Li, Fei; Luo, Haishui; Xia, Yongzhi; Zhang, Jiuquan; Hu, Rong; Cui, Gaoyu; Meng, Hui; Feng, Hua

    2010-03-01

    Hypobaric hypoxia at high altitude can lead to brain damage and pre-conditioning with hyperbaric oxygen (HBO) can reduce ischemic/hypoxic brain injury. This study investigates the effects of high altitude on traumatic brain injury (TBI) and examines the neuroprotection provided by HBO preconditioning against TBI. Rats were randomly divided into four groups: HBO pre-conditioning group (HBOP, n=10), high altitude group (HA, n=10), plain control group (PC, n=10) and plain sham operation group (sham, n=10). All groups were subjected to head trauma by weight drop device except for the sham group. Rats from each group were examined for neurological function, regional cerebral blood flow (rCBF) and brain tissue oxygen pressure (PbtO(2)) and were killed for analysis by transmission electron microscope. The score of neurological deficits in the HA group was highest, followed by the HBOP group and the PC group, respectively. Both rCBF and PbtO(2) were the lowest in the HA group. Brain morphology and structure seen via the transmission electron microscope was diminished in the HA group, while fewer pathological injuries occurred in the HBOP and PC groups. High altitude aggravates TBI significantly and HBO pre-conditioning can attenuate TBI in rats at high altitude by improvement of rCBF and PbtO(2). Pre-treatment with HBO might be beneficial for people traveling to high altitude locations.

  6. Dive Tourism and Local Communities: Active Participation or Subject to Impacts?Case Studies from Malaysia

    OpenAIRE

    Daldeniz, Bilge; Hampton, Mark P.

    2013-01-01

    Dive tourism impacts were examined in three Malaysian islands: Perhentian(backpackers), Redang (package tourism) and Mabul (upmarket dive tourism). Qualitative local participation approaches were applied to investigate whether host communities were merely reactive to dive tourism’s impacts. Dive tourism affected many aspects of community life. Besides physical/environmental impacts (new infrastructure), research found varied economic impacts including employment/business opportunities and dif...

  7. Studies on radioactivities of dust samples in the air at high altitudes

    International Nuclear Information System (INIS)

    Kohara, Eri; Muronoi, Naohiro

    2015-01-01

    The radioactivity concentrations of airborne dust samples were studied. The samples had been collected at high altitude by the Japan Air Self-Defense Force from April 2013 to March 2014. The obtained data were used for gross beta radioactivity analysis and gamma nuclide analysis. It is shown that cesium 137 was mainly detected at the 10 km and 3 km altitude of central area of Japan in several samples. Gaseous radioiodine was not detected in all the samples. Radioactive xenon was detected but the concentration did not show significant difference to the background level. (author)

  8. Glycated haemoglobin (HbA1c ) and fasting plasma glucose relationships in sea-level and high-altitude settings.

    Science.gov (United States)

    Bazo-Alvarez, J C; Quispe, R; Pillay, T D; Bernabé-Ortiz, A; Smeeth, L; Checkley, W; Gilman, R H; Málaga, G; Miranda, J J

    2017-06-01

    Higher haemoglobin levels and differences in glucose metabolism have been reported among high-altitude residents, which may influence the diagnostic performance of HbA 1c . This study explores the relationship between HbA 1c and fasting plasma glucose (FPG) in populations living at sea level and at an altitude of > 3000 m. Data from 3613 Peruvian adults without a known diagnosis of diabetes from sea-level and high-altitude settings were evaluated. Linear, quadratic and cubic regression models were performed adjusting for potential confounders. Receiver operating characteristic (ROC) curves were constructed and concordance between HbA 1c and FPG was assessed using a Kappa index. At sea level and high altitude, means were 13.5 and 16.7 g/dl (P > 0.05) for haemoglobin level; 41 and 40 mmol/mol (5.9% and 5.8%; P < 0.01) for HbA 1c ; and 5.8 and 5.1 mmol/l (105 and 91.3 mg/dl; P < 0.001) for FPG, respectively. The adjusted relationship between HbA 1c and FPG was quadratic at sea level and linear at high altitude. Adjusted models showed that, to predict an HbA 1c value of 48 mmol/mol (6.5%), the corresponding mean FPG values at sea level and high altitude were 6.6 and 14.8 mmol/l (120 and 266 mg/dl), respectively. An HbA 1c cut-off of 48 mmol/mol (6.5%) had a sensitivity for high FPG of 87.3% (95% confidence interval (95% CI) 76.5 to 94.4) at sea level and 40.9% (95% CI 20.7 to 63.6) at high altitude. The relationship between HbA 1c and FPG is less clear at high altitude than at sea level. Caution is warranted when using HbA 1c to diagnose diabetes mellitus in this setting. © 2017 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  9. Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland.

    Science.gov (United States)

    Okumiya, Kiyohito; Sakamoto, Ryota; Ishimoto, Yasuko; Kimura, Yumi; Fukutomi, Eriko; Ishikawa, Motonao; Suwa, Kuniaki; Imai, Hissei; Chen, Wenling; Kato, Emiko; Nakatsuka, Masahiro; Kasahara, Yoriko; Fujisawa, Michiko; Wada, Taizo; Wang, Hongxin; Dai, Qingxiang; Xu, Huining; Qiao, Haisheng; Ge, Ri-Li; Norboo, Tsering; Tsering, Norboo; Kosaka, Yasuyuki; Nose, Mitsuhiro; Yamaguchi, Takayoshi; Tsukihara, Toshihiro; Ando, Kazuo; Inamura, Tetsuya; Takeda, Shinya; Ishine, Masayuki; Otsuka, Kuniaki; Matsubayashi, Kozo

    2016-02-23

    To clarify the association between glucose intolerance and high altitudes (2900-4800 m) in a hypoxic environment in Tibetan highlanders and to verify the hypothesis that high altitude dwelling increases vulnerability to diabetes mellitus (DM) accelerated by lifestyle change or ageing. Cross-sectional epidemiological study on Tibetan highlanders. We enrolled 1258 participants aged 40-87 years. The rural population comprised farmers in Domkhar (altitude 2900-3800 m) and nomads in Haiyan (3000-3100 m), Ryuho (4400 m) and Changthang (4300-4800 m). Urban area participants were from Leh (3300 m) and Jiegu (3700 m). Participants were classified into six glucose tolerance-based groups: DM, intermediate hyperglycaemia (IHG), normoglycaemia (NG), fasting DM, fasting IHG and fasting NG. Prevalence of glucose intolerance was compared in farmers, nomads and urban dwellers. Effects of dwelling at high altitude or hypoxia on glucose intolerance were analysed with the confounding factors of age, sex, obesity, lipids, haemoglobin, hypertension and lifestyle, using multiple logistic regression. The prevalence of DM (fasting DM)/IHG (fasting IHG) was 8.9% (6.5%)/25.1% (12.7%), respectively, in all participants. This prevalence was higher in urban dwellers (9.5% (7.1%)/28.5% (11.7%)) and in farmers (8.5% (6.1%)/28.5% (18.3%)) compared with nomads (8.2% (5.7%)/15.7% (9.7%)) (p=0.0140/0.0001). Dwelling at high altitude was significantly associated with fasting IHG+fasting DM/fasting DM (ORs for >4500 and 3500-4499 m were 3.59/4.36 and 2.07/1.76 vs intolerance. Socioeconomic factors, hypoxaemia and the effects of altitudes >3500 m play a major role in the high prevalence of glucose intolerance in highlanders. Tibetan highlanders may be vulnerable to glucose intolerance, with polycythaemia as a sign of poor hypoxic adaptation, accelerated by lifestyle change and ageing. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please

  10. On the High Altitude Platform (HAP W-CDMA System Capacity

    Directory of Open Access Journals (Sweden)

    L. de Haro-Ariet

    2004-06-01

    Full Text Available The performance of a downlink power control model, based on a n-thpower distance law, is evaluated for high altitude platform station(HAPS W-CDMA systems. The downlink capacity using this model iscompared with the uplink capacity. It is shown that the uplink capacityis higher than the downlink capacity.

  11. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  12. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    Science.gov (United States)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  13. Cardiovascular Effects of Altitude on Performance Athletes.

    Science.gov (United States)

    Shah, Ankit B; Coplan, Neil

    Altitude plays an important role in cardiovascular performance and training for athletes. Whether it is mountaineers, skiers, or sea-level athletes trying to gain an edge by training or living at increased altitude, there are many potential benefits and harms of such endeavors. Echocardiographic studies done on athletes at increased altitude have shown evidence for right ventricular dysfunction and pulmonary hypertension, but no change in left ventricular ejection fraction. In addition, 10% of athletes are susceptible to pulmonary hypertension and high-altitude pulmonary edema. Some studies suggest that echocardiography may be able to identify athletes susceptible to high-altitude pulmonary edema prior to competing or training at increased altitudes. Further research is needed on the long-term effects of altitude training, as repeated, transient episodes of pulmonary hypertension and right ventricular dysfunction may have long-term implications. Current literature suggests that performance athletes are not at higher risk for ventricular arrhythmias when training or competing at increased altitudes. For sea-level athletes, the optimal strategy for attaining the benefits while minimizing the harms of altitude training still needs to be clarified, although-for now-the "live high, train low" approach appears to have the most rationale.

  14. Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude.

    Directory of Open Access Journals (Sweden)

    Daniel Radiloff

    Full Text Available Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.

  15. The Effect of Sex on Heart Rate Variability at High Altitude.

    Science.gov (United States)

    Boos, Christopher John; Vincent, Emma; Mellor, Adrian; O'Hara, John; Newman, Caroline; Cruttenden, Richard; Scott, Phylip; Cooke, Mark; Matu, Jamie; Woods, David Richard

    2017-12-01

    There is evidence suggesting that high altitude (HA) exposure leads to a fall in heart rate variability (HRV) that is linked to the development of acute mountain sickness (AMS). The effects of sex on changes in HRV at HA and its relationship to AMS are unknown. HRV (5-min single-lead ECG) was measured in 63 healthy adults (41 men and 22 women) 18-56 yr of age at sea level (SL) and during a HA trek at 3619, 4600, and 5140 m, respectively. The main effects of altitude (SL, 3619 m, 4600 m, and 5140 m) and sex (men vs women) and their potential interaction were assessed using a factorial repeated-measures ANOVA. Logistic regression analyses were performed to assess the ability of HRV to predict AMS. Men and women were of similar age (31.2 ± 9.3 vs 31.7 ± 7.5 yr), ethnicity, and body and mass index. There was main effect for altitude on heart rate, SD of normal-to-normal (NN) intervals (SDNN), root mean square of successive differences (RMSSD), number of pairs of successive NN differing by >50 ms (NN50), NN50/total number of NN, very low-frequency power, low-frequency (LF) power, high-frequency (HF) power, and total power (TP). The most consistent effect on post hoc analysis was reduction in these HRV measures between 3619 and 5140 m at HA. Heart rate was significantly lower and SDNN, RMSSD, LF power, HF power, and TP were higher in men compared with women at HA. There was no interaction between sex and altitude for any of the HRV indices measured. HRV was not predictive of AMS development. Increasing HA leads to a reduction in HRV. Significant differences between men and women emerge at HA. HRV was not predictive of AMS.

  16. Calling under pressure: short-finned pilot whales make social calls during deep foraging dives.

    Science.gov (United States)

    Jensen, Frants H; Perez, Jacobo Marrero; Johnson, Mark; Soto, Natacha Aguilar; Madsen, Peter T

    2011-10-22

    Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows that the energy content of calls is lower at depths where lungs are collapsed and where the air volume available for sound generation is limited by ambient pressure. Frequency content was unaffected, providing a possible cue for group or species identification of diving whales. Social calls may be important to maintain social ties for foraging animals, but may be impacted adversely by vessel noise.

  17. Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compound biosynthesis in Sedum album

    International Nuclear Information System (INIS)

    Bachereau, F.; Marigo, G.; Asta, J.

    1998-01-01

    The field experiment was carried out in order to compare the response of a CAM plant, Sedum album L., to solar radiation at a high altitude (2 100 m) with that at a low altitude location with respect to CAM and phenolic content. Treatment sites included (1) sun-exposed, low altitude, (2) sun-exposed, high altitude with different light treatments, including UV-B and UV-B + A screening, and (3) shade at high altitude. After a 70-day treatment period, CAM-cycling and phenolic compound content were analysed, and high altitude treatments were compared to the low altitude control. The sun-exposed low altitude control was characterized by CAM-cycling and a low phenolic compound content during the experiment. In plants transplanted to the high altitude, only the shaded group maintained a CAM-cycling and a phenolic compound content similar to those of the sun-exposed low altitude control. Samples under UV-B and UV-B + A filters showed similar responses, suggesting the absence of a specific UV-A radiation effect. The screening of UV-B or UV-B + A radiation allowed plants to partially maintain a CAM-cycling and induced a decrease in phenolic compound content. These responses under UV filters were, however, intermediate between those observed in sun-exposed and shaded groups. These results demonstrate a specific effect of radiation from both visible (400–800 nm) and UV-B (280–320 nm) bands on both CAM-cycling and phenolic biosynthesis in S. album L. plants. These light-dependent effects are discussed on a physiological basis and a possible interaction between CAM-cycling and phenolic metabolism is suggested. (author)

  18. [Splenic infarction at high altitude, Huaraz-Peru (3,100 masl)].

    Science.gov (United States)

    López de Guimaraes, Douglas; Menacho López, Julio; Villanueva Palacios, Jovita; Mosquera Vásquez, Vitaliano

    2009-01-01

    We report three cases of splenic infarction in healthy men for the first time that amounted to high altitudes, observed in the hospital "Victor Ramos Guardia" Huaraz (3100 m). Case 1 (1995) of 55 years, born in Cuba, from Lima, caucasian suddenly presented acute abdominal pain in epigastrium, distension, nausea and vomiting, was laparotomized for acute abdomen and surgical pathology revealed thrombosis with splenic infarction splenic artery and vein. During follow-up in Lima, hemoglobin electrophoresis showed that it was heterozygous carrier of the sickle trait (Hb A: 57% Hb S: 38.5%). Case 2 (1998) of 23 years, born in Cuba, from Lima, Black said acute abdominal pain in left hypochondrium, shortness of breath and chest pain, clinical examination and radiography of the abdomen showed the spleen volume increased. Case 3 (2006) of 17 years, natural and from Lima, mestizo, who came on tour promotion, acute abdominal pain referred onset in the epigastrium and left hypochondrium, headache, increase heat, nausea and vomiting, pharyngitis was found acute and painful, and spleen increased in size by clinical and x-ray of abdomen simple stand. None had no history of hemoglobinopathy and anemia. In general, medical management was supportive and cases 2 and 3 are recommended hemoglobin electrophoresis. We conclude that we must think of splenic infarction associated with height in any healthy person who is first at high altitude (> 3000m) and having a sudden acute abdominal pain in epigastrium and / or left hypochondrium, pain and palpable spleen and radiological study compatible with image. In this case is indicated by hemoglobin electrophoresis to determine whether there is an individual heterozygous carrier of the sickle trait. splenic infarction, high altitude, sickle trait, Huaraz.

  19. Fit for high altitude: are hypoxic challenge tests useful?

    Directory of Open Access Journals (Sweden)

    Matthys Heinrich

    2011-02-01

    Full Text Available Abstract Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax, sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient. Instead of the hypoxia altitude simulation test (HAST, which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists including mechanical aids to

  20. Fit for high altitude: are hypoxic challenge tests useful?

    Science.gov (United States)

    Matthys, Heinrich

    2011-02-28

    Altitude travel results in acute variations of barometric pressure, which induce different degrees of hypoxia, changing the gas contents in body tissues and cavities. Non ventilated air containing cavities may induce barotraumas of the lung (pneumothorax), sinuses and middle ear, with pain, vertigo and hearing loss. Commercial air planes keep their cabin pressure at an equivalent altitude of about 2,500 m. This leads to an increased respiratory drive which may also result in symptoms of emotional hyperventilation. In patients with preexisting respiratory pathology due to lung, cardiovascular, pleural, thoracic neuromuscular or obesity-related diseases (i.e. obstructive sleep apnea) an additional hypoxic stress may induce respiratory pump and/or heart failure. Clinical pre-altitude assessment must be disease-specific and it includes spirometry, pulsoximetry, ECG, pulmonary and systemic hypertension assessment. In patients with abnormal values we need, in addition, measurements of hemoglobin, pH, base excess, PaO2, and PaCO2 to evaluate whether O2- and CO2-transport is sufficient.Instead of the hypoxia altitude simulation test (HAST), which is not without danger for patients with respiratory insufficiency, we prefer primarily a hyperoxic challenge. The supplementation of normobaric O2 gives us information on the acute reversibility of the arterial hypoxemia and the reduction of ventilation and pulmonary hypertension, as well as about the efficiency of the additional O2-flow needed during altitude exposure. For difficult judgements the performance of the test in a hypobaric chamber with and without supplemental O2-breathing remains the gold standard. The increasing numbers of drugs to treat acute pulmonary hypertension due to altitude exposure (acetazolamide, dexamethasone, nifedipine, sildenafil) or to other etiologies (anticoagulants, prostanoids, phosphodiesterase-5-inhibitors, endothelin receptor antagonists) including mechanical aids to reduce periodical or

  1. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A S.H.; Dommen, J; Furger, M; Graber, W K [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  2. The effect of chronic erythrocytic polycythemia and high altitude upon plasma and blood volumes.

    Science.gov (United States)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Comparison of two kinds of physiological chronic erythrocytic polycythemias in order to differentiate the specific effect of erythrocytic polycythemia from the general effects of high altitude upon the plasma volume. The two kinds were produced hormonally in female chickens, at sea level, or by protracted high-altitude exposures. It appears that the vascular system of the body may account for an increase in red blood cell mass either by reduction in plasma volume, or by no change in plasma volume, resulting in differential changes in total blood volumes.

  3. Unmanned Aerial Vehicles: Progress Toward Meeting High Altitude Endurance Aircraft Price Goals

    National Research Council Canada - National Science Library

    1998-01-01

    ...) High Altitude Endurance (HAE) Unmanned Aerial Vehicle (UAV) program to determine whether the average flyaway cost for the Global Hawk and DarkStar HAE alr vehicles will be within DOD's cost goal...

  4. Desmopression Prevents Immersion Diuresis and Improves Physical Performance After Long Duration Dives

    National Research Council Canada - National Science Library

    Nyquist, P. A; Schrot, J; Thomas, J. R; Hyde, D; Taylor, W. R

    2005-01-01

    .... Before the experimental dive, subjects received 40 microg of Desmopressin intranasally. Before and after each dive blood samples were taken, performance assessments were performed, and urine, electrolyte and hematologic values were determined...

  5. A statistical study of high-altitude electric fields measured on the Viking satellite

    International Nuclear Information System (INIS)

    Lindqvist, P.A.; Marklund, G.T.

    1990-01-01

    Characteristics of high-altitude data from the Viking electric field instrument are presented in a statistical study based on 109 Viking orbits. The study is focused in particular on the signatures of and relationships between various parameters measured by the electric field instrument, such as the parallel and transverse (to B) components of the electric field instrument, such as electric field variability. A major goal of the Viking mission was to investigate the occurrence and properties of parallel electric fields and their role in the auroral acceleration process. The results in this paper on the altitude distribution of the electric field variability confirm earlier findings on the distribution of small-scale electric fields and indicate the presence of parallel fields up to about 11,000 km altitude. The directly measured parallel electric field is also investigated in some detail. It is in general directed upward with an average value of 1 mV/m, but depends on, for example, altitude and plasma density. Possible sources of error in the measurement of the parallel field are also considered and accounted for

  6. A Simple Probabilistic Model for Estimating the Risk of Standard Air Dives

    National Research Council Canada - National Science Library

    Van Liew, H. D; Flynn, E. T

    2004-01-01

    ...) to be estimated in air dives. Using logistic regression, we focus on the total times spent at decompression stops For calibration data, we use carefully controlled experimental dives recorded in the U.S...

  7. Mammals of the high altitudes of western Arunachal Pradesh, eastern Himalaya: an assessment of threats and conservation needs

    NARCIS (Netherlands)

    Mishra, C.; Madhusudan, M.D.; Datta, A.

    2006-01-01

    he high altitudes of Arunachal Pradesh, India, located in the Eastern Himalaya biodiversity hotspot, remain zoologically unexplored and unprotected. We report results of recent mammal surveys in the high altitude habitats of western Arunachal Pradesh. A total of 35 mammal species (including 12

  8. Lung function after cold-water dives with a standard scuba regulator or full-face-mask during wintertime.

    Science.gov (United States)

    Uhlig, Florian; Muth, Claus-Martin; Tetzlaff, Kay; Koch, Andreas; Leberle, Richard; Georgieff, Michael; Winkler, Bernd E

    2014-06-01

    Full-face-masks (FFM) prevent the diver's face from cold and can support nasal breathing underwater. The aim of the study was to evaluate the effect of the use of FFMs on lung function and wellbeing. Twenty-one, healthy, non-asthmatic divers performed two cold-water dives (4⁰C, 25 min, 10 metres' depth) - one with a FFM and the other with a standard scuba regulator (SSR). Spirometry was performed before and after each dive and well-being and cold sensation were assessed after the dives. Significant decreases in forced vital capacity (FVC), forced expiratory volume in one second (FEV₁) and midexpiratory flow at 75% of FVC (MEF₇₅) occurred after both FFM and SSR dives. Changes in FVC and FEV₁ did not differ significantly between FFM and SSR dives. However, the mid-expiratory flows measured at 50% and 25% of FVC (MEF₅₀ and MEF₂₅) were significantly lower 10 minutes after the FFM dive compared to 10 minutes after the SSR dive. The wellbeing and cold sensation of the divers were significantly improved with FFM dives compared to SSR dives. Cold-water dives during wintertime can be associated with airway narrowing. During cold-water dives, the use of a FFM appears to reduce the cold sensation and enhance the well-being of the divers. However, a FFM does not appear to prevent airway narrowing in healthy, non-asthmatic subjects.

  9. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  10. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  11. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  12. High-Altitude Platforms — Present Situation and Technology Trends

    OpenAIRE

    d’Oliveira, Flavio Araripe; Melo, Francisco Cristovão Lourenço de; Devezas, Tessaleno Campos

    2016-01-01

    ABSTRACT High-altitude platforms (HAPs) are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook) announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or sa...

  13. Long-Term Intermittent Work at High Altitude: Right Heart Functional and Morphological Status and Associated Cardiometabolic Factors.

    Science.gov (United States)

    Brito, Julio; Siques, Patricia; López, Rosario; Romero, Raul; León-Velarde, Fabiola; Flores, Karen; Lüneburg, Nicole; Hannemann, Juliane; Böger, Rainer H

    2018-01-01

    Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition. Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400-4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs), sleep disturbances and physiological variables were measured at altitude and at sea level. Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5-29) years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3-5 points, including cephalea; moderate was LLS of 6-10 points) (38.3%) at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP) >25 mmHg, 9% HAPH (≥30 mmHg), 85% mild increase in right ventricle wall thickness (≥5 mm), 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR) and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA) (OR 8.84 (1.18-66.39); p Working intermittently at high altitude involves a distinctive pattern. The most relevant and novel characteristics are a greater prevalence of elevated mPAP and HAPH than previously reported at chronic intermittent hypobaric hypoxia (CIHH), which is accompanied by subsequent morphological characteristics. These findings are associated with cardiometabolic factors (insulin and ADMA

  14. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  15. Using stimulation of the diving reflex in humans to teach integrative physiology.

    Science.gov (United States)

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  16. Preventing High Altitude Cerebral Edema in Rats with Repurposed Anti-Angiogenesis Pharmacotherapy.

    Science.gov (United States)

    Tarshis, Samantha; Maltzahn, Joanne; Loomis, Zoe; Irwin, David C

    2016-12-01

    High altitude cerebral edema (HACE) is a fulminant, deadly, and yet still unpredictable brain disease. A new prophylactic treatment for HACE and its predecessor, acute mountain sickness (AMS), needs to be developed without the contraindications or adverse effect profiles of acetazolamide and dexamethasone. Since neovascularization signals are likely key contributors to HACE/AMS, our approach was to examine already existing anti-angiogenic drugs to inhibit potential initiating HACE pathway(s). This approach can also reveal crucial early steps in the frequently debated mechanism of HACE/AMS pathogenesis. We exposed four rat cohorts to hypobaric hypoxia and one to sea level (hyperbaric) conditions. The cohorts were treated with saline controls, an anti-angiogenesis drug (motesanib), a pro-angiogenesis drug (deferoxamine), or an intraperitoneal version of the established AMS prophylaxis drug, acetazolamide (benzolamide). Brain tissue was analyzed for cerebrovascular leak using the Evans Blue Dye (EVBD) protocol. We observed significantly increased EVBD in the altitude control and pro-angiogenesis (deferoxamine) cohorts, and significantly decreased EVBD in the anti-angiogenesis (motesanib), established treatment (benzolamide), and sea-level cohorts. Anti-angiogenesis-treated cohorts demonstrated less cerebrovascular extravasation than the altitude control and pro-angiogenesis treated rats, suggesting promise as an alternative prophylactic HACE/AMS treatment. The leak exacerbation with pro-angiogenesis treatment and improvement with anti-angiogenesis treatment support the hypothesis of early neovascularization signals provoking HACE. We demonstrate statistically significant evidence to guide further investigation for VEGF- and HIF-inhibitors as HACE/AMS prophylaxis, and as elucidators of still unknown HACE pathogenesis.Tarshis S, Maltzahn J, Loomis Z, Irwin DC. Preventing high altitude cerebral edema in rats with repurposed anti-angiogenesis pharmacotherapy. Aerosp Med

  17. Diving the wreck: risk and injury in sport scuba diving.

    Science.gov (United States)

    Hunt, J C

    1996-07-01

    This paper utilizes psychoanalytic theory to examine risk and injury in the case of a male deep sea diver. It examines the unconscious conflicts which appeared to fuel the diver's involvement in deep diving and to lead to a near fatal incident of decompression sickness. Particular attention is paid to the role of the diver's father in the evolution of the preoedipal and oedipal fantasies and conflicts which appear to be linked to the injury. The research is based on interviews with and fieldwork among recreational and deep divers.

  18. A Review of SCUBA Diving Impacts and Implication for Coral Reefs Conservation and Tourism Management

    Directory of Open Access Journals (Sweden)

    Zainal Abidin Siti Zulaiha

    2014-01-01

    Full Text Available Dive tourism has become important in term of magnitude and significantly contributes to regional economies. Nevertheless, in the absence of proper controls and enforcement, unplanned tourism growth has caused environmental degradation which undermines the long-term sustainability of the tourism industry. The purpose of this paper is to explore factors that contribute to the SCUBA diving impacts on coral and fish communities. This paper explains the causes of a certain event, validating the problem of impacts, defining the core issues and identifies possible causes leading to an effect. The phenomenon of diving impacts on coral reefs is a result of intensive use of dive site over the long-term. The divers can reduce their impacts towards coral reefs through responsible diving behaviors. The causes of cumulative diver’s contacts are more complicated than it seems. In response, this paper proposes the best mitigation strategies that need to be considered for future dive tourism management.

  19. Diving physiology of seabirds and marine mammals: Relevance, challenges and some solutions for field studies.

    Science.gov (United States)

    Andrews, Russel D; Enstipp, Manfred R

    2016-12-01

    To fully understand how diving seabirds and marine mammals balance the potentially conflicting demands of holding their breath while living their lives underwater (and maintaining physiological homeostasis during exercise, feeding, growth, and reproduction), physiological studies must be conducted with animals in their natural environments. The purpose of this article is to review the importance of making physiological measurements on diving animals in field settings, while acknowledging the challenges and highlighting some solutions. The most extreme divers are great candidates for study, especially in a comparative and mechanistic context. However, physiological data are also required of a wide range of species for problems relating to other disciplines, in particular ecology and conservation biology. Physiological data help with understanding and predicting the outcomes of environmental change, and the direct impacts of anthropogenic activities. Methodological approaches that have facilitated the development of field-based diving physiology include the isolated diving hole protocol and the translocation paradigm, and while there are many techniques for remote observation, animal-borne biotelemetry, or "biologging", has been critical. We discuss issues related to the attachment of instruments, the retrieval of data and sensing of physiological variables, while also considering negative impacts of tagging. This is illustrated with examples from a variety of species, and an in-depth look at one of the best studied and most extreme divers, the emperor penguin (Aptenodytes forsteri). With a variety of approaches and high demand for data on the physiology of diving seabirds and marine mammals, the future of field studies is bright. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dive characteristics can predict foraging success in Australian fur seals (Arctocephalus pusillus doriferus as validated by animal-borne video

    Directory of Open Access Journals (Sweden)

    Beth L. Volpov

    2016-03-01

    Full Text Available Dive characteristics and dive shape are often used to infer foraging success in pinnipeds. However, these inferences have not been directly validated in the field with video, and it remains unclear if this method can be applied to benthic foraging animals. This study assessed the ability of dive characteristics from time-depth recorders (TDR to predict attempted prey capture events (APC that were directly observed on animal-borne video in Australian fur seals (Arctocephalus pusillus doriferus, n=11. The most parsimonious model predicting the probability of a dive with ≥1 APC on video included only descent rate as a predictor variable. The majority (94% of the 389 total APC were successful, and the majority of the dives (68% contained at least one successful APC. The best model predicting these successful dives included descent rate as a predictor. Comparisons of the TDR model predictions to video yielded a maximum accuracy of 77.5% in classifying dives as either APC or non-APC or 77.1% in classifying dives as successful verses unsuccessful. Foraging intensity, measured as either total APC per dive or total successful APC per dive, was best predicted by bottom duration and ascent rate. The accuracy in predicting total APC per dive varied based on the number of APC per dive with maximum accuracy occurring at 1 APC for both total (54% and only successful APC (52%. Results from this study linking verified foraging dives to dive characteristics potentially opens the door to decades of historical TDR datasets across several otariid species.

  1. High-altitude hypoxia as a therapeutic factor in the management of X-ray and cytostatic lymphocytopenias in cancer patients

    International Nuclear Information System (INIS)

    Kulish, u.P.; Galkina, K.A.; Karabekova, Z.K.; Kudryavtsev, V.I.; Gudi, T.P.

    1984-01-01

    An attempt is made to clarify possibilities of high-altitude conditions use in clinics to restore hematological indices deteriorating as a result of antitumoral radiation or cytostatic therapy. Using conventional methods the content of hemoglobin, the number of erythrocytes and leukocytes, leukocytic formula in the blood of patients have been determined. Using the method of hemocultures the ability of the blood serum to affect leukocyte migration of practically healthy people (donors) has been studied and by the method of amperometric titration the content of SH-groups in the blood is determined. In patients examined under high-altitude conditions the content of hemoglobin and the number of erythrocytes in blood increased, the level of total SH-groups of blood also grew. Blood serum of patients with the expressed lymphocytopenia instead of suppressing effect on leukocyte migration, observed under low-altitude conditions (Frunze), under high-altitude conditions attained the ability to increase leukocyte migration. The conclusion is made that high-altitude hypoxia is a positive factor in the treatment of radiation and cytostatic lymphopenias in cancer patients

  2. Diving response after a one-week diet and overnight fasting.

    Science.gov (United States)

    Ghiani, Giovanna; Marongiu, Elisabetta; Olla, Sergio; Pinna, Marco; Pusceddu, Matteo; Palazzolo, Girolamo; Sanna, Irene; Roberto, Silvana; Crisafulli, Antonio; Tocco, Filippo

    2016-01-01

    We hypothesized that overnight fasting after a short dietary period, especially with carbohydrates, could allow performing breath-hold diving with no restraint for diaphragm excursion and blood shift and without any increase of metabolism, and in turn improve the diving response. During two separate sessions, 8 divers carried out two trials: (A) a 30-m depth dive, three hours after a normal breakfast and (B) a dive to the same depth, but after following a diet and fasting overnight. Each test consisted of 3 apnea phases: descent, static and ascent whose durations were measured by a standard chronometer. An impedance cardiograph, housed in an underwater torch, provided data on trans-thoracic fluid index (TFI), stroke volume (SV), heart rate (HR) and cardiac output (CO). Mean blood pressure (MBP), arterial O2 saturation (SaO2), blood glucose (Glu) and blood lactate (BLa) were also collected. In condition B, duration of the static phase of the dive was longer than A (37.8 ± 7.4 vs. 27.3 ± 8.4 s respectively, P fasting was lower than breakfast one (-2.6 ± 5.1 vs. 5.7 ± 7.6 ml, P fasting was lower than the same phase after breakfast (-0.4 ± 0.5 vs. 0.4 ± 0.5 L · min(-1) respectively, P fasting, SaO2 was higher than A (92.0 ± 2.7 vs. 89.4 ± 2.9 % respectively, P health.

  3. [Physical performance of older adults living in rural areas at sea level and at high altitude in Peru].

    Science.gov (United States)

    Estela-Ayamamani, David; Espinoza-Figueroa, Jossué; Columbus-Morales, Mauricio; Runzer-Colmenares, Fernando; Parodi, José F; Mayta-Tristán, Percy

    2015-01-01

    Living at high altitudes requires the inhabitants to adapt biologically and socially to the environment. The objective of this study was to determine the difference in physical performance (PP) in rural populations at sea level and at high altitude. A cross-sectional study was conducted in rural communities in Ancash, Peru, located at 3.345 meters above sea level (m.a.s.l.) and also in communities located in coastal areas at 6m.a.s.l. PP was measured by the Short Physical Performance Battery (SPPB) and other associated factors. Adjusted prevalence ratios (aPR) were calculated. A total of 130 older adults were assessed in the high altitude communities and 129 on the coast. The median age was 71.4 years, and 55.6% were female. Low physical performance (SPPB ≤ 6) was 10.0% at high altitude and 19.4% on the coast (p<0.05). Factors associated with low physical performance were residing at the coast (aPR: 2.10, 95% CI 1.02 to 4.33), self-reported poor health (aPR: 2.48, 95% CI 1.21 -5.08), hypertension (aPR: 1.73, 95% CI 1.01 to 2.98), and age (aPR: 1.04, 95% CI 1.01 to 1.07), while being a farmer (aPR: 0.49, 95% CI 0.25 to 0.97), and being independent (aPR: 0.37, 95% CI 0,20-, 072) were found to be protective factors. It was also found that the inhabitants of the coast have a mean of 0.86 points lower total SPPB than the high altitude ones (p=0.004). There is an association between altitude of residence and PP in older adults. The prevalence of a low PP in older adults in rural areas at sea level is twice as high compared to those living in high altitude rural communities. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.

  4. Radiation Safety Issues in High Altitude Commercial Aircraft

    Science.gov (United States)

    Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.

    1995-01-01

    The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.

  5. Parasympathetic preganglionic cardiac motoneurons labeled after voluntary diving

    Directory of Open Access Journals (Sweden)

    W Michael ePanneton

    2014-01-01

    Full Text Available A dramatic bradycardia is induced by underwater submersion in vertebrates. The location of parasympathetic preganglionic cardiac motor neurons driving this aspect of the diving response was investigated using cFos immunohistochemistry combined with retrograde transport of cholera toxin subunit B (CTB to double-label neurons. After pericardial injections of CTB, trained rats voluntarily dove underwater, and their heart rates dropped immediately to 95±2bpm, an 80% reduction. After immunohistochemical processing, the vast majority of CTB labeled neurons were located in the reticular formation from the rostral cervical spinal cord to the facial motor nucleus, confirming previous studies. Labeled neurons caudal to the rostral ventrolateral medulla were usually spindle-shaped aligned along an oblique line running from the dorsal vagal nucleus to the ventrolateral reticular formation, while those more rostrally were multipolar with extended dendrites. Nine percent of retrogradely-labeled neurons were positive for both cFos and CTB after diving and 74% of these were found rostral to the obex. CTB also was transported transganglionically in primary afferent fibers, resulting in large granular deposits in dorsolateral, ventrolateral, and commissural subnuclei of the nucleus tractus solitarii and finer deposits in lamina I and IV-V of the trigeminocervical complex. The overlap of parasympathetic preganglionic cardiac motor neurons activated by diving with those activated by baro- and chemoreceptors in the rostral ventrolateral medulla is discussed. Thus the profound bradycardia seen with underwater submersion reinforces the notion that the mammalian diving response is the most powerful autonomic reflex known.

  6. Isolated psychosis during exposure to very high and extreme altitude - characterisation of a new medical entity.

    Science.gov (United States)

    Hüfner, Katharina; Brugger, Hermann; Kuster, Eva; Dünsser, Franziska; Stawinoga, Agnieszka E; Turner, Rachel; Tomazin, Iztok; Sperner-Unterweger, Barbara

    2017-12-05

    Psychotic episodes during exposure to very high or extreme altitude have been frequently reported in mountain literature, but not systematically analysed and acknowledged as a distinct clinical entity. Episodes reported above 3500 m altitude with possible psychosis were collected from the lay literature and provide the basis for this observational study. Dimensional criteria of the Diagnostic and Statistical Manual of Mental Disorders were used for psychosis, and the Lake Louise Scoring criteria for acute mountain sickness and high-altitude cerebral oedema (HACE). Eighty-three of the episodes collected underwent a cluster analysis to identify similar groups. Ratings were done by two independent, trained researchers (κ values 0.6-1). Findings Cluster 1 included 51% (42/83) episodes without psychosis; cluster 2 22% (18/83) cases with psychosis, plus symptoms of HACE or mental status change from other origins; and cluster 3 28% (23/83) episodes with isolated psychosis. Possible risk factors of psychosis and associated somatic symptoms were analysed between the three clusters and revealed differences regarding the factors 'starvation' (χ2 test, p = 0.002), 'frostbite' (p = 0.024) and 'supplemental oxygen' (p = 0.046). Episodes with psychosis were reversible but associated with near accidents and accidents (p = 0.007, odds ratio 4.44). Episodes of psychosis during exposure to high altitude are frequently reported, but have not been specifically examined or assigned to medical diagnoses. In addition to the risk of suffering from somatic mountain illnesses, climbers and workers at high altitude should be aware of the potential occurrence of psychotic episodes, the associated risks and respective coping strategies.

  7. High altitude agriculture in the Titicaca basin (800 BCE-200 CE): Impacts on nutrition and disease load.

    Science.gov (United States)

    Juengst, Sara L; Hutchinson, Dale L; Chávez, Sergio J

    2017-07-08

    This study investigates the biological impacts of sedentism and agriculture on humans living in the high altitude landscape of the Titicaca Basin between 800 BCE and CE 200. The transition to agriculture in other global areas resulted in increases in disease and malnutrition; the high altitude of the Titicaca Basin could have exacerbated this. Our objective is to test whether the high altitude of the Titicaca Basin created a marginal environment for early agriculturalists living there, reflected through elevated rates of malnutrition and/or disease. To test this, we analyzed human remains excavated from seven archaeological sites on the Copacabana Peninsula for markers of diet and disease. These markers included dental caries, dental abscesses, cribra orbitalia, porotic hyperostosis, periosteal reactions, osteomyelitis, and linear enamel hypoplasia. Results showed that markers of diet did not support malnutrition or micronutrient deficiencies but instead, indicated a relatively diverse diet for all individuals. Markers of disease also did not vary significantly but were common, indicating circulation of pathogens or chronic bodily stress. We interpret these results as an indication that while diets remained nutritious, investment in the landscape exposed populations to issues of sanitation and disease. The high-altitude of the Titicaca Basin did not exacerbate the biological impacts of agriculture in terms of increased malnutrition. Additionally, disease load was likely related to problems faced by many sedentary groups as opposed to unique challenges posed by high altitude. In sum, despite the high elevation, the Titicaca Basin is not truly a marginal environment for humans. © 2017 Wiley Periodicals, Inc.

  8. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  9. Altitude Stress During Participation of Medical Congress

    Science.gov (United States)

    Kim, Soon Bae; Kim, Jong Sung; Kim, Sang Jun; Cho, Su Hee

    2016-01-01

    Medical congresses often held in highlands. We reviewed several medical issues associated with altitude stress especially while physicians have participated medical congress held in high altitude. Altitude stress, also known as an acute mountain sickness (AMS), is caused by acute exposure to low oxygen level at high altitude which is defined as elevations at or above 1,200 m and AMS commonly occurs above 2,500 m. Altitude stress with various symptoms including insomnia can also be experienced in airplane. AMS and drunken state share many common features in symptoms, neurologic manifestations and even show multiple microbleeds in corpus callosum and white matter on MRI. Children are more susceptible to altitude stress than adults. Gradual ascent is the best method for the prevention of altitude stress. Adequate nutrition (mainly carbohydrates) and hydration are recommended. Consumption of alcohol can exacerbate the altitude-induced impairments in judgment and the visual senses and promote psychomotor dysfunction. For prevention or treatment of altitude stress, acetazolamide, phosphodiesterase inhibitors, dexamethasone and erythropoietin are helpful. Altitude stress can be experienced relatively often during participation of medical congress. It is necessary to remind the harmful effect of AMS because it can cause serious permanent organ damage even though the symptoms are negligible in most cases. PMID:27621942

  10. Scientific Diving Training Course. Red Sea & Gulf of Aden Programme (PERSGA).

    Science.gov (United States)

    Arab Organization for Education and Science, Cairo (Egypt).

    This document presents the scientific diving training course organized by the Arab League Educational, Cultural and Scientific Organization (ALECSO) for the Program for Environmental Studies, Red Sea and Gulf of Aden (PERSGA). This course of six weeks duration aims to produce a person who is capable of carrying out scientific diving tasks in the…

  11. Electromagnetic coupling of high-altitude, nuclear electromagnetic pulses

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    We have used scale models to measure the predicted coupling of electromagnetic fields simulating the effects of high-altitude nuclear electromagnetic pulses (HEMP) on the interior surfaces of electronic components. Predictive tools for exterior coupling are adequate. For interior coupling, however, such tools are in their infancy. Our methodological approach combines analytical, computational, and laboratory techniques in a complementary way to take advantage of their separate strengths. Computer models are a promising tool, as they can be used to treat complex objects with arbitrary shapes, dielectrics, and cables, and multiple apertures. Laboratory tests can expand the domain of investigation even further

  12. The yak genome and adaptation to life at high altitude

    DEFF Research Database (Denmark)

    Qiu, Qiang; Zhang, Guojie; Ma, Tao

    2012-01-01

    . Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment...... important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans....

  13. Oxygen Toxicity and Special Operations Forces Diving: Hidden and Dangerous

    Directory of Open Access Journals (Sweden)

    Thijs T. Wingelaar

    2017-07-01

    Full Text Available In Special Operations Forces (SOF closed-circuit rebreathers with 100% oxygen are commonly utilized for covert diving operations. Exposure to high partial pressures of oxygen (PO2 could cause damage to the central nervous system (CNS and pulmonary system. Longer exposure time and higher PO2 leads to faster development of more serious pathology. Exposure to a PO2 above 1.4 ATA can cause CNS toxicity, leading to a wide range of neurologic complaints including convulsions. Pulmonary oxygen toxicity develops over time when exposed to a PO2 above 0.5 ATA and can lead to inflammation and fibrosis of lung tissue. Oxygen can also be toxic for the ocular system and may have systemic effects on the inflammatory system. Moreover, some of the effects of oxygen toxicity are irreversible. This paper describes the pathophysiology, epidemiology, signs and symptoms, risk factors and prediction models of oxygen toxicity, and their limitations on SOF diving.

  14. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    Science.gov (United States)

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  15. The potential for dive tourism led entrepreneurial marine protected areas in Curacao

    NARCIS (Netherlands)

    Groot, de J.; Bush, S.R.

    2010-01-01

    Despite the successful establishment of marine protected areas in the Netherlands Antilles, such as Saba and Bonaire, government-led protection of the reefs surrounding Curacao has repeatedly failed. In the absence of effective state regulation, dive operations have taken de facto control over dive

  16. Long-Term Intermittent Work at High Altitude: Right Heart Functional and Morphological Status and Associated Cardiometabolic Factors

    Directory of Open Access Journals (Sweden)

    Julio Brito

    2018-03-01

    Full Text Available Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH. The implications of working intermittently (day shifts at high altitude (hypobaric hypoxia over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition.Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400–4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs, sleep disturbances and physiological variables were measured at altitude and at sea level.Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5–29 years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3–5 points, including cephalea; moderate was LLS of 6–10 points (38.3% at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP >25 mmHg, 9% HAPH (≥30 mmHg, 85% mild increase in right ventricle wall thickness (≥5 mm, 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA (OR 8.84 (1.18–66.39; p < 0.05 and insulin (OR: 1.11 (1.02–1.20; p < 0.05 were associated with elevated mPAP and were defined as a cut-off. Interestingly, the correspondence analysis identified association patterns of several other variables (metabolic, labor, and biomedical with higher mPAP.Conclusions: Working intermittently at high altitude involves a distinctive pattern. The most relevant and

  17. Upward Shift and Steepening of the Blood Pressure Response to Exercise in Hypertensive Subjects at High Altitude.

    Science.gov (United States)

    Caravita, Sergio; Faini, Andrea; Baratto, Claudia; Bilo, Grzegorz; Macarlupu, Josè Luis; Lang, Morin; Revera, Miriam; Lombardi, Carolina; Villafuerte, Francisco C; Agostoni, Piergiuseppe; Parati, Gianfranco

    2018-06-09

    Acute exposure to high-altitude hypobaric hypoxia induces a blood pressure rise in hypertensive humans, both at rest and during exercise. It is unclear whether this phenomenon reflects specific blood pressure hyperreactivity or rather an upward shift of blood pressure levels. We aimed at evaluating the extent and rate of blood pressure rise during exercise in hypertensive subjects acutely exposed to high altitude, and how these alterations can be counterbalanced by antihypertensive treatment. Fifty-five subjects with mild hypertension, double-blindly randomized to placebo or to a fixed-dose combination of an angiotensin-receptor blocker (telmisartan 80 mg) and a calcium-channel blocker (nifedipine slow release 30 mg), performed a cardiopulmonary exercise test at sea level and after the first night's stay at 3260 m altitude. High-altitude exposure caused both an 8 mm Hg upward shift ( P blood pressure/oxygen consumption relationship during exercise, independent of treatment. Telmisartan/nifedipine did not modify blood pressure reactivity to exercise (blood pressure/oxygen consumption slope), but downward shifted ( P blood pressure and oxygen consumption by 26 mm Hg, both at sea level and at altitude. Muscle oxygen delivery was not influenced by altitude exposure but was higher on telmisartan/nifedipine than on placebo ( P blood pressure response to exercise. The effect of the combination of telmisartan/nifedipine slow release outweighed these changes and was associated with better muscle oxygen delivery. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01830530. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  18. The death of buddy diving?

    Science.gov (United States)

    Cooper, P David

    2011-12-01

    Dear Editor, By focussing on the details of the Watson case, I believe Bryan Walpole has missed the thrust of my earlier letter. I agree this was a complex case, which is why I deliberately avoided the murky specifics in order to consider the 'big-picture' ramifications of the judgement. My concerns relate to the potential consequences of the unintended interplay between unrelated developments in the medical and legal arenas. Taken together, I believe these developments threaten the very institution of buddy diving. I have been unable to verify Dr Walpole's claim that the statute under which Mr Watson was convicted has not been used previously in a criminal trial. I must, however, refute his assertion that this legislation is some sort of idiosyncratic historical hangover or legal curiosity unique to Queensland. Although the original legislation pre-dates Australian federation, this statute has survived intact through 110 years of reviews and amendments to the Queensland Criminal Code. The application of this 19th century law to the Watson case now provides a direct, post-federation, 21st century relevance. Nor is Queensland alone in having such a statute on its books. Section 151 of the Criminal Code Act in Dr Walpole's home state of Tasmania states "When a person undertakes to do any act, the omission to do which is or may be dangerous to human life or health, it is his duty to do that act." Similar statutes can also be found in the legislation of other Australian states and as far afield as New Zealand and Canada. The phrasing of the relevant sections is, in many cases, almost identical to Queensland's, reflecting the common judicial heritage of these places. Even if this ruling's reach extended no further than the Queensland border its ramifications would be immense. Tourism statistics reveal that over 1.2 million visitors perform nearly 3.5 million dives/snorkels in Queensland each year. An estimated 93% of international divers visiting Australia stopover in

  19. Effects of oxygen-enriched air on cognitive performance during SCUBA-diving - an open-water study.

    Science.gov (United States)

    Brebeck, Anne-Kathrin; Deussen, Andreas; Schmitz-Peiffer, Henning; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D

    2017-01-01

    Backround: Nitrogen narcosis impairs cognitive function, a fact relevant during SCUBA-diving. Oxygen-enriched air (nitrox) became popular in recreational diving, while evidence of its advantages over air is limited. Compare effects of nitrox28 and air on two psychometric tests. In this prospective, double-blind, open-water study, 108 advanced divers (38 females) were randomized to an air or a nitrox-group for a 60-min dive to 24 m salt water. Breathing gas effects on cognitive performance were assessed during the dive using a short- and long-term memory test and a number connection test. Nitrox28 divers made fewer mistakes only on the long-term memory test (p = 0.038). Female divers remembered more items than male divers (p < 0.001). There were no significant differences in the number connection test between the groups. Likely owing to the comparatively low N 2 reduction and the conservative dive, beneficial nitrox28 effects to diver performance were moderate but could contribute to diving safety.

  20. Angiotensin-converting enzyme (ACE) alleles in the Quechua, a high altitude South American native population.

    Science.gov (United States)

    Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W

    1999-01-01

    Recently it was reported that an allelic variant of the gene encoding angiotensin-converting enzyme (ACE) was significantly over-represented in a cohort of elite British mountaineers. It was proposed that this may be evidence for a specific genetic factor influencing the human capacity for physical performance. The implication that this allele could enhance performance at high altitude prompted us to determine its frequency in Quechua speaking natives living at altitudes greater than 3000m on the Andean Altiplano in South America. We found that the frequency of the putative performance allele in the Quechuas, although significantly higher than in Caucasians, was not different from lowland Native American populations. This observation suggests that, although the higher frequency of the 'performance allele' may have facilitated the migration of the ancestral Quechua to the highlands, the ACE insertion allele has not been subsequently selected for in this high altitude population.

  1. Anthropometric survey of high-altitude Bolivian porters.

    Science.gov (United States)

    Leatherman, T L; Thomas, R B; Greksa, L P; Haas, J D

    1984-01-01

    This paper presents the results of an anthropometric survey of 138 rural Aymaran high-altitude males who were working as porters in La Paz, Bolivia (3700 m). All subjects were measured for stature, weight, upper arm circumference, and triceps skinfolds. The body size and composition of the porters were then compared to an Aymaran rural population from the Bolivian highlands, and urban mestizo labourers from La Paz. The porters were smaller than the urban sample, but appeared to be generally representative of rural Aymaran natives with respect to body size and composition, and nutritional status. It is suggested that towards one extreme of nutritional variability, some degree of undernutrition may be indicated, which should be considered in future studies of adaptation to hypoxia among these Andean highlanders.

  2. The use of high altitude remote sensing in determining existing vegetation and monitoring ecological stress

    Science.gov (United States)

    Foster, K.; Garcia, A.

    1972-01-01

    High altitude color and multispectral black and white photography was used to survey existing vegetation and soil conditions on the Empire Ranch where large scale development will soon begin. Utilizing stereo pairs of the high altitude color photography, four vegetation classifications were discernable as a function of topography and foliage characteristics. In contrast to the undeveloped Ranch, the same photography was used to detect environmental changes in the Tucson metropolitan area as a result of rapid urbanization. The most prevalent change related to development is the removal of vegetation in high density areas to allow for housing starts. Erosion then occurs where vegetation has been removed.

  3. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    Science.gov (United States)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2018-03-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  4. High-resolution altitude profiles of the atmospheric turbulence with PML at the Sutherland Observatory

    Science.gov (United States)

    Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.

    2017-05-01

    With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.

  5. Effect of high altitude cosmic irradiation upon cell generation time

    International Nuclear Information System (INIS)

    Soleilhavoup, J.P.; Croute, F.; Tixador, R.; Blanquet, Y.; Planel, H.

    1975-01-01

    Paramecia cultures placed at 3800 meter altitude show a proliferating activity acceleration compared to control cultures placed at low altitude under the same environment conditions. These results confirm the cosmic irradiation influence upon the activating effect produced by the natural ionizing radiations on living organisms [fr

  6. Ecological carrying capacity assessment of diving site: A case study of Mabul Island, Malaysia.

    Science.gov (United States)

    Zhang, Li-Ye; Chung, Shan-Shan; Qiu, Jian-Wen

    2016-12-01

    Despite considered a non-consumptive use of the marine environment, diving-related activities can cause damages to coral reefs. It is imminent to assess the maximum numbers of divers that can be accommodated by a diving site before it is subject to irreversible deterioration. This study aimed to assess the ecological carrying capacity of a diving site in Mabul Island, Malaysia. Photo-quadrat line transect method was used in the benthic survey. The ecological carrying capacity was assessed based on the relationship between the number of divers and the proportion of diver damaged hard corals in Mabul Island. The results indicated that the proportion of diver damaged hard corals occurred exponentially with increasing use. The ecological carrying capacity of Mabul Island is 15,600-16,800 divers per diving site per year at current levels of diver education and training with a quarterly threshold of 3900-4200 per site. Our calculation shows that management intervention (e.g. limiting diving) is justified at 8-14% of hard coral damage. In addition, the use of coral reef dominated diving sites should be managed according to their sensitivity to diver damage and the depth of the reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    Science.gov (United States)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  8. Interactions of carbon monoxide and hemoglobin at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Collier, C.R. (Univ. of Southern California Medical Center, Los Angeles); Goldsmith, J.R.

    1983-01-01

    The health risks to U.S. populations who are exposed to ambient carbon monoxide and live at altitudes (such as Denver, Salt Lake City, and Albuquerque) were evaluated using a set of mathematical models. The assumption that a given increase in carboxyhemoglobin would require a more stringent volumetric air quality standard was tested. The results using the model predict that the 8-h or 1-h standards adopted for sea level condition need not be altered to protect individuals against health risks at altitude, if the standards are in volumetric terms. They would need to be reduced if the standards are left in gravimetric terms. If the guideline is to be based on a given decrement of oxygen tension, many other variables must be specified, but expected differences in ambient carbon monoxide have a small impact compared to the effect of altitude itself.

  9. The diving mouthpiece and the conditions of the temporomandibular joints. Preliminary study

    Directory of Open Access Journals (Sweden)

    Walczyńska – Dragon Karolina

    2016-06-01

    Full Text Available The article presents the results of research on the effects of a long-term exposure to non-physiological location of anatomical elements of the masticatory organ in the course of diving. The said exposure is connected with the utilisation of various types of diving mouthpieces.

  10. Performance simulation in high altitude platforms (HAPs) communications systems

    Science.gov (United States)

    Ulloa-Vásquez, Fernando; Delgado-Penin, J. A.

    2002-07-01

    This paper considers the analysis by simulation of a digital narrowband communication system for an scenario which consists of a High-Altitude aeronautical Platform (HAP) and fixed/mobile terrestrial transceivers. The aeronautical channel is modelled considering geometrical (angle of elevation vs. horizontal distance of the terrestrial reflectors) and statistical arguments and under these circumstances a serial concatenated coded digital transmission is analysed for several hypothesis related to radio-electric coverage areas. The results indicate a good feasibility for the communication system proposed and analysed.

  11. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew; Gunturu, Udaya; Stenchikov, Georgiy L.

    2017-01-01

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  12. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  13. The neuropsychology of repeated 1- and 3-meter springboard diving among college athletes.

    Science.gov (United States)

    Zillmer, Eric A

    2003-01-01

    This study examined the neuropsychological effects of repeated springboard diving. It was hypothesized that the impact velocity, which can range from 20 to 30 mph, and accompanying deceleration in the water may lead to concussions and affect the diver's cognitive function. Six varsity National Collegiate Athletic Association Division 1 springboard divers participated in the study. Each diver performed a total of 50 practice dives from either the 1- or 3-m springboard. After each set of 10 dives, the participants were immediately evaluated at poolside using the Symbol Digit Modalities Test, the Stroop Color Word Test, and the Trail Making Test B. Baseline testing revealed, consistent with their athletic specialty, clear neurocognitive strengths among the divers on tests sensitive to proprioception, motor speed, and visual-spatial organization. Results from the serial assessments indicated no detectable neuropsychological deficits among competitive divers compared to baseline testing. Skilled diving at the collegiate level appears to be a safe sport and water appears to present the perfect medium for gradual deceleration. More studies, however, are warranted for 5-, 7.5-, and 10-m platform diving since the impact velocity of the diver from these heights is higher.

  14. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas.

    Directory of Open Access Journals (Sweden)

    Masayuki Hanaoka

    Full Text Available Sherpas comprise a population of Tibetan ancestry in the Himalayan region that is renowned for its mountaineering prowess. The very small amount of available genetic information for Sherpas is insufficient to explain their physiological ability to adapt to high-altitude hypoxia. Recent genetic evidence has indicated that natural selection on the endothelial PAS domain protein 1 (EPAS1 gene was occurred in the Tibetan population during their occupation in the Tibetan Plateau for millennia. Tibetan-specific variations in EPAS1 may regulate the physiological responses to high-altitude hypoxia via a hypoxia-inducible transcription factor pathway. We examined three significant tag single-nucleotide polymorphisms (SNPs, rs13419896, rs4953354, and rs4953388 in the EPAS1 gene in Sherpas, and compared these variants with Tibetan highlanders on the Tibetan Plateau as well as with non-Sherpa lowlanders. We found that Sherpas and Tibetans on the Tibetan Plateau exhibit similar patterns in three EPAS1 significant tag SNPs, but these patterns are the reverse of those in non-Sherpa lowlanders. The three SNPs were in strong linkage in Sherpas, but in weak linkage in non-Sherpas. Importantly, the haplotype structured by the Sherpa-dominant alleles was present in Sherpas but rarely present in non-Sherpas. Surprisingly, the average level of serum erythropoietin in Sherpas at 3440 m was equal to that in non-Sherpas at 1300 m, indicating a resistant response of erythropoietin to high-altitude hypoxia in Sherpas. These observations strongly suggest that EPAS1 is under selection for adaptation to the high-altitude life of Tibetan populations, including Sherpas. Understanding of the mechanism of hypoxia tolerance in Tibetans is expected to provide lights to the therapeutic solutions of some hypoxia-related human diseases, such as cardiovascular disease and cancer.

  15. Diving behavior of the reef manta ray links coral reefs with adjacent deep pelagic habitats

    KAUST Repository

    Braun, Camrin D.

    2014-02-06

    Recent successful efforts to increase protection for manta rays has highlighted the lack of basic ecological information, including vertical and horizontal movement patterns, available for these species. We deployed pop-up satellite archival transmitting tags on nine reef manta rays, Manta alfredi, to determine diving behaviors and vertical habitat use. Transmitted and archived data were obtained from seven tagged mantas over deployment periods of 102-188 days, including three recovered tags containing 2.6 million depth, temperature, and light level data points collected every 10 or 15 seconds. Mantas frequented the upper 10 m during daylight hours and tended to occupy deeper water throughout the night. Six of the seven individuals performed a cumulative 76 deep dives (>150 m) with one individual reaching 432 m, extending the known depth range of this coastal, reef-oriented species and confirming its role as an ecological link between epipelagic and mesopelagic habitats. Mean vertical velocities calculated from high-resolution dive data (62 dives >150 m) from three individuals suggested that mantas may use gliding behavior during travel and that this behavior may prove more efficient than continuous horizontal swimming. The behaviors in this study indicate manta rays provide a previously unknown link between the epi- and mesopelagic layers of an extremely oligotrophic marine environment and provide evidence of a third marine species that utilizes gliding to maximize movement efficiency. © 2014 Braun et al.

  16. Onboard Acoustic Recording from Diving Elephant Seals

    National Research Council Canada - National Science Library

    Fletcher, Stacia

    1996-01-01

    The aim of this project was to record sounds impinging on free-ranging northern elephant seals, Mirounga angustirostris, a first step in determining the importance of LFS to these animals as they dive...

  17. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    Science.gov (United States)

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  18. Moessbauer studies of hemoglobin in high altitude polycythemia

    International Nuclear Information System (INIS)

    Zhang Xiufang; Shen Linming; Chen Songsen; Ao Zhaohui; Liu Yuanyuan; Gao Naifei; Zheng Yuanming; Shong Liangquan

    1990-01-01

    The Moessbauer spectra have been measured in erythrocytes from normal adults and the patients with high altitude polycythemia (HAPC). The results indicated that two subspectra ''a'' and ''b'', corresponding to oxy- and deoxyhemoglobin respectively, were present in all blood samples, and a third subspectrum ''c'' was found to exist in almost all samples from the patients. The parameters of the third subspectra ''c1'' in most samples from the patients were similar to those of carbon monoxyhemoglobin. The components were considered to be the denatured hemoglobin in RBCs (red blood cells). Together with clinical analysis, a possible mechanism of HAPC has been discussed. (orig.)

  19. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    Science.gov (United States)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate

  20. The effect of α1 -adrenergic blockade on post-exercise brachial artery flow-mediated dilatation at sea level and high altitude.

    Science.gov (United States)

    Tymko, Michael M; Tremblay, Joshua C; Hansen, Alex B; Howe, Connor A; Willie, Chris K; Stembridge, Mike; Green, Daniel J; Hoiland, Ryan L; Subedi, Prajan; Anholm, James D; Ainslie, Philip N

    2017-03-01

    Our objective was to quantify endothelial function (via brachial artery flow-mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate-intensity cycling exercise with and without administration of an α 1 -adrenergic blockade. Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise. At sea level, endothelial function decreased following 30 min of moderate-intensity exercise, and this decrease was abolished with α 1 -adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate-intensity exercise, and administration of α 1 -adrenergic blockade resulted in an increase in flow-mediated dilatation. Our data indicate that post-exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high-altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate-intensity exercise at both sea level and high altitude are mediated via an α 1 -adrenergic pathway. In a double-blinded, counterbalanced, randomized and placebo-controlled design, nine healthy participants performed a maximal-exercise test, and two 30 min sessions of semi-recumbent cycling exercise at 50% peak output following either placebo or α 1 -adrenergic blockade (prazosin; 0.05 mg kg  -1 ). These experiments were completed at both sea-level (344 m) and high altitude (3800 m). Blood pressure (finger photoplethysmography

  1. Provisional Crown Dislodgement during Scuba Diving: A Case of Barotrauma

    OpenAIRE

    Gulve, Meenal Nitin; Gulve, Nitin Dilip

    2013-01-01

    Changes in ambient pressure, for example, during flying, diving, or hyperbaric oxygen therapy, can lead to barotrauma. Although it may seem that this issue was neglected in dental education and research in recent decades, familiarity with and understanding of these facts may be of importance for dental practitioners. We report the case of a patient who experienced barotrauma involving dislodgement of a provisional crown during scuba diving. Patients who are exposed to pressure changes as a pa...

  2. Correlations between the simulated military tasks performance and physical fitness tests at high altitude

    Directory of Open Access Journals (Sweden)

    Eduardo Borba Neves

    2017-11-01

    Full Text Available The aim of this study was to investigate the Correlations between the Simulated Military Tasks Performance and Physical Fitness Tests at high altitude. This research is part of a project to modernize the physical fitness test of the Colombian Army. Data collection was performed at the 13th Battalion of Instruction and Training, located 30km south of Bogota D.C., with a temperature range from 1ºC to 23ºC during the study period, and at 3100m above sea level. The sample was composed by 60 volunteers from three different platoons. The volunteers start the data collection protocol after 2 weeks of acclimation at this altitude. The main results were the identification of a high positive correlation between the 3 Assault wall in succession and the Simulated Military Tasks performance (r = 0.764, p<0.001, and a moderate negative correlation between pull-ups and the Simulated Military Tasks performance (r = -0.535, p<0.001. It can be recommended the use of the 20-consecutive overtaking of the 3 Assault wall in succession as a good way to estimate the performance in operational tasks which involve: assault walls, network of wires, military Climbing Nets, Tarzan jump among others, at high altitude.

  3. Station-keeping of a high-altitude balloon with electric propulsion and wireless power transmission: A concept study

    Science.gov (United States)

    van Wynsberghe, Erinn; Turak, Ayse

    2016-11-01

    A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.

  4. Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data

    DEFF Research Database (Denmark)

    Dasmeh, Pouria; Davis, Randall W.; Kepp, Kasper Planeta

    2013-01-01

    This paper presents an integrated model of convective O2-transport, aerobic dive limits (ADL), and thermochemical data for oxygen binding to mutant myoglobin (Mb), used to quantify the impact of mutations in Mb on the dive limits of Weddell seals (Leptonychotes weddellii). We find that wild-type ...... that such conditions are mostly selected upon in seals. The model is capable of roughly quantifying the physiological impact of single-protein mutations and thus bridges an important gap between animal physiology and molecular (protein) evolution.......This paper presents an integrated model of convective O2-transport, aerobic dive limits (ADL), and thermochemical data for oxygen binding to mutant myoglobin (Mb), used to quantify the impact of mutations in Mb on the dive limits of Weddell seals (Leptonychotes weddellii). We find that wild-type Mb...... traits are only superior under specific behavioral and physiological conditions that critically prolong the ADL, action radius, and fitness of the seals. As an extreme example, the mutations in the conserved His-64 reduce ADL up to 14±2 min for routine aerobic dives, whereas many other mutations...

  5. High-altitude electromagnetic pulse environment over the lossy ground

    International Nuclear Information System (INIS)

    Xie Yanzhao; Wang Zanji

    2003-01-01

    The electromagnetic field above ground produced by an incident high-altitude electromagnetic pulse plane wave striking the ground plane was described in this paper in terms of the Fresnel reflection coefficients and the numerical FFT. The pulse reflected from the ground plane always cancel the incident field for the horizontal field component, but the reflected field adds to the incident for the vertical field component. The results of several cases for variations in the observation height, angle of incidence and lossy ground electrical parameters were also presented showing different e-field components above the earth

  6. 76 FR 67480 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2011-11-01

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... existing Standard on Commercial Diving Operations (29 CFR part 1910, Subpart [[Page 67481

  7. Effects of high altitude training on exercise capacity: fact or myth.

    Science.gov (United States)

    de Paula, Paula; Niebauer, Josef

    2012-03-01

    High altitude training has become a mainstay in endurance sports, with live high-train low as the current protocol of choice. Athletes either live or sleep in artificial or natural hypoxic conditions with the aim to increase serum erythropoietin concentrations, which are thought to improve maximum oxygen uptake and thus exercise performance. Changes, however, are not very striking and only apparent in so-called responders, who are not a well-defined group and may be as little as 50% of the trained study population. Whereas some studies show minor improvement, others report no change or even worsening. Furthermore, the mechanisms behind the proposed beneficial changes remain obscure and are far from being proven. There is an evident lack of sufficiently powered randomized, double-blinded studies, with training protocols that are identical for all groups and groups that are indeed comparable. Several studies discriminate between responders and non-responders, without clearly assessing the characteristics of the so-called responders. Until this has been done, it remains unclear if such a group really exists and how these subjects are characterized. This, however, would be of immense value, so protocols could be tailored to athletes' needs. Taken together, the current literature on natural or artificial hypoxia somewhat documents improved performance at high but not low altitude.

  8. Physiological Monitoring in Diving Mammals

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Physiological Monitoring in Diving Mammals Andreas...825-2025 email: andreas.fahlman@tamucc.edu Peter L. Tyack School of Biology Sea Mammal Research Unit Scottish Oceans Institute...OBJECTIVES This project is separated into three aims: Aim 1: Develop a new generation of tags/data logger for marine mammals that will

  9. Application of altitude/hypoxic training by elite athletes.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    At the Olympic level, differences in performance are typically less than 0.5%. This helps explain why many contemporary elite endurance athletes in summer and winter sport incorporate some form of altitude/hypoxic training within their year-round training plan, believing that it will provide the "competitive edge" to succeed at the Olympic level. The purpose of this paper is to describe the practical application of altitude/hypoxic training as used by elite athletes. Within the general framework of the paper, both anecdotal and scientific evidence will be presented relative to the efficacy of several contemporary altitude/hypoxic training models and devices currently used by Olympic-level athletes for the purpose of legally enhancing performance. These include the three primary altitude/hypoxic training models: 1) live high+train high (LH+TH), 2) live high+train low (LH+TL), and 3) live low+train high (LL+TH). The LH+TL model will be examined in detail and will include its various modifications: natural/terrestrial altitude, simulated altitude via nitrogen dilution or oxygen filtration, and hypobaric normoxia via supplemental oxygen. A somewhat opposite approach to LH+TL is the altitude/hypoxic training strategy of LL+TH, and data regarding its efficacy will be presented. Recently, several of these altitude/hypoxic training strategies and devices underwent critical review by the World Anti-Doping Agency (WADA) for the purpose of potentially banning them as illegal performance-enhancing substances/methods. This paper will conclude with an update on the most recent statement from WADA regarding the use of simulated altitude devices.

  10. Development of a Compact High Altitude Imager and Sounding Radiometer (CHAISR)

    Science.gov (United States)

    Choi, R. K. Y.; Min, S.; Cho, Y. J.; Kim, K. H.; Ha, J. C.; Joo, S. W.

    2017-12-01

    Joint Civilian-Military Committee, under Advisory Council on Science and Technology, Korea, has approved a technology demonstration project for developing a lightweight HALE UAV (High-Altitude, Long Endurance). It aims to operate at lower stratosphere, i.e. altitude of 16 20 km, offering unique observational platform to atmospheric research community as pseudo-satellite. NIMS (National Institute of Meteorological Sciences, Korea) is responsible for a payload for atmospheric science, a Compact High Altitude Imager and Sounding Radiometer (CHAISR) to demonstrate scientific observations at lower stratosphere in the interest of improving numerical weather prediction model. CHAISR consists of three microwave radiometers (MWR) with 16 channel, and medium resolution cameras operating in a visible and infrared spectrum. One of the technological challenges for CHAISR is to accommodate those instruments within 50 W of power consumption. CHAISR will experience temperature up to -75°C, while pressure as low as 50 hPa at operational altitude. It requires passive thermal control of the payload to keep electronic subsystems warm enough for instrument operation with minimal power available. Safety features, such as payload power management and thermal control, are considered with minimal user input. Three radiometers measure atmospheric brightness temperature at frequency at around 20, 40, and 50 GHz. Retrieval process yields temperature and humidity profiles with cross track scan along the flight line. Estimated total weight of all radiometer hardware, from the antennas to data acquisition system, is less than 0.8 kg and a maximum power consumption is 15.2 W. With not enough power for blackbody calibration target, radiometers use zenith sky view at lower stratosphere as an excellent calibration target for a conventional tipping-curve calibration. Spatial distributions of clouds from visible and surface temperature from thermal cameras are used as additional information for

  11. System for beaming power from earth to a high altitude platform

    Science.gov (United States)

    Friedman, Herbert W.; Porter, Terry J.

    2002-01-01

    Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.

  12. Endurance training at altitude.

    Science.gov (United States)

    Saunders, Philo U; Pyne, David B; Gore, Christopher J

    2009-01-01

    Since the 1968 Olympic Games when the effects of altitude on endurance performance became evident, moderate altitude training ( approximately 2000 to 3000 m) has become popular to improve competition performance both at altitude and sea level. When endurance athletes are exposed acutely to moderate altitude, a number of physiological responses occur that can comprise performance at altitude; these include increased ventilation, increased heart rate, decreased stroke volume, reduced plasma volume, and lower maximal aerobic power ((.)Vo(2max)) by approximately 15% to 20%. Over a period of several weeks, one primary acclimatization response is an increase in the volume of red blood cells and consequently of (.)Vo(2max). Altitudes > approximately 2000 m for >3 weeks and adequate iron stores are required to elicit these responses. However, the primacy of more red blood cells for superior sea-level performance is not clear-cut since the best endurance athletes in the world, from Ethiopia (approximately 2000 to 3000 m), have only marginally elevated hemoglobin concentrations. The substantial reduction in (.)Vo(2max) of athletes at moderate altitude implies that their training should include adequate short-duration (approximately 1 to 2 min), high-intensity efforts with long recoveries to avoid a reduction in race-specific fitness. At the elite level, athlete performance is not dependent solely on (.)Vo(2max), and the "smallest worthwhile change" in performance for improving race results is as little as 0.5%. Consequently, contemporary statistical approaches that utilize the concept of the smallest worthwhile change are likely to be more appropriate than conventional statistical methods when attempting to understand the potential benefits and mechanisms of altitude training.

  13. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    Science.gov (United States)

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-05

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Relationship between occupational stress and working ability of workers in a petroleum processing enterprise in high altitude area].

    Science.gov (United States)

    Ma, X M; Kang, H L; Shi, C B; Li, Y; Wu, Y F; Liu, Z H; Wang, G; Lei, H Y

    2017-12-20

    Objective: To investigate the relationship between occupational stress and working ability of workers in a petroleum processing enterprise in a high altitude area. Methods: A total of 728 workers in a petroleum processing enterprise at an altitude of 2850 m were subjected to a survey using Occupational Stress Inventory (OSI) , Work Ability Index (WAI) Scale, Occupational Role Questionnaire (ORQ) , Personal Strain Questionnaire (PSQ) , and Personal Resource Questionnaire (PRQ) from May 2014 to August 2016. Results: Of the 728 workers, 55 (7.6%) had a poor working ability, moderate in 262 (35.9%) , and good in 411 (56.5%). There were significant differences in WAI between the workers with different types of work, sexes, ages, and working years ( P occupational stress groups ( P Occupational stress is an influencing factor for the working ability of workers in the petroleum processing enterprise in the high altitude area. Hypoxia in high altitude area may further reduce the working ability. In order to reduce occupational stress and improve work ability, it should be considered to strengthen skills training, improve the working environment, and pay attention to mental health.

  15. Suitability Analysis For Scuba Diving To Develop Marine Tourism At Saebus Island, East Java, Indonesia

    Science.gov (United States)

    Wijaya, Putranto; Putra, Tri; Hidayat, Fatra; Levraeni, Chandra; Rizmaadi, Mada; Ambariyanto, Ambariyanto

    2018-02-01

    Indonesian government currently has policies to improve the performance of the tourism sector, including marine tourism. One of the attractions of marine tourism is the coral ecosystem especially through scuba diving activities. The purpose of this study was to determine the suitability of the coral ecosystem on Saebus Island, East Java, to find appropriate locations for scuba diving activities. Purposive samplings were done around the island to determine four stations which will be assessed through suitability analysis. Tourism Suitability Index was used to assess all stations for scuba diving activities. The result showed that all four stations were categorized as very suitable with the score: 85%, 85%, 85% and 83%, respectively. Several aspects that need to be improved and anticipated for diving at all stations are coral coverage and water current. These results suggest that there are several spots around Saebus Island that are suitable for diving site, and can be promoted as marine tourism destination.

  16. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving

    International Nuclear Information System (INIS)

    Wang, T M; Yang, X B; Liang, J H; Yao, G C; Zhao, W D

    2013-01-01

    Plunge diving is the most commonly used feeding method of a gannet, which can make the gannet transit from air to water rapidly and successfully. A large impact acceleration can be generated due to the air-to-water transition. However, the impact acceleration experienced by the gannet during plunge diving has not been studied. In this paper, this issue is investigated by using the CFD method. The effect of the dropping height and the water-entry inclination angle on the impact acceleration is considered. The results reveal that the impact acceleration along the longitudinal body axis increases with either of the two parameters. The peak time decreases with the dropping height. A quadratic relation is found between the peak impact acceleration and the initial water-entry velocity. According to the computation, when the dropping height is 30 m (most of gannets plunge from about this height), the peak impact acceleration can reach about 23 times the gravitational acceleration, which will exert a considerable force on the gannet body. Furthermore, the pressure distribution of different water-entry inclination angles indicates that the large pressure asymmetry caused by a small oblique angle may lead to a large impact acceleration in the direction perpendicular to the longitudinal body axis and cause damage to the neck of the gannet, which partly explains the reason why a gannet performing a high plunge diving in nature enters water with a large oblique angle from the perspective of impact mechanics. The investigation on the plunge-diving behavior in this paper will inspire and promote the development of a biomimetic amphibious robot that transits from air to water with the plunge-diving mode. (paper)

  17. 76 FR 9817 - Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB...

    Science.gov (United States)

    2011-02-22

    ...] Standard on Commercial Diving Operations; Extension of the Office of Management and Budget's (OMB) Approval... Commercial Diving Operations Standard (29 CFR part 1910, subpart T). DATES: Comments must be submitted... obtaining information (29 U.S.C. 657). Subpart T applies to diving and related support operations conducted...

  18. Wilderness medicine at high altitude: recent developments in the field

    OpenAIRE

    Shah, Neeraj M; Hussain, Sidra; Cooke, Mark; O’Hara, John P; Mellor, Adrian

    2015-01-01

    Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly p...

  19. Underwater and Dive Station Work-Site Noise Surveys

    National Research Council Canada - National Science Library

    Wolgemuth, Keith S; Cudahy, Edward A; Schwaller, Derek W

    2008-01-01

    Previous work performed by the Naval Submarine Medical Research Laboratory (NSMRL) had developed in-water permissible continuous noise exposure guidance Work performed by the Navy Experimental Diving Unit...

  20. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals.

    Science.gov (United States)

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B

    2017-03-01

    The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Changes in dive profiles as an indicator of feeding success in king and Adélie penguins

    Science.gov (United States)

    Bost, C. A.; Handrich, Y.; Butler, P. J.; Fahlman, A.; Halsey, L. G.; Woakes, A. J.; Ropert-Coudert, Y.

    2007-02-01

    Determining when and how deep avian divers feed remains a challenge despite technical advances. Systems that record oesophageal temperature are able to determine rate of prey ingestion with a high level of accuracy but technical problems still remain to be solved. Here we examine the validity of using changes in depth profiles to infer feeding activity in free-ranging penguins, as more accessible proxies of their feeding success. We used oesophageal temperature loggers with fast temperature sensors, deployed in tandem with time-depth recorders, on king and Adélie penguins. In the king penguin, a high correspondence was found between the number of ingestions recorded per dive and the number of wiggles during the bottom and the ascent part of the dives. In the Adélie penguins, which feed on smaller prey, the number of large temperature drops was linearly related to the number of undulations per dive. The analysis of change in depth profiles from high-resolution time-depth recorders can provide key information to enhance the study of feeding rate and foraging success of these predators. Such potential is especially relevant in the context of using Southern marine top predators to study change in availability of marine resources.

  2. Biosonar, diving and movements of two tagged white-beaked dolphin in Icelandic waters

    DEFF Research Database (Denmark)

    Rasmussen, Marianne H.; Akamatsu, Tomonari; Teilmann, Jonas

    2013-01-01

    For the first time bio-logging tags were attached to free-ranging white-beaked dolphins, Lagenorhynchus albirostris. A satellite tag was attached to one animal while an acoustic A-tag, a time-depth recorder and a VHF transmitter complex was attached to a second dolphin with a suction cup....... The satellite tag transmitted for 201 days, during which time the dolphin stayed in the coastal waters of western Iceland. The acoustic tag complex was on the second animal for 13 hours and 40 minutes and provided the first insight in echolocation behaviour of a free-ranging white-beaked dolphin. The tag...... registered 162 dives. The dolphin dove to a maximum depth of 45 m, which is about the depth of the bay in which the dolphin was swimming. Two basic types of dives were identified; U-shaped and V-shaped dives. The dolphin used more time in U-shaped dives, more clicks and sonar signals with shorter click...

  3. Large high altitude air shower observatory (LHAASO) project

    International Nuclear Information System (INIS)

    He Huihai

    2010-01-01

    The Large High Altitude Air Shower Observatory (LHAASO) project focuses mainly on the study of 40 GeV-1 PeV gamma ray astronomy and 10 TeV-1 EeV cosmic ray physics. It consists of a 1 km 2 extensive air shower array with 40 000 m 2 muon detectors, 90,000m 2 water Cerenkov detector array, 5 000 m 2 shower core detector array and an air Cerenkov/fluorescence telescope array. Prototype detectors are designed with some of them already in operation. A prototype array of 1% size of LHAASO will be built at the Yangbajing Cosmic Ray Observatory and used to coincidently measure cosmic rays with the ARGO-YBJ experiment. (authors)

  4. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  5. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  6. Investigating the application of diving endoscopic technique in determining the extent of pituitary adenoma resection via the trans-nasal-sphenoidal approach.

    Science.gov (United States)

    Gao, Hai-Bin; Wang, Li-Qing; Zhou, Jian-Yun; Sun, Wei

    2018-04-01

    The aim of the present study was to investigate the advantages and disadvantages of the diving endoscopic technique in pituitary adenoma surgery, and the application value in determining the extent of tumor resection. A total of 37 patients with pituitary adenoma initially underwent tumor resection under an endoscope-assisted microscope via standard trans-nasal-sphenoidal approach, and tumor cavity structure was observed by applying the diving endoscopic technique. Surgery was subsequently performed again under a microscope or endoscope. The diving endoscopic technique allowed surgeons to directly observe the structure inside a tumor cavity in high-definition. In the present study, 24 patients had pituitary macroadenomas or microadenomas that did not invade the cavernous sinus, and were considered to have undergone successful total resection. Among these patients, no tumor residues were observed through the diving endoscopic technique. Some white lichenoid or fibrous cord-like tissues in the tumor cavity were considered to be remnants of tumors. However, pathology confirmed that these were not tumor tissues. For tumors that invaded the cavernous sinus in 13 patients, observation could only be conducted under the angulation endoscope of the diving endoscope; i.e., the operation could not be conducted under an endoscope. The present study suggests that the diving endoscopic technique may be used to directly observe the resection extent of tumors within the tumor cavity, especially the structure of the tumor cavity inside the sella turcica. The present study also directly validates the reliability of pituitary adenoma resection under endoscope-assisted microscope. In addition, the diving endoscopic technique also allows the surgeon to observe the underwater environment within the sella turcica.

  7. Acute and Chronic Altitude-Induced Cognitive Dysfunction in Children and Adolescents.

    Science.gov (United States)

    Rimoldi, Stefano F; Rexhaj, Emrush; Duplain, Hervé; Urben, Sébastien; Billieux, Joël; Allemann, Yves; Romero, Catherine; Ayaviri, Alejandro; Salinas, Carlos; Villena, Mercedes; Scherrer, Urs; Sartori, Claudio

    2016-02-01

    To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized European children and adolescents, 24 hours after arrival at high altitude and 3 months after return to low altitude; (2) 21 matched European subjects permanently living at high altitude; and (3) a matched control group tested twice at low altitude. Short-term hypoxia significantly impaired all but 2 (visuospatial memory and processing speed) of the neuropsychological abilities that were tested. These impairments were even more severe in the children permanently living at high altitude. Three months after return to low altitude, the neuropsychological performances significantly improved and were comparable with those observed in the control group tested only at low altitude. Acute short-term exposure to an altitude at which major tourist destinations are located induces marked executive and memory deficits in healthy children. These deficits are equally marked or more severe in children permanently living at high altitude and are expected to impair their learning abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Protective effect of total flavonoids of seabuckthorn (Hippophae rhamnoides) in simulated high-altitude polycythemia in rats.

    Science.gov (United States)

    Zhou, Ji-Yin; Zhou, Shi-Wen; Du, Xiao-Huang; Zeng, Sheng-Ya

    2012-09-28

    Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO₂, Sp(O₂), pCO₂ levels in arterial blood, and increased Na⁺, HCO₃⁻, Cl⁻, but decreased K⁺ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.

  9. Altitude and endurance training.

    Science.gov (United States)

    Rusko, Heikki K; Tikkanen, Heikki O; Peltonen, Juha E

    2004-10-01

    The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (altitude training period (training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.

  10. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes

    Directory of Open Access Journals (Sweden)

    Serena Lucrezi

    2018-03-01

    Full Text Available Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry.Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety.Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions.Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in

  11. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes

    Science.gov (United States)

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers’ and dive centres’ perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres’ perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention

  12. Safety Priorities and Underestimations in Recreational Scuba Diving Operations: A European Study Supporting the Implementation of New Risk Management Programmes.

    Science.gov (United States)

    Lucrezi, Serena; Egi, Salih Murat; Pieri, Massimo; Burman, Francois; Ozyigit, Tamer; Cialoni, Danilo; Thomas, Guy; Marroni, Alessandro; Saayman, Melville

    2018-01-01

    Introduction: Scuba diving is an important marine tourism sector, but requires proper safety standards to reduce the risks and increase accessibility to its market. To achieve safety goals, safety awareness and positive safety attitudes in recreational scuba diving operations are essential. However, there is no published research exclusively focusing on scuba divers' and dive centres' perceptions toward safety. This study assessed safety perceptions in recreational scuba diving operations, with the aim to inform and enhance safety and risk management programmes within the scuba diving tourism industry. Materials and Methods: Two structured questionnaire surveys were prepared by the organisation Divers Alert Network and administered online to scuba diving operators in Italy and scuba divers in Europe, using a mixture of convenience and snowball sampling. Questions in the survey included experience and safety offered at the dive centre; the buddy system; equipment and accessories for safe diving activities; safety issues in the certification of new scuba divers; incidents/accidents; and attitudes toward safety. Results: 91 scuba diving centres and 3,766 scuba divers participated in the study. Scuba divers gave importance to safety and the responsiveness of service providers, here represented by the dive centres. However, they underestimated the importance of a personal emergency action/assistance plan and, partly, of the buddy system alongside other safety procedures. Scuba divers agreed that some risks, such as those associated with running out of gas, deserve attention. Dive centres gave importance to aspects such as training and emergency action/assistance plans. However, they were limitedly involved in safety campaigning. Dive centres' perceptions of safety in part aligned with those of scuba divers, with some exceptions. Conclusion: Greater responsibility is required in raising awareness and educating scuba divers, through participation in prevention campaigns

  13. Diel Variation in Beaked Whale Diving Behavior

    National Research Council Canada - National Science Library

    Baird, Robin; Webster, Daniel L; Schorr, Gregory S; McSweeney, Daniel J

    2008-01-01

    ...) occurred at similar rates during the day and night for Blainville's beaked whales (daymean=0.38 h-1; nightmean=0.46 h-1), and there were no significant diel differences in depths, durations, ascent or descent rates for deep dives...

  14. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  15. Performance changes during a weeklong high-altitude alpine ski-racing training camp in lowlander young athletes.

    Science.gov (United States)

    Hydren, Jay R; Kraemer, William J; Volek, Jeff S; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Hooper, David R; Denegar, Craig R; Maresh, Carl M

    2013-04-01

    Thousands of youth athletes travel to high altitude to participate in lift-access alpine sports. The purpose of this study was to examine the impact of acute high-altitude exposure on balance, choice reaction time, power, quickness, flexibility, strength endurance, and V[Combining Dot Above]O2max in youth lowlander athletes during a weeklong preseason training camp in Summit County, CO, USA. Eleven youth ski racers (4 boys and 7 girls; age, 13.7 ± 0.5 years; height, 157.2 ± 12.6 cm; weight, 52.4 ± 6.8 kg) with 7.7 ± 2.2 skiing years of experience participated in baseline testing at 160 m one week before the camp and a set of daily tests in the morning and afternoon at 2,828 m and skied between 3,328 and 3,802 m during a 6-day camp. Balance and choice reaction time tests were stagnant or improved slightly during the first 3 days and then improved on days 4 and 6. Vertical jump, flexibility, T-agility test, and push-ups in 1 minute improved on day 6. The number of sit-ups in 1 minute did not improve, and scores on the multistage fitness test decreased 20.34%. There was no effect of Lake Louise acute mountain sickness (AMS) questionnaire scores on performance variables measured. Athletes sojourning to high altitude for ski camps can train on immediate ascent but should slowly increase training volume over the first 3 days. Athletes should expect improvements in balance and reaction time 3-6 days into acclimatization. Coaches and athletes should expect about 20% of youth lowlander athletes to have signs and symptoms of AMS during the first 3 days of altitude exposure for alpine lift access sports at altitudes of up to 3,800 m.

  16. Factors associated with poor balance ability in older adults of nine high-altitude communities.

    Science.gov (United States)

    Urrunaga-Pastor, Diego; Moncada-Mapelli, Enrique; Runzer-Colmenares, Fernando M; Bailon-Valdez, Zaira; Samper-Ternent, Rafael; Rodriguez-Mañas, Leocadio; Parodi, Jose F

    2018-05-01

    Poor balance ability in older adults result in multiple complications. Poor balance ability has not been studied among older adults living at high altitudes. In this study, we analysed factors associated with poor balance ability by using the Functional Reach (FR) among older adults living in nine high-altitude communities. Analytical cross-sectional study, carried out in inhabitants aged 60 or over from nine high-altitude Andean communities of Peru during 2013-2016. FR was divided according to the cut-off point of 8 inches (20.32 cm) and two groups were generated: poor balance ability (FR less or equal than 20.32 cm) and good balance ability (greater than 20.32 cm). Additionally, we collected socio-demographic, medical, functional and cognitive assessment information. Poisson regression models were constructed to identify factors associated with poor balance ability. Prevalence ratio (PR) with 95% confidence intervals (95CI%) are presented. A total of 365 older adults were studied. The average age was 73.0 ± 6.9 years (range: 60-91 years), and 180 (49.3%) participants had poor balance ability. In the adjusted Poisson regression analysis, the factors associated with poor balance ability were: alcohol consumption (PR = 1.35; 95%CI: 1.05-1.73), exhaustion (PR = 2.22; 95%CI: 1.49-3.31), gait speed (PR = 0.67; 95%CI: 0.50-0.90), having had at least one fall in the last year (PR = 2.03; 95%CI: 1.19-3.46), having at least one comorbidity (PR = 1.60; 95%CI: 1.10-2.35) and having two or more comorbidities (PR = 1.61; 95%CI: 1.07-2.42) compared to none. Approximately a half of the older adults from these high-altitude communities had poor balance ability. Interventions need to be designed to target these balance issues and prevent adverse events from concurring to these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Reducing pulmonary injury by hyperbaric oxygen preconditioning during simulated high altitude exposure in rats.

    Science.gov (United States)

    Li, Zhuo; Gao, Chunjin; Wang, Yanxue; Liu, Fujia; Ma, Linlin; Deng, Changlei; Niu, Ko-Chi; Lin, Mao-Tsun; Wang, Chen

    2011-09-01

    Hyperbaric oxygen preconditioning (HBO₂P + HAE) has been found to be beneficial in preventing the occurrence of ischemic damage to brain, spinal cord, heart, and liver in several disease models. In addition, pulmonary inflammation and edema are associated with a marked reduction in the expression levels of both aquaporin (AQP) 1 and AQP5 in the lung. Here, the aims of this study are first to ascertain whether acute lung injury can be induced by simulated high altitude in rats and second to assess whether HBO2P + HAE is able to prevent the occurrence of the proposed high altitude-induced ALI. Rats were randomly divided into the following three groups: the normobaric air (NBA; 21% O₂ at 1 ATA) group, the HBO₂P + high altitude exposure (HAE) group, and the NBA + HAE group. In HBO₂P + HAE group, animals received 100% O₂ at 2.0 ATA for 1 hour per day, for five consecutive days. In HAE groups, animals were exposed to a simulated HAE of 6,000 m in a hypobaric chamber for 24 hours. Right after being taken out to the ambient, animals were anesthetized generally and killed and thoroughly exsanguinated before their lungs were excised en bloc. The lungs were used for both histologic and molecular evaluation and analysis. In NBA + HAE group, the animals displayed higher scores of alveolar edema, neutrophil infiltration, and hemorrhage compared with those of NBA controls. In contrast, the levels of both AQP1 and AQP5 proteins and mRNA expression in the lung in the NBA + HAE group were significantly lower than those of NBA controls. However, the increased lung injury scores and the decreased levels of both AQP1 and AQP5 proteins and mRNA expression in the lung caused by HAE was significantly reduced by HBO₂P + HAE. Our results suggest that high altitude pulmonary injury may be prevented by HBO2P + HAE in rats.

  18. The effect of α1‐adrenergic blockade on post‐exercise brachial artery flow‐mediated dilatation at sea level and high altitude

    Science.gov (United States)

    Tremblay, Joshua C.; Hansen, Alex B.; Howe, Connor A.; Willie, Chris K.; Stembridge, Mike; Green, Daniel J.; Hoiland, Ryan L.; Subedi, Prajan; Anholm, James D.; Ainslie, Philip N.

    2016-01-01

    Key points Our objective was to quantify endothelial function (via brachial artery flow‐mediated dilatation) at sea level (344 m) and high altitude (3800 m) at rest and following both maximal exercise and 30 min of moderate‐intensity cycling exercise with and without administration of an α1‐adrenergic blockade.Brachial endothelial function did not differ between sea level and high altitude at rest, nor following maximal exercise.At sea level, endothelial function decreased following 30 min of moderate‐intensity exercise, and this decrease was abolished with α1‐adrenergic blockade. At high altitude, endothelial function did not decrease immediately after 30 min of moderate‐intensity exercise, and administration of α1‐adrenergic blockade resulted in an increase in flow‐mediated dilatation.Our data indicate that post‐exercise endothelial function is modified at high altitude (i.e. prolonged hypoxaemia). The current study helps to elucidate the physiological mechanisms associated with high‐altitude acclimatization, and provides insight into the relationship between sympathetic nervous activity and vascular endothelial function. Abstract We examined the hypotheses that (1) at rest, endothelial function would be impaired at high altitude compared to sea level, (2) endothelial function would be reduced to a greater extent at sea level compared to high altitude after maximal exercise, and (3) reductions in endothelial function following moderate‐intensity exercise at both sea level and high altitude are mediated via an α1‐adrenergic pathway. In a double‐blinded, counterbalanced, randomized and placebo‐controlled design, nine healthy participants performed a maximal‐exercise test, and two 30 min sessions of semi‐recumbent cycling exercise at 50% peak output following either placebo or α1‐adrenergic blockade (prazosin; 0.05 mg kg −1). These experiments were completed at both sea‐level (344 m) and high altitude (3800

  19. Changes in labial capillary density on ascent to and descent from high altitude [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Edward Gilbert-Kawai

    2016-08-01

    Full Text Available Present knowledge of how the microcirculation is altered by prolonged exposure to hypoxia at high altitude is incomplete and modification of existing analytical techniques may improve our knowledge considerably. We set out to use a novel simplified method of measuring in vivo capillary density during an expedition to high altitude using a CytoCam incident dark field imaging video-microscope. The simplified method of data capture involved recording one-second images of the mucosal surface of the inner lip to reveal data about microvasculature density in ten individuals. This was done on ascent to, and descent from, high altitude. Analysis was conducted offline by two independent investigators blinded to the participant identity, testing conditions and the imaging site.  Additionally we monitored haemoglobin concentration and haematocrit data to see if we could support or refute mechanisms of altered density relating to vessel recruitment. Repeated sets of paired values were compared using Kruskall Wallis Analysis of Variance tests, whilst comparisons of values between sites was by related samples Wilcoxon Signed Rank Test. Correlation between different variables was performed using Spearman’s rank correlation coefficient, and concordance between analysing investigators using intra-class correlation coefficient. There was a significant increase in capillary density from London on ascent to high altitude; median capillaries per field of view area increased from 22.8 to 25.3 (p=0.021. There was a further increase in vessel density during the six weeks spent at altitude (25.3 to 32.5, p=0.017. Moreover, vessel density remained high on descent to Kathmandu (31.0 capillaries per field of view area, despite a significant decrease in haemoglobin concentration and haematocrit. Using a simplified technique, we have demonstrated an increase in capillary density on early and sustained exposure to hypobaric hypoxia at thigh altitude, and that this remains

  20. Effects of High Altitude on Sleep and Respiratory System and Theirs Adaptations

    Directory of Open Access Journals (Sweden)

    Turhan San

    2013-01-01

    Full Text Available High-altitude (HA environments have adverse effects on the normal functioning body of people accustomed to living at low altitudes because of the change in barometric pressure which causes decrease in the amount of oxygen leading to hypobaric hypoxia. Sustained exposure to hypoxia has adverse effects on body weight, muscle structure and exercise capacity, mental functioning, and sleep quality. The most important step of acclimatization is the hyperventilation which is achieved by hypoxic ventilatory response of the peripheral chemoreceptors. Hyperventilation results in increase in arterial carbondioxide concentration. Altitude also affects sleep and cardiac output, which is the other determinant of oxygen delivery. Upon initial exposure to HA, the resting pulse rate increases rapidly, but with acclimatization, heart rate and cardiac output tend to fall. Another important component that leads to decrease in cardiac output is the reduction in the stroke volume with acclimatization. During sleep at HA, the levels of CO2 in the blood can drop very low and this can switch off the drive to breathe. Only after the body senses a further drop in O2 levels breathing is started again. Periodic breathing is thought to result from instability in the control system through the hypoxic drive or the response to CO2.

  1. B-type natriuretic peptide secretion following scuba diving

    DEFF Research Database (Denmark)

    Passino, Claudio; Franzino, Enrico; Giannoni, Alberto

    2011-01-01

    To examine the neurohormonal effects of a scuba dive, focusing on the acute changes in the plasma concentrations of the different peptide fragments from the B-type natriuretic peptide (BNP) precursor....

  2. Grappling the High Altitude for Safe Edible Bamboo Shoots with Rich Nutritional Attributes and Escaping Cyanogenic Toxicity

    Directory of Open Access Journals (Sweden)

    Sayanika Devi Waikhom

    2013-01-01

    Full Text Available Consumption of bamboo species with high level of total cyanogenic content (TCC in Asia by many ethnic groups is significantly associated with food poisoning and occasionally Konzo (a neurological disorder. Adequate characterization of edible bamboo species with low level of TCC and high nutritious attributes is required for consumer’s safety as well as for the conservation of the gene pool. Here, we employed morphological descriptors, atomic absorption spectrophotometer, RAPD, and trnL-F intergenic spacer to characterize 15 indigenous edible bamboo species of north-east India. The study indicates that morphologically and genetically evolved edible bamboo species having large and robust bamboo-shoot texture and growing at low altitude contain high level of TCC, low antioxidant properties, and low levels of beneficial macronutrients and micronutrients. Importantly, Dendrocalamus species are shown to be rich in TCC irrespective of the growing altitude while Bambusa species are found to have moderate level of TCC. The findings clearly demonstrated that Chimonobambusa callosa growing at high altitude represents safe edible bamboo species with nutritious attributes.

  3. Imaging Findings of a Survivor of Avalanche without Any Life Support at Very High Altitude and Extreme Low Temperatures

    Directory of Open Access Journals (Sweden)

    Abhishek Dwivedi

    2016-10-01

    Full Text Available Survival at high altitude is very challenging and in spite of adequate training and acclimatization, injuries are frequent. The fate of mountaineers and soldiers at such areas largely depends on the mercy of the climate. An avalanche causes physical trauma, cold injury and asphyxia to the victim. The patient in our report had diffuse cerebral edema, bilateral pulmonary consolidation and pneumothorax. In spite of the best efforts the victim succumbed to the injuries. There are many incidents of high altitude accidents in India. This case report is of a soldier deployed at the high altitude, is a lone ever reported survivor above 5000 meters, under 35 feet snow and below - 45°C for greater than 5 days of exposure to an avalanche

  4. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas; implications for dive physiology and health

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    2016-09-01

    Full Text Available Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression and Concanavalin A induced lymphocyte proliferation (BrdU incorporation in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE and capture/release conditions. Beluga blood samples (n=4 were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n=9. Human blood samples (n=4 (Biological Specialty Corporation were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α=0.05. Cortisol was significantly higher in wild belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and wild belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals

  5. Exercise and Training at Altitudes: Physiological Effects and Protocols

    Directory of Open Access Journals (Sweden)

    Olga Cecilia Vargas Pinilla

    2014-01-01

    Full Text Available An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.

  6. Excessive Iron Availability Caused by Disorders of Interleukin-10 and Interleukin-22 Contributes to High Altitude Polycythemia

    Directory of Open Access Journals (Sweden)

    Yun-Sheng Liu

    2018-05-01

    Full Text Available Background: Because the pathogenesis of high altitude polycythemia (HAPC is unclear, the aim of the present study was to explore whether abnormal iron metabolism is involved in the pathogenesis of HAPC and the possible cause.Methods: We examined the serum levels of iron, total iron binding capacity, soluble transferrin receptor (sTfR, ferritin, and hepcidin as well as erythropoietin (EPO and inflammation-related cytokines in 20 healthy volunteers at sea level, 36 healthy high-altitude migrants, and 33 patients with HAPC. Mice that were exposed to a simulated hypoxic environment at an altitude of 5,000 m for 4 weeks received exogenous iron or intervention on cytokines, and the iron-related and hematological indices of peripheral blood and bone marrow were detected. The in vitro effects of some cytokines on hematopoietic cells were also observed.Results: Iron mobilization and utilization were enhanced in people who had lived at high altitudes for a long time. Notably, both the iron storage in ferritin and the available iron in the blood were elevated in patients with HAPC compared with the healthy high-altitude migrants. The correlation analysis indicated that the decreased hepcidin may have contributed to enhanced iron availability in HAPC, and decreased interleukin (IL-10 and IL-22 were significantly associated with decreased hepcidin. The results of the animal experiments confirmed that a certain degree of iron redundancy may promote bone marrow erythropoiesis and peripheral red blood cell production in hypoxic mice and that decreased IL-10 and IL-22 stimulated iron mobilization during hypoxia by affecting hepcidin expression.Conclusion: These data demonstrated, for the first time, that an excess of obtainable iron caused by disordered IL-10 and IL-22 was involved in the pathogenesis of some HAPC patients. The potential benefits of iron removal and immunoregulation for the prevention and treatment of HAPC deserve further research.

  7. Altitude training considerations for the winter sport athlete.

    Science.gov (United States)

    Chapman, Robert F; Stickford, Jonathon L; Levine, Benjamin D

    2010-03-01

    Winter sports events routinely take place at low to moderate altitudes, and nearly all Winter Olympic Games have had at least one venue at an altitude >1000 m. The acute and chronic effects of altitude can have a substantial effect on performance outcomes. Acutely, the decline in oxygen delivery to working muscle decreases maximal oxygen uptake, negatively affecting performance in endurance events, such as cross-country skiing and biathlon. The reduction in air resistance at altitude can dramatically affect sports involving high velocities and technical skill components, such as ski jumping, speed skating, figure skating and ice hockey. Dissociation between velocity and sensations usually associated with work intensity (ventilation, metabolic signals in skeletal muscle and heart rate) may impair pacing strategy and make it difficult to determine optimal race pace. For competitions taking place at altitude, a number of strategies may be useful, depending on the altitude of residence of the athlete and ultimate competition altitude, as follows. First, allow extra time and practice (how much is yet undetermined) for athletes to adjust to the changes in projectile motion; hockey, shooting, figure skating and ski jumping may be particularly affected. These considerations apply equally in the reverse direction; that is, for athletes practising at altitude but competing at sea level. Second, allow time for acclimatization for endurance sports: 3-5 days if possible, especially for low altitude (500-2000 m); 1-2 weeks for moderate altitude (2000-3000 m); and at least 2 weeks if possible for high altitude (>3000 m). Third, increase exercise-recovery ratios as much as possible, with 1:3 ratio probably optimal, and consider more frequent substitutions for sports where this is allowed, such as ice hockey. Fourth, consider the use of supplemental O(2) on the sideline (ice hockey) or in between heats (skating and Alpine skiing) to facilitate recovery. For competitions at sea

  8. 36 CFR 3.18 - May I snorkel or underwater dive in park waters?

    Science.gov (United States)

    2010-07-01

    ... dive in park waters? 3.18 Section 3.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE... waters? (a) Snorkeling and underwater diving is allowed in park waters, subject to closures or restrictions designated by the superintendent in accordance with §§ 1.5 and 1.7 of this chapter. (b) In waters...

  9. Individual Susceptibility to Hypobaric Environments: An Update

    Science.gov (United States)

    Law, Jennifer; Watkins, Sharmi

    2009-01-01

    Astronauts are at risk for developing decompression sickness (DCS) while exposed to the hypobaric environment of the extravehicular suit in space, in terrestrial hypobaric chambers, and during ascent from neutral buoyancy training dives. There is increasing recognition that DCS risk is different between diving and altitude exposures, with many individual parameters and environmental factors implicated as risk factors for development of DCS in divers but are not recognized as risk factors in altitude exposures. Much of the literature to date has focused on patent foramen ovale (PFO), which has long been considered a major risk factor for DCS in diving exposures, but its link to serious DCS in altitude exposures remains unclear. Knowledge of those risk factors specific to hypobaric DCS may help identify susceptible individuals and aid in astronaut selection, crew assignment, and mission planning. This paper reviews the current literature pertaining to these risk factors, including PFO, anthropometric parameters, gender, menstrual cycle, lifetime diving experience, physical fitness, biochemical levels, complement activation, cigarette smoking, fluid balance, and ambient temperature. Further research to evaluate pertinent risk factors for DCS in altitude exposures is recommended.

  10. Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic

    Science.gov (United States)

    Rogan, Emer; Cañadas, Ana; Macleod, Kelly; Santos, M. Begoña; Mikkelsen, Bjarni; Uriarte, Ainhize; Van Canneyt, Olivier; Vázquez, José Antonio; Hammond, Philip S.

    2017-07-01

    In spite of their oceanic habitat, deep diving cetacean species have been found to be affected by anthropogenic activities, with potential population impacts of high intensity sounds generated by naval research and oil prospecting receiving the most attention. Improving the knowledge of the distribution and abundance of this poorly known group is an essential prerequisite to inform mitigation strategies seeking to minimize their spatial and temporal overlap with human activities. We provide for the first time abundance estimates for five deep diving cetacean species (sperm whale, long-finned pilot whale, northern bottlenose whale, Cuvier's beaked whale and Sowerby's beaked whale) using data from three dedicated cetacean sighting surveys that covered the oceanic and shelf waters of the North-East Atlantic. Density surface modelling was used to obtain model-based estimates of abundance and to explore the physical and biological characteristics of the habitat used by these species. Distribution of all species was found to be significantly related to depth, distance from the 2000m depth contour, the contour index (a measure of variability in the seabed) and sea surface temperature. Predicted distribution maps also suggest that there is little spatial overlap between these species. Our results represent the best abundance estimates for deep-diving whales in the North-East Atlantic, predict areas of high density during summer and constitute important baseline information to guide future risk assessments of human activities on these species, evaluate potential spatial and temporal trends and inform EU Directives and future conservation efforts.

  11. Surname-inferred Andean ancestry is associated with child stature and limb lengths at high altitude in Peru, but not at sea level.

    Science.gov (United States)

    Pomeroy, Emma; Wells, Jonathan C K; Stanojevic, Sanja; Miranda, J Jaime; Moore, Lorna G; Cole, Tim J; Stock, Jay T

    2015-01-01

    Native Andean ancestry gives partial protection from reduced birthweight at high altitude in the Andes compared with European ancestry. Whether Andean ancestry is also associated with body proportions and greater postnatal body size at altitude is unknown. Therefore, we tested whether a greater proportion of Andean ancestry is associated with stature and body proportions among Peruvian children at high and low altitude. Height, head circumference, head-trunk height, upper and lower limb lengths, and tibia, ulna, hand and foot lengths, were measured in 133 highland and 169 lowland children aged 6 months to 8.5 years. For highland and lowland groups separately, age-sex-adjusted anthropometry z scores were regressed on the number of indigenous parental surnames as a proxy for Andean ancestry, adjusting for potential confounders (maternal age and education, parity, altitude [highlands only]). Among highland children, greater Andean ancestry was negatively associated with stature and tibia, ulna, and lower limb lengths, independent of negative associations with greater altitude for these measurements. Relationships were strongest for tibia length: each additional Andean surname or 1,000 m increase at altitude among highland children was associated with 0.18 and 0.65 z score decreases in tibia length, respectively. Anthropometry was not significantly associated with ancestry among lowland children. Greater Andean ancestry is associated with shorter stature and limb measurements at high but not low altitude. Gene-environment interactions between high altitude and Andean ancestry may exacerbate the trade-off between chest dimensions and stature that was proposed previously, though we could not test this directly. © 2015 Wiley Periodicals, Inc.

  12. Hemoglobin and hematocrit values of Saudi newborns in the high altitude of Abha, Saudi Arabia

    International Nuclear Information System (INIS)

    Bassuni, W.; Asindi, A.A.; Mustafa, F.S.; Hassan, B.; Din, Z.S.; Kumar, R.K.

    1996-01-01

    A study was designed to determine the red cell values (hemoglobin and hematocrit) of neonates born in the high altitude of Abha and to compare these values with known values of other lowland areas of Saudi Arabia. From the cord blood of 587 normal, appropriate for gestational age and term infants born in 1993 in Abha Maternity Hospital, the ranges of Hb and Hct were 130 to 240 g/L and 0.24 to 0.79 L/L respectively. The mean Hb was 187 g/L. There was no significant difference between the male and female values. Also, 17% of the infants in this study were polycythemic, while no polycythemia was recorded in these lowland areas and only 2% to 4% in the general global newborn population. It was therefore revealed that Abha newborns had higher red cell values at the birth when compared to other newborns in the low altitude areas of Riyadh and Jeddah (P<0.001). We postulate that high altitude (2700 meters above sea level) of Abha, and therefore its relative hypoxia, has induced high red cell values in infants born in the city. The phenomenon therefore warrants the adoption of higher red cell reference values and not necessarily those already documented in other Saudi new born populations. (author)

  13. Underwater and Dive Station Work-Site Noise Surveys

    National Research Council Canada - National Science Library

    Wolgemuth, Keith S; Cudahy, Edward A; Schwaller, Derek W

    2008-01-01

    ...) data This study extends this previous work by obtaining in-water and in-air noise measurements and a total noise dose for Navy divers during actual diving operations using a portable sound level...

  14. Snow chemistry of high altitude glaciers in the French Alps

    OpenAIRE

    MAUPETIT, FRANÇOIS; DELMAS, ROBERT J.

    2011-01-01

    Snow samples were collected as snowcores in the accumulation zone of four high altitude glaciers (2980–3540 m.a.s.l.) from each of the 4 highest mountain areas of the French Alps, during 3 consecutive years: 1989, 1990 and 1991. Sampling was performed in spring (∼ May), before the onset of late spring–summer percolation. The accumulated snow therefore reflects winter and spring conditions. A complementary sampling of fresh-snow was performed on an event basis, on one of the studied glaciers, ...

  15. Lower obesity rate during residence at high altitude among a military population with frequent migration: a quasi experimental model for investigating spatial causation.

    Directory of Open Access Journals (Sweden)

    Jameson D Voss

    Full Text Available We sought to evaluate whether residence at high altitude is associated with the development of obesity among those at increased risk of becoming obese. Obesity, a leading global health priority, is often refractory to care. A potentially novel intervention is hypoxia, which has demonstrated positive long-term metabolic effects in rats. Whether or not high altitude residence confers benefit in humans, however, remains unknown. Using a quasi-experimental, retrospective study design, we observed all outpatient medical encounters for overweight active component enlisted service members in the U.S. Army or Air Force from January 2006 to December 2012 who were stationed in the United States. We compared high altitude (>1.96 kilometers above sea level duty assignment with low altitude (<0.98 kilometers. The outcome of interest was obesity related ICD-9 codes (278.00-01, V85.3x-V85.54 by Cox regression. We found service members had a lower hazard ratio (HR of incident obesity diagnosis if stationed at high altitude as compared to low altitude (HR 0.59, 95% confidence interval [CI] 0.54-0.65; p<0.001. Using geographic distribution of obesity prevalence among civilians throughout the U.S. as a covariate (as measured by the Centers for Disease Control and Prevention and the REGARDS study also predicted obesity onset among service members. In conclusion, high altitude residence predicts lower rates of new obesity diagnoses among overweight service members in the U.S. Army and Air Force. Future studies should assign exposure using randomization, clarify the mechanism(s of this relationship, and assess the net balance of harms and benefits of high altitude on obesity prevention.

  16. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, H.; Waara, M.; Arvelius, S.; Yamauchi, M.; Lundin, R. [Inst. of Space Physics, Kiruna (Sweden); Marghitu, O. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); Inst. for Space Sciences, Bucharest (Romania); Bouhram, M. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); CETP-CNRS, Saint-Maur (France); Hobara, Y. [Inst. of Space Physics, Kiruna (Sweden); Univ. of Sheffield, Sheffield (United Kingdom); Reme, H.; Sauvaud, J.A.; Dandouras, I. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France); Balogh, A. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom); Kistler, L.M. [Univ. of New Hampshire, Durham (United States); Klecker, B. [Max-Planck-Inst. fuer Extraterrestriche Physik, Garching (Germany); Carlson, C.W. [Space Science Lab., Univ. of California, Berkeley (United States); Bavassano-Cattaneo, M.B. [Ist. di Fisica dello Spazio Interplanetario, Roma (Italy); Korth, A. [Max-Planck-Inst. fuer Sonnensystemforschung, Katlenburg-Lindau (Germany)

    2006-07-01

    The results of a statistical study of oxygen ion outflow using cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H{sup +}) and oxygen ions (O{sup +}) from 3 years (2001-2003) of spring orbits (January to May) have been used. The altitudes covered were mainly in the range 5-12 R{sub E} geocentric distance. It was found that O{sup +} is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O{sup +} parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O{sup +} parallel bulk velocities in excess of 60 km s{sup -1} were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O{sup +} the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H{sup +} and O{sup +} was found to typically be close to the same throughout the observation interval when the H{sup +} bulk velocity was calculated for all pitch-angles. When the H{sup +} bulk velocity was calculated for upward moving particles only the H{sup +} parallel bulk velocity was typically higher than that of O{sup +}. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O{sup +} ions dominates. The thermal velocity of O{sup +} was always well below that of H{sup +}. Thus perpendicular energization that is more effective for O{sup +} takes place, but this is not enough to explain the close to similar parallel velocities. Further parallel acceleration must occur. The results presented constrain the models of perpendicular heating and parallel

  17. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2006-05-01

    Full Text Available The results of a statistical study of oxygen ion outflow using Cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H+ and oxygen ions (O+ from 3 years (2001-2003 of spring orbits (January to May have been used. The altitudes covered were mainly in the range 5–12 RE geocentric distance. It was found that O+ is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O+ parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O+ parallel bulk velocities in excess of 60 km s-1 were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O+ the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H+ and O+ was found to typically be close to the same throughout the observation interval when the H+ bulk velocity was calculated for all pitch-angles. When the H+ bulk velocity was calculated for upward moving particles only the H+ parallel bulk velocity was typically higher than that of O+. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O+ ions dominates. The thermal velocity of O+ was always well below that of H+. Thus perpendicular energization that is more effective for O+ takes place, but this is not enough to explain the close to similar parallel velocities. Further parallel acceleration must occur. The results presented constrain the models of perpendicular heating and parallel acceleration. In particular centrifugal acceleration of the outflowing ions, which may

  18. Incidence and care of environmental dermatoses in the high-altitude region of Ladakh, India

    Directory of Open Access Journals (Sweden)

    G K Singh

    2013-01-01

    Full Text Available Background : Low humidity, high-velocity wind, excessive ultraviolet (UV exposure, and extreme cold temperature are the main causes of various types of environmental dermatoses in high altitudes. Materials and Methods: A retrospective study was carried out in patients visiting the lone dermatology department in Ladakh between July 2009 and June 2010. The aim was to identify the common environmental dermatoses in high altitudes so that they can be treated easily or prevented. The patients were divided into three demographic groups, namely, lowlanders, Ladakhis (native highlanders, and tourists. Data was analyzed in a tabulated fashion. Results: A total of 1,567 patients with skin ailments were seen, of whom 965 were lowlanders, 512 native Ladakhis, and 90 were tourists. The skin disorders due to UV rays, dry skin, and papular urticaria were common among all groups. The frequency of melasma ( n = 42; 49.4%, chronic actinic dermatitis (CAD ( n = 18; 81.81% of total CAD cases, and actinic cheilitis ( n = 3; 100% was much higher among the native Ladakhis. The frequency of cold-related injuries was much lesser among Ladakhis ( n = 1; 1.19% than lowlanders ( n = 70; 83.33% and tourists ( n = 13; 15.47% ( P < 0.05. Conclusion: Dryness of skin, tanning, acute or chronic sunburn, polymorphic light reaction, CAD, insect bite reactions, chilblain, and frostbite are common environmental dermatoses of high altitudes. Avoidance of frequent application of soap, application of adequate and suitable emollient, use of effective sunscreen, and wearing of protective clothing are important guidelines for skin care in this region.

  19. A case of deep burns, while diving The Lusitania.

    LENUS (Irish Health Repository)

    Curran, John N

    2010-07-01

    We present the first documented case of severe burns, sustained by a diver as a result of auto-ignition of air-activated heat packs at high partial pressure of oxygen and high ambient pressure. Our patient was diving the shipwreck of The Lusitania off the south coast of Ireland. This is a significant wreck, lying 90 metres down on the seabed. Torpedoed by a German U-boat in 1915, its loss prompted American involvement in WW1. Several unlikely events combined in this case to bring about serious and life threatening injuries. Herein we discuss the case and explore some of the physical and chemical processes that lead to these injuries.

  20. Protective effects of Astragalus-Lilygranules on intestinal mucosal barrier of mice in high altitude hypoxia

    Directory of Open Access Journals (Sweden)

    Ling LI

    2016-10-01

    Full Text Available Objective  To investigate the protective effect of Astragalus-Lily Granules on intestinal mucosa and intestinal flora homeostasis in mice under high altitude hypoxia condition. Methods  We put mice into high altitude hypoxia cabin to establish high altitude hypoxia model mice. Sixty Kunming mice were randomly divided into control group, model group, Astragalus-Lily particles (ALP low, medium and high dose groups [1.75, 3.5, 7g/(kg•d] respectively. After three days of routine feeding, the ALP mice received drug by intragastric administration, once a day for continuous 17 days,control group and model group were given double distilled water in same volume. From the 15th day, all the mice but control group were exposed to simulated high altitude hypoxia condition for 3 days in a high altitude hypoxia cabin after they were gavaged for half an hour daily. By the 18th day, the fresh mouse feces were collected and smeared to observe the changes of microflora. The pathological changes of intestinal tissues were observed by HE staining and the expression of HIF-1αprotein in intestines was detected by immunohistochemistry. Results  The enterococci and gram negative bacteria showed a higher proportion (65.2%±2.4% and 56.7%±3.3%, respectively in the model group compared with the control group (24.7%±1.2%, 23.2%±1.5%, respectively, P<0.05. The pathological score of intestinal mucosal necrosis and edema (3.10±0.99, 3.30±0.67 respectively and inflammatory cell count (15.93±3.30, 16.40±3.97/ HP respectively was higher compared with the model group (0.70±0.67, 0.80±0.78; 4.07±2.12, 4.28±2.16/HP respectively; P<0.05. HIF-1αexpression increased significantly compared with the model group (P<0.05. The enterococci (46.7%±2.0%, 32.0%±2.6% respectively and gram negative bacteria rate (34.2%±1.6%, 38.0%±2.8% respectively in the ALP medium and high dose groups were lower compared with the model group (24.7%±1.2%, 23.2%±1.5% respectively, P<0

  1. High-altitude and high-latitude O+ and H+ outflows: the effect of finite electromagnetic turbulence wavelength

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2007-11-01

    , consistent with the observations of H+ and O+ ions in the auroral region at high altitudes.

  2. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness.

    Science.gov (United States)

    Smith, N Adam; Clarke, Julia A

    2014-02-01

    Although studies of osteological morphology, gross myology, myological histology, neuroanatomy, and wing-scaling have all documented anatomical modifications associated with wing-propelled diving, the osteohistological study of this highly derived method of locomotion has been limited to penguins. Herein we present the first osteohistological study of the derived forelimbs and hind limbs of wing-propelled diving Pan-Alcidae (Aves, Charadriiformes). In addition to detailing differences between wing-propelled diving charadriiforms and nondiving charadriiforms, microstructural modifications to the humeri, ulnae and femora of extinct flightless pan-alcids are contrasted with those of volant alcids. Histological thin-sections of four species of pan-alcids (Alca torda, †Alca grandis, †Pinguinus impennis, †Mancalla cedrosensis) and one outgroup charadriiform (Stercorarius longicaudus) were compared. The forelimb bones of wing-propelled diving charadriiforms were found to have significantly thicker (∼22%) cortical bone walls. Additionally, as in penguins, the forelimbs of flightless pan-alcids are found to be osteosclerotic. However, unlike the pattern documented in penguins that display thickened cortices in both forelimbs and hind limbs, the forelimb and hind limb elements of pan-alcids display contrasting microstructural morphologies with thickened forelimb cortices and relatively thinner femoral cortices. Additionally, the identification of medullary bone in the sampled †Pinguinus impennis specimen suggests that further osteohistological investigation could provide an answer to longstanding questions regarding sexual dimorphism of Great Auks. Finally, these results suggest that it is possible to discern volant from flightless wing-propelled divers from fragmentary fossil remains. Copyright © 2013 Wiley Periodicals, Inc.

  3. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    Science.gov (United States)

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Serum creatine kinase elevations in ultramarathon runners at high altitude.

    Science.gov (United States)

    Magrini, Danielle; Khodaee, Morteza; San-Millán, Iñigo; Hew-Butler, Tamara; Provance, Aaron J

    2017-05-01

    Creatine kinase (CK) is a sensitive enzyme marker for muscle damage in athletes. Elevated CK levels have been reported in many endurance physical activities. The consequence and possible long-term sequela of the CK elevation in athletes is unknown. There is a paucity of literature stating actual numerical values of CK associated with competing in an ultramarathon with extreme environmental conditions. Our hypothesis was that the serum CK levels increase significantly as a result of running a 161 km ultramarathon at high altitude. This was a prospective observational study of participants of the Leadville 100 ultramarathon race in Leadville, Colorado at high altitude (2800-3840 m) in August 2014. We collected blood samples from sixty-four volunteer runners before and eighty-three runners immediately after the race. Out of 669 athletes who started the race, 352 successfully completed the race in less than the 30-hour cut-off time (52%). The majority of runners were male (84%). We were able to collect both pre- and post-race blood samples from 36 runners. Out of these 36 runners, the mean pre-race CK was increased from 126 ± 64 U/L to 14,569 ± 14,729 U/L (p athletes' age, BMI, or finishing time. Significant elevation of CK level occurs as a result of running ultramarathons. The majority of athletes with significantly elevated CK levels were asymptomatic and required no major medical attention.

  5. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators.

    Science.gov (United States)

    Cox, Sam L; Orgeret, Florian; Gesta, Mathieu; Rodde, Charles; Heizer, Isaac; Weimerskirch, Henri; Guinet, Christophe

    2018-01-01

    Biologging technologies are changing the way in which the marine environment is observed and monitored. However, because device retrieval is typically required to access the high-resolution data they collect, their use is generally restricted to those animals that predictably return to land. Data abstraction and transmission techniques aim to address this, although currently these are limited in scope and do not incorporate, for example, acceleration measurements which can quantify animal behaviours and movement patterns over fine-scales.In this study, we present a new method for the collection, abstraction and transmission of accelerometer data from free-ranging marine predators via the Argos satellite system. We test run the technique on 20 juvenile southern elephant seals Mirounga leonina from the Kerguelen Islands during their first months at sea following weaning. Using retrieved archival data from nine individuals that returned to the colony, we compare and validate abstracted transmissions against outputs from established accelerometer processing procedures.Abstracted transmissions included estimates, across five segments of a dive profile, of time spent in prey catch attempt (PrCA) behaviours, swimming effort and pitch. These were then summarised and compared to archival outputs across three dive phases: descent, bottom and ascent. Correlations between the two datasets were variable but generally good (dependent on dive phase, marginal R 2 values of between .45 and .6 to >.9) and consistent between individuals. Transmitted estimates of PrCA behaviours and swimming effort were positively biased to those from archival processing.Data from this study represent some of the first remotely transmitted quantifications from accelerometers. The methods presented and analysed can be used to provide novel insight towards the behaviours and movements of free-ranging marine predators, such as juvenile southern elephant seals, from whom logger retrieval is challenging

  6. Beta-fibrinogen allele frequencies in Peruvian Quechua, a high-altitude native population.

    Science.gov (United States)

    Rupert, J L; Devine, D V; Monsalve, M V; Hochachka, P W

    1999-06-01

    Elevated hematocrits, which are found in many high-altitude populations, increase the oxygen-carrying capacity of blood and may represent an adaptation to hypoxic environments. However, as high hematocrit increases blood viscosity, which in turn is associated with hypertension and heart disease, it may be advantageous for high-altitude populations to limit other factors that contribute to increased blood viscosity. One such factor is the plasma concentration of the coagulation protein fibrinogen. Several common polymorphisms in the beta-fibrinogen gene have been identified that affect fibrinogen concentrations. We determined the allele frequencies of three of these polymorphisms (G/A-455(HaeIII), C/T-148(HindIII), and G/A+448(MnlI)) in sample groups drawn from three populations: Quechua-speaking natives living at over 3,200 m in the Peruvian Andes, North American natives (Na-Dene) from coastal British Columbia, and Caucasian North Americans. The frequencies of the alleles previously shown to be associated with increased fibrinogen levels were so low in the Quechuas that their presence could be accounted for solely by genetic admixture with Caucasians. Frequencies in the Na-Dene, a Native American group unrelated to the Quechua, were not significantly different from those in Caucasians.

  7. Mössbauer studies of hemoglobin in high altitude polycythemia

    Science.gov (United States)

    Xiufang, Zhang; Linming, Shen; Songsen, Chen; Yuanyuan, Liu; Naifei, Gao; Yuanming, Zheng; Zhaohui, Ao; Liangquan, Shong

    1990-07-01

    The Mössbauer spectra have been measured in erythrocytes from normal adults and the patients with high altitude polycythemia (HAPC). The results indicated that two subspectra “a” and “b”, corresponding to oxy- and deoxyhemoglobin respectively, were present in all blood samples, and a third subspectrum “c” was found to exist in almost all samples from the patients. The parameters of the third subspectra “cl” in most samples from the patients were similar to those of carbon monoxyhemoglobin. The components were considered to be the denatured hemoglobin in RBCs (red blood cells). Together with clinical analysis, a possible mechanism of HAPC has been discussed.

  8. Adjustment of measurement errors to reconcile precipitation distribution in the high-altitude Indus basin

    NARCIS (Netherlands)

    Dahri, Zakir Hussain; Moors, Eddy; Ludwig, Fulco; Ahmad, Shakil; Khan, Asif; Ali, Irfan; Kabat, Pavel

    2018-01-01

    Precipitation in the high-altitude Indus basin governs its renewable water resources affecting water, energy and food securities. However, reliable estimates of precipitation climatology and associated hydrological implications are seriously constrained by the quality of observed data. As such,

  9. Increase in serum noradrenaline concentration by short dives with bradycardia in Indo-Pacific bottlenose dolphin Tursiops aduncus.

    Science.gov (United States)

    Suzuki, Miwa; Tomoshige, Mika; Ito, Miki; Koga, Sotaro; Yanagisawa, Makio; Bungo, Takashi; Makiguchi, Yuya

    2017-07-01

    In cetaceans, diving behavior immediately induces a change in blood circulation to favor flow to the brain and heart; this is achieved by intense vasoconstriction of the blood vessels that serve other organs. This blood circulation response is allied to a decrease in heart rate in order to optimize oxygen usage during diving. Vasoconstrictors are present in all mammals and stimulate the contraction of the smooth muscle in the walls of blood vessels. The most important of these vasoconstrictors are the hormones adrenaline (A), noradrenaline (NA), and angiotensin II (ANG II). At present, the contribution of these hormones to vasoconstriction during diving in cetaceans is unclear. To elucidate their possible roles, changes in serum levels of A, NA and ANG II were monitored together with heart rate in the Indo-Pacific bottlenose dolphin Tursiops aduncus during 90 and 180s dives. Both brief diving periods induced an increase in serum NA concentration and a decrease in heart rate; however, no changes were detected in serum levels of A or ANG II. These data indicate that NA may play a role in diving-induced vasoconstriction. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    Grace D

    2008-01-01

    Full Text Available Abstract We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  11. Decompression sickness in breath-hold diving, and its probable connection to the growth and dissolution of small arterial gas emboli.

    Science.gov (United States)

    Goldman, Saul; Solano-Altamirano, J M

    2015-04-01

    We solved the Laplace equation for the radius of an arterial gas embolism (AGE), during and after breath-hold diving. We used a simple three-region diffusion model for the AGE, and applied our results to two types of breath-hold dives: single, very deep competitive-level dives and repetitive shallower breath-hold dives similar to those carried out by indigenous commercial pearl divers in the South Pacific. Because of the effect of surface tension, AGEs tend to dissolve in arterial blood when arteries remote from supersaturated tissue. However if, before fully dissolving, they reach the capillary beds that perfuse the brain and the inner ear, they may become inflated with inert gas that is transferred into them from these contiguous temporarily supersaturated tissues. By using simple kinetic models of cerebral and inner ear tissue, the nitrogen tissue partial pressures during and after the dive(s) were determined. These were used to theoretically calculate AGE growth and dissolution curves for AGEs lodged in capillaries of the brain and inner ear. From these curves it was found that both cerebral and inner ear decompression sickness are expected to occur occasionally in single competitive-level dives. It was also determined from these curves that for the commercial repetitive dives considered, the duration of the surface interval (the time interval separating individual repetitive dives from one another) was a key determinant, as to whether inner ear and/or cerebral decompression sickness arose. Our predictions both for single competitive-level and repetitive commercial breath-hold diving were consistent with what is known about the incidence of cerebral and inner ear decompression sickness in these forms of diving. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  13. Effect of scuba diving on the oxidant/antioxidant status, SIRT1 and SIRT3 expression in recreational divers after a winter nondive period.

    Science.gov (United States)

    Perović, Antonija; Sobočanec, Sandra; Dabelić, Sanja; Balog, Tihomir; Dumić, Jerka

    2018-02-01

    The aim of this study was to examine the effects of scuba diving on oxidative damage markers in erythrocytes and plasma, antioxidant system in peripheral blood mononuclear cells (PBMCs), as well as sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3) gene expressions in recreational divers after a winter nondive period (at least 5 months). For that purpose, 17 male recreational divers performed an immersion at a depth of 30 m for 30 min. Blood samples were collected immediately before and after diving, 3 and 6 h after diving. Erythrocyte lipid peroxidation measured by thiobarbituric-reactive substances (TBARS) method was significantly increased immediately after diving, but returned to the baseline 6 h after diving, while no significant change was found for plasma TBARS and protein carbonyl derivates in both plasma and erythrocytes. Diving-induced catalase (CAT), superoxide dismutase 2 (SOD2), and consequently total superoxide dismutase (SOD) activities in the PBMC samples (significantly increased immediately after diving, reached the maximum activities 3 h after diving, while 6 h after diving only CAT activity remained significantly increased). No significant change was observed for SOD1 activity and gene expression, as well as SOD2 expression, while CAT and SIRT1 expressions were slightly decreased immediately after diving and 3 h after diving. Interestingly, SIRT3 expression was significantly increased 6 h after diving. In conclusion, after the first dive to 30 m after a nondive season, activation of antioxidant defence was not sufficient to prevent oxidative damage, while SIRT3 upregulation could be a step towards an adaptive response to the diving.

  14. Buoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort.

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available BACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. CONCLUSIONS/SIGNIFICANCE: Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants--as in other families of diving seabirds--of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.

  15. Serum irisin and myostatin levels after 2 weeks of high-altitude climbing.

    Directory of Open Access Journals (Sweden)

    Ewa Śliwicka

    Full Text Available Exposure to high-altitude hypoxia causes physiological and metabolic adaptive changes by disturbing homeostasis. Hypoxia-related changes in skeletal muscle affect the closely interconnected energy and regeneration processes. The balance between protein synthesis and degradation in the skeletal muscle is regulated by several molecules such as myostatin, cytokines, vitamin D, and irisin. This study investigates changes in irisin and myostatin levels in male climbers after a 2-week high-altitude expedition, and their association with 25(OHD and indices of inflammatory processes. The study was performed in 8 men aged between 23 and 31 years, who participated in a 2-week climbing expedition in the Alps. The measurements of body composition and serum concentrations of irisin, myostatin, 25(OHD, interleukin-6, myoglobin, high-sensitivity C-reactive protein, osteoprotegerin, and high-sensitivity soluble receptor activator of NF-κB ligand (sRANKL were performed before and after expedition. A 2-week exposure to hypobaric hypoxia caused significant decrease in body mass, body mass index (BMI, free fat mass and irisin, 25-Hydroxyvitamin D levels. On the other hand, significant increase in the levels of myoglobin, high-sensitivity C-reactive protein, interleukin-6, and osteoprotegerin were noted. The observed correlations of irisin with 25(OHD levels, as well as myostatin levels with inflammatory markers and the OPG/RANKL ratio indicate that these myokines may be involved in the energy-related processes and skeletal muscle regeneration in response to 2-week exposure to hypobaric hypoxia.

  16. Serum irisin and myostatin levels after 2 weeks of high-altitude climbing.

    Science.gov (United States)

    Śliwicka, Ewa; Cisoń, Tomasz; Kasprzak, Zbigniew; Nowak, Alicja; Pilaczyńska-Szcześniak, Łucja

    2017-01-01

    Exposure to high-altitude hypoxia causes physiological and metabolic adaptive changes by disturbing homeostasis. Hypoxia-related changes in skeletal muscle affect the closely interconnected energy and regeneration processes. The balance between protein synthesis and degradation in the skeletal muscle is regulated by several molecules such as myostatin, cytokines, vitamin D, and irisin. This study investigates changes in irisin and myostatin levels in male climbers after a 2-week high-altitude expedition, and their association with 25(OH)D and indices of inflammatory processes. The study was performed in 8 men aged between 23 and 31 years, who participated in a 2-week climbing expedition in the Alps. The measurements of body composition and serum concentrations of irisin, myostatin, 25(OH)D, interleukin-6, myoglobin, high-sensitivity C-reactive protein, osteoprotegerin, and high-sensitivity soluble receptor activator of NF-κB ligand (sRANKL) were performed before and after expedition. A 2-week exposure to hypobaric hypoxia caused significant decrease in body mass, body mass index (BMI), free fat mass and irisin, 25-Hydroxyvitamin D levels. On the other hand, significant increase in the levels of myoglobin, high-sensitivity C-reactive protein, interleukin-6, and osteoprotegerin were noted. The observed correlations of irisin with 25(OH)D levels, as well as myostatin levels with inflammatory markers and the OPG/RANKL ratio indicate that these myokines may be involved in the energy-related processes and skeletal muscle regeneration in response to 2-week exposure to hypobaric hypoxia.

  17. Bubble formation after a 20-m dive: deep-stop vs. shallow-stop decompression profiles

    NARCIS (Netherlands)

    Schellart, Nico A. M.; Corstius, Jan-Jaap Brandt; Germonpré, Peter; Sterk, Wouter

    2008-01-01

    OBJECTIVES: It is claimed that performing a "deep stop," a stop at about half of maximal diving depth (MDD), can reduce the amount of detectable precordial bubbles after the dive and may thus diminish the risk of decompression sickness. In order to ascertain whether this reduction is caused by the

  18. High-Altitude Platforms - Present Situation and Technology Trends

    Directory of Open Access Journals (Sweden)

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  19. Serum immunoreactive erythropoietin in high altitude natives with and without excessive erythrocytosis.

    Science.gov (United States)

    León-Velarde, F; Monge, C C; Vidal, A; Carcagno, M; Criscuolo, M; Bozzini, C E

    1991-05-01

    We report the estimation of blood hemoglobin (Hb), arterial blood oxygen saturation (SaO2), and serum immunoreactive erythropoietin (siEPO) in a group of Peruvian workers residing in Cerro de Pasco at 4300 m showing "excessive erythrocytosis" (EE, Monge's disease, chronic mountain sickness). These estimates were compared with those of humans residing either in Cerro de Pasco and showing "normal erythrocytosis" (NE) or in Lima (sea level, SL) to determine whether Hb and SaO2 are related to siEPO in high altitude (HA) natives with NE or EE. The three parameters showed statistically significant differences between HA and SL groups--the values in SL being lower. Significant differences were also found between NE and EE groups in Hb and SaO2. There was no statistical difference in siEPo between the two groups. The results indicate, therefore, that HA residents who develop EE are not distinguishable from residents who develop NE on the basis of estimates of siEPO. As a result, siEPO and Hb do not show a dose-response relationship in HA residents, and variation in EPO does not explain the striking variation in Hb at high altitudes.

  20. Haematology and erythrocyte metabolism in man at high altitude: an Aymara-Quechua comparison.

    Science.gov (United States)

    Arnaud, J; Gutierrez, N; Tellez, W; Vergnes, H

    1985-07-01

    In the course of haematological and biological investigations among Aymara and Quechua populations in Bolivia, an anthropological study of the erythrocytary respiratory function was carried out on the two groups at two altitudes: 3,600 m and 450 m. A difference in the intensity of the biological variations of the two populations is observed at high altitude. In the Quechuas, as in any lowland native, the adaptative phenomena are totally and quickly reversible. In the Aymaras, we detected the existence of more marked haematological and biochemical characters: moderate polycythemia, hyperhaemoglobinemia, microcytosis, metabolical hyperactivity with accumulation of 2-3 di-phosphoglycerate and ATP, and methaemoglobinemia with a drop in the activity of the methaemoglobin reductases. The Aymaras preserve some of those characters (methaemoglobinemia excepted) when they settle in lowlands.

  1. ABOUT TRANSITION ALTITUDE IN RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article is about establishing a common transition altitude over all territory of Russian Federation. The main objective is to prove the necessity of a common transition altitude in Russian airspace and to define, which variant of tran- sition altitude (low, medium, high is the most suitable to be implemented in Russia. ICAO and IFALPA points of view, data and experience from different states and regions all over the world were examined in order to show all the advantages and disadvantages of different approaches towards common transition altitude. The research showed that the most appro- priate common transition altitude in Russia will be 10000 feet (3050 meters, it will cover almost all the international aero- dromes and regions in the country. Only several exceptions are needed in mountainous areas. This article can be used to further study of the possibility of implementation of common transition altitude, because it can’t take into consideration all the local features of all the FIRs (Flight Information Regions in Russia. The conclusion is establishing a common transi- tion altitude over such a big part of the world as Russian Federation will lead to improvement of the flight safety, harmoni- zation with ICAO and IFALPA policies and flexibility in airspace design.

  2. Trekking at high altitudes. How safe is it for your patients?

    Science.gov (United States)

    Houston, C S

    1990-07-01

    Even healthy persons may experience some form of altitude illness when they hike or ski in high mountains. Therefore, it is imperative that those with compromised cardiac or pulmonary function take extra precautions by allowing time for ascent, by recognizing and accepting their limitations, and by descending promptly at the first sign of trouble. Certain medications, such as anticoagulants and strong tranquilizers, are probably best discontinued at higher elevations. In all caes, preventive and treatment measures should be available.

  3. Report from Workshop on VOCs in diving chambers

    International Nuclear Information System (INIS)

    Crosbie, A.; Simpson, M.

    2000-05-01

    This report of the 'Setting the Standards' workshop on the problems of volatile organic compounds (VOCs) in diving in offshore operations, sponsored jointly by the UK Health and Safety Executive Offshore Safety Division and the Stolt Rockwater Joint Venture, gives details of the papers presented covering the chemical contamination of diver's atmosphere, sampling protocols and methods, analytical procedures used for VOCs in hyperbaric chambers, and contamination in buildings. The setting of exposure limits in the UK, the derivation of threshold limiting values (TVLs), the selection of Tenax tubes for atmospheric sampling, organic contaminant monitoring, and NASA's approach to contamination in the space environment are examined, and dealing with contamination problems in a submarine atmosphere, and the simulation of a condensate spillage in a diving bell are discussed. Guidelines for the measurement of VOCs in hyperbaric chambers are given in the appendices

  4. The HAMMER: High altitude multiple mission environmental researcher

    Science.gov (United States)

    Hayashi, Darren; Zylla, Cara; Amaro, Ernesto; Colin, Phil; Klause, Thomas; Lopez, Bernardo; Williamson, Danna

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number is maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  5. Do the kinematics of a baulked take-off in springboard diving differ from those of a completed dive.

    Science.gov (United States)

    Barris, Sian; Farrow, Damian; Davids, Keith

    2013-01-01

    Consistency and invariance in movements are traditionally viewed as essential features of skill acquisition and elite sports performance. This emphasis on the stabilization of action has resulted in important processes of adaptation in movement coordination during performance being overlooked in investigations of elite sport performance. Here we investigate whether differences exist between the movement kinematics displayed by five, elite springboard divers (age 17 ± 2.4 years) in the preparation phases of baulked and completed take-offs. The two-dimensional kinematic characteristics of the reverse somersault take-off phases (approach and hurdle) were recorded during normal training sessions and used for intra-individual analysis. All participants displayed observable differences in movement patterns at key events during the approach phase; however, the presence of similar global topological characteristics suggested that, overall, participants did not perform distinctly different movement patterns during completed and baulked dives. These findings provide a powerful rationale for coaches to consider assessing functional variability or adaptability of motor behaviour as a key criterion of successful performance in sports such as diving.

  6. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Directory of Open Access Journals (Sweden)

    Sarah B Clarke

    Full Text Available Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years. Postural control (sway velocity measured by a portable force platform during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation and at 3 research camps (3619m, 4600m and 5140m on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9 and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6 was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9. Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  7. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Science.gov (United States)

    Clarke, Sarah B; Deighton, Kevin; Newman, Caroline; Nicholson, Gareth; Gallagher, Liam; Boos, Christopher J; Mellor, Adrian; Woods, David R; O'Hara, John P

    2018-01-01

    Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  8. Long-Term Intermittent Exposure to High Altitude Elevates Asymmetric Dimethylarginine in First Exposed Young Adults.

    Science.gov (United States)

    Lüneburg, Nicole; Siques, Patricia; Brito, Julio; De La Cruz, Juan José; León-Velarde, Fabiola; Hannemann, Juliane; Ibanez, Cristian; Böger, Rainer H

    2017-09-01

    Lüneburg, Nicole, Patricia Siques, Julio Brito, Juan José De La Cruz, Fabiola León-Velarde, Juliane Hannemann, Cristian Ibanez, and Rainer Böger. Long-term intermittent exposure to high altitude elevates asymmetric dimethylarginine in first exposed young adults. High Alt Med Biol. 18:226-233, 2017.-Hypoxia-induced dysregulation of pulmonary and cerebral circulation may be related to an impaired nitric oxide (NO) pathway. We investigated the effect of chronic intermittent hypobaric hypoxia (CIH) on metabolites of the NO pathway. We measured asymmetric and symmetric dimethylarginine (ADMA and SDMA) and monomethyl-L-arginine (L-NMMA) and assessed their associations with acclimatization in male draftees (n = 72) undergoing CIH shifts at altitude (3550 m) during 3 months. Sixteen Andean natives living at altitude (3675 m) (chronic hypobaric hypoxia [CH]) were included for comparison. In CIH, ADMA and L-NMMA plasma concentrations increased from 1.14 ± 0.04 to 1.95 ± 0.09 μmol/L (mean ± SE) and from 0.22 ± 0.07 to 0.39 ± 0.03 μmol/L, respectively, (p < 0.001 for both) after 3 months, whereas SDMA did not change. The concentrations of ADMA and L-NMMA were higher in CH (3.48 ± 0.07, 0.53 ± 0.08 μmol/L; p < 0.001) as compared with CIH. In both CIH and CH, ADMA correlated with hematocrit (r 2  = 0.07, p < 0.05; r 2  = 0.26; p < 0.01). In CIH, an association of ADMA levels with poor acclimatization status was observed. We conclude that the endogenous NO synthase inhibitors, ADMA and L-NMMA, are elevated in hypoxia. This may contribute to impaired NO production at altitude and may also be predictive of altitude-associated health impairment.

  9. Four Weeks of Classical Altitude Training Increases Resting Metabolic Rate in Highly Trained Middle-Distance Runners.

    Science.gov (United States)

    Woods, Amy L; Sharma, Avish P; Garvican-Lewis, Laura A; Saunders, Philo U; Rice, Anthony J; Thompson, Kevin G

    2017-02-01

    High altitude exposure can increase resting metabolic rate (RMR) and induce weight loss in obese populations, but there is a lack of research regarding RMR in athletes at moderate elevations common to endurance training camps. The present study aimed to determine whether 4 weeks of classical altitude training affects RMR in middle-distance runners. Ten highly trained athletes were recruited for 4 weeks of endurance training undertaking identical programs at either 2200m in Flagstaff, Arizona (ALT, n = 5) or 600m in Canberra, Australia (CON, n = 5). RMR, anthropometry, energy intake, and hemoglobin mass (Hb mass ) were assessed pre- and posttraining. Weekly run distance during the training block was: ALT 96.8 ± 18.3km; CON 103.1 ± 5.6km. A significant interaction for Time*Group was observed for absolute (kJ.day -1 ) (F-statistic, p-value: F (1,8) =13.890, p = .01) and relative RMR (F (1,8) =653.453, p = .003) POST-training. No significant changes in anthropometry were observed in either group. Energy intake was unchanged (mean ± SD of difference, ALT: 195 ± 3921kJ, p = .25; CON: 836 ± 7535kJ, p = .75). A significant main effect for time was demonstrated for total Hb mass (g) (F (1,8) =13.380, p = .01), but no significant interactions were observed for either variable [Total Hb mass (g): F (1,8) =1.706, p = .23; Relative Hb mass (g.kg -1 ): F (1,8) =0.609, p = .46]. These novel findings have important practical application to endurance athletes routinely training at moderate altitude, and those seeking to optimize energy management without compromising training adaptation. Altitude exposure may increase RMR and enhance training adaptation,. During training camps at moderate altitude, an increased energy intake is likely required to support an increased RMR and provide sufficient energy for training and performance.

  10. A randomly-controlled study on the cardiac function at the early stage of return to the plains after short-term exposure to high altitude.

    Directory of Open Access Journals (Sweden)

    Qiquan Zhou

    Full Text Available High altitude acclimatization and adaptation mechanisms have been well clarified, however, high altitude de-adaptation mechanism remains unclear. In this study, we conducted a controlled study on cardiac functions in 96 healthy young male who rapidly entered the high altitude (3700 m and returned to the plains (1500 m after 50 days. Ninety eight healthy male who remained at low altitude were recruited as control group. The mean pulmonary arterial pressure (mPAP, left ventricular ejection fraction (LVEF, left ventricular fraction shortening (LVFS, cardiac function index (Tei index were tested. Levels of serum creatine kinase isoform MB (CK-MB, lactate dehydrogenase isoenzyme-1 (LDH-1, endothelin-1 (ET-1, nitrogen oxide (NO, serum hypoxia-inducible factor-1α (HIF-1α, 8-iso-prostaglandin F(2α (8-iso PGF(2α, superoxide dismutase (SOD and malonaldehyde (MDA were measured at an altitude of 3700 m and 1500 m respectively. The results showed that after short-term exposure to high altitude mPAP and Tei index increased significantly, while LVEF and LVFS decreased significantly. These changes were positively correlated with altitude. On the 15(th day after the subjects returned to low altitude, mPAP, LVEF and LVFS levels returned to the same level as those of the control subjects, but the Tei index in the returned subjects was still significantly higher than that in the control subjects (P<0.01. We also found that changes in Tei index was positively correlated with mPAP, ET-1, HIF-1α and 8-iso PGF(2α levels, and negatively correlated with the level of NO, LVEF, LVFS, CK-MB and LDH-1. These findings suggest that cardiac function de-adapts when returning to the plains after short-term exposure to high altitude and the function recovery takes a relatively long time.

  11. Galling Insects of the Brazilian Páramos: Species Richness and Composition Along High-Altitude Grasslands.

    Science.gov (United States)

    Coelho, Marcel S; Carneiro, Marco Antônio Alves; Branco, Cristina A; Borges, Rafael Augusto Xavier; Fernandes, G Wilson

    2017-12-08

    In this work, we investigated the factors that determine the distribution of galling insects in high-altitude grasslands, locally called 'campos de altitude' of Mantiqueira Range and tested whether 1) richness of galling insects decreases with altitude, 2) galling insect richness increases with plant richness, 3) variation in galling insect diversity is predominantly a consequence of its β component, and 4) turnover is the main mechanism driving the beta diversity of both galling insects and plants. Galling insect richness did not exhibit a negative relationship with altitude, but it did increase with plant richness. The additive partition of regional richness (γ) into its local and beta components showed that local diversity (α) of galling insects and plants was relatively low in relation to regional diversity; the β component incorporated most of the regional diversity. This pattern was also found in the multiscale analysis of the additive partition for galling insects and plants. The beta diversity of galling insects and plants was driven predominantly by the process of turnover and minimally by nesting. The results reported here point out that the spatial distribution of galling insects is best explained by historical factors, such as the distribution of genera and species of key host plants, as well as their relation to habitat, than ecological effects such as hygrothermal stress - here represented by altitude. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Thermal status of saturation divers during operational dives in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Mekjavic, I.B.; Golden, F.St.C.; Eglin, C.M.; Tipton, M.J.

    1999-08-01

    This report summarises the findings of a study investigating the body temperature responses of divers at different depths, seasons, and locations in order to evaluated the effectiveness of current equipment and diving procedures and especially that of the thermal protection to maintain the safety of the diver. Details of the thermal monitoring system and the field study examining diving suit microclimate temperature, skin temperature, core temperature, thermal comfort, and fluid balance are outlined, and recommendations are given.

  13. An Ecofeminist Approach to Adrienne Rich's Poem "Diving into the Wreck" Adrienne

    OpenAIRE

    ERKAN, Ayça Ülker

    2012-01-01

    This study examines Adrienne Rich\\'s poem “Diving into the Wreck” (1973) through ecofeminist criticism. Rich\\'s ecopoetry questions assumptions about feminine subjectivity and female consciousness, patriarchal abuse, and indifference regarding women. With the androgynous persona in the poem “I”, Rich moves beyond the limits of gender and sexes to give room to form female subjectivity. Persona in the poem starts to explore and express her feminine identity and sexuality by figuratively “diving...

  14. Ecophysiological Responses of Three Tree Species to a High-Altitude Environment in the Southeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jirui Gong

    2018-01-01

    Full Text Available This paper measured the ecophysiological responses of Populus cathayana Rehd., Salix longistamina C. Wang et P. Y. Fu., and Ulmus pumila L. to high altitude in the Tibetan Plateau based on changes in water relations, gas exchange, and chlorophyll fluorescence. P. cathayana and U. pumila have higher survival rates than S. longistamina, but the latter has highest biomass. S. longistamina has higher water-use efficiency (WUE, lower transpiration rates (E, higher water potential (Ψ, highest light saturation point (LSP and higher photosystem II (PSII photochemistry efficiency (Fv’/Fm’ and non-photochemistry quenching (NPQ than the other species, and is thus adapted to its habitat for afforestation. U. pumila has lower E, light compensation point (LCP, dark respiration (Rd, Fv’/Fm’ and electron transport rate (ETR, with higher Ψ, apparent quantum yield (AQY, net photosynthetic rate (Pn and non-photochemical quenching (NPQ, which helps it maintain water balance and utilize weak light to survive at high altitude. Relative low WUE, Ψ, Rd, NPQ, with high E, Pn, Fv’/Fm’ and biomass, imply that P. cathayana is more suitable for shelterbelt forests than for a semi-arid habitat. These three species can adapt to high-altitude conditions by different physiological mechanisms and morphological characteristics, which can provide a theoretical basis for afforestation and forest management in the Qinghai Tibetan Plateau.

  15. Cerebral pressure-flow relationship in lowlanders and natives at high altitude.

    Science.gov (United States)

    Smirl, Jonathan D; Lucas, Samuel J E; Lewis, Nia C S; duManoir, Gregory R; Dumanior, Gregory R; Smith, Kurt J; Bakker, Akke; Basnyat, Aperna S; Ainslie, Philip N

    2014-02-01

    We investigated if dynamic cerebral pressure-flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat-stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure-flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (Pflow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure-flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP.

  16. Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2006-05-01

    Full Text Available The results of a statistical study of oxygen ion outflow using Cluster data obtained at high altitude above the polar cap is reported. Moment data for both hydrogen ions (H+ and oxygen ions (O+ from 3 years (2001-2003 of spring orbits (January to May have been used. The altitudes covered were mainly in the range 5–12 RE geocentric distance. It was found that O+ is significantly transversely energized at high altitudes, indicated both by high perpendicular temperatures for low magnetic field values as well as by a tendency towards higher perpendicular than parallel temperature distributions for the highest observed temperatures. The O+ parallel bulk velocity increases with altitude in particular for the lowest observed altitude intervals. O+ parallel bulk velocities in excess of 60 km s-1 were found mainly at higher altitudes corresponding to magnetic field strengths of less than 100 nT. For the highest observed parallel bulk velocities of O+ the thermal velocity exceeds the bulk velocity, indicating that the beam-like character of the distribution is lost. The parallel bulk velocity of the H+ and O+ was found to typically be close to the same throughout the observation interval when the H+ bulk velocity was calculated for all pitch-angles. When the H+ bulk velocity was calculated for upward moving particles only the H+ parallel bulk velocity was typically higher than that of O+. The parallel bulk velocity is close to the same for a wide range of relative abundance of the two ion species, including when the O+ ions dominates. The thermal velocity of O+ was always well below that of H+. Thus perpendicular energization that is more effective for O+ takes place, but this is not enough to explain the close to similar parallel velocities. Further

  17. Development and testing of airfoils for high-altitude aircraft

    Science.gov (United States)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  18. Assessing the Social Carrying Capacity of Diving Sites in Mabul Island, Malaysia

    Science.gov (United States)

    Zhang, Liye; Chung, ShanShan

    2015-12-01

    This study has explored social carrying capacity of an underwater environment based on divers' perceived crowding. Two dimensions were assessed, the number of divers seen and the proximity of diver. Data were obtained from a survey of 132 divers dived in Mabul Island, Malaysia during 2013-2014. Photographs depicting four levels of diver number and four levels of diver proximity in different combinations were shown to the respondents for assessing their acceptability. Between the two variables, the "number of divers" was the most influential factor for divers' perceived crowding. Divers would start to feel unacceptably crowded if 8-9 divers were visible to them at one time. Based on this, it is likely that the use level of diving sites in Mabul Island has already exceeded its social carrying capacity. Implications for future research and diving tourism management for Mabul Island are also discussed in the paper.

  19. Assessing the Social Carrying Capacity of Diving Sites in Mabul Island, Malaysia.

    Science.gov (United States)

    Zhang, Liye; Chung, ShanShan

    2015-12-01

    This study has explored social carrying capacity of an underwater environment based on divers' perceived crowding. Two dimensions were assessed, the number of divers seen and the proximity of diver. Data were obtained from a survey of 132 divers dived in Mabul Island, Malaysia during 2013-2014. Photographs depicting four levels of diver number and four levels of diver proximity in different combinations were shown to the respondents for assessing their acceptability. Between the two variables, the "number of divers" was the most influential factor for divers' perceived crowding. Divers would start to feel unacceptably crowded if 8-9 divers were visible to them at one time. Based on this, it is likely that the use level of diving sites in Mabul Island has already exceeded its social carrying capacity. Implications for future research and diving tourism management for Mabul Island are also discussed in the paper.

  20. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    Science.gov (United States)

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented

  1. Classical altitude training.

    Science.gov (United States)

    Friedmann-Bette, B

    2008-08-01

    For more than 40 years, the effects of classical altitude training on sea-level performance have been the subject of many scientific investigations in individual endurance sports. To our knowledge, no studies have been performed in team sports like football. Two well-controlled studies showed that living and training at an altitude of >or=1800-2700 m for 3-4 weeks is superior to equivalent training at sea level in well-trained athletes. Most of the controlled studies with elite athletes did not reveal such an effect. However, the results of some uncontrolled studies indicate that sea-level performance might be enhanced after altitude training also in elite athletes. Whether hypoxia provides an additional stimulus for muscular adaptation, when training is performed with equal intensity compared with sea-level training is not known. There is some evidence for an augmentation of total hemoglobin mass after classical altitude training with duration >or=3 weeks at an altitude >or=2000 m due to altitude acclimatization. Considerable individual variation is observed in the erythropoietic response to hypoxia and in the hypoxia-induced reduction of aerobic performance capacity during training at altitude, both of which are thought to contribute to inter-individual variation in the improvement of sea-level performance after altitude training.

  2. Dietary Recommendations for Cyclists during Altitude Training.

    Science.gov (United States)

    Michalczyk, Małgorzata; Czuba, Miłosz; Zydek, Grzegorz; Zając, Adam; Langfort, Józef

    2016-06-18

    The concept of altitude or hypoxic training is a common practice in cycling. However, several strategies for training regimens have been proposed, like "live high, train high" (LH-TH), "live high, train low" (LH-TL) or "intermittent hypoxic training" (IHT). Each of them combines the effect of acclimatization and different training protocols that require specific nutrition. An appropriate nutrition strategy and adequate hydration can help athletes achieve their fitness and performance goals in this unfriendly environment. In this review, the physiological stress of altitude exposure and training will be discussed, with specific nutrition recommendations for athletes training under such conditions. However, there is little research about the nutrition demands of athletes who train at moderate altitude. Our review considers energetic demands and body mass or body composition changes due to altitude training, including respiratory and urinary water loss under these conditions. Carbohydrate intake recommendations and hydration status are discussed in detail, while iron storage and metabolism is also considered. Last, but not least the risk of increased oxidative stress under hypoxic conditions and antioxidant supplementation suggestions are presented.

  3. Women at Altitude: Effects of Menstrual Cycle Phase and Alpha-Adrenergic Blockade on High Altitude Acclimatization

    National Research Council Canada - National Science Library

    Moore, Lorna

    1998-01-01

    .... Results indicated that the effects of the menstrual cycle were modest. In year 2, we evaluated the safety and efficacy of administering an a-adrenergic blocker and made selected observations during a brief exposure to an altitude of 4300 m...

  4. High altitude headache and acute mountain sickness at moderate elevations in a military population during battalion-level training exercises.

    Science.gov (United States)

    Norris, Jacob N; Viirre, Erik; Aralis, Hilary; Sracic, Michael K; Thomas, Darren; Gertsch, Jeffery H

    2012-08-01

    Few studies have evaluated high altitude headache (HAH) and acute mountain sickness (AMS) in military populations training at moderate (1,500-2,500 m) to high altitudes (>2,500 m). In the current study, researchers interviewed active duty personnel training at Marine Corps Mountain Warfare Training Center. Participants were asked about HAH and AMS symptoms, potential risk factors, and medications used. In a sample of 192 U.S. Navy and Marine Corps personnel, 14.6% reported AMS (Lake Louise Criteria > or = 3) and 28.6% reported HAH. Dehydration and recent arrival at altitude (defined as data collected on days 2-3) were significantly associated with AMS; decreased sleep allowance was significantly associated with HAH. Although ibuprofen/Motrin users were more likely to screen positive for AMS, among AMS-positive participants, ibuprofen/Motrin users had decreased likelihood of reporting robust AMS relative to non-ibuprofen/Motrin users (p altitude. Further, ibuprofen/Motrin may be a reasonable treatment for the symptoms of AMS and HAH, although further study is warranted.

  5. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  6. Oxygen transfer properties and dimensions of red blood cells in high-altitude camelids, dromedary camel and goat.

    Science.gov (United States)

    Yamaguchi, K; Jürgens, K D; Bartels, H; Piiper, J

    1987-01-01

    To estimate the advantage of the small red blood cells (RBC) of high-altitude camelids for O2 transfer, the kinetics of O2 uptake into and release from the RBC obtained from llama, vicuña and alpaca were investigated at 37 degrees C with a stopped-flow technique. O2 transfer conductance of RBC (G) was estimated from the rate of O2 saturation change and the corresponding O2 pressure difference between medium and hemoglobin. For comparison, O2 kinetics for the RBC of a low-altitude camelid (dromedary camel) and the pygmy goat were determined and previously measured values for human RBC were used. O2 transfer of RBC was found to be strongly influenced by extracellular diffusion, except with O2 release into dithionite solutions of sufficiently high concentration (greater than 30 mM). The G values measured in these 'standard' conditions, Gst (in mmol X min-1 X Torr-1 X (ml RBC)-1) were: high-altitude camelids, 0.58 (averaged for llama, alpaca and vicuña since there were no significant interspecific differences); camel 0.42; goat, 0.42; man, 0.39. The differences can in part be attributed to expected effects of the size and shape of the RBC (volume, surface area, mean thickness), as well as to the intracellular O2 diffusivity which depends on the concentration of cellular hemoglobin. The high Gst of RBC of high-altitude camelids may be considered to enhance O2 transfer in lungs and tissues. But the O2 transfer conductance of blood, theta, equal to Gst multiplied by hematocrit (in mmol X min-1 X Torr-1 X (ml blood)-1), was only slightly higher as compared to other species: 0.20 (llama, alpaca, vicuña), 0.14 (camel), 0.18 (goat), 0.17 (man).

  7. Climate warming and the recent treeline shift in the European alps: the role of geomorphological factors in high-altitude sites.

    Science.gov (United States)

    Leonelli, Giovanni; Pelfini, Manuela; di Cella, Umberto Morra; Garavaglia, Valentina

    2011-05-01

    Global warming and the stronger regional temperature trends recently recorded over the European Alps have triggered several biological and physical dynamics in high-altitude environments. We defined the present treeline altitude in three valleys of a region in the western Italian Alps and reconstructed the past treeline position for the last three centuries in a nearly undisturbed site by means of a dendrochronological approach. We found that the treeline altitude in this region is mainly controlled by human impacts and geomorphological factors. The reconstruction of the altitudinal dynamics at the study site reveals that the treeline shifted upwards of 115 m over the period 1901-2000, reaching the altitude of 2505 m in 2000 and 2515 m in 2008. The recent treeline shift and the acceleration of tree colonization rates in the alpine belt can be mainly ascribed to the climatic input. However, we point out the increasing role of geomorphological factors in controlling the future treeline position and colonization patterns in high mountains.

  8. Hypoxia triggers high-altitude headache with migraine features: A prospective trial.

    Science.gov (United States)

    Broessner, Gregor; Rohregger, Johanna; Wille, Maria; Lackner, Peter; Ndayisaba, Jean-Pierre; Burtscher, Martin

    2016-07-01

    Given the high prevalence and clinical impact of high-altitude headache (HAH), a better understanding of risk factors and headache characteristics may give new insights into the understanding of hypoxia being a trigger for HAH or even migraine attacks. In this prospective trial, we simulated high altitude (4500 m) by controlled normobaric hypoxia (FiO2 = 12.6%) to investigate acute mountain sickness (AMS) and headache characteristics. Clinical symptoms of AMS according to the Lake Louise Scoring system (LLS) were recorded before and after six and 12 hours in hypoxia. O2 saturation was measured using pulse oximetry at the respective time points. History of primary headache, especially episodic or chronic migraine, was a strict exclusion criterion. In total 77 volunteers (43 (55.8%) males, 34 (44.2%) females) were enrolled in this study. Sixty-three (81.18%) and 40 (71.4%) participants developed headache at six or 12 hours, respectively, with height and SpO2 being significantly different between headache groups at six hours (p headache development (p headache according to the International Classification of Headache Disorders (ICHD-3 beta) in n = 5 (8%) or n = 6 (15%), at six and 12 hours, respectively. Normobaric hypoxia is a trigger for HAH and migraine-like headache attacks even in healthy volunteers without any history of migraine. Our study confirms the pivotal role of hypoxia in the development of AMS and beyond that suggests hypoxia may be involved in migraine pathophysiology. © International Headache Society 2015.

  9. An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin.

    Science.gov (United States)

    Dahri, Zakir Hussain; Ludwig, Fulco; Moors, Eddy; Ahmad, Bashir; Khan, Asif; Kabat, Pavel

    2016-04-01

    Scarcity of in-situ observations coupled with high orographic influences has prevented a comprehensive assessment of precipitation distribution in the high-altitude catchments of Indus basin. Available data are generally fragmented and scattered with different organizations and mostly cover the valleys. Here, we combine most of the available station data with the indirect precipitation estimates at the accumulation zones of major glaciers to analyse altitudinal dependency of precipitation in the high-altitude Indus basin. The available observations signified the importance of orography in each sub-hydrological basin but could not infer an accurate distribution of precipitation with altitude. We used Kriging with External Drift (KED) interpolation scheme with elevation as a predictor to appraise spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the period of 1998-2012. The KED-based annual precipitation estimates are verified by the corresponding basin-wide observed specific runoffs, which show good agreement. In contrast to earlier studies, our estimates reveal substantially higher precipitation in most of the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded precipitation products covering this region are prone to significant errors. In terms of quantitative estimates, ERA-Interim is relatively close to the observations followed by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation estimates in the study area. Basin-wide seasonal and annual correction factors introduced for each gridded dataset can be useful for lumped hydrological modelling studies, while the estimated precipitation distribution can serve as a basis for bias correction of any gridded precipitation products for the study area

  10. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events

    Science.gov (United States)

    Maki, Teruya; Hara, Kazutaka; Iwata, Ayumu; Lee, Kevin C.; Kawai, Kei; Kai, Kenji; Kobayashi, Fumihisa; Pointing, Stephen B.; Archer, Stephen; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2017-10-01

    Aerosol particles, including airborne microorganisms, are transported through the free troposphere from the Asian continental area to the downwind area in East Asia and can influence climate changes, ecosystem dynamics, and human health. However, the variations present in airborne bacterial communities in the free troposphere over downwind areas are poorly understood, and there are few studies that provide an in-depth examination of the effects of long-range transport of aerosols (natural and anthropogenic particles) on bacterial variations. In this study, the vertical distributions of airborne bacterial communities at high altitudes were investigated and the bacterial variations were compared between dust events and non-dust events.Aerosols were collected at three altitudes from ground level to the free troposphere (upper level: 3000 or 2500 m; middle level: 1200 or 500 m; and low level: 10 m) during Asian dust events and non-dust events over the Noto Peninsula, Japan, where westerly winds carry aerosols from the Asian continental areas. During Asian dust events, air masses at high altitudes were transported from the Asian continental area by westerly winds, and laser imaging detection and ranging (lidar) data indicated high concentrations of non-spherical particles, suggesting that dust-sand particles were transported from the central desert regions of Asia. The air samples collected during the dust events contained 10-100 times higher concentrations of microscopic fluorescent particles and optical particle counter (OPC) measured particles than in non-dust events. The air masses of non-dust events contained lower amounts of dust-sand particles. Additionally, some air samples showed relatively high levels of black carbon, which were likely transported from the Asian continental coasts. Moreover, during the dust events, microbial particles at altitudes of > 1200 m increased to the concentrations ranging from 1. 2 × 106 to 6. 6 × 106 particles m-3. In contrast

  11. Altitude training improves glycemic control.

    Science.gov (United States)

    Chen, Shu-Man; Lin, Hsueh-Yi; Kuo, Chia-Hua

    2013-08-31

    Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate the shortfall caused by reduced fatty acid oxidation. Short-term moderate altitude exposure plus endurance physical activity has been found to improve glucose tolerance (not fasting glucose) in humans, which is associated with the improvement in the whole-body insulin sensitivity. However, most of people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness and insulin resistance. There is a wide variation among individuals in response to the altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity was not apparent in those individuals with low baseline dehydroepiandrosterone sulfate (DHEA-S) concentration. In rats, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can also improve insulin sensitivity, secondary to an effective suppression of adiposity. After prolonged hypoxia training, obese abnormality in upregulated baseline levels of AMP-activated protein kinase (AMPK) and AS160 phosphorylation in skeletal muscle can be reversed. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on the favorable change in body composition. Altitude training can exert strong impact on our metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting metabolic syndromes.

  12. Comparative Study of Wing Lift Distribution Analysis for High Altitude Long Endurance (HALE) Unmaned Aerial Vehicle

    Science.gov (United States)

    Silitonga, Faber Y.; Agoes Moelyadi, M.

    2018-04-01

    The development of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) has been emerged for both civil and military purposes. Its ability of operating in high altitude with long endurance is important in supporting maritime applications.Preliminary analysis of HALE UAV lift distribution of the wing presented to give decisive consideration for its early development. Ensuring that the generated lift is enough to compensate its own weight. Therotical approach using Pradtl’s non-linear lifting line theory will be compared with modern numerical approach using Computational Fluid Dynamics (CFD). Results of wing lift distribution calculated from both methods will be compared to study the reliability of it. HALE UAV ITB has high aspect ratio wing and will be analyze at cruise flight condition. The result indicates difference between Non-linear Lifting Line and CFD method.

  13. Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes.

    Directory of Open Access Journals (Sweden)

    Johannes Bergsten

    Full Text Available BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles.

  14. Effect of altitude on physiological performance: a statistical analysis using results of international football games.

    Science.gov (United States)

    McSharry, Patrick E

    2007-12-22

    To assess the effect of altitude on match results and physiological performance of a large and diverse population of professional athletes. Statistical analysis of international football (soccer) scores and results. FIFA extensive database of 1460 football matches in 10 countries spanning over 100 years. Altitude had a significant (Pnegative impact on physiological performance as revealed through the overall underperformance of low altitude teams when playing against high altitude teams in South America. High altitude teams score more and concede fewer goals with increasing altitude difference. Each additional 1000 m of altitude difference increases the goal difference by about half of a goal. The probability of the home team winning for two teams from the same altitude is 0.537, whereas this rises to 0.825 for a home team with an altitude difference of 3695 m (such as Bolivia v Brazil) and falls to 0.213 when the altitude difference is -3695 m (such as Brazil v Bolivia). Altitude provides a significant advantage for high altitude teams when playing international football games at both low and high altitudes. Lowland teams are unable to acclimatise to high altitude, reducing physiological performance. As physiological performance does not protect against the effect of altitude, better predictors of individual susceptibility to altitude illness would facilitate team selection.

  15. Exercise capacity and selected physiological factors by ancestry and residential altitude

    DEFF Research Database (Denmark)

    Bianba; Berntsen, Sveinung; Andersen, Lars Bo

    2014-01-01

    AIM: Several physiological compensatory mechanisms have enabled Tibetans to live and work at high altitude, including increased ventilation and pulmonary diffusion capacity, both of which serve to increase oxygen transport in the blood. The aim of the present study was to compare exercise capacity...... Tibetans vs. Han Chinese may reflect a better adaptation to life at high altitude. Tibetans at the lower residential altitude of 3700 m demonstrated a better exercise capacity than residents at a higher altitude of 4300 m when measured at their respective residential altitudes. Such altitude- or ancestry...... (maximal power output) and selected physiological factors (arterial oxygen saturation and heart rate at rest and during maximal exercise, resting hemoglobin concentration, and forced vital capacity) in groups of native Tibetan children living at different residential altitudes (3700 vs. 4300 m above sea...

  16. Introduction to altitude/hypoxic training symposium.

    Science.gov (United States)

    Wilber, Randall L

    2007-09-01

    Altitude/hypoxic training has traditionally been an intriguing and controversial area of research and sport performance. This controversial aspect was evident recently in the form of scholarly debates in highly regarded professional journals, as well as the World Anti-Doping Agency's (WADA) consideration of placing "artificially-induced hypoxic conditions" on the 2007 Prohibited List of Substances/Methods. In light of the ongoing controversy surrounding altitude/hypoxic training, this symposium was organized with the following objectives in mind: 1) to examine the primary physiological responses and underlying mechanisms associated with altitude/hypoxic training, including the influence of genetic predisposition; 2) to present evidence supporting the effect of altitude/hypoxic acclimatization on both hematological and nonhematological markers, including erythrocyte volume, skeletal muscle-buffering capacity, hypoxic ventilatory response, and physiological efficiency/economy; 3) to evaluate the efficacy of several contemporary simulated altitude modalities and training strategies, including hypoxic tents, nitrogen apartments, and intermittent hypoxic exposure (IHE) or training, and to address the legal and ethical issues associated with the use of simulated altitude; and 4) to describe different altitude/hypoxic training strategies used by elite-level athletes, including Olympians and military special forces. In addressing these objectives, papers will be presented on the topics of: 1) effect of hypoxic "dose" on physiological responses and sea-level performance (Drs. Benjamin Levine and James Stray-Gundersen), 2) nonhematological mechanisms of improved performance after hypoxic exposure (Dr. Christopher Gore), 3) application of altitude/hypoxic training by elite athletes (Dr. Randall Wilber), and 4) military applications of hypoxic training (Dr. Stephen Muza).

  17. Provisional Crown Dislodgement during Scuba Diving: A Case of Barotrauma

    Directory of Open Access Journals (Sweden)

    Meenal Nitin Gulve

    2013-01-01

    Full Text Available Changes in ambient pressure, for example, during flying, diving, or hyperbaric oxygen therapy, can lead to barotrauma. Although it may seem that this issue was neglected in dental education and research in recent decades, familiarity with and understanding of these facts may be of importance for dental practitioners. We report the case of a patient who experienced barotrauma involving dislodgement of a provisional crown during scuba diving. Patients who are exposed to pressure changes as a part of their jobs or hobbies and their dentists should know the causes of barotrauma. In addition, the clinician must be aware of the possible influence of pressure changes on the retention of dental components.

  18. Numerical simulation of altitude impact on pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xiaohui; He, Boshu; Ling, Ling; Wang, Lei [Beijing Jiaotong Univ., Beijing (China). Inst. of Mechanical, Electronic and Control Engineering

    2013-07-01

    A drop-tube Furnace simulation model has been developed to investigate the pulverized coal combustion characteristics under different altitudes using the commercially available software Fluent. The altitude conditions of 0, 500, 1,000, 1,500 m have been discussed. The results included the fields of temperature, pressure, velocity, the coal burnout, CO burnout and NO emission in the tube furnace. The variation of these parameters with altitude has been analyzed. The coal combustion characteristics were affected by the altitude. The time and space for coal burnout should be increased with the rise of altitude. The valuable results could be referenced in the design of coal- fired furnaces for the high altitude areas.

  19. Effects of air and water temperatures on resting metabolism of auklets and other diving birds.

    Science.gov (United States)

    Richman, Samantha E; Lovvorn, James R

    2011-01-01

    For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg⁻¹) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.

  20. Convergent Evolution of Hemoglobin Function in High-Altitude Andean Waterfowl Involves Limited Parallelism at the Molecular Sequence Level.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    2015-12-01

    Full Text Available A fundamental question in evolutionary genetics concerns the extent to which adaptive phenotypic convergence is attributable to convergent or parallel changes at the molecular sequence level. Here we report a comparative analysis of hemoglobin (Hb function in eight phylogenetically replicated pairs of high- and low-altitude waterfowl taxa to test for convergence in the oxygenation properties of Hb, and to assess the extent to which convergence in biochemical phenotype is attributable to repeated amino acid replacements. Functional experiments on native Hb variants and protein engineering experiments based on site-directed mutagenesis revealed the phenotypic effects of specific amino acid replacements that were responsible for convergent increases in Hb-O2 affinity in multiple high-altitude taxa. In six of the eight taxon pairs, high-altitude taxa evolved derived increases in Hb-O2 affinity that were caused by a combination of unique replacements, parallel replacements (involving identical-by-state variants with independent mutational origins in different lineages, and collateral replacements (involving shared, identical-by-descent variants derived via introgressive hybridization. In genome scans of nucleotide differentiation involving high- and low-altitude populations of three separate species, function-altering amino acid polymorphisms in the globin genes emerged as highly significant outliers, providing independent evidence for adaptive divergence in Hb function. The experimental results demonstrate that convergent changes in protein function can occur through multiple historical paths, and can involve multiple possible mutations. Most cases of convergence in Hb function did not involve parallel substitutions and most parallel substitutions did not affect Hb-O2 affinity, indicating that the repeatability of phenotypic evolution does not require parallelism at the molecular level.

  1. High altitude induced anorexia: effect of changes in leptin and oxidative stress levels.

    Science.gov (United States)

    Vats, Praveen; Singh, Vijay Kumar; Singh, Som Nath; Singh, Shashi Bala

    2007-01-01

    High altitude (HA) exposure usually leads to a significant weight loss in non-acclimatized humans. Anorexia is believed to be the main cause of this body weight loss. Appetite regulatory peptides, i.e. leptin and neuropeptide Y play a key role in food intake and energy homeostasis. Recent studies suggests increased oxidative stress during HA exposure. In present study effect of HA exposure on levels of leptin and NPY was evaluated along with N-acetyl cysteine (NAC) and vitamin E supplementation in relation to food intake and body weight changes. The study was conducted on 30 healthy male volunteers (age 19-29 years). Subjects were divided randomly into three groups of 10 each. Group 1 (placebo) supplemented with 400 mg of calcium gluconate, group 2 and 3 were supplemented with 400 mg of NAC and 400 mg vitamin E, respectively per day. The study was conducted at low altitude (320 m, Phase I), at HA 3600 m (Phase II) and at an altitude of 4580 m (Phase III). On HA exposure significant reduction in plasma leptin levels was observed in all the groups on day 2 (Phase II) along with decrease in food intake and reduction in body weight. Statistically significant increase in blood malondialdehyde (MDA) levels was seen in all the groups on HA exposure (Phase II, Day 2), but the maximum increase was in case of placebo group (65.1%) on day 2 (Phase II) in comparison to low altitude values. The decrease in energy intake was almost same in all the groups indicating that antioxidant supplementation did not provide any protection against HA anorexia. From the study, it may be concluded that leptin and oxidative stress possibly are not the key players for HA anorexia.

  2. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives

    DEFF Research Database (Denmark)

    Lundby, Carsten; Calbet, Jose A L; van Hall, Gerrit

    2004-01-01

    We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing...... in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum......, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives....

  3. Genotyping the High Altitude Mestizo Ecuadorian Population Affected with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Andrés López-Cortés

    2017-01-01

    Full Text Available Prostate cancer (PC is the second most commonly diagnosed type of cancer in males with 1,114,072 new cases in 2015. The MTHFR enzyme acts in the folate metabolism, which is essential in methylation and synthesis of nucleic acids. MTHFR C677T alters homocysteine levels and folate assimilation associated with DNA damage. Androgens play essential roles in prostate growth. The SRD5A2 enzyme metabolizes testosterone and the V89L polymorphism reduces in vivo SRD5A2 activity. The androgen receptor gene codes for a three-domain protein that contains two polymorphic trinucleotide repeats (CAG, GGC. Therefore, it is essential to know how PC risk is associated with clinical features and polymorphisms in high altitude Ecuadorian mestizo populations. We analyzed 480 healthy and 326 affected men from our three retrospective case-control studies. We found significant association between MTHFR C/T (odds ratio [OR] = 2.2; P=0.009, MTHFR C/T+T/T (OR = 2.22; P=0.009, and PC. The SRD5A2 A49T substitution was associated with higher pTNM stage (OR = 2.88; P=0.039 and elevated Gleason grade (OR = 3.15; P=0.004. Additionally, patients with ≤21 CAG repeats have an increased risk of developing PC (OR = 2.99; P<0.001. In conclusion, genotype polymorphism studies are important to characterize genetic variations in high altitude mestizo populations.

  4. Gokyo Khumbu/Ama Dablam Trek 2012: effects of physical training and high-altitude exposure on oxidative metabolism, muscle composition, and metabolic cost of walking in women.

    Science.gov (United States)

    Tam, E; Bruseghini, P; Calabria, E; Dal Sacco, L; Doria, C; Grassi, B; Pietrangelo, T; Pogliaghi, S; Reggiani, C; Salvadego, D; Schena, F; Toniolo, L; Verratti, V; Vernillo, G; Capelli, Carlo

    2016-01-01

    We investigated the effects of moderate-intensity training at low and high altitude on VO2 and QaO2 kinetics and on myosin heavy-chain expression (MyHC) in seven women (36.3 yy ± 7.1; 65.8 kg ± 11.7; 165 cm ± 8) who participated in two 12- to 14-day trekking expeditions at low (598 m) and high altitude (4132 m) separated by 4 months of recovery. Breath-by-breath VO2 and beat-by-beat QaO2 at the onset of moderate-intensity cycling exercise and energy cost of walking (Cw) were assessed before and after trekking. MyHC expression of vastus lateralis was evaluated before and after low-altitude and after high-altitude trekking; muscle fiber high-resolution respirography was performed at the beginning of the study and after high-altitude trekking. Mean response time of VO2 kinetics was faster (P = 0.002 and P = 0.001) and oxygen deficit was smaller (P = 0.001 and P = 0.0004) after low- and high-altitude trekking, whereas ˙ QaO2 kinetics and Cw did not change. Percentages of slow and fast isoforms of MyHC and mitochondrial mass were not affected by low- and high-altitude training. After training altitude, muscle fiber ADP-stimulated mitochondrial respiration was decreased as compared with the control condition (P = 0.016), whereas leak respiration was increased (P = 0.031), leading to a significant increase in the respiratory control ratio (P = 0.016). Although training did not significantly modify muscle phenotype, it induced beneficial adaptations of the oxygen transport-utilization systems witnessed by faster VO2 kinetics at exercise onset.

  5. 'Sea legs': sharpened Romberg test after three days on a live-aboard dive boat.

    Science.gov (United States)

    Gibbs, Clinton R; Commons, Katherine H; Brown, Lawrence H; Blake, Denise F

    2010-12-01

    The sharpened Romberg test (SRT) is commonly used by diving and hyperbaric physicians as an indicator of neurological decompression illness (DCI). People who spend a prolonged time on a boat at sea experience impairment in their balance on returning to shore, a condition known as mal de debarquement ('sea legs'). This conditioning of the vestibular system to the rocking motion of a boat at sea may impact on the utility of the SRT in assessing a diver with potential DCI after a live-aboard dive trip. To assess the impact 'sea legs' has on the SRT after three days on a live-aboard dive trip. Thirty-nine staff and passengers of a three-day, live-aboard dive trip performed a SRT before and after their journey, with assessment of potential variables, including middle ear barotrauma, alcohol consumption, sea-sickness and occult DCI. There was no statistically significant impact on SRT performance, with 100% completion pre-trip and 35 out of 36 divers (97.2%) post-trip. There were trends towards more attempts being required and time needed for successful SRT post-trip, but these were not statistically significant. There was a small, but noteworthy incidence of middle-ear barotrauma, with seven people affected pre-trip, and 13 post-trip. There was a higher incidence in student divers. Middle-ear barotrauma did not appear to have a direct impact on SRT performance. There was no significant impact on SRT performance resulting from 'sea legs' after three days at sea. Recreational divers, especially dive students, have a substantial incidence of mild middle ear barotrauma.

  6. Mobility, expansion and management of a multi-species scuba diving fishery in East Africa.

    Directory of Open Access Journals (Sweden)

    Hampus Eriksson

    Full Text Available BACKGROUND: Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. METHODOLOGY AND PRINCIPAL FINDINGS: With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. CONCLUSIONS AND SIGNIFICANCE: This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation.

  7. Rapid maturation of the muscle biochemistry that supports diving in Pacific walruses (Odobenus rosmarus divergens)

    Science.gov (United States)

    Norem, Shawn R.; Jay, Chadwick V.; Burns, Jennifer M.; Fischbach, Anthony S.

    2015-01-01

    Physiological constraints dictate animals’ ability to exploit habitats. For marine mammals, it is important to quantify physiological limits that influence diving and their ability to alter foraging behaviors. We characterized age-specific dive limits of walruses by measuring anaerobic (acid-buffering capacity) and aerobic (myoglobin content) capacities of the muscles that power hind (longissimus dorsi) and fore (supraspinatus) flipper propulsion. Mean buffering capacities were similar across muscles and age classes (a fetus, five neonatal calves, a 3 month old and 20 adults), ranging from 41.31 to 54.14 slykes and 42.00 to 46.93 slykes in the longissimus and supraspinatus, respectively. Mean myoglobin in the fetus and neonatal calves fell within a narrow range (longissimus: 0.92–1.68 g 100 g−1 wet muscle mass; supraspinatus: 0.88–1.64 g 100 g−1 wet muscle mass). By 3 months post-partum, myoglobin in the longissimus increased by 79%, but levels in the supraspinatus remained unaltered. From 3 months post-partum to adulthood, myoglobin increased by an additional 26% in the longissimus and increased by 126% in the supraspinatus; myoglobin remained greater in the longissimus compared with the supraspinatus. Walruses are unique among marine mammals because they are born with a mature muscle acid-buffering capacity and attain mature myoglobin content early in life. Despite rapid physiological development, small body size limits the diving capacity of immature walruses and extreme sexual dimorphism reduces the diving capacity of adult females compared with adult males. Thus, free-ranging immature walruses likely exhibit the shortest foraging dives while adult males are capable of the longest foraging dives.

  8. Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: Ziphius cavirostris, Mesoplodon densirostris and Hyperoodon ampullatus.

    Science.gov (United States)

    Hooker, Sascha K; Baird, Robin W; Fahlman, Andreas

    2009-07-31

    A mathematical model, based on current knowledge of gas exchange and physiology of marine mammals, was used to predict blood and tissue tension N2 (P(N2)) using field data from three beaked whale species: northern bottlenose whales, Cuvier's beaked whales, and Blainville's beaked whales. The objective was to determine if physiology (body mass, diving lung volume, dive response) or dive behaviour (dive depth and duration, changes in ascent rate, diel behaviour) would lead to differences in P(N2) levels and thereby decompression sickness (DCS) risk between species. Diving lung volume and extent of the dive response had a large effect on end-dive P(N2). The dive profile had a larger influence on end-dive P(N2) than body mass differences between species. Despite diel changes in dive behaviour, P(N2) levels showed no consistent trend. Model output suggested that all three species live with tissue P(N2) levels that would cause a significant proportion of DCS cases in terrestrial mammals. Cuvier's beaked whale diving behaviour appears to put them at higher risk than the other species, which may explain their prevalence in strandings after the use of mid-frequency sonar.

  9. Navigation and Positioning System Using High Altitude Platforms Systems (HAPS)

    Science.gov (United States)

    Tsujii, Toshiaki; Harigae, Masatoshi; Harada, Masashi

    Recently, some countries have begun conducting feasibility studies and R&D projects on High Altitude Platform Systems (HAPS). Japan has been investigating the use of an airship system that will function as a stratospheric platform for applications such as environmental monitoring, communications and broadcasting. If pseudolites were mounted on the airships, their GPS-like signals would be stable augmentations that would improve the accuracy, availability, and integrity of GPS-based positioning systems. Also, the sufficient number of HAPS can function as a positioning system independent of GPS. In this paper, a system design of the HAPS-based positioning system and its positioning error analyses are described.

  10. Surveying, Modeling and 3d Representation of a wreck for Diving Purposes: Cargo Ship "vera"

    Science.gov (United States)

    Ktistis, A.; Tokmakidis, P.; Papadimitriou, K.

    2017-02-01

    This paper presents the results from an underwater recording of the stern part of a contemporary cargo-ship wreck. The aim of this survey was to create 3D representations of this wreck mainly for recreational diving purposes. The key points of this paper are: a) the implementation of the underwater recording at a diving site; b) the reconstruction of a 3d model from data that have been captured by recreational divers; and c) the development of a set of products to be used by the general public for the ex situ presentation or for the in situ navigation. The idea behind this project is to define a simple and low cost procedure for the surveying, modeling and 3D representation of a diving site. The perspective of our team is to repeat the proposed methodology for the documentation and the promotion of other diving sites with cultural features, as well as to train recreational divers in underwater surveying procedures towards public awareness and community engagement in the maritime heritage.

  11. High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations

    Science.gov (United States)

    Linford, Joel

    2010-10-01

    Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.

  12. Increases in .VO2max with "live high-train low" altitude training: role of ventilatory acclimatization.

    Science.gov (United States)

    Wilhite, Daniel P; Mickleborough, Timothy D; Laymon, Abigail S; Chapman, Robert F

    2013-02-01

    The purpose of this study was to estimate the percentage of the increase in whole body maximal oxygen consumption (.VO(2max)) that is accounted for by increased respiratory muscle oxygen uptake after altitude training. Six elite male distance runners (.VO(2max) = 70.6 ± 4.5 ml kg(-1) min(-1)) and one elite female distance runner (.VO(2max)) = 64.7 ml kg(-1) min(-1)) completed a 28-day "live high-train low" training intervention (living elevation, 2,150 m). Before and after altitude training, subjects ran at three submaximal speeds, and during a separate session, performed a graded exercise test to exhaustion. A regression equation derived from published data was used to estimate respiratory muscle .VO(2) (.VO(2RM)) using our ventilation (.VE) values. .VO(2RM) was also estimated retrospectively from a larger group of distance runners (n = 22). .VO(2max) significantly (p altitude (196 ± 59 ml min(-1)), while (.VE) at .VO(2max) also significantly (p altitude (201 ± 36 ml min(-1)), along with a 10.8 ± 2.1 l min(-1) increase in (.VE), thus requiring an estimated 27 % of Δ .VO(2max) Our data suggest that a substantial portion of the improvement in .VO(2max) with chronic altitude training goes to fuel the respiratory muscles as opposed to the musculature which directly contributes to locomotion. Consequently, the time-course of decay in ventilatory acclimatization following return to sea-level may have an impact on competitive performance.

  13. Description of the skeleton of the fossil beaked whale Messapicetus gregarius: searching potential proxies for deep-diving abilities

    Directory of Open Access Journals (Sweden)

    B. Ramassamy

    2018-01-01

    Full Text Available Ziphiidae (beaked whales are a successful family of medium- to large-sized toothed whales. Their extant members perform regular deep dives beyond the photic zone to forage for cephalopods and fish. Conversely, extinct long-snouted stem ziphiids are interpreted as epipelagic predators. However, some aspects of this hypothesis remain unclear due to the lack of clear morphological proxies for recognizing regular deep divers. We compared the forelimb, neck, and pterygoid sinus system of the fossil ziphiid Messapicetus gregarius with those of other odontocetes to evaluate the potential of these body regions as proxies to assess deep-diving specialization. The reconstructed musculature of the neck and forelimb of M. gregarius was also compared with that of other odontocetes. We also quantified variation in the proportions of the forelimb and the hamular fossa of the pterygoid sinus (HF using 16 linear measurements. The degree of association between diving behaviour in extant odontocetes and these measurements was evaluated with and without phylogenetic correction. Reconstruction of the neck musculature suggests that M. gregarius possessed a neck more flexible than most extant ziphiids due to the lower degree of fusion of the cervical vertebrae and the large insertions for the M. longus colli and Mm. intertransversarii ventrales cervicis. While neck rigidity might be related to deep diving, differences in neck flexibility among extant ziphiids indicate a more complex functional interpretation. The relationship between forelimb morphology and diving behaviour was not significant, both with and without phylogenetic correction, suggesting that it cannot be used to assess deep-diving abilities with the parameters considered here. Measurements of the HF revealed successful to evaluate deep-diving abilities in odontocetes, with an enlargement of this structure in deep divers. Considering other evidence that suggests an epipelagic behaviour, we propose

  14. First Cluster results of the magnetic field structure of the mid- and high-altitude cusps

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available Magnetic field measurements from the four Cluster spacecraft from the mid- and high-altitude cusp are presented. Cluster underwent two encounters with the mid-altitude cusp during its commissioning phase (24 August 2000. Evidence for field-aligned currents (FACs was seen in the data from all three operating spacecraft from northern and southern cusps. The extent of the FACs was of the order of 1 RE in the X-direction, and at least 300 km in the Y-direction. However, fine-scale field structures with scales of the order of the spacecraft separation (300 km were observed within the FACs. In the northern crossing, two of the spacecraft appeared to lie along the same magnetic field line, and observed very well matched signals. However, the third spacecraft showed evidence for structuring transverse to the field on scales of a few hundred km. A crossing of the high-altitude cusp from 13 February 2001 is presented. It is revealed to be a highly dynamic structure with the boundaries moving with velocities ranging from a few km/s to tens of km/s, and having structure on timescales ranging from less than one minute up to several minutes. The cusp proper is associated with the presence of a very disordered magnetic field, which is entirely different from the magnetosheath turbulence.

    Key words. Magnetospheric physics (current systems; magnetopause, cusp, and boundary layers – Space plasma physics (discontinuities

  15. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA.

    Directory of Open Access Journals (Sweden)

    Curtis J Hayden

    Full Text Available Nitrification plays a central role in the nitrogen cycle by determining the oxidation state of nitrogen and its subsequent bioavailability and cycling. However, relatively little is known about the underlying ecology of the microbial communities that carry out nitrification in freshwater ecosystems--and particularly within high-altitude oligotrophic lakes, where nitrogen is frequently a limiting nutrient. We quantified ammonia-oxidizing archaea (AOA and bacteria (AOB in 9 high-altitude lakes (2289-3160 m in the Sierra Nevada, California, USA, in relation to spatial and biogeochemical data. Based on their ammonia monooxygenase (amoA genes, AOB and AOA were frequently detected. AOB were present in 88% of samples and were more abundant than AOA in all samples. Both groups showed >100 fold variation in abundance between different lakes, and were also variable through time within individual lakes. Nutrient concentrations (ammonium, nitrite, nitrate, and phosphate were generally low but also varied across and within lakes, suggestive of active internal nutrient cycling; AOB abundance was significantly correlated with phosphate (r(2 = 0.32, p<0.1, whereas AOA abundance was inversely correlated with lake elevation (r(2 = 0.43, p<0.05. We also measured low rates of ammonia oxidation--indicating that AOB, AOA, or both, may be biogeochemically active in these oligotrophic ecosystems. Our data indicate that dynamic populations of AOB and AOA are found in oligotrophic, high-altitude, freshwater lakes.

  16. Safety of antimalarial medications for use while scuba diving in malaria Endemic Regions.

    Science.gov (United States)

    Petersen, Kyle; Regis, David P

    2016-01-01

    Recreational diving occurs annually in areas of the world where malaria is endemic. The safety and efficacy of antimalarials for travelers in a hyperbaric environment is unknown. Of particular concern would be medications with adverse effects that could either mimic diving related illnesses such as barotrauma, decompression sickness (DCS) and gas toxicities, or increase the risk for such illnesses. We conducted a review of PubMed and Cochrane databases to determine rates of neurologic adverse effects or other effects from antimalarials that may be a problem in the diving environment. One case report was found on diving and mefloquine. Multiple case reports and clinical trials were found describing neurologic adverse effects of the major chemoprophylactic medications atovaquone/proguanil, chloroquine, doxycycline, mefloquine, and primaquine. Of the available literature, atovaquone/proguanil and doxycycline are most likely the safest agents and should be preferred; atovaquone/proguanil is superior due to reduced rates of sunburn in the marine environment. Primaquine also appears to be safe, but has reduced efficacy against P. falciparum ; mefloquine possesses the highest rate of neurologic side effects and therefore these agents should be limited to extreme cases of patients intolerant to other agents. Chloroquine appears unsafe in the hyperbaric environment and should be avoided. More studies are required to include database reviews of returned divers traveling to malaria endemic areas and randomized controlled trials in the hyperbaric environments.

  17. Effects of high-altitude exercise training on contractile function of rat skinned cardiomyocyte.

    Science.gov (United States)

    Cazorla, O; Aït Mou, Y; Goret, L; Vassort, G; Dauzat, M; Lacampagne, A; Tanguy, S; Obert, P

    2006-09-01

    Previous studies have questioned whether there is an improved cardiac function after high-altitude training. Accordingly, the present study was designed specifically to test whether this apparent blunted response of the whole heart to training can be accounted for by altered mechanical properties at the cellular level. Adult rats were trained for 5 weeks under normoxic (N, NT for sedentary and trained animals, respectively) or hypobaric hypoxic (H, HT) conditions. Cardiac morphology and function were evaluated by echocardiography. Calcium Ca2+ sensitivity of the contractile machinery was estimated in skinned cardiomyocytes isolated from the left ventricular (LV) sub-epicardium (Epi) and sub-endocardium (Endo) at short and long sarcomere lengths (SL). Cardiac remodelling was harmonious (increase in wall thickness with chamber dilatation) in NT rats and disharmonious (hypertrophy without chamber dilatation) in HT rats. Contrary to NT rats, HT rats did not exhibit enhancement in global cardiac performance evaluated by echocardiography. Stretch- dependent Ca2+ sensitization of the myofilaments (cellular index of the Frank-Starling mechanism) increased from Epi to Endo in N rats. Training in normoxic conditions further increased this stretch-dependent Ca2+ sensitization. Chronic hypoxia did not significantly affect myofibrilar Ca2+ sensitivity. In contrast, high-altitude training decreased Ca2+ sensitivity of the myofilaments at both SL, mostly in Endo cells, resulting in a loss of the transmural gradient of the stretch-dependent Ca2+ sensitization. Expression of myosin heavy chain isoforms was affected both by training and chronic hypoxia but did not correlate with mechanical data. Training at sea level increased the transmural gradient of stretch-dependent Ca2+ sensitization of the myofilaments, accounting for an improved Frank-Starling mechanism. High-altitude training depressed myofilament response to Ca2+, especially in the Endo layer. This led to a reduction in

  18. Cane pruning on Chardonnay grapevine in the high-altitude regions of Southern Brazil

    Directory of Open Access Journals (Sweden)

    Filho José Luiz Marcon

    2016-01-01

    Full Text Available High-altitude regions of southern Brazil, located above 900 m above sea level, the cordon training with spur pruning is widely used because of easier application. In these regions, Chardonnay wine grape shows potential to produce quality wines, however, in commercial vineyards, the training system used has not provided productivities that makes economically viable the cultivation of this variety. Given this, the present study aimed to evaluate the effect of different cane-pruning systems on the vegetative, productive and enological potential of Chardonnay grapevines grown in the high-altitude region of Southern Brazil. The experiment was conducted in a commercial Chardonnay vineyard, located in São Joaquim – Santa Catarina State (28o17 ′39”S and 49∘ 55′56” W, to 1230 m a.s.l during 2015 and 2016 vintages. Chardonnay vines (grafted on 1103 Paulsen were planted in 2010, with a 3.0 m (row × 1.0 m (vine spacing. The treatments consisted of different cane-pruning systems: Cordon spur-pruning (control; Sylvoz; Cazenave; Capovolto; single Guyot and double Guyot. Pruning was performed in August of each year when the buds were in the green tip developmental stage. Data was analyzed by Scott Knott test (p < 0.05 following a randomized block design with four replicates, each consisting of 12 vines per plot. We observed higher yield in the Cazenave and double Guyot training system with three and two more tons of grapes than spur-pruning respectively. The bud fertility was higher in plants trained in double Guyot. Vines spur-pruned showed higher relation of leaf area: production, with values above 100 cm2 g−1 grape at 2016 vintage. Commercial maturity of grapes (soluble solids, acidity and polyphenols did not differ among training systems studied. The results suggest that cane-pruning systems could be an alternative to increase production efficiency of Chardonnay in high-altitude region of southern Brazil.

  19. Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice.

    Science.gov (United States)

    Nuñez, Denisse; Olavegoya, Paola; Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia

    2017-12-01

    Nuñez, Denisse, Paola Olavegoya, Gustavo F. Gonzales, and Cynthia Gonzales-Castañeda. Red maca (Lepidium meyenii), a plant from the Peruvian highlands, promotes skin wound healing at sea level and at high altitude in adult male mice. High Alt Med Biol 18:373-383, 2017.-Wound healing consists of three simultaneous phases: inflammation, proliferation, and remodeling. Previous studies suggest that there is a delay in the healing process in high altitude, mainly due to alterations in the inflammatory phase. Maca (Lepidium meyenii) is a Peruvian plant with diverse biological properties, such as the ability to protect the skin from inflammatory lesions caused by ultraviolet radiation, as well as its antioxidant and immunomodulatory properties. The aim of this study was to determine the effect of high altitude on tissue repair and the effect of the topical administration of the spray-dried extract of red maca (RM) in tissue repair. Studies were conducted in male Balb/c mice at sea level and high altitude. Lesions were inflicted through a 10 mm-diameter excisional wound in the skin dorsal surface. Treatments consisted of either (1) spray-dried RM extract or (2) vehicle (VH). Animals wounded at high altitude had a delayed healing rate and an increased wound width compared with those at sea level. Moreover, wounding at high altitude was associated with an increase in inflammatory cells. Treatment with RM accelerated wound closure, decreased the level of epidermal hyperplasia, and decreased the number of inflammatory cells at the wound site. In conclusion, RM at high altitude generate a positive effect on wound healing, decreasing the number of neutrophils and increasing the number of macrophages in the wound healing at day 7 postwounding. This phenomenon is not observed at sea level.

  20. Establishment of extracorporeal circulation of artificial liver support system in high altitude region

    Directory of Open Access Journals (Sweden)

    Ming-sen ZHANG

    2011-01-01

    Full Text Available Objective To establish extracorporeal circulation in big animal suitable for the research on artificial liver support system in high altitude region.Methods Under the anesthesia of ketamine hydrochloride/diazepam IV,cannulation of common carotid artery/external jugular vein(n=3 and inferior vena cava via the left external jugular vein/right external jugular vein(n=3,was respectively performed on six healthy Chang-Bai piglets adapted to native environment(altitude 3700m.One day after that,the extracorporeal circulation was performed at a progressively elevated blood current velocity,and the general condition of the animals,blood pressure,HR,bleeding tendoncy of the experimental pigs and coagulation in the cannulae were observed.Results On the premise that the hemodynamics was not influenced,the highest blood current velocity was 133.33±28.87ml/min,the lowest heparin maintaining speed amounted to 138.67±12.22mg/h,and the bleeding tendency and blood coagulation in the cannula was significant in the group of common carotid artery/external jugular vein intubation.While the highest blood current velocity was 400ml/min,the lowest heparin maintaining speed was 26.67±9.24mg/h,no bleeding tendency or obvious cannular blood coagulation were observed in the group of cannulation of inferior vena cava via the left external jugular vein/right external jugular vein.These untoward results were significantly less or slight than that of the former group(P < 0.01.Conclusion It is suitable to perform research of artificial liver support system on piglets in high altitude region by establishing extracorporeal circulation by the way of inferior vena cava with cannulation passing through the left external jugular vein/right external jugular vein with the blood current velocity of 400ml/min.