WorldWideScience

Sample records for high alpine zone

  1. The Alpine loop of the tethys zone

    NARCIS (Netherlands)

    Bemmelen, R.W. van

    The Alpine loop in Europe results from semi-autochthonous crustal movements which are restricted to the mobile Tethys zone. Its evolution cannot be explained by a uniform northward drift and push of the African continent; it has to be sought, in the first place, in geodynamic processes occurring in

  2. Cooccurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness

    Directory of Open Access Journals (Sweden)

    Andrew J. King

    2012-10-01

    Full Text Available Plants and soil microorganisms interact to play a central role in ecosystem functioning. To determine the potential importance of biotic interactions in shaping the distributions of these organisms in a high-alpine subnival landscape, we examine cooccurrence patterns between plant species and bulk-soil bacteria abundances. In this context, a cooccurrence relationship reflects a combination of several assembly processes: that both parties can disperse to the site, that they can survive the abiotic environmental conditions, and that interactions between the biota either facilitate survival or allow for coexistence. Across the entire landscape, 31% of the bacterial sequences in this dataset were significantly correlated to the abundance distribution of one or more plant species. These sequences fell into 14 clades, 6 of which are related to bacteria that are known to form symbioses with plants in other systems. Abundant plant species were more likely to have significant as well as stronger correlations with bacteria and these patterns were more prevalent in lower altitude sites. Conversely, correlations between plant species abundances and bacterial relative abundances were less frequent in sites near the snowline. Thus, plant-bacteria associations became more common as environmental conditions became less harsh and plants became more abundant. This pattern in cooccurrence strength and frequency across the subnival landscape suggests that plant-bacteria interactions are important for the success of life, both below- and above-ground, in an extreme environment.

  3. Consequences for selected high-elevation butterflies and moths from the spread of Pinus mugo into the alpine zone in the High Sudetes Mountains

    Czech Academy of Sciences Publication Activity Database

    Bílá, Karolína; Šipoš, Jan; Kindlmann, Pavel; Kuras, T.

    2016-01-01

    Roč. 4, JUN (2016), č. článku e2094. ISSN 2167-8359 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk LC06073 Institutional support: RVO:67179843 Keywords : hruby jesenik mts * erebia-epiphron * species richness * lepidoptera * population * europe * assemblages * vegetation * gradients * patterns * Afforestation * Alpine tundra * Lepidoptera * Dwarf pine * Postglacial development * Central European mountains * Biodiversity loss Subject RIV: EH - Ecology, Behaviour Impact factor: 2.177, year: 2016

  4. UAS applications in high alpine, snow-covered terrain

    Science.gov (United States)

    Bühler, Y.; Stoffel, A.; Ginzler, C.

    2017-12-01

    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  5. Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A

    Science.gov (United States)

    James F. Fowler; B. E. Nelson; Ronald L. Hartman

    2014-01-01

    Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...

  6. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    Science.gov (United States)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is

  7. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A S.H.; Dommen, J; Furger, M; Graber, W K [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  8. Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault

    Science.gov (United States)

    Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.

    2016-12-01

    Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.

  9. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    Science.gov (United States)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite

  10. [Spatial and temporal variations of hydrological characteristic on the landscape zone scale in alpine cold region].

    Science.gov (United States)

    Yang, Yong-Gang; Hu, Jin-Fei; Xiao, Hong-Lang; Zou, Song-Bing; Yin, Zhen-Liang

    2013-10-01

    There are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects. Therefore, the isotope values remained high. Temperature effects were significant. During the dry season, the temperature was low. Precipitation was in the solid state during the cold season and the evaporation was weak. Water vapor came from the evaporation of local water bodies. Therefore, less secondary evaporation and water vapor exchange occurred, leading to negative values of delta18O and deltaD. delta18O and deltaD values of precipitation and various water bodies exhibited strong seasonal variations. Precipitation exhibited altitude effects, delta18O = -0. 005 2H - 8. 951, deltaD = -0.018 5H - 34. 873. Other water bodies did not show altitude effects in the wet season and dry season, because the runoff was not only recharged by precipitation, but also influenced by the freezing and thawing process of the glacier, snow and frozen soil. The mutual transformation of precipitation, melt water, surface water and groundwater led to variations in isotopic composition. Therefore, homogenization and evaporation effect are the main control factors of isotope variations.

  11. Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone

    Science.gov (United States)

    Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani

    2016-04-01

    The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the

  12. Evapotranspiration partitioning in the highest alpine meadow zones through in-situ chamber and dual stable water isotope approaches

    Science.gov (United States)

    Cui, J.; Tian, L.

    2017-12-01

    Understanding plant functionality within the water cycles of grassland ecosystems is crucial for obtaining both regional water balance and plant adaptability in the context of ongoing climate change. The transpiration to evapotranspiration ratio (T/ET) is an indicator of plant's contribution to ecosystem water cycle. In this study, we used high-frequency laser spectroscopy (L2130-i), three custom-built chambers, and eddy covariance techniques, to constrain the role played by plants in evapotranspiration over an alpine meadow ecosystem in the central Tibetan Plateau (TP). Three different sizes of chambers are used to direct measure the isotopic compositions in evapotranspiration (δET), evaporation (δE) and transpiration (δT). The consistent T/ET between δ18O and δD manifests that chamber and dual isotope tracers are robust methods to estimate T/ET in alpine meadow zone. Sensitivity analysis shows that the isotopic composition of evapotranspiration is the main contributor to, and the uncertainty source for, the T/ET estimate. The influence of meteorological and biotic factors on T/ET is also discussed. The results from this study indicate that plants play an important role in the water cycles of alpine meadow ecosystems despite the sparse distribution of plant cover. We also synthesized the published T/ET data over the entire TP region, and found a good relation between T/ET and leaf area index (LAI). Moreover, soil water content played some role in controlling T/ET beyond the LAI in arid/semiarid regions such as the TP. More than half of the TP is covered by grassland, but its low biomass and shallow rooting depth make it very vulnerable to climate change variables such as air temperature warming and variations in precipitation. Given the crucial role played by plants in an ecosystem's water cycle, any variations in grassland cover are likely to exert a critical impact on the regional hydrological cycle, and even the regional climate.

  13. Seismic micro-zoning in the alpine valleys and local application in urban planning regulations

    Directory of Open Access Journals (Sweden)

    Stéphane Cartier

    2009-03-01

    Full Text Available Confrontées au risque sismique, les vallées sédimentaires alpines testent différentes solutions politiques pour transcrire en règles d’urbanisme les connaissances apportées par les micro-zonages. France, Italie, Slovénie et Suisse composent avec leur tradition politique et l’adoption de codes européens pour améliorer la sécurité selon la vulnérabilité et la géologie locales.Management of earthquake risks in the sedimentary valleys of the Alps depends on the ability to transcribe scientific knowledge obtained from micro-zoning into urban planning regulations. France, Italy, Slovenia and Switzerland are working with new European codes, and within their respective political contexts, to improve earthquake safety on the basis of enhanced input on local geological conditions and vulnerability levels.

  14. Influence of mineralogy and microstructures on strain localization and fault zone architecture of the Alpine Fault, New Zealand

    Science.gov (United States)

    Ichiba, T.; Kaneki, S.; Hirono, T.; Oohashi, K.; Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The Alpine Fault on New Zealand's South Island is an oblique, dextral strike-slip fault that accommodated the majority of displacement between the Pacific and the Australian Plates and presents the biggest seismic hazard in the region. Along its central segment, the hanging wall comprises greenschist and amphibolite facies Alpine Schists. Exhumation from 35 km depth, along a SE-dipping detachment, lead to mylonitization which was subsequently overprinted by brittle deformation and finally resulted in the fault's 1 km wide damage zone. The geomechanical behavior of a fault is affected by the internal structure of its fault zone. Consequently, studying processes controlling fault zone architecture allows assessing the seismic hazard of a fault. Here we present the results of a combined microstructural (SEM and TEM), mineralogical (XRD) and geochemical (XRF) investigation of outcrop samples originating from several locations along the Alpine Fault, the aim of which is to evaluate the influence of mineralogical composition, alteration and pre-existing fabric on strain localization and to identify the controls on the fault zone architecture, particularly the locus of brittle deformation in P, T and t space. Field observations reveal that the fault's principal slip zone (PSZ) is either a thin (< 1 cm to < 7 cm) layered structure or a relatively thick (10s cm) package lacking a detectable macroscopic fabric. Lithological and related rheological contrasts are widely assumed to govern strain localization. However, our preliminary results suggest that qualitative mineralogical composition has only minor impact on fault zone architecture. Quantities of individual mineral phases differ markedly between fault damage zone and fault core at specific sites, but the quantitative composition of identical structural units such as the fault core, is similar in all samples. This indicates that the degree of strain localization at the Alpine Fault might be controlled by small initial

  15. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Science.gov (United States)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin

    2017-12-01

    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  16. Investigation on the geographical distribution and life form of plant species in sub alpine zone Karsanak region, Shahrekord

    Directory of Open Access Journals (Sweden)

    Jahanbakhsh Pairanj

    2011-09-01

    Full Text Available This study was carried out in rangelands of Karsanak, Chaharmahal and Bakhtiari province, which is regarded as one of the rich rangelands. Phytogeographically, this region is located in Irano-Turanian (zone of sub alpine. Endemic and rare plants were identified and geographical distribution and life form of identified plant species were investigated as well. Overall, 100 species from 17 families were identified from which 20 percent of identified species was endemic element of Irano-Turanian region. Results indicated that 75.7 percent of identified plants belonged to the Irano-Turanian and only 3 and 2 percent belonged to Euro-Siberian and Mediterranean regions respectively. The reason of high percentage of Irano-Turanian elements is probably the long distance of this region from other regions. Similarities of Irano-Turanian and Mediterranean were included 6.1 percent of identified plants and Irano-Turanian and Euro-Siberian included 2 percent. Results of life forms showed hemichryptophytes including 60 percent of life forms which indicate the cold and mountainous weather.

  17. Identification of mineral dust layers in high alpine snow packs

    Science.gov (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  18. EXPLORING THE POTENTIAL OF AERIAL PHOTOGRAMMETRY FOR 3D MODELLING OF HIGH-ALPINE ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    K. Legat

    2016-03-01

    Based on the very promising results, some general recommendations for aerial photogrammetry processing in high-alpine areas are made to achieve best possible accuracy of the final 3D-, 2.5D- and 2D products.

  19. Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: Mechanical and chemical behaviour of allanite during mylonitization

    DEFF Research Database (Denmark)

    Cenki-Tok, Benedicte; Oliot, E.; Berger, Alfons

    2011-01-01

    This study addresses the mechanical and cehmical behavior of allanite during shear zone formation under high-pressure metamorphism. Understanding physico-chemical processes related to the retention or resetting of Pb isotopes in allanite during geological processes is essential for robust......, and they were thus chemically and mechanically shielded during Alpine mylonitization. In undeformed samples (8a and 8b), two populations of epidote group minerals were found. Allanite forms either coronas around Permianmonazite or individual grains with patchy zoning. Both types yield Permian ages (208Pb/232Th...... age: 291±5 Ma). On the other hand, grains of REE-rich clinozoisite of Cretaceous age are found in undeformed rocks. These grains appear as small fragments with embayed surface outlines and minute satellites or rims around Permian allanite. These (re)crystallized grains are Sr-rich and show mosaic...

  20. Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance.

    Science.gov (United States)

    Arroyo, Mary T K; Dudley, Leah S; Jespersen, Gus; Pacheco, Diego A; Cavieres, Lohengrin A

    2013-12-01

    How high-alpine plants confront stochastic conditions for animal pollination is a critical question. We investigated the effect of temperature on potential flower longevity (FL) measured in pollinator-excluded flowers and actual FL measured in pollinated flowers in self-incompatible Oxalis compacta and evaluated if plastically prolonged potential FL can ameliorate slow pollination under cool conditions. Pollinator-excluded and hand-pollinated flowers were experimentally warmed with open-top chambers (OTCs) on a site at 3470 m above sea level (asl). Flower-specific temperatures, and pollinator-excluded and open-pollination flower life-spans were measured at six alpine sites between 3100 and 3470 m asl. Fruit set was analyzed in relation to inferred pollination time. Warming reduced potential FL. Variable thermal conditions across the alpine landscape predicted potential and actual FL; flower senescence was pollination-regulated. Actual FL and potential FL were coupled. Prolonged potential FL generally increased fruit set under cooler conditions. Plastic responses permit virgin flowers of O. compacta to remain open longer under cooler temperatures, thereby ameliorating slow pollination, and to close earlier when pollination tends to be faster under warmer conditions. Plastic potential FL provides adaptive advantages in the cold, thermally variable alpine habitat, and has important implications for reproductive success in alpine plants in a warming world. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. A deposition record of inorganic ions from a high-alpine glacier

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T. [Bern Univ. (Switzerland); Bruetsch, S.; Gaeggeler, H.W.; Schotterer, U.; Schwikowski, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The lowest five metres of an ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4450m a.s.l., Switzerland) were analysed for ammonium, calcium, chloride, magnesium, nitrate, potassium, sodium, and sulphate by ion chromatography. (author) 1 fig., 3 refs.

  2. Exploring the Potential of Aerial Photogrammetry for 3d Modelling of High-Alpine Environments

    Science.gov (United States)

    Legat, K.; Moe, K.; Poli, D.; Bollmannb, E.

    2016-03-01

    High-alpine areas are subject to rapid topographic changes, mainly caused by natural processes like glacial retreat and other geomorphological processes, and also due to anthropogenic interventions like construction of slopes and infrastructure in skiing resorts. Consequently, the demand for highly accurate digital terrain models (DTMs) in alpine environments has arisen. Public administrations often have dedicated resources for the regular monitoring of glaciers and natural hazard processes. In case of glaciers, traditional monitoring encompasses in-situ measurements of area and length and the estimation of volume and mass changes. Next to field measurements, data for such monitoring programs can be derived from DTMs and digital ortho photos (DOPs). Skiing resorts, on the other hand, require DTMs as input for planning and - more recently - for RTK-GNSS supported ski-slope grooming. Although different in scope, the demand of both user groups is similar: high-quality and up-to-date terrain data for extended areas often characterised by difficult accessibility and large elevation ranges. Over the last two decades, airborne laser scanning (ALS) has replaced photogrammetric approaches as state-of-the-art technology for the acquisition of high-resolution DTMs also in alpine environments. Reasons include the higher productivity compared to (manual) stereo-photogrammetric measurements, canopy-penetration capability, and limitations of photo measurements on sparsely textured surfaces like snow or ice. Nevertheless, the last few years have shown strong technological advances in the field of aerial camera technology, image processing and photogrammetric software which led to new possibilities for image-based DTM generation even in alpine terrain. At Vermessung AVT, an Austrian-based surveying company, and its subsidiary Terra Messflug, very promising results have been achieved for various projects in high-alpine environments, using images acquired by large-format digital

  3. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    Science.gov (United States)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  4. Leaf ultraviolet optical properties along a latitudinal gradient in the Arctic-Alpine life zone

    International Nuclear Information System (INIS)

    Robberecht, R.; Caldwell, M.M.; Billings, W.D.

    1980-01-01

    Leaf epidermal transmittance of terrestrial solar ultraviolet-B radiation (295 to 320 nm) was examined along a latitudinal gradient of solar uv-B radiation. In high uv-B radiation zones, e.g., equatorial and tropical regions, mean epidermal transmittance for the species examined was less than 2%. At higher latitudes, mean epidermal transmittance exceeded 5%. Although this latitudinal solar uv-B gradient represents more than a seven-fold difference in daily integrated uv-B irradiance, the calculated mean effective uv-B irradiance at the mesophyll of low-latitude species is not substantially different from that of species at higher latitudes. Species in high uv-B radiation environments appear to attenuate this radiation more effectively than those in lower irradiance environments. In most cases, absorption of uv-B in the epidermis is the major parameter effecting low transmittance. Reflectance from glabrous leaves is generally less than 10%. In some species, pubescent or glaucous leaf surfaces can reflect more than 40% of the uv-B radiation incident on a horizontal leaf, although such surface characteristics do not necessarily indicate high uv-B reflectance. Under controlled conditions, epidermal transmittance in Pisum sativum L. decreased in response to uv-B irradiation. The modification of epidermal transmittance, resulting in lower uv-B irradiance at the mesophyll, may represent a mechanism of plant acclimation to uv-B radiation. Such acclimation may have occurred in several wildland species of temperate-latitude origin that have invaded high uv-B irradiance equatorial and tropical regions

  5. Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan.

    Science.gov (United States)

    Tsujino, Riyou; Yumoto, Takakazu

    2013-03-01

    In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.

  6. Near-surface clay authigenesis in exhumed fault rock of the Alpine Fault Zone (New Zealand); O-H-Ar isotopic, XRD and chemical analysis of illite and chlorite

    Science.gov (United States)

    Boles, Austin; Mulch, Andreas; van der Pluijm, Ben

    2018-06-01

    Exhumed fault rock of the central Alpine Fault Zone (South Island, New Zealand) shows extensive clay mineralization, and it has been the focus of recent research that aims to describe the evolution and frictional behavior of the fault. Using Quantitative X-ray powder diffraction, 40Ar/39Ar geochronology, hydrogen isotope (δD) geochemistry, and electron microbeam analysis, we constrain the thermal and fluid conditions of deformation that produced two predominant clay phases ubiquitous to the exposed fault damage zone, illite and chlorite. Illite polytype analysis indicates that most end-member illite and chlorite material formed in equilibrium with meteoric fluid (δD = -55 to -75‰), but two locations preserve a metamorphic origin of chlorite (δD = -36 to -45‰). Chlorite chemical geothermometry constrains crystal growth to T = 210-296 °C. Isotopic analysis also constrains illite growth to T < 100 °C, consistent with the mineralogy, with Ar ages <0.5 Ma. High geothermal gradients in the study area promoted widespread, near-surface mineralization, and limited the window of clay authigenesis in the Alpine Fault Zone to <5 km for chlorite and <2 km for illite. This implies a significant contrast between fault rock exposed at the surface and that at depth, and informs discussions about fault strength, clays and frictional behavior.

  7. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  8. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  9. High Performance Skiing. How to Become a Better Alpine Skier.

    Science.gov (United States)

    Yacenda, John

    This book is intended for people who desire to improve their skiing by exploring high performance techniques leading to: (1) more consistent performance; (2) less fatigue and more endurance; (3) greater strength and flexibility; (4) greater versatility; (5) greater confidence in all skiing conditions; and (6) the knowledge to participate in…

  10. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  11. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    Science.gov (United States)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire

  12. An assessment of The Effects of Elevation and Aspect on Deposition of Airborne Pollution and Water Quality in an Alpine Critical Zone: San Juan Mountains, Colorado, USA

    Science.gov (United States)

    Price, A.; Giardino, J. R.; Marcantonio, F.

    2015-12-01

    The alpine critical zone is affected by various inputs, storages, pathways, and outputs. Unfortunately, many of these processes distribute the pollutants beyond the immediate area and into the surrounding biological and anthropogenic communities. Years of mining and improper disposal of the tailings and acid-mine drainage have degraded the quality of surface water within the San Juan Mountains. However, mining may not be the only factor significantly affecting the surface water quality in this high-elevation environment. As a high elevation system, this area is a fragile ecosystem with inputs ranging from local mining to atmospheric transport and deposition. Studies from around the world have shown atmospheric transport and deposition affect high-elevation systems. Thus, a significant question arises: does elevation or aspect affect the volume and rate of atmospheric deposition of pollutants? We assume atmospheric deposition occurs on the slopes in addition to in streams, lakes, and ponds. Deposition on slopes can be transported to nearby surface waters and increase the impact of the atmospheric pollutants along with residence time. Atmospheric deposition data were collected for aluminum, iron, manganese, nitrate, phosphate, and sulfate. Water chemistry data were collected for the same constituents as the atmospheric deposition with the addition of temperature, dissolved oxygen, pH, and specific conductance. Deposition samples were collected on a five-day sampling regime during two summers. Water quality samples were collected in-stream adjacent to the deposition-ample collectors. Collection sites were located on opposite sides of Red Mountain at five equal elevations providing two different aspects. The north side is drained by Red Mountain Creek and the south side is drained by Mineral Creek. Differences in atmospheric deposition and water quality at different elevations and aspects suggest there is a relationship between aspect and elevation on atmospheric

  13. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a

  14. Iron content and solubility in dust from high-alpine snow along a north-south transect of High Asia

    OpenAIRE

    Wu, Guangjian; Zhang, Chenglong; Li, Zhongqin; Zhang, Xuelei; Gao, Shaopeng

    2012-01-01

    This study describes the dissolved and insoluble iron fraction of dust (mineral aerosol) in high-alpine snow samples collected along a north-south transect across High Asia (Eastern Tien Shan, Qilian Shan, and Southern Tibetan Plateau). This dust provides the basic chemical properties of mid- and high-level tropospheric Asian dust that can supply the limiting iron nutrient for phytoplankton growth in the North Pacific. The iron content in Asian dust averages 4.95% in Eastern Tien Shan, 3.38–5...

  15. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador

    NARCIS (Netherlands)

    Bader, M.; Geloof, van I.; Rietkerk, M.

    2007-01-01

    Many tropical alpine treelines lie below their climatic potential, because of natural or anthropogenic causes. Forest extension above the treeline depends on the ability of trees to establish in the alpine environment. This ability may be limited by different factors, such as low temperatures,

  16. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador

    NARCIS (Netherlands)

    Bader, M.Y.; Geloof, I. van; Rietkerk, M.G.

    2007-01-01

    Many tropical alpine treelines lie below their climatic potential, because of natural or anthropogenic causes. Forest extension above the treeline depends on the ability of trees to establish in the alpine environment. This ability may be limited by different factors, such as low

  17. Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P floristic communities rhizospheres on their soil bacterial communities.

  18. Large-scale environmental controls on microbial biofilms in high-alpine streams

    Directory of Open Access Journals (Sweden)

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  19. Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice

    Science.gov (United States)

    Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja

    2017-04-01

    Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental

  20. Iron content and solubility in dust from high-alpine snow along a north-south transect of High Asia

    Directory of Open Access Journals (Sweden)

    Guangjian Wu

    2012-04-01

    Full Text Available This study describes the dissolved and insoluble iron fraction of dust (mineral aerosol in high-alpine snow samples collected along a north-south transect across High Asia (Eastern Tien Shan, Qilian Shan, and Southern Tibetan Plateau. This dust provides the basic chemical properties of mid- and high-level tropospheric Asian dust that can supply the limiting iron nutrient for phytoplankton growth in the North Pacific. The iron content in Asian dust averages 4.95% in Eastern Tien Shan, 3.38–5.41% along Qilian Shan and 3.85% in the Southern Tibetan Plateau. The iron fractional solubility averages about 0.25% in Eastern Tien Shan, 0.05–2% along Qilian Shan and 1.5% in the Southern Tibetan Plateau. Among the controlling factors that can affect iron solubility in Asian dust, such as dust composition and particle grain size, acidity seems to be the most significant and can increase the iron solubility by one or two orders of magnitude with acidification of pH=0.66. Our results reveal that iron solubility of dust in the remote downwind sites is higher than that in high-alpine snow, confirming the strong pH-dependence of iron solubility, and indicating that Asian dust shows a large variation in iron solubility on a regional scale.

  1. Semenic Mountains’ alpine skiing area

    Directory of Open Access Journals (Sweden)

    Petru BANIAȘ

    2017-03-01

    Full Text Available The present paper presents, after a short history of alpine skiing which describes apparition, necessity, utility and universality of skiing during time, a comparative study referring to the alpine skiing domain in the Semenic Mountains area. In the paper are also presented general notions about alpine skiing methodology together with an ample description of the plateau area form Semenic Mountains, describing localization and touristic potential. Based on the SWOT analysis made for each slope, was realized a complex analysis of the entire skiing domain, an analysis which includes technical, financial, climatic and environmental aspects, along with an analysis of the marketing policy applied for the specific zone.

  2. Activated Fraction Of Black Carbon By Cloud Droplets And Ice Crystals At The High Alpine Site Jungfraujoch (3580 m asl)

    Energy Technology Data Exchange (ETDEWEB)

    Cozic, J.; Mertes, S. [IFT Leipzig (Georgia); Verheggen, B.; Petzold, A. [DLR, Oberpfaffenhofen (Georgia); Weingartner, E.; Baltensperger, U.

    2005-03-01

    Measurements of black carbon (BC) were made in winter and summer 2004 at the high Alpine site Jungfraujoch in order to study the activation of BC into cloud droplets and ice crystals. Main results showed that the activated fraction represents 61% in summer and that for a large temperature range between -25 C and 5 C, the activated BC fraction increases with increasing temperature and increasing liquid water content. (author)

  3. Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment

    Directory of Open Access Journals (Sweden)

    Sonia Ciccazzo

    2014-01-01

    Full Text Available The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P<0.05 on 16S rRNA gene diversity revealed significant differences (P<0.05 between BS site and the vegetated sites with a weak similarity to the RW site. The intermediate plant colonization stage FI did not differ significantly from the RW and the M vegetated sites. These results pointed out the effect of different floristic communities rhizospheres on their soil bacterial communities.

  4. Are low altitude alpine tundra ecosystems under threat? A case study from the Parc National de la Gaspésie, Québec

    International Nuclear Information System (INIS)

    Dumais, Catherine; Ropars, Pascale; Denis, Marie-Pier; Dufour-Tremblay, Geneviève; Boudreau, Stéphane

    2014-01-01

    According to the 2007 IPCC report, the alpine tundra ecosystems found on low mountains of the northern hemisphere are amongst the most threatened by climate change. A treeline advance or a significant erect shrub expansion could result in increased competition for the arctic-alpine species usually found on mountaintops and eventually lead to their local extinction. The objectives of our study were to identify recent changes in the cover and growth of erect woody vegetation in the alpine tundra of Mont de la Passe, in the Parc National de la Gaspésie (Québec, Canada). The comparison of two orthorectified aerial photos revealed no significant shift of the treeline between 1975 and 2004. During the same period however, shrub species cover increased from 20.2% to 30.4% in the lower alpine zone. Dendrochronological analyses conducted on Betula glandulosa Michx. sampled at three different positions along an altitudinal gradient (low, intermediate and high alpine zone) revealed that the climatic determinants of B. glandulosa radial growth become more complex with increasing altitude. In the lower alpine zone, B. glandulosa radial growth is only significantly associated positively to July temperature. In the intermediate alpine zone, radial growth is associated positively to July temperature but negatively to March temperature. In the high alpine zone, radial growth is positively associated to January, July and August temperature but negatively to March temperature. The positive association between summer temperatures and radial growth suggests that B. glandulosa could potentially benefit from warmer temperatures, a phenomenon that could lead to an increase in its cover over the next few decades. Although alpine tundra vegetation is not threatened in the short-term in the Parc National de la Gaspésie, erect shrub cover, especially B. glandulosa, could likely increase in the near future, threatening the local arctic-alpine flora. (letter)

  5. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    R. Fierz-Schmidhauser

    2010-03-01

    Full Text Available Ambient relative humidity (RH determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH=σsp(RH/σsp(dry from a 1-month campaign (May 2008 at the high alpine site Jungfraujoch (3580 m a.s.l., Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH is available so far. At this site, f(RH=85% varied between 1.2 and 3.3. Measured f(RH agreed well with f(RH calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

  6. Model-Based Attribution of High-Resolution Streamflow Trends in Two Alpine Basins of Western Austria

    Directory of Open Access Journals (Sweden)

    Christoph Kormann

    2016-02-01

    Full Text Available Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to identify the trend drivers, i.e., to attribute the detected streamflow trends, given that the model captures all important processes causing the trends. We modelled the hydrological conditions for two alpine catchments in western Austria (a large, mostly lower-altitude catchment with wide valley plains and a nested high-altitude, glaciated headwater catchment with the distributed, physically-oriented WaSiM-ETH model, which includes a dynamical glacier module. The model was calibrated in a transient mode, i.e., not only on several standard goodness measures and glacier extents, but also in such a way that the simulated streamflow trends fit with the observed ones during the investigation period 1980 to 2007. With this approach, it was possible to separate streamflow components, identify the trends of flow components, and study their relation to trends in atmospheric variables. In addition to trends in annual averages, highly resolved trends for each Julian day were derived, since they proved powerful in an earlier, data-based attribution study. We were able to show that annual and highly resolved trends can be modelled sufficiently well. The results provide a holistic, year-round picture of the drivers of alpine streamflow changes: Higher-altitude catchments are strongly affected by earlier firn melt and snowmelt in spring and increased ice melt throughout the ablation season. Changes in lower-altitude areas are mostly caused by earlier and lower snowmelt volumes. All highly resolved trends in streamflow and its components show an explicit similarity to the local temperature trends. Finally, results indicate that evapotranspiration has been increasing in the lower

  7. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment.

    Science.gov (United States)

    Offenthaler, I; Jakobi, G; Kaiser, A; Kirchner, M; Kräuchi, N; Niedermoser, B; Schramm, K-W; Sedivy, I; Staudinger, M; Thanner, G; Weiss, P; Moche, W

    2009-12-01

    High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity.

  8. Water balance estimation in high Alpine terrain by combining distributed modeling and a neural network approach (Berchtesgaden Alps, Germany

    Directory of Open Access Journals (Sweden)

    G. Kraller

    2012-07-01

    Full Text Available The water balance in high Alpine regions is often characterized by significant variation of meteorological variables in space and time, a complex hydrogeological situation and steep gradients. The system is even more complex when the rock composition is dominated by soluble limestone, because unknown underground flow conditions and flow directions lead to unknown storage quantities. Reliable distributed modeling cannot be implemented by traditional approaches due to unknown storage processes at local and catchment scale. We present an artificial neural network extension of a distributed hydrological model (WaSiM-ETH that allows to account for subsurface water transfer in a karstic environment. The extension was developed for the Alpine catchment of the river "Berchtesgadener Ache" (Berchtesgaden Alps, Germany, which is characterized by extreme topography and calcareous rocks. The model assumes porous conditions and does not account for karstic environments, resulting in systematic mismatch of modeled and measured runoff in discharge curves at the outlet points of neighboring high alpine subbasins. Various precipitation interpolation methods did not allow to explain systematic mismatches, and unknown subsurface hydrological processes were concluded as the underlying reason. We introduce a new method that allows to describe the unknown subsurface boundary fluxes, and account for them in the hydrological model. This is achieved by an artificial neural network approach (ANN, where four input variables are taken to calculate the unknown subsurface storage conditions. This was first developed for the high Alpine subbasin Königsseer Ache to improve the monthly water balance. We explicitly derive the algebraic transfer function of an artificial neural net to calculate the missing boundary fluxes. The result of the ANN is then implemented in the groundwater module of the hydrological model as boundary flux, and considered during the consecutive model

  9. Alpine tourism

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine tourism are then identified, as well as the contradictions that frequently accompany them. In most cases, innovation is the result of a process that begins within the alpine community, frequently encouraged and supported by national and international institutions and with whose help structural difficulties are successfully overcome.La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier et la multiplication d’infrastructures et de pistes. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Ensuite, l’article propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui accompagnent souvent ces conditions. Dans la plupart des cas

  10. Zone refining high-purity germanium

    International Nuclear Information System (INIS)

    Hubbard, G.S.; Haller, E.E.; Hansen, W.L.

    1977-10-01

    The effects of various parameters on germanium purification by zone refining have been examined. These parameters include the germanium container and container coatings, ambient gas and other operating conditions. Four methods of refining are presented which reproducibly yield 3.5 kg germanium ingots from which high purity (vertical barN/sub A/ - N/sub D/vertical bar less than or equal to2 x 10 10 cm -3 ) single crystals can be grown. A qualitative model involving binary and ternary complexes of Si, O, B, and Al is shown to account for the behavior of impurities at these low concentrations

  11. Dense image matching of terrestrial imagery for deriving high-resolution topographic properties of vegetation locations in alpine terrain

    Science.gov (United States)

    Niederheiser, R.; Rutzinger, M.; Bremer, M.; Wichmann, V.

    2018-04-01

    The investigation of changes in spatial patterns of vegetation and identification of potential micro-refugia requires detailed topographic and terrain information. However, mapping alpine topography at very detailed scales is challenging due to limited accessibility of sites. Close-range sensing by photogrammetric dense matching approaches based on terrestrial images captured with hand-held cameras offers a light-weight and low-cost solution to retrieve high-resolution measurements even in steep terrain and at locations, which are difficult to access. We propose a novel approach for rapid capturing of terrestrial images and a highly automated processing chain for retrieving detailed dense point clouds for topographic modelling. For this study, we modelled 249 plot locations. For the analysis of vegetation distribution and location properties, topographic parameters, such as slope, aspect, and potential solar irradiation were derived by applying a multi-scale approach utilizing voxel grids and spherical neighbourhoods. The result is a micro-topography archive of 249 alpine locations that includes topographic parameters at multiple scales ready for biogeomorphological analysis. Compared with regional elevation models at larger scales and traditional 2D gridding approaches to create elevation models, we employ analyses in a fully 3D environment that yield much more detailed insights into interrelations between topographic parameters, such as potential solar irradiation, surface area, aspect and roughness.

  12. Inferring the colonization of a mountain range--refugia vs. nunatak survival in high alpine ground beetles.

    Science.gov (United States)

    Lohse, Konrad; Nicholls, James A; Stone, Graham N

    2011-01-01

    It has long been debated whether high alpine specialists survived ice ages in situ on small ice-free islands of habitat, so-called nunataks, or whether glacial survival was restricted to larger massifs de refuge at the periphery. We evaluate these alternative hypotheses in a local radiation of high alpine carabid beetles (genus Trechus) in the Orobian Alps, Northern Italy. While summits along the northern ridge of this mountain range were surrounded by the icesheet as nunataks during the last glacial maximum, southern areas remained unglaciated. We analyse a total of 1366 bp of mitochondrial (Cox1 and Cox2) data sampled from 150 individuals from twelve populations and 530 bp of nuclear (PEPCK) sequence sampled for a subset of 30 individuals. Using Bayesian inference, we estimate ancestral location states in the gene trees, which in turn are used to infer the most likely order of recolonization under a model of sequential founder events from a massif de refuge from the mitochondrial data. We test for the paraphyly expected under this model and for reciprocal monophyly predicted by a contrasting model of prolonged persistence of nunatak populations. We find that (i) only three populations are incompatible with the paraphyly of the massif de refuge model, (ii) both mitochondrial and nuclear data support separate refugial origins for populations on the western and eastern ends of the northern ridge, and (iii) mitochondrial node ages suggest persistence on the northern ridge for part of the last ice age. © 2010 Blackwell Publishing Ltd.

  13. UAV-based Natural Hazard Management in High-Alpine Terrain - Case Studies from Austria

    Science.gov (United States)

    Sotier, Bernadette; Adams, Marc; Lechner, Veronika

    2015-04-01

    Unmanned Aerial Vehicles (UAV) have become a standard tool for geodata collection, as they allow conducting on-demand mapping missions in a flexible, cost-effective manner at an unprecedented level of detail. Easy-to-use, high-performance image matching software make it possible to process the collected aerial images to orthophotos and 3D-terrain models. Such up-to-date geodata have proven to be an important asset in natural hazard management: Processes like debris flows, avalanches, landslides, fluvial erosion and rock-fall can be detected and quantified; damages can be documented and evaluated. In the Alps, these processes mostly originate in remote areas, which are difficult and hazardous to access, thus presenting a challenging task for RPAS data collection. In particular, the problems include finding suitable landing and piloting-places, dealing with bad or no GPS-signals and the installation of ground control points (GCP) for georeferencing. At the BFW, RPAS have been used since 2012 to aid natural hazard management of various processes, of which three case studies are presented below. The first case study deals with the results from an attempt to employ UAV-based multi-spectral remote sensing to monitor the state of natural hazard protection forests. Images in the visible and near-infrared (NIR) band were collected using modified low-cost cameras, combined with different optical filters. Several UAV-flights were performed in the 72 ha large study site in 2014, which lies in the Wattental, Tyrol (Austria) between 1700 and 2050 m a.s.l., where the main tree species are stone pine and mountain pine. The matched aerial images were analysed using different UAV-specific vitality indices, evaluating both single- and dual-camera UAV-missions. To calculate the mass balance of a debris flow in the Tyrolean Halltal (Austria), an RPAS flight was conducted in autumn 2012. The extreme alpine environment was challenging for both the mission and the evaluation of the aerial

  14. Seroprevalence of pestivirus in four species of alpine wild ungulates in the High Valley of Susa, Italy.

    Science.gov (United States)

    Olde Riekerink, R G M; Dominici, A; Barkema, H W; de Smit, A J

    2005-07-01

    Wildlife, once infected, can serve as a reservoir of infectious diseases that form a constant threat to domestic livestock. To make control and eradication programs successful in the long-term, presence of pestivirus in wildlife populations should be monitored. The goal of this study was to investigate seroprevalence of pestivirus in four alpine wild ungulates in the High Valley of Susa, north-west Italy. Species studied were: red deer (Cervus elaphus), roe deer (Capreolus capreolus), wild boar (Sus scrofa) and chamois (Rupicapra rupicapra). A further goal was using virus neutralisation tests (VNT) for four strains of pestivirus in chamois and wild boar. Three hundred and seventy-five serum samples collected during the hunting season of 1999 were tested for pestivirus specific antibodies. Positive sera of chamois and wild boar were subsequently tested in a VNT with four major subtypes of pestivirus, and virus isolation was performed. No antibodies were found in the 73 samples of roe deer, while 7 (12.5%), 8 (5.9%) and 28 (25.5%) of 56, 136 and 110 samples of wild boar, red deer and chamois were ELISA-positive, respectively. Different ranges of titers were found in the VNT and no pestivirus was isolated in the ELISA-positive wild boar and chamois samples. Several possibilities, which might explain the high seroprevalence in chamois are discussed. Pestivirus antibodies were found in three out of four large alpine ungulates in the High Valley of Susa. Seroprevalence was particularly high in chamois. Further investigation is needed to characterise the pestiviruses that circulate in these animals.

  15. Performance changes during a weeklong high-altitude alpine ski-racing training camp in lowlander young athletes.

    Science.gov (United States)

    Hydren, Jay R; Kraemer, William J; Volek, Jeff S; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Hooper, David R; Denegar, Craig R; Maresh, Carl M

    2013-04-01

    Thousands of youth athletes travel to high altitude to participate in lift-access alpine sports. The purpose of this study was to examine the impact of acute high-altitude exposure on balance, choice reaction time, power, quickness, flexibility, strength endurance, and V[Combining Dot Above]O2max in youth lowlander athletes during a weeklong preseason training camp in Summit County, CO, USA. Eleven youth ski racers (4 boys and 7 girls; age, 13.7 ± 0.5 years; height, 157.2 ± 12.6 cm; weight, 52.4 ± 6.8 kg) with 7.7 ± 2.2 skiing years of experience participated in baseline testing at 160 m one week before the camp and a set of daily tests in the morning and afternoon at 2,828 m and skied between 3,328 and 3,802 m during a 6-day camp. Balance and choice reaction time tests were stagnant or improved slightly during the first 3 days and then improved on days 4 and 6. Vertical jump, flexibility, T-agility test, and push-ups in 1 minute improved on day 6. The number of sit-ups in 1 minute did not improve, and scores on the multistage fitness test decreased 20.34%. There was no effect of Lake Louise acute mountain sickness (AMS) questionnaire scores on performance variables measured. Athletes sojourning to high altitude for ski camps can train on immediate ascent but should slowly increase training volume over the first 3 days. Athletes should expect improvements in balance and reaction time 3-6 days into acclimatization. Coaches and athletes should expect about 20% of youth lowlander athletes to have signs and symptoms of AMS during the first 3 days of altitude exposure for alpine lift access sports at altitudes of up to 3,800 m.

  16. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment

    Energy Technology Data Exchange (ETDEWEB)

    Offenthaler, I. [Umweltbundesamt GmbH (Austria); Jakobi, G. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Kaiser, A. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Kirchner, M. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Kraeuchi, N. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Niedermoser, B. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Schramm, K.-W. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Sedivy, I. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Staudinger, M. [ZAMG-Zentralanstalt fuer Meteorologie und Geo-dynamik (Austria); Thanner, G.; Weiss, P. [Umweltbundesamt GmbH (Austria); Moche, W., E-mail: wolfgang.moche@umweltbundesamt.a [Umweltbundesamt GmbH (Austria)

    2009-12-15

    High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity. - Equipment for direction-specific air sampling and bulk deposition sampling in mountains was developed and tested.

  17. Analysis of a high-resolution regional climate simulation for Alpine temperature. Validation and influence of the NAO

    Energy Technology Data Exchange (ETDEWEB)

    Proemmel, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2008-11-06

    To determine whether the increase in resolution of climate models improves the representation of climate is a crucial topic in regional climate modelling. An improvement over coarser-scale models is expected especially in areas with complex orography or along coastlines. However, some studies have shown no clear added value for regional climate models. In this study a high-resolution regional climate model simulation performed with REMO over the period 1958-1998 is analysed for 2m temperature over the orographically complex European Alps and their surroundings called the Greater Alpine Region (GAR). The model setup is in hindcast mode meaning that the simulation is driven with perfect boundary conditions by the ERA40 reanalysis through prescribing the values at the lateral boundaries and spectral nudging of the large-scale wind field inside the model domain. The added value is analysed between the regional climate simulation with a resolution of 1/6 and the driving reanalysis with a resolution of 1.125 . Before analysing the added value both the REMO simulation and the ERA40 reanalysis are validated against different station datasets of monthly and daily mean 2m temperature. The largest dataset is the dense, homogenised and quality controlled HISTALP dataset covering the whole GAR, which gave the opportunity for the validation undertaken in this study. The temporal variability of temperature, as quantified by correlation, is well represented by both REMO and ERA40. However, both show considerable biases. The REMO bias reaches 3 K in summer in regions known to experience a problem with summer drying in a number of regional models. In winter the bias is strongly influenced by the choice of the temperature lapse rate, which is applied to compare grid box and station data at different altitudes, and has the strongest influence on inner Alpine subregions where the altitude differences are largest. By applying a constant lapse rate the REMO bias in winter in the high

  18. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  19. Alpine dams

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  20. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography

    Science.gov (United States)

    Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-04-01

    The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.

  1. Climate signal in d13C of wood lignin methoxyl groups from high-elevation alpine larch trees

    Science.gov (United States)

    Reichelmann, Dana; Greule, Markus; Treydte, Kerstin; Keppler, Frank; Esper, Jan

    2015-04-01

    Tree-rings of high alpine larch trees (Larix decidua) were investigated by a recently established method that measures d13C values of the wood lignin methoxyl groups (Greule et al. 2009). The resulting d13C time series were tested for their potential as a climate proxy. For this 37 larch trees were sampled at the tree line near Simplon Village (Southern Switzerland). They were analysed for their tree-ring width (TRW) and from five individuals d13C of the wood lignin methoxyl groups (d13Cmethoxyl) were measured at annual resolution from 1971-2009 and at pentadal resolution from 1747-2009. The d13Cmethoxyl chronologies were corrected for the anthropogenic change in atmospheric CO2 concentration and its decreasing d13C value. Further, the physiological response of the trees to these atmospheric changes was corrected using the flexible correction factor approach of Treydte et al. (2009), which minimise the residuals with the target climate data. This approach results in the highest so far reported correction factors of 0.032 - 0.036‰/ppmv CO2, which are explained by a low water-use efficiency of deciduous larch. The climate response of the new d13Cmethoxyl proxy shows a significant correlation of 0.75 for the annually and 0.87 for the pentadally resolved data with June to August temperatures. TRW shows also significant correlations with June to August temperatures, but they are lower than the correlations observed for the d13Cmethoxyl chronologies. These results indicate the potential of d13Cmethoxyl chronologies as a summer temperature proxy from high-elevation alpine trees with an even stronger signal than reported from earlier published tree-ring width and maximum latewood density temperature reconstructions. References: Greule, M., Mosandl, A., Hamilton, J.T.G., Keppler, F., 2009. A simple rapid method to precisely determine 13C/12C ratios of plant methoxyl groups. Rapid Communications in Mass Spectrometry, 23(11): 1710-1714. Treydte, K.S., Frank, D.C., Saurer, M

  2. Very high geothermal gradient in near surface of the Whataroa Valley adjacent to the Alpine Fault: topographic driving forces and permeable mountains

    Science.gov (United States)

    Upton, P.; Sutherland, R.; Townend, J.; Coussens, J.; Capova, L.

    2015-12-01

    The first phase of the Deep Fault Drilling Project (DFDP-1B) yielded a geothermal gradient of 62.6 ± 2.1 °C/km from a depth of 126 m where it intersected the Alpine Fault principal slip surface beneath Gaunt Creek (Sutherland et al. 2012). Ambient fluid pressures in DFDP-2B at Whataroa River were 8-10% above hydrostatic and a geothermal gradient of >130°C/km was determined, the geothermal gradient being considerably higher than we had predicted previously. 3D coupled thermal/fluid flow models have been generated of the Whataroa Valley and the DFDP-2 drill site. Modelling confirms that the following features, present in the Whataroa Valley, are a requirement for a geothermal gradient of >130°C/km at a depth of 1km beneath the valley; high topography, permeability on the order of 10-15 m2 in both the mountains and beneath the valleys to depths of > 1km below the valley floor, and abundant fluid. The high permeability and large topographic driving force leads to abundant meteoric water flowing downward through the mountains, hitting the permeability barrier of the Alpine Fault and being pushed upward into the valleys. The high geothermal gradient of the DFDP-2B borehole implies that the valleys also have a very high permeability which is likely a result of rock damage along the Alpine Fault.

  3. Bacterial GDGTs in Holocene sediments and catchment soils of a high Alpine lake: application of the MBT/CBT-paleothermometer

    Directory of Open Access Journals (Sweden)

    H. Niemann

    2012-05-01

    Full Text Available A novel proxy for continental mean annual air temperature (MAAT and soil pH, the MBT/CBT-paleothermometer, is based on the temperature (T and pH-dependent distribution of specific bacterial membrane lipids (branched glycerol dialkyl glycerol tetraethers – GDGTs in soil organic matter. Here, we tested the applicability of the MBT/CBT-paleothermometer to sediments from Lake Cadagno, a high Alpine lake in southern Switzerland with a small catchment of 2.4 km2. We analysed the distribution of bacterial GDGTs in catchment soils and in a radiocarbon-dated sediment core from the centre of the lake, covering the past 11 000 yr. The distribution of bacterial GDGTs in the catchment soils is very similar to that in the lake's surface sediments, indicating a common origin of the lipids. Consequently, their transfer from the soils into the sediment record seems undisturbed, probably without any significant alteration of their distribution through in situ production in the lake itself or early diagenesis of branched GDGTs. The MBT/CBT-inferred MAAT estimates from soils and surface sediments are in good agreement with instrumental values for the Lake Cadagno region (~0.5 °C. Moreover, downcore MBT/CBT-derived MAAT estimates match in timing and magnitude other proxy-based T reconstructions from nearby locations for the last two millennia. Major climate anomalies recorded by the MBT/CBT-paleothermometer are, for instance, the Little Ice Age (~14th to 19th century and the Medieval Warm Period (MWP, ~9th to 14th century. Together, our observations indicate the quantitative applicability of the MBT/CBT-paleothermometer to Lake Cadagno sediments. In addition to the MWP, our lacustrine paleo T record indicates Holocene warm phases at about 3, 5, 7 and 11 kyr before present, which agrees in timing with other records from both the Alps and the sub-polar North-East Atlantic Ocean. The good temporal match of the warm periods determined

  4. Alpine research today

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Brun

    2009-06-01

    Full Text Available Alpine research benefits from several international coordination networks, only one of which – ISCAR (the International Scientific Committee on Research in the Alps – works solely in the Alpine arc. The creation of ISCAR is a consequence of the input and involvement of various Alpine partners around the Alpine Convention. Alpine research now aims to promote an integrated vision of Alpine territories focusing on creating and maintaining spatial and temporal networks of sustainable relationships between humans and the other components of the ecosphere. It combines resource usage with conservation of the biological and cultural diversity that makes up the Alpine identity. This article aims to show: (1 how international Alpine research coordination is organised; (2 the role played by the Alpine Convention as a framework of reference for specifically Alpine research; and (3 the role that the ISCAR international commit-tee and the Interreg “Alpine Space” programmes play in uniting research around territorial challenges relating to biodiversity conservation and territorial development.La recherche sur les Alpes bénéficie de plusieurs réseaux de coordination internationaux dont un seul, le comité international recherche alpine (ISCAR, se consacre exclusivement à l’arc alpin. La création de l’ISCAR est une retombée de la mobilisation des divers partenaires alpins autour de la mise en place de la Convention alpine. Aujourd’hui, la recherche alpine vise à promouvoir une vision intégrée des territoires centrée sur la création et le maintien d’un réseau spatial et temporel de relations durables entre les hommes et les autres composantes de l’écosphère. Elle associe étroitement la mise en valeur des ressources et la conservation des diversités biologiques et culturelles qui constituent l’identité alpine. Cet article a pour ambition de montrer : (1 comment s’organise la coordination internationale des recherches sur les

  5. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France)

    Science.gov (United States)

    Vitale Brovarone, Alberto; Beyssac, Olivier; Malavieille, Jacques; Molli, Giancarlo; Beltrando, Marco; Compagnoni, Roberto

    2013-01-01

    Alpine Corsica consists of a stack of variably metamorphosed units of continental and Tethys-derived rocks. It represents an excellent example of high-pressure (HP) orogenic belt, such as the Western Alps, exposed over a small and accessible area. Compared to the Western Alps, the geology of Alpine Corsica is poorly unraveled. During the 1970s-80s, based on either lithostratigraphic or metamorphic field observations, various classifications of the belt have been proposed, but these classifications have been rarely matched together. Furthermore, through time, the internal complexity of large domains has been progressively left aside in the frame of large-scale geodynamic reconstructions. As a consequence, major open questions on the internal structure of the belt have remained unsolved. Apart from a few local studies, Alpine Corsica has not benefited of modern developments in petrology and basin research. This feature results in several uncertainties when combining lithostratigraphic and metamorphic patterns and, consequently, in the definition of an exhaustive architecture of the belt. In this paper we provide a review on the geology of Alpine Corsica, paying particular attention to the available lithostratigraphic and metamorphic classifications of the metamorphic terranes. These data are completed by a new and exhaustive metamorphic dataset obtained by means of thermometry based on Raman Spectroscopy of Carbonaceous Material (RSCM). This technique provides reliable insights on the peak temperature of the metamorphic history for CM-bearing metasediments. A detailed metamorphic characterization of metasediments, which have been previously largely ignored due to retrogression or to the lack of diagnostic mineralogy, is thus obtained and fruitfully coupled with the available lithostratigraphic data. Nine main tectono-metamorphic units are defined, from subgreenschist (ca. 280-300 °C) to the lawsonite-eclogite-facies (ca. 500-550 °C) condition. These units are

  6. High-performance simulation-based algorithms for an alpine ski racer’s trajectory optimization in heterogeneous computer systems

    Directory of Open Access Journals (Sweden)

    Dębski Roman

    2014-09-01

    Full Text Available Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with reference to the problem taken from alpine ski racing (the presented solution is probably the most general one published so far. The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous optimization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming to find an approximation of the global solution. In the analyzed example it is the minimum-time ski line, represented as a piecewise-linear function (a method of elimination of unfeasible solutions is proposed. Serial and parallel versions of the basic optimization algorithm are presented in detail (pseudo-code, time and memory complexity. Possible extensions of the basic algorithm are also described. The implementation of these algorithms is based on OpenCL. The included experimental results show that contemporary heterogeneous computers can be treated as μ-HPC platforms-they offer high performance (the best speedup was equal to 128 while remaining energy and cost efficient (which is crucial in embedded systems, e.g., trajectory planners of autonomous robots. The presented algorithms can be applied to many trajectory optimization problems, including those having a black-box represented performance measure

  7. Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport

    Directory of Open Access Journals (Sweden)

    C. Müller-Tautges

    2016-01-01

    Full Text Available Historic records of α-dicarbonyls (glyoxal, methylglyoxal, carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid, and ions (oxalate, formate, calcium were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12 in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs. The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.

  8. High Shedding Potential and Significant Individual Heterogeneity in Naturally-Infected Alpine ibex (Capra ibex With Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Sébastien Lambert

    2018-05-01

    Full Text Available Wildlife reservoirs of infectious diseases raise major management issues. In Europe, brucellosis has been eradicated in domestic ruminants from most countries and wild ruminants have not been considered important reservoirs so far. However, a high prevalence of Brucella melitensis infection has been recently identified in a French population of Alpine ibex (Capra ibex, after the emergence of brucellosis was confirmed in a dairy cattle farm and two human cases. This situation raised the need to identify the factors driving the persistence of Brucella infection at high prevalence levels in this ibex population. In the present paper, we studied the shedding pattern of B. melitensis in ibex from Bargy Massif, French Alps. Bacteriological examinations (1–15 tissues/samples per individual were performed on 88 seropositive, supposedly infected and euthanized individuals. Among them, 51 (58% showed at least one positive culture, including 45 ibex with at least one Brucella isolation from a urogenital sample or a lymph node in the pelvic area (active infection in organs in the pelvic area. Among these 45 ibex, 26 (30% of the total number of necropsied animals showed at least one positive culture for a urogenital organ and were considered as being at risk of shedding the bacteria at the time of capture. We observed significant heterogeneity between sex-and-age classes: seropositive females were most at risk to excrete Brucella before the age of 5 years, possibly corresponding to abortion during the first pregnancy following infection such as reported in the domestic ruminants. The high shedding potential observed in young females may have contributed to the self-sustained maintenance of infection in this population, whereas males are supposed to play a role of transmission between spatial units through venereal transmission during mating. This heterogeneity in the shedding potential of seropositive individuals should be considered in the future to

  9. Population demography of alpine butterflies: Boloria pales and Boloria napaea (Lepidoptera: Nymphalidae) and their specific adaptations to high mountain environments

    Science.gov (United States)

    Ehl, Stefan; Ebertshäuser, Marlene; Gros, Patrick; Schmitt, Thomas

    2017-11-01

    High mountain ecosystems are extreme habitats, and adaptation strategies to this ecosystem are still poorly understood in most groups. To unravel such strategies, we performed a MRR study in the Hohe Tauern National Park (Salzburg, Austria) with two nymphalid butterfly species, Boloria pales and B. napaea. We analysed their population structure over one flight period by studying the development of population size and wing wear. B. pales had more individuals and a higher survival probability than B. napaea; the sensitivity to extreme weather conditions or other external influences was higher in B. napaea. We only observed proterandry in B. pales. Imagines of both species survived under snow for at least some days. Additionally, we observed a kind of risk-spreading, in that individuals of both species, and especially B. pales, have regularly emerged throughout the flight period. This emergence pattern divided the population's age structure into three phases: an initial phase with decreasing wing quality (emergence > mortality), followed by an equilibrium phase with mostly constant average wing condition (emergence = mortality) and a final ageing phase with strongly deteriorating wing condition (mortality » emergence). Consequently, neither species would likely become extinct because of particularly unsuitable weather conditions during a single flight period. The observed differences between the two species suggest a better regional adaptation of B. pales, which is restricted to high mountain systems of Europe. In contrast, the arctic-alpine B. napaea might be best adapted to conditions in the Arctic and not the more southern high mountain systems. However, this needs to be examined during future research in the Arctic.

  10. Performance of complex snow cover descriptions in a distributed hydrological model system: A case study for the high Alpine terrain of the Berchtesgaden Alps.

    Science.gov (United States)

    Warscher, M; Strasser, U; Kraller, G; Marke, T; Franz, H; Kunstmann, H

    2013-05-01

    [1] Runoff generation in Alpine regions is typically affected by snow processes. Snow accumulation, storage, redistribution, and ablation control the availability of water. In this study, several robust parameterizations describing snow processes in Alpine environments were implemented in a fully distributed, physically based hydrological model. Snow cover development is simulated using different methods from a simple temperature index approach, followed by an energy balance scheme, to additionally accounting for gravitational and wind-driven lateral snow redistribution. Test site for the study is the Berchtesgaden National Park (Bavarian Alps, Germany) which is characterized by extreme topography and climate conditions. The performance of the model system in reproducing snow cover dynamics and resulting discharge generation is analyzed and validated via measurements of snow water equivalent and snow depth, satellite-based remote sensing data, and runoff gauge data. Model efficiency (the Nash-Sutcliffe coefficient) for simulated runoff increases from 0.57 to 0.68 in a high Alpine headwater catchment and from 0.62 to 0.64 in total with increasing snow model complexity. In particular, the results show that the introduction of the energy balance scheme reproduces daily fluctuations in the snowmelt rates that trace down to the channel stream. These daily cycles measured in snowmelt and resulting runoff rates could not be reproduced by using the temperature index approach. In addition, accounting for lateral snow transport changes the seasonal distribution of modeled snowmelt amounts, which leads to a higher accuracy in modeling runoff characteristics.

  11. Observations of fluorescent aerosol-cloud interactions in the free troposphere at the Sphinx high Alpine research station, Jungfraujoch

    Science.gov (United States)

    Crawford, I.; Lloyd, G.; Bower, K. N.; Connolly, P. J.; Flynn, M. J.; Kaye, P. H.; Choularton, T. W.; Gallagher, M. W.

    2015-09-01

    The fluorescent nature of aerosol at a high Alpine site was studied using a wide-band integrated bioaerosol (WIBS-4) single particle multi-channel ultra violet-light induced fluorescence (UV-LIF) spectrometer. This was supported by comprehensive cloud microphysics and meteorological measurements with the aims of cataloguing concentrations of bio-fluorescent aerosols at this high altitude site and also investigating possible influences of UV-fluorescent particle types on cloud-aerosol processes. Analysis of background free tropospheric air masses, using a total aerosol inlet, showed there to be a minor but statistically insignificant increase in the fluorescent aerosol fraction during in-cloud cases compared to out of cloud cases. The size dependence of the fluorescent aerosol fraction showed the larger aerosol to be more likely to be fluorescent with 80 % of 10 μm particles being fluorescent. Whilst the fluorescent particles were in the minority (NFl/NAll = 0.27±0.19), a new hierarchical agglomerative cluster analysis approach, Crawford et al. (2015) revealed the majority of the fluorescent aerosol were likely to be representative of fluorescent mineral dust. A minor episodic contribution from a cluster likely to be representative of primary biological aerosol particles (PBAP) was also observed with a wintertime baseline concentration of 0.1±0.4 L-1. Given the low concentration of this cluster and the typically low ice active fraction of studied PBAP (e.g. pseudomonas syringae) we suggest that the contribution to the observed ice crystal concentration at this location is not significant during the wintertime.

  12. High resolution forecast of heavy precipitation with Lokal Modell: analysis of two case studies in the Alpine area

    Directory of Open Access Journals (Sweden)

    M. Elementi

    2005-01-01

    Full Text Available Northern Italy is frequently affected by severe precipitation conditions often inducing flood events with associated loss of properties, damages and casualties. The capability of correctly forecast these events, strongly required for an efficient support to civil protection actions, is still nowadays a challenge. This difficulty is also related with the complex structure of the precipitation field in the Alpine area and, more generally, over the Italian territory. Recently a new generation of non-hydrostatic meteorological models, suitable to be used at very high spatial resolution, has been developed. In this paper the performance of the non-hydrostatic Lokal Modell developed by the COSMO Consortium, is analysed with regard to a couple of intense precipitation events occurred in the Piemonte region in Northern Italy. These events were selected among the reference cases of the Hydroptimet/INTERREG IIIB project. LM run at the operational resolution of 7km provides a good forecast of the general rain structure, with an unsatisfactory representation of the precipitation distribution across the mountain ranges. It is shown that the inclusion of the new prognostic equations for cloud ice, rain and snow produces a remarkable improvement, reducing the precipitation in the upwind side and extending the intense rainfall area to the downwind side. The unrealistic maxima are decreased towards observed values. The use of very high horizontal resolution (2.8 km improves the general shape of the precipitation field in the flat area of the Piemonte region but, keeping active the moist convection scheme, sparse and more intense rainfall peaks are produced. When convective precipitation is not parametrised but explicitly represented by the model, this negative effect is removed.

  13. Isotopic chemical weathering behaviour of Pb derived from a high-Alpine Holocene lake-sediment record

    Science.gov (United States)

    Gutjahr, Marcus; Süfke, Finn; Gilli, Adrian; Anselmetti, Flavio; Glur, Lukas; Eisenhauer, Anton

    2017-04-01

    Several studies assessing the chemical weathering systematics of Pb isotopes provided evidence for the incongruent release of Pb from source rocks during early stages of chemical weathering, resulting in runoff compositions more radiogenic (higher) than the bulk source-rock composition [e.g. 1]. Deep NW Atlantic seawater Pb isotope records covering the last glacial-interglacial transition further support these findings. Clear excursions towards highly radiogenic Pb isotopic input in the deep NW Atlantic seen during the early Holocene, hence after the large-scale retreat of the Laurentide Ice Sheet in North America, are interpreted to be controlled by preferential release of radiogenic Pb from U- and Th-rich mineral phases during early stages of chemical weathering that are less resistant to chemical dissolution than other rock-forming mineral phases [2-4]. To date, however, no terrestrial Pb isotope record exists that could corroborate the evidence from deep marine sites for efficient late deglacial weathering and washout of radiogenic Pb. We present a high-resolution adsorbed Pb isotope record from a sediment core retrieved from Alpine Lake Grimsel (1908 m.a.s.l.) in Switzerland, consisting of 117 Pb compositions over the past 10 kyr. This high-Alpine study area is ideally located for incipient and prolonged chemical weathering studies. The method used to extract the adsorbed lake Pb isotope signal is identical to previous marine approaches targeting the authigenic Fe-Mn oxyhydroxides fraction within the lake sediments [5, 6]. The Pb isotope compositions are further accompanied by various elemental ratios derived from the same samples that equally trace climatic boundary conditions in the Grimsel Lake area. The Pb isotopic composition recorded in Lake Grimsel is remarkably constant throughout the majority of the Holocene until ˜2.5 ka BP, despite variable sediment composition and -age, and isotopically relatively close to the signature of the granitic source rock

  14. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    J. Cozic

    2008-01-01

    Full Text Available The chemical composition of submicron (fine mode and supermicron (coarse mode aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants. In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC to particulate organic matter (OM was found in winter (February–March 2005. Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE than without SDE.

  15. Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza.

    Science.gov (United States)

    Haselwandter, K; Read, D J

    1980-04-01

    Types of root infection were analysed in healthy dominant and sub-dominant plants of zonal and azonal vegetation above the timberline in the Central and Northern Calcareous Alps of Austria. In the open nival zone vegetation, infection by fungi of the Rhizoctonia type was predominant, vesicular-arbuscular mycorrhizal infection, which was mostly of the fine endophyte (Glomus tenuis) type, being light and mainly restricted to grasses in closed vegetation patches. More extensive Glomus tenuis infection was found in the alpine grass heath, but in Carex, Rhizoctonia was again the most important fungus. The ericaceous plants of the dwarf shrub heath have typical ericoid infection, but quantitative analysis reveals a decrease of infection intensity with increase of altitude. The possible function of the various types of root infection are discussed, and the status of Rhizoctonia as a possible mycorrhizal fungus is considered.

  16. Analysis of relation between geomorphologic processes and alpine vegetation in the high mountain landscape (Tatry Mts.)

    International Nuclear Information System (INIS)

    Boltiziar, M.

    2003-01-01

    The aim was to present some information about starting of high mountains ecological monitoring and its first partial results. The research is focused on a long-term observation of vegetation changes (species composition, species spatial distribution) in relation to geomorphic processes and geo-relief attributes at meso- and micro-scale of landscape. We established in 2002 for this purpose six permanent plots (4 x 4 m) in the selected localities of High and Belianske Tatras Mts. (Author)

  17. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  18. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  19. Hygroscopic Properties and Chemical Composition of Aerosol Particles at the High Alpine Site Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Weingarter, E.; Gysel, M.; Sjoegren, S.; Baltesperger, U.; Alfarra, R.; Bower, K.; Coe, H.

    2004-03-01

    The hygroscopic properties of aerosols play a significant role in atmospheric phenomena such as acid deposition, visibility degradation and climate change. Due to the hygroscopic growth of the particles, water is often the dominant component of the ambient aerosol at high relative humidity (RH) conditions. The ability to absorb water depends on the particle chemical composition, dry size, and shape. The aim of this study is to link the chemical composition of the atmospheric aerosol to its hygroscopic properties. (author)

  20. Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

    Directory of Open Access Journals (Sweden)

    S. Sjogren

    2008-09-01

    Full Text Available Data from measurements of hygroscopic growth of submicrometer aerosol with a hygroscopicity tandem differential mobility analyzer (HTDMA during four campaigns at the high alpine research station Jungfraujoch, Switzerland, are presented. The campaigns took place during the years 2000, 2002, 2004 and 2005, each lasting approximately one month. Hygroscopic growth factors (GF, i.e. the relative change in particle diameter from dry diameter, D0, to diameter measured at higher relative humidity, RH are presented for three distinct air mass types, namely for: 1 free tropospheric winter conditions, 2 planetary boundary layer influenced air masses (during a summer period and 3 Saharan dust events (SDE. The GF values at 85% RH (D0=100 nm were 1.40±0.11 and 1.29±0.08 for the first two situations while for SDE a bimodal GF distribution was often found. No phase changes were observed when the RH was varied between 10–90%, and the continuous water uptake could be well described with a single-parameter empirical model. The frequency distributions of the average hygroscopic growth factors and the width of the retrieved growth factor distributions (indicating whether the aerosol is internally or externally mixed are presented, which can be used for modeling purposes.

    Measurements of size resolved chemical composition were performed with an aerosol mass spectrometer in parallel to the GF measurements. This made it possible to estimate the apparent ensemble mean GF of the organics (GForg using inverse ZSR (Zdanovskii-Stokes-Robinson modeling. GForg was found to be ~1.20 at aw=0.85, which is at the upper end of previous laboratory and field data though still in agreement with the highly aged and oxidized nature of the Jungfraujoch aerosol.

  1. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    Science.gov (United States)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  2. Causes and effects of long periods of ice cover on a remote high Alpine lake

    Directory of Open Access Journals (Sweden)

    Michael STURM

    2000-09-01

    Full Text Available The response of the physical and chemical limnology of Hagelseewli (2339 m a.s.l. to local meteorological forcing was investigated from 1996 to 1998 using an automatic weather station, thermistor chains, water samples and sediment traps. On-site meteorological measurements revealed the paramount importance of local topographic shading for the limnology of the lake. A high cliff to the south diminishes incident radiation by 15% to 90%, resulting in a long period of ice cover. Hence, the spring and summer seasons are extremely condensed, allowing only about 2 months per year for mixing, oxygen uptake, nutrient inflow, water exchange and phytoplankton growth. Regular measurements of water temperature, chemistry and diatom composition show that Hagelseewli responds very rapidly to changes in nutrient concentrations and light conditions. This response is restricted mainly to an extremely short productivity pulse, which takes place as soon as the lake is completely free of ice. Ice-free conditions are indicated by the occurrence of planktonic diatoms. In contrast to most low-altitude lakes, maximum productivity occurs in the middle of the water column (6-9 m, where first light, and then soluble reactive phosphorus (SRP, are the limiting factors. During the period of thawing, large amounts of ammonium enter the lake. Nevertheless, allochthonous nutrient input is not important because SRP, the limiting nutrient for algal growth, originates from the sediments. Water chemistry data and data from sediment traps show that, although autochthonous calcite precipitation does occur, the calcite crystals are redissolved completely in the bottom waters during the extended period of ice cover. Thus, the most important factor for changes in the nutrient budget, primary production and preservation of calcite is the bottom water oxygen status, which is governed by the occurrence of an ice-free period. We hypothesise that the duration of the ice-free period is of

  3. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  4. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  5. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Science.gov (United States)

    Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan

    2014-01-01

    Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  6. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula

    Science.gov (United States)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott

    2017-04-01

    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  7. Simulation of Wind-Driven Snow Redistribution at a High-Elevation Alpine Site Using a Meso-Scale Atmospheric Model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2012-12-01

    In alpine regions, blowing snow events strongly influence the temporal and spatial evolution of the snow depth distribution throughout the winter season. We recently developed a new simulation system to gain understanding on the complex processes that drive the redistribution of snow by the wind in complex terrain. This new system couples directly the detailed snow-pack model Crocus with the meso-scale atmospheric model Meso-NH. A blowing snow scheme allows Meso-NH to simulate the transport of snow particles in the atmosphere. We used the coupled system to study a blowing snow event with snowfall that occurred in February 2011 in the Grandes Rousses range (French Alps). Three nested domains at an horizontal resolution of 450, 150 and 50 m allow the model to simulate the complex 3D precipitation and wind fields around our experimental site (2720 m a.s.l.) during this 22-hour event. Wind-induced snow transport is activated over the domains of higher resolution (150 and 50 m). We firstly assessed the ability of the model to reproduce atmospheric flows at high resolution in alpine terrain using a large dataset of observations (meteorological data, vertical profile of wind speed). Simulated blowing snow fluxes are then compared with measurements from SPC and mechanical snow traps. Finally a map of snow erosion and accumulation produced by Terrestrial Laser measurements allows to evaluate the quality of the simulated snow depth redistribution.

  8. Late Pleistocene and Holocene paleoclimate and alpine glacier fluctuations recorded by high-resolution grain-size data from an alpine lake sediment core, Wind River Range, Wyoming, USA

    Science.gov (United States)

    Thompson Davis, P.; Machalett, Björn; Gosse, John

    2013-04-01

    Varved lake sediments, which provide ideal high-resolution climate proxies, are not commonly available in many geographic areas over long time scales. This paper utilizes high-resolution grain-size analyses (n = 1040) from a 520-cm long sediment core from Lower Titcomb Lake (LTL), which lies just outside the type Titcomb Basin (TTB) moraines in the Wind River Range, Wyoming. The TTB moraines lie between Lower Titcomb Lake and Upper Titcomb Lake (UTL), about 3 km beyond, and 200 m lower than the modern glacier margin and Gannett Peak (Little Ice Age) moraines in the basin. Based on cosmogenic exposure dating, the TTB moraines are believed to be Younger Dryas (YD) age (Gosse et al., 1995) and lie in a geomorphic position similar to several other outer cirque moraines throughout the western American Cordillera. Until recently, many of these outer cirque moraines were believed to be Neoglacial age. The sediment core discussed here is one of five obtained from the two Titcomb Lakes, but is by the far the longest with the oldest sediment depositional record. Two AMS radiocarbon ages from the 445- and 455-cm core depths (about 2% loss on ignition, LOI) suggest that the lake basin may have been ice-free as early as 16.1 or even 16.8 cal 14C kyr, consistent with 10Be and 26Al exposure ages from boulders and bedrock surfaces outside the TTB moraines. The 257-cm depth in the core marks an abrupt transition from inorganic, sticky gray silt below (rock flour production between the 257 and 466 cm core depths appear to be roughly correlative with the YD-Alleröd-Bölling-Meiendorf-Heinrich 1 climate events recognized in other terrestrial records and Northern Atlantic Ocean marine cores, but provide much higher resolution than most of those records from a climate-sensitive alpine region in North America.

  9. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    Science.gov (United States)

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p free weights.

  10. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  11. Instability of a highly vulnerable high alpine rock ridge: the lower Arête des Cosmiques (Mont Blanc massif, France)

    Science.gov (United States)

    Ravanel, L.; Deline, P.; Lambiel, C.; Vincent, C.

    2012-04-01

    Glacier retreat and permafrost degradation are actually more and more thought to explain the increasing instability of rock slopes and rock ridges in high mountain environments. Hot summers with numerous rockfalls we experienced over the last two decades in the Alps have indeed contributed to test/strengthen the hypothesis of a strong correlation between rockfalls and global warming through these two cryospheric factors. Rockfalls from recently deglaciated and/or thawing areas may have very important economic and social implications for high mountain infrastructures and be a fatal hazard for mountaineers. At high mountain sites characterized by infrastructures that can be affected by rockfalls, the monitoring of rock slopes, permafrost and glaciers is thus an essential element for the sustainability of the infrastructure and for the knowledge/management of risks. Our study focuses on a particularly active area of the Mont Blanc massif (France), the lower Arête des Cosmiques, on which is located the very popular Refuge des Cosmiques (3613 m a.s.l.). Since 1998, when a rockfall threatened a part of the refuge and forced to major stabilizing works, observations allowed to identify 10 detachments (20 m3 to > 1000 m3), especially on the SE face of the ridge. Since 2009, this face is yearly surveyed by terrestrial laser scanning to obtain high-resolution 3D models. Their diachronic comparison gives precise measurements of the evolution of the rock slope. Eight rock detachments have thus been documented (0.7 m3 to 256.2 m3). Rock temperature measurements at the ridge and the close Aiguille du Midi (3842 m a.s.l.), and observations of the evolution of the underlying Glacier du Géant have enable to better understand the origin of the strong dynamics of this highly vulnerable area: (i) rock temperature data suggest the presence of warm permafrost (i.e. close to 0°C) from the first meters to depth in the SE face, and cold permafrost in the NW face; (ii) as suggested by the

  12. Inventory of the Alpine Flora of Haramosh and Bagrote Valleys (Karakoram Range) District Gilgit, Gilgit-Baltistan, Pakistan

    International Nuclear Information System (INIS)

    Khan, S. W.; Abbas, Q.; Khatoon, S.; Raza, G.; Hussain, A.

    2016-01-01

    Inventorying of plant biodiversity of Haramosh and Bugrote valleys (District Gilgit, Gilgit-Baltistan, Pakistan) was done for fourteen years from 2001- 2014. The fourteen years inventorying revealed a rich plant biodiversity consisting of 232 species belonging to 106 genera and 34 families of flowering plants. The Alpine zone had 18 genera with 4 or more species; Pedicularis with 10 species was the largest genus of this zone, followed by Potentilla and Carex (each with 9 species) and Draba (8 species). Genera containing 9 or 10 species occurred only in Alpine zone. In the Alpine zone, 15 of the larger families were represented by 189 species, forming 81.46 percent of the Alpine flora. Although the highest number of species belonging to these larger families was present in the subalpine zone, but in terms of percentage their contribution was the highest in the Alpine flora. Percentage-wise the contribution of these families gradually increased from Desert zone to Alpine zone, because of their particular distribution patterns. Although the total number of species was the highest in the Subalpine zone, but in the species specific to any one zone, the Alpine zone had the highest number, that is, 96 of the total 232 species of Alpine zone were exclusively found in this zone only. Out of these 96 species specific to the Alpine zone, 53 belonged to such 22 genera that were exclusively found in the Alpine zone only. The Alpine zone was characterized by herbs and low shrubs, with Potentilla species as the dominants. A clear trend of migration of certain species both from lower to higher latitudes and altitudes was observed. The species richness index of Alpine zone however showed increasing trend probably due to species migrations towards the alpine zone. The major threats to the plant biodiversity were recognized as the deforestation and habitat loss due to over-exploitation of species, over-grazing by livestock, and climate changes due to global warming, which were

  13. Area burned in alpine treeline ecotones reflects region-wide trends

    Science.gov (United States)

    C. Alina Cansler; Donald McKenzie; Charles B. Halpern

    2016-01-01

    The direct effects of climate change on alpine treeline ecotones – the transition zones between subalpine forest and non-forested alpine vegetation – have been studied extensively, but climate-induced changes in disturbance regimes have received less attention. To determine if recent increases in area burned extend to these higher-elevation landscapes, we analysed...

  14. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings

    Science.gov (United States)

    Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.

    2017-12-01

    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration

  15. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  16. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China

    Directory of Open Access Journals (Sweden)

    Yun Jia

    2017-07-01

    Full Text Available The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygium franchetii (Notopterygium, Apiaceae are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii. In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant–pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence

  17. [Progresses of alpine treeline formation mechanism.

    Science.gov (United States)

    Cong, Yu; He, Hong Shi; Gu, Xiao Nan; Xu, Wen Ru; Liu, Kai; Zong, Sheng Wei; Du, Hai Bo

    2016-09-01

    Alpine treelines represent one of the most distinct vegetation boundaries between canopy closed montane forest and treeless alpine vegetation. This transitional ecotone is highly sensitive to global and regional climate change and is considered as an ideal indicator of such changes. Treeline studies have evolved from morphological description to various hypotheses of treeline formation. Although individual hypothesis may provide reasonable explanation locally, a generalized hypothesis that is applicable on the global scale is still lacking. Temperature is considered the limited factor controlling the distribution of alpine treeline as low temperature restricts biochemical processes of tree growth. However, which particular biochemical processes are affected by low temperature remains unknown. This paper summarized the mechanisms of treeline formation with a focus on how low temperature affects photosynthesis characteristics, nutrient characteristics, non-structural carbohydrate (NSC) and antioxidant system. We also reviewed the key issues and future perspectives in treeline research.

  18. Denuded zone in Czochralski silicon wafer with high carbon content

    International Nuclear Information System (INIS)

    Chen Jiahe; Yang Deren; Ma Xiangyang; Que Duanlin

    2006-01-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 deg. C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 deg. C. Also, the DZs above 15 μm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits

  19. Denuded zone in Czochralski silicon wafer with high carbon content

    Science.gov (United States)

    Chen, Jiahe; Yang, Deren; Ma, Xiangyang; Que, Duanlin

    2006-12-01

    The thermal stability of the denuded zone (DZ) created by high-low-high-temperature annealing in high carbon content (H[C]) and low carbon content (L[C]) Czochralski silicon (Cz-Si) has been investigated in a subsequent ramping and isothermal 1050 °C annealing. The tiny oxygen precipitates which might occur in the DZ were checked. It was found in the L[C] Cz-Si that the DZ shrank and the density of bulk micro-defects (BMDs) reduced with the increase of time spent at 1050 °C. Also, the DZs above 15 µm of thickness present in the H[C] Cz-Si wafers continuously and the density and total volume of BMDs first decreased then increased and finally decreased again during the treatments. Moreover, tiny oxygen precipitates were hardly generated inside the DZs, indicating that H[C] Cz-Si wafers could support the fabrication of integrated circuits.

  20. Integrating the EMPD with an Alpine altitudinal training set to reconstruct climate variables in Holocene pollen records from high-altitude peat bogs

    Science.gov (United States)

    Furlanetto, Giulia; Badino, Federica; Brunetti, Michele; Champvillair, Elena; De Amicis, Mattia; Maggi, Valter; Pini, Roberta; Ravazzi, Cesare; Vallé, Francesca

    2016-04-01

    Temperatures and precipitation are the main environmental factors influencing vegetation and pollen production. Knowing the modern climate optima and tolerances of those plants represented in fossil assemblages and assuming that the relationships between plants and climate in the past are not dissimilar from the modern ones, fossil pollen records offer many descriptors to reconstruct past climate variables. The aim of our work is to investigate the potential of high-altitude pollen records from an Alpine peat bog (TBValter, close to the Ruitor Glacier, Western Italian Alps) for quantitative paleoclimate estimates. The idea behind is that high-altitude ecosystems are more sensitive to climate changes, especially to changes in July temperatures that severely affect the timberline ecotone. Meantime, we met with difficulties when considering the factors involved in pollen dispersal over a complex altitudinal mountain pattern, such as the Alps. We used the EMPD-European Modern Pollen Database (Davis et al., 2013) as modern training set to be compared with our high-altitude fossil site. The EMPD dataset is valuable in that it provides a large geographic coverage of main ecological and climate gradients (at sub-continental scale) but lacks in sampling of altitudinal gradients and high-altitude sites in the Alps. We therefore designed an independent altitudinal training set for the alpine valley hosting our fossil site. 27 sampling plots were selected along a 1700m-elevational transect. In a first step, each plot was provided with (i) 3 moss polsters collected following the guidelines provided by Cañellas-Boltà et al. (2009) and analyzed separately to account for differences in pollen deposition at small scale, (ii) morphometrical parameters obtained through a high-resolution DEM, and (iii) temperature and precipitation were estimated by means of weighted linear regression of the meteorological variable versus elevation, locally evaluated for each site (Brunetti et al

  1. Highly oxidising fluids generated during serpentinite breakdown in subduction zones.

    Science.gov (United States)

    Debret, B; Sverjensky, D A

    2017-09-04

    Subduction zones facilitate chemical exchanges between Earth's deep interior and volcanism that affects habitability of the surface environment. Lavas erupted at subduction zones are oxidized and release volatile species. These features may reflect a modification of the oxidation state of the sub-arc mantle by hydrous, oxidizing sulfate and/or carbonate-bearing fluids derived from subducting slabs. But the reason that the fluids are oxidizing has been unclear. Here we use theoretical chemical mass transfer calculations to predict the redox state of fluids generated during serpentinite dehydration. Specifically, the breakdown of antigorite to olivine, enstatite, and chlorite generates fluids with high oxygen fugacities, close to the hematite-magnetite buffer, that can contain significant amounts of sulfate. The migration of these fluids from the slab to the mantle wedge could therefore provide the oxidized source for the genesis of primary arc magmas that release gases to the atmosphere during volcanism. Our results also show that the evolution of oxygen fugacity in serpentinite during subduction is sensitive to the amount of sulfides and potentially metal alloys in bulk rock, possibly producing redox heterogeneities in subducting slabs.

  2. The potential for retreating alpine glaciers to alter alpine ecosystems in the Colorado Front Range

    Science.gov (United States)

    Hall, E.; Baron, J.

    2013-12-01

    Glaciers are retreating at an unprecedented rate. In mid-latitude alpine ecosystems the presence of glaciers and rock glaciers govern rates and ecology of alpine and sub-alpine ecosystems. Changes in the thermal environment due to the loss of isothermal habitat and inputs from glacier melt chemistry are altering alpine ecosystems in unpredictable ways. In particular, glacier may be a source of nitrogen that is altering alpine ecosystem dynamics. Loch Vale Watershed (LVWS) located within Rocky Mountain National Park. LVWS contains a surface glacier (Andrew's glacier) and a rock glacier (Taylor's glacier) at the headwater of each of the two drainages within the watershed. We collected precipitation from a National Atmospheric Deposition Site and surface water from multiple alpine lakes and streams during a particularly high and low snow year in the Colorado Front Range. We also sampled stream and lake sediments at each site to analyze the associated microbial community. Concentrations of nitrate and ammonium, relative abundance of amoA (the gene responsible for a key step in the microbial nitrification pathway), and the dual isotope signal to nitrate all point to snow melt as a key deliverer of nitrogen to ecosystems along the Colorado Front Range. However, late summer surface water chemistry is isotopically similar to the chemistry of glacial ice. This suggests that retreating glacier may be an additional source of N to alpine ecosystems and have the potential to alter microbial community composition, biogeochemical rate processes, and ecosystem function. These dynamics are most likely not unique to the Colorado Front Range and should be globally distributed as glaciers continue to retreat in high altitude ecosystems around the world.

  3. High-gain bipolar detector on float-zone silicon

    Science.gov (United States)

    Han, D. J.; Batignani, G.; Del Guerra, A.; Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Giorgi, M.; Forti, F.

    2003-10-01

    Since the float-zone (FZ) silicon has lower contaminations and longer minority-carrier lifetime than those in Czochralski silicon and other semiconductor materials, it has potential advantages to fabricate bipolar detectors on the high-purity FZ silicon substrate to achieve a high gain at ultra-low-signal levels. The authors present preliminary experimental results on a bipolar detector fabricated on an unusual high-purity FZ silicon substrate. A backside gettering layer of phosphorus-doped polysilicon was employed to preserve the long carrier lifetime of the high-purity FZ silicon. The device has been investigated in the detection of a continuous flux of X-ray and infrared light. The bipolar detector with a circular emitter of 2 mm diameter has demonstrated high gains up to 3820 for 22 keV X-ray from a 1 mCi Cd radioactive source (the X-ray photon flux, received by the detector is estimated to be ˜7.77×10 4/s). High gain up to 4400 for 0.17 nW light with a wavelength of 0.83 μm has been observed for the same device.

  4. High-gain bipolar detector on float-zone silicon

    International Nuclear Information System (INIS)

    Han, D.J.; Batignani, G.; Guerra, A.D.A. Del; Dalla Betta, G.-F.; Boscardin, M.; Bosisio, L.; Giorgi, M.; Forti, F.

    2003-01-01

    Since the float-zone (FZ) silicon has lower contaminations and longer minority-carrier lifetime than those in Czochralski silicon and other semiconductor materials, it has potential advantages to fabricate bipolar detectors on the high-purity FZ silicon substrate to achieve a high gain at ultra-low-signal levels. The authors present preliminary experimental results on a bipolar detector fabricated on an unusual high-purity FZ silicon substrate. A backside gettering layer of phosphorus-doped polysilicon was employed to preserve the long carrier lifetime of the high-purity FZ silicon. The device has been investigated in the detection of a continuous flux of X-ray and infrared light. The bipolar detector with a circular emitter of 2 mm diameter has demonstrated high gains up to 3820 for 22 keV X-ray from a 1 mCi Cd radioactive source (the X-ray photon flux, received by the detector is estimated to be ∼7.77x10 4 /s). High gain up to 4400 for 0.17 nW light with a wavelength of 0.83 μm has been observed for the same device

  5. Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes

    Directory of Open Access Journals (Sweden)

    V. R. Després

    2007-12-01

    Full Text Available This study explores the applicability of DNA analyses for the characterization of primary biogenic aerosol (PBA particles in the atmosphere. Samples of fine particulate matter (PM2.5 and total suspended particulates (TSP have been collected on different types of filter materials at urban, rural, and high-alpine locations along an altitude transect in the south of Germany (Munich, Hohenpeissenberg, Mt. Zugspitze.

    From filter segments loaded with about one milligram of air particulate matter, DNA could be extracted and DNA sequences could be determined for bacteria, fungi, plants and animals. Sequence analyses were used to determine the identity of biological organisms, and terminal restriction fragment length polymorphism analyses (T-RFLP were applied to estimate diversities and relative abundances of bacteria. Investigations of blank and background samples showed that filter materials have to be decontaminated prior to use, and that the sampling and handling procedures have to be carefully controlled to avoid artifacts in the analyses.

    Mass fractions of DNA in PM2.5 were found to be around 0.05% in urban, rural, and high-alpine aerosols. The average concentration of DNA determined for urban air was on the order of ~7 ng m−3, indicating that human adults may inhale about one microgram of DNA per day (corresponding to ~108 haploid bacterial genomes or ~105 haploid human genomes, respectively.

    Most of the bacterial sequences found in PM2.5 were from Proteobacteria (42 and some from Actinobacteria (10 and Firmicutes (1. The fungal sequences were characteristic for Ascomycota (3 and Basidiomycota (1, which are known to actively discharge spores into the atmosphere. The plant sequences could be attributed to green plants (2 and moss spores (2, while animal DNA was found only for one unicellular eukaryote (protist.

  6. Halogenated greenhouse gases at the Swiss High Alpine Site of Jungfraujoch (3580 m asl): Continuous measurements and their use for regional European source allocation

    Science.gov (United States)

    Reimann, Stefan; Schaub, Daniel; Stemmler, Konrad; Folini, Doris; Hill, Matthias; Hofer, Peter; Buchmann, Brigitte; Simmonds, Peter G.; Greally, Brian R.; O'Doherty, Simon

    2004-03-01

    At the high Alpine site of Jungfraujoch (3580 m asl), 23 halogenated greenhouse gases are measured quasi-continuously by gas chromatography-mass spectrometry (GCMS). Measurement data from the years 2000-2002 are analyzed for trends and pollution events. Concentrations of the halogenated trace gases, which are already controlled in industrialized countries by the Montreal Protocol (e.g., CFCs) were at least stable or declining. Positive trends in the background concentrations were observed for substances which are used as CFC-substitutes (hydrofluorocarbons, hydrochlorofluorocarbons). Background concentrations of the hydrofluorocarbons at the Jungfraujoch increased from January 2000 until December 2002 as follows: HFC 134a (CF3CH2F) from 15 to 27 ppt, HFC 125 (CF3CHF2) from 1.4 to 2.8 ppt, and HFC 152a (CHF2CH3) from 2.3 to 3.2 ppt. For HFC 152a, a distinct increase of its concentration magnitude during pollution events was observed from 2000 to 2002, indicating rising European emissions for this compound. Background concentrations of all measured compounds were in good agreement with similar measurements at Mace Head, Ireland. On the other hand, peak concentrations were significantly higher at the Jungfraujoch. This finding is due to the proximity to potent European sources, foremost in southern Europe. The average ratio of halocarbons versus carbon monoxide (CO) concentrations above their baseline values was used to estimate source strengths for the part of Europe which most influences the Jungfraujoch during pollution events. HFCs emission estimates from Jungfraujoch tend to be higher than figures at Mace Head (Ireland) from the end of the 1990s, which either reflects the increased use of these compounds or the closer location of Jungfraujoch to major southern European sources. Transport of polluted European boundary layer air masses to the high Alpine site was observed especially during frontal passages, foehn events, and thermal lifting of air masses in summer

  7. Le tourisme alpin

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier, la multiplication d’infrastructures et l’extension des domaines. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Puis il propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui les accompagnent souvent. Dans la plupart des cas l’innovation est le résultat d’un processus qui a été lancé et qui s’est développé au sein de la communauté alpine, souvent favorisé et soutenu par des institutions nationales et internationales, et grâce auquel les difficultés structurelles qui ont déjà été abordées précédemment ont pu être surmontées avec succès.The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine

  8. Characterisation of alpine skis

    OpenAIRE

    Wikerman, Fredrik

    2016-01-01

    Skiing is a fast and competitive sport where skiers must push their performance limit to win medals, the di↵erence can be within hundreds of a second. Therefore, technical improvements are essential for assisting in the skier’s improvement. This thesis project is a joint project between KTH and the Swedish Ski Association and Swedish Ski Team with the purpose of obtaining a better understanding of the structural properties of alpine skis, aiming to improve the individual selection process of ...

  9. How cushion communities are maintained in alpine ecosystems: A review and case study on alpine cushion plant reproduction

    Directory of Open Access Journals (Sweden)

    Jianguo Chen

    2017-08-01

    Full Text Available Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive strategies responsible for cushion species reproductive success and maintenance in severe alpine habitats remain largely unclear. In this study, we reviewed the current understanding of reproductive strategies and population persistence in alpine cushion species. We then present a preliminary case study on the sexual reproduction of Arenaria polytrichoides (Caryophyllaceae, a typical cushion species inhabiting high elevations of the Himalaya Hengduan Mountains, which is a hotspot for diversification of cushion species. Finally, we highlight the limitations of our current understanding of alpine cushion species reproduction and propose future directions for study.

  10. Experimental demonstration of producing high resolution zone plates by spatial-frequency multiplication

    International Nuclear Information System (INIS)

    Yun, W.B.; Howells, M.R.

    1987-01-01

    In an earlier publication, the possibility of producing high resolution zone plates for x-ray applications by spatial-frequency multiplication was analyzed theoretically. The theory predicted that for a daughter zone plate generated from the interference of mth and nth diffraction orders of a parent zone plate, its primary focal spot size and focal length are one (m + n)th of their counterparts of the parent zone plate, respectively. It was also shown that a zone plate with the outermost zone width of as small as 13.8 nm might be produced by this technique. In this paper, we report an experiment which we carried out with laser light (λ = 4166A) for demonstrating this technique. In addition, an outlook for producing high resolution zone plates for x-ray application is briefly discussed

  11. The onset of alpine pastoral systems in the Eastern Alps

    Science.gov (United States)

    Oeggl, Klaus; Festi, Daniela; Putzer, Andreas

    2015-04-01

    Since the discovery of the Neolithic glacier mummy "Ötzi" in the nival belt of the main Alpine ridge, the onset of alpine pasture is matter of a highly controversial debate both in archaeology and in palaeo-ecology of the Eastern Alps. The implication is that his sojourn in the high-altitudes of the Alps is considered to be connected with pastoral nomadism. Regrettably any archaeological evidence for the existence of such Neolithic alpine pastoral systems is missing up to now and the assumption is based on palynological data only. However, also the palynological record is ambiguous, because pasture indicators in the alpine regions react positive on grazing as well as on fertilization induced by a higher runoff of precipitation. Thus alpine pasture indicators reflect both grazing pressure and climatic change. Anyhow, alpine pastoral systems are a common practice in Alpine animal husbandry, but from an economic point of view such a seasonal vertical transhumance is costly. There are three main reasons for its practice: i) climatic, ii) economic (mainly in connection with population pressure or mining activities), and iii) cultural ideology. In this study we tested the above mentioned reasons in an interdisciplinary study on the beginning of pastoral activities in high altitudes in the central part of the Eastern Alps. This is conducted by palynological analyses of peat deposits situated in the vicinity of the timberline (1600 - 2400 m a.s.l.) combined with archaeological surveys. The investigated sites are located in traditional Alpine transhumance regions and aligned on a transect through the central part of the Eastern Alps. The studies reveal that grazing pressure is reflected since the Bronze Age, which is corroborated by archaeological findings in the vicinity of the investigated sites.

  12. Anterior cruciate ligament injury/reinjury in alpine ski racing

    DEFF Research Database (Denmark)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases...... were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers) were found to be at high risk for knee injuries...... injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness). While skiers seem to make a successful...

  13. HIGH RISK ZONES ON FLOODS AND LANDSLIDES DISASTERS IN RWANDA

    Directory of Open Access Journals (Sweden)

    Nsengiyumva J.ean Baptiste

    2014-01-01

    Full Text Available Disaster risk management as an issue at stake worldwide shifts its emphases from post disaster to pre-disaster phases. Management activities required in pre-disaster phases, such as risk assessment, hazard identification, preparedness or preventive and mitigation measures needs detailed information about hazard characteristics, social, economic, structural vulnerability and capacity. That information is not usually available in many different countries, as it is the case in Rwanda. Based on the international experiences and practices, knowledge of disaster prone areas can be assumed as an alternative for detailed information acquisition, thus contributing to effective disaster risk management. Identification of disaster higher risk zones on floods and landslides, can lead to better understanding of disaster risk and putting in place measures for risk reduction. Consequently, as Rwanda is prone to natural hazards with lack of adequate information that is essential for effective disaster risk management, due to limited scientific researches; this study aims to address that gap. The results revealed that some areas of the North-Western parts of Rwanda are highly prone to floods and landslides, namely Burera, Musanze, Rulindo, Nyabihu, Ngororero and Rubavu Districts. This is aggravated by some triggering factors such as steep slopes, soil types, heavy rains, landuse Practices and others. Intensity and frequency of disaster events vary from district to district and this geographical dispersal confirms the non-spatial clustering (as confirmed by Moran’s I analysis of risks due to uneven level of Disaster vulnerabilities, coping capacities and available hazards whereby lack of normal distribution of hazards all over all Districts.

  14. A highly attennuative zone beneath the Tokyo Metropolitan area.

    Science.gov (United States)

    Panayotopoulos, Y.; Hirata, N.; Sakai, S.; Nakagawa, S.; Kasahara, K.

    2014-12-01

    The intensities of seismic waves observed at the dense seismic array of the Tokyo Metropolitan Seismic Observation network (MeSO-net) inside the Kanto basin, display unusual distribution patterns. In several occasions, the highest intensities are not observed in the area above an earthquakes hypocenter but appear sifted more than 20 km away. In order to understand the source of this unusual intensity distribution pattern, it is crucial to understand how the waves attenuate before they reach the surface. The attenuation of seismic waves along their path is represented by the t∗ attenuation operator that can be obtained by fitting the observed seismic wave spectrum to a theoretical spectrum using an ω2 model. In order to create a high quality dataset, only 1449 earthquakes that are recorded with intensity greater than 0 in the Japan Meteorological Agency (JMA) intensity scale are selected from the JMA unified earthquake list from April 1st 2008 to October 2nd 2013. A grid search method is applied to determine the t∗ values by matching the observed and theoretical spectra. The t∗ data where then inverted to estimate a 3D Q structure with grid points set at a 10 km spacing. We implemented the 3D velocity model estimated by Nakagawa et al., 2012 and in addition we set the initial Q values at 100 for the 0 km grids and to 400 for the grids below them. The obtained model suggests average Q values of 50˜100 inside the Kanto basin. Furthermore, a low Q zone is observed in the area where the Philippine Sea plate meets the upper part of the Pacific sea plate. This area is located at approximately 40 km depth, beneath the north-east Tokyo and west Chiba prefectures and is represented by Q values Earthquakes occurring on the Pacific plate pass through this low Q area inside the Philippine sea plate and are attenuated significantly. The estimated attenuation distribution at the MeSO-net station for these earthquakes implementing our 3D Q model greatly coincides with the

  15. Participative Spatial Scenario Analysis for Alpine Ecosystems

    Science.gov (United States)

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  16. Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    E. Hammer

    2015-09-01

    Full Text Available Aerosol radiative forcing estimates suffer from large uncertainties as a result of insufficient understanding of aerosol–cloud interactions. The main source of these uncertainties is dynamical processes such as turbulence and entrainment but also key aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, the composition. From June to August 2011 a Cloud and Aerosol Characterization Experiment (CLACE2011 was performed at the high-alpine research station Jungfraujoch (Switzerland, 3580 m a.s.l. focusing on the activation of aerosol to form liquid-phase clouds (in the cloud base temperature range of −8 to 5 °C. With a box model the sensitivity of the effective peak supersaturation (SSpeak, an important parameter for cloud activation, to key aerosol and dynamical parameters was investigated. The updraft velocity, which defines the cooling rate of an air parcel, was found to have the greatest influence on SSpeak. Small-scale variations in the cooling rate with large amplitudes can significantly alter CCN activation. Thus, an accurate knowledge of the air parcel history is required to estimate SSpeak. The results show that the cloud base updraft velocities estimated from the horizontal wind measurements made at the Jungfraujoch can be divided by a factor of approximately 4 to get the updraft velocity required for the model to reproduce the observed SSpeak. The aerosol number concentration and hygroscopic properties were found to be less important than the aerosol size in determining SSpeak. Furthermore turbulence is found to have a maximum influence when SSpeak is between approximately 0.2 and 0.4 %. Simulating the small-scale fluctuations with several amplitudes, frequencies and phases, revealed that independently of the amplitude, the effect of the frequency on SSpeak shows a maximum at 0.46 Hz (median over all phases and at higher frequencies, the maximum SSpeak decreases again.

  17. Isotope Investigations at an Alpine Karst Aquifer by Means of On-Site Measurements with High Time Resolution and Near Real-Time Data Availability

    International Nuclear Information System (INIS)

    Leis, A.; Plieschnegger, M.; Harum, T.; Stadler, H.; Schmitt, R.; Pelt, A. Van; Zerobin, W.

    2011-01-01

    For numerous hydrological investigations as the characterization of storage and discharge dynamics at karst springs on-site isotopic measurements with high time resolution could improve the significance of the investigations. Conventional isotope ratio mass spectrometers (IRMS) can only be used in laboratories because of their technical complexity. Since a short time more compact laser based instruments, the so called cavity ringdown spectrometers (CRDS) are commercially available. For on-site use of such an instrument several adaptations are necessary. This concerns especially a direct sample injection from the outflow of the spring, because this is originally not intended. The studied alpine and mountainous karst system is located in the so called Northern Calcareous Alps in Austria reaching altitudes up to approx. 2300 masl. The spring is situated in the Salza-valley at an altitude of approximately 650 masl. The investigated karst spring is a typical limestone spring type according to having well developed karst conduits. The isotopic composition of the water samples were measured by using cavity ring-down spectroscopy with a WS-CRDS (Wavelength-Scanned Cavity Ring-Down Spectroscopy) instrument (Picarro, Inc.). In order to adapt the System for on-site isotope measurements at the spring the laser spectrometer was coupled to an automatic injection module for continuous measurements of liquid samples based on a VALCO valve. The device replaces the auto-sampler and allows quasi-continuous injections of a 2 ul-water samples into the Picarro L1102-iso-water analyzer via the Picarro vaporizer module.

  18. Concentrations of higher dicarboxylic acids C5–C13 in fresh snow samples collected at the High Alpine Research Station Jungfraujoch during CLACE 5 and 6

    Directory of Open Access Journals (Sweden)

    K. Sieg

    2009-03-01

    Full Text Available Samples of freshly fallen snow were collected at the high alpine research station Jungfraujoch (Switzerland in February and March 2006 and 2007, during the Cloud and Aerosol Characterization Experiments (CLACE 5 and 6. In this study a new technique has been developed and demonstrated for the measurement of organic acids in fresh snow. The melted snow samples were subjected to solid phase extraction and resulting solutions analysed for organic acids by HPLC-MS-TOF using negative electrospray ionization. A series of linear dicarboxylic acids from C5 to C13 and phthalic acid, were identified and quantified. In several samples the biogenic acid pinonic acid was also observed. In fresh snow the median concentration of the most abundant acid, adipic acid, was 0.69 μg L−1 in 2006 and 0.70 μg L−1 in 2007. Glutaric acid was the second most abundant dicarboxylic acid found with median values of 0.46 μg L−1 in 2006 and 0.61 μg L−1 in 2007, while the aromatic acid phthalic acid showed a median concentration of 0.34 μg L−1 in 2006 and 0.45 μg L−1 in 2007. The concentrations in the samples from various snowfall events varied significantly, and were found to be dependent on the back trajectory of the air mass arriving at Jungfraujoch. Air masses of marine origin showed the lowest concentrations of acids whereas the highest concentrations were measured when the air mass was strongly influenced by boundary layer air.

  19. 78 FR 27033 - Safety Zone; High Water Conditions; Illinois River

    Science.gov (United States)

    2013-05-09

    ... Children from Environmental Health Risks and Safety Risks. This rule is not an economically significant rule and would not create an environmental risk to health or risk to safety that might... the Captain of the Port Lake Michigan. The safety zone has been effective and enforced since April 18...

  20. High resolution Fresnel zone plate laser alignment system

    International Nuclear Information System (INIS)

    Bressler, V.E.; Fischer, G.E.; Ruland, R.E.; Wang, T.

    1992-03-01

    The existing Fresnel zone plate laser alignment system is currently being extended and upgraded for the Final Focus Test Beam (FFTB). Previously, the resolution of this system has been several tens of micrometers. After the upgrade, the resolution will be a few micrometers. Details of the upgrade as well as simulation and experimental results will be presented

  1. Characterising hydrological behaviour of springs draining different alpine formations

    Science.gov (United States)

    Volze, N.; Smoorenburg, M.; Kienzler, P.; Naef, F.; Rabenstein, L.; Kinzelbach, W.

    2012-04-01

    The project SACflood (Susceptibility of alpine catchment flood runoff to changes in meteorological boundary conditions) concentrates on alpine areas and wants to identify catchments that show a damped reaction to runoff but may react unexpectedly strong to increased precipitation as observed in 2005 in the Schächen. The catchment showed a delayed and damped behaviour for smaller precipitation events but reacted with strongly increased discharge when a threshold amount of rainfall was reached, causing a flood with high damages. This is attributed to the complex interaction of storage and drainage mechanisms that are not yet well enough understood. Typical alpine geomorphic formations are identified that are likely to be associated with large storages which could considerably delay runoff reaction but still contribute to flow within a timescale relevant for flood formation. From these geomorphic formations deep drainage is measured as outflow from several springs. In addition natural tracers are measured in the springs. On a steep hill slope, associated to one of the observed springs, ground water levels are observed. Geoelectric profiles were recorded to depict the structure of the underground. Discharge measurements from the springs show remarkable differences between the sites. After long dry periods certain springs do not react to rainfall immediately but need considerable amounts of rain to increase discharge. Even steep slopes as well as large talus areas can substantially delay runoff. Observations of the groundwater levels reveal an unexpected picture of the underground. The water table is not as often assumed above the bedrock but at a depth of several meters within the highly fractured bedrock material. This can result in a much higher storage capacity of such slopes despite the steepness of the surface. On the basis of the results from field work conceptual ideas are developed. The influence of parameters such as the depth of the unsaturated zone and the

  2. 33 CFR 165.121 - Safety and Security Zones: High Interest Vessels, Narragansett Bay, Rhode Island.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety and Security Zones: High... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION... Guard District § 165.121 Safety and Security Zones: High Interest Vessels, Narragansett Bay, Rhode...

  3. Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes

    Science.gov (United States)

    Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.

    2014-12-01

    Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.

  4. High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates

    Science.gov (United States)

    Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.

    2013-09-01

    The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.

  5. Frozen Nature - A high-alpine ice core record reveals fire and vegetation dynamics in Western Europe over the past millennium

    Science.gov (United States)

    Brügger, S.; Gobet, E.; Sigl, M.; Osmont, D.; Schwikowski, M.; Tinner, W.

    2017-12-01

    Wild fires are an ecological disturbance agent across ecosystems, driving vegetation dynamics and resulting in disruption of habitats (Moritz et al. 2014).We analyze pollen and spores as proxies for vegetation composition, structure and agricultural activity, microscopic charcoal as a proxy for fire activity, and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion which preserve in ice cores over millennia (Eichler et al. 2011).Our high-alpine ice core (4452 m a.s.l.) from Colle Gnifetti, Swiss Alps is located in the center of Western Europe, thus allowing to assess vegetation and societal responses to climatic change and wildfire disturbance on a subcontinental scale. The record covers the last millennium with an excellent chronological control (Jenk et al. 2009, Sigl et al. 2009), particularly over the most recent 200 years - the period that experienced important climatic changes and an increasing globalization of economy.The Colle Gnifetti record reflects large scale impacts such as extreme weather, societal innovations, agricultural crises and pollution of the industrial period in Western Europe. Pollution tracers occur in the record as early as 1750 AD and coincide with the shift to large-scale maize production in Northern Italy and with increased fire activity. Our multiproxy record may allow desentagling the role of climate and humans for vegetation composition and biomass burning. The attribution of causes may significantly advance our understanding of future vegetation and fire dynamics under global change conditions. To our knowledge we present the first long-term high-resolution palynological record of a high elevation ice core in Europe.REFERENCESEichler et al. (2011): An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science Reviews, 30(9), 1027-1034.Jenk et al. (2009): A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of

  6. Two-zone model of coronal hole structure in the high corona

    International Nuclear Information System (INIS)

    Wang, Z.; Kundu, M.R.; Yoshimura, H.

    1988-01-01

    The two-zone coronal hole structure model presently proposed for the high corona at 1.5-1.7 solar radii emerges from a comparison of computation results for the potential magnetic fields of the corona and meter-decameter radio observations. The two zones of a coronal hole are defined by the configuration of magnetic field lines around a coronal hole: (1) the central hole of an open diverging magnetic field line system; and (2) the boundary zone between the central zone of the open field line system and the closed field line system or systems surrounding the open field line system. 19 references

  7. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees

    Directory of Open Access Journals (Sweden)

    D. Gómez

    2017-09-01

    Full Text Available On the basis of the digital edition of the “Atlas of the vascular flora of the Pyrenees” (www.florapyrenaea. org, the alpine flora of this mountain range is delimited in order to know its diversity and the different patterns of its spatial distribution, along with some other environmental characteristics. The Pyrenean alpine flora is made up of 645 taxa (630 species and 15 subspecies. All the administrative regions harbour more than 60% of the alpine plants, with Catalonia and Aragon reaching the highest values (around 90%. Along the altitudinal gradient, the highest plant diversity is found between 2300 and 2600 m. a. s. l., although 25% of the total alpine flora goes beyond 3000 m. On the other hand, a remarkable number of alpine plants live in the lowlands, and thus more than 300 alpine plants can be found below 1500 m. The average altitude range of the alpine plants is 1369 m, 300 m wider than that observed for the whole Pyrenean flora. Life-forms, habitat distribution and habitat naturalness of alpine plants are significantly different from those of the whole Pyrenean flora. Distribution of abundance categories also shows values of rarity significantly lower among alpine plants than for the whole flora. More than half the Pyrenean endemic plants are present in the alpine flora. High diversity and wide ecological amplitude of the alpine flora must be taken into account either when considering vulnerability of alpine plants facing “global change” or when addressing conservation policies for the whole Pyrenees from a common perspective.

  8. Tomography images of the Alpine roots and surrounding upper mantle

    Science.gov (United States)

    Plomerova, Jaroslava; Babuska, Vladislav

    2017-04-01

    Teleseismic body-wave tomography represents powerful tool to study regional velocity structure of the upper mantle and to image velocity anomalies, such as subducted lithosphere plates in collisional zones. In this contribution, we recapitulate 3D models of the upper mantle beneath the Alps, which developed at a collision zone of the Eurasian and African plates. Seismic tomography studies indicate a leading role of the rigid mantle lithosphere that functioned as a major stress guide during the plate collisions. Interactions of the European lithosphere with several micro-plates in the south resulted in an arcuate shape of this mountain range on the surface and in a complicated geometry of the Alpine subductions in the mantle. Early models with one bended lithosphere root have been replaced with more advanced models showing two separate lithosphere roots beneath the Western and Eastern Alps (Babuska et al., Tectonophysics 1990; Lippitsch et al., JGR 2003). The standard isotropic velocity tomography, based on pre-AlpArray data (the currently performed passive seismic experiment in the Alps and surroundings) images the south-eastward dipping curved slab of the Eurasian lithosphere in the Western Alps. On the contrary, beneath the Eastern Alps the results indicate a very steep northward dipping root that resulted from the collision of the European plate with the Adriatic microplate. Dando et al. (2011) interpret high-velocity heterogeneities at the bottom of their regional tomographic model as a graveyard of old subducted lithospheres. High density of stations, large amount of rays and dense ray-coverage of the volume studied are not the only essential pre-requisites for reliable tomography results. A compromise between the amount of pre-processed data and the high-quality of the tomography input (travel-time residuals) is of the high importance as well. For the first time, the existence of two separate roots beneath the Alps has been revealed from carefully pre

  9. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    Science.gov (United States)

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  10. Les barrages alpins

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  11. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    Science.gov (United States)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  12. Texture classification of vegetation cover in high altitude wetlands zone

    International Nuclear Information System (INIS)

    Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu

    2014-01-01

    The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data

  13. High-Power Laser Cutting of Steel Plates: Heat Affected Zone Analysis

    Directory of Open Access Journals (Sweden)

    Imed Miraoui

    2016-01-01

    Full Text Available The thermal effect of CO2 high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ, the heat affected zone depth (HAZ, and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE. The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.

  14. Lake surface water temperatures of European Alpine lakes (1989-2013) based on the Advanced Very High Resolution Radiometer (AVHRR) 1 km data set

    Science.gov (United States)

    Riffler, M.; Wunderle, S.

    2014-05-01

    Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Thus, the Global Climate Observing System (GCOS) lists LWT as an Essential Climate Variable (ECV). Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European (pre-alpine) water bodies based on the extensive AVHRR 1 km data record (1989-2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. Especially data from NOAA-16 and prior satellites were prone to noise, e.g., due to transmission errors or fluctuations in the instrument's thermal state. This has resulted in partly corrupted thermal calibration data and may cause errors of up to several Kelvin in the final resulting LSWT. Thus, a multi-stage correction scheme has been applied to the data to minimize these artefacts. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with operational analysis and reanalysis data from the European Centre for Medium Range Weather Forecasts. The resulting LSWTs were

  15. Heat affected zone and fatigue crack propagation behavior of high performance steel

    International Nuclear Information System (INIS)

    Choi, Sung Won; Kang, Dong Hwan; Kim, Tae Won; Lee, Jong Kwan

    2009-01-01

    The effect of heat affected zone in high performance steel on fatigue crack propagation behavior, which is related to the subsequent microstructure, was investigated. A modified Paris-Erdogan equation was presented for the analysis of fatigue crack propagation behavior corresponding to the heat affected zone conditions. Fatigue crack propagation tests under 0.3 stress ratio and 0.1 load frequency were conducted for both finegrained and coarse-grained heat affected zones, respectively. As shown in the results, much higher crack growth rate occurred in a relatively larger mean grain size material under the same stress intensity range of fatigue crack propagation process for the material.

  16. Assessing the optimality of ASHRAE climate zones using high resolution meteorological data sets

    Science.gov (United States)

    Fils, P. D.; Kumar, J.; Collier, N.; Hoffman, F. M.; Xu, M.; Forbes, W.

    2017-12-01

    Energy consumed by built infrastructure constitutes a significant fraction of the nation's energy budget. According to 2015 US Energy Information Agency report, 41% of the energy used in the US was going to residential and commercial buildings. Additional research has shown that 32% of commercial building energy goes into heating and cooling the building. The American National Standards Institute and the American Society of Heating Refrigerating and Air-Conditioning Engineers Standard 90.1 provides climate zones for current state-of-practice since heating and cooling demands are strongly influenced by spatio-temporal weather variations. For this reason, we have been assessing the optimality of the climate zones using high resolution daily climate data from NASA's DAYMET database. We analyzed time series of meteorological data sets for all ASHRAE climate zones between 1980-2016 inclusively. We computed the mean, standard deviation, and other statistics for a set of meteorological variables (solar radiation, maximum and minimum temperature)within each zone. By plotting all the zonal statistics, we analyzed patterns and trends in those data over the past 36 years. We compared the means of each zone to its standard deviation to determine the range of spatial variability that exist within each zone. If the band around the mean is too large, it indicates that regions in the zone experience a wide range of weather conditions and perhaps a common set of building design guidelines would lead to a non-optimal energy consumption scenario. In this study we have observed a strong variation in the different climate zones. Some have shown consistent patterns in the past 36 years, indicating that the zone was well constructed, while others have greatly deviated from their mean indicating that the zone needs to be reconstructed. We also looked at redesigning the climate zones based on high resolution climate data. We are using building simulations models like EnergyPlus to develop

  17. Spatial considerations of snow chemistry as a non-point contamination source in Alpine watersheds

    International Nuclear Information System (INIS)

    Elder, K.; Williams, M.; Dozier, J.

    1991-01-01

    Alpine watersheds act as a temporary storage basin for large volumes of precipitation as snow. Monitoring these basins for the presence and effects of acid precipitation is important because these areas are often weakly buffered and sensitive to acidification. Study of these sensitive areas may provide early detection of trends resulting form anthropogenic atmospheric inputs. In an intensive study of an alpine watershed in the Sierra Nevada in 1987 and 1988, the authors carefully monitored snow distribution and chemistry through space and time. They found that the volume-weighted mean ionic concentrations within the snowpack did not vary greatly over the basin at peak accumulation. However, the distribution of total snow water equivalence (SWE) was highly variable spatially. Coefficients of variation (CV) for SWE lead to a corresponding high spatial variance in the chemical loading of their study basin. Their results show that to obtain accurate estimates of chemical loading they must measure the chemical and physical snow parameters at a resolution proportional to their individual variances. It is therefore necessary to combine many SWE measurements with fewer carefully obtained chemistry measurements. They used a classification method based on physical parameters to partition the basin into similar zones for estimation of SWE distribution. This technique can also be used for sample design

  18. La recherche alpine aujourd’hui

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Brun

    2009-06-01

    Full Text Available Alpine research benefits from several international coordination networks, only one of which – ISCAR (the International Scientific Committee on Research in the Alps – works solely in the Alpine arc. The creation of ISCAR is a consequence of the input and involvement of various Alpine partners around the Alpine Convention. Alpine research now aims to promote an integrated vision of Alpine territories focusing on creating and maintaining spatial and temporal networks of sustainable relationships between humans and the other components of the ecosphere. It combines resource usage with conservation of the biological and cultural diversity that makes up the Alpine identity. This article aims to show: (1 how international Alpine research coordination is organised; (2 the role played by the Alpine Convention as a framework of reference for specifically Alpine research; and (3 the role that the ISCAR international commit-tee and the Interreg “Alpine Space” programmes play in uniting research around territorial challenges relating to biodiversity conservation and territorial development.La recherche sur les Alpes bénéficie de plusieurs réseaux de coordination internationaux dont un seul, le comité international recherche alpine (ISCAR, se consacre exclusivement à l’arc alpin. La création de l’ISCAR est une retombée de la mobilisation des divers partenaires alpins autour de la mise en place de la Convention alpine. Aujourd’hui, la recherche alpine vise à promouvoir une vision intégrée des territoires centrée sur la création et le maintien d’un réseau spatial et temporel de relations durables entre les hommes et les autres composantes de l’écosphère. Elle associe étroitement la mise en valeur des ressources et la conservation des diversités biologiques et culturelles qui constituent l’identité alpine. Cet article a pour ambition de montrer : (1 comment s’organise la coordination internationale des recherches sur les

  19. X-ray microscopy with high resolution zone plates -- Recent developments

    International Nuclear Information System (INIS)

    Schneider, G.; Wilhein, T.; Niemann, B.; Guttmann, P.

    1995-01-01

    In order to expand the applications of X-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross-linked polymer chain electron beam resist allows to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for X-ray microscopy was developed and implemented on the Goettingen X-ray microscope at BESSY. The effects of X-ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free X-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T ≤ 130 K unfixed biological specimen can be exposed to a radiation dose of 10 9 --10 10 Gy without any observable structural changes. A multiple-angle viewing stage allows to take stereoscopic images with the X-ray microscope, giving a 3D-impression of the object

  20. Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes

    International Nuclear Information System (INIS)

    Wu Zongquan; Zhang Anqiu; Percec, Simona; Jin Shi; Jing, Alexander J.; Ge, Jason J.; Cheng, Stephen Z.D.

    2003-01-01

    Continuous zone-drawing and zone-annealing processes have been utilized to probe improvements in mechanical performance of melt-spun high acrylonitrile copolymer fibers (AMLON TM ). The as-spun fibers were zone-drawn at different ratios in a narrow temperature range of 100-105 deg. C and then zone-annealed. As a result of these processes, the fibers show substantial increases in tensile strength and tensile modulus (about three times) and significant improvements in elongation-at-break (about two times) after zone annealing. The thermal transition behavior, dimensional stability and dynamic relaxation properties of the as-spun, zone-drawn and zone-annealed fibers have been studied using differential scanning calorimetry, thermal mechanical and dynamic mechanical experiments. Their mechanical and thermal property changes after the zone-drawing and zone-annealing processes can be associated with the microscopic structural evolution including crystallinity, crystal orientation and apparent crystallite size detected by wide angle X-ray diffraction experiments

  1. Thermo chronology by the fission track method of a passive marge (Ponta Grossa dome in south-eastern Brazil) and within a collision chain (external zone of the alpine arch in France)

    International Nuclear Information System (INIS)

    Medeiros Vignol Lelarge, M.L.

    1993-01-01

    The dating method by counting fission tracks on apatite (this rock is a geo-thermometer sensitive to weak temperature changes below 150 Celsius degrees) is an efficient tool for the thermal history of rocks. We have used this method in 2 different geological contexts: the Ponta Grossa dome in south-eastern Brazil and the alpine mountain in France. This dating method is based on the fact that some rocks like mica keep fossil remains of the passage of the fission products emitted during the simultaneous fission of uranium 238 present in the rock. This method requires the irradiation in a slow neutron flux of the sample because the initial quantity of uranium is unknown. The age t of the sample is given by the formula: t=(1/l 1 )*ln[1+(r s /r i )*(l 2 /l 1 )*F*σ*I] where: l 1 is the alpha decay constant of U 238 ; l 2 is the simultaneous fission decay constant of U 238 , r s is the number of fission tracks in the sample before the irradiation; r i is the number of fission tracks induced by the irradiation; F is the thermal neutron flux; σ is the thermal fission cross-section of U 235 ; and I is the isotopic rate U 235 /U 238 . This document is divided into 4 chapters. The first chapter presents the general principle of the method, the mechanisms capable of producing fission tracks and the techniques used to make these tracks visible with an optical microscope. The second chapter deals with the conditions of the irradiation and the calibration of the method. The 2 last chapters are dedicated to the applications to the 2 geological contexts. (A.C.)

  2. Dynamical evolution of space debris on high-elliptical orbits near high-order resonance zones

    Science.gov (United States)

    Kuznetsov, Eduard; Zakharova, Polina

    Orbital evolution of objects on Molniya-type orbits is considered near high-order resonance zones. Initial conditions correspond to high-elliptical orbits with the critical inclination 63.4 degrees. High-order resonances are analyzed. Resonance orders are more than 5 and less than 50. Frequencies of perturbations caused by the effect of sectorial and tesseral harmonics of the Earth's gravitational potential are linear combinations of the mean motion of a satellite, angular velocities of motion of the pericenter and node of its orbit, and the angular velocity of the Earth. Frequencies of perturbations were calculated by taking into account secular perturbations from the Earth oblateness, the Moon, the Sun, and a solar radiation pressure. Resonance splitting effect leads to three sub-resonances. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. We used "A Numerical Model of the Motion of Artificial Earth's Satellites", developed by the Research Institute of Applied Mathematics and Mechanics of the Tomsk State University. The model of disturbing forces taken into account the main perturbing factors: the gravitational field of the Earth, the attraction of the Moon and the Sun, the tides in the Earth’s body, the solar radiation pressure, taking into account the shadow of the Earth, the Poynting-Robertson effect, and the atmospheric drag. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris. The locations and sizes of resonance zones were refined from numerical simulation. The Poynting-Robertson effect results in a secular decrease in the semi-major axis of a spherically symmetrical satellite. In resonance regions the effect weakens slightly. Reliable estimates of secular perturbations of the semi-major axis were obtained from the numerical simulation. Under the Poynting-Robertson effect objects pass through the regions of high

  3. The Use of Newer High Translucency Zirconia in Aesthetic Zone

    Directory of Open Access Journals (Sweden)

    Zishan Dangra

    2014-01-01

    Full Text Available Loss of anterior tooth causes aesthetic and functional disharmony. Although no restorative material can approach the appearance of intact tooth enamel, glass ceramic, at the increased risk of brittle fracture, can mimic original tooth color better than the other restorative options. The newest zirconia material comes with unparalleled individualization in aesthetics and optimal physical properties. One of the basic principles of tooth preparation is conservation of tooth structure. This clinical report describes the replacement of maxillary and mandibular incisor with latest generation zirconia adhesive fixed partial denture. The authors have achieved unmatched aesthetics with newer high translucency zirconia.

  4. High resolution, topobathymetric LiDAR coastal zone characterization in Denmark

    DEFF Research Database (Denmark)

    Steinbacher, Frank; Baran, Ramona; Andersen, Mikkel S.

    2016-01-01

    Coastal and tidal environments are valuable ecosystems, which, however, are under pressure in many areas around the world due to globalization and/or climate change. Detailed mapping of these environments is required in order to manage the coastal zone in a sustainable way. However, historically...... locations with different environmental settings. We demonstrate the potential of using airborne topobathymetric LiDAR for seamless mapping of land-water transition zones in challenging coastal environments, e.g. in an environment with high water column turbidity and continuously varying water levels due...... these transition zones between land and water are difficult or even impossible to map and investigate in high spatial resolution due to the challenging environmental conditions. The new generation of airborne topobathymetric light detection and ranging (LiDAR) potentially enables full-coverage and high...

  5. The clinical study on high intensity zone of magnetic resonance imaging using Scolopendrid Aquacupuncture.

    Directory of Open Access Journals (Sweden)

    Jeong-a Lim

    2006-12-01

    Full Text Available Objective : This study was designed to find out the effect of scolopendrid aquacupuncture on low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging. Methods : The 30 patients who had a diagnosis of high intensity zone by lumbar-MRI and admitted to Gwangju oriental medical hospital in wonkwang university from January 2005 to August 2004 were observed. The symptom of inpatients is low back pain with or without sciatica. We treated 30 patients by scolopendrid aquacupuncture besides the general conservative treatment of oriental medicine. Results and Conclusion : The scolopendrid aquacupuncture treatment led to improvement in the pain and symptom of disability as determined by all efficacy measures. After scolopendrid aquacupuncture treatment, there was improvement in VAS, ROM and SLRT. This results suggest that scolopendrid aquacupuncture is good method for treatment of low back pain with or without sciatica showing high intensity zone of magnetic resonance imaging.

  6. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxilary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embeded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. An integrated configuration which includes the interior shell, the annular structure and the subgrade is analyzed for several static and dynamic loading conditions. The analysis is done using a finite difference solution scheme for the static loading conditions. A semi-analytical three-dimensional finite element scheme combined with a Fast Fourier Transform (FFT) algorithm is used for the dynamic loading conditions. The effects of cracking of the containment structure due to pressurization in conjunction with earthquake loading are discussed. Analytical results for both the finite difference and the finite element schemes are presented and the sensitivity of the results to changes in the input parameters is studied. General recommendations are given for plant configurations where high seismic loading is a major design consideration

  7. Water sources accessed by arid zone riparian trees in highly saline environments, Australia.

    Science.gov (United States)

    Costelloe, Justin F; Payne, Emily; Woodrow, Ian E; Irvine, Elizabeth C; Western, Andrew W; Leaney, Fred W

    2008-05-01

    The flow regimes of arid zone rivers are often highly variable, and shallow groundwater in the alluvial aquifers can be very saline, thus constraining the availability and quality of the major water sources available to riparian trees-soil water, shallow groundwater and stream water. We have identified water sources and strategies used by riparian trees in more highly saline and arid conditions than previously studied for riparian trees of arid zone rivers. Our research focused on the riparian species Eucalyptus coolabah, one of the major riparian trees of ephemeral arid zone rivers in Australia. The water sources available to this riparian tree were examined using delta(18)O isotope data from xylem, soil water, groundwater and surface water. Additionally, soil chloride and matric potential data were used to infer zones of water availability for root uptake. Despite the saline conditions, the trees used a mixture of soil water and groundwater sources, but they did not use surface water directly. The study identified three strategies used to cope with typically high groundwater and soil water salinities. Firstly, the trees preferentially grow in zones of most frequent flushing by infiltrating streamflow, such as the bank-tops of channels. Secondly, the trees limit water use by having low transpiration rates. Thirdly, the trees are able to extract water at very low osmotic potentials, with water uptake continuing at chloride concentrations of at least 20,000-30,000 mg L(-1).

  8. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    Science.gov (United States)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  9. Effects of climate and socio-economic changes on water availability, use and management at the regional scale - a case study in the dry inner-alpine zone of Switzerland

    Science.gov (United States)

    Weingartner, Rolf; Reynard, Emmanuel; Graefe, Olivier; Liniger, Hanspeter; Rist, Stephan; Schaedler, Bruno; Schneider, Flurina

    2014-05-01

    The research program NRP 61 "Sustainable Water Management" of the Swiss National Science Foundation had set the goal to provide a basis for sustainable water management in Switzerland. As part of this research program the effects of climate and socio-economic changes on water availability, water use and water management were investigated in the Crans-Montana-Sierre region, situated in the dry inner-alpine Valais (project MontanAqua). The project followed an inter- and trans-disciplinary approach; stakeholders were involved from the very beginning. We assessed the current water situation with quantitative and qualitative methods: A dense hydro-meteorological network was built-up, tracer experiments were conducted and communal water uses as well as the current water management system were analyzed. These investigations paved the way to develop models to simulate possible changes in the near and far future. For this purpose, we applied existing regional climate change scenarios and developed socio-economic scenarios together with the stakeholders. The findings of MontanAqua can be summarized into five messages, each with a short recommendation: 1 - The socio-economic changes have a greater impact on the water situation in 2050 than climate change: A territorial development that limits water needs is recommended. This requires important changes of current water- and land-management practices. 2 - The water quantities available now and in 2050 are generally sufficient. However, shortages are possible in some areas and seasonally: We recommend establishing a regional water management which goes beyond the development of technical infrastructure such as storage facilities or connections between water supply networks. This measure should be accompanied by a clarification and negotiation of water rights at the regional level. 3 - Water issues are primarily regional management problems: We advocate for better cooperation between the eleven municipalities of the region and

  10. Brittle deformation during Alpine basal accretion and the origin of seismicity nests above the subduction interface

    Science.gov (United States)

    Menant, Armel; Angiboust, Samuel; Monié, Patrick; Oncken, Onno; Guigner, Jean-Michel

    2018-04-01

    Geophysical observations on active subduction zones have evidenced high seismicity clusters at 20-40 km depth in the fore-arc region whose origin remains controversial. We report here field observations of pervasive pseudotachylyte networks (interpreted as evidence for paleo-seismicity) in the now-exhumed Valpelline continental unit (Dent Blanche complex, NW. Alps, Italy), a tectonic sliver accreted to the upper plate at c. 30 km depth during the Paleocene Alpine subduction. Pre-alpine granulite-facies paragneiss from the core of the Valpelline unit are crosscut by widespread, mm to cm-thick pseudotachylyte veins. Co-seismic heating and subsequent cooling led to the formation of Ti-rich garnet rims, ilmenite needles, Ca-rich plagioclase, biotite microliths and hercynite micro-crystals. 39Ar-40Ar dating yields a 51-54 Ma age range for these veins, thus suggesting that frictional melting events occurred near peak burial conditions while the Valpelline unit was already inserted inside the duplex structure. In contrast, the base of the Valpelline unit underwent synchronous ductile and brittle, seismic deformation under water-bearing conditions followed by a re-equilibration at c. 40 Ma (39Ar-40Ar on retrograded pseudotachylyte veins) during exhumation-related deformation. Calculated rheological profiles suggest that pseudotachylyte veins from the dry core of the granulite unit record upper plate micro-seismicity (Mw 2-3) formed under very high differential stresses (>500 MPa) while the sheared base of the unit underwent repeated brittle-ductile deformation at much lower differential stresses (<40 MPa) in a fluid-saturated environment. These results demonstrate that some of the seismicity clusters nested along and above the plate interface may reflect the presence of stiff tectonic slivers rheologically analogous to the Valpelline unit acting as repeatedly breaking asperities in the basal accretion region of active subduction zones.

  11. Coincidence of the alpine-nival ecotone with the summer snowline

    International Nuclear Information System (INIS)

    Gottfried, M; Toechterle, R; Grabherr, G; Hantel, M; Maurer, C; Pauli, H

    2011-01-01

    The alpine-nival ecotone is the transition between the lower located alpine grassland/tundra zone and the upper located sparsely vegetated nival zone in the mountains. Its characteristics are qualitatively known. Here we study the dynamics of the ecotone through a quantitative approach based on plant data (from Mt Schrankogel, 3497 m, observations 1994 and 2004) and snow data (from 268 routine climate stations in the Alps, observations 1975-2004). We introduce the nivality index as the area ratio of nival and alpine plants, and the snow duration as the length of the summer snow cover. We fit a nonlinear probabilistic model to our field data; it yields state functions of both quantities. The nivality index curve comprises the entire information of the plant data in one analytical function; the snow duration curve represents the equivalent for the full snow data set. Thus all relevant parameters of both quantities follow from the respective state function. We find that the analytical profile of the alpine-nival ecotone at Mt Schrankogel (based on nivality index observations from the altitude interval 2910-3090 m) happens to sit right in the center of the independently determined summer snow profile across the entire Alps; specifically, the central altitude of the Schrankogel ecotone coincides almost perfectly with the central altitude of Alpine snow duration. Both state functions show extreme temperature sensitivity at 2967 m (vegetation) and 2897 m (snow), and both altitudes exhibit a positive trend during the measurement period.

  12. Coincidence of the alpine-nival ecotone with the summer snowline

    Energy Technology Data Exchange (ETDEWEB)

    Gottfried, M; Toechterle, R; Grabherr, G [Research Platform Mountain Limits, University of Vienna, Faculty Center of Biodiversity, Rennweg 14, Wien 1030 (Austria); Hantel, M; Maurer, C [Research Platform Mountain Limits, University of Vienna, Theoretical Meteorology Research Forum, Berggasse 11, Wien 1090 (Austria); Pauli, H, E-mail: michael.hantel@univie.ac.at [Institute of Mountain Research (IGF), Austrian Academy of Sciences, c/o Faculty Center of Biodiversity, University of Vienna, Rennweg 14, 1030 Wien (Austria)

    2011-01-15

    The alpine-nival ecotone is the transition between the lower located alpine grassland/tundra zone and the upper located sparsely vegetated nival zone in the mountains. Its characteristics are qualitatively known. Here we study the dynamics of the ecotone through a quantitative approach based on plant data (from Mt Schrankogel, 3497 m, observations 1994 and 2004) and snow data (from 268 routine climate stations in the Alps, observations 1975-2004). We introduce the nivality index as the area ratio of nival and alpine plants, and the snow duration as the length of the summer snow cover. We fit a nonlinear probabilistic model to our field data; it yields state functions of both quantities. The nivality index curve comprises the entire information of the plant data in one analytical function; the snow duration curve represents the equivalent for the full snow data set. Thus all relevant parameters of both quantities follow from the respective state function. We find that the analytical profile of the alpine-nival ecotone at Mt Schrankogel (based on nivality index observations from the altitude interval 2910-3090 m) happens to sit right in the center of the independently determined summer snow profile across the entire Alps; specifically, the central altitude of the Schrankogel ecotone coincides almost perfectly with the central altitude of Alpine snow duration. Both state functions show extreme temperature sensitivity at 2967 m (vegetation) and 2897 m (snow), and both altitudes exhibit a positive trend during the measurement period.

  13. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy.

    Science.gov (United States)

    Liu, Su; Gurses, Candan; Sha, Zhiyi; Quach, Michael M; Sencer, Altay; Bebek, Nerses; Curry, Daniel J; Prabhu, Sujit; Tummala, Sudhakar; Henry, Thomas R; Ince, Nuri F

    2018-01-30

    High-frequency oscillations in local field potentials recorded with intracranial EEG are putative biomarkers of seizure onset zones in epileptic brain. However, localized 80-500 Hz oscillations can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or frequency, physiological high-frequency oscillations are indistinguishable from pathological ones, which limit their application in epilepsy presurgical planning. We hypothesized that pathological high-frequency oscillations occur in a repetitive fashion with a similar waveform morphology that specifically indicates seizure onset zones. We investigated the waveform patterns of automatically detected high-frequency oscillations in 13 epilepsy patients and five control subjects, with an average of 73 subdural and intracerebral electrodes recorded per patient. The repetitive oscillatory waveforms were identified by using a pipeline of unsupervised machine learning techniques and were then correlated with independently clinician-defined seizure onset zones. Consistently in all patients, the stereotypical high-frequency oscillations with the highest degree of waveform similarity were localized within the seizure onset zones only, whereas the channels generating high-frequency oscillations embedded in random waveforms were found in the functional regions independent from the epileptogenic locations. The repetitive waveform pattern was more evident in fast ripples compared to ripples, suggesting a potential association between waveform repetition and the underlying pathological network. Our findings provided a new tool for the interpretation of pathological high-frequency oscillations that can be efficiently applied to distinguish seizure onset zones from functionally important sites, which is a critical step towards the translation of these signature events into valid clinical biomarkers.awx374media15721572971001. © The Author(s) (2018). Published by Oxford University Press on

  14. Garnet Yield Strength at High Pressures and Implications for Upper Mantle and Transition Zone Rheology

    International Nuclear Information System (INIS)

    Kavner, A.

    2008-01-01

    Garnet helps control the mechanical behavior of the Earth's crust, mantle, and transition zone. Here, measurements are presented suggesting that garnet, long considered to be a high-viscosity phase, is actually weaker than the other dominant components in the transition zone. The mechanical behavior of garnet at high pressures was examined using radial diffraction techniques in the diamond anvil cell. The yield strength of grossular garnet was inferred from synchrotron X-ray measurements of differential lattice strains. The differential stress was found to increase from 1.3 (±0.6) GPa at a hydrostatic pressure 5.8 (±1.1) GPa to 4.1 (±0.4) GPa at 15.7 (±1.0) GPa, where it was level to 19 GPa. The strength results are consistent with inferred strength values for majorite garnet from measurements in the diamond cell normal geometry, bolstering the idea that garnet-structured materials may all have similar strengths. In this low-temperature, high differential stress regime, garnet is shown to be significantly weaker than anhydrous ringwoodite and to have a strength similar to hydrous ringwoodite. This result suggests that the presence of water in the transition zone may not be required to explain a weak rheology, and therefore models of transition zone behavior built assuming that garnet is the high-strength phase may need to be revised.

  15. Compositional Approach to Designing Fcc High-Entropy Alloys that Have an Enlarged Equiaxed Zone

    Directory of Open Access Journals (Sweden)

    Minju Kang

    2018-01-01

    Full Text Available A compositional approach to designing alloys that have an enlarged equiaxed zone is suggested in this study. The partitioning of elements during the solidification of CoCrFeMnNi high-entropy alloy (HEA was confirmed through a directional solidification quenching experiment. Several HEAs were designed to maximize the effects of constitutional and thermal undercooling by considering factors including solute enrichment at the columnar front and the melting temperatures and thermal conductivities of the individual elements. The newly designed HEAs were shown to have successfully enlarged equiaxed zones, and improved anisotropic properties.

  16. Facile Route to Vertically Aligned High-Aspect Ratio Block Copolymer Films via Dynamic Zone Annealing

    Science.gov (United States)

    Singh, Gurpreet; Kulkarni, Manish; Yager, Kevin; Smilgies, Detlef; Bucknall, David; Karim, Alamgir

    2012-02-01

    Directed assembly of block copolymers (BCP) can be used to fabricate a diversity of nanostructures useful for nanotech applications. The ability to vertically orient etchable high aspect ratio (˜30) ordered BCP domains on flexible substrates via continuous processing methods are particularly attractive for nanomanufacturing. We apply sharp dynamic cold zone annealing (CZA-S) to create etchable, and predominantly vertically oriented 30nm cylindrical domains in 1 μm thick poly(styrene-b-methylmethacrylate) films on low thermal conductivity rigid (quartz) and flexible (PDMS & Kapton) substrates. Under similar static conditions, temporally stable vertical cylinders form within a narrow zone above a critical temperature gradient. Primary ordering mechanism of CZA-S involves sweeping this vertically orienting zone created at maximum thermal gradient. An optimal speed is needed since the process competes with preferential surface wetting dynamics that favors parallel orientation. GISAXS of etched BCP films confirms internal morphology.

  17. New Constraints for Tectono-Thermal Alpine Evolution of the Pyrenees: Combining Zircon Fission-Track and (U-Th)/He Analyses with Raman Spectrometry and In-Situ K-Ar Geochronology

    Science.gov (United States)

    Waldner, M.; Bellahsen, N.; Mouthereau, F.; Pik, R.; Bernet, M.; Scaillet, S.; Rosenberg, C.

    2017-12-01

    The pyrenean range was formed by the convergence of European and Iberian plates following the inversion of the Mesozoic rifting in the north of Pyrenees. In the Axial Zone, the collision caused an antiformal nappe-stacking of tectonic units. Recent studies pointed out the importance of pre-collision structural and thermal inheritance that may play a major role for orogeny such as: 1) Paleozoic Variscan inheritance; 2) Mesozoic rift-related high geothermal gradients, which are maintained during the onset of convergence in the North Pyrenean Zone. From a mineralogical point of view, pre-collision feldspars have been destabilized and influenced the development of alpine phyllonite in brittle-ductile conditions which suggests a weak crustal behavior during the formation of the orogenic wedge. Our aim is to get a better understanding of alpine deformation and exhumation by coupling different thermochronological, geochronological and thermometric methods. We document the thermal evolution of each tectonic unit by using low-temperature thermochronometers (Zircon Fission Tracks, U-Th/He on zircons including laser ablation profiles). Our data on vertical profiles combined to existing dataset on apatite allows to model alpine exhumation across the Axial zone. Structural observations through alpine thrusts coupled to geochronology (in situ K/Ar on phengites), Raman and chlorite-phengite thermo(baro)metry provide new key data to unravel the alpine evolution of the Pyrenees. According to preliminary ZFT results on granite massifs in the central part of Pyrenean Axial zone (near ECORS profile), exhumation ages potentially indicates a migration of exhumation towards the south. Exhumation ages of the northern massifs seems to have preserved the North Pyrenean Cretaceous rift evolution. Further south, the onset of exhumation is as old as Paleocene, which precedes the Eocene ages of the literature. The low burial estimated in the northern massifs may indicate a high thermal gradient

  18. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments

    Directory of Open Access Journals (Sweden)

    Berit Gehrke

    2018-04-01

    Full Text Available Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks.

  19. Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae in alpine habitats of California

    Directory of Open Access Journals (Sweden)

    Roderick George K

    2010-06-01

    Full Text Available Abstract Background Climate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta. The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta. Results Our analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch. Conclusions Grylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations

  20. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography

    International Nuclear Information System (INIS)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-01-01

    Fabrication of Fresnel zone plates for the hard x-ray spectral region combines the challenge of high lateral resolution (∼100 nm) with a large thickness requirement for the phase-shifting material (0.5-3 (micro)m). For achieving a high resolution, the initial mask was fabricated by e-beam lithography and gold electroforming. To prevent the collapse of the structures between the developing and electroforming processes, drying was completely eliminated. Fabrication errors, such as nonuniform gold electroplating and collapse of structures, were systematically analyzed and largely eliminated. We optimized the exposure and developing processes for 950k and 2200k polymethylmethacrylate of different thicknesses and various adhesion promoters. We discuss the effects of these fabrication steps on the zone plate's resolution and aspect ratio. Fresnel zone plates with 110 nm outermost zone width, 150 (micro)m diameter, and 1.3 (micro)m gold thickness were fabricated. Preliminary evaluation of the FZPs was done by scanning electron microscopy and atomic force microscopy. The FZP focusing performance was characterized at the Advanced Photon Source at Argonne National Laboratory

  1. Small scale denitrification variability in riparian zones: Results from a high-resolution dataset

    Science.gov (United States)

    Gassen, Niklas; Knöller, Kay; Musolff, Andreas; Popp, Felix; Lüders, Tillmann; Stumpp, Christine

    2017-04-01

    Riparian zones are important compartments at the interface between groundwater and surface water where biogeochemical processes like denitrification are often enhanced. Nitrate loads of either groundwater entering a stream through the riparian zone or streamwater infiltrating into the riparian zone can be substantially reduced. These processes are spatially and temporally highly variable, making it difficult to capture solute variabilities, estimate realistic turnover rates and thus to quantify integral mass removal. A crucial step towards a more detailed characterization is to monitor solutes on a scale which adequately resemble the highly heterogeneous distribution and on a scale where processes occur. We measured biogeochemical parameters in a spatial high resolution within a riparian corridor of a German lowland river system over the course of one year. Samples were taken from three newly developed high-resolution multi-level wells with a maximum vertical resolution of 5 cm and analyzed for major ions, DOC and N-O isotopes. Sediment derived during installation of the wells was analyzed for specific denitrifying enzymes. Results showed a distinct depth zonation of hydrochemistry within the shallow alluvial aquifer, with a 1 m thick zone just below the water table with lower nitrate concentrations and EC values similar to the nearby river. Conservative parameters were consistent inbetween the three wells, but nitrate was highly variable. In addition, spots with low nitrate concentrations showed isotopic and microbial evidence for higher denitrification activities. The depth zonation was observed throughout the year, with stronger temporal variations of nitrate concentrations just below the water table compared to deeper layers. Nitrate isotopes showed a clear seasonal trend of denitrification activities (high in summer, low in winter). Our dataset gives new insight into river-groundwater exchange processes and shows the highly heterogeneous distribution of

  2. High-Resolution P'P' Precursor Imaging of Nazca-South America Plate Boundary Zones and Inferences for Transition Zone Temperature and Composition

    Science.gov (United States)

    Gu, Y. J.; Schultz, R.

    2013-12-01

    Knowledge of upper mantle transition zone stratification and composition is highly dependent on our ability to efficiently extract and properly interpret small seismic arrivals. A promising high-frequency seismic phase group particularly suitable for a global analysis is P'P' precursors, which are capable of resolving mantle structures at vertical and lateral resolution of approximately 5 and 200 km, respectively, owing to their shallow incidence angle and small, quasi-symmetric Fresnel zones. This study presents a simultaneous analysis of SS and P'P' precursors based on deconvolution, Radon transform and depth migration. Our multi-resolution survey of the mantle near Nazca-South America subduction zone reveals both olivine and garnet related transitions at depth below 400 km. We attribute a depressed 660 to thermal variations, whereas compositional variations atop the upper-mantle transition zone are needed to explain the diminished or highly complex reflected/scattered signals from the 410 km discontinuity. We also observe prominent P'P' reflections within the transition zone, especially near the plate boundary zone where anomalously high reflection amplitudes result from a sharp (~10 km thick) mineral phase change resonant with the dominant frequency of the P'P' precursors. Near the base of the upper mantle, the migration of SS precursors shows no evidence of split reflections near the 660-km discontinuity, but potential majorite-ilmenite (590-640 km) and ilmenite-perovskite transitions (740-750 km) are identified based on similarly processed high-frequency P'P' precursors. At nominal mantle temperatures these two phase changes may be seismically indistinguishable, but colder mantle conditions from the descending Nazca plate, the presence of water and variable Fe contents may cause sufficient separation for a reliable analysis. In addition, our preliminary results provide compelling evidence for multiple shallow lower-mantle reflections (at ~800 km) along the

  3. Alpine treeline and timberline dynamics during the Holocene in the Northern Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Anca GEANTĂ

    2014-11-01

    Full Text Available High altitude environments (treeline and alpine communities are particularly sensitive to climate changes, disturbances and land-use changes due to their limited tolerance and adaptability range, habitat fragmentation and habitat restriction. The current and future climate warming is anticipated to shift the tree- and timberlines upwards thus affecting alpine plant communities and causing land-cover change and fragmentation of alpine habitats. An upslope movement of some trees, shrubs and cold adapted alpine herbs as a response to the current climate warming has already been noted in many montane and subalpine regions.Four Holocene peat and lacustrine sediment sequences located between 1670 and 1918 m a.s.l. (Fig.1, in the Rodna Mountains (Northern Romania, Eastern Carpathians are used with the aim to determine: i the sensitivity of high mountain habitats to climate, fire and land use changes; ii tree- and timberline shifts: and iii the influence of landscape topography on trees and shrubs.

  4. Localities With Elevated Radiation Background in the High Karst Zone of Montenegro

    International Nuclear Information System (INIS)

    Vukotic, P.; Svrkota, R.; Andjelic, T.; Zekic, R.; Antovic, N.

    2011-01-01

    Research aimed to find localities in Montenegro with an elevated terrestrial gamma background was conducted during the period 2008-2009. For this purpose, 138 localities which have geological formations known to contain minerals with potentially high concentrations of U, Th and K, were selected throughout the country for a dosimetric survey. There are four distinctive geotectonic units in Montenegro: the Adriatic-Ionian Zone (JZ), the Budva-Cukali Zone (BZ), the High Karst Zone (VK), and the Durmitor Tectonic Unit (DTJ). The central and southern parts of Montenegro belong to the VK zone, whose geological structure is predominated by Mesozoic carbonate sediments, with occurrences of red and white bauxite formations, Triassic volcanic rocks, Paleogene flysch sediments and Quaternary sediments. In total, 38 localities belonging to the VK zone were selected for field investigations of terrestrial radiation. Knowing from earlier investigations that in Montenegro the average absorbed dose-rate in the air, 1 m above the ground, is 55 nGy/h, it was arbitrarily adopted that only localities with absorbed doses at least 50 % above this average value would be considered as having a relatively elevated radiation background. Field measurements have shown that 12 of the surveyed localities in the VK zone have such elevated dose values, five of them being with the highest dose rates in Montenegro. Among these five sites, the highest dose rate (192 nGy/h) was found at a locality which lies on andesite volcanic rock, while the other four localities (131 - 149 nGy/h) lie on bauxite deposits. Compared to the other areas in the world known to have a high natural radiation background, all of these localities in Montenegro have a moderately elevated radiation level. From the 12 localities with a relatively elevated radiation background, soil samples have been collected and analyzed by gamma spectrometry to determine activity concentrations of 40K, 232Th, 235U, 238U, 226Ra and 137Cs

  5. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  6. Switching deformation mode and mechanisms during subduction of continental crust: a case study from Alpine Corsica

    Directory of Open Access Journals (Sweden)

    G. Molli

    2017-07-01

    Full Text Available The switching in deformation mode (from distributed to localized and mechanisms (viscous versus frictional represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle–ductile transition and seismogenesis. In a subduction environment, switching in deformation mode and mechanisms and scale of localization may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone and decoupled deeper aseismic domain (stable slip. However, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in some cases for the localization of deformation and shear zone development, thus representing a case in which switching deformation mechanisms and scale and style of localization (deformation mode interact and relate to each other. This contribution analyses an example of a millimetre-scale shear zone localized by brittle precursor formed within a host granitic protomylonite. The studied structures, developed in ambient pressure–temperature (P–T conditions of low-grade blueschist facies (temperature T of ca. 300 °C and pressure P ≥ 0. 70 GPa during involvement of Corsican continental crust in the Alpine subduction. We used a multidisciplinary approach by combining detailed microstructural and petrographic analyses, crystallographic preferred orientation by electron backscatter diffraction (EBSD, and palaeopiezometric studies on a selected sample to support an evolutionary model and deformation path for subducted continental crust. We infer that the studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations, may be considered as a small-scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for

  7. SEA in local land use planning - first experience in the Alpine States

    International Nuclear Information System (INIS)

    Jiricka, Alexandra; Proebstl, Ulrike

    2008-01-01

    In the Alpine area, planning decisions can result in far-reaching consequences because of the high sensitivity of the Alpine ecosystems. This article is based on two hypotheses: (1) The Alpine states/regions were aware of their sensitive environment and therefore recognized the necessity of introducing a comparable instrument to assess local land use planning. (2) By introducing this differentiated assessment tool, namely SEA, an increase in costs may be the consequence. However, better and more transparent planning can contribute to the enhancement of planning standards. To reveal the validity of these assumptions the legal implementation in the Alpine countries Austria, Germany, Italy and France was examined as well as first practical experience resulting from the determined procedures. The results of the implementation process in the four states were compared and discussed on the basis of selected process steps of SEA

  8. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan.

    Science.gov (United States)

    Kayani, Sadaf; Ahmad, Mushtaq; Sultana, Shazia; Khan Shinwari, Zabta; Zafar, Muhammed; Yaseen, Ghulam; Hussain, Manzoor; Bibi, Tahira

    2015-04-22

    To best of our knowledge it is first quantitative ethno-botanical study from Alpine and Sub-alpine, Western Himalaya of Pakistan. The study aims to report, compare the uses and highlight the ethno-botanical significance of medicinal plants for treatment of various diseases. A total of 290 (278 males and 12 females) informants including 14 Local Traditional Healers (LTHs) were interviewed. Information was collected using semi-structured interviews, analyzed and compared by quantitative ethno-botanical indices such as Informant Consensus Factor (ICF), Relative frequency of citation (RFC), use value (UV), Fidelity Level (FL) and Jaccard index (JI). A total of 125 plant species (Gymnosperms 7 species, Monocotyledons 2 and 116 Di-cotyledons) belonging to 41 families are collected, identified and ethno-botanically assessed. The most dominant family is Ranunculaceae (20 species) followed by Rosaceae (14 species). In diseases treated, gastrointestinal tract (GIT) diseases have highest proportion (27.5%) followed by respiratory diseases (20%) in the mountain communities. The most dominant life form of plants used is herbs (78%) followed by shrubs (19%) while the most commonly used plant parts are leaves (44 reports) followed by underground part, the roots (37 reports). The highest ICF (0.68) is found for ear, nose and eye disease category followed by respiratory disorders (0.46). There are 15 medicinal plants having 100% FL. Use value (UV) and Relative frequency of citation (RFC) range from 0.03 to 0.53 and 0.04 to 0.23 respectively. In comparison, maximum similarity index is found in the studies with JI 19.52 followed by 17.39. Similarity percentage of plant uses range from 1.69% to 19.52% while dissimilarity percentage varies from 0% to 20%. The Alpine and Sub-alpine regions of Pakistan are rich in medicinal plants and still need more research exploration. On the other hand, ethno-botanical knowledge in study areas is decreasing day by day due to high emigration rates

  9. Geochemical evolution of highly alkaline and saline tank waste plumes during seepage through vadose zone sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.; Larsen, Joern T.; Serne, R. JEFFREY

    2004-01-01

    Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past

  10. Mountain Rivers and Climate Change: Analysis of hazardous events in torrents of small alpine watersheds

    Science.gov (United States)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Torrential processes like flooding, heavy bedload transport or debris flows in steep mountain channels emerge during intense, highly localized rainfall events. They pose a serious risk on the densely populated Alpine region. Hydrogeomorphic hazards are profoundly nonlinear, threshold mediated phenomena frequently causing costly damage to infrastructure and people. Thus, in the context of climate change, there is an ever rising interest in whether sediment cascades of small alpine catchments react to changing precipitation patterns and how the climate signal is propagated through the fluvial system. We intend to answer the following research questions: (i) What are critical meteorological characteristics triggering torrential events in the Eastern Alps of Austria? (ii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which factors control the internal susceptibility? (iii) Do torrential processes show an increase in magnitude and frequency or a shift in seasonality in the recent past? (iv) Which future changes can be expected under different climate scenarios? Quantifications of bedload transport in small alpine catchments are rare and often associated with high uncertainties. Detailed knowledge though exists for the Schöttlbach catchment, a 71 km2 study area in Styria in the Eastern Alps. The torrent is monitored since a heavy precipitation event resulted in a disastrous flood in July 2011. Sediment mobilisation from slopes as well as within-channel storage and fluxes are regularly measured by photogrammetric methods and sediment impact sensors (SIS). The associated hydro-meteorological conditions are known from a dense station network. Changing states of connectivity can thus be related to precipitation and internal dynamics (sediment availability, cut-and-fill cycles). The site-specific insights are then conceptualized for application to a broader scale. Therefore, a Styria wide database of torrential

  11. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)

    Science.gov (United States)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2018-02-01

    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  12. Geochronologic constraints of the uplift and metamorphism along the Alpine Fault, South Island, New Zealand

    International Nuclear Information System (INIS)

    Chamberlain, C.P.; Zeitler, P.K.; Cooper, A.F.

    1995-01-01

    Geochronological studies of pegmatites and Alpine Schist exposed east of the Alpine Fault, South Island, New Zealand, reveal a complex history beginning with magmatism and metamorphism at c. 68 m.y. ago and ending with rapid uplift and exhumation in the last 5 m.y. Pegmatites exposed in the Mataketake Range give conventional U-Pb monazite and SHRIMP ion-probe zircon ages of 68 ± 2.6 Ma and 67.9 ± 2.5 Ma, respectively. Inasmuch as petrologic and isotopic data indicate that the Alpine pegmatites are melts derived from the Alpine Schist, the age of the pegmatites suggests that, at least locally, the high-grade metamorphism is considerably younger than previously assumed. We tentatively suggest that metamorphism, in at least some areas of the Alpine Schist, may be associated with Late Cretaceous transtension rather than resulting from the consequences of collision during the Rangitata Orogeny. 40 Ar/ 39 Ar studies of hornblendes from the Alpine Schist, collected from the Haast River to the Franz Josef Glacier area, reveal highly disturbed spectra. Despite this complexity, these analyses define a systematic decrease in ages both across-strike toward the Alpine Fault (Haast River traverse) and northwards along-strike towards Mt Cook. This pattern of decreasing 40 Ar/ 39 Ar hornblende ages is also observed in lower closure temperature systems such as zircon and apatite fission-track ages. We interpret the decrease in ages toward the fault to be the result of deeper exhumation in the immediate vicinity of the Alpine Fault, whereas we interpret the northward younging of fault-proximal samples to be a result of both more recent and possibly more extensive exhumation than occurred in areas to the south. (author). 55 refs., 4 figs., 2 tabs

  13. The assessment of waters ecological state of the Crimea coastal near high-rise construction zones

    Science.gov (United States)

    Vetrova, Natalya; Ivanenko, Tatyana; Mannanov, Emran

    2018-03-01

    The relevance of our study is determined by the significant level of coastal sea waters pollution by sewage near high-rise construction zones, which determines the violation of the sanitary and hygienic of sea waters `characteristics and limits the possibilities for organizing recreational activities. The purpose of this study is to identify the ecological state of the marine aquatic area by the example of the Western Crimea near high-rise construction zones. The studies confirmed that the recreational and coastal area wastewater is intensely mixed with seawater, as a result, the pollution in the coastal strip of the sea in the area of deep water discharges sharply decrease. This happens because of water rapid rise to the surface and under the influence of the continuous movement of sea water huge masses with deep-water discharge, fresh wastewater is actively mixed with sea water. However, with no doubt, it is inadmissible to discharge sewage into the sea directly from the shore, but only at the estimated distance from the coast. The materials of the article can be useful for the management bodies and organizations involved in monitoring the quality of the coastal zone of the sea, teachers and students of higher educational institutions when assessing the ecological situation of the territories.

  14. Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand's Alpine Fault

    Science.gov (United States)

    Schuck, B.; Janssen, C.; Schleicher, A. M.; Toy, V. G.; Dresen, G.

    2018-05-01

    The Alpine Fault is capable of generating large (MW > 8) earthquakes and is the main geohazard on South Island, NZ, and late in its 250-291-year seismic cycle. To minimize its hazard potential, it is indispensable to identify and understand the processes influencing the geomechanical behavior and strength-evolution of the fault. High-resolution microstructural, mineralogical and geochemical analyses of the Alpine Fault's core demonstrate wall rock fragmentation, assisted by mineral dissolution, and cementation resulting in the formation of a fine-grained principal slip zone (PSZ). A complex network of anastomosing and mutually cross-cutting calcite veins implies that faulting occurred during episodes of dilation, slip and sealing. Fluid-assisted dilatancy leads to a significant volume increase accommodated by vein formation in the fault core. Undeformed euhedral chlorite crystals and calcite veins that have cut footwall gravels demonstrate that these processes occurred very close to the Earth's surface. Microstructural evidence indicates that cataclastic processes dominate the deformation and we suggest that powder lubrication and grain rolling, particularly influenced by abundant nanoparticles, play a key role in the fault core's velocity-weakening behavior rather than frictional sliding. This is further supported by the absence of smectite, which is reasonable given recently measured geothermal gradients of more than 120 °C km-1 and the impermeable nature of the PSZ, which both limit the growth of this phase and restrict its stability to shallow depths. Our observations demonstrate that high-temperature fluids can influence authigenic mineral formation and thus control the fault's geomechanical behavior and the cyclic evolution of its strength.

  15. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  16. Klimatska pogojenost debelinskega prirastka dreves ob slovenskih visokogorskih alpskih jezerih = Climatic conditioning or radial increments of trees near Slovenian high-mountainous Alpine lakes

    Directory of Open Access Journals (Sweden)

    Darko Ogrin

    1998-01-01

    Full Text Available Analysed by means of standard dendrochronological and dendroclimatological processes were about 100 spruce and larch samples from the lake areas of Jezera on Planina pri Jezeru, Jezera v Ledvicah and Krnsko Jezero, all in the Julian Alps. Local chronologies mainly include the period from 1920 onwards. Correlation between radial increments and climatic data confirmed certain general anticipations about the relation between climate and increments in the upper forest-line zone, and concurrently exposed the specific influence of local, including non-climatic factors on the growth which can not be satisfactory comprised in dendroclimatological analysis.

  17. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  18. Nonrandom community assembly and high temporal turnover promote regional coexistence in tropics but not temperate zone.

    Science.gov (United States)

    Freestone, Amy L; Inouye, Brian D

    2015-01-01

    A persistent challenge for ecologists is understanding the ecological mechanisms that maintain global patterns of biodiversity, particularly the latitudinal diversity gradient of peak species richness in the tropics. Spatial and temporal variation in community composition contribute to these patterns of biodiversity, but how this variation and its underlying processes change across latitude remains unresolved. Using a model system of sessile marine invertebrates across 25 degrees of latitude, from the temperate zone to the tropics, we tested the prediction that spatial and temporal patterns of taxonomic richness and composition, and the community assembly processes underlying these patterns, will differ across latitude. Specifically, we predicted that high beta diversity (spatial variation in composition) and high temporal turnover contribute to the high species richness of the tropics. Using a standardized experimental approach that controls for several confounding factors that hinder interpretation of prior studies, we present results that support our predictions. In the temperate zone, communities were more similar across spatial scales from centimeters to tens of kilometers and temporal scales up to one year than at lower latitudes. Since the patterns at northern latitudes were congruent with a null model, stochastic assembly processes are implicated. In contrast, the communities in the tropics were a dynamic spatial and temporal mosaic, with low similarity even across small spatial scales and high temporal turnover at both local and regional scales. Unlike the temperate zone, deterministic community assembly processes such as predation likely contributed to the high beta diversity in the tropics. Our results suggest that community assembly processes and temporal dynamics vary across latitude and help structure and maintain latitudinal patterns of diversity.

  19. Semaine alpine 2008 : innover (dans) les Alpes

    OpenAIRE

    Bourdeau, Philippe; Bourdeau, Philippe; Corneloup, Jean; Corneloup, Jean; Finger-Stich, Andréa; Finger-Stich, Andréa; Giraut, Frédéric; Giraut, Frédéric; Kohler, Yann; Kohler, Yann; Macchiavelli, Andrea; Macchiavelli, Andrea; Scheurer, Thomas; Scheurer, Thomas; Ullrich, Aurelia

    2009-01-01

    Ce premier dossier en ligne se penche sur une question de grande actualité : l’innovation, pour interroger les conceptions et mises en œuvre de démarches innovantes dans les contextes montagnards. Ces textes sont issus de la « Semaine alpine », qui s’est déroulée en juin 2008 à l’Argentière-La Bessée, dans les Hautes-Alpes (France). Ces « Semaines alpines », en alternance avec les « Forums alpins », rassemblent tous les deux ans des chercheurs et des acteurs locaux de l’ensemble de l’arc alp...

  20. Alpine Serpentinite Geochemistry As Key To Define Timing Of Oceanic Lithosphere Accretion To The Subduction Plate Interface

    Science.gov (United States)

    Gilio, M.; Scambelluri, M.; Agostini, S.; Godard, M.; Pettke, D. T.; Angiboust, S.

    2016-12-01

    Isotopic (Pb, Sr and B) and trace element (B, Be, As, Sb, U, Th) signatures of serpentinites are useful geochemical tools to assess element exchange and fluid-rock interactions in subduction zone settings. They help to unravel geological history and tectonic evolution of subduction serpentinites and associated meta-oceanic crust. Sedimentary-derived fluid influx within HP plate interface environments strongly enriches serpentinites in As, Sb, B, U and Th and resets their B, Sr and Pb isotopic compositions. This HP metasomatic signature is preserved during exhumation and/or released at higher PT through de-serpentinization, fueling partial melting in the sub-arc mantle and recycling such fingerprint into arc magmas. This study focuses on the subduction recrystallization, geochemical diversity and fluid-rock interaction recorded by high- to ultra-high pressure (HP, UHP) Alpine serpentinites from the subducted oceanic plate (Cignana Unit, Zermatt-Saas Complex, Monviso and Lanzo Ultramafic Massifs). The As and Sb compositions of the HP-UHP Alpine ophiolitic rocks reveal the interaction between serpentinite and crust-derived fluids during their emplacement along the plate interface. This enables to define a hypothetical architecture of the Alpine subduction interface, considering large ultramafic slices. In this scenario, the Lanzo peridotite and serpentinite retain an As-Sb composition comparable to DM and PM: i.e. they experienced little exchange with sediment-derived fluids. Lanzo thus belonged to sections of the subducting plate, afar from the plate interface. Serpentinites from the Lago di Cignana Unit and Monviso and Voltri are richer in As and Sb, showing moderate to strong interaction with sediment- and crust-derived fluids during subduction (i.e. they behaved as open systems). These serpentinite slices accreted at the plate interface and exchanged with slab-derived fluids at different depths during Alpine subduction: Voltri accreted at shallower conditions (50

  1. TUM Critical Zone Observatory, Germany

    Science.gov (United States)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  2. Climate change and mountain Grouse: recent evidences from alpine habitats

    Directory of Open Access Journals (Sweden)

    Brugnoli A

    2013-02-01

    Full Text Available Current climate change, referring as well to the observed rain and temperature patterns as to the increased frequency and intensity of extreme weather conditions, has a deep influence on biotic communities and, in particular, on mountain Grouse. These species show great adaptation to coldness, are highly sedentary and have quite “strict” ecological requirements, when it deals with habitat selection. Moreover, their alpine ranges are dangerously marginal to the main distribution areas, which increases the risk of dramatic changes in occurrence, demography and ecology. However, not all the species will predictably be exposed in the same way to the menace of climate change over the next 50-100 years. This article gives a brief review of the main data acquired in the alpine environment in this matter. It also underlines the utmost need to proceed with research and monitoring activities, in order to effectively adapt and manage conservation strategies on mid-long terms.

  3. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  5. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  6. Soil monitoring in agro-ecosystems of high mountain zone in Quindio

    International Nuclear Information System (INIS)

    Sadeghian, Siavosh; Orozco, O l; Murgueitio, E

    2001-01-01

    Were evaluated soil characteristics in 4 common agro-ecosystems of high mountain zone of Quindio department, soil forest exhibit better indicators that others systems. Low macro porosity and hydraulic conductivity were consequences more important of cattle ranching systems. In pinus plantations were registered lower value of organic matter, pH, interchanging bases, gravimetric moisture and microbial activity CO 2 . As a result of pinus establishment on pasture ground increase drainable porosity and hydraulic conductivity. In granadilla cultivation were lower organism diversity and structural stability

  7. Distribution of nonionic organic compounds (highly volatile chlorinated hydrocarbons) in the unsaturated zone

    Energy Technology Data Exchange (ETDEWEB)

    Grathwohl, P.

    1988-01-01

    Nonpolar pollutants, e.g. highly volatile chlorinated hydrocarbons (HVCH) are more or less equally distributed among all three soil phases (solids, water, air) in the unsaturated zone. The sorption of HVCH on soil solids depends on the amount and type of organic matter in the soil. For wet material an additional sorption on mineral surfaces can be neglected, since all possible sites for sorption are occupied by water. Provided the partition-coefficients or sorption-constants are known the contamination of the whole system can be evaluated from the pollutant concentration in the soil air; in addition it is possible to estimate a groundwater risk.

  8. Identifying key conservation threats to Alpine birds through expert knowledge

    Science.gov (United States)

    Pedrini, Paolo; Brambilla, Mattia; Rolando, Antonio; Girardello, Marco

    2016-01-01

    Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds). For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community. PMID:26966659

  9. Identifying key conservation threats to Alpine birds through expert knowledge

    Directory of Open Access Journals (Sweden)

    Dan E. Chamberlain

    2016-02-01

    Full Text Available Alpine biodiversity is subject to a range of increasing threats, but the scarcity of data for many taxa means that it is difficult to assess the level and likely future impact of a given threat. Expert opinion can be a useful tool to address knowledge gaps in the absence of adequate data. Experts with experience in Alpine ecology were approached to rank threat levels for 69 Alpine bird species over the next 50 years for the whole European Alps in relation to ten categories: land abandonment, climate change, renewable energy, fire, forestry practices, grazing practices, hunting, leisure, mining and urbanization. There was a high degree of concordance in ranking of perceived threats among experts for most threat categories. The major overall perceived threats to Alpine birds identified through expert knowledge were land abandonment, urbanization, leisure and forestry, although other perceived threats were ranked highly for particular species groups (renewable energy and hunting for raptors, hunting for gamebirds. For groups of species defined according to their breeding habitat, open habitat species and treeline species were perceived as the most threatened. A spatial risk assessment tool based on summed scores for the whole community showed threat levels were highest for bird communities of the northern and western Alps. Development of the approaches given in this paper, including addressing biases in the selection of experts and adopting a more detailed ranking procedure, could prove useful in the future in identifying future threats, and in carrying out risk assessments based on levels of threat to the whole bird community.

  10. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    Science.gov (United States)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during

  11. Quasi-kinoform type multilayer zone plate with high diffraction efficiency for high-energy X-rays

    International Nuclear Information System (INIS)

    Tamura, S; Yasumoto, M; Kamijo, N; Uesugi, K; Takeuchi, A; Terada, Y; Suzuki, Y

    2009-01-01

    Fresnel zone plate (FZP) with high diffraction efficiency leads to high performance X-ray microscopy with the reduction of the radiation damage to biological specimens. In order to attain high diffraction efficiency in high energy X-ray region, we have developed multilevel-type (6-step) multilayer FZPs with the diameter of 70 micron. The efficiencies of two FZPs were evaluated at the BL20XU beamline of SPring-8. For one FZP, the peak efficiency for the 1st-order diffraction of 51% has been obtained at 70 keV. The efficiencies higher than 40% have been achieved in the wide energy range of 70-90 keV. That for the 2nd-order diffraction of 46% has been obtained at 37.5 keV.

  12. Mechanical versus kinematical shortening reconstructions of the Zagros High Folded Zone (Kurdistan region of Iraq)

    Science.gov (United States)

    Frehner, Marcel; Reif, Daniel; Grasemann, Bernhard

    2012-06-01

    This paper compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross sections in collision orogens. The studied area and the reconstructed NE-SW trending, 55.5 km long cross section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan region of Iraq. The present-day geometry of the cross section has been constructed from field as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip domain method to 11%-15%. Then the same cross section is used in a numerical finite element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian versus power law viscous rheology or the presence of a basement, affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.

  13. Detailed seismotectonic analysis of Sumatra subduction zone revealed by high precision earthquake location

    Science.gov (United States)

    Sagala, Ricardo Alfencius; Harjadi, P. J. Prih; Heryandoko, Nova; Sianipar, Dimas

    2017-07-01

    Sumatra was one of the most high seismicity regions in Indonesia. The subduction of Indo-Australian plate beneath Eurasian plate in western Sumatra contributes for many significant earthquakes that occur in this area. These earthquake events can be used to analyze the seismotectonic of Sumatra subduction zone and its system. In this study we use teleseismic double-difference method to obtain more high precision earthquake distribution in Sumatra subduction zone. We use a 3D nested regional-global velocity model. We use a combination of data from both of ISC (International Seismological Center) and BMKG (Agency for Meteorology Climatology and Geophysics, Indonesia). We successfully relocate about 6886 earthquakes that occur on period of 1981-2015. We consider that this new location is more precise than the regular bulletin. The relocation results show greatly reduced of RMS residual of travel time. Using this data, we can construct a new seismotectonic map of Sumatra. A well-built geometry of subduction slab, faults and volcano arc can be obtained from the new bulletin. It is also showed that at a depth of 140-170 km, there is many events occur as moderate-to-deep earthquakes, and we consider about the relation of the slab's events with volcanic arc and inland fault system. A reliable slab model is also built from regression equation using new relocated data. We also analyze the spatial-temporal of seismotectonic using b-value mapping that inspected in detail horizontally and vertically cross-section.

  14. Frequencies of micronuclei in bank voles from zones of high radiation at Chernobyl, Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, B.E.; Baker, R.J.

    2000-06-01

    A population of Clethrionomys glareolus (bank vole) from a highly radioactive area within the Chernobyl, Ukraine exclusion zone was sampled in June 1997 and in June and October 1998. Internal radiation doses from radiocesium were estimated to be as high as 8 rads/d. Total dose, which takes into account the internal dose form radiostrontium and the surrounding environment, was estimated to be 15 to 20 rads/d. In contrast, individuals from a reference population lying outside of the exclusion zone registered negligible levels of contamination. The authors used the micronucleus test in a double-blind study to analyze blood samples from 58 individuals. They scored more than 600,000 polychromatic erythrocytes (PCEs) but could not reject the null hypothesis that the frequency of micronucleated PCEs in voles exposed to radiation was equal to the frequency in unexposed voles. Results of their study stand in sharp contrast to earlier reports of increased frequencies of micronuclei in rodents exposed to fallout of the Chernobyl accident, but with radiation doses that were orders of magnitude lower than those reported here. Radio resistance and experimental methods are possible explanations for these differences in the results.

  15. Monitoring of high temperature zone by resistivity tomography during in-situ heater test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2008-01-01

    In-situ heater test has been conducted to evaluate the influence of high temperature in an underground facility at a depth of 50 m. Resistivity monitoring is thought to be effective to map the extent of the high temperature zone. So we have conducted resistivity tomography during the heater test. As a result, low resistivity zone was appeared near the heated area as starting the heating, and the zone was expanded. Resistivity of rock is proportional to resistivity of pore water. It is known that pore water resistivity decreases as the temperature rise. This suggests that high temperature zone is detected and spatial distribution of temperature can be mapped by resistivity tomography. (author)

  16. Geochemical Processes Controlling Migration of High Level Wastes in Hanford's Vadose Zone

    International Nuclear Information System (INIS)

    Zachara, John M.; Serne, R. Jeffrey; Freshley, Mark D.; Mann, Frederick M.; Anderson, Frank J.; Wood, Marcus I.; Jones, Thomas E.; Myers, David A.

    2007-01-01

    High level nuclear wastes (HLW) from Hanford's plutonium reprocessing are stored in massive, buried, single-shell tanks in eighteen tank farms. The wastes were initially hot because of radioactive decay, and many exhibited extreme chemical character in terms of pH, salinity, and radionuclide concentration. At present, 67 of the 149 single shell tanks are suspected to have released over 1.9 million L of tank waste to the vadose zone, with most leak events occurring between 1950 and 1975. Boreholes have been placed through the largest vadose zone plumes to define the extent of contaminant migration, and to develop conceptual models of processes governing the transformation, retardation, and overall transport of tank waste residuals. Laboratory studies with sediments so collected have shown that ion exchange, precipitation and dissolution, and surface complexation reactions have occurred between the HLW and subsurface sediments moderating their chemical character, and retarding the migration of select contaminants. Processes suspected to facilitate the far-field migration of immobile radionuclides including stable aqueous complex formation and mobile colloids were found to be potentially operative, but unlikely to occur in the field, with the exception of cyanide-facilitated migration of 60Co. Fission product oxyanions are the most mobile of tank waste constituents because their adsorption is suppressed by large concentrations of waste anions; the vadose zone clay fraction is negative in surface charge; and, unlike Cr, their reduced forms are unstable in oxidizing environments. Reaction/process-based transport modeling is beginning to be used for predictions of future contaminant mobility and plume evolution

  17. In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat

    Science.gov (United States)

    Oskin, Michael; Burbank, Doug

    2005-01-01

    Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.

  18. Can We Model the Scenic Beauty of an Alpine Landscape?

    Directory of Open Access Journals (Sweden)

    Erich Tasser

    2013-03-01

    Full Text Available During the last decade, agriculture has lost its importance in many European mountain regions and tourism, which benefits from attractive landscapes, has become a major source of income. Changes in landscape patterns and elements might affect scenic beauty and therefore the socio-economic welfare of a region. Our study aimed at modeling scenic beauty by quantifying the influence of landscape elements and patterns in relationship to distance. Focusing on Alpine landscapes in South and North Tyrol, we used a photographic questionnaire showing different landscape compositions. As mountain landscapes offer long vistas, we related scenic beauty to different distance zones. Our results indicate that the near zone contributes by 64% to the valuation of scenic beauty, the middle zone by 22%, and the far zone by 14%. In contrast to artificial elements, naturalness and diversity increased scenic beauty. Significant differences between different social groups (origin, age, gender, cultural background occurred only between the local population and tourists regarding great landscape changes. Changes towards more homogenous landscapes were perceived negatively, thus political decision makers should support the conservation of the cultural landscape.

  19. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex.

    Directory of Open Access Journals (Sweden)

    Christine Grossen

    2014-06-01

    Full Text Available The major histocompatibility complex (MHC is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex. At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2, Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus. We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8% to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.

  20. Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex

    Science.gov (United States)

    Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel

    2014-01-01

    The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814

  1. Development of a high-resolution electron-beam profile monitor using Fresnel zone plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Muto, Toshiya; Hayano, Hitoshi

    2004-01-01

    We present a high-resolution and real-time beam profile monitor using Fresnel zone plates (FZPs) developed in the KEK-ATF damping ring. The monitor system has an X-ray imaging optics with two FZPs. In this monitor, the synchrotron radiation from the electron beam at the bending magnet is monochromatized by a crystal monochromator and the transverse electron beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. The expected spatial resolution for the selected photon energy of 3.235 keV is less than 1 μm. With the beam profile monitor, we succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. It is greatly expected that the beam profile monitor will be used in high-brilliance light sources and low-emittance accelerators. (author)

  2. The Rofental: a high Alpine research basin (1890–3770 m a.s.l. in the Ötztal Alps (Austria with over 150 years of hydrometeorological and glaciological observations

    Directory of Open Access Journals (Sweden)

    U. Strasser

    2018-01-01

    Full Text Available A comprehensive hydrometeorological and glaciological data set is presented, originating from a multitude of glaciological, meteorological, hydrological and laser scanning recordings at research sites in the Rofental (1891–3772 m a.s.l., Ötztal Alps, Austria. The data sets span a period of 150 years and hence represent a unique time series of rich high-altitude mountain observations. Their collection was originally initiated to support scientific investigation of the glaciers Hintereisferner, Kesselwandferner and Vernagtferner. Annual mass balance, glacier front variation, flow velocities and photographic records of the status of these glaciers were recorded. Later, additional measurements of meteorological and hydrological variables were undertaken, and over time a number of autonomous weather stations and runoff gauges were brought into operation; the available data now comprise records of temperature, relative humidity, short- and longwave radiation, wind speed and direction, air pressure, precipitation, and river water levels. Since 2001, a series of distributed (airborne and terrestrial laser scans is available, along with associated digital surface models. In 2016 a permanent terrestrial laser scanner was installed on Im hintern Eis (3244 m a.s.l. to continuously observe almost the entire area of Hintereisferner. The data and research undertaken at the sites of investigation in the Rofental area enable combined research of cryospheric, atmospheric and hydrological processes in complex terrain, and support the development of several state-of-the-art glacier mass balance and hydroclimatological models. The institutions taking part in the Rofental research framework promote their site in several international research initiatives. In INARCH (International Network for Alpine Research Catchment Hydrology, http://words.usask.ca/inarch, all original research data sets are now provided to the scientific community according to the

  3. The Rofental: a high Alpine research basin (1890-3770 m a.s.l.) in the Ötztal Alps (Austria) with over 150 years of hydrometeorological and glaciological observations

    Science.gov (United States)

    Strasser, Ulrich; Marke, Thomas; Braun, Ludwig; Escher-Vetter, Heidi; Juen, Irmgard; Kuhn, Michael; Maussion, Fabien; Mayer, Christoph; Nicholson, Lindsey; Niedertscheider, Klaus; Sailer, Rudolf; Stötter, Johann; Weber, Markus; Kaser, Georg

    2018-01-01

    A comprehensive hydrometeorological and glaciological data set is presented, originating from a multitude of glaciological, meteorological, hydrological and laser scanning recordings at research sites in the Rofental (1891-3772 m a.s.l., Ötztal Alps, Austria). The data sets span a period of 150 years and hence represent a unique time series of rich high-altitude mountain observations. Their collection was originally initiated to support scientific investigation of the glaciers Hintereisferner, Kesselwandferner and Vernagtferner. Annual mass balance, glacier front variation, flow velocities and photographic records of the status of these glaciers were recorded. Later, additional measurements of meteorological and hydrological variables were undertaken, and over time a number of autonomous weather stations and runoff gauges were brought into operation; the available data now comprise records of temperature, relative humidity, short- and longwave radiation, wind speed and direction, air pressure, precipitation, and river water levels. Since 2001, a series of distributed (airborne and terrestrial) laser scans is available, along with associated digital surface models. In 2016 a permanent terrestrial laser scanner was installed on Im hintern Eis (3244 m a.s.l.) to continuously observe almost the entire area of Hintereisferner. The data and research undertaken at the sites of investigation in the Rofental area enable combined research of cryospheric, atmospheric and hydrological processes in complex terrain, and support the development of several state-of-the-art glacier mass balance and hydroclimatological models. The institutions taking part in the Rofental research framework promote their site in several international research initiatives. In INARCH (International Network for Alpine Research Catchment Hydrology, http://words.usask.ca/inarch), all original research data sets are now provided to the scientific community according to the Creative Commons Attribution

  4. Ecological risk caused by land use change in the coastal zone: a case study in the Yellow River Delta High-Efficiency Ecological Economic Zone

    International Nuclear Information System (INIS)

    Di, X H; Wang, Y D; Hou, X Y

    2014-01-01

    China's coastal zone plays an important role in ecological services production and social-economic development; however, extensive and intensive land resource utilization and land use change have lead to high ecological risk in this area during last decade. Regional ecological risk assessment can provide fundamental knowledge and scientific basis for better understanding of the relationship between regional landscape ecosystem and human activities or climate changes, facilitating the optimization strategy of land use structure and improving the ecological risk prevention capability. In this paper, the Yellow River Delta High-Efficiency Ecological Economic Zone is selected as the study site, which is undergoing a new round of coastal zone exploitation and has endured substantial land use change in the past decade. Land use maps of 2000, 2005 and 2010 were generated based on Landsat images by visual interpretation method, and the ecological risk index was then calculated. The index was 0.3314, 0.3461 and 0.3176 in 2000, 2005 and 2010 respectively, which showed a positive transition of regional ecological risk in 2005

  5. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  6. Visualization of the heat release zone of highly turbulent premixed jet flames

    Science.gov (United States)

    Lv, Liang; Tan, Jianguo; Zhu, Jiajian

    2017-10-01

    Visualization of the heat release zone (HRZ) of highly turbulent flames is significantly important to understand the interaction between turbulence and chemical reactions, which is the foundation to design and optimize engines. Simultaneous measurements of OH and CH2O using planar laser-induced fluorescence (PLIF) were performed to characterize the HRZ. A well-designed piloted premixed jet burner was employed to generate four turbulent premixed CH4/air jet flames, with different jet Reynolds numbers (Rejet) ranging from 4900 to 39200. The HRZ was visualized by both the gradient of OH and the pixel-by-pixel product of OH and CH2O. It is shown that turbulence has an increasing effect on the spatial structure of the flame front with an increasing height above the jet exit for the premixed jet flames, which results in the broadening of the HRZ and the increase of the wrinkling. The HRZ remains thin as the Rejet increases, whereas the preheat zone is significantly broadened and thickened. This indicates that the smallest turbulent eddies can only be able to enter the flame front rather than the HRZ in the present flame conditions. The flame quenching is observed with Rejet = 39200, which may be due to the strong entrainment of the cold air from outside of the burned gas region.

  7. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.

    Science.gov (United States)

    Sarkar, Sankha S; Solak, Harun H; David, Christian; van der Veen, J Friso

    2014-01-27

    Fresnel zone plates (FZPs) play an essential role in high spatial resolution x-ray imaging and analysis of materials in many fields. These diffractive lenses are commonly made by serial writing techniques such as electron beam or focused ion beam lithography. Here we show that pinhole diffraction holography has potential to generate FZP patterns that are free from aberrations and imperfections that may be present in alternative fabrication techniques. In this presented method, FZPs are fabricated by recording interference pattern of a spherical wave generated by diffraction through a pinhole, illuminated with coherent plane wave at extreme ultraviolet (EUV) wavelength. Fundamental and practical issues involved in formation and recording of the interference pattern are considered. It is found that resolution of the produced FZP is directly related to the diameter of the pinhole used and the pinhole size cannot be made arbitrarily small as the transmission of EUV or x-ray light through small pinholes diminishes due to poor refractive index contrast found between materials in these spectral ranges. We also find that the practical restrictions on exposure time due to the light intensity available from current sources directly imposes a limit on the number of zones that can be printed with this method. Therefore a trade-off between the resolution and the FZP diameter exists. Overall, we find that this method can be used to fabricate aberration free FZPs down to a resolution of about 10 nm.

  8. Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park

    Science.gov (United States)

    Palazón, L.; Gaspar, L.; Latorre, B.; Blake, W. H.; Navas, A.

    2014-09-01

    Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood

  9. Recent crustal movements and geophysical interpretation of geodynamic processes in the Alpine mountain belt

    Science.gov (United States)

    Gubler, E.; Kahle, H. G.

    It is a well-known fact that the surface phenomena of global plate tectonics are most convincingly seen and felt along the boundaries of the moving lithospheric plates. These boundaries are morphologically expressed as mild-ocean ridges or as subduction zones such as deep sea trenches or Himalayan/Alpine fold belts, the latter of which are the subject of this paper. On a global scale, there are kinematic models giving an idea of what kind of rates can be expected. This is due to the fact that magnetic sea floor spreading anomalies are missing in the Alpine environment. On the other hand, the structure and kinematics of the Apulian microplate are of major interest to Switzerland because its northern boundary seems to be formed by the Alpine chain. In Switzerland there are some 14 special study groups actively working in this field of geodynamics. This paper is restricted to the geodetic and gravity studies. With emphasis on the assumed northern boundary of the Apulian microplate, the kinematics of relative plate movements in the Alpine area were investigated. A simplified tectonic map of this region is shown.

  10. Vertical distribution of the alpine lepidoptera in the Carpathians and in the Balkan peninsula in relation to the zonation of the vegetation

    Directory of Open Access Journals (Sweden)

    Varga, Z. S.

    2001-12-01

    Full Text Available The vertical distribution of arctic-alpine, alpine and Balkanic oreal species is discussed in connection with the vertical zonation of the vegetation, climatic conditions, substrate, type of alpine vegetation and co-occurrences of related species. Arctic-alpine species have mostly a Eurasian distribution and occur in the Arctic and in the alpine and subnival zones of the Central and Southern European high mountains with expressed glacial morphology and alpine vegetation. Alpine species are mostly European species and they are connected to the alpine and subnival zones of Central and South European high mountains. Balkanic oreal species are mostly southeast European species which in some cases occur locally in the southern parts of the Alps and Carpathians. Balkanic oreal species are most numerous at the timberline, preferred habitats being grasslands in the upper subalpine belts. The more diverse habitats of limestone mountains are usually home to a higher number of alpine (s. l. species than that of the mountains consisting of acidic rocks. The apparent petrophily of several alpine and tundro-alpine species correlates with their sheltering behaviour. The vertical distribution of butterflies is probably influenced also by the competition of closely related species. Closely related species often show some types of habitat partitioning. Data on species numbers and vertical distribution of species are presented in the tables 1-4.

    [de]
    Die vertikale Verbreitung der arktisch-alpinen, alpinen und balkanischen Orealarten wird hier im Zusammenhang mit den vertikalen Stufenfolgen der Vegetation, den klimatischen Verhdltnissen, den geologischen und geomorphologischen Bedingungen, den Vegetationstypen und dem Vorkommen der verwandten Arten behandelt. Die arktisch-alpinen Arten haben meist eine eurasiatische Verbreitung, und sie kommen sowohl in derArktis und in den alpinen-subnivalen Stufen der mittel- und südeuropaischen Hochgebirge vor. Die

  11. Cost reduction for large turbine generator Pedestal in high seismic zone

    International Nuclear Information System (INIS)

    Sawhney, P.S.; Irani, P.; Pusheck, B.N.

    1985-01-01

    Turbine Generator Pedestals have generally been designed using reinforced concrete. For present day large turbine generators (1100 MWe class and above) with tall (about 80 feet) pedestals, the amount of reinforcing steel becomes quite large, especially for plants in high seismic zones. With the prime objective of cost reduction, an approach using steel/concrete composite design has been studied for a large BWR Turbine Generator pedestal with 0.3g peak ground acceleration. Large prefabricated steel modules were adopted for composite design and simplified construction. Design was based on the ACI and AISC codes. Costs and schedules were developed and compared with those for a conventionally designed reinforced concrete pedestal. Composite design was found to give considerable cost and schedule advantage over the conventional reinforced concrete design

  12. Seismic qualification of a commercial grade emergency diesel generator system in high seismic zones

    International Nuclear Information System (INIS)

    Khan, Mohsin R.; Chen, Wayne W.H.; Chu, Winnie S.

    2004-01-01

    The paper presents the seismic qualification of a commercially procured emergency diesel generator (EDG) system for use in a nuclear power plant. Response spectrum analyses of finite element models, validated using in situ vibration test data, were performed to qualify the skid and floor mounted mechanical components whose functional capacity and structural integrity can be analyzed. Time history analyses of these models were also performed to obtain the amplified response spectra for seismic testing of small valves, electrical and electro-mechanical components whose functional capacity can not be analyzed to establish the seismic qualification. The operational loads were obtained by in-plant vibration monitoring. Full scale shake table testing was performed for auxiliary electrical cabinets. It is concluded that with some minor structural modifications, a commercial grade EDG system can be qualified for safety-related applications in nuclear power plants located in high seismic zones. (author)

  13. Vadose zone characterization of highly radioactive contaminated soil at the Hanford Site

    International Nuclear Information System (INIS)

    Buckmaster, M.A.

    1993-05-01

    The Hanford Site in south-central Washington State contains over 1500 identified waste sites and numerous groundwater plumes that will be characterized and remediated over the next 30 years. As a result of the Hanford Federal Facility Agreement and Consent Order, the US Department of Energy has initiated a remedial investigation/feasibility study at the 200-BP-1 operable unit. The 200-BP-1 remedial investigation is the first Comprehensive Environmental Response, Compensation, and Liability Act of 1980 investigation on the Hanford Site that involves drilling into highly radioactive and chemically contaminated soils. The initial phase of site characterization was designed to assess the nature and extent of contamination associated with the source waste site within the 200-BP-1 operable unit. Characterization activities consisted of drilling and sampling the waste site, chemical and physical analysis of samples, and development of a conceptual vadose zone model. Predicted modeling concentrations compared favorably to analytical data collected during the initial characterization activities

  14. Discoscopic Findings of High Signal Intensity Zones on Magnetic Resonance Imaging of Lumbar Intervertebral Discs

    Directory of Open Access Journals (Sweden)

    Kosuke Sugiura

    2014-01-01

    Full Text Available A 32-year-old man underwent radiofrequency thermal annuloplasty (TA with percutaneous endoscopic discectomy (PED under local anesthesia for chronic low back pain. His diagnosis was discogenic pain with a high signal intensity zone (HIZ in the posterior corner of the L4-5 disc. Flexion pain was sporadic, and steroid injection was given twice for severe pain. After the third episode of strong pain, PED and TA were conducted. The discoscope was inserted into the posterior annulus and revealed a migrated white nucleus pulposus which was stained blue. Then, after moving the discoscope to the site of the HIZ, a migrated slightly red nucleus pulposus was found, suggesting inflammation and/or new vessels penetrating the mass. After removing the fragment, the HIZ site was ablated by TA. To our knowledge, this is the first report of the discoscopic findings of HIZ of the lumbar intervertebral disc.

  15. High efficiency processing for reduced amplitude zones detection in the HRECG signal

    Science.gov (United States)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.

    2016-04-01

    Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.

  16. Natural analogues for processes affecting disposal of high-level radioactive waste in the vadose zone

    Science.gov (United States)

    Stuckless, J. S.

    2003-04-01

    Natural analogues can contribute to understanding and predicting the performance of subsystems and processes affecting a mined geologic repository for high-level radioactive waste in several ways. Most importantly, analogues provide tests for various aspects of systems of a repository at dimensional scales and time spans that cannot be attained by experimental study. In addition, they provide a means for the general public to judge the predicted performance of a potential high-level nuclear waste repository in familiar terms such that the average person can assess the anticipated long-term performance and other scientific conclusions. Hydrologists working on the Yucca Mountain Project (currently the U.S. Department of Energy's Office of Repository Development) have modeled the flow of water through the vadose zone at Yucca Mountain, Nevada and particularly the interaction of vadose-zone water with mined openings. Analogues from both natural and anthropogenic examples confirm the prediction that most of the water moving through the vadose zone will move through the host rock and around tunnels. This can be seen both quantitatively where direct comparison between seepage and net infiltration has been made and qualitatively by the excellent degree of preservation of archaeologic artifacts in underground openings. The latter include Paleolithic cave paintings in southwestern Europe, murals and artifacts in Egyptian tombs, painted subterranean Buddhist temples in India and China, and painted underground churches in Cappadocia, Turkey. Natural analogues also suggest that this diversion mechanism is more effective in porous media than in fractured media. Observations from natural analogues are also consistent with the modeled decrease in the percentage of infiltration that becomes seepage with a decrease in amount of infiltration. Finally, analogues, such as tombs that have ben partially filled by mud flows, suggest that the same capillary forces that keep water in the

  17. Aortic Dissection Type A in Alpine Skiers

    Directory of Open Access Journals (Sweden)

    Thomas Schachner

    2013-01-01

    Full Text Available Patients and Methods. 140 patients with aortic dissection type A were admitted for cardiac surgery. Seventy-seven patients experienced their dissection in the winter season (from November to April. We analyzed cases of ascending aortic dissection associated with alpine skiing. Results. In 17 patients we found skiing-related aortic dissections. Skiers were taller (180 (172–200 cm versus 175 (157–191 cm, and heavier (90 (68–125 kg versus 80 (45–110 kg, than nonskiers. An extension of aortic dissection into the aortic arch, the descending thoracic aorta, and the abdominal aorta was found in 91%, 74%, and 69%, respectively, with no significant difference between skiers and nonskiers. Skiers experienced RCA ostium dissection requiring CABG in 17.6% while this was true for 5% of nonskiers (. Hospital mortality of skiers was 6% versus 13% in nonskiers (. The skiers live at an altitude of 170 (0–853 m.a.s.l. and experience their dissection at 1602 (1185–3105; m.a.s.l. In 82% symptom start was during recreational skiing without any trauma. Conclusion. Skiing associated aortic dissection type A is usually nontraumatic. The persons affected live at low altitudes and practice an outdoor sport at unusual high altitude at cold temperatures. Postoperative outcome is good.

  18. Aortic Dissection Type A in Alpine Skiers

    Science.gov (United States)

    Schachner, Thomas; Fischler, Nikolaus; Dumfarth, Julia; Bonaros, Nikolaos; Krapf, Christoph; Schobersberger, Wolfgang; Grimm, Michael

    2013-01-01

    Patients and Methods. 140 patients with aortic dissection type A were admitted for cardiac surgery. Seventy-seven patients experienced their dissection in the winter season (from November to April). We analyzed cases of ascending aortic dissection associated with alpine skiing. Results. In 17 patients we found skiing-related aortic dissections. Skiers were taller (180 (172–200) cm versus 175 (157–191) cm, P = 0.008) and heavier (90 (68–125) kg versus 80 (45–110) kg, P = 0.002) than nonskiers. An extension of aortic dissection into the aortic arch, the descending thoracic aorta, and the abdominal aorta was found in 91%, 74%, and 69%, respectively, with no significant difference between skiers and nonskiers. Skiers experienced RCA ostium dissection requiring CABG in 17.6% while this was true for 5% of nonskiers (P = 0.086). Hospital mortality of skiers was 6% versus 13% in nonskiers (P = 0.399). The skiers live at an altitude of 170 (0–853) m.a.s.l. and experience their dissection at 1602 (1185–3105; P < 0.001) m.a.s.l. In 82% symptom start was during recreational skiing without any trauma. Conclusion. Skiing associated aortic dissection type A is usually nontraumatic. The persons affected live at low altitudes and practice an outdoor sport at unusual high altitude at cold temperatures. Postoperative outcome is good. PMID:23971024

  19. Glucose homeostasis and cardiovascular disease biomarkers in older alpine skiers

    DEFF Research Database (Denmark)

    Dela, F; Niederseer, David; Patsch, Wolfgang

    2011-01-01

    Alpine skiing and ski training involves elements of static and dynamic training, and may therefore improve insulin sensitivity. Healthy men and women who where beginners/intermediate level of alpine skiing, were studied before (Pre) and immediately after (Post) 12 weeks of alpine ski training. Af...

  20. Larch dwarf mistletoe not found on alpine larch

    Science.gov (United States)

    Robert L. Mathiasen; Brian W. Geils; Clinton E. Carlson; Frank G. Hawksworth

    1995-01-01

    Reports of larch dwarf mistletoe parasitizing alpine larch are based on two collections of this host/parasite combination made by J.R. Weir in Montana during the early 1900s. Examination of host material from these collections indicates that the host is western larch, not alpine larch as previously reported. Attempts to locate larch dwarf mistletoe on alpine larch were...

  1. High-radiation zone design of the FMIT high-density beam transport

    International Nuclear Information System (INIS)

    Creek, K.O.; Liska, D.J.; King, J.D.; Cole, T.R.; Cimabue, A.G.; Robeson, L.P.; Harvey, A.

    1981-03-01

    The Fusion Materials Irradiation Test (FMIT) deuteron linac, operating at 35 MeV and 100 mA continuous duty, is expected to spill 3 μA/m and to lose 10 μA at specific bending-magnet positions. The major impact of this spill will be felt in the High-Energy Beam Transport (HEBT), where many beam-line components must be maintained. A modular design concept, that uses segmented termination panels remotely located from the modules, is being employed. Radiation-hardened quadrupoles can be opened, clam-shell fashion, to release the water-cooled beam tube r replacement if there is beam damage or lithium contamination from the target. Termination panels contain electrical, water, and instrumentation fittings to service the module, and are positioned to allow room for neutron-absorbing shielding between the beamline and the panel. The modular construction allows laboratory prealignment and check-out of all components on a structural carriage and is adaptable to supporting gamma shields. Proper choice of beam tube materials is essential for controlling activation caused by beam spill

  2. Retrieval of free-tropospheric BrO from MAX-DOAS measurements at the high-altitude alpine station of Jungfraujoch

    Science.gov (United States)

    Van Roozendael, Michel; Hendrick, Francois; De Smedt, Isabelle; Fayt, Caroline; Gielen, Clio; Hermans, Christian; Pinardi, Gaia; Tack, Frederik; Theys, Nicolas

    2014-05-01

    There are currently many open questions about the sources, transport, and photochemical processing that control the abundance of BrO and its precursors in the global troposphere. Recent experimental studies based on various platforms and instrumentations indicate contrasting results reflecting the scarcity of the measurements and the experimental challenge of quantifying the typically low abundance levels of BrO. Modeling studies indicate however that the presence of only 1-2 pptv levels of reactive bromine has important consequences for free tropospheric ozone with indirect climate implications. The MAX-DOAS technique offers high sensitivity for near-surface trace gas measurements and it is well suited to BrO detection. From a high altitude site such as the Jungfraujoch which is located in the Swiss Alps at about 3600 m ASL, the free-troposphere can be sampled under favourable conditions. We report on attempts to quantify the free tropospheric BrO level based on MAXDOAS measurements performed by BIRA-IASB in the period from June 2010 until December 2012. Retrievals are based on the DOAS method followed by vertical profile inversion using an Optimal Estimation scheme. The possible sources of bias that can affect the spectral retrieval of BrO are carefully investigated and various sensitivity tests are performed to assess the stability of the inversion. Results are compared with independent estimates of the mid-latitude tropospheric BrO based on satellite measurements.

  3. Isotope Investigations at an Alpine Karst Aquifer by Means of On-Site Measurements with High Time Resolution and Near Realtime Data Availability

    Energy Technology Data Exchange (ETDEWEB)

    Leis, A.; Plieschnegger, M.; Harum, T.; Stadler, H. [Joanneum Research, Institute for Water, Energy and Resources, Graz (Austria); Schmitt, R. [Meteorologie Consult GmbH, Koenigstein (Germany); Van Pelt, A. [Picarro Inc., Sunnyvale, California (United States); Zerobin, W. [Vienna Waterworks, Vienna (Austria)

    2013-07-15

    For a lot of hydrological isotope investigations it would be helpful to conduct on-site measurements with a very high time resolution. Recent developments of a highly sensitive gas analyser on the basis of so called 'Cavity Ring Down Spectroscopy' (CRDS) has lead to a new class of on-site capable measuring devices, the wavelength scanned (WS)-CRDS. In the framework of a new project it succeeded for the first time in measuring the stable environmental isotopes of the water on-site and on-line at one of the most important karst springs in Austria. It was necessary, to adapt the WS-CRDS system for on-site application. Particularly the sampling device had to be adopted to get samples from the flow of the spring to the WS-CDRS system in real time. The system was installed at the spring during snowmelt with measuring intervals of fewer than 10 minutes. This measuring device was combined with a near real time data transmission system, based on LEO satellites. This allowed a dissemination of the data via the internet and, for registered users, also a download possibility of the data. (author)

  4. Population Spatial Dynamics of Larix potaninii in Alpine Treeline Ecotone in the Eastern Margin of the Tibetan Plateau, China

    OpenAIRE

    Jia’nan Cui; Jihong Qin; Hui Sun

    2017-01-01

    The high-altitude treeline is known to be sensitive to climate variability, and is thus considered as a bio-monitoring indicator of climate change. However, our understanding of the population dynamics and the cumulative climate-change effects on the alpine treeline ecotone in recent decades is limited. Here, we investigated the population dynamics of Larix potainii on the south- and north-facing slopes in the alpine treeline ecotone in the eastern margin of the Tibetan Plateau, China, includ...

  5. Attributing the effects of climate on phenology change suggests high sensitivity in coastal zones

    Science.gov (United States)

    Seyednasrollah, B.; Clark, J. S.

    2015-12-01

    The impact of climate change on spring phenology depends on many variables that cannot be separated using current models. Phenology can influence carbon sequestration, plant nutrition, forest health, and species distributions. Leaf phenology is sensitive to changes of environmental factors, including climate, species composition, latitude, and solar radiation. The many variables and their interactions frustrate efforts to attribute variation to climate change. We developed a Bayesian framework to quantify the influence of environment on the speed of forest green-up. This study presents a state-space hierarchical model to infer and predict change in forest greenness over time using satellite observations and ground measurements. The framework accommodates both observation and process errors and it allows for main effects of variables and their interactions. We used daily spaceborne remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify temporal variability in the enhanced vegetation index (EVI) along a habitat gradient in the Southeastern United States. The ground measurements of meteorological parameters are obtained from study sites located in the Appalachian Mountains, the Piedmont and the Atlantic Coastal Plain between years 2000 and 2015. Results suggest that warming accelerates spring green-up in the Coastal Plain to a greater degree than in the Piedmont and Appalachian. In other words, regardless of variation in the timing of spring onset, the rate of greenness in non-coastal zones decreases with increasing temperature and hence with time over the spring transitional period. However, in coastal zones, as air temperature increases, leaf expansion becomes faster. This may indicate relative vulnerability to warming in non-coastal regions where moisture could be a limiting factor, whereas high temperatures in regions close to the coast enhance forest physiological activities. Model predictions agree with the remotely

  6. Seedling recruitment of forb species under experimental microhabitats in alpine grassland

    International Nuclear Information System (INIS)

    Li, S. S.; Yu, L.; Lin, W. G.; Pingi, T. F.

    2015-01-01

    Which factors limit plant seedling recruitment in alpine meadow of the Qinghai-Tibetan Plateau (QTP), China? This study examined the relative influence of seed mass and microsites (resulted from grazing disturbance) on field seedling emergence and survival of nineteen alpine herbaceous species with a range of traits in QTP. Seed mass had significant effects on seedling emergence and survival eliminating influence of light and nutrient variances among these species. The larger-seed species had more advantageous than the smaller-seed species in seedling survival, but it was disadvatage for seedling emergence, especially under high nutrient availability and low light intensity conditions. Light had obvious effects on seedling survival, but less effects on seedling emergence for these species. Moreover, nutrient and light treatments altered the regression relationships of seed mass and seedling emergence and survival and the order of significances was L25>L50>L100>L10>L4. These results suggested that seed mass may restrict seedling recruitment processes, however, light and nutrient availability all have significant effects on seedling emergence and survival for these alpine species. Moderate light intensity was propitious to seedling emergence and survival in alpine grassland. This suggests that ecological factors in alpine grassland provide a stochastic influence on different seed-mass species. These trends may help to explain why many small-seeded species of Asteraceae and Gramineae tend to be more abundant in disturbed habitats. (author)

  7. Argon and fission track dating of Alpine metamorphism and basement exhumation in the Sopron Mts. (Eastern Alps, Hungary): thermochronology or mineral growth?

    International Nuclear Information System (INIS)

    Balogh, K.; Dunkl, I.

    2005-01-01

    The crystalline basement rocks of the Sopron Mountains are the easternmost and most isolated outcrops of the Austroalpine basement of the Eastern Alps. Ar/Ar and K/Ar dating of phengitic mica indicates that the Eoalpine high-pressure metamorphism of the area occurred between 76 and 71 Ma. Short-lived metamorphism is characterized by fluid-poor conditions. Fluid circulation was mostly restricted to shear zones, thus the degree of Alpine overprint has an extreme spatial variation. In several metamorphic slices Variscan mineral assemblages have been preserved and biotite yielded Variscan and Permo-Triassic Ar ages. Different mineral and isotope thermometers (literature data) yielded temperatures of 500-600 o C for the peak of Alpine metamorphism in the Sopron Mountains, but muscovite and biotite do not show complete argon resetting. Thus, we consider this crystalline area as a well constrained natural test site, which either indicates considerably high closure temperatures (around 550 o C) for Ar in muscovite and biotite in a dry metamorphic environment, or which is suitable for testing the widely applied methods of temperature estimations under disequilibrium conditions. Apatite fission track results and their thermal modeling, together with structural, mineralogical and sedimentological observations, allows the identification of a post-metamorphic, Eocene hydrothermal event and Late Miocene-Pliocene sediment burial of the crystalline rocks of the Sopron Mountains. (author)

  8. Snow, ice and water in alpine regions

    International Nuclear Information System (INIS)

    Baumgartner, H.

    2009-01-01

    This article takes a look at how climate change will have a deep impact on alpine regions. The findings discussed at a conference organised by the Swiss Hydrologic Commission are presented and discussed. Flooding incidents that occurred 'once in a century' are now becoming more frequent and were considered at the conference as being an indicator of climate change. Changing hydrological factors are also discussed and the influence of climate factors in alpine regions on the water quantities in the rivers are looked at. Also, the spontaneous emptying of glacial lakes as has already happened in Switzerland and the consequences to be drawn from such incidences are discussed.

  9. Modelling of Aerodynamic Drag in Alpine Skiing

    OpenAIRE

    Elfmark, Ola

    2017-01-01

    Most of the breaking force in the speed disciplines in alpine skiing is caused by the aerodynamic drag, and a better knowledge of the drag force is therefore desirable to gain time in races. In this study a complete database of how the drag area (CDA) changes, with respect to the different body segments, was made and used to explain a complete body motion in alpine skiing. Three experiments were performed in the wind tunnel at NTNU, Trondheim. The database from a full body measurement on an a...

  10. Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine Fault, New Zealand

    International Nuclear Information System (INIS)

    Schleicher, A.M.; Sutherland, R.; Townend, J.; Toy, V.G.; Van der Pluijm, B.A.

    2015-01-01

    Clay minerals are increasingly recognised as important controls on the state and mechanical behaviour of fault systems in the upper crust. Samples retrieved by shallow drilling from two principal slip zones within the central Alpine Fault, South Island, New Zealand, offer an excellent opportunity to investigate clay formation and fluid-rock interaction in an active fault zone. Two shallow boreholes, DFDP-1A (100.6 m deep) and DFDP-1B (151.4 m) were drilled in Phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011. We provide a mineralogical and textural analysis of clays in fault gouge extracted from the Alpine Fault. Newly formed smectitic clays are observed solely in the narrow zones of fault gouge in drill core, indicating that localised mineral reactions are restricted to the fault zone. The weak preferred orientation of the clay minerals in the fault gouge indicates minimal strain-driven modification of rock fabrics. While limited in extent, our results support observations from surface outcrops and faults systems elsewhere regarding the key role of clays in fault zones and emphasise the need for future, deeper drilling into the Alpine Fault in order to understand correlative mineralogies and fabrics as a function of higher temperature and pressure conditions. (author).

  11. High stresses stored in fault zones: example of the Nojima fault (Japan

    Directory of Open Access Journals (Sweden)

    A.-M. Boullier

    2018-04-01

    Full Text Available During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan that was drilled after the Hyogo-ken Nanbu (Kobe earthquake is studied by using electron backscattered diffraction (EBSD and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7–11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to

  12. High stresses stored in fault zones: example of the Nojima fault (Japan)

    Science.gov (United States)

    Boullier, Anne-Marie; Robach, Odile; Ildefonse, Benoît; Barou, Fabrice; Mainprice, David; Ohtani, Tomoyuki; Fujimoto, Koichiro

    2018-04-01

    During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan) that was drilled after the Hyogo-ken Nanbu (Kobe) earthquake is studied by using electron backscattered diffraction (EBSD) and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7-11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to the peak strength of a

  13. Investigation of the effective peak supersaturation for liquid-phase clouds at the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.

    Directory of Open Access Journals (Sweden)

    E. Hammer

    2014-01-01

    Full Text Available Aerosols influence the Earth's radiation budget directly through absorption and scattering of solar radiation in the atmosphere but also indirectly by modifying the properties of clouds. However, climate models still suffer from large uncertainties as a result of insufficient understanding of aerosol-cloud interactions. At the high altitude research station Jungfraujoch (JFJ; 3580 m a.s.l., Switzerland cloud condensation nuclei (CCN number concentrations at eight different supersaturations (SS from 0.24% to 1.18% were measured using a CCN counter during Summer 2011. Simultaneously, in-situ aerosol activation properties of the prevailing ambient clouds were investigated by measuring the total and interstitial (non-activated dry particle number size distributions behind two different inlet systems. Combining all experimental data, a new method was developed to retrieve the so-called effective peak supersaturation SSpeak, as a measure of the SS at which ambient clouds are formed. A 17-month CCN climatology was then used to retrieve the SSpeak values also for four earlier summer campaigns (2000, 2002, 2004 and 2010 where no direct CCN data were available. The SSpeak values varied between 0.01% and 2.0% during all campaigns. An overall median SSpeak of 0.35% and dry activation diameter of 87 nm was observed. It was found that the difference in topography between northwest and southeast plays an important role for the effective peak supersaturation in clouds formed in the vicinity of the JFJ, while differences in the number concentration of potential CCN only play a minor role. Results show that air masses coming from the southeast (with the slowly rising terrain of the Aletsch Glacier generally experience lower SSpeak values than air masses coming from the northwest (steep slope. The observed overall median values were 0.41% and 0.22% for northwest and southeast wind conditions, respectively, corresponding to literature values for cumulus clouds and

  14. Determination of pumper truck intervention ratios in zones with high fire potential by using geographical information system

    Science.gov (United States)

    Aricak, Burak; Kucuk, Omer; Enez, Korhan

    2014-01-01

    Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.

  15. Modelling channel incision and alpine hillslope development using laser altimetry data

    NARCIS (Netherlands)

    Anders, N.S.; Seijmonsbergen, A.C.; Bouten, W.

    2009-01-01

    This paper presents a new approach to simulate drainage basin evolution and demonstrates that high resolution elevation data can be used as useful tool for a dynamic simulation of Alpine landscape development, in which channel incision is incorporated in high spatial detail. A vector channel

  16. Seedling regeneration in the alpine treeline ecotone: Comparison of wood microsites and adjacent soil substrates

    Science.gov (United States)

    Adelaide Chapman Johnson; J. Alan Yeakley

    2016-01-01

    Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates...

  17. Exploring the patterns of alpine vegetation of Eastern Bhutan: a case study from the Merak Himalaya.

    Science.gov (United States)

    Jamtsho, Karma; Sridith, Kitichate

    2015-01-01

    A survey was conducted from March to September 2012 along the altitudinal gradient of the Jomokungkhar trail in the Merak Himalaya of Sakteng Wildlife Sanctuary to study the floristic compositions and the patterns of alpine vegetation of Eastern Bhutan. The vegetation of the sampled plots is classified into five types of communities based on the hierarchical cluster analysis at similarity index 63% viz., (1) Riverine Community; (2) Abies-Rhododendron Woodland Community; (3) Juniperus Scrub Community; (4) Rhododendron Krummholz and (5) Alpine Meadow, based on the floristic compositions. In addition, it was noticed that the fragile alpine environment of the Merak Himalaya has high plant diversity and important plants that are susceptible to the anthropogenic pressures.

  18. A Retrospective Analysis of Concurrent Pathology in ACL-Reconstructed Knees of Elite Alpine Ski Racers

    DEFF Research Database (Denmark)

    Jordan, Matthew J; Doyle-Baker, Patricia; Heard, Mark

    2017-01-01

    /chondral surgery, 60% of meniscal tears and 80% of chondral lesions had worsened since the time of primary ACLR. CONCLUSION: Concurrent injury was common in this group of elite ski racers. Primary ACL tears were typically accompanied by lateral compartment chondral lesions and complex meniscal tears that worsened...... over time. ACL/MCL tears were the most common multiligament injury pattern.......BACKGROUND: Anterior cruciate ligament (ACL) tear is the most frequent injury in alpine ski racing, and there is a high prevalence of ACL reinjury. Limited data exist on the concurrent pathology with primary ACL tears in elite alpine ski racers and the magnitude of injury progression after primary...

  19. Transient thermal effects in Alpine permafrost

    Directory of Open Access Journals (Sweden)

    J. Noetzli

    2009-04-01

    Full Text Available In high mountain areas, permafrost is important because it influences the occurrence of natural hazards, because it has to be considered in construction practices, and because it is sensitive to climate change. The assessment of its distribution and evolution is challenging because of highly variable conditions at and below the surface, steep topography and varying climatic conditions. This paper presents a systematic investigation of effects of topography and climate variability that are important for subsurface temperatures in Alpine bedrock permafrost. We studied the effects of both, past and projected future ground surface temperature variations on the basis of numerical experimentation with simplified mountain topography in order to demonstrate the principal effects. The modeling approach applied combines a distributed surface energy balance model and a three-dimensional subsurface heat conduction scheme. Results show that the past climate variations that essentially influence present-day permafrost temperatures at depth of the idealized mountains are the last glacial period and the major fluctuations in the past millennium. Transient effects from projected future warming, however, are likely larger than those from past climate conditions because larger temperature changes at the surface occur in shorter time periods. We further demonstrate the accelerating influence of multi-lateral warming in steep and complex topography for a temperature signal entering the subsurface as compared to the situation in flat areas. The effects of varying and uncertain material properties (i.e., thermal properties, porosity, and freezing characteristics on the subsurface temperature field were examined in sensitivity studies. A considerable influence of latent heat due to water in low-porosity bedrock was only shown for simulations over time periods of decades to centuries. At the end, the model was applied to the topographic setting of the Matterhorn

  20. The role of solar UV radiation in the ecology of alpine lakes.

    Science.gov (United States)

    Sommaruga, R

    2001-09-01

    Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.

  1. Mesozoic Alpine facies deposition as a result of past latitudinal plate motion.

    Science.gov (United States)

    Muttoni, Giovanni; Erba, Elisabetta; Kent, Dennis V; Bachtadse, Valerian

    2005-03-03

    The fragmentation of Pangaea as a consequence of the opening of the Atlantic Ocean is documented in the Alpine-Mediterranean region by the onset of widespread pelagic sedimentation. Shallow-water sediments were replaced by mainly pelagic limestones in the Early Jurassic period, radiolarian cherts in the Middle-Late Jurassic period, and again pelagic limestones in the Late Jurassic-Cretaceous period. During initial extension, basin subsidence below the carbonate compensation depth (CCD) is thought to have triggered the transition from Early Jurassic limestones to Middle-Late Jurassic radiolarites. It has been proposed that the transition from radiolarites to limestones in the Late Jurassic period was due to an increase in calcareous nannoplankton abundance when the CCD was depressed below the ocean floor. But in modern oceans, sediments below the CCD are not necessarily radiolaritic. Here we present palaeomagnetic samples from the Jurassic-Cretaceous pelagic succession exposed in the Lombardian basin, Italy. On the basis of an analysis of our palaeolatitudinal data in a broader palaeogeographic context, we propose an alternative explanation for the above facies tripartition. We suggest that the Lombardian basin drifted initially towards, and subsequently away from, a near-equatorial upwelling zone of high biosiliceous productivity. Our tectonic model for the genesis of radiolarites adds an essential horizontal plate motion component to explanations involving only vertical variations of CCD relative to the ocean floor. It may explain the deposition of radiolarites throughout the Mediterranean and Middle Eastern region during the Jurassic period.

  2. Prograde and retrograde metamorphic processes in high-pressure subduction zone serpentinites from East Thessaly, Greece

    Science.gov (United States)

    Koutsovitis, Petros

    2016-04-01

    The East Thessaly region, Central Greece, includes metaophiolitic mélange formations which extend from the eastern foothills of Mt. Olympus and Ossa, throughout the Agia basin, Mt. Mavrovouni (Sklithro region), South Pelion and reaching up to northeast Othris (regions of Aerino and Velestino). They appear in the form of dispersed and deformed thrust sheets having been variably emplaced onto Mesozoic platform series rocks of the Pelagonian tectonostratigraphic zone[1]. These formations consist mainly of serpentinites, as well as metasediments, metagabbros, metadolerites, rodingites, ophicalcites, talc-schists and chromitites. Based upon petrographic observations, mineral chemistry data and XRD patterns, the subduction zone-related serpentinites from the regions of Potamia, Anavra, Aetolofos and Kalochori-Chasanbali (Agia basin), as well as from the regions of Aerino and Velestino, are characterized by the progressive transformation of lizardite to antigorite and are distinguished into two groups. The first group includes serpentinites from the metaophiolitic formations of Potamia, Anavra, Aerino and Velestino, which are marked by destibillization of lizardite to antigorite, mostly along the grain boundaries of the lizardite mesh textured relics. The presence of lizardite and antigorite in almost equal amounts indicates medium-temperature blueschist facies metamorphic conditions (˜340-370 ° C; P≈10-11 kbar)[2,3,4]. The second serpentinite group appears in the regions of Aetolofos and Kalochori, characterized by the predominance of antigorite, the minor occurrence of lizardite and the complete replacement of spinel by Cr-magnetite. The absence of metamorphic olivine suggests that these serpentinites were most likely formed at slightly higher temperature and pressure conditions compared to the first serpentinite group, corresponding to medium or high temperature blueschist facies metamorphism (˜360-380 ° C; P≈12 kbar)[2,3,4]. These metamorphic conditions are

  3. Paleomagnetism and the alpine tectonics of Eurasia

    NARCIS (Netherlands)

    Raven, Th.

    1964-01-01

    The following paper by Gregor and Zijderveld is the first of a series planned to report results of paleomagnetic investigations in the Alpine area from Italy to the Himalayas. These investigations are carried out in close collaboration between the well-equipped paleomagnetic laboratory of

  4. Climate change and alpine stream biology

    DEFF Research Database (Denmark)

    Hotaling, Scott; Finn, Debra S.; Joseph Giersch, J.

    2017-01-01

    micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call...

  5. Ecologically Safe Geothermal Energy Resources in Western Siberia near high-rise construction zones

    Science.gov (United States)

    Shevchenko, Alexandr; Shiganova, Olga

    2018-03-01

    The development of geothermal energy in combination with other renewable energy sources (the sun, the wind) will help to solve the problem of heat supply and electrification in near high-rise construction zones of the country, especially in sparsely populated parts, where centralized energy and heat supply is economically unacceptable, and will improve the ecological situation. The aim of the research is to analyze the geothermal resources of the main aquifers in Western Siberia and to develop recommendations for further study and use of heat and power resources of this territory. The article gives retrospective of state research programs and potential use of hydrothermal resources of administrative units geographically entering the territory under consideration. It is noted that by now such programs have been curtailed for various reasons, although there are examples of their successful and effective use in various fields of industry and agriculture. According to the decision of the Supreme Ecological Council of the State Duma Committee of the Russian Federation adopted in 2014 on the beginning of the development of federal targeted programs for the use of heat power water as a source of electricity and heat supply, the Ministry of Natural Resources and Ecology of the Russian Federation made proposals for further research and use of hydrothermal waters in Western Siberia. Implementation of the programs proposed by the authors, alongside with other positive aspects, will solve the problems of heat supply in remote territories and improve the environmental situation in the region.

  6. Does the high-intensity zone (HIZ) of lumbar Intervertebral discs always represent an annular fissure?

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Zhi; Chen, Huanhuan; Liu, Junhui; Ren, Hong; Zhang, Xuyang; Zhao, Fengdong [Zhejiang University, Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Hangzhou (China)

    2017-03-15

    The aim of this study was to examine high-intensity zone (HIZ) characteristics on both T1- and T2-weighted sagittal magnetic resonance (MR) images, and to reveal their exact nature. Seventy-three patients with low back pain and HIZs (identified on T2-weighted images) were included. Patients, aged 25-80 years (mean 51), were divided into two groups: the 'single-HIZ' group exhibited HIZs only on T2-weighted images, while the 'dual-HIZ' group exhibited HIZs on both T2-weighted and T1-weighted images. Tissue corresponding to the HIZ was harvested from surgery for analysis. Eighty-two discs were studied, from 39 patients with single HIZs, 30 with dual HIZs, and four with both in the posterior annulus. HIZ volume, volume ratio, and signal intensity on T2-weighted images from the dual-HIZ group were significantly greater. Surgery was able to successfully restore patients' ability in both groups, while conservative treatments were less effective for patients with dual HIZs. Histology revealed outer annular fissures invaded by granulation tissue in the single-HIZ group. In dual-HIZ discs, Von Kossa staining and CT scans showed more calcified or ossified lesions (94.1 vs. 0 %, P<0.001), and chemical analysis showed significantly higher calcium content. HIZs on both T2- and T1-weighted images represent calcified tissue, possibly from a vertebral endplate. A new concept of dual HIZ should be defined. (orig.)

  7. Evolution of the fracture process zone in high-strength concrete under different loading rates

    Directory of Open Access Journals (Sweden)

    Cámara M.

    2010-06-01

    Full Text Available For cementitious materials, the inelastic zone around a crack tip is termed as fracture process zone (FPZ and dominated by complicated mechanism, such as microcracking, crack deflection, bridging, crack face friction, crack tip blunting by voids, crack branching, and so on. Due to the length of the FPZ is related with the characteristic length of the cementitious materials, the size, extent and location of the FPZ has been the object of countless research efforts for several decades. For instance, Cedolin et al. [1] have used an optical method based on the moiré interferometry to determine FPZ in concrete. Castro-Montero et al. [2] have applied the method of holographic interferometry to mortar to study the extension of the FPZ. The advantage of the interferometry method is that the complete FPZ can be directly observed on the surface of the sample. Swartz et al. [3] has adopted the dye penetration technique to illustrate the changing patterns observed as the crack progress from the tensile side to the compression side of the beam. Moreover, acoustic emission (AE is also an experimental technique well suited for monitoring fracture process. Haidar et al. [4] and Maji et al. [5] have studied the relation between acoustic emission characteristics and the properties of the FPZ. Compared with the extensive research on properties of the FPZ under quasi-static loading conditions, much less information is available on its dynamic characterization, especially for high-strength concrete (HSC. This paper presents the very recent results of an experimental program aimed at disclosing the loading rate effect on the size and velocity of the (FPZ in HSC. Eighteen three-point bending specimens were conducted under a wide range of loading rates from from 10-4 mm/s to 103 mm/s using either a servo-hydraulic machine or a self-designed drop-weight impact device. The beam dimensions were 100 mm 100 mm in cross section, and 420 mm in length. The initial notch

  8. Mash evaluation of TxDOT high-mounting-height temporary work zone sign support system.

    Science.gov (United States)

    2017-02-01

    The objective of this research was to develop a nonproprietary, lightweight, crashworthy, temporary work-zone single sign support for use with an aluminum sign substrate. The device is intended to meet the evaluation criteria in American Association ...

  9. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2010-04-01

    Full Text Available Alpine wetland meadow could functions as a carbon sink due to it high soil organic content and low decomposition. However, the magnitude and dynamics of carbon stock in alpine wetland ecosystems are not well quantified. Therefore, understanding how environmental variables affect the processes that regulate carbon fluxes in alpine wetland meadow on the Qinghai-Tibetan Plateau is critical. To address this issue, Gross Primary Production (GPP, Ecosystem Respiration (Reco, and Net Ecosystem Exchange (NEE were examined in an alpine wetland meadow using the eddy covariance method from October 2003 to December 2006 at the Haibei Research Station of the Chinese Academy of Sciences. Seasonal patterns of GPP and Reco were closely associated with leaf area index (LAI. The Reco showed a positive exponential to soil temperature and relatively low Reco occurred during the non-growing season after a rain event. This result is inconsistent with the result observed in alpine shrubland meadow. In total, annual GPP were estimated at 575.7, 682.9, and 630.97 g C m−2 in 2004, 2005, and 2006, respectively. Meanwhile, the Reco were equal to 676.8, 726.4, 808.2 g C m−2, and thus the NEE were 101.1, 44.0 and 173.2 g C m−2. These results indicated that the alpine wetland meadow was a moderately source of carbon dioxide (CO2. The observed carbon dioxide fluxes in the alpine wetland meadow were higher than other alpine meadow such as Kobresia humilis meadow and shrubland meadow.

  11. Synoptic climatology evaluation of wind fields in the alpine region

    International Nuclear Information System (INIS)

    Lotteraner, C.

    2009-01-01

    The present investigation basically consists of two parts: In the first part, a 22-year set of 3-hourly 2D-wind analyses (1980-2001) that have been generated within the framework of the VERACLIM (VERA-Climatology) project are evaluated climatologically over the Alpine region. VERACLIM makes use of the VERA (Vienna Enhanced Resolution Analysis) analysis system, combining both the high spatial resolution as provided by the analysis algorithm and the high temporal resolution of a comprehensive synop data set, provided by ECMWF's (European Centre for Medium-Range Weather Forecasts) data archives. The obtained charts of averaged wind speed and the mean wind vector as well as the evaluations of frequency distribution of wind speed and wind direction on gridpoints for several different time periods should be interpreted very carefully as orographic influence is not taken into consideration in the analysis algorithm. However, the 3-hourly wind analyses of the time period 1980-2001 are suitable for investigation of the so-called Alpine Pumping. For that purpose, an arbitrarily chosen border has been drawn around the Alps and the Gauss theorem has been applied in a way that the mean diurnal variations of the two-dimensional divergence over the Alps could be evaluated. The sinusoidal run of the curve not only visualizes the 'breathing of the Alps' in an impressive way, it also enables us to roughly estimate the diurnal air volume exchange on days with a weak large-scale pressure gradient and strong incoming solar radiation. The second part of this investigation deals with the development of three different 'wind-fingerprints' which are included in the VERA-system in order to improve the analysis quality. The wind-fingerprints are designed in a way that they reflect the wind field pattern in the Alpine region on days with weak large-scale pressure gradient and strong incoming solar radiation. Using the fingerprints, both the effects of channelling as well as thermally induced

  12. Fighting over forest: interactive governance of conflicts over forest and tree resources in Ghana’s high forest zone

    NARCIS (Netherlands)

    Derkyi, M.A.A.

    2012-01-01

    Based on eight case studies, this book analyses conflicts over forests and trees in Ghana’s high forest zone and ways of dealing with them. It thereby addresses the full range of forest and tree-based livelihoods. Combining interactive governance theory with political ecology and conflict theories,

  13. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping

    2017-01-01

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation

  14. Cutting zone area and chip morphology in high-speed cutting of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Qing Chan; Xu, Daochun; Xiong, Dan Ping [School of Technology, Beijing Forestry University, Beijing (China)

    2017-01-15

    The titanium alloy Ti-6Al-4V has superior properties but poor machinability, yet is widely used in aerospace and biomedical industries. Chip formation and cutting zone area are important factors that have received limited attention. Thus, we propose a high-speed orthogonal cutting model for serrated chip formation. The high speed orthogonal cutting of Ti-6Al-4V was studied with a cutting speed of 10-160 m/min and a feed of 0.07-0.11 mm/r. Using theoretical models and experimental results, parameters such as chip shape, serration level, slip angle, and shear slip distance were investigated. Cutting zone boundaries (tool-chip contact length, length of shear plane, and critical slip plane) and cutting zone area were obtained. The results showed that discontinuous, long-curling, and continuous chips were formed at low, medium, and high speeds, respectively. Serration level, shear slip distance, and slip angle rose with increasing cutting speed. The length of shear plane, tool-chip contact, and critical slip plane varied subtly with increased cutting speed, and rose noticeably with increased feed. Cutting zone area grew weakly with increased cutting speed, levelling off at high cutting speed; however, it rose noticeably with increased feed. This study furthers our understanding of the shear slip phenomenon and the mechanism of serrated chip formation.

  15. Facilitation among plants in alpine environments in the face of climate change

    Directory of Open Access Journals (Sweden)

    Fabien eAnthelme

    2014-08-01

    Full Text Available While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation–climate change relationships are expected to shift along latitudinal gradients because (1 the magnitude of warming is predicted to vary along these gradients, and (2 alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant–plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and

  16. Facilitation among plants in alpine environments in the face of climate change.

    Science.gov (United States)

    Anthelme, Fabien; Cavieres, Lohengrin A; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.

  17. Anterior cruciate ligament injury/reinjury in alpine ski racing: a narrative review

    Science.gov (United States)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    The purpose of the present review was to: 1) provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL) injury in alpine ski racing; and 2) provide an overview of what is known pertaining to ACL reinjury and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers) were found to be at high risk for knee injuries, and ACL tears were the most frequent diagnosis. Three primary ACL injury mechanism were identified that involved tibial internal rotation and anteriorly directed shear forces from ski equipment and the environment. While trunk muscle strength imbalance and genetics were found to be predictive of ACL injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness). While skiers seem to make a successful recovery following ACL injury, there may be persistent neuromuscular deficits. Future research efforts should be directed toward prospective studies on ACL injury/reinjury prevention in both male and female skiers and toward the effects of knee injury on long-term health outcomes, such as the early development of osteoarthritis. International collaborations may be necessary to generate sufficient statistical power for ACL injury/reinjury prevention research in alpine ski racing

  18. Near-source attenuation of high-frequency body waves beneath the New Madrid Seismic Zone

    Science.gov (United States)

    Pezeshk, Shahram; Sedaghati, Farhad; Nazemi, Nima

    2018-03-01

    Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6 ≤ M ≤ 4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/ R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P = (115.80 ± 1.36) f (0.495 ± 0.129) and Q S = (161.34 ± 1.73) f (0.613 ± 0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/ Q P > 1, for 4 ≤ f ≤ 24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.

  19. SCC growth behavior of stainless steel weld heat-affected zone in hydrogenated high temperature water

    International Nuclear Information System (INIS)

    Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki; Arioka, Koji

    2010-01-01

    It is known that the SCC growth rate of stainless steels in high-temperature water is accelerated by cold-work (CW). The weld heat-affected-zone (HAZ) of stainless steels is also deformed by weld shrinkage. However, only little have been reported on the SCC growth of weld HAZ of SUS316 and SUS304 in hydrogenated high-temperature water. Thus, in this present study, SCC growth experiments were performed using weld HAZ of stainless steels, especially to obtain data on the dependence of SCC growth on (1) temperature and (2) hardness in hydrogenated water at temperatures from 250degC to 340degC. And then, the SCC growth behaviors were compared between weld HAZ and CW stainless steels. The following results have been obtained. Significant SCC growth were observed in weld HAZ (SUS316 and SUS304) in hydrogenated water at 320degC. The SCC growth rates of the HAZ are similar to that of 10% CW non-sensitized SUS316, in accordance with that the hardness of weld HAZ is also similar to that of 10% CW SUS316. Temperature dependency of SCC growth of weld HAZ (SUS316 and SUS304) is also similar to that of 10% CW non-sensitized SUS316. That is, no significant SCC were observed in the weld HAZ (SUS316 and SUS304) in hydrogenated water at 340degC. This suggests that SCC growth behaviors of weld HAZ and CW stainless steels are similar and correlated with the hardness or yield strength of the materials, at least in non-sensitized regions. And the similar temperature dependence between the HAZ and CW stainless steels suggests that the SCC growth behaviors are also attributed to the common mechanism. (author)

  20. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  1. Monitoring the Deformation of High-Rise Buildings in Shanghai Luijiazui Zone by Tomo-Psinsar

    Science.gov (United States)

    Zhou, L. F.; Ma, P. F.; Xia, Y.; Xie, C. H.

    2018-05-01

    In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR) approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude) are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS) in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not influenced by creep

  2. MONITORING THE DEFORMATION OF HIGH-RISE BUILDINGS IN SHANGHAI LUIJIAZUI ZONE BY TOMO-PSINSAR

    Directory of Open Access Journals (Sweden)

    L. F. Zhou

    2018-05-01

    Full Text Available In this study, we utilize a Tomography-based Persistent Scatterers Interferometry (Tomo-PSInSAR approach for monitoring the deformation performances of high-rise buildings, i.e. SWFC and Jin Mao Tower, in Shanghai Lujiazui Zone. For the purpose of this study, we use 31 Stripmap acquisitions from TerraSAR-X missions, spanning from December 2009 to February 2013. Considering thermal expansion, creep and shrinkage are two long-term movements that occur in high-rise buildings with concrete structures, we use an extended 4-D SAR phase model, and three parameters (height, deformation velocity, and thermal amplitude are estimated simultaneously. Moreover, we apply a two-tier network strategy to detect single and double PSs with no need for preliminary removal of the atmospheric phase screen (APS in the study area, avoiding possible error caused by the uncertainty in spatiotemporal filtering. Thermal expansion is illustrated in the thermal amplitude map, and deformation due to creep and shrinkage is revealed in the linear deformation velocity map. The thermal amplitude map demonstrates that the derived thermal amplitude of the two high-rise buildings both dilate and contract periodically, which is highly related to the building height due to the upward accumulative effect of thermal expansion. The linear deformation velocity map reveals that SWFC is subject to deformation during the new built period due to creep and shrinkage, which is height-dependent movements in the linear velocity map. It is worth mention that creep and shrinkage induces movements that increase with the increasing height in the downward direction. In addition, the deformation rates caused by creep and shrinkage are largest at the beginning and gradually decrease, and at last achieve a steady state as time goes infinity. On the contrary, the linear deformation velocity map shows that Jin Mao Tower is almost stable, and the reason is that it is an old built building, which is not

  3. [Effects of exogenous high mobility group protein box 1 on angiogenesis in ischemic zone of early scald wounds of rats].

    Science.gov (United States)

    Dai, L; Guo, X; Huang, H J; Liao, X M; Luo, X Q; Li, D; Zhou, H; Gao, X C; Tan, M Y

    2018-04-20

    Objective: To observe effects of exogenous high mobility group protein box 1 (HMGB1) on angiogenesis in ischemic zone of early scald wounds of rats. Methods: Thirty-six Sprague-Dawley rats were divided into HMGB1 group and simple scald (SS) group according to the random number table, with 18 rats in each group. Comb-like copper mould was placed on the back of rats for 20 s after being immersed in 100 ℃ hot water for 3 to 5 min to make three ischemic zones of wound. Immediately after scald, rats in HMGB1 group were subcutaneously injected with 0.4 μg HMGB1 and 0.1 mL phosphate buffer solution (PBS), and rats in SS group were subcutaneously injected with 0.1 mL PBS from boarders of ischemic zone of scald wound. At post scald hour (PSH) 24, 48, and 72, 6 rats in each group were collected. Protein expressions of vascular endothelial growth factor (VEGF) in ischemic zone of wound at PSH 24, 48, and 72 and protein expressions of CD31 in ischemic zone of wound at PSH 48 and 72 were detected by immunohistochemistry. The number of microvessel in CD31 immunohistochemical sections of ischemic zone of wound at PSH 48 and 72 was calculated after observing by the microscope. The mRNA expressions of VEGF and CD31 in ischemic zone of wound were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction at PSH 24, 48, and 72. Data were processed with analysis of variance of factorial design, t test, and Bonferroni correction. Results: (1) At PSH 24, 48, and 72, protein expressions of VEGF in ischemic zone of wound of rats in HMGB1 group were significantly higher than those of rats in SS group ( t =7.496, 4.437, 5.402, P zone of wound of rats in HMGB1 group were 0.038 8±0.007 9 and 0.057 7±0.001 2 respectively, significantly higher than 0.013 4±0.004 9 and 0.030 3±0.004 0 of rats in SS group ( t =10.257, 15.055, P zone of wound of rats in HMGB1 group was obviously more than that of rats in SS group ( t =3.536, 4.000, P zone of wound of

  4. Diversity and community structure of ectomycorrhizal fungi associated with Larix chinensis across the alpine treeline ecotone of Taibai Mountain.

    Science.gov (United States)

    Han, Qisheng; Huang, Jian; Long, Dongfeng; Wang, Xiaobing; Liu, Jianjun

    2017-07-01

    Alpine treeline ecotones represent ecosystems that are vulnerable to climate change. We investigated the ectomycorrhizal (ECM) community, which has potential to stabilize alpine ecosystems. ECM communities associated with Larix chinensis were studied in four zones along a natural ecotone from a mixed forest stand over pure forest stands, the timberline, and eventually, the treeline (3050-3450 m) in Tabai Mountain, China. Sixty operational taxonomic units (OTUs) of ECM fungi were identified by sequencing the rDNA internal transcribed spacer of ECM tips. The richness of ECM species increased with elevation. The soil C/N ratio was the most important factor explaining ECM species richness. The treeline zone harbored some unique ECM fungi whereas no unique genera were observed in the timberline and pure forest zone. Elevation and topography were equally important factors influencing ECM communities in the alpine region. We suggest that a higher diversity of the ECM fungal community associated with L. chinensis in the treeline zone could result from niche differentiation.

  5. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  6. Analytical solutions for recession analyses of sloping aquifers - applicability on relict rock glaciers in alpine catchments

    Science.gov (United States)

    Pauritsch, Marcus; Birk, Steffen; Hergarten, Stefan; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2014-05-01

    Rock glaciers as aquifer systems in alpine catchments may strongly influence the hydrological characteristics of these catchments. Thus, they have a high impact on the ecosystem and potential natural hazards such as for example debris flow. Therefore, knowledge of the hydrodynamic processes, internal structure and properties of these aquifers is important for resource management and risk assessment. The investigation of such aquifers often turns out to be expensive and technically complicated because of their strongly limited accessibility. Analytical solutions of discharge recession provide a quick and easy way to estimate aquifer parameters. However, due to simplifying assumptions the validity of the interpretation is often questionable. In this study we compared results of an analytical solution of discharge recessions with results based on a numerical model. This was done in order to analyse the range of uncertainties and the applicability of the analytical method in alpine catchment areas. The research area is a 0.76 km² large catchment in the Seckauer Tauern Range, Austria. The dominant aquifer in this catchment is a rock glacier, namely the Schöneben Rock Glacier. This relict rock glacier (i.e. containing no permafrost at present) covers an area of 0.11 km² and is drained by one spring at the rock glacier front. The rock glacier consists predominantly of gneissic sediments (mainly coarse-grained, blocky at the surface) and extends from 1720 to 1905 m a.s.l.. Discharge of the rock glacier spring is automatically measured since 2002. Electric conductivity and water temperature is monitored since 2008. An automatic weather station was installed in 2011 in the central part of the catchment. Additionally data of geophysical surveys (refraction seismic and ground penetrating radar) have been used to analyse the base slope and inner structure of the rock glacier. The measured data are incorporated into a numerical model implemented in MODFLOW. The numerical

  7. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  8. Geochemistry and petrography of the MacAlpine Hills lunar meteorites

    Science.gov (United States)

    Lindstrom, Marilyn M.; Mckay, David S.; Wentworth, Susan J.; Martinez, Rene R.; Mittlefehldt, David W.; Wang, Ming-Sheng; Lipschutz, Michael E.

    1991-01-01

    MacAlpine Hills 88104 and 88105, anorthositic lunar meteorites recovered form the same area in Antartica, are characterized. Petrographic studies show that MAC88104/5 is a polymict breccia dominated by impact melt clasts. It is better classified as a fragmental breccia than a regolith breccia. The bulk composition is ferroan and highly aluminous (Al2O3-28 percent).

  9. Continuous recording of seismic signals in Alpine permafrost

    Science.gov (United States)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the

  10. U-Pb thermochronology of rutile from Alpine Corsica: constraints on the thermal evolution of the European margin during Jurassic continental breakup

    Science.gov (United States)

    Ewing, T. A.; Beltrando, M.; Müntener, O.

    2017-12-01

    U-Pb thermochronology of rutile can provide valuable temporal constraints on the exhumation history of the lower crust, given its moderate closure temperature and the occurrence of rutile in appropriate lithologies. We present an example from Alpine Corsica, in which we investigate the thermal evolution of the distal European margin during Jurassic continental rifting that culminated in the opening of the Alpine Tethys ocean. The Belli Piani unit of the Santa Lucia nappe (Corsica) experienced minimal Alpine overprint and bears a striking resemblance to the renowned Ivrea Zone lower crustal section (Italy). At its base, a 2-4 km thick gabbroic complex contains slivers of granulite facies metapelites that represent Permian lower crust. Zr-in-rutile temperatures and U-Pb ages were determined for rutile from three metapelitic slivers from throughout the Mafic Complex. High Zr-in-rutile temperatures of 850-950 °C corroborate textural evidence for rutile formation during Permian granulite facies metamorphism. Lower Zr-in-rutile temperatures of 750-800 °C in a few grains are partly associated with elongate strings of rutile within quartz ribbons, which record recrystallisation of some rutile during high-temperature shearing. Zr thermometry documents that both crystallisation and re-crystallisation of rutile occurred above the closure temperature of Pb in rutile, such that the U-Pb system can be expected to record cooling ages uncomplicated by re-crystallisation. Our new high-precision single-spot LA-ICPMS U-Pb dates are highly consistent between and within samples. The three samples gave ages from 160 ± 1 Ma to 161 ± 2 Ma, with no other age populations detected. The new data indicate that the Santa Lucia lower crust last cooled through 550-650 °C at 160 Ma, coeval with the first formation of oceanic crust in the Tethys. The new data are compared to previous depth profiling rutile U-Pb data for the Belli Piani unit1, and exploited to cast light on the tectonothermal

  11. High rates of organic carbon processing in the hyporheic zone of intermittent streams.

    Science.gov (United States)

    Burrows, Ryan M; Rutlidge, Helen; Bond, Nick R; Eberhard, Stefan M; Auhl, Alexandra; Andersen, Martin S; Valdez, Dominic G; Kennard, Mark J

    2017-10-16

    Organic carbon cycling is a fundamental process that underpins energy transfer through the biosphere. However, little is known about the rates of particulate organic carbon processing in the hyporheic zone of intermittent streams, which is often the only wetted environment remaining when surface flows cease. We used leaf litter and cotton decomposition assays, as well as rates of microbial respiration, to quantify rates of organic carbon processing in surface and hyporheic environments of intermittent and perennial streams under a range of substrate saturation conditions. Leaf litter processing was 48% greater, and cotton processing 124% greater, in the hyporheic zone compared to surface environments when calculated over multiple substrate saturation conditions. Processing was also greater in more saturated surface environments (i.e. pools). Further, rates of microbial respiration on incubated substrates in the hyporheic zone were similar to, or greater than, rates in surface environments. Our results highlight that intermittent streams are important locations for particulate organic carbon processing and that the hyporheic zone sustains this fundamental process even without surface flow. Not accounting for carbon processing in the hyporheic zone of intermittent streams may lead to an underestimation of its local ecological significance and collective contribution to landscape carbon processes.

  12. Les Nouvelles Traversées Alpines : la “cité-Europe” à l’épreuve de l’acceptabilité alpine ? The New alpine crossings : The “city-Europe” faces up to the alpine acceptability

    Directory of Open Access Journals (Sweden)

    Kevin Sutton

    2012-12-01

    Full Text Available La pensée des traversées alpines est indissociable de celle des réseaux urbains alpins et, au-delà, européens. La nouvelle phase de percée des tunnels de base le réaffirme : les “Nouvelles Traversées Alpines” se retrouvent au coeur de l’enjeu de connexion des réseaux ferroviaires européens à grande vitesse. L’invention de la “cité-Europe” passe ainsi par la réinvention d’un pacte alpin autour du dessein de franchissement entre les villes de piedmonts et les communautés montagnardes traversées. Ces dernières ont, en effet, la capacité de bloquer un projet par leur refus. L’exemple du projet Lyon-Turin l’illustre, en contre-point de la réussite du tunnel de base du Lötschberg. La réussite suisse semble tenir à la capacité de conjuguer les inventions technique et sociale du tunnel, ne niant pas la dimension territoriale de cet objet réticulaire.It is impossible to think about the alpine crossings without thinking about the alpine and European urban nets. The construction of the basis tunnels recalls it: the “New Alpine Crossings” are the kernel of the connection issue between the European high-speed railways nets. The invention of a “city-Europe” needs a reinvented pact, between the cities of the plains and the alpine communities, based on the reaffirmation of a common crossing destiny. The alpine communities can thwart the project by refusing it, as the example of the Lyon-Turin project shows, in contrast to the successful Lötschberg basis tunnel. The Swiss success seems to come from the capacity to mix technical and social inventions, replacing the territorial dimension in the reticular fundament.

  13. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  14. Seismic qualification of multiple interconnected safety-related cabinets in a high seismic zone

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.H.W.; Wang, T.Y.

    1993-01-01

    Certain safety-related multiple, interconnected electrical cabinets and the devices contained therein are required to perform their intended safety functions during and after a design basis seismic event. In general, seismic testing is performed to ensure the structural integrity of the cabinets and the functionality of their associated devices. Constrained by the shake table capacity, seismic testing is usually performed only for a limited number of interconnected cabinets. Also, original shake table tests performed usually did not provide detailed response information at various locations inside the cabinets. For operational and maintenance purposes, doors and panels of some cabinets may need to be opened while the adjacent cabinets are required to remain functional. In addition, in-cabinet response spectra need to be generated for the seismic qualification of new devices and the replacement parts. Consequently, seismic analysis of safety-related multiple, interconnected cabinets is frequently required for configurations which are different from the original tested conditions. This paper presents results of seismic tests of three interconnected safety-related cabinets and finite element analyses performed to compare the analytical results with those obtained from the cabinet seismic tests. Parametric analyses are performed to determine how many panels and doors can be opened while the adjacent cabinets still remain functional. The study indicates that for cabinets located in a high seismic zone, the critical damping of the cabinet is significantly higher than 5% to 7% typically used in qualifying electrical equipment. For devices mounted on the cabinet doors to performed their intended safety function, it requires stiffening of doors and that these doors be properly bolted to the cabinet frame. It also shows that even though doors and panels bolted to the cabinet frame are the primary seismic resistant element of the cabinet, opening of a limited number of them

  15. High Frequency Electromagnetic Impedance Imaging for Vadose Zone and Groundwater Characterization

    International Nuclear Information System (INIS)

    Newman, Greory A.; Alumbaugh, David L.; Hoversten, Michael; Nichols, Edward

    2003-01-01

    A geophysical experiment is described for characterizing the clastic dike systems, which are ubiquitous within the vadose zone at the Hanford Nuclear Reservation. because the dikes possess a significant electrical contrast from the insulating host medium, we have applied controlled source audio magnetotelluric (CSAMT) measurements to map their geometric extent and to further clarify if the dike complex acts as a conduit for contaminant transport within the vadose zone. Because of cost and weak natural field signal levels, we employed controlled field sourcing using the STRATGEM acquisition system. Use of artificial fields often goes with the assumption that the data required in the far-field of the transmitter

  16. Ship Analysis and Detection in High-resolution Pol-SAR Imagery Based on Peak Zone

    Directory of Open Access Journals (Sweden)

    Xu Cheng-bin

    2015-06-01

    Full Text Available To deal with the problem of false alarm in the ship detection, a method base on proportion of spiral scattering in the peak zone is proposed. By comparing the proportion of spiral scattering in the peak zone, which is available from Krogager decomposition, the ships and interfering targets are identified and analyzed. The effectiveness of this method is justified with C-band full-polarization data from RADARSAT-2. The result show that this method can discriminate ships from interfering targets such as island, water-break, nautical platforms and bridges, thus reducing the false alarm rate of ship targets detection in SAR images.

  17. Electromagnetic exploration in high-salinity groundwater zones: case studies from volcanic and soft sedimentary sites in coastal Japan

    Science.gov (United States)

    Suzuki, Koichi; Kusano, Yukiko; Ochi, Ryota; Nishiyama, Nariaki; Tokunaga, Tomochika; Tanaka, Kazuhiro

    2017-01-01

    Estimating the spatial distribution of groundwater salinity in coastal plain regions is becoming increasingly important for site characterisation and the prediction of hydrogeological environmental conditions resulting from radioactive waste disposal and underground CO2 storage. In previous studies of the freshwater-saltwater interface, electromagnetic methods were used for sites characterised by unconsolidated deposits or Neocene soft sedimentary rocks. However, investigating the freshwater-saltwater interface in hard rock sites (e.g. igneous areas) is more complex, with the permeability of the rocks greatly influenced by fractures. In this study, we investigated the distribution of high-salinity groundwater at two volcanic rock sites and one sedimentary rock site, each characterised by different hydrogeological features. Our investigations included (1) applying the controlled source audio-frequency magnetotelluric (CSAMT) method and (2) conducting laboratory tests to measure the electrical properties of rock core samples. We interpreted the 2D resistivity sections by referring to previous data on geology and geochemistry of groundwater. At the Tokusa site, an area of inland volcanic rocks, low resistivity zones were detected along a fault running through volcanic rocks and shallow sediments. The results suggest that fluids rise through the Tokusa-Jifuku Fault to penetrate shallow sediments in a direction parallel to the river, and some fluids are diluted by rainwater. At the Oki site, a volcanic island on a continental shelf, four resistivity zones (in upward succession: low, high, low and high) were detected. The results suggest that these four zones were formed during a transgression-regression cycle caused by the last glacial period. At the Saijo site, located on a coastal plain composed of thick sediments, we observed a deep low resistivity zone, indicative of fossil seawater remnant from a transgression after the last glacial period. The current coastal

  18. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Bojan Nemec

    2014-10-01

    Full Text Available High precision Global Navigation Satellite System (GNSS measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier’s neck. A key issue is how to estimate other more relevant parameters of the skier’s body, like the center of mass (COM and ski trajectories. Previously, these parameters were estimated by modeling the skier’s body with an inverted-pendulum model that oversimplified the skier’s body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier’s body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.

  19. Observations of a narrow zone of high suspended particulate matter (SPM) concentrations along the Dutch coast

    NARCIS (Netherlands)

    van der Hout, C.M.; Gerkema, T.; Nauw, J.J.; Ridderinkhof, H.

    2015-01-01

    The objective of the study described in this paper is to localize the transport path of suspended particulate matter (SPM) in the Dutch coastal zone in the southern North Sea. It is known that a large mass of SPM is transported northward from the Strait of Dover, which is however mostly hidden from

  20. 76 FR 26183 - Safety Zone; Repair of High Voltage Transmission Lines to Logan International Airport, Saugus...

    Science.gov (United States)

    2011-05-06

    ... the repairs. Because of the vital importance of the repairs to Logan Airport, and the safety zone... designated on scene representative may be contacted via VHF Channel 16 or by telephone at (617) 223-5750... relationship between the Federal Government and Indian tribes, or on the distribution of power and...

  1. High-Mobility Aligned Pentacene Films Grown by Zone-Casting

    DEFF Research Database (Denmark)

    Duffy, Claudia M.; Andreasen, Jens Wenzel; Breiby, Dag W.

    2008-01-01

    We investigate the growth and field-effect transistor performance of aligned pentacene thin films deposited by zone-casting from a solution of unsubstituted pentacene molecules in a chlorinated solvent. Polarized optical microscopy shows that solution processed pentacene films grow as large...

  2. Climate change links fate of glaciers and an endemic alpine invertebrate

    Science.gov (United States)

    Muhlfeld, Clint C.; Giersch, J. Joseph; Hauer, F. Richard; Pederson, Gregory T.; Luikart, Gordon; Peterson, Douglas P.; Downs, Christopher C.; Fagre, Daniel B.

    2011-01-01

    Climate warming in the mid- to high-latitudes and high-elevation mountainous regions is occurring more rapidly than anywhere else on Earth, causing extensive loss of glaciers and snowpack. However, little is known about the effects of climate change on alpine stream biota, especially invertebrates. Here, we show a strong linkage between regional climate change and the fundamental niche of a rare aquatic invertebrate—themeltwater stonefly Lednia tumana—endemic toWaterton- Glacier International Peace Park, Canada and USA. L. tumana has been petitioned for listing under the U.S. Endangered Species Act due to climate-change-induced glacier loss, yet little is known on specifically how climate impacts may threaten this rare species and many other enigmatic alpine aquatic species worldwide. During 14 years of research, we documented that L. tumana inhabits a narrow distribution, restricted to short sections (∼500 m) of cold, alpine streams directly below glaciers, permanent snowfields, and springs. Our simulation models suggest that climate change threatens the potential future distribution of these sensitive habitats and persistence of L. tumana through the loss of glaciers and snowfields. Mountaintop aquatic invertebrates are ideal early warning indicators of climate warming in mountain ecosystems. Research on alpine invertebrates is urgently needed to avoid extinctions and ecosystem change.

  3. Optimal high b-value for diffusion weighted MRI in diagnosing high risk prostate cancers in the peripheral zone.

    Science.gov (United States)

    Agarwal, Harsh K; Mertan, Francesca V; Sankineni, Sandeep; Bernardo, Marcelino; Senegas, Julien; Keupp, Jochen; Daar, Dagane; Merino, Maria; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L; Turkbey, Baris

    2017-01-01

    To retrospectively determine the optimal b-value(s) of diffusion-weighted imaging (DWI) associated with intermediate-high risk cancer in the peripheral zone (PZ) of the prostate. Forty-two consecutive patients underwent multi b-value (16 evenly spaced b-values between 0 and 2000 s/mm 2 ) DWI along with multi-parametric MRI (MP-MRI) of the prostate at 3 Tesla followed by trans-rectal ultrasound/MRI fusion guided targeted biopsy of suspicious lesions detected at MP-MRI. Computed DWI images up to a simulated b-value of 4000 s/mm 2 were also obtained using a pair of b-values (b = 133 and 400 or 667 or 933 s/mm 2 ) from the multi b-value DWI. The contrast ratio of average intensity of the targeted lesions and the background PZ was determined. Receiver operator characteristic curves and the area under the curve (AUCs) were obtained for separating patients eligible for active surveillance with low risk prostate cancers from intermediate-high risk prostate cancers as per the cancer of the prostate risk assessment (CAPRA) scoring system. The AUC first increased then decreased with the increase in b-values reaching maximum at b = 1600 s/mm 2 (0.74) with no statistically significant different AUC of DWI with b-values 1067-2000 s/mm 2 . The AUC of computed DWI increased then decreased with the increase in b-values reaching a maximum of 0.75 around b = 2000 s/mm 2 . There was no statistically significant difference between the AUC of optimal acquired DWI and either of optimal computed DWI. The optimal b-value for acquired DWI in differentiating intermediate-high from low risk prostate cancers in the PZ is b = 1600 s/mm 2 . The computed DWI has similar performance as that of acquired DWI with the optimal performance around b = 2000 s/mm 2 . 4 J. Magn. Reson. Imaging 2017;45:125-131. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Phosphate sorption characteristics of European alpine soils

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Jiří; Kopáček, Jiří; Camarero, L.; Garcia-Pausas, J.

    2011-01-01

    Roč. 75, č. 3 (2011), s. 862-870 ISSN 0361-5995 R&D Projects: GA ČR(CZ) GA526/09/0567; GA AV ČR(CZ) KJB600960907 Grant - others:EU EMERGE(CZ) EVK1-CT-1999-00032 Institutional research plan: CEZ:AV0Z60170517 Keywords : phosphate sorption * alpine soil s * acidification Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.979, year: 2011

  5. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  6. ALPINE VEGETATION ECOTONE DYNAMICS IN GANGOTRI CATCHMENT USING REMOTE SENSING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    C. P. Singh

    2012-09-01

    Full Text Available Analysis of the satellite imagery reveals two different perspectives of the vegetation ecotone dynamics in Gangotri catchment. On one hand, there is evidence of upward shift in the alpine tree and vegetation ecotone over three decades. On the other hand, there has been densification happening at the past treeline. The time series fAPAR data of two decades from NOAA-AVHRR confirms the greening trend in the area. The density of trees in Chirbasa has gone up whereas in Bhojbasa there is no significant change in NDVI but the number of groves has increased. Near Gaumukh the vegetal activity has not shown any significant change. We found that the treeline extracted from satellite imagery has moved up about 327±80m and other vegetation line has moved up about 401±77m in three decades. The vertical rate of treeline shift is found to be 11m/yr with reference to 1976 treeline; however, this can be 5m/yr if past toposheet records (1924 – 45 are considered as reliable reference. However, the future IPCC scenario based bioclimatic fundamental niche modelling of the Betula utilis (a surrogate to alpine treeline suggests that treeline could be moving upward with an average rate of 3m/yr. This study not only confirms that there is an upward shift of vegetation in the alpine zone of Himalayas, but also indicate that old vegetation ecotones have grown denser

  7. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes

    International Nuclear Information System (INIS)

    Cwirzen, Andrzej; Penttala, Vesa

    2005-01-01

    The influence of the cement paste-aggregate interfacial transition zone (ITZ) on the frost durability of high-performance silica fume concrete (HPSFC) has been studied. Investigation was carried out on eight non-air-entrained concretes having water-to-binder (W/B) ratios of 0.3, 0.35 and 0.42 and different additions of condensed silica fume. Studies on the microstructure and composition of the cement paste have been made by means of environmental scanning electron microscope (ESEM)-BSE, ESEM-EDX and mercury intrusion porosimetry (MIP) analysis. The results showed that the transition zone initiates and accelerates damaging mechanisms by enhancing movement of the pore solution within the concrete during freezing and thawing cycles. Cracks filled with ettringite were primarily formed in the ITZ. The test concretes having good frost-deicing salt durability featured a narrow transition zone and a decreased Ca/Si atomic ratio in the transition zone compared to the bulk cement paste. Moderate additions of silica fume seemed to densify the microstructure of the ITZ

  8. Working toward integrated models of alpine plant distribution.

    Science.gov (United States)

    Carlson, Bradley Z; Randin, Christophe F; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2013-10-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

  9. Characterizing the intra-urban spatiotemporal dynamics of High Heat Stress Zones (Hotspots)

    Science.gov (United States)

    Shreevastava, A.; Rao, P. S.; McGrath, G. S.

    2017-12-01

    In this study, we present an innovative framework to characterize the spatio-temporal dynamics of High Heat Stress Zones (Hot spots) created within an Urban area in the event of a Heat Wave. Heat waves are one of the leading causes of weather-related human mortality in many countries, and cities receive its worst brunt. The extreme heat stress within urban areas is often a synergistic combination of large-scale meteorological events, and the locally exacerbated impacts due to Urban Heat Islands (UHI). UHI is typically characterized as the difference between mean temperature of the urban and rural area. As a result, it fails to capture the significant variability that exists within the city itself. This variability arises from the diverse and complex spatial geometries of cities. Previous studies that have attempted to quantify the heat stress at an intra-urban scale are labor intensive, expensive, and difficult to emulate globally as they rely on availability of extensive data and their assimilation. The proposed study takes advantage of the well-established notion of fractal properties of cities to make the methods scalable to other cities where in-situ observational data might not be available. As an input, land surface temperatures are estimated using Landsat data. Using clustering analysis, we probe the emergence of thermal hotspots. The probability distributions (PD) of these hotspots are found to follow a power-law distribution in agreement with fractal characteristics of the city. PDs of several archetypical cities are then investigated to compare the effect of different spatial structures (e.g. monocentric v/s polycentric, sprawl v/s compact). Further, the temporal variability of the distributions on a diurnal as well as a seasonal scale is discussed. Finally, the spatiotemporal dynamics of the urban hotspots under a heat-wave (E.g. Delhi Heat wave, 2015) are compared against the non-heat wave scenarios. In summary, a technique that is globally adaptive and

  10. Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise. In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  11. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    Science.gov (United States)

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  12. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  13. Alpine crossroads or origin of genetic diversity? Comparative phylogeography of two sympatric microgastropod species.

    Directory of Open Access Journals (Sweden)

    Alexander M Weigand

    Full Text Available The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa--Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826 (Gastropoda, Eupulmonata, Carychiidae--by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (recolonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant 'hot-spot' for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic transport could mislead the interpretation of observed phylogeographical patterns in general.

  14. High-resolution MR imaging of the proximal zone of the lunotriquetral ligament with a microscopy coil

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Carrino, John A.; Lang, Philipp; Winalski, Carl S.; Tanaka, Toshikazu; Ueno, Teruko; Shindo, Masashi

    2006-01-01

    To evaluate high-resolution MRI of the proximal zone of the lunotriquetral ligament (LTL) using a microscopy surface coil with a 1.5 T scanner. The proximal zone of the LTL was reviewed in 90 subjects (23 asymptomatic normal volunteers and 67 patients with suspicion of triangular fibrocartilage complex injury) with high-resolution MRI using a 47-mm microscopy surface coil. High-resolution MR images were obtained with gradient recalled echo (GRE) T2*-weighted sequence and short tau inversion recovery imaging, with a 1- to 1.5-mm slice thickness, a 50-mm field of view, an imaging matrix of 140-224 x 512 using zero fill interpolation, and 3-4 excitations. As a qualitative analysis, the LTL was classified in shape and signal intensity. The triangle-shaped low-signal-intensity LTL was identified in 77 of 90 subjects (85.6%) on GRE images. The triangle was classified as regular (41.1%), broad-based (20.0%), narrow-based (6.7%), or asymmetrical (17.8%). The bar-shaped ligament was seen in one patient, and unclassified ligaments were seen in 12 patients. All volunteers showed triangle-shaped LTL. The MR signal intensity of the proximal zone in the LTL was characterized as homogeneously low intensity (type 1; 33.8%). (orig.)

  15. High-resolution MR imaging of the proximal zone of the lunotriquetral ligament with a microscopy coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi; Carrino, John A.; Lang, Philipp; Winalski, Carl S. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Tanaka, Toshikazu [Tsukuba Memorial Hospital, Department of Orthopedic Surgery, Tsukuba (Japan); Ueno, Teruko [University of Tsukuba, Department of Radiology, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2006-05-15

    To evaluate high-resolution MRI of the proximal zone of the lunotriquetral ligament (LTL) using a microscopy surface coil with a 1.5 T scanner. The proximal zone of the LTL was reviewed in 90 subjects (23 asymptomatic normal volunteers and 67 patients with suspicion of triangular fibrocartilage complex injury) with high-resolution MRI using a 47-mm microscopy surface coil. High-resolution MR images were obtained with gradient recalled echo (GRE) T2*-weighted sequence and short tau inversion recovery imaging, with a 1- to 1.5-mm slice thickness, a 50-mm field of view, an imaging matrix of 140-224 x 512 using zero fill interpolation, and 3-4 excitations. As a qualitative analysis, the LTL was classified in shape and signal intensity. The triangle-shaped low-signal-intensity LTL was identified in 77 of 90 subjects (85.6%) on GRE images. The triangle was classified as regular (41.1%), broad-based (20.0%), narrow-based (6.7%), or asymmetrical (17.8%). The bar-shaped ligament was seen in one patient, and unclassified ligaments were seen in 12 patients. All volunteers showed triangle-shaped LTL. The MR signal intensity of the proximal zone in the LTL was characterized as homogeneously low intensity (type 1; 33.8%). (orig.)

  16. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes

    Science.gov (United States)

    Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo

    2018-01-01

    Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902

  17. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia

    Science.gov (United States)

    Krauss, K.W.; Cahoon, D.R.; Allen, J.A.; Ewel, K.C.; Lynch, J.C.; Cormier, N.

    2010-01-01

    Mangroves on Pacific high islands offer a number of important ecosystem services to both natural ecological communities and human societies. High islands are subjected to constant erosion over geologic time, which establishes an important source of terrigeneous sediment for nearby marine communities. Many of these sediments are deposited in mangrove forests and offer mangroves a potentially important means for adjusting surface elevation with rising sea level. In this study, we investigated sedimentation and elevation dynamics of mangrove forests in three hydrogeomorphic settings on the islands of Kosrae and Pohnpei, Federated States of Micronesia (FSM). Surface accretion rates ranged from 2.9 to 20.8 mm y-1, and are high for naturally occurring mangroves. Although mangrove forests in Micronesian high islands appear to have a strong capacity to offset elevation losses by way of sedimentation, elevation change over 61/2 years ranged from -3.2 to 4.1 mm y-1, depending on the location. Mangrove surface elevation change also varied by hydrogeomorphic setting and river, and suggested differential, and not uniformly bleak, susceptibilities among Pacific high island mangroves to sea-level rise. Fringe, riverine, and interior settings registered elevation changes of -1.30, 0.46, and 1.56 mm y-1, respectively, with the greatest elevation deficit (-3.2 mm y-1) from a fringe zone on Pohnpei and the highest rate of elevation gain (4.1 mm y-1) from an interior zone on Kosrae. Relative to sea-level rise estimates for FSM (0.8-1.8 mm y-1) and assuming a consistent linear trend in these estimates, soil elevations in mangroves on Kosrae and Pohnpei are experiencing between an annual deficit of 4.95 mm and an annual surplus of 3.28 mm. Although natural disturbances are important in mediating elevation gain in some situations, constant allochthonous sediment deposition probably matters most on these Pacific high islands, and is especially helpful in certain hydrogeomorphic zones

  18. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau.

    Science.gov (United States)

    Liang, Eryuan; Eckstein, Dieter

    2009-09-01

    Shrubs and dwarf shrubs are wider spread on the Tibetan Plateau than trees and hence offer a unique opportunity to expand the present dendrochronological network into extreme environments beyond the survival limit of trees. Alpine shrublands on the Tibetan Plateau are characterized by rhododendron species. The dendrochronological potential of one alpine rhododendron species and its growth response to the extreme environment on the south-east Tibetan Plateau were investigated. Twenty stem discs of the alpine snowy rhododendron (Rhododendron nivale) were collected close to the tongue of the Zuoqiupu Glacier in south-east Tibet, China. The skeleton plot technique was used for inter-comparison between samples to detect the growth pattern of each stem section. The ring-width chronology was developed by fitting a negative exponential function or a straight line of any slope. Bootstrapping correlations were calculated between the standard chronology and monthly climate data. The wood of snowy rhododendron is diffuse-porous with evenly distributed small-diameter vessels. It has well-defined growth rings. Most stem sections can be visually and statistically cross-dated. The resulting 75-year-long standard ring-width chronology is highly correlated with a timberline fir chronology about 200 km apart, providing a high degree of confidence in the cross-dating. The climate/growth association of alpine snowy rhododendron and of this timberline fir is similar, reflecting an impact of monthly mean minimum temperatures in November of the previous year and in July during the year of ring formation. The alpine snowy rhododendron offers new research directions to investigate the environmental history of the Tibetan Plateau in those regions where up to now there was no chance of applying dendrochronology.

  19. High Resolution Seismic Images of Transition Zone Discontinuities beneath the Hawaii-Emperor Seamount Chain

    Science.gov (United States)

    Cao, Q.; Wang, P.; van der Hilst, R. D.; Shim, S.

    2009-12-01

    Taking advantage of the abundance of natural sources (earthquakes) in western Pacific subduction zones and the many seismograph stations in the Americas, we use inverse scattering - a generalized Radon transform - of SS precursors to image the transition zone discontinuities underneath Hawaii and the Hawaii-Emperor seamount chain. The GRT makes use of scattering theory and extracts structural information from broad band data windows that include precursors to SS (which are the specular reflections at the discontinuities that form the main arrivals) as well as non-specular scattered energy (which is often discarded as noise). More than 150,000 seismograms (from the IRIS Data Management Center) are used to form a 3-D image of the transition zone discontinuities beneath the central Pacific. In addition to clear signals near 410, 520, and 660 km depth, the data also reveal scatter interfaces near 370 km dept and between 800-1000 km depth, which may be regional, laterally intermittent scatter horizons. Our images reveal a conspicuous uplift of the 660 discontinuity in a region of 800km in diameter to the west of the active volcanoes of Hawaii. No correspondent localized depression of the 410 discontinuity is found. Instead, we find a smaller scale anomaly suggesting that the 410 discontinuity is locally elevated in the same region. This may indicate the presence of melt or minor chemical constitutes. The lack of correlation between and differences in lateral length scale of the topographies of the 410 and 660 km discontinuities are also consistent with a deep-mantle plume impinging on the transition zone, creating a pond of hot material underneath 660 discontinuity, and with secondary plumes connecting to the present-day hotspot at Earth’s surface. Our observations suggest that more complicated plume morphology and plume dynamics within the Earth's mantle should be taken into account to describe the plumes and, in particular, mass transport across the transition zone

  20. Airborne geophysical survey of the catastrophic landslide at Stože, Log pod Mangrtom, as a test of an innovative approach for landslide mapping in steep alpine terrains

    Directory of Open Access Journals (Sweden)

    I. Baroň

    2013-10-01

    Full Text Available Airborne geophysics is a promising method for investigating landslides. Here we present a case study of multisensor airborne geophysical survey at the catastrophic landslide Stože near Log pod Mangrtom in Slovenia, which was conducted in the framework of the European FP7th Project "SafeLand". Based on the survey itself and achieved results, we discuss applicability, limits, and benefits and costs of the method for investigating landslides in steep alpine terrains. Despite of several operational constraints, the airborne electromagnetic survey of the area well presented the lithological pattern and water saturation. The high resistivity regions mostly indicated drained slope scree and landslide mass, drained and loosened material of the moraine deposit in the tension zone of the landslide with present cracks and cavities. The minima of the resistivity pattern were attributed to the outcrop of marls rich in clay, to water-saturated moraine deposit above impermeable marls in the tension zone, and to water-saturated porous alluvial gravel and landslide scree along the Koritnica River. The magnetic survey proved to be inapplicable for such a small and rough area. The Potassium and Thorium maps, on the other hand, both well identified the regions of tension inside the landslide zone, outcrops of marls and dolomite, clay-rich colluvium, weathered zones along a regional tectonic fault, and alluvial deposits and deposits of debris flows, and the minima of the 137Cs clearly revealed the zones of material removal due to recent mass movements.

  1. PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA

    Science.gov (United States)

    Mcclain, C. R.

    1994-01-01

    PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of

  2. The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    CERN Document Server

    Shilon, I.; Langeslag, S.A.E.; Martins, L.P.; ten Kate, H.H.J.

    2015-06-19

    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zon...

  3. Spatial and temporal variability of soil moisture in a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified, and soil moisture is a key environmental variable controlling this functionality. Restored sections of rivers often are characterized by a dynamic mosaic of riparian zones with varying exposure to flooding. In this presentation, the spatial and temporal variability of soil moisture in riparian soils of a restored reach of the Alpine river Thur in northeastern Switzerland is shown. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three functional processing zones (FPZ) representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is loamy sand to sandy loam composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits with a loamy fine earth. (iii) The mixed forest is a mature riparian hardwood forest with ash and maple as dominant trees developed on older overbank sediments with a silty loamy fine earth. The study period was between spring 2009 and winter 2009/2010 including three flood events in June, July and December 2009. The first and third flood inundated the grass zone and lower part of the bush zone while the second flood was bigger and swept through all the FPZs. Water contents in several soil depths were measured continuously in 30 minute intervals using Decagon EC-5 and EC-TM sensors. There were six spatial

  4. Biomechanical factors influencing the performance of elite Alpine ski racers.

    Science.gov (United States)

    Hébert-Losier, Kim; Supej, Matej; Holmberg, Hans-Christer

    2014-04-01

    . Investigations on speed skiing (i.e., downhill and super-G) primarily examined the effect of aerodynamic drag on performance, whereas the others examined turn characteristics, energetic principles, technical and tactical skills, and individual traits of high-performing skiers. The range of biomechanical factors reported to influence performance included energy dissipation and conservation, aerodynamic drag and frictional forces, ground reaction force, turn radius, and trajectory of the skis and/or centre of mass. The biomechanical differences between turn techniques, inter-dependency of turns, and abilities of individuals were also identified as influential factors in skiing performance. In the case of slalom and giant slalom events, performance could be enhanced by steering the skis in such a manner to reduce the ski-snow friction and thereby energy dissipated. This was accomplished by earlier initiation of turns, longer path length and trajectory, earlier and smoother application of ground reaction forces, and carving (rather than skidding). During speed skiing, minimizing the exposed frontal area and positioning the arms close to the body were shown to reduce the energy loss due to aerodynamic drag and thereby decrease run times. In actual races, a consistently good performance (i.e., fast time) on different sections of the course, terrains, and snow conditions was a characteristic feature of winners during technical events because these skiers could maximize gains from their individual strengths and minimize losses from their respective weaknesses. Most of the articles reviewed were limited to investigating a relatively small sample size, which is a usual limitation in research on elite athletes. Of further concern was the low number of females studied, representing less than 4% of all the subjects examined in the articles reviewed. In addition, although overall run time is the ultimate measure of performance in alpine ski racing, several other measures of instantaneous

  5. A comparative phylogeographic study reveals discordant evolutionary histories of alpine ground beetles (Coleoptera, Carabidae).

    Science.gov (United States)

    Weng, Yi-Ming; Yang, Man-Miao; Yeh, Wen-Bin

    2016-04-01

    Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain-island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice-free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain-island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long-term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65-1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.

  6. 3-Dimentional Mapping Coastal Zone using High Resolution Satellite Stereo Imageries

    International Nuclear Information System (INIS)

    Hong, Zhonghua; Liu, Fengling; Zhang, Yun

    2014-01-01

    The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. The results of geometric processing of a Shanghai coastal zone from 0.7-m-resolution QuickBird Geo stereo images are presented firstly. The geo-positioning accuracy of ground point determination with vendor-provided rigorous physical model (RPM) parameters is evaluated and systematic errors are found when compared with ground control points surveyed by GPS real-time kinematic (GPS-RTK) with 5cm accuracy. A bias-compensation process in image space that applies a RPM bundle adjustment to the RPM-calculated 3D ground points to correct the systematic errors is used to improve the geo-positioning accuracy. And then, a area-based matching (ABM) method is used to generated the densely corresponding points of left and right QuickBird images. With the densely matching points, the 3-dimentinal coordinates of ground points can be calculated by using the refined geometric relationship between image and ground points. At last step, digital surface model (DSM) can be achieved automatically using interpolation method. Accuracies of the DSM as assessed from independent checkpoints (ICPs) are approximately 1.2 m in height

  7. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by ∼0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation

  8. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  9. Important role of vertical migration of compressed gas, oil and water in formation of AVPD (abnormally high pressure gradient) zones

    Energy Technology Data Exchange (ETDEWEB)

    Anikiyev, K.A.

    1980-01-01

    The principal role of vertical migration of compressed gases, gas-saturated petroleum and water during formation of abnormally high pressure gradients (AVPD) is confirmed by extensive factual data on gas production, grifons, blowouts and gushers that accompany drilling formations with AVPD from early history to the present time; the sources of vertical migration of compressed fluids, in accordance with geodynamic AVPD theory, are the deep degasified centers of the earth mantle. Among the various types of AVPD zones especially notable are the large (often massive or massive-layer) deposits and the intrusion aureoles that top them in the overlapping covering layers. Prediction of AVPD zones and determining their field and energy potential must be based on field-baric simulation of the formations being drilled in light of laws regarding the important role of the vertical migration of compressed fluids. When developing field-baric models, it is necessary to utilize the extensive and valuable data on grifons, gas production and blowouts that has been collected and categorized by drilling engineers and production geologists. To further develop data on field-baric conditions of the earth, it is necessary to collect and study signals of AVPD. First of all, there is a need to evaluate potential elastic resources of compressed fluids which can move from the bed into the well. Thus it is necessary to study and standardize intrusion aureoles and other AVPD zones within the aspect of fieldbaric modeling.

  10. Decadal changes of weather types in the alpine region

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G.; Talkner, P.; Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The annual occurrence of different weather types of Schuepp`s synoptic classification in the Alpine region has changed since the beginning of its recording 1945. The annual frequency (number of days) of convective types has increased and that of advective types has decreased. In parallel the number of long-lasting convective episodes rose and the number of long-lasting advective episodes lessened. Most of the change took place in winter. The frequencies of different weather types and the annual mean of certain meteorological parameters are significantly correlated. Moreover, there is a strong interdependence between the subclass of high pressure types and the North Atlantic Oscillation (NAO) index. (author) 3 figs., 3 refs.

  11. The Balearic Islands in the Alpine Orogeny

    Energy Technology Data Exchange (ETDEWEB)

    Bourrouilh, R.

    2016-10-01

    The place of the Balearic Islands in the Alpine orogeny is examined using detailed sedimentology studies, stratigraphical studies from the Lower Devonian (Lochkovian) to modern times and a careful tectonic review of sedimentary formations from the Western Mediterranean. Despite being considered as the ultimate end of the north-eastern termination of the Betic Cordillera, the history of the Balearic archipelago seems to be closer to the tectonic opening of the Gulf of Valencia and to the Corsica-Sardinia rotation, and thus to the tectonic history of the Western Mediterranean Sea, than to the tectonics of the Betic Cordillera which appear as its symmetrical image with respect to this opening. (Author)

  12. Alpine vegetation communities and the alpine-treeline ecotone boundary in New England as biomonitors for climate change

    Science.gov (United States)

    Kenneth D. Kimball; Douglas M. Weihrauch

    2000-01-01

    This study mapped and analyzed the alpine-treeline ecotone (ATE) boundary and alpine plant communities on the Presidential Range, New Hampshire and Mount Katahdin, Maine. These are sensitive biomonitoring parameters for plant community responses to climatic change. The ATE boundary spans a considerable elevational range, suggesting that shorter growing seasons with...

  13. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    hillslope erosion by rainfall on snow-free surfaces, and increased meltwater production on snow-free glacier surfaces. Despite the rise in air temperature, changes in mean discharge in the mid-1980s were not statistically significant, and their interpretation is complicated by hydropower reservoir management and the flushing operations at intakes. Overall, the results show that to explain changes in suspended sediment transport from large Alpine catchments it is necessary to include an understanding of the multitude of sediment sources involved together with the hydroclimatic conditioning of their activation (e.g. changes in precipitation, runoff, air temperature). In addition, this study points out that climate signals in suspended sediment dynamics may be visible even in highly regulated and human-impacted systems. This is particularly relevant for quantifying climate change and hydropower impacts on streamflow and sediment budgets in Alpine catchments.

  14. Statistical Downscaling Of Local Climate In The Alpine Region

    Science.gov (United States)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  15. Landscape History of Grosses Moos, NW Swiss Alpine Foreland.

    Science.gov (United States)

    Joanna Heer, Aleksandra; Adamiec, Grzegorz; Veit, Heinz; May, Jan-Hendrik; Novenko, Elena; Hajdas, Irka

    2017-04-01

    The western Swiss Plateau with Lake Neuchâtel is part of the alpine foreland and among the key areas for the reconstruction of environmental changes since the last postglacial. This study was carried out in a landscape located NE of the lake and called Grosses Moos (The Large Fen) - currently designated the Swiss largest, continuous farming area, after the fen was drained in course of landscape engineering projects performed in Switzerland at the end of the 19th century. The study contributes new results from nine excavations of littoral ridges identified in Grosses Moos, and integrates sedimentology, paleo-environmental analysis and three independent chronological methods. Radiocarbon dating, pollen analysis and optically stimulated luminescence (OSL) were applied to the sediments. While pollen and radiocarbon follow the standard procedures, the evaluation of the luminescence age estimates demanded adjustment according to the physical and microdosimetric properties of the alpine quartz, and consideration of the peculiarities of the changing littoral environments of Grosses Moos. The Grosses Moos landscape developed on the temporary surface of the post-Last Glacial sedimentary infill of the over-deepened glacial Aare valley. In this study the landscape history has been fitted into the existing supraregional time scales of NGRIP, the Swiss bio-zones system and the human history based on archaeological and historic records and covers a time span of up to 15'000 yr b2k. The wide-ranging suite of geomorphic features and sedimentary sequences, including littoral lake sediments, beach ridges, dunes, palaeo-channels, peat and colluvial deposits, enable the extensive reconstruction of spatially and temporally variable natural shaping processes. In addition, our results indicate remobilization of soil, colluvium, and sediment due to human settlement activities since the Neolithic - with an important increase in sediment load and spatial variability since the Bronze Age

  16. How can geological datasets help us to choose between rheological behaviours suggested by experimental measurements? Examples from the Alpine Fault and the Japan Trench.

    Science.gov (United States)

    Toy, V.; Boulton, C. J.; Coffey, G.; Denys, P. H.; McCaffrey, R.

    2015-12-01

    Laboratory measurements of fault rock rheology are commonly performed on individual components of complex natural systems. Textural and structural inferences from outcrop observations provide one means to constrain the co-operative behaviour of multi-component natural fault systems. For example, the principal slip zone (PSZ) of New Zealand's central Alpine Fault comprises a 1-10 cm thick sandwich of impermeable smectite-bearing ultracataclasite/gouge layers between higher permeability hanging wall cataclasite and footwall gravel (Boulton et al., 2012, doi: 10.1029/2011GC003872). Based solely on measured mechanical properties we expect earthquake ruptures to nucleate and propagate in the cataclasites rather than the PSZ. However, the PSZ gouge was preferentially comminuted so it must localise slip, and injection veins penetrate from it into the surrounding formation. This suggests that the gouge experiences coseismic pressurization and weakening, possible if slip is confined to one layer within the impermeable (thus undrained) gouge. On the southern Alpine Fault a clear PSZ is not well-developed; instead a wide shear zone crops out (Barth et al., 2013, doi: 10.1002/tect.20041). Mechanical data again demonstrate frictionally weak, velocity strengthening, low permeability materials, compatible with a creeping shear zone, but PSZ materials display velocity weakening behaviour at high slip rates if undrained, from which we infer seismic slip is possible in nature. Extensive paleoseismic records suggest the structure has accommodated regularly repeating earthquakes for the last 17 kyr (Berryman et al., 2013, doi: 10.1126/science.1218959). Our newly gathered geodetic datasets may resolve this apparent slip rate paradox. In situ measurements from active fault systems can also help interpret experimental data. For example, in material recovered from around the active slip zone of the 2011 Tohoku-oki earthquake, experiments suggest lower frictional strength for undrained

  17. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob

    2013-01-01

    subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system. © 2013 Elsevier B.V.......The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...

  18. The relative age effect and the influence on performance in youth alpine ski racing.

    Science.gov (United States)

    Müller, Lisa; Hildebrandt, Carolin; Raschner, Christian

    2015-03-01

    The relative age effect (RAE), which refers to an over representation of athletes born early in a selection year, recently was proven to be present in alpine skiing. However, it was not made apparent whether the RAE exists as early as at the youngest level of youth ski racing at national level, nor whether the relative age influences racing performance. As a consequence, the purpose of the present study was twofold: first, to examine the extent of the RAE and second, to assess the influence the relative age has on the overall performance at the youngest levels of youth ski racing. The study included the investigation of 1,438 participants of the Austrian Kids Cup and 1,004 participants of the Teenager Cup at the provincial level, as well as 250 finalists of the Kids Cup and 150 finalists of the Teenager Cup at the national level. Chi²-tests revealed a highly significant RAE already at the youngest level of youth ski racing (Kids Cup) at both the provincial and national levels. There are not again favorably selected the relatively older athletes from the first into the second level of youth ski racing (Teenager Cup). Among the athletes of the Kids Cup, the relative age quarter distribution differed highly significantly from the distribution of the total sample with an over representation of relatively older athletes by comparison taking the top three positions. The data revealed that relative age had a highly significant influence on performance. This study demonstrated that the RAE poses a problem as early as the youngest level of youth ski racing, thereby indicating that many young talented kids are discriminated against, diminishing any chance they might have of becoming elite athletes despite their talents and efforts. The RAE influences not only the participation rate in alpine skiing, but also the performances. As a result, changes in the talent development system are imperative. Key pointsThe relative age influences not only the participation in youth ski

  19. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  20. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    International Nuclear Information System (INIS)

    Roth, F.; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ 13 C org and δ 15 N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. - Highlights: •Pollution by untreated sewage discharge is evident at the outfall and in Salvador's coastal zone. •Seasonal wind- and tide-driven surface currents control advective transport of discharged sewage. •Water quality at Salvador's recreational beaches is impacted by a plume of untreated sewage.

  1. Metabolic Profiling of Alpine and Ecuadorian Lichens

    Directory of Open Access Journals (Sweden)

    Verena K. Mittermeier

    2015-10-01

    Full Text Available Non-targeted 1H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA internal transcribed spacer (ITS sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  2. Isotopic dating of the post-Alpine Neogene volcanism in the Betic Cordilleras, southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, F A; Rondeel, H E [Amsterdam Univ. (Netherlands). Geologisch Inst.; Andriessen, P A.M.; Hebeda, E H; Priem, H N.A. [Laboratorium voor Isotopen-Geologie, Amsterdam (Netherlands)

    1981-06-01

    The post-Alpine lamproitic volcanism in the Prebetic of the External Zone of the Betic Cordilleras of southern Spain is dated at 7.6-7.2 Ma by the K-Ar data from two richterites, two sanidines, a phlogopite and a whole-rock, and the fission-track analysis of an apatite. Biotite from a lava of the rhyolitic-dacitic suite in the post-orogenic Vera basin of the Internal Zone produces the same age. Phlogopite from a lamproitic (veritic) subvolcanic body in the Vera basin yields an age of about 8.6 Ma; as lavas belonging to the veritic suite reportedly overlie Late Messinian sediments, pointing to an age of less than about 5 Ma, this type of volcanism in the Vera basin must have been active over several million years.

  3. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    Science.gov (United States)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  4. MAPPING ALPINE VEGETATION LOCATION PROPERTIES BY DENSE MATCHING

    Directory of Open Access Journals (Sweden)

    R. Niederheiser

    2016-06-01

    Full Text Available Highly accurate 3D micro topographic mapping in mountain research demands for light equipment and low cost solutions. Recent developments in structure from motion and dense matching techniques provide promising tools for such applications. In the following, the feasibility of terrestrial photogrammetry for mapping topographic location properties of sparsely vegetated areas in selected European mountain regions is investigated. Changes in species composition at alpine vegetation locations are indicators of climate change consequences, such as the pronounced rise of average temperatures in mountains compared to the global average. Better understanding of climate change effects on plants demand for investigations on a micro-topographic scale. We use professional and consumer grade digital single-lens reflex cameras mapping 288 plots each 3 x 3 m on 18 summits in the Alps and Mediterranean Mountains within the GLORIA (GLobal Observation Research Initiative in Alpine environments network. Image matching tests result in accuracies that are in the order of millimetres in the XY-plane and below 0.5 mm in Z-direction at the second image pyramid level. Reconstructing vegetation proves to be a challenge due to its fine and small structured architecture and its permanent movement by wind during image acquisition, which is omnipresent on mountain summits. The produced 3D point clouds are gridded to 6 mm resolution from which topographic parameters such as slope, aspect and roughness are derived. At a later project stage these parameters will be statistically linked to botanical reference data in order to conclude on relations between specific location properties and species compositions.

  5. Land use and surface process domains on alpine hillslopes

    Science.gov (United States)

    Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias

    2015-04-01

    Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental

  6. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    DEFF Research Database (Denmark)

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...

  7. Growth of large size lithium niobate single crystals of high quality by tilting-mirror-type floating zone method

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Abdur Razzaque, E-mail: razzaque_ru2000@yahoo.com [Department of Physics, University of Rajshahi (Bangladesh)

    2016-05-15

    Large size high quality LiNbO{sub 3} single crystals were grown successfully by tilting-mirror-type floating zone (TMFZ) technique. The grown crystals were characterized by X-ray diffraction, etch pits density measurement, Impedance analysis, Vibrating sample magnetometry (VSM) and UV-Visible spectrometry. The effect of mirror tilting during growth on the structural, electrical, optical properties and defect density of the LiNbO{sub 3} crystals were investigated. It was found that the defect density in the crystals reduced for tilting the mirror in the TMFZ method. The chemical analysis revealed that the grown crystals were of high quality with uniform composition. The single crystals grown by TMFZ method contains no low-angle grain boundaries, indicating that they can be used for high efficiency optoelectronic devices. (author)

  8. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian; Lessa, G.C.; Wild, C.; Kikuchi, R.K.P.; Naumann, M.S.

    2016-01-01

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  9. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil)

    KAUST Repository

    Roth, Florian

    2016-03-30

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ13Corg and δ15N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6 km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality.

  10. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment

    Directory of Open Access Journals (Sweden)

    N. Wever

    2017-08-01

    Full Text Available The assessment of flood risks in alpine, snow-covered catchments requires an understanding of the linkage between the snow cover, soil and discharge in the stream network. Here, we apply the comprehensive, distributed model Alpine3D to investigate the role of soil moisture in the predisposition of the Dischma catchment in Switzerland to high flows from rainfall and snowmelt. The recently updated soil module of the physics-based multilayer snow cover model SNOWPACK, which solves the surface energy and mass balance in Alpine3D, is verified against soil moisture measurements at seven sites and various depths inside and in close proximity to the Dischma catchment. Measurements and simulations in such terrain are difficult and consequently, soil moisture was simulated with varying degrees of success. Differences between simulated and measured soil moisture mainly arise from an overestimation of soil freezing and an absence of a groundwater description in the Alpine3D model. Both were found to have an influence in the soil moisture measurements. Using the Alpine3D simulation as the surface scheme for a spatially explicit hydrologic response model using a travel time distribution approach for interflow and baseflow, streamflow simulations were performed for the discharge from the catchment. The streamflow simulations provided a closer agreement with observed streamflow when driving the hydrologic response model with soil water fluxes at 30 cm depth in the Alpine3D model. Performance decreased when using the 2 cm soil water flux, thereby mostly ignoring soil processes. This illustrates that the role of soil moisture is important to take into account when understanding the relationship between both snowpack runoff and rainfall and catchment discharge in high alpine terrain. However, using the soil water flux at 60 cm depth to drive the hydrologic response model also decreased its performance, indicating that an optimal soil depth to include in

  11. Linking carbon and hydrologic fluxes in the critical zone: Observations from high-frequency monitoring of a weathered bedrock vadose zone

    Science.gov (United States)

    Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.

    2017-12-01

    A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to

  12. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    International Nuclear Information System (INIS)

    Moon, Joonoh; Ha, Heon-Young; Lee, Tae-Ho

    2013-01-01

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr 2 N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite

  13. OPERATION OF NEW AND HIGH-TECH DEVELOPMENT ZONE – “CHINA-SINGAPORE SUZHOU INDUSTRIAL PARK”

    Directory of Open Access Journals (Sweden)

    Qi Ji.

    2017-01-01

    Full Text Available Systematic work of the higher authorities of China on achievement and implementation of generally valid aims in the field of science and technology allowed the People’s Republic of China to reach intense innovative advancement of its conomy. New and High-Tech Development Zones form the basis of the national innovative infrastructure in China, the most successful of which is China-Singapore Suzhou Industrial Park (hereinafter – the Park. The Park can be characterized as a flagship project of cooperation between the governments of China and Singapore, pilot zone of reforms and innovations, successful model of international cooperation. The aim of the foundation and development of the Park is creation of innovative world class productions and setting up new international district with modern information and technology infrastructure and environmentally-friendly neighborhood. The article presents the process of formation of the Park’s management system and its interaction with the public authorities as well as the main principles of its organizational structure. Current social-economic development results and advancement of favorable conditions for investors are analyzed. Special emphasis is given to the concept of development of the industrial ecology observed by the Park’s management. The examples of intensive growth of infrastructure are given: creation of demonstration zones and experimental areas, building of social facilities. The emphasis is given to the constant development of the Park’s human resources. The project represents a new model of international economic and technical cooperation of China with other nations. 

  14. Solute transport processes in a highly permeable fault zone of Lindau fractured rock test site (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Himmelsbach, T. [Ruhr-Univ., Bochum (Germany). Dept. of Applied Geology; Hoetzl, H. [Univ. of Karlsruhe (Germany). Dept. of Applied Geology; Maloszewski, P. [GSF-Inst. for Hydrology, Munich-Neuherberg (Germany)

    1998-09-01

    The results of field tracer experiments performed in the Lindau fractured rock test site (southern Black Forest, Germany) and subsequent modeling are presented. A vertical, hydrothermally mineralized fault zone, with a permeability much greater than the surrounding granite mass, lies beneath a planned dam site. A dense network of boreholes and tunnels were used to investigate scaling effects of solute transport processes in fractured rock. A series of tracer experiments using deuterium and dye tracers were performed over varying distances and under different testing procedures, resulting in different flow field conditions. Large-scale tracer experiments were performed under natural flow field conditions, while small-scale tracer experiments were performed under artificially induced radial-convergent and injection-withdrawal flow fields. The tracer concentration curves observed in all experiments were strongly influenced by the matrix diffusion. The curves were evaluated with the one-dimensional single fissure dispersion model (SFDM) adjusted for the different flow field conditions. The fitting model parameters found determined the fracture aperture, and matrix and fissure porosities. The determined fracture aperture varied between the sections having different hydraulic conductivity. The determined values of matrix porosity seemed to be independent of the scale of the experiment. The modeled matrix porosities agreed well with values determined in independent laboratory investigations of drill cores using mercury porosimetry. In situ fissure porosity, determined only in small-scale experiments, was independent of the applied geometry of the artificially induced flow fields. The dispersivities were found to be independent of the scale of experiment but dependent on the flow conditions. The values found in forced gradient tests lie between 0.2 and 0.3 m, while values in experiments performed under natural flow conditions were one order of magnitude higher.

  15. Anterior cruciate ligament injury/reinjury in alpine ski racing: a narrative review

    Directory of Open Access Journals (Sweden)

    Jordan MJ

    2017-03-01

    Full Text Available Matthew J Jordan,1 Per Aagaard,2 Walter Herzog1 1Human Performance Laboratory, The University of Calgary, Calgary, AB, Canada; 2Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC, University of Southern Denmark, Odense M, Denmark Abstract: The purpose of the present review was to: 1 provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL injury in alpine ski racing; and 2 provide an overview of what is known pertaining to ACL reinjury and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers were found to be at high risk for knee injuries, and ACL tears were the most frequent diagnosis. Three primary ACL injury mechanism were identified that involved tibial internal rotation and anteriorly directed shear forces from ski equipment and the environment. While trunk muscle strength imbalance and genetics were found to be predictive of ACL injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness. While skiers seem to make a successful recovery following ACL injury, there may be persistent neuromuscular deficits. Future research efforts should be directed toward prospective studies on ACL injury/reinjury prevention in both

  16. Color-tunable and high-efficiency organic light-emitting diode by adjusting exciton bilateral migration zone

    Science.gov (United States)

    Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng

    2013-09-01

    A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.

  17. Changes in the world rivers' discharge projected from an updated high resolution dataset of current and future climate zones

    Science.gov (United States)

    Santini, Monia; di Paola, Arianna

    2015-12-01

    In this paper, an updated global map of the current climate zoning and of its projections, according to the Köppen-Geiger classification, is first provided. The map at high horizontal resolution (0.5° × 0.5°), representative of the current (i.e. 1961-2005) conditions, is based on the Climate Research Unit dataset holding gridded series of historical observed temperature and precipitation, while projected conditions rely on the simulated series, for the same variables, by the General Circulation Model CMCC-CM. Modeled variables were corrected for their bias and then projections of climate zoning were generated for the medium term (2006-2050) and long term (2056-2100) future periods, under RCP 4.5 and RCP 8.5 emission scenarios. Results show that Equatorial and Arid climates will spread at the expenses of Snow and Polar climates, with the Warm Temperate experiencing more moderate increase. Maps of climate zones are valuable for a wide range of studies on climate change and its impacts, especially those regarding the water cycle that is strongly regulated by the combined conditions of precipitation and temperature. As example of large scale hydrological applications, in this work we tested and implemented a spatial statistical procedure, the geographically weighted regression among climate zones' surface and mean annual discharge (MAD) at hydrographic basin level, to quantify likely changes in MAD for the main world rivers monitored through the Global Runoff Data Center database. The selected river basins are representative of more than half of both global superficial freshwater resources and world's land area. Globally, a decrease in MAD is projected both in the medium term and long term, while spatial differences highlight how some areas require efforts to avoid consequences of amplified water scarcity, while other areas call for strategies to take the opportunity from the expected increase in water availability. Also the fluctuations of trends between the

  18. Alpine ski and snowboarding traumatic injuries: incidence, injury patterns, and risk factors for 10 years.

    Science.gov (United States)

    McBeth, Paul B; Ball, Chad G; Mulloy, Robert H; Kirkpatrick, Andrew W

    2009-05-01

    Alpine skiing and snowboarding are popular winter sports in Canada. Every year participation in these activities results in traumatic injury. The purpose of this study was to identify the incidence and injury patterns, as well as risk factors associated with ski and snowboarding injuries. A comprehensive 10-year retrospective review of Alpine ski and snowboarding injuries from 1996 to 2006 was conducted. The Alberta Trauma Registry was used as the primary source of data. A total of 196 patients (56.6% skiers, 43.4% snowboarders) were identified as having major traumatic injuries (Injury Severity Score, >or=12). Forty-three patients required intensive care unit support. The majority of injuries were related to falls and collisions with natural objects. Head injuries were most common, followed by chest, spinal, and extremity trauma. Seventy-nine patients required emergency surgery. Skiing and snowboarding represent activities with high potential for traumatic injury. Safety initiatives should be developed to target this population.

  19. Transition to University Life: Insights from High School and University Female Students in Wolaita Zone, Ethiopia

    Science.gov (United States)

    Thuo, Mary; Edda, Medhanit

    2017-01-01

    The purpose of this study was to get an insight about how high school female students perceive the transition to university life, and to understand the transition experience of university female students in the first semester. An exploratory study design was used where 166 high school female students and 88 first year university female students…

  20. Disposal of high-level radioactive wastes in the unsaturated zone: technical considerations and response to comments. Final report

    International Nuclear Information System (INIS)

    Hackbarth, C.J.; Nicholson, T.J.; Evans, D.D.

    1985-10-01

    On July 22, 1985, the US Nuclear Regulatory Commission (NRC) promulgated amendments to 10 CFR Part 60 concerning disposal of high-level radioactive waste (HLW) in geologic repositories in the unsaturated zone (50 FR 29641). This report contains a discussion of the principal technical issues considered by the NRC staff during the development of these amendments. It expands or revises certain technical discussions originally presented in draft NUREG-1046 (February 1984) based on public comment letters and an increasing understanding of the physical, geochemical, and hydrogeologic processes operative in unsaturated geologic media. The following issues related to disposal of HLW within the unsaturated zone are discussed: hydrogeologic properties and conditions, heat dissipation and temperature, geochemisty, retrievability, potential for exhumation of the radioactive waste by natural causes and by human intrusion, the effects of future climatic changes on the level of the regional water table, and transport of radionuclides in the gaseous state. The changes to 10 CFR Part 60 in definitions, siting criteria, and design criteria for the geologic repository operations area are discussed. Other criteria examined by the NRC staff but which were not changed in rule are the minimum 300-meter depth for waste emplacement, limitations on exploratory boreholes, backfill requirements, waste package design criteria, and provisions for ventilation

  1. High temperature effect on microflora of radish root-inhabited zone and nutrient solutions for radish growth

    Science.gov (United States)

    Borodina, E. V.; Tirranen, L. S.

    The effect of high temperatures (35 and 45 °C) on microflora of the root zone of radish plants grown in phytotron was evaluated by the response of microorganisms from 9 indicator groups. Phytotron air temperature elevated to 35 °C for 20 hours caused no significant changes in qualitative and quantitative composition of the root microflora in experimental plants. By the end of the experiment, the species diversity of microflora had changed. The amount of phytopathogenic microorganisms decreased which can be interpreted as more stable co-existence of microflora with plants. The numbers of microbes from other indicator groups was in dynamic equilibrium. The plants' condition did not deteriorate either. Exposure to the temperature of 45 °C for 7 hours have been found to change the numbers and species diversity in the radish root zone microflora. The microorganisms were observed to increase their total numbers at the expense of certain indicator groups. Bacteria increased spore forms at the stage of spores. Colon bacillus bacteria of increased their numbers by the end of experiment by an order. By the end of experiment the roots of experiment plants had microscopic fungi from Mucor, Aspergillus, Trichoderma, Cladosporium genera. The observed changes in the microbial complex seem to be associated with the changes of root emissions and general deterioration of the plants' condition. It is suggested that the response of the microorganisms can be indicative of the condition of plants under investigation.

  2. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    Science.gov (United States)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  3. Photosynthesis and photosynthetic electron flow in the alpine evergreen species Quercus guyavifolia in winter

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-10-01

    Full Text Available Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap, stomatal and mesophyll conductances (gs and gm, CO2 assimilation rate (An, and total electron flow through PSII (JPSII at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap, the diurnal values of gs, gm, An and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures.

  4. Seedling Regeneration in the Alpine Treeline Ecotone: Comparison of Wood Microsites and Adjacent Soil Substrates

    Directory of Open Access Journals (Sweden)

    Adelaide Chapman Johnson

    2016-11-01

    Full Text Available Although climate warming is generally expected to facilitate upward advance of forests, conifer seedling regeneration and survival may be hindered by low substrate moisture, high radiation, and both low and high snow accumulation. To better understand substrate-related factors promoting regeneration in the alpine treeline ecotone, this study compared 2 substrates supporting conifer seedlings: rotten downed wood and adjacent soil. Study locations, each with 3 levels of incoming radiation, were randomly selected at forest line–alpine meadow borders in Pacific Northwest wilderness areas extending along an east–west precipitation gradient. Associations among substrate type, seedling density, radiation, site moisture, site temperature, plant water potential, and plant stomatal conductance were assessed. Wood microsites, flush with the ground and supporting Abies spp conifer seedlings, extended up to 20 m into alpine meadows from the forest line. Although wood microsites thawed later in the spring and froze earlier in the fall, they had warmer summer temperatures, greater volumetric water content, and more growing degree hours, and seedlings growing on wood had higher water potentials than seedlings growing on adjacent soil. At drier eastern sites, there was a positive relationship between seedling density and volumetric water content. Further, there was a positive relationship between seedling stomatal conductance and volumetric water content. Our study indicates that in the Pacific Northwest. and likely elsewhere, seedlings benefit from wood microsites, which provide greater water content. Given predictions of increased summer drought in some locations globally, wood microsites at forest line–alpine meadows and forest line–grasslands borders may become increasingly important for successful conifer regeneration.

  5. The relationship between soil physical properties and alpine plant diversity on Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-04-01

    Full Text Available Through a large-scale research, we examined the heterogeneity of soil properties and plant diversity, as well as their relationships across alpine grassland types on Qinghai-Tibet Plateau. The soil pH and EC value increased with the constant deepening of the soil in all the three alpine grassland types which in order of absolute value in every soil layer were alpine desert steppe, alpine steppe and alpine meadow. Among the three grassland types, the alpine meadow possessed the highest SM but the lowest SBD. For plant diversity, alpine meadow was the highest, alpine desert steppe ranked the second and alpine steppe was the last. SM and SBD were the highest influential soil physical properties to species richness, but with opposite effects.

  6. Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management

    Directory of Open Access Journals (Sweden)

    H. Staffler

    2008-06-01

    Full Text Available The main goals of this study were to identify the alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied.

    The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.

  7. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    Science.gov (United States)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  8. Alpine deformations in Donbass: Periodicity, character of stresses, and their probable sources

    Science.gov (United States)

    Kopp, M. L.; Korchemagin, V. A.; Kolesnichenko, A. A.

    2010-09-01

    The periodicity, dynamics, and kinematics of the insufficiently studied Cenozoic (Alpine) movements in the Donets Fold Edifice and its framework are considered. The synthesis of the available data on the Donets Basin (Donbass) and the adjacent territories of the Russian and Scythian plates shows that the Early Alpine, or Laramian epoch of deformation in the Paleocene and the Late Alpine, or recent epoch of deformation in the early Miocene-Quaternary were divided by a tectonic pause in the Eocene and Oligocene. Judging from macrostructural pattern and results of mesotectonic observations, both epochs were characterized by meridional compression and latitudinal extension but substantially differed in the scope of deformation and the style of structure. The former developed to the west of the Donbass and resulted in compression of diapirs in the Dnieper-Donets Aulacogen, whereas the latter created the recent Donets-Azov Swell and brought about right-lateral strike-slip faulting along the North Donets and Persianovsky faults bounding the Donbass. The recent movements and related deformation in the eastern area, including the substantial role of right-lateral strike-slip faulting, more intense deformation in comparison with Laramian movements, and the mobilization of the basement not only in the Dnieper-Donets Aulacogen but also far beyond its limits allow us to connect these phenomena with coeval orogeny in the Greater Caucasus. The nature of the moderate Laramian movements confined to the axial zone of the aulacogen is more questionable; however, it can be explained in terms of within-plate reactivation of western and part of eastern Europe as a response to plate collision in the Alps, Dinarides, and Pontides in combination with coeval onset of spreading in the North Atlantic and Arctic, which created counter-pressure from the north. The eventual result of both processes was inversion and compression of some European aulacogens, including the Dnieper-Donets Aulacogen.

  9. Behaviour of Nano Silica in Tension Zone of High Performance Concrete Beams

    Science.gov (United States)

    Jaishankar, P.; Vivek, D.

    2017-07-01

    High performance concrete (HPC) is similar to High strength concrete (HSC).It is because of lowering of water to cement ratio, which is needed to attain high strength and generally improves other properties. This concrete contains one or more cementitious materials such as fly ash, Silica fume or ground granulated blast furnace slag and usually a super plasticizer. The term ‘high performance’ is somewhat different because the essential feature of this concrete is that it’s ingredients and proportions are specifically chosen so as to have particularly appropriate properties for the expected use of the structure such as high strength and low permeability. Usage of nano scale properties such as Nano SiO2 can result in dramatically improved properties from conventional grain size materials of same chemical composition. This project is more interested in evaluate the behaviour of nano silica in concrete for 5%, 10%, and 15% volume fraction of cement. Flexural test for beams were conducted with two point loads, at different percentage as mentioned above. From results interpolated, Nano silica with higher order replacement gives optimized results compared to control specimens.

  10. Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall

    CERN Document Server

    Petriş, M.

    2016-09-13

    Multi-gap RPC prototypes with readout on a multi-strip electrode were developed for the small polar angle region of the CBM-TOF subdetector, the most demanding zone in terms of granularity and counting rate. The prototypes are based on low resistivity ($\\sim$10$^{10}$ $\\Omega$cm) glass electrodes for performing in high counting rate environment. The strip width/pitch size was chosen such to fulfill the impedance matching with the front-end electronics and the granularity requirements of the innermost zone of the CBM-TOF wall. The in-beam tests using secondary particles produced in heavy ion collisions on a Pb target at SIS18 - GSI Darmstadt and SPS - CERN were focused on the performance of the prototype in conditions similar to the ones expected at SIS100/FAIR. An efficiency larger than 98\\% and a system time resolution in the order of 70~-~80~ps were obtained in high counting rate and high multiplicity environment.

  11. Capillary zone electrophoresis method for a highly glycosylated and sialylated recombinant protein: development, characterization and application for process development.

    Science.gov (United States)

    Zhang, Le; Lawson, Ken; Yeung, Bernice; Wypych, Jette

    2015-01-06

    A purity method based on capillary zone electrophoresis (CZE) has been developed for the separation of isoforms of a highly glycosylated protein. The separation was found to be driven by the number of sialic acids attached to each isoform. The method has been characterized using orthogonal assays and shown to have excellent specificity, precision and accuracy. We have demonstrated the CZE method is a useful in-process assay to support cell culture and purification development of this glycoprotein. Compared to isoelectric focusing (IEF), the CZE method provides more quantitative results and higher sample throughput with excellent accuracy, qualities that are required for process development. In addition, the CZE method has been applied in the stability testing of purified glycoprotein samples.

  12. Microstructures Indicate Large Influence of Temperature and Fluid Pressure on the Reactivation of the Alpine Fault, New Zealand

    Science.gov (United States)

    Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The transpressional Alpine Fault within New Zealand's South Island is the major structure that accommodates relative motion between the Pacific and the Australian Plates. It has been intensively studied, because it is late in its 291-year seismic cycle (Cochran et al., 2017; doi: 10.1016/j.epsl.2017.02.026), is likely to generate large (i.e. MW > 8) earthquakes, thus presents the biggest seismic hazard in the region. However, because it is severely misoriented in the present-day stress field for reactivation (Boese et al., 2013; doi: 10.1016/j.epsl.2013.06.030), supra-lithostatic fluid-pressures are required for rupture nucleation. We have analyzed microstructures (SEM and TEM), geochemistry (ICP-OES) and mineralogy (XRD) of outcrop samples of the fault core to investigate the influence of fluids on the geomechanical behavior of the fault. Fluid-related alteration is pervasive within 20 m of the principal slip zone (PSZ) (Sutherland et al., 2012; doi: 10.1130/G33614.1), which is an incohesive, cemented and repeatedly reworked fault gouge mostly consisting of a fine-grained matrix composed of comminuted detrital quartz and feldspar as well as authigenic chlorite and calcite. Authigenic phases seal the PSZ for interseismic cross-fault fluid flow and enable fluid pressure to build-up. Notable, smectite, previously considered to significantly influence propagation of Alpine Fault ruptures, is not present in these samples. Undeformed, euhedral chlorite grains suggest that the processes leading to fault sealing are not only active at greater depths but also close to the surface. The absence of smectite and the presence of undeformed chlorite at very shallow depths can be attributed to the fault's high geothermal gradient of > 120 °C km-1 (Sutherland et al., 2012; doi:10.1038/nature22355), which gives temperature conditions unfavorable for smectite to be stable and fostering chlorite growth. A pervasive network of anastomosing calcite veins in the fault core, depicting

  13. Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy.

    Science.gov (United States)

    Liu, Su; Sha, Zhiyi; Sencer, Altay; Aydoseli, Aydin; Bebek, Nerse; Abosch, Aviva; Henry, Thomas; Gurses, Candan; Ince, Nuri Firat

    2016-04-01

    High frequency oscillations (HFOs) in intracranial electroencephalography (iEEG) recordings are considered as promising clinical biomarkers of epileptogenic regions in the brain. The aim of this study is to improve and automatize the detection of HFOs by exploring the time-frequency content of iEEG and to investigate the seizure onset zone (SOZ) detection accuracy during the sleep, awake and pre-ictal states in patients with epilepsy, for the purpose of assisting the localization of SOZ in clinical practice. Ten-minute iEEG segments were defined during different states in eight patients with refractory epilepsy. A three-stage algorithm was implemented to detect HFOs in these segments. First, an amplitude based initial detection threshold was used to generate a large pool of HFO candidates. Then distinguishing features were extracted from the time and time-frequency domain of the raw iEEG and used with a Gaussian mixture model clustering to isolate HFO events from other activities. The spatial distribution of HFO clusters was correlated with the seizure onset channels identified by neurologists in seven patient with good surgical outcome. The overlapping rates of localized channels and seizure onset locations were high in all states. The best result was obtained using the iEEG data during sleep, achieving a sensitivity of 81%, and a specificity of 96%. The channels with maximum number of HFOs identified epileptogenic areas where the seizures occurred more frequently. The current study was conducted using iEEG data collected in realistic clinical conditions without channel pre-exclusion. HFOs were investigated with novel features extracted from the entire frequency band, and were correlated with SOZ in different states. The results indicate that automatic HFO detection with unsupervised clustering methods exploring the time-frequency content of raw iEEG can be efficiently used to identify the epileptogenic zone with an accurate and efficient manner.

  14. Spatial and temporal variability of nitrate sinks and sources in riparian soils of a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg; Huber, Benjamin; Shrestha, Juna; Samaritani, Emanuela; Niklaus, Pascal A.

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified. Of particular interest is the ability of riparian functional processing zones (FPZ) to remove nitrate from infiltrating river water or agricultural runoff. Processes involved are removal of nitrate by denitrification and immobilisation of nitrogen in plant or microbial biomass. On the other hand, mineralisation followed by nitrification can lead to an increase in leachable nitrate. The latter process is fueled by the frequent input of fresh dissolved or particle bound organic matter, characteristic for temporarily flooded riparian zones. The objective of this study was to characterize the spatial and temporal variability of nitrate concentrations in the soil solution of a restored reach of the Alpine river Thur in northeastern Switzerland. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three FPZ representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits. (iii) The mixed forest is a mature riparian hardwood forest developed on older overbank sediments with ash and maple as dominant trees. The study period was between summer 2008 and winter 2009/2010 including three flood events in August 2008, June 2009 and July 2009. The second flood inundated the

  15. Drivers of spatial heterogeneity in nitrogen processing among three alpine plant communities in the Rocky Mountains

    Science.gov (United States)

    Churchill, A. C.; Beers, A.; Grinath, J.; Bowman, W. D.

    2017-12-01

    Nitrogen cycling across the globe has been fundamentally altered due to regional elevated N deposition and there is a cascade of ecosystem consequences including shifts in species composition, eutrophication, and soil acidification. Making predictions that encompass the factors that drive these ecosystem changes has frequently been limited to single ecosystem types, or areas with fairly homogenous abiotic conditions. The alpine is an ecosystem type that exhibits changes under relatively low levels of N depositions due to short growing seasons and shallow soils limiting N storage. While recent work provided estimates for the magnitude of N associated with ecosystem changes, less is known about the within-site factors that may interact to stabilize or amplify the differential response of N pools under future conditions of resource deposition. To examine numerous potential within-site and regional factors (both biotic and abiotic) affecting ecosystem N pools we examined the relationship between those factors and a suite of ecosystem pools of N followed by model selection procedures and structural equation modelling. Measurements were conducted at Niwot Ridge Long Term Ecological Research site and in Rocky Mountain National Park in three distinct alpine meadow ecosystems (dry, moist, and wet meadows). These meadows span a moisture gradient as well as plant community composition, thereby providing high variability of potential biotic and abiotic drivers across small spatial scales in the alpine. In general, regional scale abiotic factors such as site levels of annual average N deposition or precipitation were poor predictors of seasonal pools of N, while spring soil water pools of N were negatively correlated with elevation. Models containing multiple abiotic and biotic drivers, however, were best at predicting soil and plant pools of N across the two sites. Future analysis will include highlight interactions among with-site factors affecting N pools in the alpine using

  16. Glacial refugia, recolonization patterns and diversification forces in Alpine-endemic Megabunus harvestmen.

    Science.gov (United States)

    Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C

    2016-06-01

    The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. © 2016 John Wiley & Sons Ltd.

  17. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Directory of Open Access Journals (Sweden)

    D. Cane

    2013-05-01

    Full Text Available The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs, are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project, which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to

  18. The evolution of dwarf shrubs in alpine environments: a case study of Alchemilla in Africa.

    Science.gov (United States)

    Gehrke, Berit; Kandziora, Martha; Pirie, Michael D

    2016-01-01

    Alpine and arctic environments worldwide, including high mountains, are dominated by short-stature woody plants (dwarf shrubs). This conspicuous life form asserts considerable influence on local environmental conditions above the treeline, creating its own microhabitat. This study reconstructs the evolution of dwarf shrubs in Alchemilla in the African tropical alpine environment, where they represent one of the largest clades and are among the most common and abundant plants. Different phylogenetic inference methods were used with plastid and nuclear DNA sequence markers, molecular dating (BEAST and RelTime), analyses of diversification rate shifts (MEDUSA and BAMM) and ancestral character and area reconstructions (Mesquite). It is inferred that African Alchemilla species originated following long-distance dispersal to tropical East Africa, but that the evolution of dwarf shrubs occurred in Ethiopia and in tropical East Africa independently. Establishing a timeframe is challenging given inconsistencies in age estimates, but it seems likely that they originated in the Pleistocene, or at the earliest in the late Miocene. The adaptation to alpine-like environments in the form of dwarf shrubs has apparently not led to enhanced diversification rates. Ancestral reconstructions indicate reversals in Alchemilla from plants with a woody base to entirely herbaceous forms, a transition that is rarely reported in angiosperms. Alchemilla is a clear example of in situ tropical alpine speciation. The dwarf shrub life form typical of African Alchemilla has evolved twice independently, further indicating its selective advantage in these harsh environments. However, it has not influenced diversification, which, although recent, was not rapid. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Regional climate models downscaling in the Alpine area with multimodel superensemble

    Science.gov (United States)

    Cane, D.; Barbarino, S.; Renier, L. A.; Ronchi, C.

    2013-05-01

    The climatic scenarios show a strong signal of warming in the Alpine area already for the mid-XXI century. The climate simulations, however, even when obtained with regional climate models (RCMs), are affected by strong errors when compared with observations, due both to their difficulties in representing the complex orography of the Alps and to limitations in their physical parametrization. Therefore, the aim of this work is to reduce these model biases by using a specific post processing statistic technique, in order to obtain a more suitable projection of climate change scenarios in the Alpine area. For our purposes we used a selection of regional climate models (RCMs) runs which were developed in the framework of the ENSEMBLES project. They were carefully chosen with the aim to maximise the variety of leading global climate models and of the RCMs themselves, calculated on the SRES scenario A1B. The reference observations for the greater Alpine area were extracted from the European dataset E-OBS (produced by the ENSEMBLES project), which have an available resolution of 25 km. For the study area of Piedmont daily temperature and precipitation observations (covering the period from 1957 to the present) were carefully gridded on a 14 km grid over Piedmont region through the use of an optimal interpolation technique. Hence, we applied the multimodel superensemble technique to temperature fields, reducing the high biases of RCMs temperature field compared to observations in the control period. We also proposed the application of a brand new probabilistic multimodel superensemble dressing technique, already applied to weather forecast models successfully, to RCMS: the aim was to estimate precipitation fields, with careful description of precipitation probability density functions conditioned to the model outputs. This technique allowed for reducing the strong precipitation overestimation, arising from the use of RCMs, over the Alpine chain and to reproduce well the

  20. Danger zone: Men, masculinity and occupational health and safety in high risk occupations

    OpenAIRE

    Stergiou-Kita, Mary; Mansfield, Elizabeth; Bezo, Randy; Colantonio, Angela; Garritano, Enzo; Lafrance, Marc; Lewko, John; Mantis, Steve; Moody, Joel; Power, Nicole; Theberge, Nancy; Westwood, Eleanor; Travers, Krista

    2015-01-01

    The workplace is a key setting where gender issues and organizational structures may influence occupational health and safety practices. The enactment of dominant norms of masculinity in high risk occupations can be particularly problematic, as it exposes men to significant risks for injuries and fatalities. To encourage multi-disciplinary collaborations and advance knowledge in the intersecting areas of gender studies, men’s health, work and workplace health and safety, a national network of...

  1. Estimation of Biomass Dynamics in Alpine Treeline Ecotone using Airborne Lidar and Repeat Photography

    Science.gov (United States)

    McCaffrey, D. R.; Hopkinson, C.

    2016-12-01

    Historic photographs provide visual records of landscapes which pre-date aerial and satellite observations, but analysis of these photographs has largely been qualitative due to varying spatial scale within an oblique image. Recent technological advances, such as the WSL monoplotting tool, provide the ability to georeference single oblique images, allowing for quantitative spatial analysis of land cover change between historic photographs and contemporary repeat photographs. The WSL monoplotting tool was used to compare alpine land cover change between 12 photographs from a 1914 survey of the West Castle valley (Alberta, Canada; 49.3° N, 114.4° W) and 12 repeat photographs, collected in 2006 by the Mountain Legacy Project. We tested for correlations between land cover shifts over the 92 year observation period and geomorphic controls (e.g. elevation, slope, aspect), with a focus on vegetative change in the alpine treeline ecotone (ATE). A model of above ground biomass was generated using an airborne lidar observation of the valley (2014) and ground validated measurements of tree height, diameter at breast height, and leaf area index from 25 plots (400 m2). By creating a high resolution map of ATE dynamics over a 92 year interval and incorporating a model of above ground biomass, the relative magnitude of anthropogenic, orographic, and climatic controls on ATE can be explored. This research provides a unique opportunity to understand the impact that continued atmospheric warming could have on vegetative boundaries in sensitive alpine systems, such as the eastern slopes of the Rocky Mountains.

  2. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.

    Science.gov (United States)

    Du, Haibo; Liu, Jie; Li, Mai-He; Büntgen, Ulf; Yang, Yue; Wang, Lei; Wu, Zhengfang; He, Hong S

    2018-03-01

    Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to reconstruct long-term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming-induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long-term treeline dynamics, but also highlights the effects of rising temperatures on high-elevation vegetation dynamics. © 2017 John Wiley & Sons Ltd.

  3. A new approach for surveying the Alpine Salamander (Salamandra atra in Austria

    Directory of Open Access Journals (Sweden)

    Ursula Reinthaler-Lottermoser

    2010-12-01

    Full Text Available The Alpine Salamander is a small pitch black amphibian which is endemic to the European Alps and the Dinarides. It is strictly protected according to the European FFH guidelines. Despite its central role in the alpine ecosystem our actual published record in Austria is small. In order to resolve this shortcoming our project explores its distribution in Austria. It uses a participatory and community based approach to gather data. Everybody can enter and look at Alpine Salamander observations on our website www.alpensalamander.eu. This approach also allows us to establish an “oral history” of Salamander observations in the past 50 years by conducting interviews in the local community. Since July 2009 the website and salamander report database are online. From the actual data (more than 5600 records we already obtained an overview about the present distribution and data quality. The data are an excellent basis for detailed scientific studies on these remarkable amphibians. With this new and highly interactive approach science and education are combined to initiate protection measures with the public.

  4. Characterization of the shallow groundwater system in an alpine watershed: Handcart Gulch, Colorado, USA

    Science.gov (United States)

    Kahn, Katherine G.; Ge, Shemin; Caine, Jonathan S.; Manning, A.

    2008-01-01

    Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1-6.2??0-5 m/s. Discharge was estimated at 1.28??10-3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7??10-5-2.10??0-3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3??10-9 -2.0??10-4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system. ?? Springer-Verlag 2007.

  5. Technical Note: Seasonality in alpine water resources management - a regional assessment

    Science.gov (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2008-01-01

    Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.

  6. Seasonal inorganic nitrogen release in alpine lakes on the Colorado western slope

    Science.gov (United States)

    Inyan, B.I.; Williams, M.W.; Tonnessen, K.; Turk, J.T.; Campbell, D.H.

    1998-01-01

    In the Rocky Mountains, the association of increases in acidic deposition with increased atmospheric loading of sulfate and direct changes in surface water chemistry has been well established. The importance, though, of increased nitrogen (N) deposition in the episodic acidification of alpine lakes and N saturation in alpine ecosystems is only beginning to be documented. In alpine areas of the Colorado Front Range, modest loadings of N in deposition have been associated with leakage of N to surface waters. On the Colorado western slope, however, no leakage of N to surface waters has been reported. A 1995 study that included early season under-ice water samples that were not available in earlier studies showed that there is, in fact, N leakage to surface waters in some western slope basins. Under-ice nitrate (NO3-) concentrations were as high as 10.5 ??q L-1, and only decreased to detection limits in September. Landscape type appears to be important in leakage of N to surface waters, which is associated with basins having steep slopes, thin soils, and large amounts of exposed bedrock. NO3- leakage compounds the existing sensitivity to episodic acidification from low acid neutralizing capacity (ANC), which is less than 40 ??eq L-1 in those basins.

  7. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    DEFF Research Database (Denmark)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars

    Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian...

  8. The superposed orogenesis of the alpine-mediterranean edifice; Las orogenesis superpuestas del edificio alpino-mediterraneo

    Energy Technology Data Exchange (ETDEWEB)

    Argyriadis, I.

    2016-10-01

    The circum-Mediterranean chains must be considered as the result of two distinct orogenies. The apparent unity of the present structure is of formal order, due to the latest deformations. Since the Hercynian time there have been two periods of paroxysmal deformation; the younger fits the definition of the alpine orogeny; the older occured during the Cretaceous and may correspond to the first great convergent relative drift of the Eurasiatic and African blocks. The Cretaceous or Mesogean orogeny is independent from the Alpine orogeny stricto sensu (Oligo-Miocene) and cannot be considered as its prefiguration. Being independent in time, it is independent in space as well. Even if this Mesogean orogeny can appear locally restricted to the internal parts of the Alpine chains (Central Mediterranean area, Carpathes, Dinarides) this cannot be taken as a rule: towards the west, the Cretaceous deformations cross the axis of the western Alps and extend (new investigations) over Provence to the Betic chains and the Pyrenean area. Towards the east, the deformations of this period cross the Hellenides (new observations) and spread over the external area in a spectacular way, interesting areas which have never been tectonised again (Cyprus, south-eastern Anatolia, northern Syria, Oman). As a whole, this large Cretaceous orogenic zone is part of a wider domain which extends over central Iran towards the Himalayas and eastern Asia, and has its equivalent on the western side of the Atlantic Ocean, in the Caribbean islands, Mexico and the Americas. (Author)

  9. Feed selection and radiocaesium intake by reindeer, sheep and goats grazing alpine summer habitats in southern Norway

    International Nuclear Information System (INIS)

    Staaland, H.; Garmo, T.H.; Hove, K.; Pedersen, O.

    1995-01-01

    Radiocaesium concentrations ( 137 Cs) were measured in extrusa from oesophageally fistulated sheep, goats and reindeer grazing alpine summer vegetation in Griningsdalen, Southern Norway in the period 1987-1989. The experiments with sheep and goats were conducted in different sub-alpine areas. The reindeer were, in addition, grazed in three areas in the low alpine zone. Grazing bouts lasted for 10-20 min and bite selections were recorded every 15 s through the grazing bout. Reindeer and goats had the most diverse food selection whereas sheep fed mainly on grasses, forbs and to some extent, on leaves of willow. The reindeer extrusa had the highest radiocaesium activity, apparently to a large extent caused by intake of lichens in areas where this type of plants were present. Depending on the type of vegetation in the grazed areas the transfer of radiocaesium from soil to grazed vegetation (Bq kg -1 dry extrusa/Bq m -2 soil) was estimated to 0.02-0.04 in sheep, 0.02-0.05 in goats and 0.02-0.43 in reindeer for 1987. (author)

  10. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.

    Science.gov (United States)

    Niemeijer, A R; Boulton, C; Toy, V G; Townend, J; Sutherland, R

    2016-02-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T  = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing ( V  Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

  11. Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh, E-mail: rajeshbhu1@gmail.com [Yonsei University, Department of Materials Science & Engineering (Korea, Republic of); Singh, Rajesh Kumar, E-mail: rksbhu@gmail.com [Banaras Hindu University, Department of Applied Physics, Indian Institute of Technology (India); Dubey, Pawan Kumar [University of Allahabad, Nanotechnology Application Centre (India); Yadav, Ram Manohar [Rice University, Department of Materials Science and Nano Engineering (United States); Singh, Dinesh Pratap [Universidad de Santiago de Chile, Departamento de Física (Chile); Tiwari, R. S.; Srivastava, O. N. [Banaras Hindu University, Department of Physics (India)

    2015-01-15

    Three kinds of carbon nanostructures, i.e., graphene nanoflakes (GNFs), multi walled carbon nanotubes (MWCNTs), and spherical carbon nanoparticles (SCNPs) were comparatively investigated in one run experiment. These carbon nanostructures are located at specific location inside the direct current plasma-assisted arc discharge chamber. These carbon nanomaterials have been successfully synthesized using graphite as arcing electrodes at 400 torr in helium (He) atmosphere. The SCNPs were found in the deposits formed on the cathode holder, in which highly curled graphitic structure are found in majority. The diameter varies from 20 to 60 nm and it also appears that these particles are self-assembled to each other. The MWCNTs with the diameter of 10–30 nm were obtained which were present inside the swelling portion of cathode deposited. These MWCNTs have 14–18 graphitic layers with 3.59 Å interlayer spacing. The GNFs have average lateral sizes of 1–5 μm and few of them are stacked layers and shows crumpled like structure. The GNFs are more stable at low temperature (low mass loss) but SCNPs have low mass loss at high temperature.

  12. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem

    International Nuclear Information System (INIS)

    Edwards, Arwyn; Pachebat, Justin A; Swain, Martin; Hegarty, Matt; Rassner, Sara M E; Hodson, Andrew J; Irvine-Fynn, Tristram D L; Sattler, Birgit

    2013-01-01

    Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated. (letter)

  13. Alpine plant distribution and thermic vegetation indicator on Gloria summits in the central Greater Caucasus

    International Nuclear Information System (INIS)

    Gigauri, K.; Abdaladze, O.; Nakhutsrishvili, G

    2016-01-01

    The distribution of plant species within alpine areas is often directly related to climate or climate-influenced ecological factors. Responding to observed changes in plant species, cover and composition on the GLORIA summits in the Central Caucasus, an extensive setup of 1m * 1m permanent plots was established at the treeline-alpine zones and nival ecotone (between 2240 and 3024 m a.s.l.) on the main watershed range of the Central Greater Caucasus nearby the Cross Pass, Kazbegi region, Georgia. Recording was repeated in a representative selection of 64 quadrates in 2008. The local climatic factors - average soil T degree C and growing degree days (GDD) did not show significant increasing trends. For detection of climate warming we used two indices: thermic vegetation indicator S and thermophilization indicator D. They were varying along altitudinal and exposition gradients. The thermic vegetation indicator decrease in all monitoring summits. The abundance rank of the dominant and endemic species did not change during monitoring period. (author)

  14. Reconstructing geomorphic patterns and forcing factors from Alpine Lake Sediment

    Science.gov (United States)

    Arnaud, Fabien; Poulenard, Jérôme; Giguet-Covex, Charline; Wilhelm, Bruno; Révillon, Sidonie; Jenny, Jean-Philippe; Revel, Marie; Enters, Dirk; Bajard, Manon; Fouinat, Laurent; Doyen, Elise; Simonneau, Anaëlle; Pignol, Cécile; Chapron, Emmanuel; Vannière, Boris; Sabatier, Pierre

    2017-04-01

    In this paper we review the scientific efforts that were led over the last decades to reconstruct geomorphic patterns from continuous alpine lake sediment records. Whereas our results point a growing importance of humans as erosion forcing factors, we will focus here on climate-related processes. Our main dataset is made of a regional approach which was led without any a priori regarding erosion forcing factors. We hence integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French Alps. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. At local scales, our data also point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical zone along the Holocene. However

  15. High resolution imaging of vadose zone transport using crosswell radar and seismic methods; TOPICAL

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E.; Daley, Thomas E.

    2001-01-01

    The summary and conclusions are that overall the radar and seismic results were excellent. At the time of design of the experiments we did not know how well these two methods could penetrate or resolve the moisture content and structure. It appears that the radar could easily go up to 5, even 10 meters between boreholes at 200 Mhz and even father (up to 20 to 40 m) at 50 Mhz. The seismic results indicate that at several hundred hertz propagation of 20 to 30 meters giving high resolution is possible. One of the most important results, however is that together the seismic and radar are complementary in their properties estimation. The radar being primarily sensitive to changes in moisture content, and the seismic being primarily sensitive to porosity. Taken in a time lapse sense the radar can show the moisture content changes to a high resolution, with the seismic showing high resolution lithology. The significant results for each method are: Radar: (1) Delineated geological layers 0.25 to 3.5 meters thick with 0.25 m resolution; (2) Delineated moisture movement and content with 0.25 m resolution; (3) Compared favorably with neutron probe measurements; and (4) Penetration up to 30 m. Radar results indicate that the transport of the riverwater is different from that of the heavier and more viscous sodium thiosulfate. It appears that the heavier fluids are not mixing readily with the in-situ fluids and the transport may be influenced by them. Seismic: (1) Delineated lithology at .25 m resolution; (2) Penetration over 20 meters, with a possibility of up to 30 or more meters; and (3) Maps porosity and density differences of the sediments. Overall the seismic is mapping the porosity and density distribution. The results are consistent with the flow field mapped by the radar, there is a change in flow properties at the 10 to 11 meter depth in the flow cell. There also appears to be break through by looking at the radar data with the denser sodium thiosulfate finally

  16. An operational approach to high resolution agro-ecological zoning in West-Africa.

    Science.gov (United States)

    Le Page, Y; Vasconcelos, Maria; Palminha, A; Melo, I Q; Pereira, J M C

    2017-01-01

    The objective of this work is to develop a simple methodology for high resolution crop suitability analysis under current and future climate, easily applicable and useful in Least Developed Countries. The approach addresses both regional planning in the context of climate change projections and pre-emptive short-term rural extension interventions based on same-year agricultural season forecasts, while implemented with off-the-shelf resources. The developed tools are applied operationally in a case-study developed in three regions of Guinea-Bissau and the obtained results, as well as the advantages and limitations of methods applied, are discussed. In this paper we show how a simple approach can easily generate information on climate vulnerability and how it can be operationally used in rural extension services.

  17. An operational approach to high resolution agro-ecological zoning in West-Africa.

    Directory of Open Access Journals (Sweden)

    Y Le Page

    Full Text Available The objective of this work is to develop a simple methodology for high resolution crop suitability analysis under current and future climate, easily applicable and useful in Least Developed Countries. The approach addresses both regional planning in the context of climate change projections and pre-emptive short-term rural extension interventions based on same-year agricultural season forecasts, while implemented with off-the-shelf resources. The developed tools are applied operationally in a case-study developed in three regions of Guinea-Bissau and the obtained results, as well as the advantages and limitations of methods applied, are discussed. In this paper we show how a simple approach can easily generate information on climate vulnerability and how it can be operationally used in rural extension services.

  18. Quantifying the Evolution of Melt Ponds in the Marginal Ice Zone Using High Resolution Optical Imagery and Neural Networks

    Science.gov (United States)

    Ortiz, M.; Pinales, J. C.; Graber, H. C.; Wilkinson, J.; Lund, B.

    2016-02-01

    Melt ponds on sea ice play a significant and complex role on the thermodynamics in the Marginal Ice Zone (MIZ). Ponding reduces the sea ice's ability to reflect sunlight, and in consequence, exacerbates the albedo positive feedback cycle. In order to understand how melt ponds work and their effect on the heat uptake of sea ice, we must quantify ponds through their seasonal evolution first. A semi-supervised neural network three-class learning scheme using a gradient descent with momentum and adaptive learning rate backpropagation function is applied to classify melt ponds/melt areas in the Beaufort Sea region. The network uses high resolution panchromatic satellite images from the MEDEA program, which are collocated with autonomous platform arrays from the Marginal Ice Zone Program, including ice mass-balance buoys, arctic weather stations and wave buoys. The goal of the study is to capture the spatial variation of melt onset and freeze-up of the ponds within the MIZ, and gather ponding statistics such as size and concentration. The innovation of this work comes from training the neural network as the melt ponds evolve over time; making the machine learning algorithm time-dependent, which has not been previously done. We will achieve this by analyzing the image histograms through quantification of the minima and maxima intensity changes as well as linking textural variation information of the imagery. We will compare the evolution of the melt ponds against several different array sites on the sea ice to explore if there are spatial differences among the separated platforms in the MIZ.

  19. Drones application on snow and ice surveys in alpine areas

    Science.gov (United States)

    La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni

    2015-04-01

    First results from Climate change are now clear in Europe, and in Italy in particular, with the natural disasters that damaged irreparably the territory and the habitat due to extreme meteorological events. The Directive 2007/60/EC highlight that an "effective natural hazards prevention and mitigation that requires coordination between Member States above all on natural hazards prevention" is necessary. A climate change adaptation strategy is identified on the basis of the guidelines of the European Community program 2007-2013. Following the directives provided in the financial instrument for civil protection "Union Civil Protection Mechanism" under Decision No. 1313/2013 / EU of the European Parliament and Council, a cross-cutting approach that takes into account a large number of implementation tools of EU policies is proposed as climate change adaptation strategy. In last 7 years a network of trans-Alpine area's authorities was created between Italy and Switzerland to define an adaptive strategy on climate change effects on natural enviroment based on non structural remedies. The Interreg IT - CH STRADA Project (STRategie di ADAttamento al cambiamento climatico) was born to join all the non structural remedies to climate change effects caused by snow and avalanches, on mountain sources, extreme hydrological events and to manage all transnational hydrological resources, involving all stakeholders from Italy and Switzerland. The STRADA project involved all civil protection authorities and all research centers in charge of snow, hydrology end civil protection. The Snow - meteorological center of the Regional Agency for Environment Protection (CNM of ARPA Lombardia) and the Civil Protection of Lombardy Region created a research team to develop tools for avalanche prediction and to observe and predict snow cover on Alpine area. With this aim a lot of aerial photo using Drone as been performed in unusual landscape. Results of all surveys were really interesting on a

  20. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil).

    Science.gov (United States)

    Roth, F; Lessa, G C; Wild, C; Kikuchi, R K P; Naumann, M S

    2016-05-15

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ(13)Corg and δ(15)N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The TESS-HERMES survey data release 1: high-resolution spectroscopy of the TESS southern continuous viewing zone

    Science.gov (United States)

    Sharma, Sanjib; Stello, Dennis; Buder, Sven; Kos, Janez; Bland-Hawthorn, Joss; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Ness, Melissa; Huber, Daniel; Zwitter, Tomaz; Traven, Gregor; Hon, Marc; Kafle, Prajwal R.; Khanna, Shourya; Saddon, Hafiz; Anguiano, Borja; Casey, Andrew R.; Freeman, Ken; Martell, Sarah; De Silva, Gayandhi M.; Simpson, Jeffrey D.; Wittenmyer, Rob A.; Zucker, Daniel B.

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will provide high-precision time series photometry for millions of stars with at least a half-hour cadence. Of particular interest are the circular regions of 12° radius centred around the ecliptic poles that will be observed continuously for a full year. Spectroscopic stellar parameters are desirable to characterize and select suitable targets for TESS, whether they are focused on exploring exoplanets, stellar astrophysics or Galactic archaeology. Here, we present spectroscopic stellar parameters (Teff, log g, [Fe/H], v sin i, vmicro) for about 16 000 dwarf and subgiant stars in TESS' southern continuous viewing zone. For almost all the stars, we also present Bayesian estimates of stellar properties including distance, extinction, mass, radius and age using theoretical isochrones. Stellar surface gravity and radius are made available for an additional set of roughly 8500 red giants. All our target stars are in the range 10 using the High Efficiency and Resolution Multi-Element Spectrograph (HERMES; R ∼ 28 000) at the Anglo-Australian Telescope as part of the TESS-HERMES survey. Comparing our results with the TESS Input Catalogue (TIC) shows that the TIC is generally efficient in separating dwarfs and giants, but it has flagged more than 100 cool dwarfs (Teff < 4800 K) as giants, which ought to be high-priority targets for the exoplanet search. The catalogue can be accessed via http://www.physics.usyd.edu.au/tess-hermes/, or at Mikulski Archive for Space Telescopes (MAST).

  2. Exploring stop-go decision zones at rural high-speed intersections with flashing green signal and insufficient yellow time in China.

    Science.gov (United States)

    Tang, Keshuang; Xu, Yanqing; Wang, Fen; Oguchi, Takashi

    2016-10-01

    The objective of this study is to empirically analyze and model the stop-go decision behavior of drivers at rural high-speed intersections in China, where a flashing green signal of 3s followed by a yellow signal of 3s is commonly applied to end a green phase. 1, 186 high-resolution vehicle trajectories were collected at four typical high-speed intersection approaches in Shanghai and used for the identification of actual stop-go decision zones and the modeling of stop-go decision behavior. Results indicate that the presence of flashing green significantly changed the theoretical decision zones based on the conventional Dilemma Zone theory. The actual stop-go decision zones at the study intersections were thus formulated and identified based on the empirical data. Binary Logistic model and Fuzzy Logic model were then developed to further explore the impacts of flashing green on the stop-go behavior of drivers. It was found that the Fuzzy Logic model could produce comparably good estimation results as compared to the traditional Binary Logistic models. The findings of this study could contribute the development of effective dilemma zone protection strategies, the improvement of stop-go decision model embedded in the microscopic traffic simulation software and the proper design of signal change and clearance intervals at high-speed intersections in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Estimating Forest Carbon Stock in Alpine and Arctic Ecotones of the Urals

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2014-10-01

    Full Text Available This paper reports on measured carbon stocks in the forests of two tree line ecotones of the Ural region where climate change might improve growing conditions. The first is an alpine ecotone that is represented by an altitudinal gradient of the spruce-dominated forests on the Western slope of the Tylaiskii Kamen Mountain (Western part of the Konzhakovskii-Tylaiskii-Serebryanskii Mountain system, 59°30′N, 59°00′E, at the alpine timber line that has risen from 864 to 960 m above sea level in the course of the last 100 years. The second is an arctic ecotone in larch-dominated forests at the lower course of the Pur river (67°N, 78°E, at the transition zone between closed floodplain forests and open or island-like communities of upland forests on tundra permafrost. According to our results, there are large differences in the carbon of the aboveground biomass of both ecotones across environmental gradients. In the alpine tree line ecotone, a 19-fold drop of the carbon stocks was detected between the lower and higher altitudinal levels. In the arctic ecotone the aboveground biomass carbon stock of forests of similar densities (1300 to 1700 trees per ha was 7 times as much in the river flood bed, and 5 times as much in mature, dense forests as the low density forests at higher elevations. Twelve regression equations describing dependencies of the aboveground tree biomass (stems, branches, foliage, total aboveground part upon stem diameter of the tree are proposed, which can be used to estimating the biological productivity (carbon of spruce and larch forests on Tylaiskii Kamen Mountain and the lower Pur river and on surrounding areas on the base of traditional forest mensuration have been proposed. In order to reduce the labor intensity of a coming determination of forest biomass the average values of density and dry matter content in the biomass fractions are given that were obtained by taking our sample trees.The results can be useful in

  4. Historical Land Use Dynamics in the Highly Degraded Landscape of the Calhoun Critical Zone Observatory

    Directory of Open Access Journals (Sweden)

    Michael R. Coughlan

    2017-05-01

    Full Text Available Processes of land degradation and regeneration display fine scale heterogeneity often intimately linked with land use. Yet, examinations of the relationships between land use and land degradation often lack the resolution necessary to understand how local institutions differentially modulate feedback between individual farmers and the spatially heterogeneous effects of land use on soils. In this paper, we examine an historical example of a transition from agriculture to forest dominated land use (c. 1933–1941 in a highly degraded landscape on the Piedmont of South Carolina. Our landscape-scale approach examines land use and tenure at the level that individuals enact management decisions. We used logistic regression techniques to examine associations between land use, land tenure, topography, and market cost-distance. Our findings suggest that farmer responses to changing market and policy conditions were influenced by topographic characteristics associated with productivity and long-term viability of agricultural land use. Further, although local environmental feedbacks help to explain spatial patterning of land use, property regime and land tenure arrangements also significantly constrained the ability of farmers to adapt to changing socioeconomic and environmental conditions.

  5. Danger zone: Men, masculinity and occupational health and safety in high risk occupations.

    Science.gov (United States)

    Stergiou-Kita, Mary; Mansfield, Elizabeth; Bezo, Randy; Colantonio, Angela; Garritano, Enzo; Lafrance, Marc; Lewko, John; Mantis, Steve; Moody, Joel; Power, Nicole; Theberge, Nancy; Westwood, Eleanor; Travers, Krista

    2015-12-01

    The workplace is a key setting where gender issues and organizational structures may influence occupational health and safety practices. The enactment of dominant norms of masculinity in high risk occupations can be particularly problematic, as it exposes men to significant risks for injuries and fatalities. To encourage multi-disciplinary collaborations and advance knowledge in the intersecting areas of gender studies, men's health, work and workplace health and safety, a national network of thirteen researchers and health and safety stakeholders completed a critical literature review examining the intersection between masculinities and men's workplace health and safety in order to: (i) account for research previously undertaken in this area; (ii) identify themes that may inform our understanding of masculinity and workplace health and safety and; (iii) identify research and practice gaps in relation to men's workplace health and safety. In this paper we present key themes from this review. Recommendations are made regarding: (i) how to define gender; (ii) how to attend to and identify how masculinities may influence workers' identities, perceptions of occupational risks and how institutionalized practices can reinforce norms of masculinity; (iii) the importance of considering how masculinities may intersect with other variables (e.g. historical context, age, class, race, geographical location) and; (iv) the added significance of present-day labour market forces on men's occupational health and safety.

  6. Low-Frequency Earthquakes Associated with the Late-Interseismic Central Alpine Fault, Southern Alps, New Zealand

    Science.gov (United States)

    Baratin, L. M.; Chamberlain, C. J.; Townend, J.; Savage, M. K.

    2016-12-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase and polarity picks. We then compute improved non-linear earthquake locations using a 3D velocity model. We find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. Our next step is to estimate seismic source parameters by implementing a moment tensor inversion technique. Our focus is currently on generating a more extensive catalogue (spanning the years 2009 to 2016) using synthetic waveforms as primary templates, with which to detect LFEs. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly sevenfold. This catalogue should provide new insight into the geometry of the Alpine Fault and the prevailing stress

  7. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    concentration through hillslope erosion by rainfall on snow-free surfaces, and increased meltwater production on snow-free glacier surfaces. Despite the rise in air temperature, changes in mean discharge in the mid-1980s were not statistically significant, and their interpretation is complicated by hydropower reservoir management and the flushing operations at intakes. Overall, the results show that to explain changes in suspended sediment transport from large Alpine catchments it is necessary to include an understanding of the multitude of sediment sources involved together with the hydroclimatic conditioning of their activation (e.g. changes in precipitation, runoff, air temperature. In addition, this study points out that climate signals in suspended sediment dynamics may be visible even in highly regulated and human-impacted systems. This is particularly relevant for quantifying climate change and hydropower impacts on streamflow and sediment budgets in Alpine catchments.

  8. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  9. Ankaramite: A New Type of High-Magnesium and High-Calcium Primitive Melt in the Magnitogorsk Island-Arc Zone (Southern Urals)

    Science.gov (United States)

    Pushkarev, E. V.; Ryazancev, A. V.; Gottman, I. A.; Degtyarev, K. E.; Kamenetsky, V. S.

    2018-04-01

    This work describes the geological position, mineral and chemical composition of high-Mg effusive ankaramites occurring as dykes and lava flows. They were found in the mélange zone of the western margin of the Magnitogorsk island arc zone in the Southern Urals. Data on the liquidus association of phenocrysts and on the composition of the matrix of effusives are given. According to the data obtained, the conclusion was drawn that the ankaramites studied can be attributed to the primary island arc melts, which were not subject to essential differentiation. This type of effusives has not been distinguished previously among island arc volcanogenic formations of the Urals. It is shown that ankaramites can be considered to be primary melts parental for dunite-clinopyroxenites-gabbro complexes of Ural-Alaskan type. The occurrence of ankaramites in the Paleozoic island arc formations of the Urals indicates the wehrlite composition of the mantle as the reason for the extremely wide development of wehrlites and clinopyroxenites in different mafic-ultramafic complexes of the Urals.

  10. Estimating the snowfall limit in alpine and pre-alpine valleys: A local evaluation of operational approaches

    Science.gov (United States)

    Fehlmann, Michael; Gascón, Estíbaliz; Rohrer, Mario; Schwarb, Manfred; Stoffel, Markus

    2018-05-01

    The snowfall limit has important implications for different hazardous processes associated with prolonged or heavy precipitation such as flash floods, rain-on-snow events and freezing precipitation. To increase preparedness and to reduce risk in such situations, early warning systems are frequently used to monitor and predict precipitation events at different temporal and spatial scales. However, in alpine and pre-alpine valleys, the estimation of the snowfall limit remains rather challenging. In this study, we characterize uncertainties related to snowfall limit for different lead times based on local measurements of a vertically pointing micro rain radar (MRR) and a disdrometer in the Zulg valley, Switzerland. Regarding the monitoring, we show that the interpolation of surface temperatures tends to overestimate the altitude of the snowfall limit and can thus lead to highly uncertain estimates of liquid precipitation in the catchment. This bias is much smaller in the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which integrates surface station and remotely sensed data as well as outputs of a numerical weather prediction model. To reduce systematic error, we perform a bias correction based on local MRR measurements and thereby demonstrate the added value of such measurements for the estimation of liquid precipitation in the catchment. Regarding the nowcasting, we show that the INCA system provides good estimates up to 6 h ahead and is thus considered promising for operational hydrological applications. Finally, we explore the medium-range forecasting of precipitation type, especially with respect to rain-on-snow events. We show for a selected case study that the probability for a certain precipitation type in an ensemble-based forecast is more persistent than the respective type in the high-resolution forecast (HRES) of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System (ECMWF IFS). In this case study, the

  11. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate.

    Directory of Open Access Journals (Sweden)

    Olivia Molenda

    Full Text Available Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.

  12. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    Science.gov (United States)

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  13. Estimation of erosion-accumulative processes at the Inia River’s mouth near high-rise construction zones.

    Directory of Open Access Journals (Sweden)

    Sineeva Natalya

    2018-01-01

    Full Text Available Our study relevance is due to the increasing man-made impact on water bodies and associated land resources within the urban areas, as a consequence, by a change in the morphology and dynamics of Rivers’ canals. This leads to the need to predict the development of erosion-accumulation processes, especially within the built-up urban areas. Purpose of the study is to develop programs on the assessment of erosion-accumulation processes at a water body, a mouth area of the Inia River, in the of perspective high-rise construction zone of a residential microdistrict, the place, where floodplain-channel complex is intensively expected to develop. Results of the study: Within the velocities of the water flow comparing, full-scale measured conditions, and calculated from the model, a slight discrepancy was recorded. This allows us to say that the numerical model reliably describes the physical processes developing in the River. The carried out calculations to assess the direction and intensity of the channel re-formations, made us possible to conclude, there was an insignificant predominance of erosion processes over the accumulative ones on the undeveloped part of the Inia River (the processes activity is noticeable only in certain areas (by the coasts and the island. Importance of the study: The study on the erosion-accumulation processes evaluation can be used in design decisions for the future high-rise construction of this territory, which will increase their economic efficiency.

  14. Estimation of erosion-accumulative processes at the Inia River's mouth near high-rise construction zones.

    Science.gov (United States)

    Sineeva, Natalya

    2018-03-01

    Our study relevance is due to the increasing man-made impact on water bodies and associated land resources within the urban areas, as a consequence, by a change in the morphology and dynamics of Rivers' canals. This leads to the need to predict the development of erosion-accumulation processes, especially within the built-up urban areas. Purpose of the study is to develop programs on the assessment of erosion-accumulation processes at a water body, a mouth area of the Inia River, in the of perspective high-rise construction zone of a residential microdistrict, the place, where floodplain-channel complex is intensively expected to develop. Results of the study: Within the velocities of the water flow comparing, full-scale measured conditions, and calculated from the model, a slight discrepancy was recorded. This allows us to say that the numerical model reliably describes the physical processes developing in the River. The carried out calculations to assess the direction and intensity of the channel re-formations, made us possible to conclude, there was an insignificant predominance of erosion processes over the accumulative ones on the undeveloped part of the Inia River (the processes activity is noticeable only in certain areas (by the coasts and the island)). Importance of the study: The study on the erosion-accumulation processes evaluation can be used in design decisions for the future high-rise construction of this territory, which will increase their economic efficiency.

  15. Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands

    DEFF Research Database (Denmark)

    Karg, Sabine

    Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands.......Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands....

  16. Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling

    Science.gov (United States)

    Scambelluri, Marco; Bebout, Gray E.; Belmonte, Donato; Gilio, Mattia; Campomenosi, Nicola; Collins, Nathan; Crispini, Laura

    2016-05-01

    Much of the long-term carbon cycle in solid earth occurs in subduction zones, where processes of devolatilization, partial melting of carbonated rocks, and dissolution of carbonate minerals lead to the return of CO2 to the atmosphere via volcanic degassing. Release of COH fluids from hydrous and carbonate minerals influences C recycling and magmatism at subduction zones. Contradictory interpretations exist regarding the retention/storage of C in subducting plates and in the forearc to subarc mantle. Several lines of evidence indicate mobility of C, of uncertain magnitude, in forearcs. A poorly constrained fraction of the 40-115 Mt/yr of C initially subducted is released into fluids (by decarbonation and/or carbonate dissolution) and 18-43 Mt/yr is returned at arc volcanoes. Current estimates suggest the amount of C released into subduction fluids is greater than that degassed at arc volcanoes: the imbalance could reflect C subduction into the deeper mantle, beyond subarc regions, or storage of C in forearc/subarc reservoirs. We examine the fate of C in plate-interface ultramafic rocks, and by analogy serpentinized mantle wedge, via study of fluid-rock evolution of marble and variably carbonated serpentinite in the Ligurian Alps. Based on petrography, major and trace element concentrations, and carbonate C and O isotope compositions, we demonstrate that serpentinite dehydration at 2-2.5 GPa, 550 °C released aqueous fluids triggering breakdown of dolomite in nearby marbles, thus releasing C into fluids. Carbonate + olivine veins document flow of COH fluids and that the interaction of these COH fluids with serpentinite led to the formation of high-P carbonated ultramafic-rock domains (high-P ophicarbonates). We estimate that this could result in the retention of ∼0.5-2.0 Mt C/yr in such rocks along subduction interfaces. As another means of C storage, 1 to 3 km-thick layers of serpentinized forearc mantle wedge containing 50 modal % dolomite could sequester 1.62 to

  17. Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints

    Science.gov (United States)

    Sant, K.; Kirscher, U.; Reichenbacher, B.; Pippèrr, M.; Jung, D.; Doppler, G.; Krijgsman, W.

    2017-05-01

    Accurate reconstruction of the final sea retreat from the North Alpine Foreland Basin (NAFB) during the Burdigalian (Early Miocene) is hampered by a lack of reliable age constraints. In this high resolution magnetostratigraphic study we try to solve a significant age bias for the onset of the Upper Freshwater Molasse (OSM) deposition in the neighboring S-German and Swiss Molasse Basins. We measured > 550 samples from eleven drill cores covering the transition from marine to brackish to freshwater environments in the S-German Molasse Basin. Based on combined bio-, litho- and magnetostratigraphic constraints, the composite magnetostratigraphic pattern of these cores provides two reasonable age correlation options (model 1 and 2). In model 1, the base of the brackish succession lies within Chron C5Cr ( 16.7-17.2 Ma), and the onset of OSM deposition has an age of 16.5 Ma. Correlation model 2 suggests the transition to brackish conditions to be within C5Dr.1r ( 17.7-17.5 Ma), and yields an age around 16.7 Ma for the shift to the OSM. Most importantly, both models confirm a much younger age for the OSM base in the study area than previously suggested. Our results demonstrate a possible coincidence of the last transgressive phase (Kirchberg Fm) with the Miocene Climatic Optimum (model 1), or with the onset of this global warming event (model 2). In contrast, the final retreat of the sea from the study area is apparently not controlled by climate change. Supplementary material B. Profiles of the eleven studied drill cores including lithologies, all magnetostratigraphic data (inclinations), interpreted polarity pattern (this study and Reichenbacher et al., 2013) and magnetic susceptibility (this study). Legend for graphs on page 1. Samples without a stable direction above 200 °C or 20 mT are depicted as +-signs and plotted at 0° inclination. The interpreted normal (black), reversed (white) and uncertain (grey) polarity zones in the polarity columns are based on at least

  18. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water

    International Nuclear Information System (INIS)

    Lu Zhanpeng; Shoji, Tetsuo; Meng Fanjiang; Xue He; Qiu Yubing; Takeda, Yoichi; Negishi, Koji

    2011-01-01

    Research highlights: → Away from the fusion line, kernel average misorientation and hardness decrease. → Away from the fusion line, the fraction of Σ3 boundaries increases. → Crack growth in high temperature water correlates to kernel average misorientation and hardness. → SCC along random boundaries as well as extensive intergranular branching near the fusion line. - Abstract: Microstructure and local deformation in 316NG weld heat-affected zones were measured by electron-back scattering diffraction and hardness measurements. With increasing the distance from the fusion line, kernel average misorientation decreases and the fraction of Σ3 boundaries increases. Stress corrosion cracking growth rates in high temperature water were measured at different locations in the heat-affected zones that correspond to different levels of strain-hardening represented by kernel average misorientation and hardness distribution. Intergranular cracking along random boundaries as well as extensive intergranular crack branching is observed in the heat-affected zone near the weld fusion line.

  19. Microbial diversity in European alpine permafrost and active layers.

    Science.gov (United States)

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Optimization of the thermal performances of the Alpine Pixel Detector

    CERN Document Server

    Zhang, Zhan; Di Ciaccio, Lucia

    The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector of the Large Hadron Collider (LHC). One of the most important goals of ATLAS was to search for the missing piece of the Standard Model, the Higgs boson that had been found in 2012. In order to keep looking for the unknowns, it is planned to upgrade the LHC. The High Luminosity LHC (HL-LHC) is a novel configuration of the accelerator, aiming at increasing the luminosity by a factor five or more above the nominal LHC design. In parallel with the accelerator upgrade also the ATLAS will be upgraded to cope with detector aging and to achieve the same or better performance under increased event rate and radiation dose expected at the HL-LHC. This thesis discusses a novel design for the ATLAS Pixel Detector called the "Alpine" layout for the HL-LHC. To support this design, a local support structure is proposed, optimized and tested with an advanced CO2 evaporative cooling system. A numerical program called “CoBra” simulating the twophase heat ...

  1. Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pili, Eric, E-mail: Eric.Pili@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Institut de Physique du Globe de Paris-Sorbonne Paris Cité, CNRS, Université Paris Diderot, 1 rue Jussieu, F-75238 Paris cedex 05 (France); Tisserand, Delphine, E-mail: Delphine.Tisserand@obs.ujf-grenoble.fr [Institut des Sciences de la Terre (ISTerre) Université Joseph Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Bureau, Sarah, E-mail: Sarah.Bureau@obs.ujf-grenoble.fr [Institut des Sciences de la Terre (ISTerre) Université Joseph Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France)

    2013-11-15

    Highlights: ► δ{sup 34}S{sub SO4} vs. [As] and δ{sup 18}O{sub SO4} vs. As{sup V}/As{sup III} correlations provide new tools even for low [As]. ► Long-term and high-resolution monitoring shows droughts enhance pyrite dissolution. ► Major effect of 2003 European heatwave on pyrite dissolution and [As] increase. -- Abstract: The reduction to 10 μg/l of the limit for arsenic in drinking water led many resource managers to deal with expensive treatments. In the very common case of arsenic levels close to the recommended maximum concentration, knowing the origin and temporal evolution of As has become of great importance. Here we present a case study from an alpine basin. Arsenic speciation, isotopic compositions of pyrite, sulfate and water, and concentrations of major and trace elements demonstrate a geogenic source for arsenic linked to the dissolution of pyrite. We provide new tools to further study As at low concentrations where many processes may be masked. The observed negative correlation between δ{sup 34}S{sub SO4} and [As] is interpreted as a Rayleigh-type sulfur-isotope fractionation during increasing pyrite dissolution. The observed positive correlation between δ{sup 18}O{sub SO4} and As{sup V}/As{sup III} could help to retrieve initial redox conditions. A 3-year long monitoring at high-resolution demonstrated that drought conditions enhance pyrite dissolution whose degradation products are scavenged by recharge water. An increase in As in groundwater may result from droughts due to enhanced oxygen entry in the unsaturated zone. The 2003 European heatwave had a major effect.

  2. How to make a tree ring: Coupling stem water flow and cambial activity in mature Alpine conifers

    Science.gov (United States)

    Peters, Richard L.; Frank, David C.; Treydte, Kerstin; Steppe, Kathy; Kahmen, Ansgar; Fonti, Patrick

    2017-04-01

    Inter-annual tree-ring measurements are used to understand tree-growth responses to climatic variability and reconstruct past climate conditions. In parallel, mechanistic models use experimentally defined plant-atmosphere interactions to explain past growth responses and predict future environmental impact on forest productivity. Yet, substantial inconsistencies within mechanistic model ensembles and mismatches with empirical data indicate that significant progress is still needed to understand the processes occurring at an intra-annual resolution that drive annual growth. However, challenges arise due to i) few datasets describing climatic responses of high-resolution physiological processes over longer time-scales, ii) uncertainties on the main mechanistic process limiting radial stem growth and iii) complex interactions between multiple environmental factors which obscure detection of the main stem growth driver, generating a gap between our understanding of intra- and inter-annual growth mechanisms. We attempt to bridge the gap between inter-annual tree-ring width and sub-daily radial stem-growth and provide a mechanistic perspective on how environmental conditions affect physiological processes that shape tree rings in conifers. We combine sub-hourly sap flow and point dendrometer measurements performed on mature Alpine conifers (Larix decidua) into an individual-based mechanistic tree-growth model to simulate sub-hourly cambial activity. The monitored trees are located along a high elevational transect in the Swiss Alps (Lötschental) to analyse the effect of increasing temperature. The model quantifies internal tree hydraulic pathways that regulate the turgidity within the cambial zone and induce cell enlargement for radial growth. The simulations are validated against intra-annual growth patterns derived from xylogenesis data and anatomical analyses. Our efforts advance the process-based understanding of how climate shapes the annual tree-ring structures

  3. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel

    International Nuclear Information System (INIS)

    Lan Liangyun; Qiu Chunlin; Zhao Dewen; Gao Xiuhua; Du Linxiu

    2011-01-01

    Highlights: → Total toughness can be separated into crack initiation energy and crack propagation energy. → Small effective grain size of lath martensite can improve the crack propagation energy. → MA constituent is mainly responsible for the low toughness of coarse bainite specimens. → High angle packet boundary in coarser bainite has few contributions to improving crack propagation energy. - Abstract: The correlation of microstructural characteristics and toughness of the simulated coarse grained heat affected zone (CGHAZ) of low carbon bainitic steel was investigated in this study. The toughness of simulated specimens was examined by using an instrumented Charpy impact tester after the simulation welding test was conducted with different cooling times. Microstructure observation and crystallographic feature analysis were conducted by means of optical microscope and scanning electron microscope equipped with electron back scattered diffraction (EBSD) system, respectively. The main microstructure of simulated specimen changes from lath martensite to coarse bainite with the increase in cooling time. The deterioration of its toughness occurs when the cooling time ranges from 10 to 50 s compared with base metal toughness, and the toughness becomes even worse when the cooling time increases to 90 s or more. The MA (martensite-austenite) constituent is primary responsible for the low toughness of simulated CGHAZ with high values of cooling time because the large MA constituent reduces the crack initiation energy significantly. For crack propagation energy, the small effective grain size of lath martensite plays an important role in improving the crack propagation energy. By contrast, high misorientation packet boundary in coarse bainite seems to have few contributions to the improvement of the toughness because cleavage fracture micromechanism of coarse bainite is mainly controlled by crack initiation.

  4. Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Lan Liangyun, E-mail: lly.liangyun@gmail.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Qiu Chunlin; Zhao Dewen; Gao Xiuhua; Du Linxiu [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2011-11-25

    Highlights: {yields} Total toughness can be separated into crack initiation energy and crack propagation energy. {yields} Small effective grain size of lath martensite can improve the crack propagation energy. {yields} MA constituent is mainly responsible for the low toughness of coarse bainite specimens. {yields} High angle packet boundary in coarser bainite has few contributions to improving crack propagation energy. - Abstract: The correlation of microstructural characteristics and toughness of the simulated coarse grained heat affected zone (CGHAZ) of low carbon bainitic steel was investigated in this study. The toughness of simulated specimens was examined by using an instrumented Charpy impact tester after the simulation welding test was conducted with different cooling times. Microstructure observation and crystallographic feature analysis were conducted by means of optical microscope and scanning electron microscope equipped with electron back scattered diffraction (EBSD) system, respectively. The main microstructure of simulated specimen changes from lath martensite to coarse bainite with the increase in cooling time. The deterioration of its toughness occurs when the cooling time ranges from 10 to 50 s compared with base metal toughness, and the toughness becomes even worse when the cooling time increases to 90 s or more. The MA (martensite-austenite) constituent is primary responsible for the low toughness of simulated CGHAZ with high values of cooling time because the large MA constituent reduces the crack initiation energy significantly. For crack propagation energy, the small effective grain size of lath martensite plays an important role in improving the crack propagation energy. By contrast, high misorientation packet boundary in coarse bainite seems to have few contributions to the improvement of the toughness because cleavage fracture micromechanism of coarse bainite is mainly controlled by crack initiation.

  5. The seismogenic zone in the Central Costa Rican Pacific margin: high-quality hypocentres from an amphibious network

    Science.gov (United States)

    Arroyo, Ivonne G.; Husen, Stephan; Flueh, Ernst R.

    2014-10-01

    Transition from subduction of normal to thickened oceanic crust occurs in the central portion of the Costa Rican margin, where large interplate earthquakes ( M ~ 7) and abundant interseismic seismicity have been associated with subduction of bathymetric highs. We relocated ~1,300 earthquakes recorded for 6 months by a combined on- and offshore seismological network using probabilistic earthquake relocation in a 3D P-wave velocity model. Most of the seismicity originated at the seismogenic zone of the plate boundary, appearing as an 18° dipping, planar cluster from 15 to 25-30 km depth, beneath the continental shelf. Several reverse focal mechanisms were resolved within the cluster. The upper limit of this interseismic interplate seismicity seems to be controlled primarily by the overlying-plate thickness and coherency, which in turn is governed by the erosional processes and fluid release and escape at temperatures lower than ~100 to 120 °C along the plate boundary. The downdip limit of the stick-slip behaviour collocates with relative low temperatures of ~150 to 200 °C, suggesting that it is controlled by serpentinization of the mantle wedge. The distribution of the interseismic interplate seismicity is locally modified by the presence of subducted seamounts at different depths. Unlike in northern Costa Rica, rupture of large earthquakes in the last two decades seems to coincide with the area defined by the interseismic interplate seismicity.

  6. High efficiency and flexible working distance digital in-line holographic microscopy based on Fresnel zone plate

    International Nuclear Information System (INIS)

    Tian, Peng; Yang, Fan; Li, Fanxing; Hu, Song; Yan, Wei; Hua, Yilei

    2017-01-01

    Traditional digital in-line holography suffers from twin-image noise problems and extremely short working distances between the object and light source. Here, we propose lensless Fourier transform digital in-line holographic microscopy based on a single optical element. A Fresnel zone plate is used to split the incident light into two parts: one is scattered along the original direction, the other is gathered at a focal point and the sample is put behind the focus. The interference fringe pattern, formed by the two beams, is recorded digitally by a CCD camera. A novel reconstruction algorithm is proposed to present the object image. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem, improving the image contrast with high efficiency, and increasing the flexibility of the working distance. Furthermore, a wide field of view and no contact make it a promising tool for the study of materials science, biology and microelectronics. (paper)

  7. Creep in the sparsely fractured rock between a disposal vault and a zone of highly fractured rock

    International Nuclear Information System (INIS)

    Wilkins, B.J.S.; Rigby, G.L.

    1993-08-01

    AECL Research is responsible for investigating the feasibility and safety of the disposal of Canada's nuclear fuel waste deep in the plutonic rock of the Canadian Shield. The excavation of the disposal vault, the installation of sealing systems and the heat generated by the fuel waste will all perturb the in situ stress state of the rock mass. This computer codes HOTROK, MCROC and MCDIRC are used to analyze the influence of these stress perturbations on the mechanical behaviour of the rock mass. Time-dependent microcracking of the rock mass will lead to creep around openings in the vault. The analysis specifically estimates the resulting creep strain in the sparsely fractured rock between the edge of the disposal vault and a postulated zone of highly fractured rock. The estimates are extremely conservative. The conclusion reached is that the rock mass more than 3 m beyond the edge of the vault will experience < 0.001 creep strain 100 000 years after the fuel waste is emplaced. (author). 10 refs., 4 tabs., 4 figs

  8. Photochemistry and aerosol in alpine region: mixing and transport

    International Nuclear Information System (INIS)

    Chaxel, E.

    2006-11-01

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  9. Application value of different transformation zone types and its genetic relationship with high-risk HPV type in diagnosis and therapy of cervical disease.

    Science.gov (United States)

    Chen, Yan; Zhou, Jia-De

    2015-01-01

    This study aims to discuss the influence of different types of transformation zone (TZ) on positive surgical margin of loop electrosurgical excision procedure (LEEP) and the significance of infection of different genetic high-risk HPV for cervical intraepithelial neoplasm. The clinical data of patients who had CIN2+ and received LEEP during January to December 2013 was investigated. The conditions of positive surgical margin of patients of different transformation zone (type I, II, III) were analyzed. The clinical high-risk types of HPV were divided into three groups, including A5/6, A7 and A9, compared with the pathological conditions of pre-operation and post-operation of the patients in respective group. The results indicated that type III transformation zone is more likely to cause positive cutting margin. For CIN2+ patients, sensitivity and specificity are 0.89% and 79.56% in group A5/6, and negative and positive predicted value (NPV, PPV) are 40% and 5%. The sensitivity, specificity, NPV, PPV in group A7 is 12.5%, 44.08%, 29.49% and 21.21%, respectively. The sensitivity, specificity, NPV, PPV in group A9 is 88.99%, 87.09%, 85.26%, 81.51%, respectively. Transformation zone type was correlated positively with positive cutting margin percentage (r = 0.8732, P zone is more likely to cause pathological upgrades. In conclusion, different types of transformation zone and high-risk HPV have clinical significance in causing positive cutting margin of surgery and disease extent.

  10. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone.

    Science.gov (United States)

    Wang, Xing; Lin, Danqiu; Jing, Xiaohuan; Zhu, Sidong; Yang, Jifang; Chen, Jigang

    2018-01-20

    Staphylococcus sp. AntiMn-1 is a deep-sea bacterium inhabiting seafloor sediment in the Clarion-Clipperton Zone (CCZ) that is highly tolerant to Mn(II) and displays efficient Mn(II) oxidation. Herein, we present the assembly and annotation of its genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Alpine ski bindings and injuries. Current findings.

    Science.gov (United States)

    Natri, A; Beynnon, B D; Ettlinger, C F; Johnson, R J; Shealy, J E

    1999-07-01

    In spite of the fact that the overall incidence of alpine ski injuries has decreased during the last 25 years, the incidence of serious knee sprains usually involving the anterior cruciate ligament (ACL) has risen dramatically since the late 1970s. This trend runs counter to a dramatic reduction in lower leg injuries that began in the early 1970s and to date has lowered the risk of injury below the knee by almost 90%. One of the primary design objectives of modern ski boots and bindings has been to protect the skier from tibia and ankle fractures. So, in that sense, they have done an excellent job. However, despite advances in equipment design, modern ski bindings have not protected the knee from serious ligament trauma. At the present time, we are unaware of any binding design, settings or function that can protect both the knee and lower extremities from serious ligament sprains. No innovative change in binding design appears to be on the horizon that has the potential to reduce the risk of these severe knee injuries. Indeed, only 1 study has demonstrated a means to help reduce this risk of serious knee sprains, and this study involved education of skiers, not ski equipment. Despite the inability of bindings to reduce the risk of severe knee injuries there can be no doubt that improvement in ski bindings has been the most important factor in the marked reduction in incidence of lower leg and ankle injuries during the last 25 years. The authors strongly endorse the application of present International Standards Organisation (ISO) and American Society for Testing and Materials (ASTM) standards concerning mounting, setting and maintaining modern 'state of the art' bindings.

  12. Whole-Body Vibrations Associated With Alpine Skiing: A Risk Factor for Low Back Pain?

    Directory of Open Access Journals (Sweden)

    Matej Supej

    2018-03-01

    Full Text Available Alpine skiing, both recreational and competitive, is associated with high rates of injury. Numerous studies have shown that occupational exposure to whole-body vibrations is strongly related to lower back pain and some suggest that, in particular, vibrations of lower frequencies could lead to overuse injuries of the back in connection with alpine ski racing. However, it is not yet known which forms of skiing involve stronger vibrations and whether these exceed safety thresholds set by existing standards and directives. Therefore, this study was designed to examine whole-body vibrations connected with different types of skiing and the associated potential risk of developing low back pain. Eight highly skilled ski instructors, all former competitive ski racers and equipped with five accelerometers and a Global Satellite Navigation System to measure vibrations and speed, respectively, performed six different forms of skiing: straight running, plowing, snow-plow swinging, basic swinging, short swinging, and carved turns. To estimate exposure to periodic, random and transient vibrations the power spectrum density (PSD and standard ISO 2631-1:1997 parameters [i.e., the weighted root-mean-square acceleration (RMS, crest factor, maximum transient vibration value and the fourth-power vibration dose value (VDV] were calculated. Ground reaction forces were estimated from data provided by accelerometers attached to the pelvis. The major novel findings were that all of the forms of skiing tested produced whole-body vibrations, with highest PSD values of 1.5–8 Hz. Intensified PSD between 8.5 and 35 Hz was observed only when skidding was involved. The RMS values for 10 min of short swinging or carved turns, as well as all 10-min equivalent VDV values exceeded the limits set by European Directive 2002/44/EC for health and safety. Thus, whole-body vibrations, particularly in connection with high ground reaction forces, contribute to a high risk for low back

  13. Gravel bar thermal variability and its potential consequences for CO2 evasion from Alpine coldwater streams

    Science.gov (United States)

    Boodoo, Kyle; Battin, Tom; Schelker, Jakob

    2017-04-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore

  14. Denitrification capacity and greenhouse gas emissions of soils in channelized and restored reaches along an Alpine river corridor

    Science.gov (United States)

    Shrestha, Juna; Niklaus, Pascal; Samaritani, Emanuela; Frossard, Emmanuel; Tockner, Klement; Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water and air quality, the biogeochemical functions of channelized and restored river reaches have to be quantified. The objective of this study was to compare denitrification potential and greenhouse gas emissions of functional processing zones (FPZ) in a channelized and a recently restored reach of the alpine river Thur in north-eastern Switzerland. The study was part of the project cluster RECORD of the ETH domain, Switzerland, which was initiated to increase the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The denitrification potential represents an important aspect of the soil filter function related to water quality. Besides, it also contributes to the emission of greenhouse gases. Extensively used pasture growing on a sandy loam is the characteristic FPZ of the channelized section. The restored section encompasses five FPZ: (i) bare gravel bars sparsely colonized by plants, (ii) gravel bars densely colonized by grass (mainly canary reed grass with up to 80 cm sandy deposits), (iii) mixed forest dominated by ash and maple, (iv) riparian forest dominated by willow (Salix alba), (v) older overbank sediments stabilized during restoration with young willows separating the forests from the river-gravel bar system (willow bush). The FPZ were sampled in January, April, August and October 2009. In addition, in June and July 2009 two flood events were monitored in the restored section with more frequent samplings. At each date, topsoil samples were collected in each FPZ (four replicates per samples) and analyzed for denitrifier enzyme activity (DEA). In addition, gas samples were taken in-situ using the closed chamber technique to measure soil respiration as well as N2O and CH4 fluxes. In all FPZ, the denitrification potential was mainly governed by soil moisture. It was highest in the willow forest exhibiting low spatial variability. The DEA in pasture, grass zone

  15. High-voltage zones within the pulmonary vein antra: Major determinants of acute pulmonary vein reconnections after atrial fibrillation ablation.

    Science.gov (United States)

    Nagashima, Koichi; Watanabe, Ichiro; Okumura, Yasuo; Iso, Kazuki; Takahashi, Keiko; Watanabe, Ryuta; Arai, Masaru; Kurokawa, Sayaka; Nakai, Toshiko; Ohkubo, Kimie; Yoda, Shunichi; Hirayama, Atsushi

    2017-08-01

    Recurrence of atrial fibrillation (AF) after pulmonary vein isolation (PVI) is mainly due to PV reconnections. Patient-specific tissue characteristics that may contribute remain unidentified. This study aimed to assess the relationship between the bipolar electrogram voltage amplitudes recorded from the PV-left atrial (LA) junction and acute PV reconnection sites. Three-dimensional LA voltage maps created before an extensive encircling PVI in 47 AF patients (31 men; mean age 62 ± 11 years) were examined for an association between the EGM voltage amplitude recorded from the PV-LA junction and acute post-PVI PV reconnections (spontaneous PV reconnections and/or ATP-provoked dormant PV conduction). Acute PV reconnections were observed in 17 patients (36%) and in 24 (3%) of the 748 PV segments (16 segments per patient) and were associated with relatively high bipolar voltage amplitudes (3.26 ± 0.85 vs. 1.79 ± 1.15 mV, p voltage (137 [106, 166] vs. 295 [193, 498] gs/mV, p voltage and FTI/PV-LA bipolar voltage for acute PV reconnections (areas under the curve: 0.86 and 0.89, respectively); the best cutoff values were >2.12 mV and ≤183 gs/mV, respectively. The PV-LA voltage on the PV-encircling ablation line and FTI/PV-LA voltage were related to the acute post-PVI PV reconnections. A more durable ablation strategy is warranted for high-voltage zones.

  16. Atmospheric deposition as a source of carbon and nutrients to barren, alpine soils of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-03-01

    Many alpine areas are experiencing intense deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, we evaluated the magnitude and chemical quality of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were approximately 1.0 mg L-1and weekly concentrations reached peaks as high at 6-10 mg L-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. Relationships among DOC concentration, dissolved organic matter (DOM) fluorescence properties, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples and, therefore, likely to be more bioavailable to microbes in barren alpine soils. Bioavailability experiments with different types of atmospheric C sources are needed to better evaluate the substrate quality of atmospheric C inputs. Our C budget estimates for the Green Lake 4 catchment suggest that atmospheric deposition represents an

  17. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  18. Utilizing High-Performance Computing to Investigate Parameter Sensitivity of an Inversion Model for Vadose Zone Flow and Transport

    Science.gov (United States)

    Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.

    2011-12-01

    High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve

  19. The influence of the fault zone width on land surface vibrations after the high-energy tremor in the "Rydułtowy-Anna" hard coal mine

    Science.gov (United States)

    Pilecka, Elżbieta; Szwarkowski, Dariusz

    2018-04-01

    In the article, a numerical analysis of the impact of the width of the fault zone on land surface tremors on the area of the "Rydułtowy - Anna" hard coal mine was performed. The analysis covered the dynamic impact of the actual seismic wave after the high-energy tremor of 7 June 2013. Vibrations on the land surface are a measure of the mining damage risk. It is particularly the horizontal components of land vibrations that are dangerous to buildings which is reflected in the Mining Scales of Intensity (GSI) of vibrations. The run of a seismic wave in the rock mass from the hypocenter to the area's surface depends on the lithology of the area and the presence of fault zones. The rock mass network cut by faults of various widths influences the amplitude of tremor reaching the area's surface. The analysis of the impact of the width of the fault zone was done for three alternatives.

  20. Importance of water quality on plant abundance and diversity in high-alpine meadows of the Yerba Loca Natural Sanctuary at the Andes of north-central Chile Importancia de la calidad del agua sobre la abundancia y diversidad vegetal en vegas altoandinas del Santuario Natural Yerba Loca en los Andes de Chile centro-norte

    Directory of Open Access Journals (Sweden)

    ROSANNA GINOCCHIO

    2008-12-01

    Full Text Available Porphyry Cu-Mo deposits have influenced surface water quality in high-Andes of north-central Chile since the Miocene. Water anomalies may reduce species abundance and diversity in alpine meadows as acidic and metal-rich waters are highly toxic to plants The study assessed the importance of surface water quality on plant abundance and diversity in high-alpine meadows at the Yerba Loca Natural Santuary (YLNS, central Chile (33°15' S, 70°18' W. Hydrochemical and plant prospecting were carried out on Piedra Carvajal, Chorrillos del Plomo and La Lata meadows the growing seasons of 2006 and 2007. Direct gradient analysis was performed through canonical correspondence analysis (CCA to look for relationships among water chemistry and plant factors. High variability in water chemistry was found inside and among meadows, particularly for pH, sulphate, electric conductivity, hardness, and total dissolved Cu, Zn, Cd, Pb and Fe. Data on species abundance and water chemical factors suggests that pH and total dissolved Cu are very important factor determining changes in plant abundance and diversity in study meadows. For instance, Festuca purpurascens, Colobanthus quitensis, and Arenaria rivularis are abundant in habitals with Cu-rich waters while Festuca magellanica, Patosia clandestina, Plantago barbata, Werneria pygmea, and Erigeron andícola are abundant in habitals with dilute waters.Los megadepósitos de pórfidos de Cu-Mo han influido sobre la calidad de las aguas superficiales en las zonas altoandinas del centro-norte de Chile desde el Mioceno. Estas alteraciones en la calidad de las aguas podrían afectar negativamente a la vegetación presente en las vegas altoandinas, ya que las aguas acidas y ricas en metales son altamente tóxicas para las plantas. En este estudio se evaluó el efecto de la calidad de las aguas en la abundancia y diversidad florística de las vegas altoandinas del Santuario de la Naturaleza Yerba Loca (SNYL, en Chile central (33

  1. Uranium-series dating of fossil bones from alpine caves

    International Nuclear Information System (INIS)

    Leitner-Wild, E.; Steffan, I.

    1993-01-01

    During the course of an investigation of fossil cave bear populations the uranium-series method for absolute age determination has been applied to bone material. The applicability of the method to bone samples from alpine caves is demonstrated by the concordance of U/Th and U/Pa ages and cross-checks with the radiocarbon method. Stratigraphic agreement between bone ages and carbonate speleothem ages also indicates the potential of the uranium-series method as a suitable tool for the age determination of fossil bones from alpine cave environments. (Author)

  2. Photochemistry and aerosol in alpine region: mixing and transport; Photochimie et aerosol en region alpine: melange et transport

    Energy Technology Data Exchange (ETDEWEB)

    Chaxel, E

    2006-11-15

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  3. Observed long-term greening of alpine vegetation—a case study in the French Alps

    Science.gov (United States)

    Carlson, Bradley Z.; Corona, Monica C.; Dentant, Cédric; Bonet, Richard; Thuiller, Wilfried; Choler, Philippe

    2017-11-01

    We combined imagery from multiple sources (MODIS, Landsat-5, 7, 8) with land cover data to test for long-term (1984-2015) greening or browning trends of vegetation in a temperate alpine area, the Ecrins National Park, in the context of recent climate change and domestic grazing practices. We showed that over half (56%) of the Ecrins National Park displayed significant increases in peak normalized difference vegetation index (NDVImax) over the last 16 years (2000-2015). Importantly, the highest proportional increases in NDVImax occurred in rocky habitats at high elevations (> 2500 m a.s.l.). While spatial agreement in the direction of change in NDVImax as detected by MODIS and Landsat was high (76% overlap), correlations between log-response ratio values were of moderate strength (approx. 0.3). In the context of above treeline habitats, we found that proportional increases in NDVImax were higher between 1984 and 2000 than between 2000 and 2015, suggesting a slowing of greening dynamics during the recent decade. The timing of accelerated greening prior to 2000 coincided with a pronounced increase in the amount of snow-free growing degree-days that occurred during the 1980s and 1990s. In the case of grasslands and low-shrub habitats, we did not find evidence for a negative effect of grazing on greening trends, possibly due to the low grazing intensity typically found in the study area. We propose that the emergence of a longer and warmer growing season enabled high-elevation plant communities to produce more biomass, and also allowed for plant colonization of habitats previously characterized by long-lasting snow cover. Increasing plant productivity in an alpine context has potential implications for biodiversity trajectories and for ecosystem services in mountain landscapes. The presented evidence for long-term greening trends in a representative region of the European Alps provides the basis for further research on mechanisms of greening in alpine landscapes.

  4. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    Science.gov (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  5. The 'Alpine Windharvest' project - Overview; Projekt Alpine Windharvest - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Kunz, S. [Suisse Eole, Meteotest, Berne (Switzerland)

    2005-07-01

    This short introduction forms part of a final report for the Swiss Federal Office of Energy (SFOE) that presents the results of a project carried out by the Swiss wind-energy organisation 'Suisse Eole' and the meteorology specialists of the company METEOTEST. The project investigated the use of digital relief-analysis and formed part of a European wind-energy project that investigated the technical, legal and socio-economical aspects of the use of wind energy. The work-package 7 included the identification of wind-energy areas using comparative Geographic Information System (GIS) methods. An overview is provided of the wind-energy potential in the whole of the alpine region and five areas in which measurements are to be made, including GIS analyses, are defined.

  6. Thermal Variability in Gravel Bars and its Potential Consequences for CO2 Evasion from Alpine Coldwater Streams

    Science.gov (United States)

    Boodoo, K. S.; Schelker, J.; Battin, T. J.

    2016-12-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm

  7. Winter frost resistance of Pinus cembra measured in situ at the alpine timberline as affected by temperature conditions.

    Science.gov (United States)

    Buchner, Othmar; Neuner, Gilbert

    2011-11-01

    Winter frost resistance (WFR), midwinter frost hardening and frost dehardening potential of Pinus cembra L. were determined in situ by means of a novel low-temperature freezing system at the alpine timberline ecotone (1950 m a.s.l., Mt Patscherkofel, Innsbruck, Austria). In situ liquid nitrogen (LN₂)-quenching experiments should check whether maximum WFR of P. cembra belonging to the frost hardiest conifer group, being classified in US Department of Agriculture climatic zone 1, suffices to survive dipping into LN₂ (-196 °C). Viability was assessed in a field re-growth test. Maximum in situ WFR (LT₅₀) of leaves was frost hardening treatment (12 days at -20 °C followed by 3 days at -50 °C) to induce maximum WFR. Temperature treatments applied in the field significantly affected the actual WFR. In January a frost hardening treatment (21 days at -20 °C) led to a significant increase of WFR (buds: -62 °C to frost dehardening (buds: -32.6 °C to -10.2 °C; leaves: -32.7 to -16.4 °C) followed by significantly earlier bud swelling and burst in late winter. Strikingly, both temperature treatments, either increased air temperature (+10.1 °C) or increased soil temperature (+6.5 °C), were similarly effective. This high readiness to frost harden and deharden in winter in the field must be considered to be of great significance for future winter survival of P. cembra. Determination of WFR in field re-growth tests appears to be a valuable tool for critically judging estimates of WFR obtained on detached twigs in an ecological context.

  8. Impact of ecological diversity on genetic and phytochemical variation injuniperus excelsa from high elevation zones of quetta valley, pakistan

    International Nuclear Information System (INIS)

    Seed, S.; Barozai, M.Y.K.; Ahmed, A.; Tareen, R.B.

    2017-01-01

    Juniperusexcelsa (Cupressaceae) is an evergreen tree and the second most diverse group of the conifers distributed abundantly in high elevation zones of Balochistan. Genetic and phytochemical variations in three naturally occurring populations of J.excelsa were analysed. Genetic variability was assessed by different molecular markers (RAPD, ISSR and URP) with an objective to use genetic diversity as a key to conserve the taxon which is also known as living fossil as dominated in Mesozoic era. Genetic diversity was assessed by polymorphic bands to generate a dendrogram based on UPGMA. Using tested markers, 116 bands were amplified out of which 67 bands were polymorphic with an average value of 8.37 (57%) bands per primer. Based on data, a cluster dendrogram was prepared that exhibited the mean genetic similarity matrix as 0.57 and two major clusters diverge at 0.49. The genetic similarity coefficient among all accessions ranged from 0.35 to 0.90. In phytochemical analysis, total phenolic and flavonoid contents were estimated and compared among all accessions. Ecological characteristics of the study sites were measured to check their impact on genetic and chemical variation. Soil properties were analyzed for Principal Component Analysis. Chemical variation of J. excelsa of three sites revealed by dissimilarity matrix exhibiting genetic distance based on TPC and Flavonoids. Cluster analysis represent two major groups. Mean concentration of TPC and flavonoids were 56+-9.15 and 150+-27.9 mg/g respectively. PCA of soil considered three factors had Eigen values >1 and explain cumulatively 4.60 %, 26.02% and 10.36 % of the variance. First factor was positively correlated with second and fifth, but negatively correlated with other factors. In conclusion, molecular marker profiling together with phytochemical variation of total phenolic and flavonoid content in all accessions of Juniperusexcelsa and impact of ecological diversity on Genetic and chemical variation can be used

  9. The snow vole (Chionomys nivalis) as an appropriate environmental bioindicator in alpine ecosystems

    International Nuclear Information System (INIS)

    Metcheva, Roumiana; Beltcheva, Michaela; Chassovnikarova, Tsenka

    2008-01-01

    The snow vole (Chionomys nivalis, Martins, 1842) is a common species in the Bulgarian high mountains. Its populations are distributed in different altitudes, regions, and keep stable population density. This is the reason the species has been tested as a bioindicator for environmental quality in alpine ecosystems. The cumulative environmental impact in snow vole populations was evaluated using cytogenetical, hematological, ecotoxicological, radiometrical, ecophysiological, and morphophysiological indices. Standard karyotype, chromosomal aberrations, and other diversions have been observed. These investigations reveal that the snow vole is one of the most appropriate species that can be used as a biomonitor for environmental assessment in mountain areas

  10. Training in Innovative Technologies for Close-Range Sensing in Alpine Terrain

    Science.gov (United States)

    Rutzinger, M.; Bremer, M.; Höfle, B.; Hämmerle, M.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Scaioni, M.; Wujanz, D.; Zieher, T.

    2018-05-01

    The 2nd international summer school "Close-range sensing techniques in Alpine terrain" was held in July 2017 in Obergurgl, Austria. Participants were trained in selected close-range sensing methods, such as photogrammetry, laser scanning and thermography. The program included keynotes, lectures and hands-on assignments combining field project planning, data acquisition, processing, quality assessment and interpretation. Close-range sensing was applied for different research questions of environmental monitoring in high mountain environments, such as geomorphologic process quantification, natural hazard management and vegetation mapping. The participants completed an online questionnaire evaluating the summer school, its content and organisation, which helps to improve future summer schools.

  11. The snow vole (Chionomys nivalis) as an appropriate environmental bioindicator in alpine ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Metcheva, Roumiana [Institute of Zoology, Bulgarian Academy of Science, 1, Tzar Osvoboditel blvd., Sofia, 1000 Bulgaria (Bulgaria)], E-mail: rummech@yahoo.com; Beltcheva, Michaela; Chassovnikarova, Tsenka [Institute of Zoology, Bulgarian Academy of Science, 1, Tzar Osvoboditel blvd., Sofia, 1000 Bulgaria (Bulgaria)

    2008-03-01

    The snow vole (Chionomys nivalis, Martins, 1842) is a common species in the Bulgarian high mountains. Its populations are distributed in different altitudes, regions, and keep stable population density. This is the reason the species has been tested as a bioindicator for environmental quality in alpine ecosystems. The cumulative environmental impact in snow vole populations was evaluated using cytogenetical, hematological, ecotoxicological, radiometrical, ecophysiological, and morphophysiological indices. Standard karyotype, chromosomal aberrations, and other diversions have been observed. These investigations reveal that the snow vole is one of the most appropriate species that can be used as a biomonitor for environmental assessment in mountain areas.

  12. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  13. Subventricular zone predicts high velocity of tumor expansion and poor clinical outcome in patients with low grade astrocytoma.

    Science.gov (United States)

    Wen, Bing; Fu, Feixian; Hu, Liangbo; Cai, Qiuyi; Xie, Junshi

    2018-05-01

    The aim of this study is to clarify the association between subventricular zone (SVZ) involvement and velocity of diametric expansion(VDE) in patients with low-grade astrocytoma and also assessed the clinical outcome of those patients. A total of 168 adult patients with newly diagnosed supratentorial low-grade astrocytoma were studied retrospectively. There were 73 patients had SVZ involvement. Patients with SVZ involvement(7.16 ± 6.53 mm/y) had a higher VDE than patients without SVZ involvement(4.38 ± 5.35 mm/y). VDE was modeled as a categorical variable(<4, ≥4 and, <8, ≥8 and, <12, ≥12 mm/y). Logistic regression showed that SVZ involvement was associated with high VDE after adjusting by confounding variables. On the univariate analysis, the results showed that tumor involved with SVZ, VDE ≥ 4 mm/y, VDE ≥ 8 mm/y, and VDE ≥ 8 mm/y were significant predictors of a shorter OS, progression-free survival (PFS) and malignant progression-free survival (MFS)(all p <0.05). The categorical variables of VDE (<4 mm/y, ≥4 mm/y and, <8 mm/y, ≥8 mm/y and, <12 mm/y, ≥12 mm/y) were adjusted by confounding variables in multivariate analysis, respectively. The results indicated that VDE ≥ 8 mm/y, VDE ≥ 12 mm/y were worse prognostic factors for OS, while VDE ≥ 4 mm/y, VDE ≥ 8 mm/y and VDE ≥ 12 mm/y were related to shorter PFS and MFS. In addition, SVZ involvement was prognostic factors in predicting OS and PFS except MFS. Our results demonstrated that SVZ involvement predicted high VDE and worse clinical outcome, and high VDE was associated with poor prognosis in patients with low-grade astrocytoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effects of Climate Change on Habitat Availability and Configuration for an Endemic Coastal Alpine Bird.

    Directory of Open Access Journals (Sweden)

    Michelle M Jackson

    Full Text Available North America's coastal mountains are particularly vulnerable to climate change, yet harbour a number of endemic species. With little room "at the top" to track shifting climate envelopes, alpine species may be especially negatively affected by climate-induced habitat fragmentation. We ask how climate change will affect the total amount, mean patch size, and number of patches of suitable habitat for Vancouver Island White-tailed Ptarmigan (Lagopus leucura saxatilis; VIWTP, a threatened, endemic alpine bird. Using a Random Forest model and a unique dataset consisting of citizen science observations combined with field surveys, we predict the distribution and configuration of potential suitable summer habitat for VIWTP under baseline and future (2020s, 2050s, and 2080s climates using three general circulation models and two greenhouse gas scenarios. VIWTP summer habitat is predicted to decline by an average of 25%, 44%, and 56% by the 2020s, 2050s, and 2080s, respectively, under the low greenhouse gas scenario and 27%, 59%, and 74% under the high scenario. Habitat patches are predicted to become fragmented, with a 52-79% reduction in mean patch size. The average elevation of suitable habitat patches is expected to increase, reflecting a loss of patches at lower elevations. Thus ptarmigan are in danger of being "squeezed off the mountain", as their remaining suitable habitat will be increasingly confined to mountaintops in the center of the island. The extent to which ptarmigan will be able to persist in increasingly fragmented habitat is unclear. Much will depend on their ability to move throughout a more heterogeneous landscape, utilize smaller breeding areas, and survive increasingly variable climate extremes. Our results emphasize the importance of continued monitoring and protection for high elevation specialist species, and suggest that White-tailed Ptarmigan should be considered an indicator species for alpine ecosystems in the face of

  15. Global Warming and the Summertime Evapotranspiration Regime of the Alpine Region

    Energy Technology Data Exchange (ETDEWEB)

    Calanca, P.; Jasper, K. [Agroscope FAL Reckenholz, Swiss Federal Research Station for Agroecology and Agriculture, CH-8046 Zuerich (Switzerland); Roesch, A.; Wild, M. [Institute for Atmospheric and Climate Science, Swiss Federal Institute of Technology, CH-8092 Zuerich (Switzerland)

    2006-11-15

    Changes of the summer evapotranspiration regime under increased levels of atmospheric greenhouse gases are discussed for three Alpine river basins on the basis of a new set of simulations carried out with a high-resolution hydrological model. The climate change signal was inferred from the output of two simulations with a state-of-the-art global climate model (GCM), a reference run valid for 1961-1990 and a time-slice simulation valid for 2071-2100 under forcing from the A2 IPCC emission scenario. In this particular GCM experiment and with respect to the Alpine region summer temperature was found to increase by 3 to 4C, whereas precipitation was found to decrease by 10 to 20%. Global radiation and water vapor pressure deficit were found to increase by about 5% and 2 hPa, respectively. On this background, an overall increase of potential evapotranspiration of about 20% relative to the baseline was predicted by the hydrological model, with important variations between but also within individual basins. The results of the hydrological simulations also revealed a reduction in the evapotranspiration efficiency that depends on altitude. Accordingly, actual evapotranspiration was found to increase at high altitudes and to the south of the Alps, but to decrease in low elevation areas of the northern forelands and in the inner-Alpine domain. Such a differentiation does not appear in the GCM scenario, which predicts an overall increase in evapotranspiration over the Alps. This underlines the importance of detailed simulations for the quantitative assessment of the regional impact of climate change on the hydrological cycle.

  16. Mechanism of formation of a zone without vacancy pores along a surface under electron irradiation of a metal in the high-volt electron microscope

    International Nuclear Information System (INIS)

    Golubov, S.I.; Konobeev, Yu.V.; Ryabov, V.A.

    1981-01-01

    Formation mechanism of zones free of vacancy pores near the vacant surface of a metal preliminary irradiated at a high neutron dose when irradiating with electrons in a high-voltage electron microscope has been suggested. It was assumed to explain experimentally observed values of width and time of such zone formation that interstitial atoms are reflected from foil surface while boundary serves as an ideal sink for the vacancies. The carried out calculation of stationary equations of vacancy and interstitial diffusion with the mentioned boundary condition has shown that determination of a stable zone width is possible only in assumption on a variable in a depth of dislocation density. Theoretical evaluations of a zone width being in good agreement with an experiment and with the results of numerical calculations have been obtained in negligence of recombination of point defects as well as for the case of total reflection of interstitials. Discussed are different mechanisms of weak capture of proper interstitial atoms diffusing to it with the metal surface [ru

  17. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau

    International Nuclear Information System (INIS)

    Yi Shuhua; Zhou Zhaoye; Ren Shilong; Xu Ming; Qin Yu; Chen Shengyun; Ye Baisheng

    2011-01-01

    Permafrost on the Qinghai–Tibetan Plateau (QTP) has degraded over the last few decades. Its ecological effects have attracted great concern. Previous studies focused mostly at plot scale, and hypothesized that degradation of permafrost would cause lowering of the water table and drying of shallow soil and then degradation of alpine grassland. However, none has been done to test the hypothesis at basin scale. In this study, for the first time, we investigated the relationships between land surface temperature (LST) and fractional vegetation cover (FVC) in different types of permafrost zone to infer the limiting condition (water or energy) of grassland growth on the source region of Shule River Basin, which is located in the north-eastern edge of the QTP. LST was obtained from MODIS Aqua products at 1 km resolution, while FVC was upscaled from quadrat (50 cm) to the same resolution as LST, using 30 m resolution NDVI data of the Chinese HJ satellite. FVC at quadrat scale was estimated by analyzing pictures taken with a multi-spectral camera. Results showed that (1) retrieval of FVC at quadrat scale using a multi-spectral camera was both more accurate and more efficient than conventional methods and (2) the limiting factor of vegetation growth transitioned from energy in the extreme stable permafrost zone to water in the seasonal frost zone. Our study suggested that alpine grassland would respond differently to permafrost degradation in different types of permafrost zone. Future studies should consider overall effects of permafrost degradation, and avoid the shortcomings of existing studies, which focus too much on the adverse effects.

  18. Alpine glacial topography and the rate of rock column uplift

    DEFF Research Database (Denmark)

    Pedersen, Vivi Kathrine; Egholm, D.L.; Nielsen, S.B.

    2010-01-01

    The present study investigates the influence of alpine glacial erosion on the morphology and relief distribution of mountain regions associated with varying rock column uplift rates. We take a global approach and analyse the surface area distribution of all mountain regions affected by glacial er...

  19. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  20. Classification of the eastern alpine vegetation of Lesotho | Morris ...

    African Journals Online (AJOL)

    Five vegetation communities in the alpine catchment of Lesotho were identified by hierarchical classification of the botanical composition data. Discriminant analysis indicated that these communities occupy particular topographic positions. The community-environmental relationships identified in this study were similar to ...

  1. Vegetation Structure and Temperature Regimes of Tropical Alpine Treelines

    NARCIS (Netherlands)

    Bader, M.Y.; Rietkerk, M.G.; Bregt, A.K.

    2007-01-01

    Alpine treeline ecotones can be gradual transitions, abrupt boundaries, or patchy mosaics, and these different patterns may indicate important processes and dynamic properties. We present observed spatial patterns of a wide range of tropical treelines and try to explain these patterns. Treelines

  2. Vegetation structure and temperature regimes of tropical alpine treelines

    NARCIS (Netherlands)

    Bader, M.; Rietkerk, M.; Bregt, A.K.

    2007-01-01

    Alpine treeline ecotones can be gradual transitions, abrupt boundaries, or patchy mosaics, and these different patterns may indicate important processes and dynamic properties. We present observed spatial patterns of a wide range of tropical treelines and try to explain these patterns. Treelines

  3. Australian Alps: Kosciuszko, Alpine and Namadgi National Parks (Second Edition

    Directory of Open Access Journals (Sweden)

    Nicole Porter

    2017-02-01

    Full Text Available Reviewed: Australian Alps: Kosciuszko, Alpine and Namadgi National Parks (Second Edition By Deidre Slattery. Clayton South, Australia: CSIRO Publishing, 2015. xvii + 302 pp. AU$ 45.00, US$ 35.95. ISBN 978-1-486-30171-3.

  4. Alpine Skiing With total knee ArthroPlasty (ASWAP)

    DEFF Research Database (Denmark)

    Kristensen, M.; Pötzelsberger, B.; Scheiber, P.

    2015-01-01

    We investigated the effect of alpine skiing for 12 weeks on skeletal muscle characteristics and biomarkers of glucose homeostasis and cardiovascular risk factors. Twenty-three patients with a total knee arthroplasty (TKA) were studied 2.9 ± 0.9 years (mean ± SD) after the operation. Fourteen...

  5. Methods for measuring arctic and alpine shrub growth: A review

    NARCIS (Netherlands)

    Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.G.W.; Rayback, S.A.

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding of

  6. [A large-scale accident in Alpine terrain].

    Science.gov (United States)

    Wildner, M; Paal, P

    2015-02-01

    Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qu