WorldWideScience

Sample records for high alloy steel

  1. High strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  2. REVIEW AND PROSPECT OF HIGH STRENGTH LOW ALLOY TRIP STEEL

    Institute of Scientific and Technical Information of China (English)

    L. Li; P. Wollants; Y.L. He; B.C. De Cooman; X.C. Wei; Z.Y. Xu

    2003-01-01

    Research status of high strength low alloy TRIP (transformation induced plasticity)steels for automobile structural parts is briefly described. Composition and microstructure factors especially the morphology, size and volume fraction of retained austenite,which largely influence the strength and ductility of the steel, are reviewed and discussed one after another. Modelling of the inter-critical annealing and martempering processes as well as the designing of the TRIP steel aided by commercial software are introduced. Some special aspects of the dynamic mechanical properties of TRIP steel are firstly reported.

  3. Method of making high strength, tough alloy steel

    Science.gov (United States)

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  4. Pressurized metallurgy for high performance special steels and alloys

    Science.gov (United States)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  5. Thermodynamic Modeling as a Strategy for Casting High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Peri Reddy V; S Raman Sankaranarayanan

    2009-01-01

    Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic com-positions have been presented.

  6. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  7. Application of high temperature DTA to micro-alloyed steels

    Directory of Open Access Journals (Sweden)

    B. Smetana

    2012-01-01

    Full Text Available Paper deals with investigation of phase transitions temperatures for selected real grades of micro-alloyed steels. Temperatures of characteristic phase transitions were obtained using Setaram SETSYS 18TM. The DTA technique was selected for the study of micro-alloyed steels. Temperatures of phase transitions (liquidus, solidus etc. were obtained. Influence of admixed and alloyed elements on shift of temperatures was investigated. Resulting data were compared with temperatures of phase transitions of Fe-C, Fe-Mn systems and with temperatures calculated according to relations published in available literature. Thermodynamic-kinetic solidifi cation model IDS was used to calculate characteristic equilibrium temperatures of investigated systems.

  8. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    Science.gov (United States)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  9. Deformation and fracture of low alloy steels at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.L.; Stubbins, J.F.; Leckie, F.A.; Muddle, B.

    1988-12-01

    This project formed part of the initiative in the AR TD program to characterize high temperature, time-dependent damage processes in low alloy steels, for use in the construction of coal-gasification plant. This project was broadly aimed at adding to the knowledge base for this bainitic form of 2.25Cr 1Mo steel, as it related to time-dependent performance at elevated temperature. Its original intention was to obtain information in specific grades of 2.25Cr 1Mo steel, in particular those containing reduced residual elements and microalloyed modifications, which were being considered as candidate materials at the time. This objective was subsequently modified, in the course of the contract period, to a more generic study of bainitic steel, using the 2.25Cr 1Mo material as a representative of the class. The main thrust of the project was directed initially at the detrimental effect of cyclic loading on creep resistance and manifesting itself in an apparently severe creep-fatigue interaction. Three subtasks were eventually identified. These are: a study of the evolution of microstructural changes in bainitic materials during steady load creep and under constant amplitude cyclic deformation, investigation of the effect of cyclic softening on the fatigue and creep strength of complex geometries, focusing on circumferentially notched bars, and investigation of the influence of environment as a possible cause of observed fatigue/elevated temperature interaction through its effects on crack initiation and propagation, using EDM notched specimens tested in air and vacuum. Results are discussed. 24 refs., 40 figs., 5 tabs.

  10. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...... of boride to AISI 316L type steels have previously been studied, but were found to be sensitive to intergranular corrosion due to formation of intermetallic phases rich in chromium and molybdenum. In order to improve this system further, new investigations have focused on the use of higher alloyed stainless...... steel as base material. The stainless base powders were added different amounts and types of boride and sintered in hydrogen at different temperatures and times in a laboratory furnace. During sintering the outlet gas was analyzed and subsequently related to the obtained microstructure. Thermodynamic...

  11. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  12. M2C Precipitate in Isothermal Tempering of High Co-Ni Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ultra-strength alloy steel with high content of Co and Ni is typical tempering martensite steel, and the secondary hardening is accomplished by the precipitation of fine scale alloy carbides with black-white contrast until peak-hardening. The crystal structure of precipitates was well determined as M2C with hexagonal by micro-beam diffraction. Observing in HREM, M2C carbides were shown coherent with the ferrite matrix completely and have their own structure.

  13. Plastic Instabilities and Their Consequences in Steels and Other High Strength Alloys

    Science.gov (United States)

    1991-09-01

    rate yes Superalloys * Alloy 600 quasi-static no Rend 41 quasi-static no Steels * HY80 quasi-static no ultra-soft5 no low temperatures no AISI 4340...AD-A240 976 ([f) A Final Technical Report Contract No. N00014-88-K-0111 S PLASTIC INSTABILITIES AND THEIR CONSEQUENCES IN STEELS AND OTHER HIGH...PLASTIC INSTABILITIES AND THEIR CONSEQUENCES IN STEELS AND OTHER HIGH STRENGTH ALLOYS Submitted to: Office of Naval Research 800 North Quincy Street

  14. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    Science.gov (United States)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-09-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  15. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    Science.gov (United States)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-12-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  16. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading

    Science.gov (United States)

    Wei, Xiaoding; Latourte, Felix; Feinberg, Zack; Olson, Gregory; Espinosa, Horacio; Micro; Nanomechanics Laboratory Team; Olson Group Team

    2011-06-01

    To characterize the performance of naval structures, underwater blast experiments have been developed. Martensitic and austenitic steel alloys were designed to optimize the performance of structures subjected to impulsive loads. The deformation and fracture characteristics of the designed steel alloys were investigated experimentally and computationally. The experiments were based on an instrumented fluid structure interaction apparatus, in which deflection profiles were recorded. The computational study was based on a modified Gurson damage model able to accurately describe ductile failure under various loading paths. The model was calibrated for two high performance martensitic steels (HSLA-100 and BA-160) and an austenitic steel (TRIP-120). The martensitic steel (BA-160) was designed to maximize strength and fracture toughness while the austenitic steel (TRIP-120) was designed to maximize uniform ductility. The combined experimental-computational approach provided insight into the relationships between material properties and blast resistance of structures.

  17. Corrosion resistance of stainless steels and high Ni-Cr alloys to acid fluoride wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Mackey, D.B.; Pool, K.H. [Pacific Northwest Lab., Richland, WA (United States); Schwenk, E.B. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-04-01

    TRUEX processing of Hanford Site waste will utilize potentially corrosive acid fluoride processing solutions. Appropriate construction materials for such a processing facility need to be identified. Toward this objective, candidate stainless steels and high Ni-Cr alloys have been corrosion tested in simulated acid fluoride process solutions at 333K. The high Ni-Cr alloys exhibited corrosion rates as low as 0.14 mm/y in a solution with an HF activity of about 1.2 M, much lower than the 19 to 94 mm/y observed for austenitic stainless steels. At a lower HF activity (about 0.008 M), stainless steels display delayed passivation while high Ni-Cr alloys display essentially no reaction.

  18. Thermal Activation Analyses of Dynamic Fracture Toughness of High Strength Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A formula is derived for determining the influence of temperatureand loading rate on dynamic fracture toughness of a high strength low alloy steel (HQ785C) from thermal activation analysis of the experimental results of three-point bend specimens as well as introducing an Arrhenius formula. lt is shown that the results obtained by the given formula are in good agreement with the experimental ones in the thermal activation region. The present method is also valuable to describe the relationship between dynamic fracture toughness and temperature and loading rate of other high strength low alloy steels.

  19. Stress corrosion cracking and hydrogen embrittlement of thick section high strength low alloy steel.

    OpenAIRE

    Needham, William Donald

    1986-01-01

    An experimental study was conducted to evaluate the corrosion performance of weldments of a high strength low alloy(HSLA) steel in a simulated seawater environment. This steel, designated HSLA80, was developed by the United States Navy for use in ship structural applications. Stress corrosion CRACKING(SCC) and hydrogen embrittlement(HEM) were investigated by conducting 42 Wedge-Opening load(WOL) tests as a function of stress intensity and corrosion potential and 33 Slow Strain Rate(SSR) tests...

  20. Mechanical Behavior of Two High Strength Alloy Steels Under Conditions of Cyclic Tension

    Science.gov (United States)

    Srivatsan, T. S.; Manigandan, K.; Sastry, S.; Quick, T.; Schmidt, M. L.

    2014-01-01

    The results of a recent study aimed at understanding the conjoint influence of load ratio and microstructure on the high cycle fatigue properties and resultant fracture behavior of two high strength alloy steels is presented and discussed. Both the chosen alloy steels, i.e., 300M and Tenax™ 310 have much better strength and ductility properties to offer in comparison with the other competing high strength steels having near similar chemical composition. Test specimens were precision machined from the as-provided stock of each steel. The machined specimens were deformed in both uniaxial tension and cyclic fatigue under conditions of stress control. The test specimens of each alloy steel were cyclically deformed over a range of maximum stress at two different load ratios and the number of cycles to failure recorded. The specific influence of load ratio on cyclic fatigue life is presented and discussed keeping in mind the maximum stress used during cyclic deformation. The fatigue fracture surfaces were examined in a scanning electron microscope to establish the macroscopic mode and to concurrently characterize the intrinsic features on the fracture surface. The conjoint influence of nature of loading, maximum stress, and microstructure on cyclic fatigue life is discussed.

  1. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    Science.gov (United States)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  2. Electronic Structures and Alloying Behaviors of Ferrite Phases in High Co-Ni Secondary Hardened Martensitic Steels

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The electronic structure of ferrite (tempered martensite phase) in high Co-Ni secondary hardened martensitic steel has been investigated. The local density of states (LDOS) of alloying elements in the steel displays the relationship between solid solubility and the shape of the LDOS. The bond order integral (BOI) between atoms in the steel shows that the directional bonding of the p orbital of Si or C leads to the brittleness of the steel. At last, ∑BOI between atoms demonstrate that C, Co, Mn, Cr, Mo, Si strengthen the alloyed steel through solid-solution effects.

  3. A Transmission Electron Microscopy Study of Plate Martensite Formation in High-carbon Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Albin Stormvinter; Peter Hedstr(o)m; Annika Borgenstam

    2013-01-01

    The martensitic microstructures in two high-carbon low alloy steels have been investigated by classical and automated crystallographic analysis under a transmission electron microscope.It is found that the martensitic substructure changes from consisting mostly of transformation twins for 1.20 mass% carbon (C) steel to both transformation twins and planar defects on {101}M for 1.67 mass% C steel.In the 1.67 mass% C steel it is further found that small martensite units have a rather homogeneous substructure,while large martensite units are more inhomogeneous.In addition,the martensite units in both steels are frequently found to be of zigzag patterns and have distinct crystallographic relationships with neighboring martensite units,e.g.kink or wedge couplings.Based on the present findings the development of martensite in high-carbon low alloy steels is discussed and a schematic of the martensite formation is presented.Moreover,whether the schematic view can be applied to plate martensite formation in general,is discussed.

  4. High Nitrogen Austenitic Stainless Steels Manufactured by Nitrogen Gas Alloying and Adding Nitrided Ferroalloys

    Institute of Scientific and Technical Information of China (English)

    LI Hua-bing; JIANG Zhou-hua; SHEN Ming-hui; YOU Xiang-mi

    2007-01-01

    A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Cr18Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81 %. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 μm. After homogenization of the hot rolled plate at 1 150 ℃× 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.

  5. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  6. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  7. Evaluation of High Temperature Corrosion Resistance of Finned Tubes Made of Austenitic Steel And Nickel Alloys

    Directory of Open Access Journals (Sweden)

    Turowska A.

    2016-06-01

    Full Text Available The purpose of the paper was to evaluate the resistance to high temperature corrosion of laser welded joints of finned tubes made of austenitic steel (304,304H and nickel alloys (Inconel 600, Inconel 625. The scope of the paper covered the performance of corrosion resistance tests in the atmosphere of simulated exhaust gases of the following chemical composition: 0.2% HCl, 0.08% SO2, 9.0% O2 and N2 in the temperature of 800°C for 1000 hours. One found out that both tubes made of austenitic steel and those made of nickel alloy displayed good resistance to corrosion and could be applied in the energy industry.

  8. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Directory of Open Access Journals (Sweden)

    Chen Xiang

    2013-05-01

    Full Text Available In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (M represents Fe, Cr, Mn or Mo which is much like that of carbide in high chromium white cast iron. Pure ausferrite structure that consists of bainitic ferrite and retained austenite can be obtained in the matrix by austempering treatment to the cast steel. No carbides precipitate in the ausferrite structure and the morphology of borides remains almost unchanged after austempering treatments. Secondary boride particles precipitate during the course of austenitizing. The hardness and tensile strength of the austempered cast steel decrease with the increase of the austempering temperature, from 250 篊 to 400 篊. The impact toughness is 4-11 J昪m-2 at room temperature and the impact fracture fractogragh indicates that the fracture is caused by the brittle fracture of the borides.

  9. Nickel-coated Steel Stud to Aluminum Alloy Joints Made by High Frequency Induction Brazing

    Institute of Scientific and Technical Information of China (English)

    GE Jiaqi; WANG Kehong; ZHANG Deku; WANG Jian

    2015-01-01

    Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 Al alloy foil asfi ller metal were joined by using high frequency induction brazing. The microstructure of Fe/Al brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-Al intermetallic compound which is brittle by blocking the contact between Al and Fe. Intermetallic compounds, i e,Al3Ni2, Al1.1Ni0.9 and Al0.3Fe3Si0.7 presented in Al side, FeNi and Fe-Al-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of Al side, where plenty of Al3Ni2 intermetallic compounds were distributed continuously.

  10. High Power Laser Welding. [of stainless steel and titanium alloy structures

    Science.gov (United States)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  11. High performance low alloy steels: Up date; Aceros de baja aleacion y alto rendimiento

    Energy Technology Data Exchange (ETDEWEB)

    Campos, M.; Blanco, L.; Sicre-Artalejo, J.; Torralba, J. M.

    2008-07-01

    A highly demanding automobile market requires an intensification of the efforts on increasing the performance and reducing costs of sintered steels, in order to stay in such a competitive market. final properties of sintered parts and their cost depend on two main factors, density and the alloying system. The growing interest for Cr and Mn as alloying elements is due to both price, more suitable than Mo, and the excellent level of properties which are achieved in as sintered parts as well as after the heat treatments. In this work, the possible techniques which lead to an enhancement of density are discussed, such as warm and high velocity compaction, or high temperature sintering moreover it is important to study the synergy between the proposed techniques which may be compatible. (Author) 70 refs.

  12. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  13. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  14. The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel

    NARCIS (Netherlands)

    Wilms, M.E.; Gadgil, V.J.; Krougman, J.M.; Ijsseling, F.P.

    1994-01-01

    Super-duplex stainless steels are recently developed high alloyed stainless steels that combine good mechanical properties with excellent corrosion resistance. Because of a high content of chromium and molybdenum, these alloys are susceptible to σ-phase precipitation during short exposure to

  15. High corrosion resistance of austenitic stainless steel alloyed with nitrogen in an acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Metikos-Hukovic, M., E-mail: mmetik@fkit.h [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Babic, R. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Grubac, Z. [Department of General and Inorganic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split (Croatia); Petrovic, Z. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Savska 16, P.O. Box 177, 100000 Zagreb (Croatia); Lajci, N. [Faculty of Mine and Metallurgy, University of Prishtina, 10000 Prishtina, Kosovo (Country Unknown)

    2011-06-15

    Highlights: {yields} ASS alloyed with nitrogen treated at 1150 {sup o}C exhibits microstructure homogeneity. {yields} Passivation peak of ASS corresponds to oxidation of metal and absorbed hydrogen. {yields} Transfer phenomena and conductivity depend on the film formation potential. {yields} Electronic structure of the passive film and its corrosion resistance correlate well. {yields} Passive film on ASS with nitrogen is low disordered and high corrosion resistant. - Abstract: Passivity of austenitic stainless steel containing nitrogen (ASS N25) was investigated in comparison with AISI 316L in deareated acid solution, pH 0.4. A peculiar nature of the passivation peak in a potentiodynamic curve and the kinetic parameters of formation and growth of the oxide film have been discussed. The electronic-semiconducting properties of the passive films have been correlated with their corrosion resistance. Alloying austenitic stainless steel with nitrogen increases its microstructure homogeneity and decreases the concentration of charge carriers, which beneficially affects the protecting and electronic properties of the passive oxide film.

  16. Fracture performance of high strength steels, aluminium and magnesium alloys during plastic deformation

    Directory of Open Access Journals (Sweden)

    Yu Haiyan

    2015-01-01

    Full Text Available A series of uniaxial tension tests were performed for 5052 and 6061 aluminum alloys, AZ31B magnesium alloy, TRIP600 and DP600 steels, to obtain a better understanding of their fracture performance. Scanning electron microscope (SEM observation of the microstructure evolution was conducted. The dimple structure, orientation relationship between the fracture surface and tensile direction, necking behavior were analyzed. The fracture mechanism and fracture mode of each material was discussed in detail. The results show that TRIP600 steel is subject to a typical inter-granular ductile fracture combined by shear fracture. DP600 steel belongs to mainly ductility mixed with normal fracture. Both 5052 and 6061 aluminum alloys are subject to a mixed ductility fracture and brittle fracture. AA5052 and AA6061 belong to a typical shear fracture and a normal fracture, respectively. Magnesium AZ31B is typical of a brittle fracture combined with normal fracture.

  17. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co con

  18. Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, L.A. [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 44-100 Gliwice, Konarskiego St. 18A (Poland); Bonek, M. [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 44-100 Gliwice, Konarskiego St. 18A (Poland)]. E-mail: mb@zmn.mt.polsl.gliwice.pl; Hajduczek, E. [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 44-100 Gliwice, Konarskiego St. 18A (Poland); Klimpel, A. [Welding Department, Silesian University of Technology, 44-100 Gliwice, Konarskiego St. 18A (Poland)

    2005-07-15

    The paper presents the effect of alloying with tungsten carbide on properties of the X40CrMoV5-1 steel surface layer, using the high power diode laser (HPDL). Selection of laser operating conditions is discussed, as well as thickness of the alloying layer, and their influence on structure and chemical composition of the steel. Analysis of the influence of the process conditions on the thicknesses of the alloyed layer and heat-affected zone is presented.

  19. Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser

    Science.gov (United States)

    Dobrzański, L. A.; Bonek, M.; Hajduczek, E.; Klimpel, A.

    2005-07-01

    The paper presents the effect of alloying with tungsten carbide on properties of the X40CrMoV5-1 steel surface layer, using the high power diode laser (HPDL). Selection of laser operating conditions is discussed, as well as thickness of the alloying layer, and their influence on structure and chemical composition of the steel. Analysis of the influence of the process conditions on the thicknesses of the alloyed layer and heat-affected zone is presented.

  20. Twin-wire Submerged Arc Welding Process of a High-strength Low-alloy Steel

    Institute of Scientific and Technical Information of China (English)

    YANG Xiuzhi; XU Qinghua; YIN Niandong; XIAO Xinhua

    2011-01-01

    The measurement of thermal cycle curves of a high-strength low-alloy steel (HSLA)subjected twin-wire submerged arc welding (SAW) was introduced. The thermal simulation test was performed by using the obtained curves. The impact toughness at -50 ℃ temperature of the simulated samples was also tested. OM, SEM and TEM of the heat-affected zone (HAZ) of some simulation specimens were investigated. The results showed that the HSLA endured the twin-wire welding thermal cycle, generally, the low-temperature toughness values of each part of HAZ was lower than that of the parent materials, and the microstructure of coarse-grained zone(CGHAZ) mainly made up of granular bainite is the reason of the toughness serious deterioration. Coarse grain, grain boundary carbide extract and M-A island with large size and irregular polygon, along the grain boundary distribution, are the reasons for the toughness deterioration of CGHAZ. The research also showed that selected parameters of twin-wire SAW can meet the requirements to weld the test steel.

  1. Tungsten carbide laser alloying of a low alloyed steel

    Science.gov (United States)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  2. Structure and Properties of High-Temperature Multilayer Hybrid Material Based on Vanadium Alloy and Stainless Steel

    Science.gov (United States)

    Nechaykina, Tatyana A.; Nikulin, Sergey A.; Rozhnov, Andrey B.; Khatkevich, Vladimir M.; Rogachev, Stanislav O.

    2017-03-01

    The present work is devoted to the development of new structural composite material having the unique complex of properties for operating in ultrahard conditions that combine high temperatures, radiation, and aggressive environments. A new three-layer composite tube material based on vanadium alloy (V-4Ti-4Cr) protected by stainless steel (Fe-0.2C-13Cr) has been obtained by co-extrusion. Mechanism and kinetics of formation as well as structure, composition, and mechanical properties of "transition" area between vanadium alloy and stainless steel have been studied. The transition area (13- to 22- µm thick) of the diffusion interaction between vanadium alloy and steel was formed after co-extrusion. The microstructure in the transition area was rather complicated comprising different grain sizes in components, but having no defects or brittle phases. Tensile strength of the composite was an average 493 ± 22 MPa, and the elongation was 26 ± 3 pct. Annealing at 1073 K (800 °C) increased the thickness of transition area up to 1.2 times, homogenized microstructure, and slightly changed mechanical properties. Annealing at 1273 K (1000 °C) further increased the thickness of transition area and also lead to intensive grain growth in steel and sometimes to separation between composite components during tensile tests. Annealing at 1073 K (800 °C) is proposed as appropriate heat treatment after co-extrusion of composite providing balance between diffusion interaction thickness and microstructure and monolithic-like behavior of composite during tensile tests.

  3. Structure and Properties of High-Temperature Multilayer Hybrid Material Based on Vanadium Alloy and Stainless Steel

    Science.gov (United States)

    Nechaykina, Tatyana A.; Nikulin, Sergey A.; Rozhnov, Andrey B.; Khatkevich, Vladimir M.; Rogachev, Stanislav O.

    2017-01-01

    The present work is devoted to the development of new structural composite material having the unique complex of properties for operating in ultrahard conditions that combine high temperatures, radiation, and aggressive environments. A new three-layer composite tube material based on vanadium alloy (V-4Ti-4Cr) protected by stainless steel (Fe-0.2C-13Cr) has been obtained by co-extrusion. Mechanism and kinetics of formation as well as structure, composition, and mechanical properties of "transition" area between vanadium alloy and stainless steel have been studied. The transition area (13- to 22-µm thick) of the diffusion interaction between vanadium alloy and steel was formed after co-extrusion. The microstructure in the transition area was rather complicated comprising different grain sizes in components, but having no defects or brittle phases. Tensile strength of the composite was an average 493 ± 22 MPa, and the elongation was 26 ± 3 pct. Annealing at 1073 K (800 °C) increased the thickness of transition area up to 1.2 times, homogenized microstructure, and slightly changed mechanical properties. Annealing at 1273 K (1000 °C) further increased the thickness of transition area and also lead to intensive grain growth in steel and sometimes to separation between composite components during tensile tests. Annealing at 1073 K (800 °C) is proposed as appropriate heat treatment after co-extrusion of composite providing balance between diffusion interaction thickness and microstructure and monolithic-like behavior of composite during tensile tests.

  4. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  5. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Institute of Scientific and Technical Information of China (English)

    Zhi-yang L; Ao-shuang Wan; Jun-jiang Xiong; Kuang Li; Jian-zhong Liu

    2016-01-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  6. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Science.gov (United States)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  7. Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential.

    Science.gov (United States)

    Cao, Wenquan; Huang, Chongxiang; Wang, Chang; Dong, Han; Weng, Yuqing

    2017-08-23

    Superplastic materials are capable of exhibiting large tensile elongation at elevated temperature, which is of great industrial significance because it forms the basis of a fabrication method to produce complex shapes. Superplasticity with elongation larger than 500% has been widely realized in many metals and alloys, but seldomly been succeeded in low carbon low alloy steel, even though it is commercially applied in the largest quantity. Here we report ultrahigh superplastic elongation of 900-1200% in the FeMnAl low carbon steels at high strain rate of 10(-2)-10(-3) s(-1). Such high-strain-rate superplasticity was attributed to dynamic austenite reverse phase transformation from a heavily cold rolled ferrite to fine-grained ferrite/austenite duplex microstructure and subsequent limited dynamic grain coarsening, under which a large fraction of high angle boundaries can be resulted for superplastic deformation. It is believed that this finding of the low carbon low alloy steel with ultrahigh superplasticity and relative low cost would remarkably promote the application of superplastic forming technique in automobile, aeronautical, astronautical and other fields.

  8. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    Directory of Open Access Journals (Sweden)

    Białobrzeska B.

    2015-09-01

    Full Text Available Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for heat treatment. These steels are supplied by the manufacturer after cold or hot rolling so that it is possible for them to be heat treated in a suitable manner by the purchaser for its specific application. Very important factor that determines the mechanical properties of final product is austenite grain growth occurring during hot working process such us quenching or hot rolling. Investigation of the effect of heating temperature and holding time on the austenite grain size is necessary to understand the growth behavior under different conditions. This article presents the result of investigation of austenite grain growth in selected low-allow boron steel with high resistance to abrasive wear and attempts to describe the influence of chemical composition on this process.

  9. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  10. Effect of Alloying Additions on the Oxidation of High Speed Steels under Dry and Wet Conditions

    Institute of Scientific and Technical Information of China (English)

    F.C. RIZZO; M.J.MONTEIRO; S.R.J.SAUNDERS

    2009-01-01

    An investigation has been carried out into the effects of chromium and vanadium content on the oxidation rate and on the adhesion of oxide scales grown on three different chemical compositions of high speed steels under dry and wet conditions. The oxidation tests were carried out in a thermobalance at 650 ℃ for up to 14.4 ks. The mass gain of the specimens increased with increasing contents of water vapour. Alloy composition had no effect on the oxidation rate in dry conditions. The "adhesion" of the oxide scale was determined using indentation with a Rockwell C diamond and the pull adhesion test to determine the interfacial toughness and the tensile strength of the oxide metal bond, respectively. Generally, the results of the investigation indicated that oxide adhesion was lowest for the specimens exposed to dry conditions, and that with increasing water vapour content, the scale was more adherent. Indentation test results showed that an increase in the Ⅴ concentration was deleterious to oxidc adhesion in both the dry and wet environments, whereas an increase in the Cr-content had little effect on adhesion.

  11. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    Science.gov (United States)

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure.

  12. Effect of Heat Treatment on Mechanical Properties and Microstructure Morphology of Low-Alloy High-Strength Steel

    Directory of Open Access Journals (Sweden)

    Bolanowski K.

    2016-06-01

    Full Text Available The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.

  13. The effect of variable loading onintegrity of a welded joint of high alloy-steel X20

    Directory of Open Access Journals (Sweden)

    Z. Burzić

    2013-04-01

    Full Text Available In present paper, experimental investigations have included the effect of exploitation conditions (exploitation time and temperature on properties of high-cycle fatigue and parameters of fatigue-crack growth of a welded joint of steel X20 CrMoV 12-1 (X20. The effect of exploitation conditions was analysed by testing new pipe and the pipe having been exploited for 116 000 hours. The results obtained by testing and their analysis provide a practical contribution to assessment of quality of a welded joint of steel X20, the aim of which is revitalisation and extension of exploitation life of vital components of thermal power plants manufactured from high-alloy steel for operation at elevated temperatures.

  14. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints

    Directory of Open Access Journals (Sweden)

    S. Ragu Nathan

    2015-09-01

    Full Text Available Naval grade high strength low alloy (HSLA steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding (FSW. In this investigation, a comparative evaluation of mechanical (tensile, impact, hardness properties and microstructural features of shielded metal arc (SMA, gas metal arc (GMA and friction stir welded (FSW naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.

  15. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    Science.gov (United States)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  16. Constitutive Modeling of High-Temperature Flow Behavior of an Nb Micro-alloyed Hot Stamping Steel

    Science.gov (United States)

    Zhang, Shiqi; Feng, Ding; Huang, Yunhua; Wei, Shizhong; Mohrbacher, Hardy; Zhang, Yue

    2016-03-01

    The thermal deformation behavior and constitutive models of an Nb micro-alloyed 22MnB5 steel were investigated by conducting isothermal uniaxial tensile tests at the temperature range of 873-1223 K with strain rates of 0.1-10 s-1. The results indicated that the investigated steel showed typical work hardening and dynamic recovery behavior during hot deformation, and the flow stress decreased with a decrease in strain rate and/or an increase in temperature. On the basis of the experimental data, the modified Johnson-Cook (modified JC), modified Norton-Hoff (modified NH), and Arrhenius-type (AT) constitutive models were established for the subject steel. However, the flow stress values predicted by these three models revealed some remarkable deviations from the experimental values for certain experimental conditions. Therefore, a new combined modified Norton-Hoff and Arrhenius-type constitutive model (combined modified NH-AT model), which accurately reflected both the work hardening and dynamic recovery behavior of the subject steel, was developed by introducing the modified parameter k ɛ. Furthermore, the accuracy of these constitutive models was assessed by the correlation coefficient, the average absolute relative error, and the root mean square error, which indicated that the flow stress values computed by the combined modified NH-AT model were highly consistent with the experimental values (R = 0.998, AARE = 1.63%, RMSE = 3.85 MPa). The result confirmed that the combined modified NH-AT model was suitable for the studied Nb micro-alloyed hot stamping steel. Additionally, the practicability of the new model was also verified using finite element simulations in ANSYS/LS-DYNA, and the results confirmed that the new model was practical and highly accurate.

  17. Hydrogen adsorption and diffusion, and subcritical-crack growth in high strength steels and nickel base alloys

    Science.gov (United States)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.

    1973-01-01

    Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.

  18. Strengthening Mechanisms for Ti-and Nb-Ti-micro-alloyed High-strength Steels

    Institute of Scientific and Technical Information of China (English)

    Chuan-feng MENG; Yi-de WANG; Ying-hui WEI; Bin-qing SHI; Tian-xie CUI; Yu-tian WANG

    2016-01-01

    The strengthening mechanisms of hot-rolled steels micro-alloyed with Ti (ST-TQ500)and Nb-Ti (NT-TQ500)were investigated by examining the microstructures of steels using optical microscope (OM),scanning elec-tron microscope (SEM)and transmission electron microscope (TEM).The results revealed almost no differences in the solute solution strengthening and fine-grained strengthening of the two steels,whereas the contributions of pre-cipitation strengthening and dislocation strengthening were different for ST-TQ500 and NT-TQ500.The measured precipitation strengthening effect of ST-TQ500 was 88 MPa higher than that of NT-TQ500;this difference was pri-marily attributed to the stronger precipitation effect of the Ti-containing nanoscale particles.The dislocation strengthening effect of ST-TQ500 was approximately 80 MPa lower than that of NT-TQ500.This is thought to be related to differences in deformation behavior during the finishing rolling stage;the inhibition of dynamic recrystalli-zation from Nb in NT-TQ500 (Nb-Ti)may lead to higher density of dislocations in the microstructure.

  19. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Na; Li, Yajiang; Wang, Juan [Shandong Univ., Jinan (CN). Key Lab. for Liquid - Solid Structural Evolution and Processing of Materials (Ministry of Education)

    2012-06-15

    High nickel austenitic alloy, 6 mm thick, and Cr18-Ni8 stainless steel with a thickness of 0.6 mm were joined by pulsed current tungsten inert gas arc welding without filler metal in this work. Metallographic examination, microhardness measurement and electron microprobe analysis were used to reveal microstructural characteristics in the joint. The results indicated that the weld metal consisted of {gamma}-austenite, {delta}-ferrite and carbides without the appearance of martensite. There were dendrite crystals at the edge of the weld metal near the high nickel austenitic alloy and isometric crystals in the center of the weld metal. The microhardness of the weld metal was the highest due to the existence of carbides and its finer structure. Graphite flakes were still embedded in the austenite matrix of the heat-affected zone without the formation of martensite. (orig.)

  20. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Science.gov (United States)

    Kim, Jongjin; Choi, Kyung Joon; Bahn, Chi Bum; Kim, Ji Hyun

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr2O3, NiCr2O4 and Fe3O4 at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  1. Effect of Temperature on the Galvanic Corrosion of Cu-Ni Alloy/High Strength Steel in Seawater

    Directory of Open Access Journals (Sweden)

    Wang Chun Li

    2016-01-01

    Full Text Available The galvanic corrosion behavior of Cu-Ni Alloy(B10/high strength steel (921A has been studied using a zero-resistance ammeter (ZRA in seawater at different temperatures. As well as it was systemically investigated by weight loss measurements, electrochemical methods and scanning electron microscope.Results showed 921A acts as the anode and B10 act as the cathodes. The effect of temperature on the galvanic corrosion is important, the corrosion rate became higher with the temperature increased.

  2. Guide for Recommended Practices to Perform Crack Tip Opening Displacement Tests in High Strength Low Alloy Steels

    Directory of Open Access Journals (Sweden)

    Julián A. Ávila

    Full Text Available Abstract: Fracture mechanics approach is important for all mechanical and civil projects that might involve cracks in metallic materials, and especially for those using welding as a structural joining process. This methodology can enhance not only the design but also the service life of the structures being constructed. This paper includes detailed consideration of several practical issues related to the experimental procedures to assess the fracture toughness in high strength low alloy steels (HSLA using the crack tip opening displacement (CTOD parameter, specifically pipeline steels for oil and gas transportation. These considerations are important for engineers who are new in the field, or for those looking for guidelines performing different procedures during the experimentation, which usually are difficult to understand from the conventional standards. We discuss on topics including geometry selection, number of replicate tests, fatigue precracking, test procedure selection and realization, reports of results and other aspects.

  3. Comparison of Solid and Hollow Torque Transducer Shaft Response in a High Alloy Stainless Steel

    Science.gov (United States)

    Milby, Christopher L.; Hecox, Bryan G.; Wiewel, Joseph L.; Boley, Mark S.

    2007-03-01

    Recent investigations of the torque transducer response function (ambient field signal versus applied torque or shear stress) have been conducted in a 13% chromium and 8% nickel stainless steel alloy in both the hollow shaft and solid shaft configuration. An understanding of both is needed for applications with differing yield strength and hardness requirements. Axial hysteresis measurements conducted before and after heat treatment exhibited little difference in coercivity and retentivity between the two sample types. However, the field mapping and transducer sensitivity studies showed the hollow shaft configuration to have a far superior degree of polarization in the sensory region and to exhibit an enhanced sensitivity, especially after heat treatment. This is most likely due to its more efficient provision of closed circumferential geometry for the field lines and improved grain alignment during heat treatment.

  4. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    Science.gov (United States)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  5. Surface hardening utilizing high-density plasma nitriding on stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lleonart-Davila, G; Gaudier, J; Rivera, R; Leal, D; Gonzalez-Lizardo, A; Leal-Quiros, E [Plasma Engineering Laboratory, Polytechnic University of Puerto Rico, San Juan, PR 00918 (Puerto Rico)

    2008-10-15

    By using a plasma nitriding procedure at the PUPR Mirror Cusp Plasma machine, surface hardness is increased in 302/304-type stainless steel samples by exposing them to high-ion-density plasma at high vacuum. This method successfully dopes the surface of the material with strengthening nitrogen ions, without the use of chemical procedures that sacrifice the resistance to corrosion of the given material. A 500 V negative bias is placed on the sample exposed to the nitrogen plasma, where high-energy ions are therefore attracted and immersed into the metallic matrix microns into the surface of the stainless steel. This potential maintains a constant surface temperature at approximately 800 deg. C. The plasma parameters including ion density and plasma temperature were diagnosed using single Langmuir probes. The stainless steel samples were then tested using scanning electron microscopy (SEM), and Vickers micro-hardness testing to determine the increment in the surface harness of the material. The SEM showed a significant presence of nitrogen imbedded in the grains of the stainless steel surface.

  6. Microstructural study of oxides and carbides used for abrasion properties in high alloyed steels

    OpenAIRE

    LECOMTE-BECKERS, Jacqueline; Magnée, Adrien

    2001-01-01

    For long applications and for many others, a material with properties between hard metal and high speed steel is necessary. This material should have a high resistance to wear together with good toughness. An attractive solution consists in combining in a composite the properties of a tough ferrous matrix with those of hard reinforced particles. In varying the nature and the proportions of reinforcement and matrix, the properties of the composite can cover many applications. Peer reviewed

  7. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium-vanadium steel

    Science.gov (United States)

    Titov, V. I.; Tarasenko, L. V.; Utkina, A. N.

    2017-01-01

    Based on the results of phase physicochemical analysis of high-carbon chromium-vanadium steel, the predominant type of carbide that provides high wear resistance has been established, and its amount and amount of carbon in martensite have been determined. Data on the composition and the amount of carbide phase and on the chemical composition of the martensite of high-carbon steel have been obtained, which allows determination of the alloying-element concentration limits. The mechanical testing of heats of a chosen chemical composition has been carried out after quenching and low-temperature tempering. The tests have demonstrated benefits of new steel in wear resistance and bending strength with the fatigue strength being retained, compared to steels subjected to cementation. The mechanism of secondary strengthening of the steel upon high-temperature tempering has been revealed. High-temperature tempering can be applied to articles that are required to possess both high wear resistance and heat resistance.

  8. Carbon diffusion and phase transformations during gas carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling

    Science.gov (United States)

    Turpin, T.; Dulcy, J.; Gantois, M.

    2005-10-01

    Gas carburizing of high-alloyed stainless steels increases surface hardness, as well as the overall mechanical characteristics of the surface. The growth of chromium-rich carbides during carbon transfer into the steel causes precipitation hardening in the surface, but decreases the chromium content in solid solution. In order to maintain a good corrosion resistance in the carburized layer, the stainless steel composition and the carburizing process need to be optimized. To limit the experimental work, a methodology using software for modeling the thermodynamic and kinetic properties in order to simulate carbon diffusion and phase transformations during gas carburizing is presented. Thermodynamic calculations are initially used to find the optimum parameters ( T, carbon wt pct, etc.) in order to maintain the highest Cr and Mo contents in the austenitic solid solution. In a second step, kinetic calculations using the diffusion-controlled transformations (DICTRA) software are used to predict how the amount of the different phases varies and how the carbon profile in the steel changes as a function of time during the process. Experimental carbon profiles were determined using a wavelength-dispersive spectrometer for electron-probe microanalysis (WDS-EPMA), while carbide compositions were measured by energy-dispersive spectroscopy_X (EDS_X) analyses. A good agreement between calculated and experimental values was observed for the Fe-13Cr-5Co-3Ni-2Mo-0.07C and the Fe-12Cr-2Ni-2Mo-0.12C (wt pct) martensitic stainless steels at 955 °C and 980 °C.

  9. Effect of alloy grain size on the high-temperature oxidation behavior of the austenitic steel TP 347

    Directory of Open Access Journals (Sweden)

    Vicente Braz Trindade

    2005-12-01

    Full Text Available Generally, oxide scales formed on high Cr steels are multi-layered and the kinetics are strongly influenced by the alloy grain boundaries. In the present study, the oxidation behaviour of an austenite steel TP347 with different grain sizes was studied to identify the role of grain-boundaries in the oxidation process. Heat treatment in an inert gas atmosphere at 1050 °C was applied to modify the grain size of the steel TP347. The mass gain during subsequent oxidation was measured using a microbalance with a resolution of 10-5 g. The scale morphology was examined using SEM in combination with energy-dispersive X-ray spectroscopy (EDS. Oxidation of TP347 with a grain size of 4 µm at 750 °C in air follows a parabolic rate law. For a larger grain size (65 µm, complex kinetics is observed with a fast initial oxidation followed by several different parabolic oxidation stages. SEM examinations indicated that the scale formed on specimens with smaller grain size was predominantly Cr2O3, with some FeCr2O4 at localized sites. For specimens with larger grain size the main oxide is iron oxide. It can be concluded that protective Cr2O3 formation is promoted by a high density of fast grain-boundary diffusion paths which is the case for fine-grained materials.

  10. Development of high and medium resistance low alloys steels, cold rolling on USIMINAS; Desenvolvimento de acos de media e alta resistencia, baixa liga laminados a frio na USIMINAS

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Luiz N.T.; Barcelos, Haroldo; Oliveira Junior, Valdomiro de [USIMINAS, Ipatinga, MG (Brazil). Centro de Pesquisas

    1984-12-31

    Results on laboratory and industrial trials to the production of high strength, low alloy, cold rolled steels are presented. The first of them, class 400 MPa tensile strength, containing P and Mn and the other, class 440-500 MPA tensile strength, containing Mn, Si and Nb as alloying elements. The performance of these two materials in the production of automotive industry is also reported. 4 figs., 11 tabs., 12 refs.

  11. Cracking Tendancies of Restrained Welds in High Strength Low Alloy Steels under Hyperbaric Conditions.

    Science.gov (United States)

    1987-06-01

    pumped into the habitat and electrically operated environmental control *" equipment mounted in the habitat wall is then used to heat and dry the...2) relatively high amounts of alloying elements, and (3) applications of precisely controlled rolling and heat treatments. They are both in the ell...classifications of theories regarding hydrogen cracking exist and are listed below: VPlanar pressure theories Surface adsorbtIon theories Triaxial stress theories

  12. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The...

  13. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  14. Newly Designed Cr-Mn Alloyed Ultra-high Strength Steel without Boron Addition for Hot-stamping Processing

    Institute of Scientific and Technical Information of China (English)

    Guo-hui ZHU; Hong-bing ZHOU; Qin-yi LI; Qi-wei CHEN; Hai-rong GU; Yong-gang LIU

    2015-01-01

    A newly designed hot-stamping steel alloyed by chromium (Cr)and manganese (Mn)without boron (B) addition was developed for automobile mass reduction.The experimental results showed the Cr-Mn alloyed steel could be quenched to full martensite microstructure when the cooling rate was higher than 1 4 ℃/s.Yield strength, tensile strength and elongation of the experimental hot stamping part reached 1 1 8 0 MPa,1 6 4 5 MPa and 8.4%, respectively.The experimental hot stamping part possessed higher tensile strength and elongation,compared with conventional hot-stamping steel of 2 2 MnB5 .Furthermore,excellent processing flexibility would be obtained in this novel hot-stamping steel because of its lower critical cooling rate and phase transformation temperature.The design of the composition and investigations of microstructure,mechanical properties and hot-stamping processing were also studied.

  15. Effect of Multistage Heat Treatment on Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel

    Science.gov (United States)

    Liu, Qingdong; Wen, Haiming; Zhang, Han; Gu, Jianfeng; Li, Chuanwei; Lavernia, Enrique J.

    2016-05-01

    The influence of Cu-rich precipitates (CRPs) and reverted austenite (RA) on the strength and impact toughness of a Cu-containing 3.5 wt pct Ni high-strength low-alloy (HSLA) steel after various heat treatments involving quenching (Q), lamellarization (L), and tempering (T) is studied using electron back-scatter diffraction, transmission electron microscopy, and atom probe tomography. The QT sample exhibits high strength but low impact toughness, whereas the QL samples mostly possess improved impact toughness but moderate strength, but the QLT samples again have degraded impact toughness due to additional tempering. The dispersion of nanoscale CRPs, which are formed during tempering, is responsible for the enhanced strength but simultaneously leads to the degraded impact toughness. The RA formed during lamellarization contributes to the improved impact toughness. Based on the present study, new heat treatment schedules are proposed to balance strength and impact toughness by optimizing the precipitation of CRPs and RA.

  16. The effect of plasma nitriding and post oxidation on fretting wear behaviour of a high strength alloy steel

    Science.gov (United States)

    Prakash, N. Arun; Bennett, C. J.

    2017-05-01

    The fretting wear performance of the non-nitrided, nitrided and nitrided-post oxidized high strength alloy steel, W460 were investigated in the gross slip regime at ambient condition. Fretting wear tests were performed with an applied normal load of 250 and 650 N at a displacement amplitude of 100 μm using a cylinder-on-flat configuration. X-ray analysis (XRD) revealed the formation of the iron-nitrided Fe3N and Fe4N during plasma nitriding and iron oxide phases of hematite (Fe2O3) and magnetite (Fe3O4) during post-oxidation of the cylindrical steel samples. The steady state tangential force coefficient decreases when the nitrided and post-oxidized samples were fretted against the non-nitrided steel material when compared to the non-nitrided steel contact pair. The steady state tangential force coefficient decreased with an increase in applied normal load across all of the fretting conditions. The total dissipated energy and the total wear volume increased with an increase in applied normal load with total wear volume of the non-nitrided vs nitrided and non-nitrided vs nitrided post-oxidized sample pairs, showing a reduction in the wear volume of approximately 50% compared to the non-nitrided vs non-nitrided combination under the fretting conditions examined. The worn surface morphology of the fretted samples examined using a scanning electron microscope showed the presence of loose wear debris in the wear track, fragmented wear debris, delamination cracks, delamination with large discontinuities, plate-like wear debris, oxide patches and formation of large cavities.

  17. Decarburization of ferrochrome and high alloy steels with optimized gas and slag phases towards improved Cr retention

    Directory of Open Access Journals (Sweden)

    Wang H.

    2013-01-01

    Full Text Available Chromium is a high value metal and the retention of the same during the refining of high carbon ferrochrome as well as high alloy steel has significant economic and environmental impacts. The loss of chromium during the decarburization is generally minimized using argon-oxygen mixtures thereby reducing the oxygen partial pressure (PO2 of the oxidant gas. In the current study, experiments were carried out in an induction furnace and CO2 was introduced with the view to partly reduce PO2 and partly as an oxidizer. During these experiments, the decarburization of molten Cr-alloy was conducted using pure O2, pure CO2 or O2+CO2 mixtures. The results demonstrated that the Cr loss can be minimized under CO2 introduction. The kinetic analysis showed that the mass transfer is effective due to the production of 2CO gas molecules from one CO2 molecule during the reaction which will improve the stirring of the bath. Besides, CO2 reacts with carbon in melt is an endothermic reaction, introduction of CO2 could be a cooler during the refining process, hence the temperature could be controlled by controlling the diluting gas amount, in this case, the over heat of bath refractory could be prevented and the lifetime of refractory could be extended.

  18. The Role of Vanadium Carbide Traps in Reducing the Hydrogen Embrittlement Susceptibility of High Strength Alloy Steels.

    Science.gov (United States)

    1998-08-01

    A723 steel was not sufficient to induce any appreciable embrittlement. 7.0 4.0 HY80 X 0.0i-r 50 4340 r—,—,—|—i—i—i—r—t—i—i—i—i—I—i—’—’—> l...carbide, V4C3) was identified in the A723 steel by x- ray diffraction. V4C3 traps effectively reduced the hydrogen concentrations at the crack ...ALLOY STEELS G. L. SPENCER D. J. DUQUETTE AUGUST 1998 US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER CLOSE COMBAT ARMAMENTS CENTER

  19. Experience with ferrosilicoaluminum alloy during deoxidation of steel

    Directory of Open Access Journals (Sweden)

    A. Mekhtiyev

    2015-10-01

    Full Text Available The article describes the process of deoxidation quiet and low-alloyed steel alloy ferrosilicoaluminum complex in comparison the existing, and with steel deoxidation technology with conventional alloys - ferrosilicon and secondary aluminum. A comparative analysis of quality steel, non-metallic inclusions metallographic studies and studies of the mechanical properties of the resulting steel was done. On a large array of experimental steel proved cost-effectiveness and feasibility of ferrosilicoaluminum during deoxidation quiet and low-alloyed steel.

  20. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  1. DEVELOPMENT OF THE COMPLEX-ALLOYED STEEL OF INCREASED HARDENABILITY, VISCOSITY AND HEAT-RESISTANCE FOR CUTTING PARTS OF HIGH-SPEED INSTRUMENT, OPERATING IN CONDITIONS OF HEATING UP AND DYNAMIC LOADS

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2006-01-01

    Full Text Available The theoretical aspects of development of the complex-alloyed steel compounds for cutting parts of high-speed instrument, particularly influence of alloying elements on its structure and characteristics are considered. It is shown that combined alloying of steel by carbon, chrome, silicon, manganese, vanadium and molybdenum in a certain proportion allows to reach the intended aim, achieving at the same time increase of solidity, impact elasticity and heat stability.

  2. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongjin; Choi, Kyung Joon [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Bahn, Chi Bum [School of Mechanical Engineering, Pusan National University 2, 63-gil, Geumjeong-Gu, Pusan 609-735 (Korea, Republic of); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr{sub 2}O{sub 3}, NiCr{sub 2}O{sub 4} and Fe{sub 3}O{sub 4} at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  3. Hydrogen adsorption and diffusion, and subcritical-crack growth in high-strength steels and nickel base alloys

    Science.gov (United States)

    Wei, R. P.; Klier, K.; Simmons, G. W.

    1974-01-01

    Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small.

  4. High Nitrogen Stainless Steel

    Science.gov (United States)

    2011-07-19

    Kiev, 1993. 7. High Nitrogen Steels, edited by M. Kikuchi and Y. Mishima , Vol. 36, No. 7, Iron and Steel Institute of Japan Inernational, Tokyo...the Corrosion of Iron and Steels,” High Nitrogen Steels, edited by M. Kikuchi and Y. Mishima , Vol. 36, No. 7, Iron and Steel Institute of Japan

  5. Comparison of Impact Properties for Carbon and Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    O.H. Ibrahim

    2011-01-01

    The impact properties of hot rolled carbon steel (used for the manufacture of reinforcement steel bars) and the quenched & tempered (Q&T) low alloy steel (used in the pressure vessel industry) were determined. The microstructure of the hot rolled carbon steel contained ferrite/pearlite phases, while that of the quenched and tempered low alloy steel contained bainite structure. Impact properties were determined for both steels by instrumented impact testing at temperatures between -150 and 200℃. The impact properties comprised total impact energy, ductile to brittle transition temperature, crack initiation and propagation energy, brittleness transition temperature and cleavage fracture stress. The Q&T low alloy steel displayed much higher resistance to ductile fracture at high test temperatures, while its resistance to brittle fracture at low test temperatures was a little higher than that of the hot rolled carbon steel. The results were discussed in relation to the difference in the chemical composition and microstructure for the two steels.

  6. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    Science.gov (United States)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  7. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  8. 高铬铸铁及低合金钢与高锰钢的磨损试验对比研究%Comparing Investigation on Abrasive Wear of High Chromium Cast Iron, Low Alloy Steel and High Manganese Steel

    Institute of Scientific and Technical Information of China (English)

    张鲲鹏; 陈培友; 唐建新

    2013-01-01

    在模拟实际破碎机工况条件下,对高铬铸铁、低合金钢与高锰钢进行磨料磨损性能试验与对比,以得到在试验对应的实际工作条件下性能较优的抗磨材料.试验结果表明,在低应力冲击载荷条件下,高铬铸铁的抗磨性能最好,低合金钢次之,高锰钢最差;在低冲击载荷条件下高锰钢的性能潜力不能得到充分发挥,而高铬铸铁更适用于低冲击载荷条件下的抗磨件.%Under the condition of simulating actual working of broken machine,the impact abrasive wear resistances of high-Cr cast iron,low alloy steel and high-Mn steel were studied,and the better material in wear-resistant performance was obtained under the test conditions of corresponding actual operating conditions.The results show that the anti-wear properties of high chromium cast iron is best in low-stress impact load conditions,followed by low-alloy steel,highmanganese steel is worst; the potential of high manganese steel in performance can not be given full in low-impact load conditions,high chromium cast iron is more suitable.

  9. Pitting corrosion resistance and bond strength of stainless steel overlay by friction surfacing on high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh

    2015-09-01

    Full Text Available Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositing the corrosion resistant coatings. Being a solid state process, it offers several advantages over conventional fusion based surfacing process. The aim of this work is to identify the relationship between the input variables and the process response and develop the predictive models that can be used in the design of new friction surfacing applications. In the current work, austenitic stainless steel AISI 304 was friction surfaced on high strength low alloy steel substrate. Friction surfacing parameters, such as mechtrode rotational speed, feed rate of substrate and axial force on mechtrode, play a major role in determining the pitting corrosion resistance and bond strength of friction surfaced coatings. Friction surfaced coating and base metal were tested for pitting corrosion by potentio-dynamic polarization technique. Coating microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffraction. Coatings in the as deposited condition exhibited strain-induced martensite in austenitic matrix. Pitting resistance of surfaced coatings was found to be much lower than that of mechtrode material and superior to that of substrate. A central composite design with three factors (mechtrode rotational speed, substrate traverse speed, axial load on mechtrode and five levels was chosen to minimize the number of experimental conditions. Response surface methodology was used to develop the model. In the present work, an attempt has been made to develop a mathematical model to predict the pitting corrosion resistance and bond strength by incorporating the friction surfacing process parameters.

  10. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  11. Simultaneous Recovery of Iron and Phosphorus from a High-Phosphorus Oolitic Iron Ore to Prepare Fe-P Alloy for High-Phosphorus Steel Production

    Science.gov (United States)

    Yang, Congcong; Zhu, Deqing; Pan, Jian; Lu, Liming

    2017-09-01

    Unlike previous dephosphorization studies, the present work complies with a concept to recover phosphorus within the utilization of high-phosphorus oolitic iron ores to prepare Fe -P alloy for high-phosphorus steel production. Simultaneous enrichment of iron and phosphorus can be achieved by directly alloying the high-phosphorus oolitic iron ore at high reduction temperatures (≥1623 K). Neither fluxes nor other special additives need to be used. Consequently, the phosphorus element migrates from original apatite to the slag phase with the elevating temperature from 1323 K to 1473 K, and it further moves into metallic iron and forms Fe3P at 1623 K. A metalized iron -phosphorus alloy with assaying of 96.51% iron and 2.03% phosphorus content was obtained at 1623 K for 10 min at corresponding iron and phosphorus recovery rates of 97.50% and 64.51%, respectively. This process exhibits high economic efficiency and is practicable as a stepping-stone for the efficient and direct utilization of high-phosphorus iron ore resources.

  12. Stress corrosion cracking tests for low and high alloy steels in sour oilfield service. Tests performed at VTT

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity; Haemaelaeinen, E. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Engineering Materials

    1996-10-01

    The purpose of the studies was to validate the usefulness of the proposed NACE slow strain rate testing method and compare it with the EFC document. In the NACE document the testing takes place at a temperature of 177 deg C, the test solution contains 20 wt% NaCl, the partial pressure of H{sub 2}S varies between 14 and 28 bar and the partial pressure of CO{sub 2} between 14 and 55 bar. In the NACE document the strain rate is determined as 4 x 10{sup -6} 1/s and in the EFC document 1 x 10{sup -6} 1/s. The results showed brittle behaviour for the test material in all of the test environments, and in each case the elongation was less than 5%. For comparison purposes the SSRT was conducted with the test material also in an inert environment (N{sub 2} gas), where the fracture was ductile and elongation 65%. The tests conducted with different strain rates gave the same result, which shows that the difference between EFC and NACE documents within the strain rate is not significant in the environments studied. However, since the alloy 654 SMO, which is considered to have a high resistance to corrosion, failed the SSRT test in the environments determined in the NACE document, the NACE document can be considered too severe for testing of austenitic stainless steels. Since contrary to the NACE document the EFC document does not determine levels for hydrogen sulphide and carbon dioxide, the EFC document can be considered more suitable than the NACE document for testing of austenitic stainless steels for sour service. (author)

  13. High-temperature Tensile Properties and Creep Life Assessment of 25Cr35NiNb Micro-alloyed Steel

    Science.gov (United States)

    Ghatak, Amitava; Robi, P. S.

    2016-05-01

    Reformer tubes in petrochemical industries are exposed to high temperatures and gas pressure for prolonged period. Exposure of these tubes at severe operating conditions results in change in the microstructure and degradation of mechanical properties which may lead to premature failure. The present work highlights the high-temperature tensile properties and remaining creep life prediction using Larson-Miller parametric technique of service exposed 25Cr35NiNb micro-alloyed reformer tube. Young's modulus, yield strength, and ultimate tensile strength of the steel are lower than the virgin material and decreases with the increase in temperature. Ductility continuously increases with the increase in temperature up to 1000 °C. Strain hardening exponent increases up to 600 °C, beyond which it starts decreasing. The tensile properties are discussed with reference to microstructure and fractographs. Based on Larson-Miller technique, a creep life of at least 8.3 years is predicted for the service exposed material at 800 °C and 5 MPa.

  14. Effect of Hot Forging on Microstructural Evolution and Impact Toughness in Ultra-high Carbon Low Alloy Steel

    Science.gov (United States)

    Kim, J. B.; Kim, J. H.; Kang, C. Y.

    2016-12-01

    The effect of a hot forging ratio on the microstructural variation and tensile properties of ultra-high carbon low alloy steel was investigated. Scanning electron microscopic analyses depict that with an increase in the hot forging ratio, the thickness of the network and acicular proeutectoid cementite decreased. Moreover, the lamella spacing and thickness of the eutectoid cementite decreased and broke up into particle shapes, which then became spheroidized as the hot forging ratio increased. Furthermore, when the forging ratio exceeded 65%, the network and acicular shape of the as-cast state disappeared. By increasing the hot forging ratio, the tensile strength and elongation remained below 50%, but they increased rapidly with an increase in the forging ratio. Strength and elongation were not affected by the thickness of the proeutectoid and eutectoid cementites, but were greatly affected by the shape of the proeutectoid cementite. Due to the decrease in the austenite grain size, as well as the spheroidization of the cementite, the tensile strength and elongation sharply increased.

  15. Stress-Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys

    Science.gov (United States)

    1972-01-01

    widely throughout the technical community and is not available in collected form, the authors of the chapter on titanium have included a much higher...Elements................ 22 Derivation of KI by Specimen Compliance.............. 23 Experiental Determination of Comll-!hlncc........... 24 Theoretical...101. R. T. Ault, Republic Steel Corp., private communication . 102. S. R. Novak and S. T. Rolfe, Kt, Stress-Corrosion Tests of l2Ni-5Cr-3Mo and l8Ni

  16. Effect of the carbide phase on the tribological properties of high-manganese antiferromagnetic austenitic steels alloyed with vanadium and molybdenum

    Science.gov (United States)

    Korshunov, L. G.; Kositsina, I. I.; Sagaradze, V. V.; Chernenko, N. L.

    2011-07-01

    Effect of special carbides (VC, M 6C, Mo2C) on the wear resistance and friction coefficient of austenitic stable ( M s below -196°C) antiferromagnetic ( T N = 40-60°C) steels 80G20F2, 80G20M2, and 80G20F2M2 has been studied. The structure and the effective strength (microhardness H surf, shear resistance τ) of the surface layer of these steels have been studied using optical and electron microscopy. It has been shown that the presence of coarse particles of primary special carbides in the steels 80G20F2, 80G20M2, and 80G20F2M2 quenched from 1150°C decreases the effective strength and the resistance to adhesive and abrasive wear of these materials. This is caused by the negative effect of carbide particles on the toughness of steels and by a decrease in the carbon content in austenite due to a partial binding of carbon into the above-mentioned carbides. The aging of quenched steels under conditions providing the maximum hardness (650°C for 10 h) exerts a substantial positive effect on the parameters of the effective strength ( H surf, τ) of the surface layer and, correspondingly, on the resistance of steels to various types of wear (abrasive, adhesive, and caused by the boundary friction). The maximum positive effect of aging on the wear resistance is observed upon adhesive wear of the steels under consideration. Upon friction with enhanced sliding velocities (to 4 m/s) under conditions of intense (to 500-600°C) friction-induced heating, the 80G20F2, 80G20M2, and, especially, 80G20F2M2 steels subjected to quenching and aging substantially exceed the 110G13 (Hadfield) steel in their tribological properties. This is due to the presence in these steels of a favorable combination of high effective strength and friction heat resistance of the surface layer, which result from the presence of a large amount of special carbides in these steels and from a high degree of alloying of the matrix of these steels by vanadium and molybdenum. In the process of friction

  17. Potential of rapid heat treatment of titanium alloys and steels

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Teliovich, R.V. [Institute of Metal Physics, Kiev (Ukraine)

    1999-05-15

    Rapid heat treatment (RHT) of titanium alloys and steels, which includes rapid heating into the single-phase field, {beta} and {gamma} of titanium alloys and steels, respectively, is reviewed. Heating rate is an important parameter that affects the mechanism and kinetics of phase and/or structural transformation. Refinement of grain structure, formation of micro-chemical inhomogeneity and substructure in the high temperature phase following RHT are addressed. Thermo-kinetic effects during rapid heating of material with an initial metastable (quenched or deformed) microstructure are discussed. The response of titanium alloys and steels to RHT is compared. The improvement in mechanical properties of both material system following RHT is also presented. (orig.) 48 refs.

  18. Improving Hygienic Characteristics of Coated Electrodes for Welding High-Alloy Steels

    Science.gov (United States)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Ivanov, K. V.; Sadikov, I. D.

    2017-01-01

    The article presents the results of experimental studies showing that the use of an inverter power supply instead of a diode rectifier provides:: fine-droplet electrode metal transfer which reduces generation time by 46% and transfer time by 28%; transfer of alloying elements from welding materials into the weld metal which reduces its loss from the welding line by 6% and the heat affected area by 3%; reducing the emission rate of welding fumes and their components by 23%; reducing specific emission of welding fumes and their components by 23%.

  19. Determination of optimum welding parameters in connecting high alloyed X53CrMnNiN219 and X45CrSi93 steels by friction welding

    Indian Academy of Sciences (India)

    Mehmet Uzkut; Bekir Sadik Ünlü; Mustafa Akdağ

    2011-07-01

    In this study, different welding parameters were applied to two different steels with high alloys and mechanical and metallographical investigations are performed. Thus, the optimum welding parameters were determined for these materials and working conditions. 12.30 diameter steel bars made up of 1.4871 (X53CrMnNiN219) and 1.4718 (X45CrSi93) steel were used as experimental material. The material loss increased with increase in friction and rotating pressure. No fracture at the welding region was observed and the highest fracture energy was identified in B5 group. Based on micro hardness investigation; the hardness profile reached its minimum value at the welding region.

  20. Development of Semi-Stochastic Algorithm for Optimizing Alloy Composition of High-Temperature Austenitic Stainless Steels (H-Series) for Desired Mechanical and Corrosion Properties.

    Energy Technology Data Exchange (ETDEWEB)

    Dulikravich, George S.; Sikka, Vinod K.; Muralidharan, G.

    2006-06-01

    The goal of this project was to adapt and use an advanced semi-stochastic algorithm for constrained multiobjective optimization and combine it with experimental testing and verification to determine optimum concentrations of alloying elements in heat-resistant and corrosion-resistant H-series stainless steel alloys that will simultaneously maximize a number of alloy's mechanical and corrosion properties.

  1. Cadmium Alternatives for High-Strength Steel

    Science.gov (United States)

    2011-09-22

    191 19b. TELEPHONE NUMBER (include area code) 301 -342-8101 iii Table of Contents Note that original JTP section numbers are preceded by...specified. The focus of this JTP is on high-strength structural alloy steels used for various applications. Alloy AISI 4130 was used for adhesion and...NaCl) solution under constant amplitude loading to determine fatigue life using hourglass specimens prepared from high strength AISI 4340 steel. The

  2. Alloy by design: A materials genome approach to advanced high strength stainless steels for low and high temperature applications

    NARCIS (Netherlands)

    Lu, Q.; Xu, W.; Van der Zwaag, S.

    2016-01-01

    We report a computational 'alloy by design' approach which can significantly accelerate the design process and substantially reduce the development costs. This approach allows simultaneously optimization of alloy composition and heat treatment parameters based on the integration of thermodynamic, th

  3. Diffusion Bonding between TiAl Based Alloys and Steels

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The joint of 40Cr steel and TiAl based alloy has been studied by means of a high frequency induction diffusion welder. The experimental results show that, the higher the temperature and pressure, the higher the strength of the joints. The optimum parameters are: T=1123~1323 K,t=10~30 min, P=5~20 MPa.

  4. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  5. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    Science.gov (United States)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-03-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  6. Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study

    Science.gov (United States)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.

    2013-08-01

    Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.

  7. Development of Cast Alumina-forming Austenitic Stainless Steel Alloys for use in High Temperature Process Environments

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Yamamoto, Yukinori [ORNL; Brady, Michael P [ORNL; Pint, Bruce A [ORNL; Pankiw, Roman [Duraloy Technologies Inc; Voke, Don [Duraloy Technologies Inc

    2015-01-01

    There is significant interest in the development of alumina-forming, creep resistant alloys for use in various industrial process environments. It is expected that these alloys can be fabricated into components for use in these environments through centrifugal casting and welding. Based on the successful earlier studies on the development of wrought versions of Alumina-Forming Austenitic (AFA) alloys, new alloy compositions have been developed for cast products. These alloys achieve good high-temperature oxidation resistance due to the formation of protective Al2O3 scales while multiple second-phase precipitation strengthening contributes to excellent creep resistance. This work will summarize the results on the development and properties of a centrifugally cast AFA alloy. This paper highlights the strength, oxidation resistance in air and water vapor containing environments, and creep properties in the as-cast condition over the temperature range of 750°C to 900°C in a centrifugally cast heat. Preliminary results for a laboratory cast AFA composition with good oxidation resistance at 1100°C are also presented.

  8. Improvement effect on corrosion under heat flux in nitric acid solutions of anti-IGC stainless steel and high Cr-W-Si Ni base RW alloy

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Masamitsu; Kiuchi, Kiyoshi; Yano, Masaya; Sekiyama, Yoshio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    In the advanced purex reprocessing equipment, the higher corrosion resistance is required for materials because of the high corrosive environment caused from the thermodynamic decomposition of boiling nitric acid. The authors group has been developed the two types of new corrosion resistant materials for application to the reprocessing equipment. One is the type 304ULC stainless steel with controlled microstructure and decreased minor elements (EB-SAR). The other is the nickel base alloy with the ability of forming stable oxide film by addition of Cr, W and Si (RW alloy). In this study, the heat transfer tubes applied in diminished pressure was postulated. In addition to the dominant factors of heat conducting corrosion by the nitric acid solution, the effect of the heat flux and the concentration of the corrosive vanadium ions were investigated. (author)

  9. PROSPECTS OF MANUFACTURING TUNNELING AND DRILLING EQUIPMENT TOOLING IN THE RECYCLING OF HIGH-ALLOY STEELS WASTES

    Directory of Open Access Journals (Sweden)

    D. M. Kukui

    2012-01-01

    Full Text Available The technological aspects of processing and remelting of dispersed metal scrap, generated during polishing and grinding of tools made from high speed steel and carbide and lump scrap for the manufacture of drilling equipment and mining equipment are investigated.

  10. The Structure of the Silumin Coat on Alloy Cast Steels

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2012-04-01

    Full Text Available The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T and GX39Cr13 (LH14. The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10 and Cr (GX39Cr13. The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

  11. Laser alloying of the plain carbon steel surface layer

    Directory of Open Access Journals (Sweden)

    A. Radziszewska

    2008-07-01

    Full Text Available As an example of the types of features observed after laser alloying, the addition of Ta to mild carbon steel is described. The system is of interest because such alloying is beneficial in improving surface related properties. The paper describes the microstructure and properties (phase and chemical composition, microhardness of the laser alloyed surface layer. In the investigation the optical microscope, the scanning electron microscope (SEM, chemical (EDS microanalysis composition and microhardness testing methods have been used. Specimens of 0,17 %C plain steel were coated with Ta powder layers. The paints containing organic components were used as the binders during deposition of Ta powder layers on the sample surface. The thickness of Ta deposited layers amounted to 0,16 mm. The specimens were then swept through high power (of nominal power 2,5 kW CW CO2 laser radiation at different speeds.The surface alloyed layers varied in microstructure consisted of fiber like Ta2C + γ eutectics, chemical composition and microhardness. The EDS analyses revealed the enrichment of tantalum in the laser alloyed zone (LAZ. The changes of process parameters had an influence on the hardness of alloyed surface layers: by increasing scanning velocity (from 12 mm/s to 20 mm/s and decreasing laser power (from 1,8 kW to 1,35 kW, the hardness diminished. The wear tests were also carried out which showed that laser alloying of plain carbon steel surface layer led to improvement of their wear resistance.

  12. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  13. DEVELOPMENT AND RESEARCH OF THE ECONOMIC ALLOY PARAMAGNETIC STEELS

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2016-01-01

    Full Text Available The alloys of Fe-Cr-Ni-C system for the purpose of development the economic alloy paramagnetic (not magnetic steels are investigated. A series of alloys are melted for this purpose, deformation is carried out and a structural state was studied.The area for the selection of the chemical composition of the economic alloy steels with stable paramagnetic properties is defined.

  14. Welding of Aluminum Alloys to Steels: An Overview

    Science.gov (United States)

    2013-08-01

    alloy /Ag interlayer/steel non-centered electron beam welded joints, Transaction of non- Ferrous Metals Society of China 21 (2011) 2592-2596. [53] K.-J...UNCLASSIFIED: Distribution Statement A. Approved for public release. 1 UNCLASSIFIED Welding of aluminum alloys to steels: an overview M. Mazar...different materials, iron-based alloys and aluminum-based alloys are among the most significant materials that are finding applications on the various

  15. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE present...... in the stainless steel alloys. The presented computational approach for alloy design enables “screening” of hundreds of thousands hypothetical alloy systems by use of Thermo-Calc. Promising compositions for new stainless steel alloys can be selected based on imposed criteria, i.e. facilitating easy selection...

  16. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  17. Bimetallic layered castings alloy steel – carbon cast steel

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2011-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast processso-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic carbon cast steel, whereas working part (layer is plate of austenitic alloy steel sort X10CrNi 18-8. The ratio of thickness between bearing and working part is 8:1. The quality of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  18. [The LIBS experiment condition optimization of alloy steel].

    Science.gov (United States)

    Shao, Yan; Gao, Xun; Du, Chuang; Zhao, Zhen-Ming; Chen, Wei-Yu; Hao, Zuo-Qiang; Sun, Chang-Kai; Lin, Jing-Quan

    2013-02-01

    Laser induced plasma spectroscopy of alloy steel was produced by Nd : YAG pulsed laser at 1 064 nm, and the spectral signal was detected by high resolution and width controlled ICCD. Several Fe atomic spectral lines such as 404.581, 414.387, 427.176 and 438.355 nm were chosen for analysis, and the effects of different experimental parameters on LIBS spectral signal intensity were investigated. It is shown that the experimental parameters such as pulse energy, laser focus location and laser delay time have great influence on the LIBS signal. LIBS signals with high spectral intensity and signal-background ratio (SBR) as well as the optimum experiment conditions were obtained by optimizing these experiment parameters so as to make composition analysis of the alloy steel.

  19. Relation between the thickness direction strength and the occurrence of separations on low alloys and high resistance steels; Relacao entre a tenacidade da direcao da espessura e a ocorrencia de separacoes em acos de baixa liga e alta resistencia

    Energy Technology Data Exchange (ETDEWEB)

    Sivieri, Olivio A.; Talhiari, Ricardo S.; Souza Paraiso, Mauro de; Silva, Paulo S.C.P. da [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Silva, Carlos N. P. da [Companhia Siderurgica Paulista (Brazil)

    1984-12-31

    The occurrence of `separations`(splitting type fracture) in the samples from experimental molts of HSLA (high resistance and low alloy) steels produced by COSIPA is studied. Instrumented Charpy and COD tests were conducted. The importance of the through-the-thickness (SL orientation) for the comparison between the steels and the interpretations of the conditions for the occurrence of separations is emphasized. (author). 11 figs., 1 tab., 7 refs.

  20. Demonstrating Nonhexavelent Chrome Steel Conversion Coatings on Stryker High Hard Armor Steel Hatches

    Science.gov (United States)

    2014-01-01

    embrittlement are as follows: 1. Any ferrous -based alloy exhibiting hardness greater than Rc35 (e.g., high-strength steel) requires testing and heat...section is based on the findings from WP-1521. Most of the conversion coating work thus far has focused on the use of TCP on aluminum alloys . In...recent years, TCP has enjoyed good success on aluminum. However, for steel alloys and phosphated surfaces, further development is needed. One of the

  1. Effect of the microstructure in the dynamic fracture resistance in a high strength low alloy steel; Efeito da microestrutura na resistencia a fratura dinamica de um aco de alta resistencia e baixa liga

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Carlos N.; Romero, Alfonso W. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia e Ciencia dos Materiais; Rios, Paulo R. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil)

    1990-12-31

    In this work, low-alloyed high resistance steel proof samples were heated under different conditions and submitted to a explosion-induced sheet impact. After this assay, the behaviour of the materials submitted to high deformation rates may change, depending on the defects and micro-crack propagation. 11 figs., 2 tabs., 3 refs.

  2. Effect of amide type modified rapeseed oil as lubricating additive on friction and wear behavior of steel-steel and steel-aluminum alloy systems

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-hua; CHEN Bo-shui; LIU Wei-min; DONG Lin; WANG Jiu

    2004-01-01

    A new type of environmentally friendly lube additive-amide type modified rapeseed oil was synthesized and characterized by infrared spectrum. Its effect on the friction and wear behavior of steel-steel and steel-aluminum alloy systems were investigated with a four-ball machine and an Optimol SRV friction and wear tester respectively.The morphographies of the worn surfaces were analyzed by means of scanning electron microscopy(SEM). The worn surfaces of the 2024Al alloy block were analyzed by means of X-ray photoelectron spectroscopy(XPS). The results show that the modified rapeseed oil as additives can obviously decrease the wear rate and friction coefficient of steel pair and steel-aluminum frictional pair. Its lubrication mechanism is inferred that a high strength complex protection films form on the worn surface of the Al alloy due to the adsorption or tribochemistry reaction of a long chain additive molecule and high reaction activity of N element.

  3. High-cycle notch sensitivity of alloy steel ASTM A743 CA6NM used in hydrogenator turbine components

    Directory of Open Access Journals (Sweden)

    José Alexander Araújo

    2010-10-01

    Full Text Available The presence of notches and other stress concentrations in turbine blades and other notch hydraulic components is a current problem in engineering. It causes a reduction of endurance limit of material. In that sense, specimens of the ASTM A743 CA6NM alloy steel using in several hydrogenator turbine components was tested. The specimens were tested under uniaxial fatigue loading with a load ratio equal to -1, and the considered stress concentration factors, Kt, values, calculated with respect to net area, were 1.55, 2.04 and 2.42. In order to determine the fatigue limit for such notch type, a reduction data method by Dixon and Mood, Staircase method was used. This approach is based on the assumed target distribution of the fatigue limit. For such geometry at least 8 specimens were tested. In addition, the Peterson and Neuber’s notch fatigue factor were compared through fatigue notch reduction factor, Kf, obtained from experimental data. According to results obtained it was possible to conclude that the tested material is less sensitive to notches than the prediction of the Peterson and Neuber’s empirical models.

  4. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  5. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    Science.gov (United States)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  6. Investigation of the fatigue and short-term mechanical properties of 13% chromium steel and titanium alloys after welding or treatment with high-frequency currents as applied to steam-turbine blades

    Science.gov (United States)

    Gonserovskii, F. G.; Nikitin, V. I.; Silevich, V. M.; Simin, O. N.

    2008-02-01

    We present the results of a study on comparing the structural strength of rotor blades made of stainless 13% chromium steels for their design versions in which wear-resistant straps made of cast VZK stellite are soldered or welded on the blade inlet edges. It is shown that treatment of VT6 alloy with high-frequency currents increases the endurance limit of the zone subjected to strengthening and makes the alloy more resistant to erosion. The worn blades of a 48-T4 titanium alloy repaired with the use of welding technologies have operational characteristics at least as good as those of newly manufactured ones.

  7. Laser cladding of Ni-based alloy on stainless steel

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-fang; TIAN Xin-li; TAN Yong-sheng; WU Zhi-yuan

    2004-01-01

    The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.

  8. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel

    Science.gov (United States)

    Lambert-Perlade, A.; Sturel, T.; Gourgues, A. F.; Besson, J.; Pineau, A.

    2004-03-01

    The effect of the welding cycle on the fracture toughness properties of high-strength low alloy (HSLA) steels is examined by means of thermal simulation of heat-affected zone (HAZ) microstructures. Tensile tests on notched bars and fracture toughness tests at various temperatures are performed together with fracture surface observations and cross-sectional analyses. The influence of martensite-austenite (M-A) constituents and of “crystallographic” bainite packets on cleavage fracture micromechanisms is, thus, evidenced as a function of temperature. Three weakest-link probabilistic models (the “Master-curve” (MC) approach, the Beremin model, and a “double-barrier” (DB) model) are applied to account for the ductile-to-brittle transition (DBT) fracture toughness curve. Some analogy, but also differences, are found between the MC approach and the Beremin model. The DB model, having nonfitted, physically based scatter parameters, is applied to the martensite-containing HAZ microstructures and gives promising results.

  9. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS)

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, R.; Wei, L.; Fuerbeth, W. [Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main (Germany); Grooters, M.; Kuklinski, A. [University of Duisburg-Essen, Biofilm Centre, Geibelstrasse 41, 47057 Duisburg (Germany)

    2010-12-15

    Extracellular polymeric substances (EPS) were studied with regard to their potential application as inhibitors of biocorrosion. EPS that have been isolated from biofilms of sulphate-reducing bacteria (SRB) were adsorbed on samples of high alloyed steel (type 1.4301) at different temperatures. The samples were exposed to SRB containing solution and afterwards analysed by fluorescence microscopy (FM). The results show that the EPS form an incomplete layer and lead to a smaller amount of cell adhesion when compared to pure surfaces. The results are discussed with regard to the application of EPS for the prevention of biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. New alloys to conserve critical elements. [replacing chromium in steels

    Science.gov (United States)

    Stephens, J. R.

    1978-01-01

    Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.

  11. Microstructure and Corrosion Properties of AlCoCrFeNi High Entropy Alloy Coatings Deposited on AISI 1045 Steel by the Electrospark Process

    Science.gov (United States)

    Li, Q. H.; Yue, T. M.; Guo, Z. N.; Lin, X.

    2013-04-01

    Electrospark deposition (ESD) was employed to clad the AlCoCrFeNi high-entropy alloy (HEA) on AISI 1045 carbon steel. The relationship between the microstructure and corrosion properties of the HEA-coated specimens was studied and compared with that of the copper-molded cast HEA material. Two major microstructural differences were found between the cast HEA material and the HEA coatings. First, the cast material comprises both columnar and equiaxed crystals with a columnar-to-equiaxed transition (CET), whereas the HEA coatings consist of an entirely columnar crystal structure. The CET phenomenon was analyzed based on Hunt's criterion. Second, unlike the cast HEA material, there was no obvious Cr-rich interdendritic segregation and nano-sized precipitate distributed within the dendrites of the HEA coating. With regard to corrosion properties, the corrosion current of the HEA-coated specimen was significantly lower than for the 1045 steel and the cast HEA material. This was attributed to the ESD specimen having a relatively high Cr oxide and Al oxide content at the surface. Moreover, for the ESD specimen, the absence of Cr-rich interdendritic phase and second-phase precipitation resulted in a relatively uniform corrosion attack, which is different from the severe galvanic corrosion attack that occurred in the cast specimen.

  12. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  13. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  14. Wear resistant steels and casting alloys containing niobium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, W.; Siebert, S.; Huth, S. [Lehrstuhl Werkstofftechnik, Ruhr-Univ. Bochum (Germany)

    2007-12-15

    Niobium, like titanium and vanadium, forms superhard MC carbides that remain relatively pure in technical alloys on account of their low solubility for other metallic alloying elements. However, because they have a greater hardness than the precipitated chromium carbides commonly used in wear-resistant alloys, they are suitable as alternative hard phases. This contribution deals with new wear-resistant steels and casting alloys containing niobium carbide. These include a secondary hardening hardfacing alloy, a composite casting alloy for wear applications at elevated temperatures, a white cast iron as well as two variants of a corrosion-resistant cold-work tool steel produced by melt metallurgy and by powder metallurgy. A heat-resistant casting alloy is also discussed. Based on equilibrium calculations the microstructures developing during production of the alloys are analysed, and the results are discussed with respect to important properties such as abrasive wear and corrosion resistance. (orig.)

  15. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  16. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R L; Maziasz, P J; Vitek, J M; Evans, N D; Hashimoto, N

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additional elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr

  17. Deoxidation Behavior of Alloys Bearing Barium in Molten Steel

    Institute of Scientific and Technical Information of China (English)

    LI Yang; JIANG Zhou-hua; JIANG Mao-fa; WANG Jun-wen; GU Wen-bing

    2003-01-01

    The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K. The total oxygen contents of molten steel, the distribution, size and morphology of deoxidation products in the steel were surveyed. The metamorphic mechanism for deoxidation products of alloy bearing barium was also discussed. The results show that applying alloy bearing barium to the pipe steel, very low total oxygen contents can be obtained, and deoxidation products, which easily float up from molten steel, can be changed into globular shape and uniformly distributed in steel. The equilibrium time of total oxygen is about 25 min, and the terminal total oxygen contents range from 0.002 0 % to 0.002 2 % after treating with SiCa wire. The best deoxidizers are SiAlBaCa and SiAlBaCaSr.

  18. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Science.gov (United States)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-09-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2-5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen.

  19. Structure–mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.H. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Wang, X.L. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Venkatsurya, P.K.C. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Guo, H. [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology, Beijing (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials, Institute for Material Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States)

    2014-06-01

    The influence of annealing and tempering temperature on the microstructure and mechanical properties was investigated in a low carbon alloy steel that was processed by a two-step intercritical annealing and intercritical tempering heat treatment. In general, the microstructure of the processed steel comprises intercritical lath-like ferrite, bainitic/martensitic lath and acicular-type retained austenite. The lower intercritical annealing temperature resulted in lower fraction of intercritical ferrite with finer grain size and consequently higher strength. On the other hand, the intercritical tempering temperature significantly influenced retained austenite content and precipitation. High fraction of retained austenite was obtained at a temperature slightly above Ac{sub 1} temperature and retained austenite content decreased with increase in tempering temperature. This behavior is attributed to the competition between the enrichment of Mn and Ni and the fraction of reversed austenite. Fine niobium carbide precipitates of size ∼2–6 nm and copper precipitates of size range ∼10–30 nm were obtained. The optimal intercritical annealing and tempering temperatures to obtain the product of tensile strength and elongation % of ∼30 GPa% were 780 °C and 660 °C, respectively and the volume fraction of retained austenite was ∼29%.

  20. Experimental investigations concerning the possible effect of dynamic strain ageing on environmentally-assisted cracking of low alloy steels in oxygenated high-temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Roth, A.; Devrient, B. [Framatome ANP GmbH, Erlangen (Germany); Haenninen, H. [Helsinki Univ. of Tech. (Finland); Bruemmer, G. [Hamburgische Electricitaets-Werke AG, Hamburg (Germany); Ilg, U. [EnBW Kraftwerke AG (Germany); Widera, M. [RWE Power AG, Regenerative Stromerzeugung, Essen (Germany); Hofmann, H. [VGB PowerTech e.V., Essen (Germany); Wachter, O. [E.ON Kernkraft GmbH (Germany)

    2003-07-01

    Service experience has revealed cracks due to environmentally-assisted cracking (EAC) in welds of the feedwater piping system of a boiling water reactor (BWR). Two slightly different low alloy steel (LAS) weld filler metals were used in the system of concern, however, only one of them was affected by cracking. To achieve an improved understanding, a laboratory study was initiated to investigate the crack growth behavior of the two relevant weld filler metals in an oxygenated high-temperature water (HTW) environment representing BWR normal water chemistry (NWC) under sequences of cyclic and constant load. Despite the basic similarities in the nominal chemical composition of both weld filler alloys, the crack growth behaviors revealed significant differences. This could not be explained based on the material's sulphur content, which is known to have a pronounced effect on EAC. To elucidate the observed behavior, studies concerning dynamic strain aging (DSA) have been initiated. DSA has been recently suspected to be another parameter that may influence EAC of LAS in HTW. A reasonable coincidence was observed between the susceptibility to DSA exhibited by slow strain rate tensile tests (SSRT) in air and by internal friction measurements with measured free nitrogen contents on the one hand and with the EAC behavior observed in service and in laboratory experiments on the other hand. (orig.)

  1. Low alloy steel versus ADI – differences and similarities

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2009-01-01

    Full Text Available The results of comparison between the microstructure of selected bainitic low alloy steel and austempered ductile iron ADI are presented. The aim of the comparison was to find out differences and similarities existing in these iron carbon commercial alloys. In this paper our own results on ADI structure and literature data were used. It follows from discussion presented here that both microstructure and properties of ADI are very close that which are observed in low alloy carbon steel. Moreover, we suggest that there is no so doubt to treat ADI mechanical properties as steel containing nodular inclusions of graphite.

  2. 高强度合金结构钢与高强度铝合金防护层的耐霉性研究%Mould Resistance of Protective Layer on High-strength Alloy Structural Steel and High-strength Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    赵立华; 段渝平

    2015-01-01

    ABSTRACT:Objective To study the mould resistance of protective layers on high-strength alloy structural steel and high-strength aluminum alloy. Methods Different protective layers were prepared on high-strength alloy structural steel and high-strength aluminum alloy. Laboratory mould tests were carried out according to GJB 150.10A-2009 to evaluate the mould growth level on the protective layers. Results The mold levels of lubricant coating and anode oxidation layer on high-strength alloy structural steel and high-strength aluminum alloy were in the range of grade 0~1;the mold level of gun oil coating, paint coating, zinc layer or zinc nickel alloy layer moldy grade were in the range of grade 2~3. Conclusion For high-strength alloy structural steel substrate, lubricant coating had good mould resistance, while galvanized layer or zinc alloy layer, paint coating and gun oil coating had poor mould resistance. Forhigh-strength aluminum alloy substrate, anode oxidation layer had good mould resistance, while gun oil coating and paint coating had poor mould resistance.%目的:研究高强合金结构钢和高强铝合金防护层的耐霉菌腐蚀能力。方法以高强合金结构钢和高强铝合金两种材料为基材分别制备不同防护层,按GJB 150.10A—2009进行实验室霉菌试验,评定防护层的长霉等级。结果两种材料的不同防护层中,除润滑油涂层和阳级氧化层的长霉等级为0~1级外,炮油涂层、涂漆层、镀锌层或锌镍合金层长霉等级均在2~3级。结论高强合金结构钢润滑油涂层耐霉性能良好,镀锌层或锌镍合金层、涂漆层、炮油涂层耐霉性能较差;高强铝合金阳级氧化层耐霉性能良好,炮油涂层、涂漆层耐霉性能较差。

  3. Hot Forging of Nitrogen Alloyed Duplex Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    P.Chandramohan; S.S. Mohamed Nazirudeen; S.S. Ramakrishnan

    2007-01-01

    Duplex stainless steels are gaining global importance because of the need for a high strength corrosion resistant material. Three compositions of this group were selected with three different nitrogen contents viz, 0.15 wt pct (alloy 1), 0.23 wt pct (alloy 2) and 0.32 wt pct (alloy 3). The steels were melted in a high frequency induction furnace and hot forged to various reductions from 16% to 62%. In this work, the effect of hot forging on the ferrite content, hardness, yield strength, impact strength and grain orientation (texture) were studied. Fracture analysis on all the forged specimens using SEM reveals that a size reduction of 48% results in maximum ductility and impact strength as well as minimal ferrite content and grain size. Thus the mechanical properties are found to have a direct correlation to ferrite content and grain size. The highest impact strength was observed in specimens with the smallest grain size, which was observed in specimens forged to 48% reduction in size.

  4. Grey interrelation analysis of alloy elements and steel corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinglei; Hou Baorong; Huang Yanliang; Guo Gongyu [Chinese Academy of Sciences, Qingdao (China). Dept. of Oceanology

    2000-07-01

    Mathematical grey interrelation analysis method was used to study the correlation of alloy elements and low steel corrosion in the splash zone. Eighteen kinds of low alloy steels were selected for 350-day experiments in a large marine corrosion environment simulating apparatus. The analysis results showed that the correlation of alloy elements and alloy corrosion rate is in the order: Mn>Si>P>V>Cu>Al>Cr>Mo. The correlation degree was 0.92, 0.89, 0.86, 0.83, 0.82, 0.82, 0.81, 0.77. (orig.)

  5. Aluminizing and subsequent nitriding of plain carbon low alloy steels for piston ring applications

    Energy Technology Data Exchange (ETDEWEB)

    Bindumadhavan, P.N.; Keng Wah, H.; Prabhakar, O. [Nanyang Technol. Univ., Singapore (Singapore). Div. of Mater. Eng.; Makesh, S. [Chemical and Nuclear Engineering Building, University of Maryland, 20783, College Park, MD (United States); Gowrishankar, N. [I P Rings Ltd., D 11/12, Industrial Estate, 603209, Maraimalainagar (India)

    2000-05-22

    Nitriding is a case hardening process that is commonly used for increasing the wear life of automotive piston rings. However, special alloy steels are required to achieve high surface hardness and nitrided case depth values required by the automotive industry. The cost of such alloy steels is one of the major components of the total cost of the nitrided piston ring. To address this issue, efforts have been directed towards development of cheaper raw materials as substitutes for nitridable steels. In this study, an attempt has been made to increase the surface hardness of two plain carbon low alloy steels by aluminizing and subsequent diffusion treatment and nitriding. The process parameters for the aluminizing operation are discussed. Results indicate that a near twofold increase in surface hardness is achievable by aluminizing followed by diffusion treatment and nitriding (580-1208 HV for EN32B steel and 650-1454 HV for 15CR3 steel). It has also been found that the nitrided case depth obtained (0.11-0.13 mm for EN32B steel and 0.10-0.14 mm for 15CR3 steel) matches well with the general requirements of the piston ring industry. The diffusion of aluminum into the alloy layer has also been discussed and the theoretical predictions were compared with actual values of Al concentration, as obtained by SEM-EDS system. It is found that Fick's law gives a fairly good prediction of the actual Al concentration profile, in spite of the complexity of the diffusion path. X-Ray diffraction studies have confirmed the presence of AlN in the alloy layer, which could be instrumental in the significant increase in surface hardness. It is proposed that aluminizing followed by diffusion treatment and nitriding of plain carbon low alloy steels could provide an alternative to the use of expensive nitridable steels for piston ring applications. (orig.)

  6. Effects of Alloying Elements on Microstructure, Hardness, Wear Resistance, and Surface Roughness of Centrifugally Cast High-Speed Steel Rolls

    Science.gov (United States)

    Ha, Dae Jin; Sung, Hyo Kyung; Park, Joon Wook; Lee, Sunghak

    2009-11-01

    A study was made of the effects of carbon, tungsten, molybdenum, and vanadium on the wear resistance and surface roughness of five high-speed steel (HSS) rolls manufactured by the centrifugal casting method. High-temperature wear tests were conducted on these rolls to experimentally simulate the wear process during hot rolling. The HSS rolls contained a large amount (up to 25 vol pct) of carbides, such as MC, M2C, and M7C3 carbides formed in the tempered martensite matrix. The matrix consisted mainly of tempered lath martensite when the carbon content in the matrix was small, and contained a considerable amount of tempered plate martensite when the carbon content increased. The high-temperature wear test results indicated that the wear resistance and surface roughness of the rolls were enhanced when the amount of hard MC carbides formed inside solidification cells increased and their distribution was homogeneous. The best wear resistance and surface roughness were obtained from a roll in which a large amount of MC carbides were homogeneously distributed in the tempered lath martensite matrix. The appropriate contents of the carbon equivalent, tungsten equivalent, and vanadium were 2.0 to 2.3, 9 to 10, and 5 to 6 pct, respectively.

  7. Long term high temperature oxidation characteristics of La and Cu alloyed ferritic stainless steels for solid oxide fuel cell interconnects

    Science.gov (United States)

    Swaminathan, Srinivasan; Lee, Young-Su; Kim, Dong-Ik

    2016-09-01

    To ensure the best performance of solid oxide fuel cell metallic interconnects, the Fe-22 wt.% Cr ferritic stainless steels with various La contents (0.006-0.6 wt.%) and Cu addition (1.57 wt.%), are developed. Long-term isothermal oxidation behavior of these steels is investigated in air at 800 °C, for 2700 h. Chemistry, morphology, and microstructure of the thermally grown oxide scale are examined using XPS, SEM-EDX, and XRD techniques. Broadly, all the steels show a double layer consisting of an inner Cr2O3 and outer (Mn, Cr)3O4. Distinctly, in the La-added steels, binary oxides of Cr, Mn and Ti are found at the oxide scale surface together with (Mn, Cr)3O4. Furthermore, all La-varied steels possess the metallic Fe protrusions along with discontinuous (Mn, Cr)3O4 spinel zones at the oxide scale/metal interface and isolated precipitates of Ti-oxides in the underlying matrix. Increase of La content to 0.6 wt.% is detrimental to the oxidation resistance. For the Cu-added steel, Cu is found to segregate strongly at the oxide scale/metal interface which inhibits the ingress of oxygen thereby suppressing the subscale formation of (Mn, Cr)3O4. Thus, Cu addition to the Fe-22Cr ferritic stainless steels benefits the oxidation resistance.

  8. Comparison of Channel Segregation Formation in Model Alloys and Steels via Numerical Simulations

    Science.gov (United States)

    Cao, Y. F.; Chen, Y.; Li, D. Z.; Liu, H. W.; Fu, P. X.

    2016-06-01

    In the current study, the evolutions of channel segregations in several alloy systems, such as the typically used model alloys ( e.g., Ga-In, Sn-Pb, Sn-Bi, Al-Cu, and Ni-based superalloy) and some special steels, are numerically simulated in a cavity solidified unidirectionally. The simulations are based on a modified continuum macrosegregation model with an extension to the multicomponent systems. The results of model alloys and steels indicate that when the thermosolutal convection is strong enough, flow instability occurs, which in turn destabilizes the mushy zone. Subsequently, the channel segregation forms with the continuous interaction between solidification and flow. The formation behavior and severity of channel segregations in various systems are different owing to their distinct melt convection strengths and solidification natures. In the current simulations, channels are apparent for model alloys with high content of solutes, whereas they are slight in some special steels, such as 27SiMn steel, and totally disappear in carbon steels. These occurrence features of channel segregation in simulations of steels are consistent with the analyses by a modified Rayleigh number associated with alloying elements, and both outcomes are well supported by the fully sectioned steel ingots in experiments.

  9. Mechanism of Bainite Nucleation in Steel, Iron and Copper Alloys

    Institute of Scientific and Technical Information of China (English)

    Mokuang KANG; Ming ZHU; Mingxing ZHANG

    2005-01-01

    During the incubation period of isothermal treatment(or aging) within the bainitic transformation temperature range in a salt bath (or quenching in water) immediately after solution treatment, not only are the defects formed at high temperatures maintained, but new defects can also be generated in alloys, iron alloys and steels. Due to the segregation of the solute atoms near defects through diffusion, this leads to non-uniform distributions of solute atoms in the parent phase with distinct regions of both solute enrichment and solute depletion. It is proposed that when the Ms temperature at the solute depleted regions is equal to or higher than the isothermal (or aged) temperature,nucleation of bainite occurs within these solute depleted regions in the manner of martensitic shear. Therefore it is considered that, at least in steel, iron and copper alloy systems, bainite is formed through a shear mechanism within solute depleted regions, which is controlled and formed by the solute atoms diffusion in the parent phase.

  10. Retention of ductility in high-strength steels

    Science.gov (United States)

    Parker, E. R.; Zackay, V. F.

    1969-01-01

    To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.

  11. Aluminum/steel wire composite plates exhibit high tensile strength

    Science.gov (United States)

    1966-01-01

    Composite plate of fine steel wires imbedded in an aluminum alloy matrix results in a lightweight material with high tensile strength. Plates have been prepared having the strength of titanium with only 85 percent of its density.

  12. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Science.gov (United States)

    2010-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  13. Yttrium modifying influence on the shape and amount of nonmetallic inclusions in the austenitic high alloy steel

    Directory of Open Access Journals (Sweden)

    Андрій Володимирович Патюпкін

    2016-07-01

    Full Text Available Yttrium influence on the form and amount of non-metallic inclusions in steel 06H23N18M5 was studied. It has been found that yttrium binds oxygen and other elements into heterogeneous compounds, it resulting in the transition of impurities into passive state. Oxide inclusions, sulfide inclusions and globules formed as a result of steel components reactions with oxygen, sulfur and nitrogen dissolved in metal are mostly found in the structure. It was found that by modifying and refining austenitic steels with yttrium service properties of the deposited layer can be adjusted. X-ray diffraction and X-ray spectrum analysis revealed that the modified steel 06H23N18M5 + 0.02% Y has a heterogeneous structure with uniformly distributed inclusions of σ-phase and composite carbides (Fe, Cr, Mo 23C6. It is possible that Y modification resulted in the appearance of chemically resistant intermetallic σ-phase in these steels, for nucleation was facilitated by increasing the number of crystallization centers as dispersed primary yttrium oxy-sulfide compounds

  14. The implementation of the high technology methods of cutting on St 50 alloyed steel and the examination of the effects of cutting operation at the surface of material

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2014-01-01

    Full Text Available Since competition has risen in the manufacturing methods of present conditions, the chance of competition has lost in the situations which new or high technologies aren’t exactly known. The proper selection is important for competing in the market conditions. In this study, the aim is to present the most advantaged cutting method for obtaining quality products by using high technology for gaining a better chance of competition. In the test, St 50 alloyed steel is used as sample. This sample is cut with the methods of laser, erosion and abrasive water jet (AWJ among the cutting operations made with the high technology. The micro structure photograph of surface of sample, which is cut, are taken and the effects of different methods of cutting on the metallurgical structure of material are compared. Also, changes are examined by performing the measurement of rigidity to the core from the edge of cutting. The most advantaged cutting method is presented by considering these examinations.

  15. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  16. The application limits of alloyed 13%Cr tubular steels for downhole duties

    Energy Technology Data Exchange (ETDEWEB)

    Cooling, P.J.; Kennani, M.B.; Martin, J.W. [BP Exploration, Sunbury on Thames (United Kingdom); Nice, P.I. [Statoil, Stavanger (Norway)

    1998-12-31

    In the past few years, a new family of materials has entered the downhole tubular market, known as the ``alloyed 13%Cr steels.`` These are a development of the conventional API 5CT grade 13%Cr steels to which alloying elements of Ni, Mo and Cu have been added, hence offering a number of advantages. In the present paper, domains of application for the 95ksi grade alloyed 13%Cr steels with respect to sour service conditions have been defined on pH vs. H{sub 2}S partial pressure plots. Corrosion properties have also been determined for two other aspects; chloride stress corrosion cracking (ClSCC) and high temperature corrosion resistance. The results have reiterated the importance of solution chemistry, pH and H{sub 2}S partial pressure in defining the corrosion properties of steels.

  17. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  18. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  19. Variation of chemical composition of high strength low alloy steels with different groove sizes in multi-pass conventional and pulsed current gas metal arc weld depositions

    Directory of Open Access Journals (Sweden)

    K. Devakumaran

    2015-06-01

    Full Text Available 25 mm thick micro-alloyed HSLA steel plate is welded by multi-pass GMAW and P-GMAW processes using conventional V-groove and suitably designed narrow gap with 20 mm (NG-20 and 13 mm (NG-13 groove openings. The variation of weld metal chemistry in the multi pass GMA and P-GMA weld depositions are studied by spark emission spectroscopy. It is observed that the narrow groove GMA weld joint shows significant variation of weld metal chemistry compared to the conventional V-groove GMA weld joint since the dilution of base metal extends from the deposit adjacent to groove wall to weld center through dissolution by fusion and solid state diffusion. Further, it is noticed that a high rate of metal deposition along with high velocity of droplet transfer in P-GMAW process enhances the dilution of weld deposit and accordingly varies the chemical composition in multi-pass P-GMA weld deposit. Lower angle of attack to the groove wall surface along with low heat input in NG-13 weld groove minimizes the effect of dissolution by fusion and solid state diffusion from the deposit adjacent to groove wall to weld center. This results in more uniform properties of NG-13 P-GMA weld in comparison to those of NG-20 and CG welds.

  20. Diffusion kinetics of boron in the X200CrMoV12 high-alloy steel

    Directory of Open Access Journals (Sweden)

    Azouani O.

    2015-01-01

    Full Text Available In this work, the kinetics of formation of the boride layers (FeB/Fe2B, formed on the X200CrMoV12 steel used for the coldworking, was investigated. The boriding treatment was carried out in the powder mixture consisting of 5%B4C, 5% NaBF4 and 90% SiC. The boriding parameters are : 900, 950 and 1000°C with treatment times of 2, 4 and 6 h. The obtained borided layers (FeB/Fe2B were characterized by the following experimental techniques: optical microscopy, scanning electron microscopy coupled to EDS analysis and XRD analysis. The kinetics of boron diffusion in the X200CrMoV12 steel was also studied. As a result, the time dependence of the borided layers thicknesses followed a growth parabolic law. The boron activation energy was estimated as 199.37 kJ mol-1 for the X200CrMoV12 steel. A full factorial design with 2 factors at 3 levels was employed to estimate the total boride layer thickness as a function of the boriding parameters (time and temperature and a simple equation was proposed. Finally, an iso-thickness diagram was given as a tool to predict the total boride layers thicknesses in relation with the practical utilization of this kind of steel.

  1. Improvement of the Corrosion Resistance of High Alloyed Austenitic Cr-Ni-Mo Stainless Steels by Solution Nitriding

    Institute of Scientific and Technical Information of China (English)

    Christine Eckstein; Heinz- Joachim Spies; Jochen Albrecht

    2004-01-01

    Characteristic features of austenitic steel grades combine a good corrosion resistance with a low hardness, wear resistance and scratch resistance. An interesting possibility for improving the wear behaviour of these steels without loss of their corrosion resistance lies in enriching the near surface region with nitrogen. The process of a solution nitriding allows the rise of the solution of nitrogen in the solid phase. On this state nitrogen increases the corrosion resistance and the tribilogical load-bearing capacity. The aim of the study was, to investigate the improvement of the pitting corrosion behaviour by solution nitriding. A special topic was to observe the effect of nitrogen by different molybdenum content. So austenitic stainless steels (18% Cr, 12% Ni, Mo gradation between 0.06 to 3.6%) had been solution nitrided. The samples could be prepared with various surface content of nitrogen from 0.04 to 0.45% with a step-by-step grinding. The susceptibility against pitting corrosion of these samples had been tested by determination of the stable pitting potential in 0.5M and 1M NaCl at 25℃. For the investigated steel composition and the used corrosion system there is no influence of molybdenum on the effectiveness of nitrogen. The influence of nitrogen to all of the determined parameters can be corrosion tests. Additionally surface investigations with an acid elektolyte (0,1M HCl + 0,4M NaCI) were performed. In this case the passivation effective nitrogen content increases markedly with rising molybdenum concentration of the steel.Obviously an interaction of Mo and N is connected with a strongly acid electrolyte.

  2. Development of High Strength Low Alloy Steel in Recent Years%近年来低合金高强度钢的进展

    Institute of Scientific and Technical Information of China (English)

    张晓刚

    2011-01-01

    The latest developments in processes for producing high strength low alloy(HSLA) steels were introduced from clean steel production process,endless rolling process of thin slab continuous casting and rolling,strip cast rolling process and TMCP process based on fast cooling technology.The progress on many kinds of HSLA steel products was systematically described,such as automobile steels,steels for shipbuilding and offshore engineering,pipeline steels,steels for building structure,steels for nuclear power applications,steels for pressure vessels,steels for engineering machinery and steels for containers.Finally,the development trend of HSLA steels was predicted to be higher strength,higher performance and lower manufacturing cost in the future,which would be guidance for the development of HSLA steels in some way.%从洁净钢生产、薄板坯连铸连轧无头轧制、薄带铸轧以及以快速冷却为核心的TMCP工艺等几个方面介绍了HSLA钢生产工艺技术的最新发展,并系统介绍了汽车用钢、船舶及海洋工程用钢、管线钢、建筑结构钢、核电用钢、压力容器用钢、工程机械用钢及集装箱用钢等行业所用的HSLA钢品种开发方面新进展。认为未来HSLA钢将向高强、高性能和低成本方向发展,对HSLA钢的发展有指导作用。

  3. MODULATED STRUCTURES AND ORDERING STRUCTURES IN ALLOYING AUSTENITIC MANGANESE STEEL

    Institute of Scientific and Technical Information of China (English)

    L. He; Z.H. Jin; J.D. Lu

    2001-01-01

    The microstructure of Fe-10Mn-2Cr-1.5C alloy has been investigated with transmission electron microscopy and X-ray diffractometer. The superlattice diffraction spots and satellite reflection pattrens have been observed in the present alloy, which means the appearence of the ordering structure and modulated structure in the alloy. It is also proved by X-ray diffraction analysis that the austenite in the alloy is more stable than that in traditional austenitic manganese steel. On the basis of this investigation,it is suggested that the C-Mn ordering clusters exist in austenitic manganese steel and the chromium can strengthen this effect by linking the weaker C-Mn couples together,which may play an important role in work hardening of austenitic manganese steel.

  4. On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, E.G., E-mail: emad.g.moghaddam@gmail.com [Department of Materials Science and Engineering, Sharif University of Technology, P.O Box 11365-9466, Azadi Avenue, Tehran (Iran, Islamic Republic of); Tabarestan Steel Foundry, P.O Box 14358, No. 46, Bahar Road, South Shiraz Ave., Tehran (Iran, Islamic Republic of); Varahram, N.; Davami, P. [Department of Materials Science and Engineering, Sharif University of Technology, P.O Box 11365-9466, Azadi Avenue, Tehran (Iran, Islamic Republic of)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Mechanical properties of HV-AMS are affected by the type and distribution of VCs. Black-Right-Pointing-Pointer Solution treatment of Hadfield steels has no significant effect on HV-AMS alloys. Black-Right-Pointing-Pointer HV-AMS alloys have superior wear resistance compared with Hadfield steels. - Abstract: In this study, high-vanadium austenitic manganese steel (HV-AMS) alloys and the standard Hadfield steel were investigated. The microstructure of these high-vanadium alloyed Hadfield steels was studied thoroughly using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and was compared to the Hadfield steel. The hardness and unnotched Charpy impact strength of HV-AMS alloys and Hadfield steel were examined at ambient temperature in the as-cast and heat-treated conditions. A pin-on-disk wear test at linear speed of 10 m/min and a 55 N normal load was employed to evaluate the wear behavior of both steel samples. Microstructural results showed that varying the carbon content in HV-AMS alloys can affect the vanadium carbide morphology and its distribution in the austenite matrix which leads to considerable changes of the mechanical properties. Abrasion test revealed that HV-AMS alloys have superior wear resistance, about 5 times of the standard Hadfield steel.

  5. Application Prospects of High Strength Low-alloyed Steels to Sheet Metal of Air-conditioner%低合金高强度钢在空调钣金件中的应用前景

    Institute of Scientific and Technical Information of China (English)

    龙江; 蒋子琪

    2014-01-01

    本文主要介绍了低合金高强度钢的特点,从实际的加工性、防腐性和成本方面进行分析,并以某款家用空调器电机支架为例使用屈服强度在350MPa级的低合金高强度钢进行试验验证,结果表明低合金高强度钢在空调的钣金件加工中有较高的可行性和较好的应用前景%In the paper, The characteristics of high strength low-alloyed steels are mainly introduced.The actu-al machinability, corrosion resistance and cost are analyzed and the experimental verification have been taken by a certain motor support of high strength low-alloyed steels with yield strength of 350MPa level, it indicated that the high strength low-alloyed steels have higher feasibilities and more application prospects in sheet metal of air-conditioner.

  6. Stress corrosion cracking in the fusion boundary region of an alloy 182 - A533B low alloy steel dissimilar weld joint in high temperature oxygenated water

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Q.; Xue, H.; Hou, J.; Takeda, Y.; Kuniya, J.; Shoji, T. [Fracture and Reliability Research Institute, Tohoku University (Japan)

    2011-07-01

    In this work, following a microstructural characterization of the fusion boundary (FB) region in an Alloy 182 - A533B LAS dissimilar weld joint, the SCC growth behaviour in the FB region of the dissimilar weld joint in 288 C degrees water was investigated by employing crevice bent beam (CBB) and crack growth rate (CGR) testing, in conjunction with a simulation by finite element method (FEM). The microstructure characterization showed that there is a narrow high hardness zone (HHZ) in the dilution zone (DZ) of the weld metal adjacent to the FB. Further, a sharp increase of the hardness was observed immediately adjacent to the FB, suggesting the existence of a hardness gradient in the HHZ. FEM simulation of the growth of a crack perpendicular to the FB in the DZ showed that there is a drop in crack tip strain rate as the crack entered the HHZ, suggesting a decreased crack growth rate can be expected for a crack propagating perpendicular to the FB in the high hardness zone where a continuous increase of the hardness with crack growth may exist. Cracking path observation on the cross-section of the CBB specimen suggested that a SCC propagating perpendicular to the FB in the DZ was blunted by pitting after it reached the FB, indicating that the FB is a barrier to SCC growth. However, reactivation of crack growth from the pitting in LAS by preferential oxidation along the grain boundary was observed as well, suggesting a combined effect of microstructure and the high sulphate concentration in the water used for the test. The effects of sulphate doping and DO on CGR in the DZ and FB region were further clarified by the results of the SCC-CGR test. At a DO of 0.25 ppm, the SCC growth rate was low in the FB region even with a sulphate addition of up to 50 ppb in water. The crack growth, however, was reactivated by increasing the DO to 2 ppm at both sulphate concentrations of 50 ppb and 20 ppb, indicating an important role of DO in SCC growth in the DZ. The existence of a

  7. Comment on "Origin of low-temperature shoulder internal friction peak of Snoek-Köster peak in a medium carbon high alloyed steel" by Lu et al. [Solid State Communications 195 (2014) 31

    Science.gov (United States)

    Hoyos, J. J.; Mari, D.

    2016-01-01

    We want to discuss the interpretation of low-temperature shoulder internal friction peak of Snoek-Köster peak (LTS-SK). Lu et al. (2015) [1] attributed it to the interaction between the carbon atoms and twin boundaries in martensite. Nevertheless, the decrease of the amplitude of LTS-SK peak due to carbon segregation is correlated with the interstitial carbon content in solid solution in martensite (Hoyos et al., 2015 [2]). Therefore, this peak can also be attributed to the presence of an internal friction athermal background, which is proportional to the concentration of interstitial carbon in solid solution (Tkalcec et al., 2015 [2,3]). In addition, they used an alloyed steel, in which ε carbide precipitated above of the LTS-SK peak temperature. As this behavior cannot be generalized for carbon and high alloyed steels, the carbide precipitates could made an additional contribution to the internal friction.

  8. Laser Alloyed Coatings of TiB2/Graphite on 9Cr18 Stainless Steel Surface

    Institute of Scientific and Technical Information of China (English)

    YING Li-xia; WANG Li-qin; JIA Xiao-mei; GU Le

    2007-01-01

    Modified coatings including carbide of iron, nickel, chromium, silicon, and titanium are obtained on 9Cr18 stainless steel surface by laser alloying. The processing method, the microstructure, the interface, the tribological properties, and the forming mechanisms of the coatings are analyzed. The results show that the microstructure of the alloyed coatings is mainly irregular FeC crystals. Carbides of chromium and iron are around the FeC crystals. Small granular TiC disperses in the alloyed coatings. The microhardness of the alloyed coatings is greatly improved because of the occurrence of carbide with high hardness. At the same time, the wear resistance of the alloyed coatings are higher than that of 9Cr18 stainless steel.

  9. Effects of Nitrogen Content and Austenitization Temperature on Precipitation in Niobium Micro-alloyed Steels

    Institute of Scientific and Technical Information of China (English)

    Lei CAO; Zhong-min YANG; Ying CHEN; Hui-min WANG; Xiao-li ZHAO

    2015-01-01

    The influences of nitrogen content and austenitization temperature on Nb(C,N)precipitation in niobium micro-alloyed steels were studied by different methods:optical microscopy,tensile tests,scanning electron mi-croscopy,transmission electron microscopy,physicochemical phase analysis,and small-angle X-ray scattering. The results show that the strength of the steel with high nitrogen content is slightly higher than that of the steel with low nitrogen content.The increase in the nitrogen content does not result in the increase in the amount of Nb(C,N) precipitates,which mainly depends on the niobium content in the steel.The mass fraction of small-sized Nb(C,N) precipitates (1-10 nm)in the steel with high nitrogen content is less than that in the steel with low nitrogen con-tent.After austenitized at 1 150 ℃,a number of large cuboidal and needle-shaped particles are detected in the steel with high nitrogen content,whereas they dissolve after austenitized at 1 200 ℃ and the Nb(C,N)precipitates become finer in both steels.Furthermore,the results also show that part of the nitrogen in steel involves the formation of al-loyed cementite.

  10. Probabilistic models for creep-fatigue in a steel alloy

    Science.gov (United States)

    Ibisoglu, Fatmagul

    In high temperature components subjected to long term cyclic operation, simultaneous creep and fatigue damage occur. A new methodology for creep-fatigue life assessment has been adopted without the need to separate creep and fatigue damage or expended life. Probabilistic models, described by hold times in tension and total strain range at temperature, have been derived based on the creep rupture behavior of a steel alloy. These models have been validated with the observed creep-fatigue life of the material with a scatter band close to a factor of 2. Uncertainties of the creep-fatigue model parameters have been estimated with WinBUGS which is an open source Bayesian analysis software tool that uses Markov Chain Monte Carlo method to fit statistical models. Secondly, creep deformation in stress relaxation data has been analyzed. Well performing creep equations have been validated with the observed data. The creep model with the highest goodness of fit among the validated models has been used to estimate probability of exceedance at 0.6% strain level for the steel alloy.

  11. Experimental Investigation of Machining Parameters For Surface Roughness In High Speed CNC Turning of EN-24 Alloy Steel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Puneet Saini

    2014-05-01

    Full Text Available Alloy Steel EN-24 (Medium Carbon Steel used in manufacturing of Automotive & aircraft components, Axles & Axles components, Shafts, Heavy duty Gears, Spindles, Studs, Pins, collets, bolts, couplings, sprockets, pinions & pinion arbors. Turning is the most common process used in manufacturing sector to produce smooth finish on cylindrical surfaces. Surface roughness is the important performance characteristics to be considered in the turning process is affected by several factors such as cutting tool material, spindle speed, feed rate, depth of cut and material properties. In this research Response surface methodology (RSM was applied to determine the optimum machining parameters leading to minimum surface roughness in turning process. The main purpose of this research is to study the effect of carbide inserts on EN-24 Alloy Steel surface by using three parameters (spindle speed, feed rate and depth of cut. This research was conducted by using 100 HS Stallion CNC Lathe machine. Seventeen sets of experiments were performed. In this work empirical models were developed for surface roughness by considering spindle speed, feed rate and depth of cut as main controlling factors using response surface methodology. The optimum value of the surface roughness (Ra comes out to be 0.48 µm. It is also concluded that feed rate is the most significant factor affecting surface roughness followed by depth of cut. As Cutting speed is the less significant factor affecting surface roughness. Optimum results are finally verified with the help of confirmation experiments. Keywords:

  12. Characterization of a boron alloyed 9Cr3W3CoVNbBN steel and further improvement of its high-temperature mechanical properties by thermomechanical treatments

    Science.gov (United States)

    Hollner, S.; Piozin, E.; Mayr, P.; Caës, C.; Tournié, I.; Pineau, A.; Fournier, B.

    2013-10-01

    In the framework of the development of Generation IV nuclear reactors and fusion nuclear reactors, materials with an improved high temperature (≅650 °C) mechanical strength are required for specific components. The 9-12% Cr martensitic steels are candidate for these applications. Previous works showed that the application of a thermomechanical treatment, including warm-rolling in metastable austenitic phase, to the commercial Grade 91 martensitic steel, allowed refining its microstructure, improving its precipitation state and its mechanical properties (hardness, tensile and creep properties). In the present paper, experimental steel called NPM, designed for good high-temperature creep resistance, is evaluated in terms of microstructure and mechanical properties, and compared to the G91 steel. Then the developed thermomechanical treatment is applied to this steel. Its microstructure is refined and its hardness and tensile properties are much better than the as-received NPM and therefore than the G91 steel. The cyclic softening effect still occurs for the optimized NPM, but this material once softened by cyclic loadings, still presents better creep properties than the as-received NPM steel, and even more than the commercial G91 steel.

  13. Characterization of a boron alloyed 9Cr3W3CoVNbBN steel and further improvement of its high-temperature mechanical properties by thermomechanical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Hollner, S., E-mail: stephanie.hollner@edf.fr [CEA, DEN, DANS, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France); Piozin, E. [CEA, DEN, DANS, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France); ENSMP, Centre des Matériaux Mines Paris Tech, UMR CNRS 7633, BP 87, 91003 Evry (France); Mayr, P. [Institute of Joining and Assembly, Chemnitz University of Technology, Reichenhainer Strasse 70, 09126 Chemnitz (Germany); Caës, C.; Tournié, I. [CEA, DEN, DANS, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France); Pineau, A. [ENSMP, Centre des Matériaux Mines Paris Tech, UMR CNRS 7633, BP 87, 91003 Evry (France); Fournier, B. [CEA, DEN, DANS, DMN, SRMA, 91191 Gif-sur-Yvette Cedex (France)

    2013-10-15

    In the framework of the development of Generation IV nuclear reactors and fusion nuclear reactors, materials with an improved high temperature (≅650 °C) mechanical strength are required for specific components. The 9–12% Cr martensitic steels are candidate for these applications. Previous works showed that the application of a thermomechanical treatment, including warm-rolling in metastable austenitic phase, to the commercial Grade 91 martensitic steel, allowed refining its microstructure, improving its precipitation state and its mechanical properties (hardness, tensile and creep properties). In the present paper, experimental steel called NPM, designed for good high-temperature creep resistance, is evaluated in terms of microstructure and mechanical properties, and compared to the G91 steel. Then the developed thermomechanical treatment is applied to this steel. Its microstructure is refined and its hardness and tensile properties are much better than the as-received NPM and therefore than the G91 steel. The cyclic softening effect still occurs for the optimized NPM, but this material once softened by cyclic loadings, still presents better creep properties than the as-received NPM steel, and even more than the commercial G91 steel.

  14. Microscopic study of the structure of the Steel Ni-based Alloy: Hastelloy G35 Alloy

    Science.gov (United States)

    Sabir, F.; Ben Lenda, O.; Saissi, S.; Marbouh, K.; Tyouke, B.; Zerrouk, L.; Ibnlfassi, A.; Ouzaouit, K.; Elmadani, S.

    2017-03-01

    The study of the influence of heat treatment on changes of mechanical and structural properties of Steel Ni-based Alloy is a highly interdisciplinary topic at the interface of the physical chemistry of metallic materials, which also helps in environmental and economic protection.After heat treatment, the structural and micro-structural studies for the different transformation temperature led to identify phases formed and the morphology. This work has been carried out using different techniques: X-ray diffraction, optical microscopy and scanning electron microscopy.

  15. 77 FR 59892 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Final Determination of...

    Science.gov (United States)

    2012-10-01

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Final... mm to 5.0 mm. \\1\\ See Carbon and Certain Alloy Steel Wire Rod from Mexico: Affirmative Preliminary... on said entries.\\4\\ \\2\\ See Carbon and Certain Alloy Steel Wire Rod from Mexico: Initiation of...

  16. Effect of alloy elements on the anti-corrosion properties of low alloy steel

    Indian Academy of Sciences (India)

    Baorong Hou; Yantao Li; Yanxu Li; Jinglei Zhang

    2000-06-01

    Effect of alloy elements on corrosion of low alloy steel was studied under simulated offshore conditions. The results showed that the elements Cu, P, Mo, W, V had evident effect on corrosion resistance in the atmosphere zone; Cu, P, V, Mo in the splash zone and Cr, Al, Mo in the submerged zone.

  17. [Study on the multivariate quantitative analysis method for steel alloy elements using LIBS].

    Science.gov (United States)

    Gu, Yan-hong; Li, Ying; Tian, Ye; Lu, Yuan

    2014-08-01

    Quantitative analysis of steel alloys was carried out using laser induced breakdown spectroscopy (LIBS) taking into account the complex matrix effects in steel alloy samples. The laser induced plasma was generated by a Q-switched Nd:YAG laser operating at 1064 nm with pulse width of 10 ns and repeated frequency of 10 Hz. The LIBS signal was coupled to the echelle spectrometer and recorded by a high sensitive ICCD detector. To get the best experimental conditions, some parameters, such as the detection delay, the CCDs integral gate width and the detecting position from the sample surface, were optimized. The experimental results showed that the optimum detection delay time was 1.5 micros, the optimal CCDs integral gate width was 2 micros and the best detecting position was 1.5 mm below the alloy sample's surface. The samples used in the experiments are ten standard steel alloy samples and two unknown steel alloy samples. The quantitative analysis was investigated with the optimum experimental parameters. Elements Cr and Ni in steel alloy samples were taken as the detection targets. The analysis was carried out with the methods based on conditional univariate quantitative analysis, multiple linear regression and partial least squares (PLS) respectively. It turned out that the correlation coefficients of calibration curves are not very high in the conditional univariate calibration method. The analysis results were obtained with the unsatisfied relative errors for the two predicted samples. So the con- ditional univariate quantitative analysis method can't effectively serve the quantitative analysis purpose for multi-components and complex matrix steel alloy samples. And with multiple linear regression method, the analysis accuracy was improved effectively. The method based on partial least squares (PLS) turned out to be the best method among all the three quantitative analysis methods applied. Based on PLS, the correlation coefficient of calibration curve for Cr is 0

  18. Explosive welding of a near-equiatomic nickel-titanium alloy to low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerly, C.A. (Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)); Inal, O.T. (Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)); Richman, R.H. (Daedalus Associates, Inc., Mountain View, CA 94043 (United States))

    1994-11-30

    Equiatomic and near-equiatomic NiTi alloys are very resistant to cavitation erosion compared with the alloys commonly used to construct pumps and hydroturbines. Thin layers (0.4-1.0 mm) of a near-equiatomic NiTi alloy were explosively welded to low-carbon steel substrates to fabricate high-strength, bimetallic tandems in which the NiTi provided resistance to cavitation damage and the low-carbon steel provided structural strength. Tensile lap-shear tests on the welded material revealed bond strength of up to 387 MPa. As-welded NiTi/steel tandems were less resistant to cavitation erosion than annealed, unwelded samples; however, a post-weld heat treatment at 500 C recovered most of the lost resistance. ((orig.))

  19. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  20. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    OpenAIRE

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous abrasion process and unravel abrasion damage formation in construction steels, i.e. carrying out scratch tests using a large indenter with different pre-loads to generate a wide pre-scratch with sta...

  1. Process to determine light elements content of steel and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Quintella, Cristina M.A.L.T.M.H.; Castro, Martha T.P.O. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. LabLaser; Mac-Culloch, Joao N.L.M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The present work reports a process to determine qualitatively and quantitatively elements of molar mass inferior to 23 within materials, by X rays spectra associated with multivariate data analysis, or chemometric analysis. The spectra is acquired between 5 keV and 22 keV when the materials are exposed to X radiation. Here is reported the direct determination of carbon content in steel and metallic alloys. The process is more effective when using spectral regions which are not usually used. From the analysis of these spectral regions which were not considered before, it was possible to detect light elements with molar mass lower than 23, which have low capacity of absorbing and emitting radiation, but have high capacity of scattering radiation. The process here reported has the advantage that X-Ray spectra obtained are calibrated multivariately, showing high potential for development in order to be used in a portable field equipment. (author)

  2. Phase transformations and microstructure development in low alloy steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Vitek, J.M. [and others

    1995-07-01

    Microstructure development in low alloy steel welds depends on various phase transformations that are a function of weld heating and cooling. The phase changes include non-metallic oxide inclusion formation in the liquid state, weld pool solidification, and solid state transformations. In this paper the mechanism of inclusion formation during low alloy steel welding is considered and the model predictions are compared with published results. The effect of inclusions on the austenite to ferrite transformation kinetics is measured and the mechanisms of transformation are discussed. The austenite gain development is related to the driving force for transformation of {delta} ferrite to austenite.

  3. Market challenges for steel

    Energy Technology Data Exchange (ETDEWEB)

    Lauprecht, W.E.; Bulla, W.

    1981-11-01

    Country-wise division of generation of high-alloyed steels, stainless steel and alloyed steel in Western Europe/the Western World. Review of expanding markets for alloyed steels on sectors like-oil field pipes, offshore structure gas- and oil transport in pipelines, coal conversion, nuclear energy, condenser tubes, solar energy, car industry, environmental protection and chemistry.

  4. The mechanism of the surface alloy layer creation for cast steel

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2012-01-01

    Full Text Available The paper presents a detailed description of the process of creation of a surface alloy layer (using high-carbon ferrochromium on the cast steel casting. The mechanism of the surface alloy layer is based on the known theories [5,6]. The proposed course of formation of the layers has been extended to decarburization stage of steel. The research included proving the presence of carbon-lean zone. The experiment included the analysis of the distribution of elements and microhardness measurement.

  5. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Zhang Yonglan; X Holly

    2002-12-01

    The fine structure in the Fe–Al alloy layer of a new hot dip aluminized steel (HDA) was examined by means of X-ray diffractometry (XRD), electron diffraction technique, etc. The test results indicated that the Fe–Al alloy layer of the new aluminized steel mainly composed of Fe3Al, FeAl and -Fe (Al) solid solution. There was no brittle phase containing higher aluminum content, such as FeAl3 (59.18% Al) and Fe2Al7 (62.93% Al). The tiny cracks and embrittlement, formerly caused by these brittle phases in the conventional aluminum-coated steel, were effectively eliminated. There was no microscopic defect (such as tiny cracks, pores or loose layer) in the coating. This is favourable to resist high temperature oxidation and corrosion of the aluminized steel.

  6. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  7. Corrosion and Corrosion Inhibition of High Strength Low Alloy Steel in 2.0 M Sulfuric Acid Solutions by 3-Amino-1,2,3-triazole as a Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2014-01-01

    Full Text Available The corrosion and corrosion inhibition of high strength low alloy (HSLA steel after 10 min and 60 min immersion in 2.0 M H2SO4 solution by 3-amino-1,2,4-triazole (ATA were reported. Several electrochemical techniques along with scanning electron microscopy (SEM and energy dispersive X-ray (EDS were employed. Electrochemical impedance spectroscopy indicated that the increase of immersion time from 10 min to 60 min significantly decreased both the solution and polarization resistance for the steel in the sulfuric acid solution. The increase of immersion time increased the anodic, cathodic, and corrosion currents, while it decreased the polarization resistance as indicated by the potentiodynamic polarization measurements. The addition of 1.0 mM ATA remarkably decreased the corrosion of the steel and this effect was found to increase with increasing its concentration to 5.0 mM. SEM and EDS investigations confirmed that the inhibition of the HSLA steel in the 2.0 M H2SO4 solutions is achieved via the adsorption of the ATA molecules onto the steel protecting its surface from being dissolved easily.

  8. SCC investigation of low alloy ultra-high strength steel 30CrMnSiNi2A in 3.5wt%NaCl solution by slow strain rate technique

    Institute of Scientific and Technical Information of China (English)

    Liu Jianhua; Guo Qiang; Yu Mei; Li Songmei

    2014-01-01

    To evaluate stress corrosion cracking (SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2A in environment containing NaCl, SCC behavior of the steel in 3.5wt%NaCl solution is investigated by slow strain rate technique (SSRT) with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 · 10?5 s?1 to 5 · 10?7 s?1, and becomes stable when strain rate is lower than 5 · 10?7 s?1. SCC propagation of the steel in the solution at open circuit potential (OCP) needs sufficient hydrogen which is supplied at a certain strain rate. Fracture surface at OCP has similar characteristics with that at cathodic polarization ?1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking (HIC). All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution (AD).

  9. SCC investigation of low alloy ultra-high strength steel 30CrMnSiNi2A in 3.5wt% NaCl solution by slow strain rate technique

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2014-10-01

    Full Text Available To evaluate stress corrosion cracking (SCC mechanism of low alloy ultra-high strength steel 30CrMnSiNi2A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique (SSRT with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 × 10−5 s−1 to 5 × 10−7 s−1, and becomes stable when strain rate is lower than 5 × 10−7 s−1. SCC propagation of the steel in the solution at open circuit potential (OCP needs sufficient hydrogen which is supplied at a certain strain rate. Fracture surface at OCP has similar characteristics with that at cathodic polarization −1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking (HIC. All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution (AD.

  10. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  11. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  12. Development of a high strength high toughness ausferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Putatunda, Susil K., E-mail: sputa@eng.wayne.edu [Department of Chemical Engineering and Material Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202 (United States); Singar, Arjun V. [Department of Chemical Engineering and Material Science, Wayne State University, 5050 Anthony Wayne Dr., Detroit, MI 48202 (United States); Tackett, Ronald; Lawes, Gavin [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States)

    2009-07-15

    A new ausferritic steel with high strength and exceptionally high fracture toughness has been developed. This steel has been synthesized integrating concepts from Austempered Ductile Cast Iron (ADI) technology. The influence of the austempering temperature on the microstructure and mechanical properties of this steel at room temperature and ambient atmosphere has been examined. The effect of microstructure on the plane strain fracture toughness and on the magnetic, electrical, and thermal properties was also investigated. Compact tension and cylindrical tensile specimens prepared from the low alloy medium carbon steel with high silicon content were initially austenitized at 927 deg. C for 2 h and then subsequently austempered at several temperatures between 260 deg. C (500 F) and 400 deg. C (750 F) to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. A combination of exceptionally high yield strength (1336 MPa) and a high fracture of toughness of 116 MPa{radical}m (a value comparable to maraging steel) was obtained in this steel after austempering at 316 deg. C (600 F) for 2 h. Potential applications of this steel include the inexpensive fabrication of armored plates and components requiring high reliability and durability.

  13. Effects of Mn and Cu on the Mechanical Properties of a High Strength Low Alloy NiCrMoV Steel

    Institute of Scientific and Technical Information of China (English)

    A.Abdollah-zadeh; M. Belbasy

    2005-01-01

    The present study focuses on the effects of Mn and Cu on the mechanical properties, in particular, strength and toughness of a low alloy steel containing Ni, Cr, Mo and V. Specimens with different amounts of Mn (0.23%~0.85%)and Cu (0.15%~0.45%) were cast and forged, and then austenitized at 870℃ for 1 h, followed by oil quenching. All specimens were tempered at 650℃ for 1 h. The results show that as the amounts of Mn and Cu increase respectively from 0.35% to 0.85% and from 0.15% to 0.45%, the yield and tensile strength increase. The highest impact energies were observed in the specimen with 0.35% Mn and in the specimen with 0.25% Cu. The impact energy decreases with increasing the Mn and Cu from 0.35% to 0.85% and from 0.25% to 0.45%, respectively. Furthermore, the variation of Mn and Cu does not cause a considerable change in the tempered martensite microstructure. The optimum strength and toughness is observed in 0.35% Mn containing steel and in the 0.25% Cu containing steel.

  14. Low Mn alloy steel for cryogenic service

    Science.gov (United States)

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  15. Diode Laser Surface Alloying of Armor Steel with Tungsten Carbide

    Directory of Open Access Journals (Sweden)

    Janicki D.

    2017-06-01

    Full Text Available Metal matrix composite (MMC surface layers reinforced by WC were fabricated on armor steel ARMOX 500T plates via a laser surface alloying process. The microstructure of the layers was assessed by scanning electron microscopy and X-ray diffraction.

  16. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    NARCIS (Netherlands)

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous a

  17. Strengthening mechanism of steels treated by barium-bearing alloys

    Institute of Scientific and Technical Information of China (English)

    Zhouhua Jiang; Yang Liu

    2008-01-01

    The deoxidation, desulfurization, dephosphorization, microstructure, and mechanical properties of steels treated by barium-bearing alloys were investigated in laboratory and by industrial tests. The results show that barium takes part in the deoxidation reaction at the beginning of the experiments, generating oxide and sulfide compound inclusions, which easily float up from the molten steel, leading to the rapid reduction of total oxygen content to a very low level. The desulfurization and dephosphorization capabilities of calcium-bearing alloys increase with the addition of barium. The results of OM and SEM observations and mechanical property tests show that the structure of the steel treated by barium-bearing alloys is refined remarkably, the iamellar thickness of pearlitic structure decreases, and the pearlitic morphology shows clustering distribution. Less barium exists in steel substrate and the enrichment of barium-bearing precipitated phase mostly occurs in grain boundary and phase boundary, which can prevent the movement of grain boundary and dislocation during the heat treatment and the deformation processes. Therefore, the strength and toughness of barium-treated steels are improved by the effect of grain-boundary strengthening and nail-prick dislocation.

  18. Microstructures and properties of low-alloy fire resistant steel

    Indian Academy of Sciences (India)

    Bimal Kumar Panigrahi

    2006-02-01

    Microstructures and properties of weldable quality low-alloy fire resistant structural steels (YS: 287–415 MPa) and TMT rebar (YS: 624 MPa) have been investigated. The study showed that it is possible to obtain two-thirds of room temperature yield stress at 600°C with 0.20–0.25% Mo and 0.30–0.55% Cr in low carbon hot rolled structural steel. Microalloying the Cr–Mo steel by niobium or vanadium singly or in combination resulted in higher guaranteed elevated temperature yield stress (250–280 MPa). The final rolling temperature should be maintained above austenite recrystallization stop temperature (∼ 900° C) to minimize dislocation hardening. In a quenched and self-tempered 600 MPa class TMT reinforcement bar steel (YS: 624 MPa), low chromium (0.55%) addition produced the requisite yield stress at 600°C. The low-alloy fire resistant steel will have superior thermal conductivity up to 600°C (> 30 W/m.k) compared to more concentrated alloys.

  19. Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Fanny [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Lhuissier, Pierre; Bréchet, Yves; Tassin, Catherine [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Roch, François [Areva NP, Tour Areva, 92084 Paris La Défense (France); Todeschini, Patrick [EDF R& D, Avenue des Renardières, 77250 Moret-sur-Loing (France); Simar, Aude [Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2016-06-14

    In dissimilar welds between low-alloy steel and stainless steel, the post-weld heat-treatment results in a high variety of microstructures coexisting around the fusion line, due to carbon diffusion and carbides dissolution/precipitation. The local constitutive laws in the vicinity of the fusion zone were identified by micro tensile specimens for the sub-millimeter sized zones, equivalent bulk materials representing the decarburized layer using both wet H{sub 2} atmosphere and diffusion couple, and nano-indentation for the carburized regions (i.e. the martensitic band and the austenitic region). The decarburized zone presents only 50% of the yield strength of the low-alloy steel heat affected zone and a ductility doubled. The carburized zones have a yield strength 3–5 times higher than that of the low-alloy steel heat affected zone and have almost no strain hardening capacity. These properties result in heterogeneous plastic deformation happening over only millimeters when the weld is loaded perpendicularly to the weld line, affecting its overall behavior. The constitutive laws experimentally identified were introduced as inputs into a finite elements model of the transverse tensile test performed on the whole dissimilar weld. A good agreement between experiments and simulations was achieved on the global stress-strain curve. The model also well predicts the local strain field measured by microscale DIC. A large out-of-plane deformation due to the hard carburized regions has also been identified.

  20. Strength and toughness improvement of low-alloy steel for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Lee, S. H.; Ku, Y. M.; Lee, B. J. [Seoul National University, Seoul (Korea)

    2002-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining good toughness prior to service is one of the utmost designing goals. This work has been carried out by the combination of thermodynamic calculation, microstructural observation and evaluation of designed alloy, and the evaluation of HAZ characteristics. In this work, the means of alloy design developed in the previous study were adopted. Cr/Mo contents was controlled and Ni contents was increased to improve toughness. High toughness values were obtained in designed low carbon steels, with higher strength level than that of SA508III steels. A high CVN energy of 220J was obtained at -100 .deg. C, and a low DBTT of about-100 .deg. C was obtained in 60Cr alloy prepared in this work. 38 refs., 61 figs., 32 tabs. (Author)

  1. Hydrogen trapping in high-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Pound, B.G. [SRI International, Menlo Park, CA (United States). Materials Research Center

    1998-10-09

    Hydrogen trapping in three high-strength steels -- AerMet 100 and AISI 4340 and H11 -- was studied using a potentiostatic pulse technique. Irreversible trapping constants (k) and hydrogen entry fluxes were determined for these alloys in 1 mol/1 acetic acid/1 mol/1 sodium acetate. The order of the k values for the three steels and two 18Ni maraging steels previously studies inversely parallels their threshold stress intensities for stress corrosion cracking (K{sub 1SCC}). Irreversible trapping in AerMet 100 varies with aging temperature and appears to depend on the type of carbide (Fe{sub 3}C or M{sub 2}C) present. For 4340 steel, k can be correlated with K{sub 1SCC} over a range of yield strengths. The change in k is consistent with a change in the principal type of irreversible trap from matrix boundaries to incoherent Fe{sub 3}C. The principal irreversible traps in H11 at high yield strengths are thought to be similar to those in 4340 steel.

  2. Softening Behavior of Hardness and Surface Fatigue of Rolling-Sliding Contact in the Case of Developed Alloy Steels

    Science.gov (United States)

    Redda, Daniel Tilahun; Nakanishi, Tsutomu; Deng, Gang

    To get high performance, downsizing and weight saving of the power transmission systems, the improvement of machine elements has been required. In this study, case-carburized gear materials for a high load-carrying capacity were developed. Low-alloyed steels with 1%Cr-0.2%Mo, 1%Cr-0.2%Mo-1%Si and 1%Cr-0.2%Mo-2%Ni (Cr-Mo steel, Cr-Mo-Si steel and Cr-Mo-Ni steel) were melted in a hypoxia vacuum. Test rollers were made of the developed steels, and they were carburized (Type A and Type B), hardened and tempered. Heating retention tests were carried out to investigate the softening behavior of hardness at high heating temperatures in the case of the developed steels. Roller tests were conducted under the rolling-sliding contact and high-load conditions to study the surface fatigue of the developed steels. From the obtained test results, it was found that the softening behavior of surface hardness at high temperatures in the cases of Cr-Mo-Si steel (Type A) and Cr-Mo-Ni steel (Type B) is lower than that in the cases of Cr-Mo steel (Type A) and Cr-Mo steel (Type B). In the cases of Cr-Mo-Si steel (A) and Cr-Mo-Ni steel (B), micro- and small-pitting area ratios are smaller and large-pitting life is longer than those in the cases of Cr-Mo steel(A) and Cr-Mo steel(B) under the same carburizing treatment method and high-load conditions. Furthermore, the relationship between the softening behavior of surface hardness on the heating pattern and the surface fatigue on the rolling-sliding contact of the developed alloy steels was clarified.

  3. Development of a Nitrogen-Modified Stainless-Steel Hardfacing Alloy

    Science.gov (United States)

    Smith, Ryan Thomas

    A 2nd generation hardfacing alloy, Nitromaxx, has been designed though an integrated approach of chemical modification, characterization, and testing. Nitromaxx is a stainless-steel alloy modified with 0.5wt% nitrogen which has improved elevated temperature properties and wear performance. This is achieved by changing both the microstructure phase balance and inherent deformation characteristics of the metal. The alloy is fabricated by a powder metallurgy-hot isostatic pressing (PM-HIP) method, rather than traditional cladding methods. This allows for alloy property modification by equilibrium heat treatment while eliminating significant fabrication defects, so that component life is extended wear and galling performance is improved. The design approach involved extensive characterization of severely worn and galled surfaces of the 1st generation of hardfacing alloys. Observation of samples after galling testing showed highly inhomogeneous deformation in regions of the gall scar, leading to the design hypothesis that strain-localization is a controlling mechanism in severe wear of stainless-steels. Additionally, the presence and subsequent loss was investigated and correlated microstructurally to the transition to poor galling behavior in the existing stainless steel hardfacing NOREM02. This provided new insight and identification of key microstructural and mechanical properties that improve galling performance: 1) increased strain-hardening rate in the metal matrix at elevated temperature, 2) increased yield strength in the matrix leading to higher hardness, and 3) increased volume fraction of hard, non-deforming phases. All of these alloy design goals can be realized by the addition of nitrogen, which 1) at high concentration is shown to lower the stacking fault energy in the stainless steel matrix, 2) increases interstitial matrix strengthening, and 3) increases the volume fraction of nitride phases. These observations have been confirmed qualitatively and

  4. Correlation between image analysis and microstructure of the high-strength low-alloy steels; Correlacao entre analise de imagem e microestruturas de acos de alta resistencia e baixa liga

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.C. da; Rollo, J.M.D.A. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Lorenzo, P.L. di [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica e Quimica

    1995-12-31

    Image analysis were carried out in 13 samples of HSLA steel in annealed state, cold and hot rolled conditions. The samples of carbon content ranged from 0.05 up to 0.14%. Volumetric percentage parameters of pearlite and ferrite were determined. A technique base on the difference of tonality was used for parameters determination. For this purpose a scale 256 gray levels from zero (black) up to 255 (white) for each pixel was used. As a result an equation which relates carbon and micro constituents percentages were obtained. The present correlation includes quick and accurate techniques for microstructural analysis of high strength low-alloy steels 9 refs., 4 figs., 1 tab.

  5. Experimental determination of TRIP-parameter K for mild- and high-strength low-alloy steels and a super martensitic filler material.

    Science.gov (United States)

    Neubert, Sebastian; Pittner, Andreas; Rethmeier, Michael

    2016-01-01

    A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior.

  6. Modeling and experimental analysis of magnetostriction in high strength steels

    Directory of Open Access Journals (Sweden)

    Della Torre E.

    2013-01-01

    Full Text Available Previous studies on the magnetostriction in high strength steels have ignored the internal anisotropies due to previous material handling. Cold-rolling an iron alloy will stretch and distort the magnetic domains in the direction of rolling. These altered domain shapes impact the magnetic characteristics of the alloy; adding an additional preferred direction of magnetization to the easy or hard axes within the crystalline structure. This paper presents data taken on rods of a high strength steel that have been machined parallel to the rolling direction; as well as simulated results using a Preisach-type magnetostriction model. The model, whose formulation is based on the DOK magnetization-based model, aims specifically to simulate the Villari reversal phenomenon observed in the magnetostriction measurements of high strength steels and some Terfenol-D alloys.

  7. Optimization of the welding process of high alloyed steels and improvement of corrosion behaviour of welded joints; Optimierung des Schweissprozesses hochlegierter Staehle und Verbesserung der Korrosionsbestaendigkeit der Schweissverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, K.; Goellner, J. [Otto-von-Guericke-Universitaet Magdeburg, IWW, PF 4120, D-39016 Magdeburg (Germany); Ryspaev, T.; Reiter, R.; Wesling, V. [Technische Universitaet Clausthal, Agricolastrasse 2, D-38678 Clausthal-Zellerfeld (Germany)

    2005-03-01

    The optimization of welding processes is necessary to obtain a good durability of the welded joints connected with a minimization of the corrosion performance. Welding processes represent a considerable influence of the material. The formation of precipitations, strong structure changes, increasing of the residual stress and not at all undefined surface layers are possible. All these changes have a great influence on the corrosion behaviour. Particularly tempering tarnish changes the passive layer which is decisive for the corrosion resistance. But also surface treatment methods can influence the corrosion behaviour. Therefore both the welding process and an ''after-care'' coordinated with the respective welding process had to be optimized. The optimization of the welding process was carried out by variation of the energy per unit length and the use of different protective gases. For a selection of a surface treatment method it has to be taken into account that an obvious remove of the tempering tarnish doesn't lead to an improvement in the corrosion behaviour. Traces of the working tool which can have a negative effect on the corrosion behaviour often remain on the surface. The influence of these different parameters on the corrosion property could be proved by electrochemical and surface analytical examinations. The investigations were carried out at specimens of two typical representatives of high alloyed austenitic steels and at welded joints, which had different surface treatments. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [German] Die Optimierung von Schweissprozessen ist erforderlich, um eine gute Haltbarkeit der Schweissverbindungen und eine Minimierung der Korrosionsneigung zu erzielen. Schweissprozesse stellen eine erhebliche Beeinflussung fuer den Werkstoff dar. Es kann dabei zu Ausscheidungen bzw. zu starken Gefuegeveraenderungen, zur Erhoehung der Eigenspannungen und nicht zuletzt zu Schichtbildungen kommen. All

  8. 77 FR 54926 - Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany

    Science.gov (United States)

    2012-09-06

    ... COMMISSION Certain Seamless Carbon and Alloy Steel; Standard, Line, and Pressure Pipe From Germany... steel standard, line, and pressure pipe from Germany would be likely to lead to continuation or... 2012), entitled Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe from...

  9. TEM study of mechanically alloyed ODS steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Jan, E-mail: j.hoffmann@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Karlsruhe (Germany); Klimenkov, Michael; Lindau, Rainer; Rieth, Michael [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Karlsruhe (Germany)

    2012-09-15

    Compared to present reactors, modern nuclear power plant concepts are based on materials which can be operated at higher temperatures and up to higher neutron doses. Oxide dispersion strengthened (ODS) steels - produced by mechanical alloying - with chromium contents of 9 and 14 wt.% (or even more) are typical candidate materials. As the preparation of TEM samples from milled powders is usually very difficult, a new approach has been successfully adopted coming from the TEM sample preparation of biological tissues. Here, the alloyed powder is first embedded and then cut into thin films of 60-90 nm thickness using a microtom. The focal point is to gain a better knowledge of the solution mechanism of Y{sub 2}O{sub 3} in the steel powder during mechanical alloying. Investigations on mechanically alloyed powders containing 13% Cr and Y{sub 2}O{sub 3} were made using a Tecnai Scanning Transmission Electron Microscope (STEM) with EDX detector. Detailed elemental mappings of the powder particles show the presence of Y{sub 2}O{sub 3} particles after different milling times. The non-dissolved Y{sub 2}O{sub 3} phase was detected on the surface of the mechanically alloyed powder particles in the specimen alloyed at times down to 24 h. After mechanically alloying of 80 h, no Y{sub 2}O{sub 3} phase has been detected. Inside the mechanically alloyed powder, no particles were detected. All further results of the elemental mappings after different milling times are analyzed, compared, and discussed in this paper.

  10. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment

    Science.gov (United States)

    Xu, Lining; Wang, Bei; Zhu, Jinyang; Li, Wei; Zheng, Ziyi

    2016-08-01

    Low-Cr alloy steel demonstrates lower corrosion rate than does C steel in a high-temperature and high-pressure CO2-containing environment. This study aimed to clarify the role of the Cr content in mitigating corrosion and reports the performance of 1%Cr, 2%Cr, 3%Cr, 4%Cr, 5%Cr, and 6.5%Cr steels. The results show that low-Cr alloy steel in CO2 at 80 °C and 0.8 MPa possesses spontaneous prepassivation characteristics when the Cr content is 3% or higher. Furthermore, the formation and peel-off of a prepassivation film on 3%Cr-6.5%Cr steels surfaces during polarization demonstrate that adequate amount of Cr in the steel substrate can cause protective layer. The main component of prepassivation film on 3%Cr steel is Cr(OH)3. Thus, the role of Cr is revealed. An adequate amount of Cr in the steel substrate causes the formation of protective Cr(OH)3 layer, which helps low-Cr steel to possess prepassivation characteristics. Prepassivation is the reason why low-Cr steel has a lower corrosion rate than C steel.

  11. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  12. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  13. Research and Service Experience with Environmentally-Assisted Cracking in Carbon and Low-Alloy Steels in High-Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Hans-Peter; Ritter, Stefan [Paul Scherrer Inst., Laboratory for Materials Behaviour, Villigen (Switzerland). Nuclear Energy and Safety Research Dept.

    2005-11-15

    The most relevant aspects of research and service experience with environmentally-assisted cracking (EAC) of carbon (C) and low-alloy steels (LAS) in high-temperature (HT) water are reviewed, with special emphasis on the primary pressure boundary components of boiling water reactors (BWRs). The main factors controlling the susceptibility to EAC under light water reactor (LWR) conditions are discussed with respect to crack initiation and crack growth. The adequacy and conservatism of the current BWRVIP-60 stress corrosion cracking (SCC) disposition lines (DLs), ASME III fatigue design curves, and ASME XI reference fatigue crack growth curves, as well as of the GE EAC crack growth model are evaluated in the context of recent research results. The operating experience is summarized and compared to the experimental/mechanistic background knowledge. Finally, open questions and possible topics for further research are identified. Laboratory investigations revealed significant effects of simulated reactor environments on fatigue crack initiation/growth, as well as the possibility of SCC crack growth for certain specific critical combinations of environmental, material and loading parameters. During the last three decades, the major factors of influence and EAC susceptibility conditions have been readily identified. Most parameter effects on EAC initiation and growth are adequately known with acceptable reproducibility and reasonably understood by mechanistic models. Tools for incorporating environmental effects in ASME III fatigue design curves have been developed/qualified and should be applied in spite of the high degree of conservatism in fatigue evaluation procedures. The BWRVIP-60 SCC DLs and ASME XI reference fatigue crack growth curves are usually conservative and adequate under most BWR operation circumstances. The operating experience of C and LAS primary pressure-boundary components in LWRs is very good worldwide. However, isolated instances of EAC have occurred

  14. Research and Service Experience with Environmentally-Assisted Cracking in Carbon and Low-Alloy Steels in High-Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, Hans-Peter; Ritter, Stefan [Paul Scherrer Inst., Laboratory for Materials Behaviour, Villigen (Switzerland). Nuclear Energy and Safety Research Dept.

    2005-11-15

    The most relevant aspects of research and service experience with environmentally-assisted cracking (EAC) of carbon (C) and low-alloy steels (LAS) in high-temperature (HT) water are reviewed, with special emphasis on the primary pressure boundary components of boiling water reactors (BWRs). The main factors controlling the susceptibility to EAC under light water reactor (LWR) conditions are discussed with respect to crack initiation and crack growth. The adequacy and conservatism of the current BWRVIP-60 stress corrosion cracking (SCC) disposition lines (DLs), ASME III fatigue design curves, and ASME XI reference fatigue crack growth curves, as well as of the GE EAC crack growth model are evaluated in the context of recent research results. The operating experience is summarized and compared to the experimental/mechanistic background knowledge. Finally, open questions and possible topics for further research are identified. Laboratory investigations revealed significant effects of simulated reactor environments on fatigue crack initiation/growth, as well as the possibility of SCC crack growth for certain specific critical combinations of environmental, material and loading parameters. During the last three decades, the major factors of influence and EAC susceptibility conditions have been readily identified. Most parameter effects on EAC initiation and growth are adequately known with acceptable reproducibility and reasonably understood by mechanistic models. Tools for incorporating environmental effects in ASME III fatigue design curves have been developed/qualified and should be applied in spite of the high degree of conservatism in fatigue evaluation procedures. The BWRVIP-60 SCC DLs and ASME XI reference fatigue crack growth curves are usually conservative and adequate under most BWR operation circumstances. The operating experience of C and LAS primary pressure-boundary components in LWRs is very good worldwide. However, isolated instances of EAC have occurred

  15. Susceptibility of two types of low-alloy hull steels to pit initiation

    Institute of Scientific and Technical Information of China (English)

    Jianmin Wang; Xuequn Chen; Guomin Li

    2004-01-01

    Four low-alloy hull steels with different alloy elements were selected. Their susceptibility to pitting corrosion was compared by means of electrochemical polarization test. The inclusions in the steels and their pitting corrosion characteristics were studied by an electron probe micro-analyzer (EPMA). The results indicate that some inclusions are the main sources of pitting corrosion.The susceptibility of nickel-chromium steel to pit initiation is less than that of manganese steel. Under the same conditions, nickelchromium steel is easier to passivate than manganese steel, and the passive films on nickel-chromium steel surface are more stable than that on manganese steel. In low-alloy steels, the higher the contents of nickel and chromium, the lower the critical passive pH value. In the same kind of steel, multi-phase inclusions containing sulfide are easier to initiate pitting corrosion than other inclusions.

  16. Advanced High Strength Steel in Auto Industry: an Overview

    OpenAIRE

    2014-01-01

    The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS) significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits in...

  17. Gas-Carburizing Kinetics of a Low-Alloy Steel

    Science.gov (United States)

    Nobili, Luca; Cavallotti, Pietro; Pesetti, Mariella

    2010-02-01

    Gas-carburizing kinetics of a low-alloy steel (Pyrowear 53) was investigated by thermogravimetric experiments. Kinetic curves were modeled by adapting the approximate integral method, and the diffusion coefficient of carbon as well as the rate constant of the surface reaction were estimated. These parameters were evaluated after several carburizing procedures, which differ from each other in the surface treatments performed before the carburizing step. It is known that the carbon enrichment is low when this steel is carburized without any pretreatment, and this behavior was found to be related to a low value of carbon diffusivity. The interaction between the selective oxidation of alloying elements by the carburizing atmosphere and carbon diffusion is discussed. The pretreatment procedures investigated in this work consist of different combinations of oxidation, reduction, and grit-blasting processes. The most effective procedures involve oxidation in dry air or oxidation in wet air followed by grit blasting.

  18. Computer assisted alloy and process design of nuclear structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Joo [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)

    1997-07-01

    Based on literature research and thermodynamic calculations, it was suggested that toughness of SA508 class 3 steels can be improved by grain refinement using pinning by AIN during forging if alloy contents of Al and N are adjusted. It was also pointed out that the temper embrittlement due to the coarsening of M{sub 2}C carbide may originate from phase transition to the more stable {xi}-carbide. A necessity of experimental works to avoid such a transition by adjustment of alloy composition was claimed. An optimum temperature for the intercirtical heat treatment was derived by thermodynamic= calculation and was found to agree with experimentally derived one. The thermodynamic database and the present calculation scheme can be used as a powerful research tool in further study for design of next generation RPV steels of wide composition range, if combined with the current experimental technology. (Author) 101 refs., 10 tabs., 11 figs.

  19. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  20. 锡对低合金钢在高Cl-浓度酸性溶液中耐蚀性的影响%Effect of Tin on Corrosion Behaviour of Low Alloy Steel in Acid Solution with High Choloride Concentration

    Institute of Scientific and Technical Information of China (English)

    陈珊; 李国明; 王小燕; 陈学群

    2013-01-01

    采用动电位扫描、电化学阻抗谱(EIS)、模拟挂片试验等方法研究了锡元素对低合金钢耐蚀性的影响.结果表明,向钢中添加少量锡可以抑制钢在酸性溶液中的阳极及阴极反应,电化学阻抗谱表明添加锡后钢材的阻抗值增大,模拟实际条件的挂片试验也证实了添加锡有助于提高酸性介质中低合金钢的耐蚀性.%Some electrochemical techniques such as dynamic scanning,EIS and coupon test in simulated solution with high chloride concentration were used to investigate the effect of tin on the corrosion resistance of low alloy steel.The results show that adding a little tin in the steel can restrain the anodic and cathodic corrosion behavior of all specimens in the solution and the corrosion rate decreased with the increase of tin content.Coupon test also confirms that adding tin will enhance the corrosion resistance of the steel in acid solution with high chloride concentration.

  1. Effect of Nitriding on Fatigue Characteristics of Cr-Mo Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kwang Keun; Kim, Jae Hoon; Choi, Hoon Seok [Chungnam National University, Daejeon (Korea, Republic of)

    2015-06-15

    CrMo alloy steel was nitrided using two types of processing methods, ion-nitriding processing and nitrocarburizing. Both processes were conducted for a duration of 30 min. To compare the surface hardness of the alloys created by the different processes , microhardness tests were conducted, and fatigue tests of each material were performed by a cantilever rotary bending fatigue test machine (Yamamoto, YRB 200) in the very high cycle regime (N > 10{sup 7}cycle). Fractography of the fractured surfaces was conducted by scanning electron microscopy - to observe the fracture mechanisms of very high cycle fatigue and the effect of the nitriding process on the fatigue characteristics.

  2. Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel

    Directory of Open Access Journals (Sweden)

    Węglowski M. St.

    2016-03-01

    Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.

  3. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  4. Development of Zn50 Brazing Alloy for Joining Mild Steel to Mild Steel (SAE1018

    Directory of Open Access Journals (Sweden)

    S.C. Nwigbo

    2014-09-01

    Full Text Available This work has developed new brazing alloys for joining mild steel to mild steel (SAE1018 at a lower temperature. The alloys blends and error analysis were done by experimental design software (Design Expert 8.0.7.1. Design of experiments was done by Scheffe quadratic mixture method. The liquidus temperatures were predicted by calculation of phase diagrams of the alloying metals. The brazing alloys were produced by gravity technique and melted using silicon carbide graphite crucible. The quality of the brazing alloys was analyzed by optical microscopy (OM, atomic absorption spectroscopy (AAS and fourier transform infrared spectroscopy (FT-IR. Brazed joints were produced by torch method with a commercial flux. Brazing temperatures (liquidus were tracked by a digital infrared/laser pyrometer. Some mechanical properties studied were tensile strength and hardness. Finally, brazed joints produced from the developed brazing alloys were compared to that produced from muntz brass. Six (6 brazing alloys were successfully developed. Zinc and manganese were the main components, to which were added; 3 to 4 %wt silver and 11 to15 %wt modifying element. The microstructure showed a typical eutectic structure with zinc-rich phase distributed uniformly in the matrix with a combination of different sizes of dendrite, rounded blocks of compounds and hypoeutectic structures. AAS results indicated minimal out-gassing of zinc and FT-IR results indicated very low presence of atmospheric gas. The range of brazing temperature for best results was recorded from 690.90 to 735.10 0C. The joints produced from the developed brazing alloys had acceptable strengths with improved stress-strain behaviour compared to muntz brass.

  5. Plasma Nitriding of Low Alloy Sintered Steels

    Institute of Scientific and Technical Information of China (English)

    Shiva Mansoorzadeh; Fakhreddin Ashrafizadeh; Xiao-Ying Li; Tom Bell

    2004-01-01

    Fe-3Cr-0.5Mo-0.3C and Fe-3Cr-1.4Mn-0.5Mo-0.367C sintered alloys were plasma nitrided at different temperatures. Characterization was performed by microhardness measurement, optical microscopy, SEM and XRD. Both materials had similar nitriding case properties. 1.4% manganese did not change the as-sintered microstructure considerably.It was observed that monophase compound layer, γ, formed with increasing temperature. Compound layer thickness increased with increasing temperature while nitriding depth increased up to a level and then decreased. Core softening was more pronounced at higher temperature owing to cementite coarsening.

  6. Electrochemical characterization of oxide formed on chromium containing mild steel alloys in LiOH medium

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Veena, E-mail: veenasn1974@gmail.com; Chandran, Sinu; Subramanian, H.; Chandramohan, P.; Bera, S.; Rangarajan, S., E-mail: sranga@igcar.gov.in; Narasimhan, S.V.

    2014-06-01

    Flow accelerated corrosion leads to wall thinning of outlet-feeder pipes in the primary heat transport system of pressurized heavy water reactors and can even necessitate enmasse feeder replacement. Replacement of carbon steel 106-grade-B (CS) with chromium containing carbon steel reduces the risk of this failure. This paper discusses the role of small additions of chromium in modifying the properties of the oxide film. CS and chromium containing mild steels viz., A333, 2.25Cr–1Mo and modified 9Cr–1Mo alloy were exposed to primary heat transport (PHT) system chemistry conditions. The oxide films formed were characterized by electrochemical and surface characterization techniques. Mott–Schottky analysis showed donor type of defects. The densities of defects in the oxides of chromium containing alloys were 3–15 times less than that in CS. In presence of ∼200 ppb of dissolved oxygen, the oxides formed were hematite with two orders of magnitude smaller concentration of defects as compared to that formed under reducing conditions. These results suggest that the presence of chromium lowers the defect density of the oxide film and thus ensures a reduced corrosion rate. - Graphical abstract: Display Omitted - Highlights: • High temperature oxides formed on Cr containing mild steels are less defective. • Defect densities of oxides decrease with increase in Cr content in the alloy. • O{sub 2} in solution greatly influences the nature and defect chemistry of oxides.

  7. Influence of silicon addition on the mechanical properties and corrosion resistance of low-alloy steel

    Indian Academy of Sciences (India)

    M Hebda; H Dębecka; J Kazior

    2015-12-01

    The addition of silicon to low-alloy steel allows to modify the materials' microstructure and thus to improve their corrosion resistance and mechanical properties. The influence of adding different amounts of silicon on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low-alloy steel was investigated. Samples were prepared via the mechanical alloying process, which is the most useful method to homogeneously introduce silicon to low-alloy steel. Sintering was performed by using the spark plasma sintering (SPS) technique. After the SPS process, half of each of the obtained samples was heat-treated in a vacuum furnace. The results show that high-density materials were achieved, and a homogeneous and fine microstructure was obtained. The investigated compositions containing 1 wt% of silicon had better corrosion resistance than samples with 3 wt% of silicon addition. Furthermore, corrosion resistance as well as the mechanical and plastic properties of the samples with 1 wt% of silicon can be further improved by applying heat treatment.

  8. Multicomponent and High Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Brian Cantor

    2014-08-01

    Full Text Available This paper describes some underlying principles of multicomponent and high entropy alloys, and gives some examples of these materials. Different types of multicomponent alloy and different methods of accessing multicomponent phase space are discussed. The alloys were manufactured by conventional and high speed solidification techniques, and their macroscopic, microscopic and nanoscale structures were studied by optical, X-ray and electron microscope methods. They exhibit a variety of amorphous, quasicrystalline, dendritic and eutectic structures.

  9. Mössbauer and XRD study of Al-Sn linished steel bimetal alloy

    Science.gov (United States)

    Kuzmann, E.; Silva, L. da; Stichleutner, S.; El-Sharif, M.; Homonnay, Z.; Klencsár, Z.; Sziráki, L.; Chisholm, C. U.; Lak, B.

    2016-12-01

    Aluminium alloy free CS1 type steel (0.06 wt% C, 0.45 wt% Mn) and samples of cold roll bonded steel bimetal alloys (MAS15 and MAS16) were fabricated and investigated by X-ray diffraction (XRD), 57Fe conversion electron Mössbauer spectroscopy (CEMS) at room temperature. XRD has revealed only the existence of the alpha iron solid solution (steel) phase in the steel only sample, while identified steel and metallic Al and Sn constituent phases in the bimetallic alloys. 57Fe Mössbauer spectroscopy revealed the presence of 4 % secondary iron-bearing phase attributed mainly to iron oxide/ oxyhydroxides (ferrihydrite) besides the steel matrix on the surface of the steel sample. A significant difference between the occurrences of the secondary phase of differently prepared bimetal alloys found in their 57Fe CEM spectra allowed to identify the main phase of debris as different iron oxide/ oxyhydroxides.

  10. Experimental and FEM Investigation of Heat Treatment on the Torsional Aspects of D2 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Safwan M. Al-Qawabah

    2010-09-01

    Full Text Available This study shows the effect of heat treatment on the torsion aspects of D2 alloy steel, in addition further analysis using ANSYS11 software w as used in investigation. Test specimens were prepared using high accurate machines (CNC however, hardening at different austenite temperature (during hardening namely 1070, 1040, 1010 and 980ºC was studied followed by tempering process at 540ºC . It was found that there was a direct relation between the micro hardness magnitude and the austenite temperature, the maximum was 66.1% that achieved at 1070ºC. This finding was significant because there is a great enhancement in the ability of D2 alloy steel to sustain high torsion loads, where the maximum was 191.1% that achieved at 1070ºC.

  11. Factors affecting the strength of multipass low-alloy steel weld metal

    Science.gov (United States)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  12. Galvanic corrosion between dental precious alloys and magnetic stainless steels used for dental magnetic attachments.

    Science.gov (United States)

    Takahashi, Noriko; Takada, Yukyo; Okuno, Osamu

    2008-03-01

    In this study, we examined the corrosion behavior of dental precious alloys and magnetic stainless steels, namely SUS 444, SUS XM27, and SUS 447J1, used for dental magnetic attachments. Their galvanic corrosion behavior was evaluated from the viewpoint of corrosion potentials when they were in contact with each other. Rest potentials of the precious alloys were constantly higher than those of magnetic stainless steels. Since most gold alloys raised the corrosion potential more significantly than silver alloys did, silver alloys seemed to be better suited than gold alloys for combination with magnetic stainless steels. However, all corrosion potential values were sufficiently lower than the breakdown potentials of the stainless steels and existed within their passive regions. Based on the findings of this study, SUS XM27 and SUS 447J1--which exhibited higher breakdown potentials than SUS 444--emerged as the preferred choices for combination with gold alloys.

  13. Corrosion behavior of Cr/Ni alloy coated ferritic stainless steel in simulated cathodic PEMFC environments

    Energy Technology Data Exchange (ETDEWEB)

    Rendon, M.; Rivas, S.V.; Arriga, L.G.; Orozco, G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Queretaro (Mexico); Perez-Quiroz, J.T. [Inst. Mexicano del Transporte, Queretaro (Mexico); Porcayo, J. [Inst. de Investigaciones Electricas, Morelos (Mexico)

    2008-07-01

    The bipolar plate in a proton exchange membrane fuel cell (PEMFC) must be corrosion resistant and the interfacial contact resistance (ICR) with the gas diffusion layer must be low. For these reasons, stainless steel with high Cr content is considered to be a viable material for use in bipolar plate construction. This study evaluated the corrosion resistance of ferritic stainless steels 441 and 439, with and without a Cr/Ni coating, under simulated cathodic PEMFC conditions. Steel 441 without coating has a low corrosion current density and can be considered as a candidate material to be used as bipolar plate. The study showed that after the Cr/Ni coating was applied by Thermal Spray Metal method, the corrosion current density increased due to selective dissolution of an alloy element. The corrosion current density of the coatings was higher than the DOE target value, rendering them an unfeasible option to be used in bipolar plates for fuel cell applications. However, previous studies have shown that after the coating was applied, a passivation process improved the corrosion resistance. Although steel 441 appears to be a better candidate than steel 316 because of its lower cost, the behaviour of the Ni-Cr alloys was not satisfactory in corrosive acidic medium. 5 refs.

  14. Investigation on laser brazing AA6056 Al alloy to XC18 low-carbon steel

    Institute of Scientific and Technical Information of China (English)

    Jianjun Ding; Feiqun Li; Feng Qu; Patrice Peyre; Remy Fabbro

    2005-01-01

    @@ Based on the studies of influence of YAG laser heating conditions for Al alloy melt and steel on wettability,the mechanics of the laser overlap braze welding of 6056 Al and XC18 steel sheet has been investigated.Under the temperature range which is above the melting point of the Al alloy and below the melting point of the steel, two dissimilar metals can be joined by means of laser braze welding. There is no crack observed in the joining area, i.e. Al-Fe intermetallic phase (Fe3Al/FeAl/FeAl3/Fe2Al5) layer formed by solution and diffusion between liquid-solid interface. The temperature range can be defined as the process temperatures of laser braze welding of Al-Fe materials. Selecting a higher laser heating temperature can improve the wettability of Al melt to steel surface, but the intermetallic phase layer is also thicker. When the laser heating temperature is so high that the joining surface of steel is melted, there is a crack trend in the joining area.

  15. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  16. Velocity hardening influence on the martensite transformation nature in constructional average alloy steel

    Institute of Scientific and Technical Information of China (English)

    Tsellermaer; V.; V.; Popova; N.; A.; Klimashin; S.; I.; Tihonikova; O.; V.; Konovalov; S.; V.; Kozlov; E.; V.; Gromov; V.; E.

    2005-01-01

    The quantitative study of the hardening velocity influence on the α-phase morphology in 30CrNi3MoVA (0.3% C, 1% Cr,3% Ni, 1% Mo, 1% V) cast average alloy steel after gomogenization (1125℃, 13 h), normalizing (980℃, 10 h) and high tempering (660℃, 10 h. with cooling on air) is the aim of this work.……

  17. Velocity hardening influence on the martensite transformation nature in constructional average alloy steel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The quantitative study of the hardening velocity influence on the α-phase morphology in 30CrNi3MoVA (0.3% C, 1% Cr,3% Ni, 1% Mo, 1% V) cast average alloy steel after gomogenization (1125℃, 13 h), normalizing (980℃, 10 h) and high tempering (660℃, 10 h. with cooling on air) is the aim of this work.

  18. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    Science.gov (United States)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  19. Microscopy of Alloy Formation on Arc Plasma Sintered Oxide Dispersion Strengthen (ODS) Steel

    Science.gov (United States)

    Bandriyana, B.; Sujatno, A.; Salam, R.; Dimyati, A.; Untoro, P.

    2017-07-01

    The oxide dispersed strengthened (ODS) alloys steel developed as structure material for nuclear power plants (NPP) has good resistant against creep due to their unique microstructure. Microscopy investigation on the microstructure formation during alloying process especially at the early stages was carried out to study the correlation between structure and property of ODS alloys. This was possible thanks to the arc plasma sintering (APS) device which can simulate the time dependent alloying processes. The ODS sample with composition of 88 wt.% Fe and 12 wt.% Cr powder dispersed with 1 wt.% ZrO2 nano powder was mixed in a high energy milling, isostatic compressed to form sample coins and then alloyed in APS. The Scanning Electron Microscope (SEM) with X-ray Diffraction Spectroscopy (EDX) line scan and mapping was used to characterize the microstructure and elemental composition distribution of the samples. The alloying process with unification of each Fe and Cr phase continued by the alloying formation of Fe-Cr by inter-diffusion of both Fe and Cr and followed by the improvement of the mechanical properties of hardness.

  20. Effects of alloy elements on mechanical properties of high strength PC steel bar%合金元素对高强 PC钢棒力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    张飞鹏; 董海鹏; 李永现; 毛伟吉; 王成彪

    2014-01-01

    In order to fulfill the requirements of strength , yield ratio and extension of high strength PC steel bar , effects of alloy elements content such as carbon , silicon, vanadium on mechanical properties of PC steel bar after heat treatment were studied .The results show that when the carbon content reaches 0.17%, the tensile strength begins to significantly improve after quenching .Increase of the silicon content is beneficial for improving the ductility of steel bar .However , the yield ratio would be increased .The yield ratio should be increased with existence of vanadium , but it is beneficial for improving the overall strength and plasticity of the steel bar .%为探索满足高强PC钢棒对强度、屈强比和延伸性等力学性能指标的要求,系统研究了合金元素碳、硅、钒等含量对高强PC钢棒热处理后力学性能的影响。结果表明,当碳含量达到0.17%时,淬火后抗拉强度开始显著提高;硅元素含量的提高有利于提高钢棒的延性,但屈强比也随之提高;钒元素的存在会有利于强度和塑性的整体提高,但也使钢棒屈强比提高。

  1. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    Science.gov (United States)

    Ren, Xiaowei

    yttrium oxide particles distributed along grain boundaries. Grain refinement by shot peening or equal channel angular pressing mitigated the corrosion of F/M steels in SCW by development of a Cr-rich inner oxide layer and/or chromium oxide layer that acts as an effective diffusion barrier. The improvement is attributed to the enhanced diffusion of chromium through a high density grain boundary network due to grain refinement, and varies depending upon the chromium content in alloys and the SCW exposure times.

  2. The environmentally-assisted cracking behaviour in the transition region of nickel-base alloy/low-alloy steel dissimilar weld joints under simulated BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, S.; Seifert, H.P.; Leber, H.J. [Paul Scherrer Institute, Nuclear Energy and Safety Research Department, Lab for Nuclear Materials, 5232 Villigen PSI (Switzerland)

    2011-07-01

    The stress corrosion cracking (SCC) behaviour perpendicular to the fusion line in the transition region between the Alloy 182 nickel-base weld metal and the adjacent low-alloy reactor pressure vessel (RPV) steel of simulated dissimilar metal weld joints was investigated under boiling water reactor normal water chemistry conditions at different stress intensities and chloride concentrations. A special emphasis was placed to the question whether a fast growing inter-dendritic SCC crack in the highly susceptible Alloy 182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy RPV steel. Cessation of inter-dendritic stress corrosion crack growth was observed in high-purity or sulphate-containing oxygenated water under periodical partial unloading or constant loading conditions with stress intensity factors below 60 MPa-m{sup 1/2} for those parts of the crack front, which reached the fusion line. In chloride containing water, on the other hand, the inter-dendritic stress corrosion crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated with a very high growth rate as a transgranular crack into the heat-affected zone and base material of the adjacent low-alloy steel. (authors)

  3. Solid particle erosion of steels and nickel based alloys candidates for USC steam turbine blading

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, Federico; Guardamagna, Cristina; Lorenzoni, Lorenzo [ERSE SpA, Milan (Italy); Robba, Davide [CESI, Milan (Italy)

    2010-07-01

    The main objective of COST536 Action is to develop highly efficient steam power plant with low emissions, from innovative alloy development to validation of component integrity. In this perspective, to improve the operating efficiency, materials capable of withstanding higher operating temperatures are required. For the manufacturing of components for steam power plants with higher efficiency steels and nickel-based alloys with improved oxidation resistance and creep strength at temperature as high as 650 C - 700 C have to be developed. Candidate alloys for manufacturing high pressure steam turbine diaphragms, buckets, radial seals and control valves should exhibit, among other properties, a good resistance at the erosion phenomena induced by hard solid particles. Ferric oxide (magnetite) scales cause SPE by exfoliating from boiler tubes and steam pipes (mainly super-heaters and re-heaters) and being transported within the steam flow to the turbine. In order to comparatively study the erosion behaviour of different materials in relatively short times, an accelerated experimental simulation of the erosion phenomena must be carried out. Among different techniques to induce erosion on material targets, the use of an air jet tester is well recognised to be one of the most valid and reliable. In this work the results of SPE comparative tests performed at high temperatures (550 C, 600 C and 650 C) at different impaction angles on some steels and nickel based alloys samples are reported. (orig.)

  4. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  5. Compatibility of Austenitic Steel With Molten Lead-Bismuth-Tin Alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LI Yan; WANG Xiao-min

    2011-01-01

    The compatibility of the austenitic AISI 304 steel with Pb-Bi-Sn alloy was analyzed. The AISI 304 steels were immersed in stagnant molten Pb-33.3Bi-33. 3Sn alloy at 400, 500 and 600℃ for different exposure times (100-2 000 h) respectively. XRay diffractio

  6. 75 FR 69125 - Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China

    Science.gov (United States)

    2010-11-10

    ... COMMISSION Certain Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From China Determination... alloy steel standard, line, and pressure pipe (``seamless SLP pipe''), provided for in subheadings 7304... Charlotte R. Lane determines that the domestic seamless SLP pipe industry is materially injured by reason of...

  7. Cyclic Partial Phase Transformations In Low Alloyed Steels: Modeling and Experiments

    NARCIS (Netherlands)

    Chen, H.

    2013-01-01

    Mechanical properties of low alloyed steels are directly determined by their microstructures. Thanks to versatility in their microstructures, the mechanical properties of low alloyed steels are much more adjustable than other materials. In the industry, one of the most effective ways to obtain the m

  8. Cyclic Partial Phase Transformations In Low Alloyed Steels: Modeling and Experiments

    NARCIS (Netherlands)

    Chen, H.

    2013-01-01

    Mechanical properties of low alloyed steels are directly determined by their microstructures. Thanks to versatility in their microstructures, the mechanical properties of low alloyed steels are much more adjustable than other materials. In the industry, one of the most effective ways to obtain the

  9. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  10. 76 FR 45509 - Final Results of Antidumping Duty Changed Circumstances Review: Carbon and Certain Alloy Steel...

    Science.gov (United States)

    2011-07-29

    ... Circumstances Review: Carbon and Certain Alloy Steel Wire Rod from Mexico, 75 FR 67685 (November 3, 2010...: Carbon and Certain Alloy Steel Wire Rod From Mexico, 71 FR 27989 (May 15, 2006). Notification This notice... International Trade Administration Final Results of Antidumping Duty Changed Circumstances Review: Carbon...

  11. 78 FR 2658 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission of Antidumping Duty...

    Science.gov (United States)

    2013-01-14

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Rescission of... its administrative review of the antidumping duty order on carbon and certain alloy steel wire rod (``wire rod'') from Mexico for the period October 1, 2011, through September 30, 2012. DATES:...

  12. A study on centrifugal casting of high speed steel roll

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 65~ 67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5 × 10-4 mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls.

  13. 76 FR 31940 - Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-06-02

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of... welded non-alloy steel pipe from Taiwan. The period of review is November 1, 2009, through October 31... circular welded non-alloy steel pipe from Taiwan. See Antidumping or Countervailing Duty Order, Finding,...

  14. 76 FR 49437 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-08-10

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe From Mexico, 75 FR 82374 (December 30,...

  15. 78 FR 33809 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Science.gov (United States)

    2013-06-05

    ... Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of China: Rescission...'') initiated an administrative review of the antidumping duty order on seamless carbon and alloy steel standard... order on seamless carbon and alloy steel standard, line, and pressure pipe from the People's Republic...

  16. 78 FR 60850 - Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of the Expedited Second Sunset...

    Science.gov (United States)

    2013-10-02

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Brazil: Final Results of the... certain alloy steel wire rod (wire rod) from Brazil would be likely to lead to continuation or recurrence... Alloy Steel Wire Rod from Brazil, 67 FR 55805 (August 30, 2002). \\2\\ See Initiation of...

  17. 75 FR 77838 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of the...

    Science.gov (United States)

    2010-12-14

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... on circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The period... Antidumping Duty Orders: Certain Circular Welded Non-Alloy Steel Pipe from Brazil, the Republic of...

  18. 77 FR 8808 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2012-02-15

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2009, through October 31, 2010. See Circular Welded Non-Alloy Steel...

  19. 77 FR 21968 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Science.gov (United States)

    2012-04-12

    ... International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the... and alloy steel standard, line, and pressure pipe from the People's Republic of China. The period of... countervailing duty order on seamless carbon and alloy steel standard, line, and pressure pipe from the...

  20. 75 FR 78216 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-15

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Antidumping Duty Changed Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe and Tube...

  1. 76 FR 36089 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2011-06-21

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''), covering the period.... SUPPLEMENTARY INFORMATION: Background Following publication of Circular Welded Non-Alloy Steel Pipe From...

  2. 77 FR 73015 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2012-12-07

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... conducting an administrative review of the antidumping duty order on circular welded non-alloy steel pipe... merchandise subject to the order is circular welded non-alloy steel pipe and tube. The product is...

  3. 77 FR 34344 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2012-06-11

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The review covers...: Background Following Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results...

  4. 78 FR 35248 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of Antidumping...

    Science.gov (United States)

    2013-06-12

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... order on circular welded non-alloy steel pipe (CWP) from the Republic of Korea (Korea) for the period... has been sold at less than normal value. \\1\\ See Circular Welded Non-Alloy Steel Pipe From...

  5. 76 FR 15941 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2011-03-22

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2008, through October 31, 2009. See Circular Welded Non-Alloy Steel...

  6. 78 FR 34342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and Partial Rescission of...

    Science.gov (United States)

    2013-06-07

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and... duty order on certain circular welded non- alloy steel pipe from Mexico.\\1\\ This administrative review.... \\1\\ See Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and...

  7. 76 FR 16607 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Partial Rescission of Antidumping...

    Science.gov (United States)

    2011-03-24

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Partial... antidumping duty order on carbon and certain alloy steel wire rod from Mexico. See Antidumping or... carbon and certain alloy steel wire rod from Mexico, in part, with respect to DeAcero, Aceros,...

  8. 78 FR 28190 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Final Results of Antidumping Duty...

    Science.gov (United States)

    2013-05-14

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Final Results of... carbon and certain alloy steel wire rod (wire rod) from Mexico. The period of review (POR) is October 1... (the Act). \\1\\ See Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results...

  9. 77 FR 66954 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2012-11-08

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Preliminary Results of... on carbon and certain alloy steel wire rod (wire rod) from Mexico. The period of review is October 1... Antidumping Duty Orders: Carbon and Certain Alloy Steel Wire Rod from Brazil, Indonesia, Mexico,...

  10. 77 FR 13545 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-03-07

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results... duty order on carbon and certain alloy steel wire rod (wire rod) from Mexico.\\1\\ This review covers.... \\1\\ See Carbon and Certain Alloy Steel Wire Rod from Mexico: Notice of Preliminary Results...

  11. 76 FR 33218 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti-Circumvention Inquiry of...

    Science.gov (United States)

    2011-06-08

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti... antidumping (AD) order on carbon and certain alloy steel wire rod from Mexico.\\1\\ See Notice of Antidumping Duty Orders: Carbon and Certain Alloy Steel Wire Rod from Brazil, Indonesia, Mexico, Moldova,...

  12. Development of third generation advanced high strength steels

    Science.gov (United States)

    McGrath, Meghan Colleen

    Lightweight duplex steels with combinations of either bainite, acicular ferrite, and austenite or martensite and austenite were investigated as third generation advanced high strength steels targeted for automotive applications. Large additions of manganese (> 13 wt%) and carbon (Strength and ductility were increased while density was decreased with aluminum additions between 2.4 and 5.5 wt% to the steel. This research addressed the dependence of alloying on microstructures and mechanical behavior for high manganese and aluminum duplex steels that were cast and subsequently hot rolled. Duplex steels with different volume fractions of primary delta-ferrite were used to study the crystallography of austenite fanned during the peritectic reaction. Solute profiles across the peritectic interface showed aluminum segregated near the interface which promoted bainitic ferrite formation. Thermal treatments were used to manipulate the concentration and type of oxides and the ferrite plate density was found to correlate with inclusions of low misfit in steels with austenite grain size of 16.5 microm. A steel with bainite and acicular ferrite produced an ultimate tensile strength of 970 MPa and elongation of 40%. The mechanical prope1iies depended on the strengths and size of the microstructural constituents. Work hardening behavior was examined in a steel exhibiting multiple martensitic transformation induced plasticity (gamma-austenite→epsilon-smartensite→alpha-martensite). A strain hardening exponent as high as 1.4 was observed with ultimate tensile strength and elongation as high as 1,165 MPa and 34%.

  13. Strip Casting of High Performance Structural Alloys

    Institute of Scientific and Technical Information of China (English)

    S S Park; J G Lee; Nack J Kim

    2004-01-01

    There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys.

  14. A comparison of material removal mechanism under low stress abrasive condition of steel and hardfacing alloys

    Science.gov (United States)

    Dasgupta, R.; Prasad, B. K.; Modi, O. P.; Jha, A. K.

    1999-08-01

    The low stress abrasive wear behavior of two types of steels commonly used for making a number of commonly used engineering components has been compared with the composition of a few hardfacing alloys that can be overlayed on the steels to impart a wear-resistant surface. The mechanism of material removal as studied by the scanning electron micrographs of the worn and transverse sections is different for the steels and hardfacing alloys. An attempt has been made to explain the mechanism of material removal for the steels and hardfacing alloys.

  15. Crack initiation and crack growth behavior of carbon and low-alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Gavenda, D.J.; Luebbers, P.R.; Chopra, O.K. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-01-01

    Section III of the ASME Boiler and Pressure Vessel Code specifies fatigue design curves for structural materials. These curves were based on tests of smooth polished specimens at room temperature in air. The effects of reactor coolant environments are not explicitly addressed by the Code design curves, but recent test data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of carbon and low-alloy steels. Under certain loading and environmental conditions, fatigue lives of test specimens may be a factor of {approx}70 shorter than in air. Results of fatigue tests that examine the influence of reactor environment on crack imitation and crack growth of carbon and low-alloy steels are presented. Crack lengths as a function of fatigue cycles were determined in air by a surface replication technique, and in water by block loading that leaves marks on the fracture surface. Decreases in fatigue life of low-alloy steels in high-dissolved-oxygen (DO) water are primarily caused by the effects of environment during early stages of fatigue damage, i.e., growth of short cracks <100 {micro}m in depth. For crack sizes of >100 {micro}m, crack growth rates in high-DO water are higher than in air by one order of magnitude. The effects of LWR environments on growth of short cracks are discussed.

  16. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    Science.gov (United States)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  17. Localization of welding material on Q690E low alloy high strength steel for offshore drilling platform construction%海洋钻井平台中Q690E焊材的国产化

    Institute of Scientific and Technical Information of China (English)

    王博; 陈光亮; 盛万里; 李龙

    2012-01-01

    For the large floating crane and other marine products of Q690E high strength low alloy steel welding is easy to produce cold crack, heat affected zone by heating rate and cooling rate on formation of softening zone and brittle structure easy. Welding shall be used for preheating before welding, welding thermal insulation and heat input. Analyze the weldability of Q690E low alloy high strength steel, analyze and contrast of domestic and foreign welding materials in mechanical property and the mechanical property of deposited metal and weld metal,on the reliable welding craft standard condition,the foreign welding materials which is imported from outside the country can be completely replaced by the domestic welding materials.%用于大型浮吊等海工产品的Q690E低合金高强钢焊接时易产生冷裂纹,热影响区受加热速度和冷却速度的影响易形成软化带和脆性组织.焊接时应采用焊前预热、焊后保温和较小的热输入.对比分析国产焊材和国外焊材的化学成分、熔敷金属的力学性能和焊后焊缝金属的力学性能,在可靠的焊接工艺规范下,国产焊材是完全能够替代进口焊材的.

  18. Comparative studies on ultrasonic, friction, laser and resistance pressure welding of NiTi shape memory alloys with high-alloy steels. Final report; Vergleichende Untersuchungen zum Ultraschall-, Reib-, Laserstrahl- und Widerstandspressschweissen von NiTi-Shape-Memory-Metall mit hochlegierten Staehlen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Zuckschwerdt, K.

    2000-04-01

    The suitability of different welding techniques for welding of NiTi shape memory alloys with high-alloy steel (C12CrNi17-7, X5CrNiNb19-9, X20Cr13) was investigated. The quality of the welds was analyzed using mechanical-technological, fractographic, metallographic and electron microscopy analysis. [German] Ziel dieses Forschungsvorhabens ist es, die Eignung der einzelnen Schweissverfahren fuer das Fuegen von NiTi-Formgedaechtnislegierungen mit hochlegiertem Stahl (X12CrNi17-7, X5CrNiNb19-9, X20Cr13) darzustellen und zu beurteilen. Die Qualitaet der Fuegeverbindungen wird mit Hilfe mechanisch-technologischer, fraktographischer, metallographischer und elektronenmikroskopischer Untersuchungen bewertet.

  19. Advanced processing technology for high-nitrogen steels

    Science.gov (United States)

    Dunning, John S.; Simmons, John W.; Rawers, James C.

    1994-03-01

    Both high-and low-pressure processing techniques can be employed to add nitrogen to iron-based alloys at levels in excess of the equilibrium, ambient-pressure solubility limits. High-pressure techniques include high-pressure melting-solidification; powder atomization; and high-pressure, solid-state diffusion. Low-pressure techniques are centrifugal powder atomization and mechanical alloying. This article describes U.S. Bureau of Mines research on a range of processing technologies for nitrogen steels and references thermodynamic and materials characterization studies that have been completed on these materials.

  20. High Mn austenitic stainless steel

    Science.gov (United States)

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  1. Laser alloying of bearing steel with boron and self-lubricating addition

    Directory of Open Access Journals (Sweden)

    Kotkowiak Mateusz

    2016-12-01

    Full Text Available 100CrMnSi6-4 bearing steel has been widely used for many applications, e.g. rolling bearings which work in difficult operating conditions. Therefore, this steel has to be characterized by special properties such as high wear resistance and high hardness. In this study laser-boriding was applied to improve these properties. Laser alloying was conducted as the two step process with two different types of alloying material: amorphous boron only and amorphous boron with addition of calcium fluoride CaF2. At first, the surface was coated with paste including alloying material. Second step of the process consisted in laser re-melting. The surface of sample, coated with the paste, was irradiated by the laser beam. In this study, TRUMPF TLF 2600 Turbo CO2 laser was used. The microstructure, microhardness and wear resistance of both laser-borided layer and laser-borided layer with the addition of calcium fluoride were investigated. The layer, alloyed with boron and CaF2, was characterized by higher wear resistance than the layer after laser boriding only.

  2. Formation of Hard Composite Layer on Tool Steel by Laser Alloying

    Directory of Open Access Journals (Sweden)

    Bonek M.

    2016-06-01

    Full Text Available Investigations include alloying the PMHSS6-5-3 steel surface layer with carbide and ceramic powders WC, VC, TiC, SiC, Si3N4 and Al2O3, using the high power diode laser (HPDL. Laser treatment is especially promising for solving contemporary surface engineering problems making it possible to focus precisely the delivered energy in the form of heat in the surface layer. The structural mechanism was determined of surface layers development, effect was studied of alloying parameters, method on structure refinement and influence of these factors on the mechanical properties of surface layer, and especially on its abrasive wear resistance. The fine grained martensite structure is responsible for hardness increase of the alloyed layer. The tribological wear relationships were determined for laser treated surface layers, determining friction coefficient, and wear trace shape developed due to the abrasive wear of the investigated surfaces. Comparison of the laser treatment parameters and tribological properties of surface layer after remelting and alloying with hard particles of the PMHSS6-5-3 steel using the high power diode laser to obtain the optimum service properties is the outcome of the investigations carried out.

  3. LOCAL LASER ALLOYING OF STAINLESS STEEL 12H18N10T

    Directory of Open Access Journals (Sweden)

    Mr. Vladimir A. Kim

    2016-06-01

    Full Text Available The article presents the research of local laser alloying of stainless steel 12X18H10T. The steel resists quenching, but it is widely used in food, chemical, oil-processing and other industries. The alloying was carried out by graphite that provided carbon increase in steel and improvement of surface capacity. The article shows details of the structural transformations leading to surfaces hardening, and micro hardness spreading inside the modified layer.

  4. Cavitation Erosion of Electro Spark Deposited Nitinol vs. Stellite Alloy on Stainless Steel Substrate

    Science.gov (United States)

    2015-07-15

    EROSION OF ELECTRO SPARK DEPOSITED NITINOL VS. STELLITE® ALLOY ON STAINLESS STEEL SUBSTRATE Theresa A. Hoffard Lean-Miguel San Pedro Mikhail...SUBTITLE 5a. CONTRACT NUMBER CAVITATION EROSION TESTING OF ELECTRO SPARK DEPOSITED NITINOL VS STELLITE® ALLOY ON STAINLESS STEEL SUBTRATE 5b. GRANT...of combining Nitinol (NiTi) superelastic metal alloy with ElectroSpark Deposition (ESD) technology to increase the cavitation erosion resistance of

  5. Drag-out of stainless-steel alloying constituents through condensates which collect in high-efficiency boilers; Austrag von Legierungsbestandteilen aus nichtrostenden Staehlen durch Kondensate in Brennwertanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Arlt, N. [Thyssen Stahl AG, Werk Krefeld (Germany). Werkstofftechnik Rostfrei; Schlerkmann, H. [Mannesmannroehren-Werke AG, Duisburg (Germany). Korrosionschemie; Stellfeld, I. [Krupp Hoesch Stahl AG, Werksgruppe Duesseldorf (Germany). Metallurgische Technologie; Steinbeck, G. [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany). Fachbereich Werkstofftechnik

    1994-11-07

    Heating systems which are equipped with high- efficiency boilers save energy because the energy content of the flue gases is utilized through flue gas condensation. Stainless steel is an important high-efficiency boiler material. The chromium and nickel concentrations of acid condensates from high- efficiency systems in waste water were analyzed. Stainless-steel samples were immersed in a model condensate over a period of 10 weeks. Fresh model condensates were prepared after one week and three weeks to measure metal dissolution as a function of time. The longer the samples were immersed the more did the nickel concentrations in the model concentrate decrease. Without exception, the concentrations were clearly below the maximum permissible values laid down in leaflet M 251 which is issued by Abwassertechnische Vereinigung e.V. The expected inadmissibly high nickel concentrations did not occur in the acid condensates. (orig.) [Deutsch] Heizungsanlagen mit Brennwertkesseln arbeiten energiesparend, da durch eine Abgaskondensation der Energieinhalt der Abgase nutzbar gemacht wird. Ein wichtiger Konstruktionswerkstoff fuer Brennwertanlagen ist nichtrostender Stahl. Untersucht werden sollte die Frage, ob die sauren Kondensate der Brennwertanlagen, die ins Abwasser abgefuehrt werden unzulaessig hohe Chrom- und Nickelkonzentrationen aufweisen koennen. Zu diesem Zweck wurden Proben aus nichtrostenden Staehlen ueber einen Gesamtzeitraum von 10 Wochen in einem Modellkondensat ausgelagert. Dabei wurde das Modellkondensat nach einer Woche und nach drei Wochen Auslagerungzeit frisch angesetzt, um die zeitliche Abhaengigkeit der Metallaufloesung zu erfassen. Es wurde festgestellt, dass die Nickelkonzentrationen im Modellkondensat mit zunehmender Auslagerungsdauer drastisch abnehmen; sie lagen in allen Faellen deutlich unter den zulaessigen Richtwerten des Merkblattes M 251 der Abwassertechnischen Vereinigung e.V. Die Vermutung, dass unzulaessig hohe Konzentrationen an Nickel in

  6. Electroless plating of Ni-Zn(Fe)-P alloy on carbon steel sheets

    Institute of Scientific and Technical Information of China (English)

    WANG Sen-lin; WU Hui-huang

    2004-01-01

    The autocatalytic deposition of Ni-Zn(Fe)-P alloys were carried out on carbon steel sheets from bath containing nickel sulfate, zinc sulfate, sodium hypophosphite, sodium citrate and boric acid. The effects of pH and mole ratio of NiSO4/ZnSO4 on the deposition rate and the composition of deposit were studied. It is found that the presence of zinc sulfate in the bath has an inhibitory effect on the alloy deposition. As a consequence, the mole fraction of zinc in the deposits never reaches high value, which is less than 18.0%. The structure and surface morphology of Ni-Zn(Fe)-P coatings were charactered by XRD and SEM. The alloys plated at all conditions consist of amorphous phase coexisting with a crystalline cubic Ni phase. The surface morphology of coating is dependent on the deposition parameters.

  7. Design of Reforma 509 with High Strength Steel

    Science.gov (United States)

    Smith, Stuart; Whitby, William; Easton, Marc

    Reforma 509 is a high-rise building located in the heart of the Central Business District of Mexico City. The building is comprised of office, hotel, residential and parking and forms part of a cluster of tall buildings in the area. If completed today, Reforma 509 would be the tallest building in Mexico, at 238m. All of the building's gravity and lateral (wind and seismic) loads are carried by an architecturally expressed perimeter frame that is formed from highly efficient Steel Reinforced Concrete (SRC) columns coupled together by steel tube perimeter bracing. This paper investigates the implications of substituting a grade 50 (fy=345 MPa) carbon steel with a higher strength micro-alloyed grade 70 (fy=480 MPa) steel in the design of Reforma 509.

  8. Mechanically Alloyed High Entropy Composite

    Science.gov (United States)

    Popescu, G.; Adrian, M. M.; Csaki, I.; Popescu, C. A.; Mitrică, D.; Vasile, S.; Carcea, I.

    2016-08-01

    In the last years high entropy alloys have been investigated due to their high hardness, high temperature stability and unusual properties that make these alloys to have significant interest. In comparison with traditional alloys that are based on two or three major elements, this new generation alloys consists at least of 5 principal elements, with the concentration between 5 and 35 at.%. The present paper reports synthesis of high entropy alloys (HEA) and high entropy composites (HEC) synthesized by mechanical alloying (MA). The equiatomic AlCrFeNiMn matrix was used for creating the HEA matrix, starting from elemental powders and as reinforcing material for composites was used pure graphite. The mechanical alloying process was carried out at different duration, in a high energy planetary ball mill, under argon atmosphere. The elemental powders alloying began after '5 hours of milling and was complete after 40 hours. The mechanical alloyed matrix and composite was pressed and heat treated under argon protection. The elemental powers were investigated for physical - technological properties, and by X-ray diffraction and scanning electron microscopy. Phase pressing operation was realized with a hydraulic press and the applied pressure was progressive. The sintering process was carried out at 850°C for 2 h. The X-ray diffraction revealed that the MA process resulted in solid solutions formation and also revealed body- centred cubic (BCC) and face-centred cubic (FCC) structures with average grain size around 40 nm. In addition, nanoscale particles were highlighted by scanning electron microscopy, as well as the homogeneity of the chemical composition of the matrix and composite that was confirmed by EDX microanalysis. It was noted that HEA matrix and HEA composites were processed with a high degree of compaction and with a quite large capacity of mixed powder densification (around 70%).

  9. Effect of Alloying Elements on Thermal Wear of Cast Hot-Forging Die Steels

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-qi; CHEN Kang-min; CUI Xiang-hong; JIANG Qi-chuan; HONG Bian

    2006-01-01

    The effect of main alloying elements on thermal wear of cast hot-forging die steels was studied. The wear mechanism was discussed. The results show that alloying elements have significant influences on the thermal wear of cast hot-forging die steels. The wear rates decrease with an increase in chromium content from 3% to 4% and molybdenum content from 2% to 3%, respectively. With further increase of chromium and molybdenum contents, chromium slightly reduces the wear resistance and molybdenum severely deteriorates the wear resistance with high wear rate. Lower vanadium/carbon ratio (1.5-2.5) leads to a lower wear resistance with higher wear rate. With an increase in vanadium/carbon ratio, the wear resistance of the cast steel substantially increases. When vanadium/carbon ratio is 3, the wear rate reaches the lowest value. The predominant mechanism of thermal wear of cast hot-forging die steels are oxidation wear and fatigue delamination. The Fe2O3 and Fe3O4 or lumps of brittle wear debris are formed on the wear surface.

  10. EVALUATION OF THE ROCKWELL ’C’ 70 HIGH SPEED STEEL CUTTING TOOLS.

    Science.gov (United States)

    TOOL STEEL, CUTTING TOOLS , HARDNESS, CHROMIUM ALLOYS, MOLYBDENUM ALLOYS, VANADIUM ALLOYS, HOT WORKING, PERFORMANCE(ENGINEERING), MACHINING, LIFE EXPECTANCY(SERVICE LIFE), WEAR RESISTANCE, HEAT RESISTANT ALLOYS, COBALT ALLOYS.

  11. On methane generation and decarburization in low-alloy Cr-Mo steels during hydrogen attack

    Energy Technology Data Exchange (ETDEWEB)

    Schloegl, S.M.; Leeuwen, Y. van; Giessen, E. van der

    2000-01-01

    Low-carbon, low-alloy Cr-Mo steels may fail by hydrogen attach when they are exposed to high hydrogen pressures at elevated temperature. During this process, the dissolved hydrogen reacts with the carbides of the steel to form methane in grain boundary cavities. The methane pressure inside these cavities depends on the microstructure of the used steel, which consists of a ferritic matrix and alloy carbides such as M{sub 7}C{sub 3}, M{sub 23}C{sub 6}, M{sub 6}C, and M{sub 2}C. The different phases in the multicomponent system Fe-Cr-Mo-V-C are modeled with the sublattice model. Their Gibbs energies are then used to calculate the equilibrium methane pressure as a function of the microstructure. Driven by the methane pressure, the cavities grow due to grain boundary diffusion and dislocation creep, which is described by analytical relations. This leads to progressive development of damage inside the materials but, at the same time, to a decrease of the carbon content in the steel. This reduction depends on, among other factors, the methane pressure and the damage state. As the carbon content also affects the creep parameters, this process of decarburization may accelerate the cavity growth. Model calculations are used to obtain insight into the influence of this decarburization process on damage evolution and the final lifetime.

  12. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    Science.gov (United States)

    Chernov, I. I.; Kalashnikov, A. N.; Kalin, B. A.; Binyukova, S. Yu

    2003-12-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe-C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion irradiation up to a fluence of 5 × 10 20 m -2 at the temperature of 920 K. It was shown that helium-ion irradiation at high temperature resulted in formation of bubbles with a greater size and a smaller density in Fe and ferritic-martensitic steels than those in nickel and austenitic steels. Large gaseous bubbles in ferritic component are uniformly distributed in grains body in Fe-C alloys as well as in ferritic-martensitic steels. The bubbles with a higher density and a smaller size than those in ferritic component are formed in martensitic grains of steels and Fe-C alloys with a high carbon content ( NC>0.01 wt%), which leads to a small level of swelling of martensite in comparison with that of ferrite. In addition, the bubbles in martensitic grains have a tendency to ordered distribution.

  13. Gas bubbles evolution peculiarities in ferritic-martensitic and austenitic steels and alloys under helium-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, I.I. E-mail: chernov@phm.mephi.ru; Kalashnikov, A.N.; Kalin, B.A.; Binyukova, S.Yu

    2003-12-01

    Transmission electron microscopy has been used to investigate the gas bubble evolution in model alloys of the Fe-C system, ferritic-martensitic steels of 13Cr type, nickel and austenitic steels under 40-keV helium-ion irradiation up to a fluence of 5 x 10{sup 20} m{sup -2} at the temperature of 920 K. It was shown that helium-ion irradiation at high temperature resulted in formation of bubbles with a greater size and a smaller density in Fe and ferritic-martensitic steels than those in nickel and austenitic steels. Large gaseous bubbles in ferritic component are uniformly distributed in grains body in Fe-C alloys as well as in ferritic-martensitic steels. The bubbles with a higher density and a smaller size than those in ferritic component are formed in martensitic grains of steels and Fe-C alloys with a high carbon content (N{sub C}>0.01 wt%), which leads to a small level of swelling of martensite in comparison with that of ferrite. In addition, the bubbles in martensitic grains have a tendency to ordered distribution.

  14. New explosive welding technique to weld aluminum alloy and stainless steel plates using a stainless steel intermediate plate

    Energy Technology Data Exchange (ETDEWEB)

    Hokamoto, K.; Fujita, M. (Kumamoto Univ. (Japan). Dept. of Mechanical Engineering); Izuma, T. (Asahi Chemical Industry Co., Ltd., Siga (Japan))

    1993-10-01

    Various aluminum alloys and stainless steel were explosively welded using a thin stainless steel intermediate plate inserted between the aluminum alloy driver and stainless steel base plates. At first. the velocity change of the driver plate with flying distance is calculated using finite-difference analysis. Since the kinetic energy lost by collision affects the amount of the fused layer generated at the interface between the aluminum alloy and stainless steel, the use of a thin stainless steel intermediate plate is effective for decreasing the energy dissipated by the collision. The interfacial zone at the welded interface is composed of a fine eutectic structure of aluminum and Fe[sub 4]Al[sub 13], and the explosive welding, process of this metal combination proceeds mainly by intensive deformation of the aluminum alloy. The weldable region for various aluminum alloys is decided by the change in collision velocity and kinetic energy lost by collision, and the weldable region is decreased with the increase in the strength of the aluminum alloy.

  15. Microalloyed HSLA (High Strength Low Alloy) Steels: Proceedings of Microalloying 󈨜 Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    Science.gov (United States)

    1988-01-01

    Baixa (27) POSCO Steel Products. Pohang Iron and Liga e Alta Resistencia (acos BLAR) com Niobio. Steel Company Ltd. Conpany publication. Siderurgia...R.C.. Perspectivas Tecnologicas Chapas Grossas de Alta Resistencia Originadas para a Ind6stria Sideriirgica Brasileira. do Lingotamento Continuo

  16. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  17. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  18. Fabrication of iron aluminum alloy/steel laminate by clad rolling

    Science.gov (United States)

    Masahashi, N.; Watanabe, S.; Hanada, S.; Komatsu, K.; Kimura, G.

    2006-05-01

    Laminates of an iron-aluminum alloy (20Al) and three types of steel—chromium molybdenum (CrMo), high carbon (FeCMn), and precipitation hardening steel with niobium carbide (FeCNb)—were fabricated at 600 °C and 1000 °C by clad rolling based on the compression stress ratio of 20Al to steel. The laminates fabricated at 600 °C exhibit a deformation microstructure with partial recrystallization, while those at 1000 °C reveal a refined microstructure. The 20Al layer of all the laminates exhibit a {001} texture, and the intensity of the texture increases with a decrease in the fabrication temperature and an increase in the reduction. The bending deformability of a laminate increases with a decrease in the compression stress ratio and by a reduction in the intensity of the {001} texture. The clad plate is further rolled at room temperature to a thickness of approximately 150 µm, which enables winding without damage. It is concluded that a high-strength steel at high temperatures and a high Al content in the Fe-Al alloy is beneficial for the fabrication of deformable laminates.

  19. 9 Cr-- 1 Mo steel material for high temperature application

    Science.gov (United States)

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  20. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    Science.gov (United States)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  1. Examination of the Oxidation Protection of Zinc Coatings Formed on Copper Alloys and Steel Substrates

    Science.gov (United States)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  2. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    Science.gov (United States)

    Nikitasari, Arini; Mabruri, Efendi

    2016-04-01

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acid or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).

  3. Thermal Diffusivity and Thermal Conductivity of Five Different Steel Alloys in the Solid and Liquid Phases

    Science.gov (United States)

    Wilthan, B.; Schützenhöfer, W.; Pottlacher, G.

    2015-08-01

    The need for characterization of thermophysical properties of steel and nickel-based alloys was addressed in the FFG-Bridge Project 810999 in cooperation with a partner from industry, Böhler Edelstahl GmbH & Co KG. To optimize numerical simulations of production processes, such as remelting or plastic deformation, additional, and more accurate data were necessary for the alloys under investigation. With a fast ohmic pulse heating circuit system, the temperature-dependent specific electrical resistivity, density, and specific heat capacity for a set of five high alloyed steels were measured. Hence, using the Wiedemann-Franz law with a Lorenz number of , the thermal diffusivity and thermal conductivity could be calculated for the solid and liquid phases up to temperatures of 2500 K. This experimental approach is limited by the following requirements for the specimens: they have to be electrically conducting, the melting point has to be high enough for the implemented pyrometric temperature measurement, and one has to be able to draw wires of the material. The latter restriction is technologically challenging with some of the materials being very brittle. For all samples, electrical and temperature signals are recorded and a fast shadowgraph method is used to measure the volume expansion. For each material under investigation, a set of data including the chemical composition, the density at room temperature, solidus and liquidus temperatures, and the change of enthalpy, resistivity, density, thermal conductivity, and thermal diffusivity as a function of temperature is reported.

  4. Development of high strength high toughness third generation advanced high strength steels

    Science.gov (United States)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  5. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  6. Tribological Behavior of Babbitt Alloy Rubbing Against Si3N4 and Steel Under Dry Friction Condition

    Science.gov (United States)

    Ji, Xianbing; Chen, Yinxia

    2016-03-01

    The tribological behavior of Babbitt alloy rubbing with Si3N4 ball and steel ball with various sliding speeds at dry friction condition was investigated. It was found that B88 alloy rubbing with Si3N4 ball and steel ball possesses a low sliding wear resistance at dry friction. The wear rate is above 10-4 mm3/Nm, and the friction coefficient is from 0.2 to 0.4. At low sliding speed of 0.05-0.1 m/s, the mainly wear mechanisms are microgroove and fatigue wear, while at high sliding speed of 0.5 m/s, the wear mechanisms depend on plastic deformation and delamination. The high wear rate indicates that it is needed to prevent Babbitt alloy from working at dry friction conditions, while the low friction coefficient suggests that it is not easy to the occurrence of cold weld.

  7. Temperature rise and wear of sliding contact of alloy steels

    Science.gov (United States)

    Goswami, Arindam Roy; Sardar, Santanu; Karmakar, Santanu Kumar

    2016-07-01

    The tribo-failure of machine elements under relative sliding velocities is greatly affected by frictional heating and resultant contact temperature rise. Nevertheless, the tribo-failure of automotive components is a combined effect of mechanical, thermal and chemical phenomena. Over the decades, there have been developed a number of different mathematical models for predicting surface temperature rise at sliding contact under different geometries of asperity contacts and operating conditions. The experimental investigation is still relevant today to find out the surface temperature rise at sliding contact along with the outcomes of friction and wear under various operating conditions for real time applications. The present work aims at finding average surface temperature rise at different sliding velocities, normal loads with different surface roughness experimentally. It also involves to prepare two different rough surfaces of alloy steels and to study their influences in the process of generating contact temperature rise under a given operating conditions.

  8. Multilayer Clad Plate of Stainless Steel/Aluminum/Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Jiawei; PANG Yuhua; LI Ting

    2011-01-01

    The 3, 5, 20 layer clad plate from austenitic stainless steel, pure aluminum and aluminum alloy sheets were fabricated in different ways. The stretch and interface properties were measured. The result shows that 20 layer clad plate is better than the others. Well-bonded clad plate was successfully obtained in the following procedure: Basic clad sheet from 18 layer A11060/A13003sheets was firstly obtained with an initial rolling reduction of 44% at 450 ℃, followed by annealing at 300 ℃, and then with reduction of 50% at 550 ℃ from STS304 on each side. The best 20 layer clad plate was of 129 MPa bonding strength and 225 MPa stretch strength.

  9. Design, Selection and Application of High Efficient Complex Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The design, selection and application principles of complex alloys according to the requirements of making low-alloy steels are di scussed. The designed complex alloys containing calcium, barium, magne sium, strontium, rare earth elements, etc. should not only be able to deoxidize, desulphurize and refine liquid steel, but also alloy it. Th e application principles of alloys are as follows: using Si-Mn or Si-M n-Al alloys for pre-deoxidizing, Si-Al-Ba or Si-Al-Ca-Ba alloys for fi nal deoxidizing and Si-Ca-Ba-Mg(Sr) alloys for refining.

  10. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.R.; Zheng, M.H.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  11. Improving Corrosion Resistance of Q235 Steel by Ni-Cr Alloyed Layer

    Institute of Scientific and Technical Information of China (English)

    HUANG Jun; ZHANG Pingze; WU Hongyan; BI Qiang

    2012-01-01

    Ni-Cr alloyed layer was formed on surface of Q235 steel by double glow plasma surface metallurgy to improve the corrosion resistance of substrate.The composition and microstructure of alloyed layer was analyzed by SEM and XRD.Potentiodynamic polarization and electrochemical impedance spectroscopy was applied to evaluate the corrosion resistance of the alloyed layer.The results showed working pressure had a great effect on structure of Ni-Cr alloyed layer,and the dense and smooth alloyed layer was prepared at 50 Pa working pressure.Compared with substrate,Ni-Cr alloyed layer exhibited higher corrosion potential,lower corrosion current density and larger charge transfer resistance,which indicated that Ni-Cr alloyed layer significantly modified the corrosion resistance of Q235 steel.

  12. Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mohedano, M.; Arrabal, R.; Pardo, A.; Paucar, A.; Merino, M. C.; Matykina, E.; Mingo, B.; Garces, G.

    2014-04-01

    Electrochemical and gravimetric measurements were used to examine the effects of neodymium and gadolinium additions on the galvanic corrosion behaviour of AM50 and AZ91D magnesium alloys coupled to A 570 Gr 36 carbon steel and AA2011-AA6082 aluminium alloys. Rare earth modified alloys showed Al{sub 2}Nd/Al{sub 2}Gd and Al-Mn-Nd/Al-Mn-Gd intermetallics, reduced area fraction of {beta}-Mg{sub 1}7Al{sub 1}2 phase and increased corrosion resistance due to increased surface passivity and suppression of micro-galvanic couples. Neodymium and gadolinium additions improved the galvanic corrosion resistance of AM50 alloy, but were less effective in case of the AZ91D alloy. The AA6082 alloy was the most compatible material and the AA2011 alloy was the least compatible. (Author)

  13. Systematic corrosion investigation of various Cu-Sn alloys electrodeposited on mild steel in acidic solution: Dependence of alloy composition

    Energy Technology Data Exchange (ETDEWEB)

    Suerme, Yavuz, E-mail: ysurme@nigde.edu.t [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey); Guerten, A. Ali [Department of Chemistry, Faculty of Science and Art, Osmaniye Korkut Ata University, 80000 Osmaniye (Turkey); Bayol, Emel; Ersoy, Ersay [Department of Chemistry, Faculty of Science and Art, Nigde University, 51200 Nigde (Turkey)

    2009-10-19

    Copper-tin alloy films were galvanostatically electrodeposited on the mild steel (MS) by combining the different amount of Cu and Sn electrolytes at a constant temperature (55 deg. C) and pH (3.5). Alloy films were characterized by using the energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and micrographing techniques. Corrosion behaviours were evaluated with electrochemical impedance spectrometry (EIS) and electrochemical polarization measurements. Time gradient of electrolysis process was adjusted to obtain same thickness of investigated alloys on MS. The systematic corrosion investigation of various Cu{sub x}-Sn{sub 100-x} (x = 0-100) alloy depositions on MS substrate were carried out in 0.1 M sulphuric acid medium. Results indicate that the corrosion resistance of the alloy coatings depended on the alloy composition, and the corrosion resistance increased at Cu-Sn alloy deposits in proportion to Sn ratio.

  14. The Evolution of the Segregation Behavior of Alloying Elements in a Low-Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Papworth; D.B. Knorr; D.B. Williams

    2002-08-21

    The segregation of alloying and impurity elements to prior austenite grain boundaries (PAGBs) in low-alloy steels controls temper-embrittlement although the precise microchemical and microstructural interactions are, as yet, unclear because of the many variables involved. Competing segregation and de-segregation phenomena are observed. For example, Auger analyses of fracture surfaces indicate that brittle fracture is caused by the segregation of P to the PAGB. The addition of small amounts ({approx} 0.5 wt%) of Mo appears to regard, but not stop, temper-embrittlement, possibly due to Mo{sub 2}C precipitates that form at elevated temperatures causing de-segregation of Mo from the PAGB. The relationship between segregation and temper embrittlement is further complicated in commercial alloys by both the number of segregating elements and the complex, multi-stage heat treatments. Auger analysis pre-selects the most embrittled boundaries and so the complete distribution of segregants across all PAGBs cannot be determined by this technique. Previous work has shown how X-ray mapping (XRM) in a field-emission gun scanning transmission electron microscope (FEG-STEM) offers a more complete view of the distribution of segregants on both non-embrittled and embrittled PAGBs. XRM was used to observe the evolution of the segregation and desegregation of five elements during four successive heat-treatment stages of commercial low-alloy steel forging. In the last and crucial temper-embrittlement stage, increases in the degree and frequency of Ni segregation occur while other elements either segregate, remain constant or desegregate from the PAGBs.

  15. Deformation and fracture of a composite material based on a high-strength maraging steel covered with a melt-quenched Co69Fe4Cr4Si12B11 alloy layer

    Science.gov (United States)

    Sevost'yanov, M. A.; Kolmakov, A. G.; Molokanov, V. V.; Zabolotnyi, V. T.; Umnov, P. P.; Umnova, N. V.

    2011-04-01

    Multifractal analysis is used to study the deformation and fracture of a promising composite material consisting of a wire base made of K17N9M14 maraging steel covered with a surface layer made from a Co69Fe4Cr4Si12B11 amorphous alloy. As compared to its components, this material has a substantially better set of the mechanical properties.

  16. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    Science.gov (United States)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-10-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  17. Manufacturing Systems Demonstration: Bimetallic Friction STIR Joining of AA6061 and High Hardness Steel

    Science.gov (United States)

    2013-05-31

    tool’s first use. In all tools made of alloy having hafnium carbide, we’ve commonly seen small voids (0.0-1.0 mm dia.) on the surface of machined...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Focus: HOPE (FH) has developed the process parameters to successfully join AA6061 aluminum alloy ...to successfully join AA6061 aluminum alloy and High Hardness Armor (HHA) steel using the friction stir process (FSP). Metallographic analysis

  18. Static Recrystallization Behavior of Hot Deformed Austenite for Micro-Alloyed Steel

    Institute of Scientific and Technical Information of China (English)

    Jie HUANG; Zhou XU; Xin XING

    2003-01-01

    Static recrystallization behavior of austenite for micro-alloyed steel during hot rolling was studied and the influence (τ-ε diagram) of holding time and deformation at different deformations and isothermal temperatures on microstructuralstate of austen

  19. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.

    Science.gov (United States)

    Abdel-Fattah, Tarek M; Loftis, Derek; Mahapatro, Anil

    2011-12-01

    Stainless steel (AISI 316L) is a medical grade stainless steel alloy used extensively in medical devices and in the biomedical field. 316L stainless steel was successfully electropolished via an ecologically friendly and biocompatible ionic liquid (IL) medium based on Vitamin B4 (NB4) and resulting in nanosized surface roughness and topography. Voltammetry and chronoamperometry tests determined optimum polishing conditions for the stainless steel alloy while atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided surface morphology comparisons to benchmark success of each electropolishing condition. Energy dispersive X-ray analysis (EDX) combined with SEM revealed significantly smoother surfaces for each alloy surface while indicating that the constituent metals comprising each alloy effectively electropolished at uniform rates.

  20. 77 FR 43806 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the People's Republic of...

    Science.gov (United States)

    2012-07-26

    ... International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure Pipe From the... Department) initiated an administrative review of the antidumping duty order on seamless carbon and alloy... carbon and alloy steel standard, line, and pressure pipe from the People's Republic of China covering...

  1. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  2. Modeling of primary dendrite arm spacing variations in thin-slab casting of low carbon and low alloy steels

    Science.gov (United States)

    Mehrara, H.; Santillana, B.; Eskin, D. G.; Boom, R.; Katgerman, L.; Abbel, G.

    2012-01-01

    Solidification structure of a High Strength Low Alloy (HSLA) steel, in terms of dendrite arm spacing distribution across the shell thickness, is studied in a breakout shell from a thin-slab caster at Tata Steel in IJmuiden. Columnar dendrites were found to be the predominant morphology throughout the shell with size variations across the shell thickness. Primary Dendrite Arm Spacing (PDAS) increases by increasing the distance from meniscus or slab surface. Subsequently, a model is proposed to describe the variation of the PDAS with the shell thickness (the distance from slab surface) under solidifiction conditions experienced in the primary cooling zone of thin-slab casting. The proposed relationship related the PDAS to the shell thickness and, hence, can be used as a tool for predicting solidifcation structure and optimizing the thin-slab casting of low alloy steels.

  3. Industrial Experience on the Caustic Cracking of Stainless Steels and Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2005-10-09

    Caustic environments are present in several industries, from nuclear power generation to the fabrication of alkalis and alumina. The most common material of construction is carbon steel but its application is limited to a maximum temperature of approximately 80 C. The use of Nickel (Ni) alloys is recommended at higher temperatures. Commercially pure Ni is the most resistant material for caustic applications both from the general corrosion and the stress corrosion cracking (SCC) perspectives. Nickel rich alloys also offer a good performance. The most important alloying elements are Ni and chromium (Cr). Molybdenum (Mo) is not a beneficial alloying element and it dissolves preferentially from the alloy in presence of caustic environments. Austenitic stainless steels such as type 304 and 316 seem less resistant to caustic conditions than even plain carbon steel. Experimental evidence shows that the most likely mechanism for SCC is anodic dissolution.

  4. Industrial Experience on the Caustic Cracking of Stainless Steels and Nickel Alloys - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B

    2005-10-09

    Caustic environments are present in several industries, from nuclear power generation to the fabrication of alkalis and alumina. The most common material of construction is carbon steel but its application is limited to a maximum temperature of approximately 80 C. The use of Nickel (Ni) alloys is recommended at higher temperatures. Commercially pure Ni is the most resistant material for caustic applications both from the general corrosion and the stress corrosion cracking (SCC) perspectives. Nickel rich alloys also offer a good performance. The most important alloying elements are Ni and chromium (Cr). Molybdenum (Mo) is not a beneficial alloying element and it dissolves preferentially from the alloy in presence of caustic environments. Austenitic stainless steels such as type 304 and 316 seem less resistant to caustic conditions than even plain carbon steel. Experimental evidence shows that the most likely mechanism for SCC is anodic dissolution.

  5. Interface reaction between nickel-base self-fluxing alloy coating and steel substrate

    Science.gov (United States)

    Otsubo, F.; Era, H.; Kishitake, K.

    2000-06-01

    The interface reaction between a nickel-base, self-fluxing alloy coating and a steel substrate has been investigated to examine the formation of “pores,” which are observed along the interface of used boiler tubes. It was found that lumpy precipitates form along the interface instead of pores after heating at high temperatures and that the precipitates are of Fe2B boride. The adhesion strength of the coating is not decreased by the formation of Fe2B precipitates along the interface because of the increase of the adhesion due to interdiffusion.

  6. The effects of dynamic load on behaviour of welded joint A-387 Gr. 11 alloyed steel

    Directory of Open Access Journals (Sweden)

    O. Popović

    2013-01-01

    Full Text Available The in-service behaviour of alloyed steel A-387 Gr. 11 Class 1, for pressure vessels, used for high temperature applications, depends on the properties of its welded joint, with parent metal (BM, heat-affected-zone (HAZ and weld metal (WM, as constituents. Charpy testing of BM, WM and HAZ, together with, determination of the parameters of fatigue-crack growth and fatigue threshold ΔKth was used, in order to understand, how heterogeneity of structure and different mechanical properties of welded joint constituents affect on crack initiation and propagation.

  7. Microstructure and tempering hardness of Cr-W-Mo-V high alloy medium-upper carbon steel%Cr-W-Mo-V高合金中高碳钢的显微组织及回火硬度

    Institute of Scientific and Technical Information of China (English)

    马永庆; 章晓静; 梁玉芬

    2016-01-01

    The microstructure and tempering hardness of Cr-W-Mo-V high alloy meddle-upper carbon steels with four different components were studied, and the effect of alloy contents on microstructure and tempering hardness was analyzed and discussed by phase equilibrium thermodynamic theory .The results show that in process of heating and cooling of α1γtransformation of these steels , the dissolution and precipitation of M 23 C61M6 C carbides transformation can be used to carbides distributing uniform refinement , such as the undissolved carbide size after quenching is less than 0.8 μm when the steels composition is under the suitable proportion .The over adding of Mo ( or W) will lead to coarsening of carbide particles , and over adding of V will appear small of the bulk MC carbide , so the heterogeneity of carbides is increasing.Tempering hardness is higher of 62-64 HRC when the steels composition is under the suitable proportion .The increasing of Mo content is benefit to the carbides precipitation strengthening near intermediate temperature , will significantly improve the tempering hardness as the highest hardness can also up to 665.HRC.Increasing V will make the dispersion degree of precipitation temperature increase , so the tempering hardness will decrease.%研究了4种不同成分的Cr-W-Mo-V高合金中高碳钢的显微组织及回火硬度,并以相平衡热力学理论分析讨论了合金含量变化对显微组织及二次硬化的影响。结果表明,该类钢在α1γ相变的加热和冷却过程,发生M 23C 61M6 C相互转变,碳化物的溶解和析出过程使之细化分布均匀,在合适的成分比率时淬火未溶碳化物小于0.8μm。而Mo(或 W)含量过高会导致碳化物颗粒粗化,V含量过高时出现少量的大块MC碳化物,使其不均匀性加重。该类钢在合适成分比率时回火硬度可达62~64 HRC。提高Mo含量有利于各种碳化物沉淀强化向中间温度靠近,明显提高回

  8. Corrosion of AISI 4130 Steel Alloy under Hydrodynamic Condition in Ethylene Glycol + Water + NO2-Solution

    Institute of Scientific and Technical Information of China (English)

    I. Danaee; M. Niknejad Khomami; A.A. Attar

    2013-01-01

    The electrochemical behavior of steel alloy in ethylene glycol-water mixture at different solution rotating speeds was investigated by polarization curves and AC impedance measurements (EIS).The results obtained showed that corrosion rate was not changed significantly at different rotating speeds and was decreased with increasing ethylene glycol concentration.The effect of nitrite as an inhibitor was studied and high inhibition efficiency was obtained.It was found that surface passivation occurred in the presence of inhibitor.The inhibiting effect of the nitrite was explained on the basis of the competitive adsorption between the inorganic anions and the aggressive Cl-ions and the adsorption isotherm basically obeys the Flory-Huggins adsorption isotherm.Thermodynamic parameters for steel corrosion and inhibitor adsorption were determined,which revealed that the adsorption process is spontaneous.

  9. Laws of alloyed cementite particles nucleation during heat-resistant steels carburizing

    Directory of Open Access Journals (Sweden)

    M. Yu. Semenov

    2014-01-01

    Full Text Available The article considers a problem analyzing a nucleation of cementite type carbides in carburized heat-resistant steels for the turbofan engines gear wheels.The verification of previously hypothesized mechanism of dislocation nucleation particles chromium-alloyed cementite during process of carburizing was accepted as an objective of the work.As a methodological basis of this paper were accepted the numerical experiments based on the kinetic theory of nucleation, as well as on the known results of experimental studies.According to the kinetic theory of nucleation, a new phase in the solid solutions take place in the defects of the crystal structure of the metal such as inter-grain boundaries and dislocations clusters. A principle feature of the inter-grain boundary mechanism of nucleation is formation of carbide lattice. It is of great practical interest because the cementite lattice drops mechanical properties of hardened parts.According to the experimental studies, the average chromium concentration in the alloyed cementite twice exceeds its Cr content in the heat-resistant steels. Furthermore, the areas of abnormally high (more than ten times in comparison with the average content chromium concentration in cementite have been experimentally revealed.Numerical experiments have revealed that the nucleation of cementite particles alloyed with chromium (chromium concentration of 3% or more occurs, mainly, by the dislocation mechanism on the concentration fluctuations of the alloying element. According to calculations, an obligatory prerequisite to start an active nucleation process of new phase in the solid solution is a local increase of the chromium concentration up to 40%.Despite the lack of physical prerequisites for the formation of chromium precipitates, this phenomenon is explained by a strong chemical affinity of chromium and carbon, causing diffusion of chromium atoms in the region of the carbon atoms clusters. The formation of carbon

  10. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  11. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  12. Spark Plasma Sintering of Low Alloy Steel Modified with Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Hebda M.

    2016-06-01

    Full Text Available The influence of adding different amounts of silicon carbide on the properties (density, transverse rupture strength, microhardness and corrosion resistance and microstructure of low alloy steel was investigated. Samples were prepared by mechanical alloying (MA process and sintered by spark plasma sintering (SPS technique. After the SPS process, half of each of obtained samples was heat-treated in a vacuum furnace. The results show that the high-density materials have been achieved. Homogeneous and fine microstructure was obtained. The heat treatment that followed the SPS process resulted in an increase in the mechanical and plastic properties of samples with the addition 1wt. % of silicon carbide. The investigated compositions containing 1 wt.% of SiC had better corrosion resistance than samples with 3 wt.% of silicon carbide addition. Moreover, corrosion resistance of the samples with 1 wt.% of SiC can further be improved by applying heat treatment.

  13. The Influence of Post Weld Heat Treatment in Alloy 82/182 Dissimilar Metal Weld between Low Alloy Steel and 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Hong, Jong-Dae; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    Dissimilar metal welds (DMWs) using an Alloy 82/182 are widely used to join low alloy steel components and stainless steel pipes in pressurized water reactors (PWRs). It has been reported that tensile residual stress would be generated within DMWs during the welding processes. It is thought as main reason for primary water stress corrosion cracking (PWSCC) resulting in deterioration of long-term integrity. The application of post weld heat treatment (PWHT) has been considered to reduce the tensile residual stress after welding process. Meanwhile, the PWHT could affect the changes in microstructure, mechanical properties, and corrosion resistance. Therefore, in this study, the effects of PWHT on the microstructure, mechanical properties and corrosion behaviors of base metals of low alloy steel and stainless steel and welding materials of Alloy 82/182 are evaluated. The influence of PWHT in DMW has been investigated. SA 508 and 316L SS exhibited tempered bainite and austenitic grains with a few residual stringer type ferrite. Grain boundary carbides are not precipitated owing to low carbon and insufficient exposure time in 316L SS. The change of mechanicals properties in base metals is not observed. In case of Alloy 182, after PWHT, grain boundaries are covered with film-like continuous Cr-rich carbides.

  14. Microstructure design of low alloy transformation-induced plasticity assisted steels

    Science.gov (United States)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  15. RBF-Type Artificial Neural Network Model Applied in Alloy Design of Steels

    Institute of Scientific and Technical Information of China (English)

    YOU Wei; LIU Ya-xiu; BAI Bing-zhe; FANG Hong-sheng

    2008-01-01

    RBF model, a new type of artificial neural network model was developed to design the content of carbon in low-alloy engineering steels. The errors of the ANN model are. MSE 0. 052 1, MSRE 17. 85%, and VOF 1. 932 9. The results obtained are satisfactory. The method is a powerful aid for designing new steels.

  16. High cycle fatigue crack propagation resistance and fracture toughness in ship steels (Short Communication

    Directory of Open Access Journals (Sweden)

    R.S. Tripathi

    2001-04-01

    Full Text Available In this paper, two grades of steel, viz., plain carbon steel and low alloy steel used in naval ships have been selected for studies on high cycle fatigue, crack propagation, stress intensity and crack opening displacement (COD. Specimen for high cycle fatigue was prepared as per IS: 1608. High cycle fatigue was carried out up to 50,000 cycles at 1000 kgfto 2000 kgfloads. Up to 2000 kgfloads, both the materials were observed within elastic zones. A number of paran1eters, including stress, strain and strain range, which indicate elastic behaviour of steels, have been considered. Low alloy steel specimen was prepared as per ASTM standard: E-399 and subjected to 5,00,000 cycles. Crack propagation, COD, stress intensity, load-cycle variations, load-COD relation, and other related paran1eters have been studied using a modem universal testing machine with state-of-the-art technology

  17. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  18. Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys

    Science.gov (United States)

    Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.

    Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.

  19. Crystallization of Low-alloyed Construction Cast Steel Modified with V and Ti

    Directory of Open Access Journals (Sweden)

    A. Studnicki

    2013-07-01

    Full Text Available In this paper crystallization studies of low-alloyed construction cast steel were presented for different additions of chromium, nickel and molybdenum modified with vanadium and titanium. Studies were conducted using developed TDA stand, which additionally enabled evaluation of cooling rate influence on crystallization process of investigated alloys.

  20. Effects of WC particle size on the wear resistance of laser surface alloyed medium carbon steel

    Science.gov (United States)

    Tong, Xin; Li, Fu-hai; Kuang, Min; Ma, Wen-you; Chen, Xing-chi; Liu, Min

    2012-01-01

    The CO2 laser surface alloying technique was used to form wear resistance layers on medium carbon steel with a kind of spherical WC powder. The effects of WC particle size on the abrasive wear resistance were thoroughly investigated. The results indicate that the laser alloyed layer is characterized by dendritic primary phase and ledeburite microstructure, consisting of austenite, martensite and carbides of Fe3W3C, W2C and WC. The laser surface alloying with WC powder could improve the abrasive wear resistance of the medium carbon steel by over 63%. The factors such as the hardness, the amount and the distribution of WC particle determined the laser alloyed samples' wear resistance, and the laser alloyed sample with WC powder of 88-100 μm diameter presented the best wear resistance in this study. Furthermore, the wear resistance mechanisms of the laser alloyed layers were also explored.

  1. 高合金钢过饱和固体渗碳的计算机模拟%Computer Simulation of Super-saturated Solid Carburization of High Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    叶健松; 匡琦; 戚正风

    2001-01-01

    The process of super-saturated carburization of high alloy steels was discussed,and the corresponding mathematical model was presented.The carbon profile of carburized layer for 3Cr13 and Cr10 with solid carburization is simulated by computer.The simulation result is basically agreement with the experimental one.This testifies that the mathematical model and method are feasible.%本文讨论了高合金钢过饱和渗碳过程,提出了计算高合金钢固体渗碳的碳浓度分布的数学模型,以此模型对3Cr13和Cr10固体渗碳的碳浓度分布进行了计算机模拟。模拟结果与相应的实验结果基本吻合,表明了本文的数学模型及方法是可行的。

  2. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    Energy Technology Data Exchange (ETDEWEB)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer

  3. Microstructure of Cast High-Manganese Steel Containing Titanium

    Directory of Open Access Journals (Sweden)

    Tęcza G.

    2016-12-01

    Full Text Available Widely used in the power and mining industry, cast Hadfield steel is resistant to wear, but only when operating under impact loads. Components made from this alloy exposed to the effect of abrasion under load-free conditions are known to suffer rapid and premature wear. To increase the abrasion resistance of cast high-manganese steel under the conditions where no dynamic loads are operating, primary titanium carbides are formed in the process of cast steel melting, to obtain in the alloy after solidification and heat treatment, the microstructure composed of very hard primary carbides uniformly distributed in the austenitic matrix of a hardness superior to the hardness of common cast Hadfield steel. Hard titanium carbides ultimately improve the wear resistance of components operating under shear conditions. The measured microhardness of the as-cast matrix in samples tested was observed to increase with the increasing content of titanium and was 380 HV0.02 for the content of 0.4%, 410 HV0.02 for the content of 1.5% and 510 HV0.02 for the content of 2 and 2.5%. After solution heat treatment, the microhardness of the matrix was 460÷480 HV0.02 for melts T2, T3 and T6, and 580 HV0.02 for melt T4, and was higher than the values obtained in common cast Hadfield steel (370 HV0.02 in as-cast state and 340÷370 HV0.02 after solution heat treatment. The measured microhardness of alloyed cementite was 1030÷1270 HV0.02; the microhardness of carbides reached even 2650÷4000 HV0.02.

  4. Corrosion of aluminium, stainless steels and AISI 680 nickel alloy in nitrogen-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kap, I.; Starostin, M.; Shter, G.E.; Grader, G.S. [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa (Israel)

    2012-07-15

    Nitrogen-based compounds can potentially be used as alternative non-carbon or low-carbon fuels. Nevertheless, the corrosion of construction materials at high temperatures and pressures in the presence of such fuel has not been reported yet. This work is focused on the corrosion of AISI Al 6061, 1005 carbon steel (CS), 304, 316L, 310 austenitic stainless steels (SS) and 680 nickel alloy in highly concentrated water solution of ammonium nitrate and urea (ANU). The corrosion at 50 C and ambient pressure and at 350 C and 20 bar was investigated to simulate storage and working conditions. Sodium chloride was added to the fuel (0-5 wt%) to simulate industrial fertilizers and accelerated corrosion environment. Heavy corrosion of CS was observed in ANU solution at 50 C, while Al 6061, 304 and 316L SS showed high resistance both to uniform and pitting corrosion in ANU containing 1% of sodium chloride. Addition of 5% sodium chloride caused pitting of Al 6061 but had no influence on the corrosion of SS. Tests in ANU at 350 C and 20 bar showed pitting on SS 304 and 316L and 680 nickel alloy. The highest corrosion resistance was found for SS 310 due to formation of stable oxide film on its surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Materials Design for Joinable, High Performance Aluminum Alloys

    Science.gov (United States)

    Glamm, Ryan James

    An aluminum alloy compatible with friction stir welding is designed for automotive and aerospace structural applications. Current weldable automotive aluminum alloys do not possess the necessary strength to meet safety standards and therefore are not able to replace steel in the automotive body. Significant weight savings could be achieved if steel components are replaced with aluminum. Current aerospace alloys are not weldable, requiring machining of large pieces that are then riveted together. If an aerospace alloy could be friction stir welded, smaller pieces could be welded, reducing material waste. Using a systems approach for materials design, property goals are set from performance objectives. From previous research and computational predictions, a structure is designed for a prototype alloy containing dynamic precipitates to readily dissolve and re-precipitate and high stability precipitates to resist dissolution and coarsening in the weld region. It is found that a Ag modified Al-3.9Mg-0.04Cu (at. %) alloy enhanced the rate and magnitude of hardening during ageing, both beneficial effects for dynamic precipitation. In the same alloy, ageing at 350°C results in hardening from Al 3(Sc,Zr) precipitates. Efforts to effectively precipitate both populations simultaneously are unsuccessful. The Al3(Sc,Zr) precipitation hardened prototype is friction stir processed and no weak zones are found in the weld hardness profile. An aerospace alloy design is proposed, utilizing the dual precipitate structure shown in the prototype. The automotive alloy is designed using a basic strength model with parameters determined from the initial prototype alloy analysis. After ageing to different conditions, the alloy is put through a simulated heat affected zone thermal cycle with a computer controlled induction heater. The aged samples lose hardness from the weld cycle but recover hardness from a post weld heat treatment. Atom probe tomography and transmission electron

  6. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated......The increasing use of high strength steels in a variety of mechanical engineering applications has illuminated problems associated with galling in sheet metal forming operations. Galling is a tribological phenomenon associated with transfer of material from the steel sheet to the tool surface...

  7. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    Science.gov (United States)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  8. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  9. Mechanical Properties and Corrosion-Abrasion Wear Behavior of Low-Alloy MnSiCrB Cast Steels Containing Cu

    Science.gov (United States)

    Luo, Kaishuang; Bai, Bingzhe

    2011-01-01

    Two medium carbon low-alloy MnSiCrB cast steels containing different Cu contents (0.01 wt pct and 0.62 wt pct) were designed, and the effect of Cu on the mechanical properties and corrosion-abrasion wear behavior of the cast steels was studied. The results showed that the low-alloy MnSiCrB cast steels obtained excellent hardenability by a cheap alloying scheme. The microstructure of the MnSiCrB cast steels after water quenching from 1123 K (850 °C) consists of lath martensite and retained austenite. After tempering at 503 K (230 °C), carbides precipitated, and the hardness of the cast steels reached 51 to 52 HRC. The addition of Cu was detrimental to the ductility and impact toughness but was beneficial to the wear resistance in a corrosion-abrasion wear test. The MnSiCrB cast steel with Cu by the simple alloying scheme and heat treatment has the advantages of being high performance, low cost, and environmentally friendly. It is a potential, advanced wear-resistant cast steel for corrosion-abrasion wear conditions.

  10. Study on Interface Structure and Bond Properties between Cemented Carbide and Tool Steel Blazing with amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    Bao Ming-dong; Xu Jin-fu; Xu Xue-bo; Zou Gui-sheng; Huang Geng-hua

    2004-01-01

    Cemented Carbide YG11C and Tool Steel Crl2MoV was blazed with Ni-base amorphous alloys, QG-1011,MBF-20 and MBF-75, using dynamics thermodynamics analogue testing machine Gleeble 1500D. The effects of brazing temperature, holding time and holding pressure on micro-structure and bond strength were investigated. Results showed that YG11C and Cr12MoV were all wetted well by these three Ni-base alloys, and the bond strength was as high as 220MPa,320MPa, 320MPa respectively. When the blazing temperature was at the point over the melting point 60-70℃ of Ni-base alloy, the holding time was about 2-10min, the suitable pressure was benefit for improving the brazing quality.Microanalysis showed Co in cemented carbide diffused into liquid brazing alloy and formed the Fe-Co solid .solution.

  11. TECHNOLOGICAL COMPLEX OF EQUIPMENT FOR REFINING AND CASTING OF STEEL AND ALLOYS IN THE FOUNDRY AND STEEL INDUSTRIES

    Directory of Open Access Journals (Sweden)

    V. I. Zolotukhin

    2013-01-01

    Full Text Available Vulcan TM is a small innovative company, specializing in the manufacture of steel and alloys casting systems and refractory accessories.Available for foundry and metallurgical industries, special technological equipment, designed and manufactured by LLC NPP “Vulkan-TM.”

  12. Original position statistic distribution analysis study of low alloy steel continuous casting billet

    Institute of Scientific and Technical Information of China (English)

    WANG; Haizhou; ZHAO; Pei; CHEN; Jiwen; LI; Meiling; YANG; Z

    2005-01-01

    The homogeneity of low alloy steels continuous casting billet obtained under different technological conditions has been investigated by original position statistic distribution analysis technique. On the basis of systematic analysis of ten thousands primary optical signals at the corresponding original positions, the quantitative statistic distribution information of each element was obtained. The biggest degrees of segregation of low alloy steel continuous casting billet were calculated accurately according to the quantitative distribution maps of the contents. It was suggested that the weight ratio in a certain content range was used to judge the homogeneity of the materials, and the two models -- the total weight ratio of contents (the degree of statistic homogeneity, H) within the permissive content range (C0±R) and the median value confidence extension ratio (the degree of statistic segregation, S) at 95% of confidence limit of weight ratio -- were put forward. The two models reflect the composition and state distribution regularity of the metal materials in a large region. The difference between the sample with high columnar crystal and the sample with high equiaxed crystal has been studied by using the two models.

  13. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  14. Initiation of environmentally-assisted cracking in low-alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Wire, G.L.; Li, Y.Y.

    1996-06-01

    Environmentally-Assisted Cracking (EAC) in low alloy steels is activated by a critical level of sulfide ions at the crack tip, which is produced from dissolution of sulfide inclusions (MnS, FeS, etc.) in the steel following exposure by a growing crack. EAC of concern herein is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs at 240--300 C in high temperature LWR or boiler water environments. The initiation of EAC is the onset of the higher fatigue crack growth rates in fully developed cracks already presumed to be present due to fatigue, stress corrosion cracking, or induced by fabrication. Initiation of EAC is induced by a change in loading parameters causing the fatigue crack growth rate to increase from a small multiple (2--4) to 40--100 times the air rate. A steady state theory developed by Combrade, suggests that EAC will initiate only above a critical crack velocity and cease below this same velocity. However, more recent tests show that EAC can persist down to much lower velocities (100 times lower) in low oxygen water at slightly lower temperatures. A special set of experiments on high sulfur plate material demonstrate that EAC will not initiate from surface cracks with low sulfide inventories at low crack tip velocities. Transient diffusion calculations show that a finite crack extension at a high crack tip velocity is necessary to initiate EAC, providing a possible explanation for the lack of high crack growth observations reported in low alloy steels in structural applications involving low oxygen environments.

  15. Development of centrifugal casting high speed steel rolls

    Institute of Scientific and Technical Information of China (English)

    Hanguang Fu; Aimin Zhao; Jiandong Xing

    2003-01-01

    The present study aims at developing the high speed steel (HSS) as roll materials to replace the traditional roll materials such as the alloy cast iron and powder metallurgical (PM) hard alloy. The HSS roll billet was formed by centrifugal casting, and the billet was rough machined after soften annealing heat treatment, then it was quenched and tempered to get suitable hardness and toughness. After that the HSS roll was finish machined to the final dimension of φ285 mm in the outer diameter, φ160 mm in the inner diameter and 120 mm in width and its surface hardness was tested. Finally the HSS roll was used in high speed wire rod mill. The test results show that a high and homogeneous hardness can obtain on the work surface of HSS rolls, the surface hardness is 63-65HRC and its variation is smaller than 2HRC. The impact toughness of this kind of HSS is about 16 J/cra2. The results of on-line service investigation in high speed wire rod mill indicate that the HSS rolls have excellent wear resistance, the steel rolling quantity per mm of HSS rolls is 3120 t, the service life-span of HSS rolls is 4 times longer than that of high chromium cast iron rolls and it is close to that of the PM hard alloy rolls. The manufacturing burden of HSS rolls is obviously lower than that of the PM hard alloy rolls, it is only 25% of that of the PM hard alloy rolls.

  16. Developing and Studying the Methods of Hard-Facing with Heat-Resisting High-Hardness Steels

    Science.gov (United States)

    Malushin, N. N.; Kovalev, A. P.; Valuev, D. V.; Shats, E. A.; Borovikov, I. F.

    2016-08-01

    The authors develop the methods of hard-facing of mining-metallurgic equipment parts with heat-resisting high-hardness steels on the base of plasma-jet hard-facing in the shielding-alloying nitrogen atmosphere.

  17. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  18. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yukinori [ORNL; Babu, Prof. Sudarsanam Suresh [University of Tennessee, Knoxville (UTK); Shassere, Benjamin [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ, which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.

  19. Parameters Optimization of Low Carbon Low Alloy Steel Annealing Process

    Institute of Scientific and Technical Information of China (English)

    Maoyu ZHAO; Qianwang CHEN

    2013-01-01

    A suitable match of annealing process parameters is critical for obtaining the fine microstructure of material.Low carbon low alloy steel (20CrMnTi) was heated for various durations near Ac temperature to obtain fine pearlite and ferrite grains.Annealing temperature and time were used as independent variables,and material property data were acquired by orthogonal experiment design under intercritical process followed by subcritical annealing process (IPSAP).The weights of plasticity (hardness,yield strength,section shrinkage and elongation) of annealed material were calculated by analytic hierarchy process,and then the process parameters were optimized by the grey theory system.The results observed by SEM images show that microstructure of optimization annealing material are consisted of smaller lamellar pearlites (ferrite-cementite)and refining ferrites which distribute uniformly.Morphologies on tension fracture surface of optimized annealing material indicate that the numbers of dimple fracture show more finer toughness obviously comparing with other annealing materials.Moreover,the yield strength value of optimization annealing material decreases apparently by tensile test.Thus,the new optimized strategy is accurate and feasible.

  20. Experimental investigation of high He/dpa microstructural effects in neutron irradiated B-alloyed Eurofer97 steel by means of small angle neutron scattering (SANS and electron microscopy

    Directory of Open Access Journals (Sweden)

    R. Coppola

    2016-12-01

    Full Text Available High He/dpa microstructural effects have been investigated, by means of small-angle neutron scattering (SANS and transmission electron microscopy (TEM, in B-alloyed ferritic/martensitic steel Eurofer97-1 (0.12 C, 9 Cr, 0.2V, 1.08W wt%, B contents variable between 10 and 1000ppm, neutron irradiated at the High Flux Reactor of the JRC-Petten at temperatures between 250 °C and 450 °C, up do a dose level of 16 dpa. Under these irradiation parameters, B activation is expected to produce corresponding helium contents variable between 80 and 5600appm, with helium bubble distributions relevant for the technological applications. The SANS measurements were carried out under magnetic field to separate nuclear and magnetic SANS components; a reference, un-irradiated sample was also measured to evaluate as accurately as possible the genuine effect of the irradiation on the microstructure. Increasing the estimated helium content from 400 to 5600appm, the analysis of the SANS cross-sections yields an increase in the volume fraction, attributed to helium bubbles, of almost one order of magnitude (from 0.007 to 0.038; furthermore, the difference between nuclear and magnetic SANS components is strongly reduced. These results are discussed in correlation with TEM observations of the same samples and are tentatively attributed to the effect of drastic microstructural changes in Eurofer97-1 for high He/dpa ratio values, possibly relating to the dissolution of large B-carbides due to transmutation reactions.

  1. Characterization of the Corrosion Behavior of High Damping Alloys in Seawater.

    Science.gov (United States)

    1987-06-01

    the potential is increased, current increases, due to anodic dissolution . However, in some cases, as the specimen is scanned anodically, an oxide...34baseline" alloys were examined during this research. The nominal compositions of the high damping alloys are as follows: Delta Alloy C - 73.0% Cu, 21.0... ferritic stainless steel composition) are 72 ..... ..... presented in Figures 44 and 45, surfaces in Figures 46 to 51. Using the PDP and LPM plots (k

  2. Short-term exposure of low-alloyed steels in Qinghai Salt Lake atmosphere

    Institute of Scientific and Technical Information of China (English)

    LI QiaoXia; WANG ZhenYao; HAN Wei; YU GuoCai; HAN EnHou

    2009-01-01

    The rusts formed on carbon steel and weathering steel exposed in Oinghai Salt Lake atmosphere for 6 months were characterized by X-ray diffraction (XRD), infrared transmission spectroscopy (IRS), scanning electron microscopy (SEM), electron probe micro analyzer (EPMA) and electrochemical polarization techniques. The two kinds of steels showed the similar corrosion rate, corrosion product composition and electrochemical polarization behavior. Their rusts were mainly composed of β-FeOOH, Fe_8(O,OH)_(16)Cl_(1.3) and a little γ-FeOOH. Cl~- played an important role during the corrosion process of low-alloyed steels. The alloyed elements Cr, Ni and Cu in weathering steel were detected in the rusts; however, they showed no remarkable protective ability.

  3. Study of the Metallurgical Aspects of Steel Micro-Alloying by Titan

    Directory of Open Access Journals (Sweden)

    Kijac, J.

    2006-01-01

    Full Text Available The metal properties upgrading applying it’s alloying with the simultaneous limitation of the impurities represents a prospective possibility of the metallurgical production further development. The interaction of the alloying substance active element with oxygen in metal and adjacent multiphase environment occurs under the actual conditions. Present paper is oriented particularly to the thermodynamic aspects of deoxygenation by titan in process of production of micro alloyed low carbon steel in two plants (oxygen converter 1-OC1 and 2-OC2 with the different effect of micro-alloy exploitation. Analysis of the effect of the metallurgical factors on the titan smelting loss in micro-alloyed steel production points at the need to master the metal preparation for the alloying and especially has got the decisive effect upon the oxidizing ability and rate of the slag phase availability. When comparing the micro-alloying matter yield among the individual production units, disclosed have been better results obtained in plant OC 2. Confirmed has been the effect of the slag amount (average amount of 7,3 t at OC 1 and 5,83 t at OC 2 and its quality during the steel tapping as one among the most significant factors affecting the alloying process and which also represent its oxidizing potential.

  4. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  5. Time dependence of corrosion in steels for use in lead-alloy cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Machut, McLean [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)], E-mail: mtmachut@wisc.edu; Sridharan, Kumar [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Li Ning [Materials Physics and Application Division, AFCI, Los Alamos National Laboratory, NM (United States); Ukai, Shigeharu [Division of Materials Science and Engineering, Hokaido University (Japan); Allen, Todd [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2007-09-15

    Stability of the protective oxide layer is critical for the long-term performance of cladding and structural components in lead-alloy cooled nuclear systems. Measurements have shown that removal of the outer magnetite layer is a significant effect at higher temperatures in flowing lead-bismuth. Developing a predictive capability for oxide thickness and material removal is therefore needed. A model for the corrosion of steels in liquid lead-alloys has been employed to assist in materials development for application in the Generation IV Lead-cooled Fast Reactor (LFR). Data from corrosion tests of steels in Los Alamos National Laboratory's DELTA Loop is used to benchmark the model and to obtain predictions of long-term material's corrosion performance. The model is based on modifications of Wagner's diffusion based oxidation theory and Tedmon's equation for high-temperature oxidation with scale removal. Theoretically and experimentally obtained values for parabolic oxide growth rate, mass transfer corrosion rate, and long-term material thinning rates are presented and compared to the literature.

  6. XPS and micro-mechanical characterisation of nitrogen ion implanted low alloy steel

    Institute of Scientific and Technical Information of China (English)

    A.O.Olofinjana; Z.Chen; J.M.Bell

    2001-01-01

    The surface composition of low alloy steel after N2+ implantation was studied with X-rayphoto-electron spectroscopy (XPS). The effect of the implantation on the mechanical hardnesswas evaluated by ultra-micro hardness indentation. Chemical characterisation of the surface indi-cated that a thin layer rich in N, C and Si was formed. It is shown that Fe played little role in thechemical composition and the structure of the modified surface. The mechanical hardness of N2+implanted surface was 35-50 GPa compared with a value of 10 GPa for the untreated sample. Itis thought that the high hardness observed on the surface and in the sub-surface was as a resultof chemical modification to form a film of Si doped carbon nitride. There is strong evidence fromthe XPS and the nanoindentation studies that the bonding structure of the C-N in the near surfaceis essentially sp3 types expected in crystalline C3N4. The value of nitrogen ion implantation asprocess for improving the wear resistance of low alloy steels is emphasized.

  7. Effects of Mo Composites on the Corrosion Behaviors of Low Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    LIANG Chenghao; GUO Jianwei; HU Xianqi

    2007-01-01

    By using electrochemical and weight loss methods, the effect of MoO42-on the corrosion behaviors of low alloy steel was investigated in the 55%LiBr+0.07 mol/L LiOH solution at high temperature.The results show that MoO42-, being an anodic inhibitor, would form a passive film rapidly and impede both anodic and cathodic reactions. Moreover, Na2MoO4 effectively prevents corrosion in 55%LiBr+0.07 mol/L LiOH solution when its concentration is higher than 200 mg/L. Some elements of alloy, such as chromium and nickel, may cause the widening of passive potential region and the decrease of passive density, which indicates that the corrosion resistance increases. AES analysis shows that molybdenum participates in forming a protection film. The synergistic effect between chromium and molybdenum induces Cr-steel to be in passive state in lower Na2MoO4 concentration.

  8. Comparison of surface laser alloying of chosen tool steel using Al2O3 and ZrO2 powder

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2010-03-01

    Full Text Available Purpose: In this work there are presented the investigation results of mechanical properties and microstructure of the hot work tool steel 32CrMoV12-28 alloyed with oxide powders like aluminium oxide and zirconium oxide. The purpose of this work was also to determine the laser treatment conditions for surface hardening of the investigation alloys with appliance of transmission electron microscopy.Design/methodology/approach: The investigations were performed using optical microscopy for the microstructure determination. By mind of the transmission electron microscopy the high resolution and phase determination was possible to obtain. The morphology of the ceramic powder particles was studied as well the lattice parameters for the Fe matrix and phase identification using diffraction methods was applied.Findings: After the laser alloying of the hot work tool steel with the selected oxide powders the structure of the samples changes in a way, that there are zones detected like the remelting zone the heat influence zone where the grains are larger and not so uniform as in the metal matrix. The used oxide powders are not present after the laser treatment in the steel matrix.Research limitations/implications: The investigated steel samples were examined metallographically using optical microscope with different image techniques, SEM, TEM and analyzed using a Rockwell hardness tester, also EDS microanalysis and electron diffraction with Fourier transform was made.Practical implications: As an implication for the practice a new technology can be possible to develop, based no diode laser usage. Some other investigation should be performed in the future, but the knowledge found in this research shows an interesting investigation direction.Originality/value: The combination of TEM investigation for laser alloying of hot work tool steels makes the investigation very attractive for automotive and other heavy industries.

  9. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  10. RESEARCH ON CHEMICAL COMPOSITION AND MICROSTRUCTURE OF NEWLY-DEVELOPED HIGH STRENGTH AND HIGH ELONGATION STEELS

    Institute of Scientific and Technical Information of China (English)

    Y. Chen; X. Chen; A.M. Guo; D.X. Luo; B.F. Xu; Z.X. Yuan; P.H. Li; S.K. Pu; S.B. Zhou

    2003-01-01

    The different chemical composition of silicon and manganese as well as different re-tained austenite fraction ranged from 4% to 10% of the high strength and high elon-gation steels were studied in the paper. The dislocations and carbon concentrationin retained austenite were observed by a transmission electron microscope and anelectric probe analyzer, respectively. The experimental results showed that silicon andmanganese are two fundamental alloying elements to stabilize austenite effectively butretaining austenite in different mechanisms. Meanwhile, the cooling processing playedan important role in controlling the fraction of retained austenite of the hot-rolledhigh strength and high plasticity steels.

  11. Fatigue crack initiation in carbon and low-alloy steels in light water reactor environments : mechanism and prediction.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Shack, W. J.

    1998-01-27

    Section 111 of the ASME Boiler and Pressure Vessel Code specifies fatigue design curves for structural materials. The effects of reactor coolant environments are not explicitly addressed by the Code design curves. Recent test data illustrate potentially significant effects of light water reactor (LWR) coolant environments on the fatigue resistance of carbon and low-alloy steels. Under certain loading and environmental conditions, fatigue lives of test specimens may be shorter than those in air by a factor of {approx}70. The crack initiation and crack growth characteristics of carbon and low-alloy steels in LWR environments are presented. Decreases in fatigue life of these steels in high-dissolved-oxygen water are caused primarily by the effect of environment on growth of short cracks < 100 {micro}m in depth. The material and loading parameters that influence fatigue life in LWR environments are defined. Fatigue life is decreased significantly when five conditions are satisfied simultaneously, viz., applied strain range, service temperature, dissolved oxygen in water, and S content in steel are above a threshold level, and loading strain rate is below a threshold value. Statistical models have been developed for estimating the fatigue life of these steels in LWR environments. The significance of the effect of environment on the current Code design curve is evaluated.

  12. Behaviour of high strength steel moment joints

    NARCIS (Netherlands)

    Girão Coelho, A.M.; Bijlaard, F.S.K.

    2010-01-01

    The design of joints to European standard EN 1993 within the semi-continuous/partially restrained philosophy is restricted to steel grades up to S460. With the recent development of high performance steels, the need for these restrictions should be revisited. The semicontinuous joint modelling can b

  13. Corrosion behaviour of austenitic stainless steel, nickel-base alloy and its weldments in aqueous LiBr solutions

    Energy Technology Data Exchange (ETDEWEB)

    Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia Anton, J.; Garcia-Garcia, D. [Departamento de Ingenieria Quimica y Nuclear. E.T.S.I.Industriales, Universidad Politecnica de Valencia, P.O. Box 22012 E-46071 Valencia (Spain)

    2004-07-01

    With the advances in materials production new alloys have been developed, such as High- Alloy Austenitic Stainless Steels and Nickel-base alloys, with high corrosion resistance. These new alloys are finding applications in Lithium Bromide absorption refrigeration systems, because LiBr is a corrosive medium which can cause serious corrosion problems, in spite of its favourable properties as absorbent. The objective of the present work was to study the corrosion resistance of a highly alloyed austenitic stainless steel (UNS N08031) used as base metal, a Nickel-base alloy (UNS N06059) used as its corresponding filler metal, and the weld metal obtained by the Gas Tungsten Arc Welding (GTAW) procedure. The materials have been tested in different LiBr solutions (400 g/l, 700 g/l, 850 g/l and a commercial 850 g/l LiBr heavy brine containing Lithium Chromate as corrosion inhibitor), at 25 deg. C. Open Circuit Potential tests and potentiodynamic anodic polarization curves have been carried out to obtain information about the general electrochemical behaviour of the materials. The polarization curves of all the alloys tested were typical of passivable materials. Pitting corrosion susceptibility has been evaluated by means of cyclic potentiodynamic curves, which provide parameters to analyse re-passivation properties. The galvanic corrosion generated by the electrical contact between the welded and the base material has been estimated from the polarization diagrams according to the Mixed Potential Method. Samples have been etched to study the microstructure by Scanning Electron Microscopy (SEM). The results demonstrate that the pitting resistance of all these materials increases as the LiBr concentration decreases. In general, the presence of chromate tended to shift the pitting potential to more positive values than those obtained in the 850 g/l LiBr solution. (authors)

  14. Analysis of High Temperature Deformed Structure and Dynamic Precipitation in W9Mo3Cr4V Steel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With TEM、SEM, various high-temperature deformed structures inW9Mo3Cr4V steel were investigated. The sub-structures,recrystallized nuclei, as well as the dynamic precipitation were also studied and analyzed. The relationship between recrystallized structures and dynamic precipitation was discussed. The results showed that the deformed structures in W9Mo3Cr4V steel are more complicated than those in low alloy steels. Because W9Mo3Cr4V steel is a high-speed steel, there are a large number of residual carbides on the matrix. Also, much dynamic precipitating carbides will precipitate during deformation at high temperature.

  15. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  16. Properties of thick welded joints on superheater collectors made from new generation high alloy martensitic creep-resisting steels for supercritical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, Janusz; Zielinski, Adam [Institute for Ferrous Metallurgy, Gliwice (Poland); Pasternak, Jerzy [Boiler Engineering Company RAFAKO S.A., Raciborz (Poland)

    2010-07-01

    The continuously developing power generation sector, including boilers with supercritical parameters, requires applications of new creep-resistant steel grades for construction of boilers steam superheater components. This paper presents selected information, experience within the field of research and implementation of a new group of creep-resistant as X10CrMoVNb9-1(P91), X10CrWMoVNb9-2(P92) and X12CrCoWVNb12-2-2(VM12) grades, containing 9-12%Cr. During welding and examination process the results of mechanical properties, requested level for base material and welded joints, as well as: tensile strength, impact strength and technological properties have been evaluated. Additional destructive examinations, with evaluation of structure stability, hardness distribution, for base material and welded joints after welding, heat treatment, again process have been determined. Recommendations due to the implementation influence of operating parameters of the main boiler components are part of this paper. (orig.)

  17. An Investigation of the Mechanical Properties of a Weldment of 7% Nickel Alloy Steels

    Directory of Open Access Journals (Sweden)

    Jeong Yeol Park

    2016-11-01

    Full Text Available During the last decade, the demand for natural gas has steadily increased for the prevention of environmental pollution. For this reason, many liquefied natural gas (LNG carriers have been manufactured. Since one of the most important issues in the design of LNG carriers is to guarantee structural safety, the use of low-temperature materials is increasing. Among commonly employed low-temperature materials, nickel steel has many benefits such as good strength and outstanding corrosion resistance. Accordingly, nickel steels are one of the most commonly used low-temperature steels for LNG storage tanks. However, the study of fracture toughness with various welding consumables of 7% nickel alloy steel is insufficient for ensuring the structural safety of LNG storage tanks. Therefore, the aim of this study was to evaluate fracture toughness of several different weldments for 7% nickel alloy steels. The weldment of 7% nickel alloy steel was fabricated by tungsten inert gas (TIG, flux cored arc welding (FCAW, and gas metal arc welding (GMAW. In order to assess the material performance of the weldments at low temperature, fracture toughness such as crack tip opening displacement (CTOD and the absorbed impact energy of weldments were compared with those of 9% nickel steel weldments.

  18. Paracrystalline property of high-entropy alloys

    Directory of Open Access Journals (Sweden)

    Shaoqing Wang

    2013-10-01

    Full Text Available Atomic structure models of six-component high-entropy alloys with body-centered cubic structure are successfully built according to the principle of maximum entropy for the first time. The lattice distortion parameters g of seven typical high-entropy alloys are calculated. From the optimized lattice configuration of high-entropy alloys, we show that these alloys are ideal three-dimensional paracrystals. The formation mechanism, structural feature, mechanical property, and application prospect of high-entropy alloys are discussed in comparison with the traditional alloys. The novel properties of body-centered cubic high-entropy alloys are attributed to the failure of dislocation deformation mechanism and the difficulty of directed particle diffusion.

  19. 75 FR 44763 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-07-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time... welded non- alloy steel pipe from Mexico. We also received review requests on November 30, 2009,...

  20. 76 FR 52636 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-08-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial... the antidumping duty order on certain circular welded non-alloy steel pipe (``circular welded...

  1. 75 FR 39917 - Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of Time Limit for...

    Science.gov (United States)

    2010-07-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration (A-580-809) Circular Welded Non-Alloy Steel Pipe from the Republic of Korea... non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2008 through...

  2. 78 FR 25253 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People's Republic of China...

    Science.gov (United States)

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People... seamless carbon and alloy steel standard, line, and pressure pipe ] (``seamless pipe'') from the...

  3. 77 FR 73617 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and Partial...

    Science.gov (United States)

    2012-12-11

    ... Value: Circular Welded Non-Alloy Steel Pipe From Mexico, 57 FR 42953 (September 17, 1992). Notification... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary...

  4. 78 FR 60316 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Science.gov (United States)

    2013-10-01

    ... order on carbon and certain alloy steel wire rod from Mexico. The Commission found that the respondent... COMMISSION [Investigation Nos. 701-TA-417 and 731-TA-953, 957-959, and 961-962 (Second Review)] Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and...

  5. 78 FR 63450 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Science.gov (United States)

    2013-10-24

    ... International Trade Administration, Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico... on carbon and certain alloy steel wire rod (``wire rod'') from Brazil, Indonesia, Mexico, Moldova... Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine, pursuant to section 751(c) of...

  6. 78 FR 33103 - Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION [Investigation Nos. 701-TA-417 and 731-TA-953, 957-959, 961, and 962 (Second Review)] Carbon and Certain Alloy Steel Wire Rod From Brazil, Indonesia, Mexico, Moldova, Trinidad and Tobago, and Ukraine... countervailing duty order on carbon and certain alloy steel wire rod (``wire rod'') from Brazil and...

  7. 76 FR 34044 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits for the Preliminary...

    Science.gov (United States)

    2011-06-10

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF COMMERCE International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits... administrative review of the antidumping duty order on carbon and certain alloy steel wire rod from...

  8. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    Science.gov (United States)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  9. 75 FR 13729 - Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of Time Limit for the...

    Science.gov (United States)

    2010-03-23

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of... circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2007 through October 31, 2008. See Circular Welded Non-Alloy Steel Pipe from the Republic of Korea:...

  10. Mechanics property Study for Interface Bim Composite of Zinc Alloy ZAS35/Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    陈基勇; 耿浩然; 杨爱玲

    2002-01-01

    The distortional fields of interface-U-field and V-field-have been obtained after the mechanics property for the geometric distortion of interface of cracked zinc alloy ZAS35/carbon steel is analyzed by means of a laser moire interferometry. The optimum cast preheating temperature has been decided in the light of the experiment of shear strength. After the microstructure of interface of bimetal composite of zinc alloy ZAS35/carbon steel is analyzed and studied with a X ray diffraction and an electronic scanning mirror (ESM), the phase component of metallurgical bond of interface of zinc alloy ZAS35/carbon steel has been gained, and the results of interface scan of distribution of elements Fe/Zn have been obtained with the dip coating temperature of 700(C. The above working theory, the experimental technology and its results will be introduced in this paper, and its results will be analyzed.

  11. Characterization of Coatings on Steel Self-Piercing Rivets for Use with Magnesium Alloys

    Science.gov (United States)

    McCune, Robert C.; Forsmark, Joy H.; Upadhyay, Vinod; Battocchi, Dante

    Incorporation of magnesium alloys in self-pierce rivet (SPR) joints poses several unique challenges among which are the creation of spurious galvanic cells and aggravated corrosion of adjacent magnesium when coated steel rivets are employed. This work firstly reviews efforts on development of coatings to steel fasteners for the diminution of galvanic corrosion when used with magnesium alloys. Secondly, approaches, based on several electrochemical methods, for the measurement of the galvanic-limiting effect of a number of commercially-available coatings to hardened 10B37 steel self-piercing rivets inserted into alloy couples incorporating several grades of magnesium are reported. Electrochemical impedance spectroscopy (EIS), zero-resistance ammeter (ZRA), corrosion potential and potential-mapping visualization methods (e.g. scanning vibrating electrode technique — SVET) are illustrated for the several rivet coatings considered.

  12. Effect of the Strain Kind on the Texture and Microstructure of Low-Alloyed Steel

    Directory of Open Access Journals (Sweden)

    N. M. Shkatulyak

    2016-01-01

    Full Text Available Crystallographic texture and microstructure of low-alloyed steel after twist extrusion (TE and subsequent cold rolling along and across the TE axis were studied. The double axial cylindrical texture with axes 110 and 100 parallel to the TE axis and the vortex-like microstructure are formed in the steel during the TE. The subsequent rolling of extruded steel along the TE axis promotes the forming of typical steel rolling texture as well as the microstructure with elongated grains in rolling direction. Typical steel rolling texture as well as the equiaxed microstructure is formed in extruded steel after rolling in the direction transverse to the TE axis. The mechanisms of formation of the texture are discussed.

  13. Alloy element redistribution during sintering of powder metallurgy steels

    OpenAIRE

    Tahir, Abdul Malik

    2014-01-01

    Homogenization of alloying elements is desired during sintering of powder metallurgy components. The redistribution processes such as penetration of liquid phase into the interparticle/grain boundaries of solid particles and subsequent solid-state  diffusion of alloy element(s) in the base powder, are important for the effective homogenization of alloy element(s) during liquid phase sintering of the mixed powders. The aim of this study is to increase the understanding of alloy element redistr...

  14. Grain refinement of high strength steels to improve cryogenic toughness

    Science.gov (United States)

    Rush, H. F.

    1985-01-01

    Grain-refining techniques using multistep heat treatments to reduce the grain size of five commercial high-strength steels were investigated. The goal of this investigation was to improve the low-temperature toughness as measured by Charpy V-notch impact test without a significant loss in tensile strength. The grain size of four of five alloys investigated was successfully reduced up to 1/10 of original size or smaller with increases in Charpy impact energy of 50 to 180 percent at -320 F. Tensile properties were reduced from 0 to 25 percent for the various alloys tested. An unexpected but highly beneficial side effect from grain refining was improved machinability.

  15. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Science.gov (United States)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  16. A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression

    Science.gov (United States)

    Johnson, Aldie E , Jr; Semonian, Joseph W

    1956-01-01

    Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.

  17. Study on High Strength Low Alloy Bainitic Steel Rails%低合金高强度贝氏体钢轨的试验研究

    Institute of Scientific and Technical Information of China (English)

    陈朝阳; 周清跃; 张银花; 刘丰收; 陈昕

    2013-01-01

    根据我国铁路技术装备发展的需要,开展低合金高强度贝氏体钢轨的实验室研究及工业性试制、显微组织及性能试验研究、焊接性能及铺设使用研究.结果表明:贝氏体钢轨具有优良的强韧性配合,室温抗拉强度达到1 240 MPa,断后伸长率15.3%,平均冲击功达到142 J,-20℃断裂韧性KIC为48 MPa.m1/2;钢轨全断面显微组织为无碳化物贝氏体;焊接性能研究结果表明:贝氏体钢轨具有良好的焊接性,其接触焊、气压焊和铝热焊接头的各项性能均达到我国铁路钢轨的铺设使用要求.试铺结果表明:贝氏体钢轨的耐磨性能与高强度热处理钢轨相当,抗接触疲劳伤损性能突出,综合使用性能优于珠光体型热处理钢轨及热轧钢轨.%To meet the dramatic growth needs of China railways,the systematic research work of bainitic steel rails was conducted,including laboratory study,trial production,microstruture and properties study and welding performance,laying & operation study.The results show as follows:At room temperature,the average tensile strength,tensile elongation and CUN impact toughness of rail cross section reach respectively 1240 MPa,15.3% and 142 J;the fracture toughness (KIC) at-20 ℃ was up to 48 MPa · m1/2 ; the microstructure of the whole rail section is carbon-free bainite;the bainitic rails possess good weldability,their performance with flash butt welding,gas pressure welding and thermit welding all satisfy requirements of laying and operation of rails of China railways;the bainitic rails have better spalling resistance and wear resistance than rolled and heat hardened pearlitic rails so that they provide better comprehensive operating characteristics.

  18. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    Science.gov (United States)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  19. Erosion Resistance Behaviours of H13 Steel to Molten ADC12 Alloy

    Institute of Scientific and Technical Information of China (English)

    MIN Yong-an; XU Luo-ping; WU Xiao-chun; LI Lin; WANG Rong

    2004-01-01

    H13 hot work steel samples and surface water vapor oxidized H13 samples were immersed into molten ADC12alloy under static resting or dynamic rotating conditions. Weigh-losing method was used to discover the influences of temperature, time and surface conditions on the erosion resistance of H13 steel. The interfaces between the steel and the molten alloy were studied with optical microscopy to compare the different erosion resistance behaviours. The results show that the composite layer outside of the compounds layers changes obviously with increasing temperature, lasting time or sample movement. The better erosion resistance of H13 steel can be endowed with the oxide films, which would gradually decrease along with the dissolve of the films.

  20. The effect of single and double quenching heat treatments on the mechanical properties of low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeongpil; Kim, Byung Jun; Lee, Sanghui; Jang, Jaeho; Nam, Daegeun [Korea Institute of Industrial Technology, Busan (Korea, Republic of); Sung, Gichan [Sehwa M and P Co., LTD, Ulsan (Korea, Republic of)

    2014-05-15

    Dry cask storage is a method of storing high-level radioactive waste, such as spent nuclear fuel that has already been cooled in the spent fuel pool for at least one year. For spent fuel storage, low alloy steel is widely used for shielding materials for dry storage cask of spent fuel because of their excellent mechanical properties, weldability and low price. However, they may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steel for the integrity of structure materials. Generally, conventional single quenching and tempering (CQT) heat treatment process is used to improve the mechanical properties by controlling the temperature and time of heat treatment. In this study, the microstructure and mechanical properties of DQT heat treated specimens were investigated to improve the mechanical properties of low alloy steels comparing the CQT heat treated specimen. The following conclusions were obtained. The grain size of DQT process has a fine average grain size comparing the CQT process. A fine grain structure with DQT specimen affects the mechanical properties such as the reduction of hardness and increments of elongation. The DBTT after DQT process is shifted to lower temperatures. Especially, the DBTT of steel-3 is shifted to lower temperature about -40 .deg. C comparing the CQT specimen(Steel-1). The reason for the reduction of DBTT and USE after the DQT process is related to the changes of microstructure which are transformed from bainite to pearlite phase and the reduction of grain size with decreasing the temperature of heat treatment.

  1. Phase transformation studies af a low alloy steel in the (α + γ phase region

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayoa Alaneme

    2010-03-01

    Full Text Available This research work describes a thermo mechanical investigation of a low alloy steel treated in the (α + γ phase region. The aim is to develop a high tensile, ductile microstructure that could have a wide range of engineering applications. Recent advances in the area of precipitation, recrystallization mechanisms, and α / γ transformations provide strong background to this study. In a preliminary heat treatment, various microstructures (normalized and 450 °C tempered martensite structure were produced and deformed to varying degrees. Subsequently, these microstructures were subjected to various intercritical temperatures (740 and 760 °C for various times and a very high cooling rate. Light (optical microscopic investigations were carried out to study the ensuing microstructures. Mechanical testing results (tensile and hardness values were used to characterize the structures obtained. On analysis of the result, it was observed that well defined micro-duplex structures of ferritic and martensitic nature, possessing good combinations of strength and ductility were obtained.

  2. Microstructure evaluation in low alloy steel weld metal from convective heat transfer calculations in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Mundra, K.; DebRoy, T.; Babu, S.S. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; David, S.A. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Heat transfer and fluid flow during manual metal arc welding of low alloy steels were investigated by solving the equations of conservation of mass, momentum, and energy in three dimensions. Cooling rates were calculated at various locations in the weldment. Calculated cooling rates were coupled with an existing phase transformation model to predict percentages of acicular, allotriomorphic, and Widmanstaetten ferrites in various low alloy steel welds containing different concentration of V and Mn. Computed microstructures were in good agreement with experiment, indicating promise for predicting weld metal microstructure from the fundamentals of transport phenomena.

  3. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.

    Science.gov (United States)

    Li, Menghua; Yin, Tieying; Wang, Yazhou; Du, Feifei; Zou, Xingzheng; Gregersen, Hans; Wang, Guixue

    2014-10-01

    Adverse effects of nickel ions being released into the living organism have resulted in development of high nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also improves steel properties. The cell cytocompatibility, blood compatibility and cell response of high nitrogen nickel-free austenitic stainless steel were studied in vitro. The mechanical properties and microstructure of this stainless steel were compared to the currently used 316L stainless steel. It was shown that the new steel material had comparable basic mechanical properties to 316L stainless steel and preserved the single austenite organization. The cell toxicity test showed no significant toxic side effects for MC3T3-E1 cells compared to nitinol alloy. Cell adhesion testing showed that the number of MC3T3-E1 cells was more than that on nitinol alloy and the cells grew in good condition. The hemolysis rate was lower than the national standard of 5% without influence on platelets. The total intracellular protein content and ALP activity and quantification of mineralization showed good cell response. We conclude that the high nitrogen nickel-free austenitic stainless steel is a promising new biomedical material for coronary stent development.

  4. Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing

    Directory of Open Access Journals (Sweden)

    Szajnara J.

    2013-12-01

    Full Text Available In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.

  5. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiang; Zhuo Chengzhi; Tao Jie; Liu Linlin [Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016 (China); Jiang Shuyun [Department of Mechanical Engineering, Southeast University, 2 Sipailou, Nanjing 210096 (China)], E-mail: xujiang73@nuaa.edu.cn

    2009-01-07

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO{sub 2} predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 deg. C) conditions, amorphous nano-SiO{sub 2} particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr{sub 6.5}Ni{sub 2.5}Si and Cr{sub 23}C{sub 6}. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO{sub 2} particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO{sub 2} particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO{sub 2} particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix

  6. Effect of annealing on martensitic transformations in "steel - TiNi alloy" explosion welded bimetallic composite

    Science.gov (United States)

    Belyaev, S. P.; Rubanik, V. V.; Resnina, N. N.; Rubanik, V. V.; Rubanik, O. E.

    2011-01-01

    The effect of explosion welding on the kinetics of martensitic transformations in a "steel - TiNi alloy" bimetallic composite and the effect of the temperature and duration of annealing on recovery of the characteristics of the martensitic transformations are studied. It is shown that annealing in the range of 450 - 600°C accompanied by retrogression of structure causes full recovery of the transformation kinetics in the alloy.

  7. Thin slab processing of acicular ferrite steels with high toughness

    Energy Technology Data Exchange (ETDEWEB)

    Reip, Carl-Peter; Hennig, Wolfgang; Hagmann, Rolf [SMS Demag Aktiengesellschaft, Duesseldorf (Germany); Sabrudin, Bin Mohamad Suren; Susanta, Ghosh; Weng Lan Lee [Megasteel Sdn Bhd, Banting (Malaysia)

    2005-07-01

    Near-net-shape casting processes today represent an important option in steelmaking. High productivity and low production cost as well as the variety of steel grades that can be produced plus an excellent product quality are key factors for the acceptance of such processes in markets all over the world. Today's research focuses on the production of pipe steel with special requirements in terms of toughness at low temperatures. The subject article describes the production of hot strip made from acicular ferritic / bainitic steel grades using the CSP thin-slab technology. In addition, the resulting strength and toughness levels as a function of the alloying concepts are discussed. Optimal control of the CSP process allows the production of higher-strength hot-rolled steel grades with a fine-grain acicular-ferritic/bainitic microstructure. Hot strip produced in this way is characterized by a high toughness at low temperatures. In a drop weight tear test, transition temperatures of up to -50 deg C can be achieved with a shear-fracture share of 85%. (author)

  8. Functional properties of surface layers of X38CrMoV5-3 hot work tool steel alloyed with HPDL laser

    OpenAIRE

    L.A. Dobrzański; M. Piec; K. Labisz; M. Bonek; A. Klimpel

    2007-01-01

    Purpose: Improvement of functional properties alloyed of hot work tool steel surface layers is one of the goals of this paper.Design/methodology/approach: The material used for investigation was the hot work tool steel X38CrMoV5-3. Remelting and alloying of surface layers were made using the HPDL high power diode laser Rofin DL 020 in the laser power range of 1.2-2.3 kW. The carbide powders were applied on specimens prepared and degreased in this way; the powder was mixed with the sodium glas...

  9. Cessation of environmentally-assisted cracking in a low-alloy steel: Theoretical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wire, G.L.

    1997-02-01

    Environmentally Assisted Cracking (EAC) can cause increases in fatigue crack growth rates of 40 to 100 times the rate in air for low alloy steels. The increased rates can lead to very large predicted crack growth. EAC is activated by a critical level of dissolved sulfides at the crack tip. Sulfide inclusions (MnS) in the steel produce corrosive sulfides in solution following exposure by a growing crack. In stagnant, low oxygen water conditions considered here, diffusion is the dominant mass transport mechanism acting to change the sulfide concentration within the crack. The average crack tip velocity is below the level required to produce the critical crack tip sulfide ion concentration required for EAC. Crack extension analyses also consider the breakthrough of large, hypothetical embedded defects with the attendant large freshly exposed sulfide inventory. Combrade et al. noted that a large inventory of undissolved metallurgical sulfides on crack flanks could trigger EAC, but did not quantify the effects. Diffusion analysis is extended herein to cover breakthrough of embedded defects with large sulfide inventories. The mass transport via diffusion is limited by the sulfide solubility. As a result, deep cracks in high sulfur steels are predicted to retain undissolved sulfides for extended but finite periods of time t{sub diss} which increase with the crack length and the metallurgical sulfide content in the steel. The analysis shows that the duration of EAC is limited to t{sub diss} providing V{sub eac}, the crack tip velocity associated with EAC is less than V{sub In}, the crack tip velocity below which EAC will not occur in an initially sulfide free crack. This condition on V{sub eac} need only be met for a short time following crack cleanup to turn off EAC. The predicted crack extension due to limited duration of EAC is a small fraction of the initial embedded defect size and would not greatly change calculated crack depths.

  10. Corrosion and cracking behaviour of steel and alloys in liquid H{sub 2}S

    Energy Technology Data Exchange (ETDEWEB)

    Longaygue, X. [Institut Francais du Petrole, 1 et 4 avenue de Bois Preau 92852 Rueil-Malmaison (France); Duval, S. [Institut Francais du Petrole, BP no 3, 69390 Vernaison (France)

    2004-07-01

    When oil and gas wells with very high partial pressure of H{sub 2}S, e.g. H{sub 2}S-rich gas, are under production, the presence of liquid H{sub 2}S is highly probable in the process operations. Until now, corrosion engineers and materials designers have paid little attention to this situation because it is rarely encountered in practice. However, such a scenario recently met an increasing interest in the context of the Sprex development, a new H{sub 2}S pre-extraction process used for the treatment of very sour natural gases, which produces the separated acid gases as a liquid phase for re-injection to a disposal reservoir. It is generally accepted that pure liquid H{sub 2}S is not corrosive by itself towards carbon or low alloy steels, but the presence of water in production and reservoir fluids could make this medium much more corrosive, although this latter assumption is poorly documented. The aim of this paper is to present the corrosion and cracking behaviour of a pipeline carbon steel and of corrosion resistant alloys (CRA) (with Cr > 16%) after exposure to the following media: i) liquid H{sub 2}S saturated with water, and ii) liquid H{sub 2}O saturated with H{sub 2}S. For both solutions, the addition of solid sulphur on some specimens was considered to take into account the possible introduction of oxygen into the system, followed by a reaction with H{sub 2}S. The tests were performed at 80 deg. C in a laboratory autoclave where both phases coexisted, using U-bend specimens as well as rectangular corrosion coupons. The main conclusion of this study is that liquid H{sub 2}S is rather less critical for corrosion and cracking of construction alloys than 'classical' sour solutions, like H{sub 2}S-saturated water. As a consequence, the materials selection will be governed by the same criteria, with the following alternatives: i) use of carbon steels in conjunction with corrosion inhibitors, e.g. higher operation expense; or ii) selection of a CRA

  11. An Assessment of the Mechanical Properties and Microstructural Analysis of Dissimilar Material Welded Joint between Alloy 617 and 12Cr Steel

    Directory of Open Access Journals (Sweden)

    Hafiz Waqar Ahmad

    2016-10-01

    Full Text Available The most effective method to reduce CO2 gas emission from the steam power plant is to improve its performance by elevating the steam temperature to more than 700 °C. For this, it is necessary to develop applicable materials at high temperatures. Ni-based Alloy 617 and 12Cr steel are used in steam power plants, due to their remarkable mechanical properties, high corrosion resistance, and creep strength. However, since Alloy 617 and 12Cr steel have different chemical compositions and thermal and mechanical properties, it is necessary to develop dissimilar material welding technologies. Moreover, in order to guarantee the reliability of dissimilar material welded structures, the assessment of mechanical and metallurgical properties, fatigue strength, fracture mechanical analysis, and welding residual stress analysis should be conducted on dissimilar material welded joints. In this study, first, multi-pass dissimilar material welding between Alloy 617 and 12Cr steel was performed under optimum welding conditions. Next, mechanical properties were assessed, including the static tensile strength, hardness distribution, and microstructural analysis of a dissimilar material welded joint. The results indicated that the yield strength and tensile strength of the dissimilar metal welded joint were higher than those of the Alloy 617 base metal, and lower than those of the 12Cr steel base metal. The hardness distribution of the 12Cr steel side was higher than that of Alloy 617 and the dissimilar material weld metal zone. It was observed that the microstructure of Alloy 617 HAZ was irregular austenite grain, while that of 12Cr steel HAZ was collapsed martensite grain, due to repeatable heat input during multi-pass welding.

  12. 9-12% Cr heat resistant steels. Alloy design, TEM characterisation of microstructure evolution and creep response at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Jara, David

    2011-03-21

    This work was carried out aiming to design and characterise 9-12% Cr steels with tailormade microstructures for applications in fossil fuel fired power plants. The investigations concentrated in the design and characterisation of heat resistant steels for applications in high oxidising atmospheres (12% Cr) and 9% Cr alloys for components such as rotors (P91). ThermoCalc calculations showed to be a reliable tool for alloy development. The modeling also provided valuable information for the adjustment of the processing parameters (austenisation and tempering temperatures). Two 12% Cr heat resistant steels with a fine dispersion of nano precipitates were designed and produced supported by thermodynamic modeling (ThermoCalc). A detailed characterisation of the microstructure evolution at different creep times (100 MPa / 650 C / 8000 h) was carried out by scanning transmission electron microscopy (STEM). The results of the microstructure analysis were correlated with the mechanical properties in order to investigate the influence of different precipitates (especially M{sub 23}C{sub 6} carbides) on the creep strength of the alloys. Precipitation of Laves phase and Z-phase was observed after several hundred hours creep time. Very few Z-phase of the type Cr(V,Ta)N nucleating from existing (V,Ta)(C,N) was observed. Both alloys show growth and coarsening of Laves phase, meanwhile the MX carbonitrides present a very slow growth and coarsening rate. Alloys containing Laves phase, MX and M{sub 23}C{sub 6} precipitates show best creep properties. The influence of hot-deformation and tempering temperature on the microstructure evolution on one of the designed 12% Cr alloys was studied during short-term creep at 80-250 MPa and 650 C. Quantitative determination of dislocation density and sub-grain size in the initial microstructure and after creep was investigated by STEM combined with the high-angle annular dark-field detector (HAADF). A correlation between microstructure

  13. Alloying of steel and graphite by hydrogen in nuclear reactor

    Science.gov (United States)

    Krasikov, E.

    2017-02-01

    In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.

  14. Hydrogen degradation of high strength weldable steels

    OpenAIRE

    J. Ćwiek

    2007-01-01

    Purpose: Purpose of this paper is presentation of hydrogen degradation issue of high strength steels andespecially their welded joints. Establishing of applicable mechanisms of hydrogen-enhanced cracking was theaim of performed research.Design/methodology/approach: High strength quenched and tempered steels grade S690Q were used. Weldedjoints were prepared with typical technology used in shipyards. Susceptibility to hydrogen degradation in seawater under cathodic polarization was evaluated wi...

  15. 76 FR 66899 - Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico, the Republic of Korea, and...

    Science.gov (United States)

    2011-10-28

    ... pipe from Brazil, Mexico, the Republic of Korea, and Taiwan; and certain circular welded carbon steel... Steel Pipe from Brazil, Mexico, the Republic of Korea, and Taiwan; and Certain Circular Welded Carbon... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico,...

  16. Environmentally-assisted cracking behaviour in the transition region of alloy 182/low-alloy reactor pressure vessel steel dissimilar metal weld joints in simulated boiling water reactor normal water chemistry environment

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S.; Leber, H.J. [Paul Scherrer Institute (Switzerland). Lab. for Nuclear Materials

    2010-07-01

    The stress corrosion cracking (SCC) behaviour perpendicular to the fusion line in the transition region between the Alloy 182 nickel-base weld metal and the adjacent low-alloy reactor pressure vessel (RPV) steel of simulated dissimilar metal weld joints was investigated under boiling water reactor normal water chemistry conditions at different stress intensities and chloride concentrations. A special emphasis was placed to the question whether a fast growing interdendritic SCC crack in the highly susceptible Alloy 182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy RPV steel. Cessation of interdendritic stress corrosion crack growth was observed in high-purity or sulphate-containing oxygenated water under periodical partial unloading or constant loading conditions with stress intensity factors below 60 MPa.m{sup 1/2} for those parts of the crack front, which reached the fusion line. In chloride containing water, on the other hand, the interdendritic stress corrosion crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated with a very high growth rate as a transgranular crack into the heat-affected zone and base material of the adjacent low-alloy steel. (orig.)

  17. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature

    Science.gov (United States)

    Li, Shuang; Wu, Xiaochun; Chen, Shihao; Li, Junwan

    2016-07-01

    The friction and wear behaviors of a new hot-work die steel, SDCM-SS, were studied at high temperature under dry air conditions. The wear mechanism and microstructural characteristics of the SDCM-SS steel were also investigated. The results showed that the SDCM-SS steel had greater wear resistance compared with H13 steel; this was owed to its high oxidizability and temper stability. These features facilitate the generation, growth, and maintenance of a tribo-oxide layer at high temperature under relatively stable conditions. The high oxidizability and thermal stability of the SDCM-SS steel originate from its particular alloy design. No chromium is added to the steel; this ensures that the material has high oxidizability, and facilitates the generation of tribo-oxides during the sliding process. Molybdenum, tungsten, and vanadium additions promote the high temper resistance and stability of the steel. Many fine Mo2C and VC carbides precipitate during the tempering of SDCM-SS steel. During sliding, these carbides can delay the recovery process and postpone martensitic softening. The high temper stability postpones the transition from mild to severe wear and ensures that conditions of mild oxidative wear are maintained. Mild oxidative wear is the dominant wear mechanism for SDCM-SS steel between 400 and 700 °C.

  18. Alloy design for intrinsically ductile refractory high-entropy alloys

    Science.gov (United States)

    Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng

    2016-10-01

    Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.

  19. Microstructure, Precipitation, and Mechanical Properties of V-N-Alloyed Steel After Different Cooling Processes

    Science.gov (United States)

    Zhang, Jing; Wang, Fu-Ming; Yang, Zhan-Bing; Li, Chang-Rong

    2016-12-01

    Three cooling processes (direct air cooling, water cooling to 1023 K and 873 K (750 °C and 600 °C) followed by air cooling) after hot rolling are designed to develop V-N-alloyed 600 MPa grade high-strength steel for architectural construction. Microstructural characteristics, precipitation behavior, and mechanical properties were investigated. Experimental results indicate that all microstructures are composed of polygonal ferrite and pearlite. Compared to the microstructure obtained from traditional direct air cooling, the grain size of ferrite is refined from 6.5 to 4.6 μm and the interlamellar spacing of pearlite decreases from 136 to 45 nm, respectively, by the application of accelerated cooling and lower finish cooling temperature. The number fraction of high misorientation angle boundaries increases from 44 to 51 pct. Moreover, the sheet spacing of interphase precipitates decreases from (23 to 26 nm) to (14 to 17 nm) and the size of V(C,N) particles reduces from (5 to 8 nm) to (2 to 5 nm). Furthermore, the optimal mechanical properties are obtained in the steel water cooled to 873 K (600 °C), of which the yield strength, tensile strength, total elongation, uniform elongation, and impact energy at room temperature are 753 MPa, 922 MPa, 22 pct, 11 pct, and 36 J, respectively. Besides, the high yield strength is primarily attributed to the refined grains and precipitation hardening from interphase and random precipitation of nano-scale V(C,N) particles.

  20. Microstructure, Precipitation, and Mechanical Properties of V-N-Alloyed Steel After Different Cooling Processes

    Science.gov (United States)

    Zhang, Jing; Wang, Fu-Ming; Yang, Zhan-Bing; Li, Chang-Rong

    2016-09-01

    Three cooling processes (direct air cooling, water cooling to 1023 K and 873 K (750 °C and 600 °C) followed by air cooling) after hot rolling are designed to develop V-N-alloyed 600 MPa grade high-strength steel for architectural construction. Microstructural characteristics, precipitation behavior, and mechanical properties were investigated. Experimental results indicate that all microstructures are composed of polygonal ferrite and pearlite. Compared to the microstructure obtained from traditional direct air cooling, the grain size of ferrite is refined from 6.5 to 4.6 μm and the interlamellar spacing of pearlite decreases from 136 to 45 nm, respectively, by the application of accelerated cooling and lower finish cooling temperature. The number fraction of high misorientation angle boundaries increases from 44 to 51 pct. Moreover, the sheet spacing of interphase precipitates decreases from (23 to 26 nm) to (14 to 17 nm) and the size of V(C,N) particles reduces from (5 to 8 nm) to (2 to 5 nm). Furthermore, the optimal mechanical properties are obtained in the steel water cooled to 873 K (600 °C), of which the yield strength, tensile strength, total elongation, uniform elongation, and impact energy at room temperature are 753 MPa, 922 MPa, 22 pct, 11 pct, and 36 J, respectively. Besides, the high yield strength is primarily attributed to the refined grains and precipitation hardening from interphase and random precipitation of nano-scale V(C,N) particles.

  1. Ultrahigh Ductility, High-Carbon Martensitic Steel

    Science.gov (United States)

    Qin, Shengwei; Liu, Yu; Hao, Qingguo; Zuo, Xunwei; Rong, Yonghua; Chen, Nailu

    2016-10-01

    Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching-partitioning-tempering (Q-P-T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q-P-T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q-P-T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q-P-T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

  2. Medium carbon vanadium micro alloyed steels for drop forging

    Energy Technology Data Exchange (ETDEWEB)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-12-31

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author) 17 refs., 19 figs., 5 tabs.

  3. A study of steel alloys for potential use in CO2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Tylczak, Joseph H.; Rawers, James C.; Blankenship, Daniel

    2005-01-01

    The effect of CO2 as a greenhouse gas, and the potential of global warming, has led to the study of sequestration of CO2 as a mineral carbonate. Some of the processes of mineral sequestration involve handing large tonnages of silicate minerals and reacting them with CO2. In this study the Albany Research Center evaluated the effects of wear and corrosion individually, and any possible synergetic effects resulting from a combination of wear and corrosion, on steel alloys that might be used in CO2 sequestration. By understanding the mechanism of slurry material loss, a better selection of erosion/corrosion resistant steel alloys can be chosen which in turn help plan construction costs. Four different conventional alloys were chosen. The alloys include AISI 1080 carbon steel, a 9Cr, 1 Mo steel, a 316 stainless steel, and a heat treatable 440C stainless steel. These materials covered a large range of alloy composition and cost. A variety of erosion and corrosion tests were used to evaluate the steels response to selected sequestration environments. The tests used included: (i) wear from dry Jet and HAET erosion tests, (ii) corrosion from immersion tests, and (iii) slurry erosion/corrosion tests. The slurry wear tests were conducted using a 270-μm silica abrasive in water and a solution (a mixture of sodium chloride, magnesium chloride, and sodium carbonate) saturated with CO2 at pH levels of 4.5 and 9.4. The results of these tests were compared with the results dry erosion and immersion corrosion tests. The results of the various tests were then used to evaluate the mechanism of material loss and determine is the presence of synergetic effects. The corrosion test showed little loss of material for all alloys. The erosion tests showed only a small difference between alloys. The slurry tests showed synergistic effect of combining erosion and corrosion resulted in a significant additional loss of material. It was further found both increasing the hardness and amounts of

  4. Compatibility of T91 steel with liquid Pb-Bi eutectic alloy at 450 oC

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2014-05-01

    Full Text Available Pb-Bi eutectic alloy has been receiving increasing attention as a heavy liquid metal coolant in accelerator driven systems and Generation IV fission reactors. Compatibility of structural materials with liquid Pb-Bi eutectic alloy at high temperature is one of the issues concerned. In the present study, corrosion tests of T91 steel in stagnant Pb-Bi eutectic alloy in saturated oxygen condition at 450 篊 were carried out. After experiments, the thickness and compositional profile of the oxide layer on the specimen were analyzed using SEM and EDX. Analysis results show that the thickness of the oxide layer increases as the exposure time increases from 500 h to 1,000 h. The thickness of the oxide layer remains almost unchanged at 15 to 16 mm from 1,000 to 1,500 h. Formation of a thick and protective oxide layer at 450 oC prevents the penetration of liquid Pb-Bi eutectic alloy into the matrix of the T91 steel.

  5. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiangyu; Huang Xiaobo; Jiang Li; Ma Yong; Fan Ailan [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tang Bin, E-mail: tangbin@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 {mu}m. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 {mu}m obtained at the gas pressure of 45 Pa is

  6. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel

    Science.gov (United States)

    Zhang, Xiangyu; Huang, Xiaobo; Jiang, Li; Ma, Yong; Fan, Ailan; Tang, Bin

    2011-12-01

    Bacterial adhesion to stainless steel surfaces is one of the major reason causing the cross-contamination and infection in many practical applications. An approach to solve this problem is to enhance the antibacterial properties on the surface of stainless steel. In this paper, novel antibacterial stainless steel surfaces with different copper content have been prepared by a plasma surface alloying technique at various gas pressures. The microstructure of the alloyed surfaces was investigated using glow discharge optical emission spectroscopy (GDOES) and scanning electron microscopy (SEM). The viability of bacteria attached to the antibacterial surfaces was tested using the spread plate method. The antibacterial mechanism of the alloyed surfaces was studied by X-ray photoelectron spectroscopy (XPS). The results indicate that gas pressure has a great influence on the surface elements concentration and the depth of the alloyed layer. The maximum copper concentration in the alloyed surface obtained at the gas pressure of 60 Pa is about 7.1 wt.%. This alloyed surface exhibited very strong antibacterial ability, and an effective reduction of 98% of Escherichia coli (E. coli) within 1 h was achieved by contact with the alloyed surface. The maximum thickness of the copper alloyed layer obtained at 45 Pa is about 6.5 μm. Although the rate of reduction for E. coli of this alloyed surface was slower than that of the alloyed surface with the copper content about 7.1 wt.% over the first 3 h, few were able to survive more than 12 h and the reduction reached over 99.9%. The XPS analysis results indicated that the copper ions were released when the copper alloyed stainless steel in contact with bacterial solution, which is an important factor for killing bacteria. Based on an overall consideration of bacterial killing rate and durability, the alloyed surface with the copper content of 2.5 wt.% and the thickness of about 6.5 μm obtained at the gas pressure of 45 Pa is expected

  7. Effect of water radiolysis on corrosion: steel, cobalt and nickel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Musa, A.Y.; Behazin, M.; Knapp, Q.W.; Mizzi, D.; Wren, J.C., E-mail: jcwren@uwo.ca [Western Univ., Dept. of Chemistry, London, Ontario (Canada)

    2013-07-01

    Steel, cobalt and nickel alloys are used in the coolant system (or primary heat transport system) of a nuclear power plant. To understand the effect of γ-radiation on the corrosion mechanism of these alloys, a combination of electrochemical measurements and surface analyses as a function of the water chemistry, with and without γ-radiation present, were performed.Results to date have shown that γ-radiation has a major impact on the corrosion process by changing the corrosion potential in a system. This determines the nature of the oxide phase (chemical state and morphology) that forms on a corroding alloy surface. (author)

  8. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li)

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Masatoshi, E-mail: kondo.masatoshi@nr.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Ishii, Masaomi [Department of Nuclear Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Muroga, Takeo [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 502-5292 (Japan)

    2015-10-15

    Graphical abstract: Corrosion of RAFM steel, JLF-1, in liquid Sn–20Li was caused by the formation of Fe-Sn alloyed layer. - Highlights: • The corrosion tests were performed for the reduced activation ferritic martensitic steel JLF-1 and the austenitic steel SUS316 in liquid Ga, Sn and Sn-20Li at 873 K up to 750 h. • The weight loss of the specimens exposed to liquid Ga, Sn and Sn-20Li was evaluated. • The corrosion of the steels in liquid Ga was caused by the alloying reaction between Ga and Fe on the steel surface. • The corrosion of the steels in liquid Sn was caused by the alloying reaction between Sn and Fe on the steel surface. • The corrosion of the steels in liquid Sn-20Li was caused by the formation of the Fe-Sn alloyed layer and the diffusion of Sn and Li into the steel matrix. - Abstract: The compatibility of steels in liquid gallium (Ga), tin (Sn) and tin lithium alloy (Sn–20Li) was investigated by means of static corrosion tests. The corrosion tests were performed for reduced activation ferritic martensitic steel JLF-1 (JOYO-HEAT, Fe–9Cr–2W–0.1C) and austenitic steel SUS316 (Fe–18Cr–12Ni–2Mo). The test temperature was 873 K, and the exposure time was 250 and 750 h. The corrosion of these steels in liquid Ga, Sn and Sn–20Li alloy was commonly caused by the formation of a reaction layer and the dissolution of the steel elements into the melts. The reaction layer formed in liquid Ga was identified as Fe{sub 3}Ga from the results of metallurgical analysis and the phase diagram. The growth rate of the reaction layer on the JLF-1 steel showed a parabolic rate law, and this trend indicated that the corrosion could be controlled by the diffusion process through the layer. The reaction layer formed in liquid Sn and Sn–20Li was identified as FeSn. The growth rate had a linear function with exposure time. The corrosion in Sn and Sn–20Li could be controlled by the interface reaction on the layer. The growth rate of the layer formed

  9. High Damping Alloys and Their Application

    Institute of Scientific and Technical Information of China (English)

    Fuxing Yin

    2000-01-01

    Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.

  10. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Changheui [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: chjang@kaist.ac.kr; Lee, Jounghoon [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sung Kim, Jong; Eun Jin, Tae [Korea Power Engineering Company, 360-9 Mabuk-ri, Guseong-eup, Yongin-si, Gyeonggi-do 449-713 (Korea, Republic of)

    2008-09-15

    In several locations of pressurized water reactors, dissimilar metal welds using Inconel welding wires are used to join the low alloy steel components to stainless-steel pipes. Because of the existence of different materials and chemistry variation within welds, mechanical properties, such as tensile and fracture properties, are expected to show spatial variation. For design and integrity assessment of the dissimilar welds, these variations should be evaluated. In this study, dissimilar metal welds composed of low alloy steel, Inconel 82/182 weld, and stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding techniques. Microstructures were observed using optical and electron microscopes. Typical dendrite structures were observed in Inconel 82/182 welds. Tensile tests using standard and mini-sized specimens and micro-hardness tests were conducted to measure the variation in strength along the thickness of the weld as well as across the weld. In addition, fracture toughness specimens were taken at the bottom, middle, and top of the welds and tested to evaluate the spatial variation along the thickness. It was found that while the strength is about 50-70 MPa greater at the bottom of the weld than at the top of the weld, fracture toughness values at the top of the weld are about 70% greater than those at the bottom of the weld.

  11. High-temperature steam oxidation testing of select advanced replacement alloys for potential core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-19

    Coupons from a total of fourteen commercial and custom fabricated alloys were exposed to 1 bar full steam with ~10 ppb oxygen content at 600 and 650°C. The coupons were weighed at 500-h intervals with a total exposure time of 5,000 h. The fourteen alloys are candidate alloys selected under the ARRM program, which include three ferritic steels (Grade 92, 439, and 14YWT), three austenitic stainless steels (316L, 310, and 800), seven Ni-base superalloys (X750, 725, C22, 690, 625, 625 direct-aging, and 625- plus), and one Zr-alloy (Zr–2.5Nb). Among the alloys, 316L and X750 are served as reference alloys for low- and high-strength alloys, respectively. The candidate Ni-base superalloy 718 was procured too late to be included in the tests. The corrosion rates of the candidate alloys can be approximately interpreted by their Cr, Ni and Fe content. The corrosion rate was significantly reduced with increasing Cr content and when Ni content is above ~15 wt%, but not much further reduced when Fe content is less than ~55 wt%. Simplified thermodynamics analyses of the alloy oxidation provided reasonable indications for the constituents of oxide scales formed on the alloys and explanations for the porosity and exfoliation phenomena because of the nature of specific types of oxides.

  12. High Fragmentation Steel Production Process

    Science.gov (United States)

    1984-01-01

    processes which might result in anamolies and to use the data to establish processing parameters for forging and machining operations. The first...from different vendors to investigate these variations. Another concern of this phase was the cooling method used by steel producers in the event of...10% coarse pearlite. There were no vivid white spots (which would indicate preci- pitated carbides) detected on the sample. The hardness and

  13. Surface Studies of HSLA [high strength low alloy] Steel after Electrochemical Corrosion in Supercritical CO{sub 2}-H{sub 2}O Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, M. Holcomb, G. Tylczak, J Beck, J Fedkin, M. Lvov, S.

    2011-10-11

    Corrosion resistance of pipeline materials for transporting coal combustion produced supercritical CO{sub 2} from power plants to sequestration sites has not been fully determined. Although pipeline materials are resistant to corrosion in pure supercritical CO{sub 2}, cleaning costs of combustion produced CO{sub 2} streams from impurities such as H{sub 2}O, O{sub 2}, SO{sub 2} are too high, making sequestration of pure CO{sub 2} streams unfeasible. Impacts of the H{sub 2}O, O{sub 2}, SO{sub 2} impurities on pipeline corrosion must be determined. Filling Up This Technological Gap requires studying effects of H{sub 2}O, O{sub 2}, SO{sub 2} concentrations on pipeline.

  14. Plasma Surface Cu Alloyed Layer as a Lubricant on Stainless Steel Sheet:Wear Characteristics and On-job Performance in Incremental Forming

    Institute of Scientific and Technical Information of China (English)

    WU Hongyan; WEI Hongyu; Ghulam Hussain; TAO Kemei; Asif Iqbal; RAO Weifeng

    2016-01-01

    To solve the problems of poor forming and easy adhesion of the stainless steel, Cu alloyed layer on the stainless steels was prepared by the double glow plasma surface alloying technique. The experimental results indicated that the supersaturated copper dispersedly precipitated in grain interior and crystal boundaries and formed the vermicular structure. The tribological tests indicated that the friction coefifcient of the Cu alloyed layer was lower than that of the stainless steels. The wear rate of stainless steel in the presence of Cu alloyed layer was approximately 2-fold lower than that in the absence of the alloyed layer. The results of the incremental forming indicated that the ploughing phenomenon was not observed on the stainless steel in the presence of Cu alloyed layer during the incremental forming, while the stainless steel presented the deep ploughing. Therefore, Cu alloyed layer on stainless steel exhibited excellent self-lubrication and forming properties.

  15. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  16. Laser assisted cold spraying of aluminium alloy powder on stainless steel substrate

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2012-12-01

    Full Text Available International Conference on Information Warfare and Security, Denver, USA 25-26 March 2013 LASER ASSISTED COLD SPRAYING OF ALUMINIUM ALLOY POWDER ON STAINLESS STEEL SUBSTRATE M. Tlotleng1, 2; E.O. Olakanmi2; C. Meacock; Sisa Pityana1, 3; E.T. Akinlabi2...

  17. Comparison of heat effects associated with metal cutting method on ST 37 alloy steel

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2014-04-01

    Full Text Available In this study, by examining effects of the heat on the cut surface of material formed by the processes, such as Plasma, Laser, Wire Erosion applied on St 37 alloy steel material, it has been determined that minimum cutting damage occurs in wire erosion process.

  18. Computing solubility products using ab initio methods; precipitation of NbC in low alloyed steel

    NARCIS (Netherlands)

    Klymko, T.; Sluiter, M.H.F.

    2012-01-01

    The solubility product of NbC in low alloyed steel is computed from electronic density functional methods including the effects of electronic, vibrational, and magnetic excitations. Although many simplifications are made in the computations, agreement with experimental data is within the scatter of

  19. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  20. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part ...

  1. Impurity content of reduced-activation ferritic steels and a vanadium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Grossbeck, M.L.; Bloom, E.E. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    Inductively coupled plasma mass spectrometry was used to analyze a reduced-activation ferritic/martensitic steel and a vanadium alloy for low-level impurities that would compromise the reduced-activation characteristics of these materials. The ferritic steel was from the 5-ton IEA heat of modified F82H, and the vanadium alloy was from a 500-kg heat of V-4Cr-4Ti. To compare techniques for analysis of low concentrations of impurities, the vanadium alloy was also examined by glow discharge mass spectrometry. Two other reduced-activation steels and two commercial ferritic steels were also analyzed to determine the difference in the level of the detrimental impurities in the IEA heat and steels for which no extra effort was made to restrict some of the tramp impurities. Silver, cobalt, molybdenum, and niobium proved to be the tramp impurities of most importance. The levels observed in these two materials produced with present technology exceeded the limits for low activation for either shallow land burial or recycling. The chemical analyses provide a benchmark for the improvement in production technology required to achieve reduced activation; they also provide a set of concentrations for calculating decay characteristics for reduced-activation materials. The results indicate the progress that has been made and give an indication of what must still be done before the reduced-activation criteria can be achieved.

  2. Galvanic Corrosion of Mg-Zr Alloy and Steel or Graphite in Mineral Binders

    Science.gov (United States)

    Lambertin, David; Rooses, Adrien; Frizon, Fabien

    The dismantling of UNGG nuclear reactor generates numerous nuclear wastes such as fuel decanning commonly composed of Mg-Zr alloy. A conditioning strategy consists in encapsulating these wastes into a hydraulic binder in a suitable state for storage. The eventual presence of steel and graphite accompanying the magnesium wastes could imply corrosion by galvanic coupling. This work is an experimental investigation of the galvanic coupling between Mg-Zr alloy and steel or graphite using ZRA electrochemical method in Portland cement or geopolymer pastes. The lowest corrosion activity of magnesium alloy while coupled to graphite or steel cathode has been observed in geopolymer pastes. Indeed, in this binder, an efficient corrosion protection of the magnesium alloy maintains the galvanic current very low during all the hardening process. In geopolymer paste, current densities of anodised Mg-Zr alloy is not dependent of the cathode/anode surface ratio in the range of 0.1 to 5 due to the dominance of the anode resistance.

  3. Characterization of the corrosion behavior of different stainless steel alloys exposed to flowing fresh seawater, using E.I.S technique

    Energy Technology Data Exchange (ETDEWEB)

    Al Muhanna, K. [Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, KISR, P.O.Box 24885, Safat 13109 Kuwait (Kuwait)

    2004-07-01

    E.I.S technique was used to characterize the corrosion behavior of UNS NO. S 31600 stainless steel, UNS NO. S 30400 stainless steel and UNS NO. S 62800 sanicro 28 exposed to continuous fresh Seawater. The total exposure time of the test was about 180 days. Two types of additives (4 ppm of Cl{sub 2} and 5 ppm of NH{sub 3}) were also added to the seawater to investigate their effect on the surfaces of these alloys. During the tests, no marine - macro fouling was observed on the surfaces of the tested alloys, as the seawater was filtrated at the Doha Desalination Research Center, where the study was carried out, but only a slimy layer spread on the whole surface of the alloys. The corrosion behavior of each alloy was monitored by the open circuit potential measurement, and the E.I.S technique using the EG and G 352 software and hardware instrument, where the resistance of the solution (R{sub sol}), the resistance of the surface of the tested alloy (R{sub p}), and the double layer capacitance (Cdl) was calculated. Under this study's experimental conditions, results indicated that the stainless steel alloys were highly resistant to marine fouling and corrosion in seawater, and were not affected by the aggressive additives, such as NH{sub 3}, and Cl{sub 2} in the seawater. (author)

  4. New aluminium alloys with high lithium content

    Energy Technology Data Exchange (ETDEWEB)

    Schemme, K.; Velten, B.

    1989-06-01

    Since the early 80's there have been made great efforts to replace the high strength aluminium alloys for the aircraft and space industry by a new generation of aluminium-lithium alloys. The attractivity of this kind of alloys could be increased by a further reduction of their density, caused by an increasing lithium content (/ge/ 5 wt.% Li). Therefore binary high-lithium containing alloys with low density are produced and metallografically investigated. A survey of their strength and wear behavior is given by using tensile tests and pin abrasing tests. (orig.).

  5. Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

    Science.gov (United States)

    Fernandez, Johnnatan Rodriguez; Ramirez, Antonio J.

    2017-03-01

    Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.

  6. The effect of alloying method on the structure and properties of sintered stainless steel

    Directory of Open Access Journals (Sweden)

    Dudek A.

    2017-03-01

    Full Text Available Sintered duplex stainless steels (SDSSs appear to be very interesting and promising materials that can be used in many industrial sectors. Ferrite improves material strength while austenite increases hardness and corrosion resistance. This study proposes a method to improve functional properties (e.g. hardness and wear resistance by means of alloying the surface of the sintered duplex steel with Cr3C2 + 10% NiAl powder. The results of optical microscope metallography, SEM/EDX, XRD analysis and microhardness and wear resistance measurements are also presented. The surface alloying with Cr3C2 is a manufacturing method of surface layer hardening in sintered stainless steels and modification of surface layer properties such as hardness and coefficient of friction.

  7. Oxide formation and alloying elements enrichment on TRIP steel surface during inter-critical annealing.

    Science.gov (United States)

    Gong, Y F; Birosca, S; Kim, H S; De Cooman, B C

    2008-06-01

    The gas atmosphere in continuous annealing and galvanizing lines alters both composition and microstructure of the surface and sub-surface of sheet steels. The alloying element enrichments and the oxide morphology on transformation-induced plasticity steel surfaces are strongly influenced by the dew point of the furnace atmosphere and annealing temperature. The formation of a thin oxide film and enrichment of the alloying elements during annealing may result in surface defects on galvanized sheet products. The present contribution reports on the use of microanalysis techniques such as electron backscatter diffraction, glow discharge optical emission spectroscopy and electron probe micro-analysis for the detailed surface analysis of inter-critically annealed transformation-induced plasticity steel such as oxide phase determination, microstructure and microtexture evolutions.

  8. Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

    Science.gov (United States)

    Fernandez, Johnnatan Rodriguez; Ramirez, Antonio J.

    2017-01-01

    Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.

  9. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at significantly lower strength region. It appeared that at high temperatures ≥ 600 ºC the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. It is reviewed, however, that the NFAs has much stronger radiation resistance at high temperatures, such as lower radiation-induced swelling, finer helium bubble formation and lower irradiation creep rate.

  10. Perspective on present and future alloy development efforts on austenitic stainless steels for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.

    1984-01-01

    The purpose of this paper is to address important questions concerning how to effect further alloy development of austenitic stainless steels for resistance, and to what extent the behavior of other properties under irradiation, such as strength/embrittlement, fatigue/irradiation creep, corrosion (under irradiation), and radiation-induced activation must be influenced. To summarize current understanding, helium has been found to have major effects on swelling and embrittlement, but several metallurgical avenues are available for significant improvement relative to type 316 stainless steel. Studies on fatigue and irradiation creep, particularly including helium effects, are preliminary but have yet to reveal engineering problems requiring additional alloy development remedies. The effects of irradiation on corrosion behavior are unknown, but higher alloy nickel contents make thermal corrosion in lithium worse. 67 refs. (JDB)

  11. Nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel and stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.; Sorensen, N.R.

    1998-02-01

    This report presents a nondestructive inspection assessment of eddy current and electrochemical analysis to separate inconel alloys from stainless steel alloys as well as an evaluation of cleaning techniques to remove a thermal oxide layer on aircraft exhaust components. The results of this assessment are presented in terms of how effective each technique classifies a known exhaust material. Results indicate that either inspection technique can separate inconel and stainless steel alloys. Based on the experiments conducted, the electrochemical spot test is the optimum for use by airframe and powerplant mechanics. A spot test procedure is proposed for incorporation into the Federal Aviation Administration Advisory Circular 65-9A Airframe & Powerplant Mechanic - General Handbook. 3 refs., 70 figs., 7 tabs.

  12. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    Hydrogen can diffuses into steel at high temperatures ( liquid state), in amount that exceeds the solid – solubility at low temperature. – At low...the weld – Add austenite stabilizing alloy element (e.g. Ni, Cu) to promote retained austenite formation (to trap hydrogen and slowdown diffusion

  13. Brazing process provides high-strength bond between aluminum and stainless steel

    Science.gov (United States)

    Huschke, E. G., Jr.; Nord, D. B.

    1966-01-01

    Brazing process uses vapor-deposited titanium and an aluminum-zirconium-silicon alloy to prevent formation of brittle intermetallic compounds in stainless steel and aluminum bonding. Joints formed by this process maintain their high strength, corrosion resistance, and hermetic sealing properties.

  14. Pack Aluminide Coatings Formed at 650 ℃ for Enhancing Oxidation Resistance of Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Z. D. Xiang; S. R. Rose; P. K. Datta

    2004-01-01

    This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-lMo (wt.%)alloy steel by pack cementation at 650 ℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ℃ in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential Al oxidation.

  15. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading

    Energy Technology Data Exchange (ETDEWEB)

    Blondé, R., E-mail: r.j.p.blonde@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Jimenez-Melero, E., E-mail: enrique.jimenez-melero@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Zhao, L., E-mail: lie.zhao@tudelft.nl [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Schell, N., E-mail: norbert.schell@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502 Geesthacht (Germany); Brück, E., E-mail: e.h.bruck@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der, E-mail: s.vanderzwaag@tudelft.nl [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van, E-mail: n.h.vandijk@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-31

    The microstructure evolution during shear loading of a low-alloyed TRIP steel with different amounts of the metastable austenite phase and its equivalent DP grade has been studied by in-situ high-energy X-ray diffraction. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing simultaneously the evolution of the austenite phase fraction and its carbon concentration, the load partitioning between the austenite and the ferritic matrix and the texture evolution of the constituent phases. Our results show that for shear deformation the TRIP effect extends over a significantly wider deformation range than for simple uniaxial loading. A clear increase in average carbon content during the mechanically-induced transformation indicates that austenite grains with a low carbon concentration are least stable during shear loading. The observed texture evolution indicates that under shear loading the orientation dependence of the austenite stability is relatively weak, while it has previously been found that under tensile load the {110}〈001〉 component transforms preferentially. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between the interstitial carbon concentration in the austenite, the grain orientation and the load partitioning.

  16. Hydrogen effects in nitrogen-alloyed austenitic steels; Wirkung von Wasserstoff in stickstofflegierten austenitischen Staehlen

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, M.; Mummert, K. [Institut fuer Festkoerper- und Werkstofforschung Dresden e.V. (Germany); Shehata, M.F. [National Research Centre, Cairo (Egypt)

    1998-12-31

    Hydrogen increases the yield strength of nitrogen-alloyed steels, but on the other hand adversely affects properties such as tensile strength and elongation to fracture. The effect is enhanced with increasing nitrogen and hydrogen contents. Under the effect of hydrogen addition, the discontinuous stress-strain characteristic and the distinct elongation limit of hydrogen-free, nitrogen containing steels is no longer observed in the material. This change of mechanical properties is attributed to an interatomic interaction of nitrogen and hydrogen in the lattice, which is shown for instance by such effects as reduction of hydrogen velocity, high solubility, and a particularly strong lattice expansion. The nature of this interaction of nitrogen and hydrogen in the fcc lattice remains to be identified. (orig./CB) [Deutsch] Wasserstoff fuehrt in stickstofflegierten Staehlen zu einer Erhoehung der Streckgrenze, aber gleichzeitig zu einer Abnahme der Zugfestigkeit und Bruchdehnung. Dieser Effekt verstaerkt sich mit zunehmenden Stickstoff- und Wasserstoffgehalten. Ein diskontinuierlicher Spannungs-Dehnungsverlauf mit einer ausgepraegten Streckgrenze in wasserstofffreien hochstickstoffhaltigen Staehlen wird nach Wasserstoffeinfluss nicht mehr beobachtet. Die Aenderung der mechanischen Eigenschaften, wird auf eine interatomare Wechselwirkung von Stickstoff und Wasserstoff im Gitter zurueckgefuehrt, die sich u.a. in geringer Wasserstoffdiffusionsgeschwindigkeit, hoher Loeslichkeit und vor allem in extremer Gitteraufweitung aeussert. Insgesamt ist die Natur der Wechselwirkung zwischen Stickstoff und Wasserstoff im kfz Gitter noch nicht aufgeklaert. (orig.)

  17. Pack Aluminide Coatings Formed at 650℃ for Enhancing Oxidation Resistance of Low Alloy Steels

    Institute of Scientific and Technical Information of China (English)

    Z.D.Xiang; S.R.Rose; P.K.Datta

    2004-01-01

    This study aims to investigate the feasibility of forming iron aluminide coatings on a commercial 9Cr-1Mo (wt.%) alloy steel by pack cementation at 650℃ in an attempt to improve its high temperature oxidation resistance. Pack powders containing Al, Al2O3 and a series of halide salts were used to carry out the coating deposition experiments, which enabled identification of the most suitable activator for the pack aluminising process at the intended temperature. The effect of pack aluminium content on the growth kinetics and microstructure of the coatings was then studied by keeping deposition conditions and pack activator content constant while increasing the pack aluminium content from 1.4 wt.% to 6 wt.%. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the phases and microstructures of the coatings formed and to determine depth profiles of coating elements in the coating layer. Oxidation resistance of the coating was studied at 650 ~C in air by intermittent weight measurement at room temperature. It was observed that the coating could substantially enhance the oxidation resistance of the steel under these testing conditions, which was attributed to the capability of the iron aluminide phases to form alumina scale on the coating surface through preferential A1 oxidation.

  18. Progress in High-Entropy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Michael C

    2013-12-01

    Strictly speaking, high-entropy alloys (HEAs) refer to single-phase, solid-solution alloys with multiprincipal elements in an equal or a near-equal molar ratio whose configurational entropy is tremendously high. This special topic was organized to reflect the focus and diversity of HEA research topics in the community.

  19. Effects of H2 Atmospheres on Sintering of Low Alloy Steels Containing Oxygen-Sensitive Masteralloys

    Science.gov (United States)

    de Oro Calderon, Raquel; Jaliliziyaeian, Maryam; Gierl-Mayer, Christian; Danninger, Herbert

    2017-02-01

    Processing of novel sintered steels with compositions including oxygen-sensitive elements requires deep understanding of the chemistry of sintering. The use of H2 atmospheres alleviates the oxygen transference from the base powder to the oxygen-sensitive particles. However, in H2, methane formation at 700-1200°C causes dramatic homogeneous decarburization of the part that affects both mechanical behavior and dimensional stability. The intensity and the critical temperatures of this effect depend strongly on the alloying elements, being significantly enhanced in presence of Si. When combining the alloying elements as Fe-Mn-Si masteralloys, methane formation is enhanced around 760°C due to the high Mn content (40 wt.%) in the masteralloys. Nevertheless, the benefits of H2 towards oxide reduction can still be advantageously used if diluting it in the form of N2-H2 atmospheres, or if limiting the use of H2 to temperatures below 500°C. Thus, decarburization due to methane formation can be successfully controlled.

  20. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  1. High temperature oxidation behavior of ODS iron-base alloys for nuclear energy application

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Zhou, Z.; Liao, L.; Chen, W.; Ge, C. [Univ. of Science and Technology Beijing, School of Materials Science and Engineering, Beijing (China)

    2010-07-01

    Oxide dispersion strengthened (ODS) iron based alloys are considered as promising high temperature structural material for advanced nuclear energy systems due to its higher creep strength and radiation damage resistance than conventional commercial steels. In this study, the oxidation behavior of ODS iron based alloys with different Cr content (12-18%) was investigated by exposing samples at high temperature of 700℃ and 1000℃ in atmosphere environment, the exposure time is up to 500 h. Results showed that 14Cr and 18Cr ODS alloys exhibited better oxidation resistance than 12Cr ODS alloys. For the same chromium content, the oxidation resistance of ODS alloys are better than that of non-ODS alloys. (author)

  2. Recent progress in high B{sub s} Fe-based nanocrystalline soft magnetic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, M; Yoshizawa, Y, E-mail: motoki_ohta@hitachi-metals.co.jp [Hitachi Metals Ltd., 2-15-17 Egawa, Shimamoto Osaka, 961-0013 (Japan)

    2011-02-16

    High saturation magnetic flux density (high-B{sub s}) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m{sup -1} and a high B{sub s} of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe{sub 80.5}Cu{sub 1.5}Si{sub 4}B{sub 14} nanocrystalline alloy is 0.46 W kg{sup -1}, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg{sup -1}, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  3. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  4. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    London, A.J., E-mail: andrew.london@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lozano-Perez, S.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Amirthapandian, S.; Panigrahi, B.K.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Grovenor, C.R.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471–503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174–1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe–0.3Y{sub 2}O{sub 3}, Fe–0.2Ti–0.3Y{sub 2}O{sub 3} and Fe–14Cr–0.2Ti–0.3Y{sub 2}O{sub 3}. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors.

  5. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Science.gov (United States)

    Lu, Qi; van der Zwaag, Sybrand; Xu, Wei

    2016-02-01

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0-10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  6. High-throughput design of low-activation, high-strength creep-resistant steels for nuclear-reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Qi; Zwaag, Sybrand van der [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands); Xu, Wei, E-mail: xuwei@ral.neu.edu.cn [State Key Laboratory of Rolling and Automation, Northeastern University, 110819, Shenyang (China); Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft (Netherlands)

    2016-02-15

    Reduced-activation ferritic/martensitic steels are prime candidate materials for structural applications in nuclear power reactors. However, their creep strength is much lower than that of creep-resistant steel developed for conventional fossil-fired power plants as alloying elements with a high neutron activation cannot be used. To improve the creep strength and to maintain a low activation, a high-throughput computational alloy design model coupling thermodynamics, precipitate-coarsening kinetics and an optimization genetic algorithm, is developed. Twelve relevant alloying elements with either low or high activation are considered simultaneously. The activity levels at 0–10 year after the end of irradiation are taken as optimization parameter. The creep-strength values (after exposure for 10 years at 650 °C) are estimated on the basis of the solid-solution strengthening and the precipitation hardening (taking into account precipitate coarsening). Potential alloy compositions leading to a high austenite fraction or a high percentage of undesirable second phase particles are rejected automatically in the optimization cycle. The newly identified alloys have a much higher precipitation hardening and solid-solution strengthening at the same activity level as existing reduced-activation ferritic/martensitic steels.

  7. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    Science.gov (United States)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  8. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  9. Influence of Alloying Elements Corrosion Resistance of Cold on Mechanical Properties and Rolled C-Mn-Si TRIP Steels

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling-yun; WU Di; LI Zhuang

    2012-01-01

    The rust layer plays an important role in the corrosion of steel in chlorinated environments. Salt spray, po- tentiodynamic polarization curve and tensile test were conducted in laboratory for the specimens after two-stage heat treatment. The influence of the alloying elements on mechanical properties and corrosion resistance of three kinds of steels was investigated by observing the microstructure and the morphologies of rust layer. The results show that the highest value (29%) of total elongation for steel A is obtained. The mechanical property of the specimen for steel C exhibits best strength ductility balance (21 384 MPa ·%) because of the presence of the multiphase microstructures after a two-stage heat treatment and the addition of the alloying elements. The corrosion products are known to be a complex mixture of Fe3O4 , Fe2O3 and α-FeOOH for steel C. The presence of the alloying elements results in the for mation of compact and dense rust layers in steel B and C. Passive film protects the substrate of TRIP (transformation induced plasticity) steel containing a complex mix of multiphase. Superior corrosion performance is exhibited for steel C with low alloying contents due to the enrichment of alloying elements within the rust layers.

  10. High Strength Steel Welding Research

    Science.gov (United States)

    2007-11-02

    Heat Input in Structural Steels," ISIJ International, vol. 36, no. 11, pp. 1406-1412, 1996. 116. N.P. Allen, W.P. Rees, B.E. Hopkins, and H.R. Tipler ...h’ 1c ifui c hy rgnoecc onoaýttthth u sth pobcontent :of the w•eldmnt wut houts-he prob f 4c sectintc Adusin~g: the+ height of Sstandard AWS/ANSi A4.3...hhE. L4-0 ~) 0 I3 CU ci)U CD ’ L. ) C-S E < 21 ofE co I 0 CLo x 1C . I a x .JCk 0 C o + 0+ 0 o+ 0 z or• mur ’’ s-0 U Qý 0 E- II CU -U Q 𔃾- m C U 0 a

  11. Influence of nitrogen alloying on hydrogen embrittlement in AISI 304-type stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hannula, S.-P.; Hanninen, H.; Tahtinen, S.

    1984-12-01

    Hydrogen embrittlement of AISI 304-type austenitic stainless steels has been studied with special emphasis on the effects of the nitrogen content of the steels. Hydrogen charging was found to degrade the mechanical properties of all the steels studied, as measured by a tensile test. The fracture surfaces of hydrogen charged specimens were brittle cleavage-like whereas the uncharged specimens showed ductile, dimpled fracture. In sensitized materials transgranular cleavage mode of fracture was replaced by an intergranular mode of fracture and the losses of mechanical properties were higher. Nitrogen alloying decreased the hydrogen-induced losses of mechanical properties by increasing the stabilit of austenite. In sensitized steels the stability of austenite and nitrogen content were found to have only a minor effect on hydrogen embrittlement, except when sensitization had caused ..cap alpha..'-martensite transformation at the grain boundaries.

  12. Influence of nitrogen alloying on hydrogen embrittlement in AISI 304-type stainless steels

    Science.gov (United States)

    Hannula, Simo-Pekka; Hänninen, Hannu; Tähtinen, Seppo

    1984-12-01

    Hydrogen embrittlement of AISI 304-type austenitic stainless steels has been studied with special emphasis on the effects of the nitrogen content of the steels. Hydrogen charging was found to degrade the mechanical properties of all the steels studied, as measured by a tensile test. The fracture surfaces of hydrogen charged specimens were brittle cleavage-like whereas the uncharged specimens showed ductile, dimpled fracture. In sensitized materials transgranular cleavage mode of fracture was replaced by an intergranular mode of fracture and the losses of mechanical properties were higher. Nitrogen alloying decreased the hydrogen-induced losses of mechanical properties by increasing the stability of austenite. In sensitized steels the stability of austenite and nitrogen content were found to have only a minor effect on hydrogen embrittlement, except when sensitization had caused α'-martensite transformation at the grain boundaries.

  13. Superior hydrogen storage in high entropy alloys

    Science.gov (United States)

    Sahlberg, Martin; Karlsson, Dennis; Zlotea, Claudia; Jansson, Ulf

    2016-11-01

    Metal hydrides (MHx) provide a promising solution for the requirement to store large amounts of hydrogen in a future hydrogen-based energy system. This requires the design of alloys which allow for a very high H/M ratio. Transition metal hydrides typically have a maximum H/M ratio of 2 and higher ratios can only be obtained in alloys based on rare-earth elements. In this study we demonstrate, for the first time to the best of our knowledge, that a high entropy alloy of TiVZrNbHf can absorb much higher amounts of hydrogen than its constituents and reach an H/M ratio of 2.5. We propose that the large hydrogen-storage capacity is due to the lattice strain in the alloy that makes it favourable to absorb hydrogen in both tetrahedral and octahedral interstitial sites. This observation suggests that high entropy alloys have future potential for use as hydrogen storage materials.

  14. Synergistic Computational and Microstructural Design of Next- Generation High-Temperature Austenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karaman, Ibrahim [Texas A& M Engineering Experiment Station, College Station, TX (United States); Arroyave, Raymundo [Texas A& M Engineering Experiment Station, College Station, TX (United States)

    2015-07-31

    The purpose of this project was to: 1) study deformation twinning, its evolution, thermal stability, and the contribution on mechanical response of the new advanced stainless steels, especially at elevated temperatures; 2) study alumina-scale formation on the surface, as an alternative for conventional chromium oxide, that shows better oxidation resistance, through alloy design; and 3) design new generation of high temperature stainless steels that form alumina scale and have thermally stable nano-twins. The work involved few baseline alloys for investigating the twin formation under tensile loading, thermal stability of these twins, and the role of deformation twins on the mechanical response of the alloys. These baseline alloys included Hadfield Steel (Fe-13Mn-1C), 316, 316L and 316N stainless steels. Another baseline alloy was studied for alumina-scale formation investigations. Hadfield steel showed twinning but undesired second phases formed at higher temperatures. 316N stainless steel did not show signs of deformation twinning. Conventional 316 stainless steel demonstrated extensive deformation twinning at room temperature. Investigations on this alloy, both in single crystalline and polycrystalline forms, showed that deformation twins evolve in a hierarchical manner, consisting of micron–sized bundles of nano-twins. The width of nano-twins stays almost constant as the extent of strain increases, but the width and number of the bundles increase with increasing strain. A systematic thermomechanical cycling study showed that the twins were stable at temperatures as high as 900°C, after the dislocations are annealed out. Using such cycles, volume fraction of the thermally stable deformation twins were increased up to 40% in 316 stainless steel. Using computational thermodynamics and kinetics calculations, we designed two generations of advanced austenitic stainless steels. In the first generation, Alloy 1, which had been proposed as an alumina

  15. Study on fatigue resistance of low alloy steels with Mo and Cr

    Science.gov (United States)

    Enculescu, E.; Chicet, D. L.; Dia, V.; Stanciu, S.

    2016-08-01

    This paper presents, based on a case study, the analysis of the factors that influence the mechanical cyclic fatigue resistance of two grades of low alloy steel with Mo and Cr. It was studied the fatigue behavior in real operating conditions of some active elements manufactured from the two low-alloyed steel grades, elements that are equipping some farm implements. Using the fractographic analysis, optical microscopy and scanning electron microscopy, were analyzed the samples that carried away because of the fatigue fracture. On samples taken from the two brands of low alloy steels with Mo and Cr were performed tempering thermal treatments that modified the structure, in order to improve the operating characteristics. The effect of those thermal treatments was initially observed by microstructural analysis of metallographic prepared samples (by polishing and chemical attack using nital reagent), that revealed a troostite type structure. On the heat-treated samples were determined a number of mechanical properties: hardness, impact strength and tensile test. There was observed an improvement of the impact bending strength for both alloys and a tensile behavior that favors increasing resistance to fatigue.

  16. Microstructures and properties of welded joint of TiNi shape memory alloy and stainless steel

    Institute of Scientific and Technical Information of China (English)

    邱小明; 孙大谦; 李明高; 刘卫红

    2004-01-01

    The fracture characteristics of the joint were analyzed by means of scanning electron microscope(SEM).Microstructures of the joint were examined by means of optical microscope, SEM and an image analyzer. The results show that the tensile strength of the inhomogeneous joint of TiNi shape memory alloy and stainless steel is lower than that of the homogeneous joint and a plastic field appears in the heat affected zone on the side of TiNi shape memory alloy. Because TiNi shape memory alloy and stainless steel melted, a brittle as-cast structure was formed in the weld. The tensile strength and the shape memory effect of the inhomogeneous joint are strongly influenced by the changes of composition and structure of the joint. Measures should be taken to reduce the base metal melting and prevent the weld metal from the invasion by O for improving the properties of the TiNi shape memory alloy and stainless steel inhomogeneous joint.

  17. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-02

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  18. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-01-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400–450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0–1.2 GPa at room temperature, which is nearly 3–5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry. PMID:28150692

  19. NEW DEVELOPMENT IN DOUBLE GLOW SURFACE ALLOYING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of special alloys are produced on the surfaces of iron and steels by using double glow surface alloying technology. Surface Ni-Cr-Mo-Nb alloy,surface precipitation hardening high speed steel and surface precipitation hardening stainless steel are introduced.

  20. Development of Centrifugal Cast High Speed Steel Roll with High Wear Resistance for Pre-Finishing Stands of a Hot Rod-Wire Mill

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-qiang; FENG Xi-lan; FU Han-guang; SHA Quan-you

    2004-01-01

    The present study aims at developing high speed steel ( HSS ) as roll materials to replace traditional roll materials such as the alloy cast iron and powder metallurgical (PM) hard alloy, because lowcost alley cast iron rolls have poor wear resistance and the cost of high-quality PM hard alloy rolls is too high to be accepted by some users. By means of a centrifugal casting method, HSS rolls with excellent wear resistance have been developed. Its hardness is 65 ~ 67HRC, and its variation is smaller than 2HRC ; its impact toughness excels 15J/cm2. Using pre-finishing stands of a high-speed hot wire-rod rolling mill, the wear raze of HSS rolls per one thousand ton of steel is 0. 25mm. However, the manufacturing burden of HSS rolls is obviously lower than that of PM hard alloy rolls; it is only 30% of that of PM hard alloy rolls.

  1. Effect of thermal aging to microstructure of the interface of low alloy Steel and Ni-based alloy filler metal of dissimilar weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hoon; Kim, Jong Jin; Choi, Sang Il; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-10-15

    Dissimilar Metal Welds (DMWs) is generally applied to nuclear power plants for manufacturing and machining in structural components such as reactor pressure vessels and pressurizer nozzles. Alloy 152 is used frequently as filler metal in the manufacture of the DMW in light water reactors to join the low alloy steel pressure vessel nozzles and steam generator nozzles to nickel-based wrought alloy or austenitic stainless steel components. However, in recent years cracking phenomena has been observed in the welded joints. Additionally, the number of long-term aged nuclear power plants is increasing. Concerns have been raised to the integrity and reliability in the joint transition zone due to the high susceptibility of the heat affected zone (HAZ) and the fusion boundary (FB) to stress corrosion cracking in combination with thermal aging. Since the material microstructure and chemical composition are key parameters affecting the stress corrosion cracking, improving the understanding of stress corrosion cracking at the FB region requires fundamental understanding of the unique microstructure of the FB region in DMW. Despite the potential degradation and consequent risk in the DMW, there is still a lack of the fundamental understanding of microstructure in the FB region, in particular the region containing unidentified band structures near the FB. As the life of nuclear power plants becomes long cycle, concerns have been raised to the integrity and reliability in the region after getting thermal aging effect. The long term exposure of this kind of material could experience the thermal aging which can form the chromium carbides near the FB by promoting the diffusion of C content at the service temperature. Therefore, the current study is aiming at the investigation of the thermal effect on the interface between Alloy 152 filler metal and A533 Gr. B. The used tools are Vickers hardness tester and Scanning Electron Microscope (SEM)

  2. Cessation of environmentally-assisted cracking in a low-alloy steel: Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.Y.

    1997-01-01

    The presence of dissolved metallurgical sulfides in pressure vessel and piping steels has been linked to Environmentally-Assisted Cracking (EAC), a phenomenon observed in laboratory tests that results in fatigue crack growth rates as high as 100 times that in air. Previous experimental and analytical work based on diffusion as the mass transport process has shown that surface cracks that are initially clean of sulfides will not initiate EAC in most applications. This is because the average crack tip velocity would not be sufficiently high to expose enough metallurgical sulfides per unit time and produce the sulfide concentration required for EAC. However, there is a potential concern for the case of a relatively large embedded crack breaking through to the wetted surface. Such a crack would not be initially clean of sulfides, and EAC could initiate. This paper presents the results of a series of experiments conducted on two heats of an EAC susceptible, high-sulfur, low-alloy steel in 243{degrees}C low-oxygen water to further study the phenomenon of EAC persistence at low crack tip velocities. A load cycle profile that incorporated a significant load dwell period at minimum load was used. In one experiment, the fatigue cycling history was such that relatively high crack tip velocities at the start of the experiment produced a persistent case of EAC even when crack tip velocities were later reduced to levels below the EAC initiation velocity. The other series of experiments used initial crack tip velocities that were much lower and probably more realistic. Air precracking of the compact tension specimens produced an initial inventory of undissolved sulfides on the crack flanks that directly simulates the array of sulfides expected from the breakthrough of an embedded crack. In all cases, results showed EAC ceased after several hundred hours of cycling.

  3. Effects of Microstructure on CVN Impact Toughness in Thermomechanically Processed High Strength Microalloyed Steel

    Science.gov (United States)

    Jia, Tao; Zhou, Yanlei; Jia, Xiaoxiao; Wang, Zhaodong

    2017-02-01

    Investigation on the correlation between microstructure and CVN impact toughness is of practical importance for the microstructure design of high strength microalloyed steels. In this work, three steels with characteristic microstructures were produced by cooling path control, i.e., steel A with granular bainite (GB), steel B with polygonal ferrite (PF) and martensite-austenite (M-A) constituent, and steel C with the mixture of bainitic ferrite (BF), acicular ferrite (AF), and M-A constituent. Under the same alloy composition and controlled rolling, similar ductile-to-brittle transition temperatures were obtained for the three steels. Steel A achieved the highest upper shelf energy (USE), while large variation of impact absorbed energy has been observed in the ductile-to-brittle transition region. With apparently large-sized PF and M-A constituent, steel B shows the lowest USE and delamination phenomenon in the ductile-to-brittle transition region. Steel C exhibits an extended upper shelf region, intermediate USE, and the fastest decrease of impact absorbed energy in the ductile-to-brittle transition region. The detailed CVN impact behavior is studied and then linked to the microstructural features.

  4. Role of alloy additions on strengthening in 17-4 PH stainless steel

    Science.gov (United States)

    Murthy, Arpana Sudershan

    Alloy modifications by addition of niobium (Nb), vanadium (V), nitrogen (N) and cobalt (Co) to cast 17-4 PH steel were investigated to determine the effect on mechanical properties. Additions of Nb, V, and N increased the yield strength from 1120 MPa to 1310 MPa while decreased the room temperature charpy V notch (CVN) toughness from 20 J to four Joules. The addition of Co to cast 17-4 PH steel enhanced the yield strength and CVN toughness from 1140 MPa to 1290 MPa and from 3.7 J to 5.5 J, respectively. In the base 17-4 PH steel, an increase in block width from 2.27 ± 0.10 μm in the solution treated condition to 3.06 ± 0.17 μm upon aging at 755 K was measured using orientation image microscopy. Cobalt inhibited recrystallization and block boundary migration during aging resulting in a finer martensitic block structure. The influence of Co on copper (Cu) precipitation in steels was studied using atom probe tomography. A narrower precipitate size distribution was observed in the steels with Co addition. The concentration profile across the matrix / precipitate interface indicated rejection of Co atoms from the copper precipitates. This behavior was observed to be energetically favorable using first principle calculations. The activation energies for Cu precipitation increased from 205 kJ/ mol in the non-cobalt containing alloy, to 243 kJ/ mol, and 272 kJ/ mol in alloys with 3 wt. %Co, and 7 wt. % Co, respectively. The role of Co on Cu precipitation in cast 17-4 PH steel is proposed as follows: (i) Co is rejected out of the Cu precipitate and sets up a barrier to the growth of the Cu precipitate; (ii) results in Cu precipitates of smaller size and narrower distribution; (iii) the coarsening of Cu precipitates is inhibited; and (iv) the activation energy for Cu precipitation increases.

  5. High Strength, Weldable Precipitation Aged Steels

    Science.gov (United States)

    Wilson, Alexander D.

    1987-03-01

    The family of plate steels represented by ASTM Specification A7101 is finding increasing applications. These low carbon, Cu-Ni-Cr-Mo-Cb, copper precipitation hardened steels have been identified by a number of designations over the years. During early development in the late 1960's and first commercial production in 1970, the steels were known as IN-787 (trademark of International Nickel Company).2 ASTM specifications were subsequently developed for structural (A710) and pressure vessel (A736) applications over ten years ago. More recent interest and application of this family of steels by the U.S. Navy has lead to development of a military specification MIL-S-24645 (SH),3 also initially known as "HSLA-80." Significant tonnage is being produced for the U.S. Navy as a replacement for HY80 (MIL-S-16216) in cruiser deck, bulkhead and hull applications.4 In these applications, the enhanced weldability and requirement of no preheat at this high strength and toughness level has been the main motivation for its use. Over the past 15 years, A710 type steels have also been used in a variety of applications, including off-shore platforms, pressure vessels, arctic linepipe valves and off-highway mining truck frames.

  6. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models

    Science.gov (United States)

    Bradshaw, James F.; Sandefur, Paul G., Jr.; Young, Clarence P., Jr.

    1991-01-01

    A comprehensive study of braze alloy selection process and strength characterization with application to wind tunnel models is presented. The applications for this study include the installation of stainless steel pressure tubing in model airfoil sections make of 18 Ni 200 grade maraging steel and the joining of wing structural components by brazing. Acceptable braze alloys for these applications are identified along with process, thermal braze cycle data, and thermal management procedures. Shear specimens are used to evaluate comparative shear strength properties for the various alloys at both room and cryogenic (-300 F) temperatures and include the effects of electroless nickel plating. Nickel plating was found to significantly enhance both the wetability and strength properties for the various braze alloys studied. The data are provided for use in selecting braze alloys for use with 18 Ni grade 200 steel in the design of wind tunnel models to be tested in an ambient or cryogenic environment.

  7. Corrosion behavior of EUROFER steel in flowing eutectic Pb-17Li alloy

    Energy Technology Data Exchange (ETDEWEB)

    Konys, J. E-mail: juergen.konys@imf.fzk.de; Krauss, W.; Voss, Z.; Wedemeyer, O

    2004-08-01

    Reduced-activation-ferritic-martensitic (RAFM) steels are considered for application in fusion technology as structural materials. The alloy EUROFER 97 was developed on the basis of the experience gained with steels of the OPTIFER, MANET and F82H-mod. type. These alloys will be in contact with the liquid breeder Pb-17Li and their corrosion behavior is of significance for their successful application. Corrosion tests of EUROFER 97 in flowing Pb-17Li at 480 deg. C were performed up to about 12 000 h to evaluate the kinetics of the dissolution attack. The exposed samples were analysed by metallography and scanning electron microscopy (SEM) with EDX. The results show that EUROFER 97 is attacked by flowing liquid Pb-17Li with a flow velocity of about 0.3 m/s similar to the earlier examined steels and that the typical steel elements are dissolved. The observed attack is of uniform type with values of about 90 {mu}m/year. The corrosion rate is a somewhat smaller for EUROFER compared to the other RAFM steels but with equal activation energy.

  8. Surface modification of the X40CrMoV5-1 steel by laser alloying and PVD coatings deposition

    Directory of Open Access Journals (Sweden)

    K. Lukaszkowicz

    2008-04-01

    Full Text Available Purpose: The paper presents the influence of alloying with NbC powder by the use of a high-power diode laser and TiAlN, AlSiCrN and TiCN gradient coatings deposition by PVD process on microstructure and hardness of the X40CrMoV5-1 steel surface layer.Design/methodology/approach: Microstructure was characterised using optical metallography, scanning and transmission electron microscopy.Findings: In the effect of laser alloying with powders of carbide NbC occurs size reduction of microstructure as well as dispersion hardening through fused in but partially dissolved carbides and consolidation through enrichment of surface layer in alloying additions coming from dissolving carbides. The structure of the PVD coatings consisted of fine crystallites while their average size fitted within the range of 15-50 nm, depending on the coating type. The coatings demonstrated columnar structure.Research limitations/implications: It is necessary to continue the research to determine alloying parameters for demanded properties of hot work tool steels surface layers. Further investigations should be concentrated on the determination of the thermal fatigue resistance of the layers.Practical implications: Good properties of the PVD coatings and the laser treatment make these layers suitable for various technical and industrial applications.Originality/value: Laser alloying by using different carbide powders and HPDL laser is a new way to improve the structure and mechanical properties of the hot work tool steels.

  9. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    Science.gov (United States)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  10. Assessment of the Low Alloy Cast Steel Inoculation Effects with Chosen Additives

    Directory of Open Access Journals (Sweden)

    D. Bartocha

    2012-04-01

    Full Text Available Structure, and thus the mechanical properties of steel are primarily a function of chemical composition and the solidification process which can be influenced by the application of the inoculation treatment. This effect depends on the modifier used. The article presents the results of studies designed to assess the effects of structural low alloy steel inoculation by selected modifying additives. The study was performed on nine casts modeled with different inoculants, assessment of the procedure impact was based on the macrostructure of made castings. The ratio of surface area equivalent to the axial zone of the crystals and columnar crystals zone was adopted as a measure of the inoculation effect.

  11. Dynamic Recrystallization and Grain Growth Behavior of 20SiMn Low Carbon Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    DONG Lanfeng; ZHONG Yuexian; MA Qingxian; YUAN Chaolong; MA Lishen

    2008-01-01

    A senes of thermodynamics experiments were used to optimize the hot forging process of 20SiMn low-carbon alloy steel.A dynamic recrystallization and grain growth model was developed for the 20SiMn steel for common production conditions of heavy forgings by doing a nonlinear curve fit of the expenment data.Optimized forging parameters were developed based on the control of the dynamic recrystallization and the MnS secondary phase.The data shows that the initial grain size and the MnS secondary phase all affect the behavior of the 20SiMn dynamic recrystallization and grain growth.

  12. Estimation of cyclic stress-strain curves for low-alloy steel from hardness

    Directory of Open Access Journals (Sweden)

    R. Basan

    2010-04-01

    Full Text Available This article describes investigations into the existence of correlation between experimentally determined cyclic parameters and hardness of quenched and tempered representative low-alloy steel 42CrMo4. A good correlation was found to exist between cyclic strength coefficient K’ and Brinell hardness HB, but not between cyclic strain hardening exponent n‘ and hardness HB. Nevertheless, good agreement between calculated and experimental cyclic stress-strain curves shows that cyclic parameters i.e. cyclic stress-strain curves of the investigated steel can be successfully estimated from its hardness.

  13. Microstructure and tensile properties of ODS ferritic steels mechanically alloyed with Fe2Y

    Directory of Open Access Journals (Sweden)

    J. Macías-Delgado

    2016-12-01

    Full Text Available An oxide dispersion strengthened ODS ferritic steel has been produced by mechanical alloying of Fe–14Cr–2W–0.2Ti (wt.% prealloyed powder with 0.55 (wt.% Fe2Y intermetallic particles and consolidated by hot isostatic pressing. The microstructure after thermal treatments confirms the homogeneous precipitation of Y-Ti oxides with nanometric sizes. Tensile properties as a function of the testing temperature from room temperature to 973K have been measured and the results are discussed with respect to similar ODS ferritic steels fabricated by a powder metallurgy route using Y2O3 powder.

  14. Development of Forsterite Based Insulating Board for Alloy Steel Con—casting Tundish

    Institute of Scientific and Technical Information of China (English)

    ZHAOJi-zeng; ZHOULei; 等

    1994-01-01

    To meet the operation requirement of com-casting tundish for alloy steel.a forsterite based insulating board has been developed.The effects of binder ,fiber and other additives on the properties of the properties of the products have been described;the theoretial reason of assuring containing clear steel by using inorganic binder bonded forsterite based insulating board were also discussed;the mineral composition and microstructure of the products have been analyzed by means of XRD.SEM and microscope ,The results indicate that the forsteite based insulating board with excel-lent performance and dood application results has been obtained.

  15. Segregation Behaviour of Third Generation Advanced High-Strength Mn-Al Steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-04-01

    Full Text Available The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

  16. Springback analysis of ultra high strength steel

    Science.gov (United States)

    Tenma, Kenji; Kina, Futoshi; Suzuki, Wataru

    2013-12-01

    It is an inevitable trend in the automotive industry to apply more and more high strength steels and even ultra-high strength steels. Even though these materials are more difficult to process the development time of forming tools must be reduced. In order to keep the development time under control, simulation tools are used to verify the forming process in advance. At Aoi Machine Industry a project has been executed to accurately simulate springback of ultra-high strength steels in order to reduce the tool tryout time. In the first phase of the project the simulation settings were optimized based on B-Pillar model A made of Dual Phase 980. In the second phase, it was verified with B-Pillar model B whether these simulation settings were usable as general setting. Results showed that with the right settings it is very well possible to accurately simulate springback of ultra-high strength steels. In the third phase the project the stamping of a B-Pillar of Dual Phase 1180 was studied.

  17. Grain-refining heat treatments to improve cryogenic toughness of high-strength steels

    Science.gov (United States)

    Rush, H. F.

    1984-01-01

    The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.

  18. APT characterization of high nickel RPV steels

    Science.gov (United States)

    Miller, M. K.; Sokolov, M. A.; Nanstad, R. K.; Russell, K. F.

    2006-06-01

    The microstructures of three high nickel content pressure vessel steels have been characterized by atom probe tomography to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels. The high-nickel, low-manganese, low-copper VVER-1000 weld and forging exhibited lower than predicted levels of embrittlement during neutron irradiation. The Palisades weld exhibits a Δ T41 J of 102 °C which was significantly lower than the value of 154 °C predicted by Reg. Guide 1.99 Rev. 2. Atom probe tomography revealed nickel-, manganese-, and silicon-enriched precipitates in both the VVER-1000 base and weld materials after neutron irradiation. A high number density of copper-, nickel-, manganese-, silicon- and phosphorus-enriched precipitates were observed in the Palisades weld after neutron irradiation. Atom probe tomography also revealed high levels of phosphorus segregation to the dislocations in all three materials.

  19. Surface phenomena during the early stages of sintering in steels modified with Fe–Mn–Si–C master alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oro, Raquel, E-mail: raqueld@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Campos, Mónica, E-mail: campos@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Torralba, José Manuel, E-mail: torralba@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid (Spain); Nyborg, Lars, E-mail: lars.nyborg@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden)

    2013-12-15

    The characteristics of the metallic powder surface play a critical role in the development of strong bonds between particles during sintering, especially when introducing elements with a high affinity for oxygen. In this study, Mn and Si have been combined in a Fe–Mn–Si–C master alloy powder in order to reduce their chemical activity and prevent oxidation during the heating stage of the sintering process. However, when this master alloy powder is mixed with an iron base powder, differences in chemical activity between both components can lead to an oxygen transfer from the iron base powder to the surface of the master alloy particles. The present research is focused on studying the evolution of the master alloy particle surface during the early stages of sintering. Surface characterization by X-ray Photoelectron Spectroscopy (XPS) shows that the master alloy powder surface is mostly covered by a thin easily reducible iron oxide layer (∼ 1 nm). Mn–Si particulate oxides are found as inclusions in specific areas of the surface. Evolution of oxides during sintering was studied on green compacts containing iron powder, graphite and Fe–Mn–Si–C master alloy powder that were heat treated in vacuum (10{sup −6} mbar) at different temperatures (from 400, 600, 800 to 1000 °C) and analyzed by means of XPS. Vacuum sintering provides the necessary conditions to remove manganese and silicon oxides from the powder surface in the range of temperatures between 600 °C and 1000 °C. When sintering in vacuum, since the gaseous products from reduction processes are continuously eliminated, oxidation of master alloy particles due to oxygen transfer through the atmosphere is minimized. - Highlights: • Mn and Si were introduced in sintered steels using a master alloy powder. • Surface of the master alloy is mainly covered by an easily reducible iron oxide. • Temperature ranges for oxidation/reduction are identified. • Vacuum conditions avoid oxygen transfer to

  20. New tungsten alloy has high strength at elevated temperatures

    Science.gov (United States)

    1966-01-01

    Tungsten-hafnium-carbon alloy has tensile strengths of 88,200 psi at 3000 deg F and 62,500 psi at 3500 deg F. Possible industrial applications for this alloy would include electrical components such as switches and spark plugs, die materials for die casting steels, and heating elements.