WorldWideScience

Sample records for high alkaline ph

  1. Optimized coagulation of high alkalinity, low temperature and particle water: pH adjustment and polyelectrolytes as coagulant aids.

    Science.gov (United States)

    Yu, Jianfeng; Wang, Dongsheng; Yan, Mingquan; Ye, Changqing; Yang, Min; Ge, Xiaopeng

    2007-08-01

    The Yellow River in winter as source water is characterized as high alkalinity, low temperature and low particle concentrations, which have brought many difficulties to water treatment plants. This study fully examines the optimized coagulation process of the Yellow River by conventional and pre-polymerized metal coagulants, pH adjustment and polyelectrolytes as the primary coagulants or coagulant aids. For all the metal coagulants, polyaluminum chlorides are superior to traditional metal coagulants due to their stable polymeric species and low consumption of alkalinity. The removal of natural organic matter by monomeric metal coagulants can be improved through pH adjustment, which is in accordance with the higher concentration of polymeric species formed at corresponding pH value. With the addition of polyelectrolytes as coagulant aids, the coagulation performance is significantly improved. The effective removal of dissolved organic matter is consistent with high charge density, while molecular weight is relatively important for removing particles, which is consistent with polyelectrolytes as primary coagulants. These results suggest that the coagulation mechanisms in the removal of dissolved organic matter and particles are different, which may be exploited for optimized coagulation for the typical source water in practice.

  2. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    Science.gov (United States)

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems.

  3. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode.

    Science.gov (United States)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-20

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex(®) fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  4. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae).

    Science.gov (United States)

    Šustr, Vladimír; Stingl, Ulrich; Brune, Andreas

    2014-08-01

    The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments.

  5. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae)

    KAUST Repository

    Šustr, Vladimír

    2014-08-01

    The saprophagous larvae of bibionid flies harbor bacteria in their alkaline intestinal tracts, but little is known about the contribution of the gut microbiota to the digestion of their recalcitrant diet. In this study, we measured oxygen and hydrogen partial pressure, redox potential and pH in the midgut, gastric caeca and hindgut of larvae of the bibionid fly Penthetria holosericea with Clark-type O2 and H2 microsensors, platinum redox microelectrodes, and LIX-type pH microelectrodes. The center of the midgut lumen was anoxic, whereas gastric caeca and hindgut were hypoxic. However, redox potential profiles indicated oxidizing conditions throughout the gut, with lowest values in the midgut (+20 to +60mV). Hydrogen production was not detected. The midgut was extremely alkaline (pH around 11), whereas hindgut and gastric caeca were neutral to slightly alkaline. While HPLC analysis showed high concentrations of glucose in the midgut (15mM) and gastric caeca (27mM), the concentrations of microbial fermentation products such as lactate (2-4mM), acetate (<1mM) and succinate (<0.5mM) were low in all gut regions, suggesting that the contribution of microorganisms to the digestive process, particularly in the alkaline midgut, is only of minor importance. We conclude that the digestive strategy of the saprophytic larva of P. holosericea, which feeds selectively on decomposed leaves and its own microbe-rich faeces, differs fundamentally from those of detritivorous and humivorous insects, which host a highly active, fermentative microbiota in their alkaline midgut or hindgut compartments. © 2014 Elsevier Ltd.

  6. In vitro alkaline pH resistance of Enterococcus faecalis.

    Science.gov (United States)

    Weckwerth, Paulo Henrique; Zapata, Ronald Ordinola; Vivan, Rodrigo Ricci; Tanomaru Filho, Mário; Maliza, Amanda Garcia Alves; Duarte, Marco Antonio Hungaro

    2013-01-01

    Enterococcus faecalis is a bacterial species often found in root canals with failed endodontic treatment. Alkaline pastes are widely used in Endodontics because of their biocompatibility and antimicrobial activity, but this microorganism can resist alkalinity. The purpose of this study was to evaluate in vitro the alkaline pH resistance of E. faecalis for different periods up to 14 days. Samples were obtained from the oral cavity of 150 patients from the Endodontic clinic. The pH of the experimental tubes (n=84) was first adjusted with 6M NaOH to pH values of 9.5, 10.5, 11.5 and 12.5 (21 tubes per pH). Twenty clinical isolates and the ATCC 29212 strain were tested. The 5 positive controls and experimental tubes of each pH were inoculated with 10 µL of bacterial suspension and incubated at 36 °C for 24, 48 and 72 h, 7 and 14 days. For each period, the turbidity of the medium was visually compared with a 0.5 McFarland standard. The presence of the microorganism was confirmed by seeding on M-Enterococcus agar. Four tubes containing BHI broth adjusted to the tested pHs were incubated for 14 days to verify if pH changes occurred. The pH of inoculated BHI broth was also measured on day 14 to determine if the microorganism acidified the medium. The growth of all E. faecalis strains occurred at pH 9.5 to 11.5 in all periods. Although turbidity was not observed at pH 12.5, there was growth of 13 and 2 strains at 24 and 48 h, respectively, on M-Enterococcus agar. No tube showed growth at pH 12.5 after 72 h. It was concluded that E. faecalis can survive in highly alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed.

  7. Halotolerant Cyanobacterium Aphanothece halophytica Contains a Betaine Transporter Active at Alkaline pH and High Salinity

    OpenAIRE

    2006-01-01

    Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetTA. halophytica) that belongs to the betaine-choline-carnitine transporter (BCCT) famil...

  8. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    National Research Council Canada - National Science Library

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy...

  9. High external pH enables more efficient secretion of alkaline α-amylase AmyK38 by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Manabe Kenji

    2012-06-01

    Full Text Available Abstract Background Bacillus subtilis genome-reduced strain MGB874 exhibits enhanced production of exogenous extracellular alkaline cellulase Egl-237 and subtilisin-like alkaline protease M-protease. Here, we investigated the suitability of strain MGB874 for the production of α-amylase, which was anticipated to provoke secretion stress responses involving the CssRS (Control secretion stress Regulator and Sensor system. Results Compared to wild-type strain 168, the production of a novel alkaline α-amylase, AmyK38, was severely decreased in strain MGB874 and higher secretion stress responses were also induced. Genetic analyses revealed that these phenomena were attributable to the decreased pH of growth medium as a result of the lowered expression of rocG, encoding glutamate dehydrogenase, whose activity leads to NH3 production. Notably, in both the genome-reduced and wild-type strains, an up-shift of the external pH by the addition of an alkaline solution improved AmyK38 production, which was associated with alleviation of the secretion stress response. These results suggest that the optimal external pH for the secretion of AmyK38 is higher than the typical external pH of growth medium used to culture B. subtilis. Under controlled pH conditions, the highest production level (1.08 g l-1 of AmyK38 was obtained using strain MGB874. Conclusions We demonstrated for the first time that RocG is an important factor for secretory enzyme production in B. subtilis through its role in preventing acidification of the growth medium. As expected, a higher external pH enabled a more efficient secretion of the alkaline α-amylase AmyK38 in B. subtilis. Under controlled pH conditions, the reduced-genome strain MGB874 was demonstrated to be a beneficial host for the production of AmyK38.

  10. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    Science.gov (United States)

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  11. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    Directory of Open Access Journals (Sweden)

    Gerry K. Schwalfenberg

    2012-01-01

    Full Text Available This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  12. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, J.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States))

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine the influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.

  13. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    Science.gov (United States)

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents.

  14. Design of stability at extreme alkaline pH in streptococcal protein G.

    Science.gov (United States)

    Palmer, Benjamin; Angus, Katy; Taylor, Linda; Warwicker, Jim; Derrick, Jeremy P

    2008-04-30

    Protein G (PrtG) is widely used as an affinity-based ligand for the purification of IgG. It would be desirable to improve the resistance of affinity chromatography ligands, such as PrtG, to commercial cleaning-in-place procedures using caustic alkali (0.5 M NaOH). It has been shown that Asn residues are the most susceptible at extreme alkaline pH: here, we show that replacement of all three Asn residues within the IgG-binding domain of PrtG only improves stability towards caustic alkali by about 8-fold. Study of the effects of increasing pH on PrtG by fluorescence and CD shows that the protein unfolds progressively between pH 11.5 and 13.0. Calculation of the variation in electrostatic free energy with pH indicated that deprotonation of Tyr, Lys and Arg side-chains at high pH would destabilize PrtG. Introduction of the triple mutation Y3F/T16I/T18I into PrtG stabilized it by an extra 6.8 kcal/mol and the unfolding of the protein occurred at a pH of about 13, or 1.5 pH units higher than wild type. The results show that strategies for the stabilization of proteins at extreme alkaline pH should consider thermodynamic stabilization that will retain the tertiary structure of the protein and modification of surface electrostatics, as well as mutation of alkali-susceptible residues.

  15. Conformational changes in the bilirubin-human serum albumin complex at extreme alkaline pH

    DEFF Research Database (Denmark)

    Honoré, B; Frandsen, P C

    1986-01-01

    Light-absorption, c.d. and fluorescence of the bilirubin-albumin complex were investigated at extreme alkaline pH. Above pH 11.1 albumin binds the bilirubin molecule, twisted oppositely to the configuration at more neutral pH. On the basis of light-absorption it is shown that two alkaline...... transitions occur. The first alkaline transition takes place at pH between 11.3 and 11.8, co-operatively dissociating at least six protons. The second alkaline transition takes place at pH between 11.8 and 12.0. It probably implies a reversible unfolding of the albumin molecule, increasing the distance...

  16. Microbial thiocyanate utilization under highly alkaline conditions.

    Science.gov (United States)

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS-) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  17. THE BIOENERGETICS OF AMMONIA AND HYDROXYLAMINE OXIDATION IN NITROSOMONAS-EUROPAEA AT ACID AND ALKALINE PH

    NARCIS (Netherlands)

    FRIJLINK, MJ; ABEE, T; LAANBROEK, HJ; DEBOER, W; KONINGS, WN

    1992-01-01

    Autotrophic ammonia oxidizers depend on alkaline or neutral conditions for optimal activity. Below pH 7 growth and metabolic activity decrease dramatically. Actively oxidizing cells of Nitrosomonas europaea do not maintain a constant internal pH when the external pH is varied from 5 to 8. Studies of

  18. Mechanism of enhancement of prochymosin renaturation by solubilization of inclusion bodies at alkaline pH

    Institute of Scientific and Technical Information of China (English)

    张治洲; 张渝英; 杨开宇

    1997-01-01

    The renaturation efficiency of recombinant prochymosin depends on not only the renaturation condi-tions but also the solubilization (denaturation) conditions. Compared with pH 8, solubilization of prochymosin-contain-ing inclusion bodies at pH 11 (8 mol/L urea) results in onefold increase of renaturation efficiency ( ~ 40% vs. ~ 20 % ). Alkaline pH facilitates the solubilization of inclusion bodies via the breakage of intermolecular disulfide bonds. Moreover, alkaline pH renders prochymosin molecules to be in a more reduced and more unfolded state which undergoes refolding readily.

  19. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    Science.gov (United States)

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage.

  20. Medium initial pH and carbon source stimulate differential alkaline cellulase time course production in Stachybotrys microspora.

    Science.gov (United States)

    Ben Hmad, Ines; Abdeljalil, Salma; Saibi, Walid; Amouri, Bahia; Gargouri, Ali

    2014-03-01

    The production profile of cellulases of the mutant strain A19 from the filamentous fungus Stachybotrys microspora was studied in the presence of various carbon sources (glucose, lactose, cellulose, carboxymethylcellulose (CMC), and wheat bran) and a range of medium initial pH (5, 7, and 8). Two extracellular cellulases from the Stachybotrys strain (endoglucanases and β-glucosidases) were monitored by enzymatic assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and zymogram analysis. Glucose and lactose repressed CMCase time course production while they permitted a strong β-glucosidase one. On Avicel cellulose, CMC, and wheat bran, both activities were highly produced. Wheat bran (WB) is the best carbon source with an optimum of production at days 5 and 6. The production kinetics of both activities were shown to depend on the medium initial pH, with a preference for neutral or alkaline pH in the majority of conditions. The exception concerned the β-glucosidase which was much more produced at acidic pH, on glucose and cellulose. Most interestingly, a constitutive and conditional expression of an alkaline endoglucanase was revealed on the glucose-based medium at an initial pH of 8 units. The zymogram analysis confirmed such conclusions and highlighted that carbon sources and the pH of the culture medium directed a differential induction of various endoglucanases and β-glucosidases.

  1. Extremely alkaline (pH > 12) ground water hosts diverse microbial community.

    Science.gov (United States)

    Roadcap, George S; Sanford, Robert A; Jin, Qusheng; Pardinas, José R; Bethke, Craig M

    2006-01-01

    Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.

  2. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  3. Abiotic Synthesis of Methane Under Alkaline Hydrothermal Conditions: the Effect of pH in Heterogeneous Catalysis

    Science.gov (United States)

    Foustoukos, D. I.; Qi, F.; Seyfried, W. E.

    2004-12-01

    Abiotic formation of methane in hydrothermal reaction zones at mid-ocean ridges likely occurs by Fischer-Tropsch catalytic processes involving reaction of CO2-bearing fluids with mineral surfaces. The elevated concentrations of dissolved methane and low molecular weight hydrocarbons observed in high temperature vent fluids issuing from ultramafic-hosted hydrothermal systems, in particular, suggest that Fe and Cr-bearing mineral phases attribute as catalysts, enhancing abiotic production of alkanes. The chemi-adsorption of dissolved CO2 on the catalytic mineral surface, however, might be influenced by a pH dependent surface electron charge developed within the mineral-fluid interface. Thus, a series of experiments was conducted to evaluate the role of pH on rates of carbon reduction in fluids coexisting with Fe-oxides at 390 degree C and 400 bars. At two distinct pH conditions, acidic (pH = 5) and alkaline (pH = 8.8), the abiotic production of isotopically labelled CH4(aq) was monitored during FeO reaction with aqueous NaCl-NaHCO3-H2-bearing fluid (0.56 mol/kg NaCl, 0.03 mol/kg NaH13CO3). Despite the lower H2(aq) concentrations (120 mmol/kg) in the high pH system, concentrations of abiogenic methane attained values of 195 umol/kg and 120 umol/kg respectively, suggesting enhanced catalytic properties of mineral under moderately high pH. X-ray photoelectron spectroscopy (XPS), performed on unreacted and final solid products, reveal the significantly greater abundances of alkyl (C-C-) groups on the surface of FeO oxidized at elevated pH, in comparison with mineral reacted at low pH conditions. Thus, enhanced adsorption of dissolved CO2 and the resulting Fischer-Tropsch formation of alkyl groups likely contributes to methane production observed at alkaline conditions. Introducing the effect of pH in the Fischer-Tropsch mechanism of alkane formation has important implications for the recently discovered Lost City ultramafic-hosted hydrothermal system, where elevated pH

  4. Growth and Tissue Elemental Composition Response of Butterhead Lettuce (Lactuca sativa, cv. Flandria to Hydroponic Conditions at Different pH and Alkalinity

    Directory of Open Access Journals (Sweden)

    Tyler S. Anderson

    2017-07-01

    Full Text Available Biomass and tissue elemental differences were quantified for lettuce grown in deep-water conventional hydroponic conditions at two pH and alkalinity conditions. Nutrient solutions were created using inorganic salts and either reverse osmosis (RO water or municipal water with high alkalinity. Three treatments were evaluated: (a nutrient solution created with reverse osmosis (RO water and maintained at pH 5.8 (H5; (b same as H5 but maintained at pH 7.0 (H7; and (c nutrient solution created using municipal water and maintained at pH 7.0, referred to as HA7. Averaged across three trials, the HA7 and H7 treatments produced 26% less shoot fresh weight (FW than the H5 treatment with an 18% reduction in dry weight (DW. The H5 treatment had the least biomass in root FW and DW. In tissue elemental analyses, both the pH 7.0 treatments showed lower concentrations than H5 in Cu, N, Mo, and Sr, and increased concentrations in Ba, Mg, Na, and Zn. There were no differences in Al, C, Ca, Fe, K, Mn, Ni, P, S, and Si concentrations among treatments (p = 0.05. The results from this experiment can be used to isolate the effects of pH and alkalinity in aquaponic conditions where pH and alkalinity will mimic HA7 conditions.

  5. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium-Enriched Mixture Apical Plugs

    Directory of Open Access Journals (Sweden)

    Hossein Mirhadi

    2016-03-01

    Full Text Available Statement of the Problem: Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used in non-vital teeth as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. Purpose: The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM cement and mineral trioxide aggregate (MTA apical plugs. Materials and Method: Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30 and two control groups (n=5. Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. Results: There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05. The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05. Conclusion: An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH.

  6. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  7. Increased osteoblast viability at alkaline pH in vitro provides a new perspective on bone regeneration

    Directory of Open Access Journals (Sweden)

    Anne-Marie Galow

    2017-07-01

    Full Text Available We investigated the effects of alkaline pH on developing osteoblasts. Cells of the osteoblast-like cell line MC3T3-E1 were initially cultured for six days in HEPES-buffered media with pH ranging from 7.2 to 9.0. Cell count, cellular WST-1 metabolism, and ATP content were analyzed. The three parameters showed a pH optimum around pH 8.4, exceeding the recommended buffer range of HEPES at the alkaline flank. Therefore, only pH 7.2, 7.4, 7.8, and 8.4 media were used in more elaborate, daily investigations to reduce the effects of pH change within the pH control intervals of 24 h. All parameters exhibited similar pH behaviors, roughly showing increases to 130% and 230% at pH 7.8 and 8.4, as well as decreases to 70% at pH 7.2 when using the pH 7.4 data for reference. To characterize cell differentiation and osteoblastic cell function, cells were cultured at pH 7.4 and under alkaline conditions at pH 7.8 and 8.4 for 14 days. Gene expression and mineralization were evaluated using microarray technology and Alizarin staining. Under alkaline conditions, ATF4, a regulator for terminal differentiation and function as well as DMP1, a potential marker for the transition of osteoblasts into osteocytes, were significantly upregulated, hinting at an accelerated differentiation process. After 21 days, significant mineralization was only detected at alkaline pH. We conclude that elevated pH is beneficial for the cultivation of bone cells and may also provide therapeutic value in bone regeneration therapies.

  8. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Huertas, M.J., E-mail: mjhuertas@us.es [Instituto de Bioquimica Vegetal y Fotosintesis, CSIC-Universidad de Sevilla Avda Americo Vespucio, 49, 41092 Sevilla (Spain); Saez, L.P.; Roldan, M.D.; Luque-Almagro, V.M.; Martinez-Luque, M. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Blasco, R. [Departamento de Bioquimica y Biologia Molecular y Genetica, Facultad de Veterinaria, Universidad de Extremadura, 11071 Caceres (Spain); Castillo, F.; Moreno-Vivian, C. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Garcia-Garcia, I. [Departamento de Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain)

    2010-07-15

    Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1}; however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1} to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.

  9. A constructed alkaline consortium and its dynamics in treating alkaline black liquor with very high pollution load.

    Directory of Open Access Journals (Sweden)

    Chunyu Yang

    Full Text Available BACKGROUND: Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. FINDINGS: Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs using random amplified polymorphic DNA-PCR profiles (RAPD. Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l(-1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l(-1 (27.3% COD(cr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE and gas chromatography/mass spectrometry (GC/MS analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. CONCLUSIONS/SIGNIFICANCE: Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor

  10. Nucleobase recognition at alkaline pH and apparent pK(a) of single DNA bases immobilised within a biological nanopore

    NARCIS (Netherlands)

    Fransceschini, Lorenzo; Mikhailova, Ellina; Bayley, Hagan; Maglia, Giovanni

    2012-01-01

    The four DNA bases are recognized in immobilized DNA strands at high alkaline pH by nanopore current recordings. Ionic currents through the biological nanopores are also employed to measure the apparent pK(a) values of single nucleobases within the immobilised DNA strands.

  11. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  12. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    Directory of Open Access Journals (Sweden)

    Simon P Rout

    Full Text Available One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW is disposal to a cementitious geological disposal facility (GDF. Under the alkaline (10.013.0 anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP are dominated by α- and β-isosaccharinic acids (ISA, which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0.

  13. Photocycle and photoreversal of photoactive yellow protein at alkaline pH: kinetics, intermediates, and equilibria.

    Science.gov (United States)

    Joshi, Chandra P; Borucki, Berthold; Otto, Harald; Meyer, Terry E; Cusanovich, Michael A; Heyn, Maarten P

    2006-06-13

    Since the habitat of Halorhodospira halophila is distinctly alkaline, we investigated the kinetics and intermediates of the photocycle and photoreversal of the photoreceptor photoactive yellow protein (PYP) from pH 8 to 11. SVD analysis of the transient absorption time traces in a broad wavelength range (330-510 nm) shows the presence of three spectrally distinct species (I1, I1', and I2') at pH 10. The spectrum of I1' was obtained in two different ways. The maximal absorption is at 425 nm. I1' probably has a deprotonated chromophore and may be regarded as the alkaline form of I2'. At pH 10, the I1 intermediate decays in approximately 330 micros in part to I1' before I1 and I1' decay further to I2' in approximately 1 ms. From the rise of I2' (approximately 1 ms) to the end of the photocycle, the three intermediates (I1, I1', and I2') remain in equilibrium and decay together to P in approximately 830 ms. Assuming that the spectra of I1, I1', and I2' are pH-independent, their time courses were determined. On the millisecond to second time scale, they are in a pH-dependent equilibrium with a pKa of approximately 9.9. With an increase in pH, the I1 and I1' populations increase at the expense of the amount of I2'. The apparent rate constant for the recovery of P slows with an increase in pH with a pKa of approximately 9.7. The equal pH dependence of this rate and the equilibrium concentrations follows, if we assume that the equilibration rates between the intermediates are much faster than the recovery rate and that the recovery occurs from I2'. The pKa of approximately 9.9 is assigned to the deprotonation of the phenol of the surface-exposed chromophore in the I1'-I2' equilibrium. The I1-I1' equilibrium is pH-independent. Photoreversal experiments at pH 10 with the second flash at 355 nm indicate the presence of only one I2-like intermediate, which we assign on the basis of its lambda(max) value to I2'. After the rapid unresolved photoisomerization to I2'(trans), the

  14. A G-protein α subunit, GOA-1, plays a role in C. elegans avoidance behavior of strongly alkaline pH.

    Science.gov (United States)

    Sassa, Toshihiro; Maruyama, Ichi N

    2013-11-01

    The ability of animals to avoid strongly alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. We have previously found that the nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. Detection involves ASH nociceptive neurons as the major sensors. Upon stimulation, transient receptor potential vanilloid-type (TRPV) ion channels encoded by osm-9 and ocr-2 play an essential role in Ca(2+) entry into ASH. Here we report that C. elegans mutants deficient in a G-protein α subunit, GOA-1, failed to avoid strongly alkaline pH with normal Ca(2+) influx into ASH. These results suggest that GOA-1 regulates signal transmission downstream of Ca(2+) influx through OSM-9/OCR-2 TRPV channels in ASH.

  15. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    Science.gov (United States)

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH.

  16. A G-protein α subunit, GOA-1, plays a role in C. elegans avoidance behavior of strongly alkaline pH

    OpenAIRE

    Sassa, Toshihiro; Maruyama, Ichi N

    2013-01-01

    The ability of animals to avoid strongly alkaline pH is critical for survival. However, the means by which they sense high pH has not been determined. We have previously found that the nematode Caenorhabditis elegans (C. elegans) avoids environmental pH above 10.5. Detection involves ASH nociceptive neurons as the major sensors. Upon stimulation, transient receptor potential vanilloid-type (TRPV) ion channels encoded by osm-9 and ocr-2 play an essential role in Ca2+ entry into ASH. Here we re...

  17. Modelling pH, alkalinity and runoff in a lakeless forested basin in southern Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lepistoe, A.; Jaervi, T.; Seuna, P.

    1987-01-01

    The Swedish PULSE model, with the HBV model as the hydrological part, has been used for simulation of the pH and alkalinity of runoff. In Sweden the model has been applied with good results to forested basins that have lakes. In the present study the model was applied to a forested basin without lakes, in order to test its suitability in this case. The model was calibrated to a small (0.69 km{sup 2}) basin using a 12-year time period (1972-83;R{sup 2}=0.80 for runoff). Verification was carried out with data of the intensively monitored years 1984-85 (R{sup 2}=0.84 for runoff, R{sup 2}=0.71 for pH). The results show that the PULSE model can also be applied satisfactorily to basins without lakes. The simulation provides reference values fo use in destinguishing long term changes in the runoff water quality from natural short-term variations. 5 figures, 10 references. (author).

  18. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  19. Extracellular alkaline pH leads to increased metastatic potential of estrogen receptor silenced endocrine resistant breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Maitham A Khajah

    Full Text Available INTRODUCTION: Endocrine resistance in breast cancer is associated with enhanced metastatic potential and poor clinical outcome, presenting a significant therapeutic challenge. We have established several endocrine insensitive breast cancer lines by shRNA induced depletion of estrogen receptor (ER by transfection of MCF-7 cells which all exhibit enhanced expression profile of mesenchymal markers with reduction of epithelial markers, indicating an epithelial to mesenchymal transition. In this study we describe their behaviour in response to change in extracellular pH, an important factor controlling cell motility and metastasis. METHODS: Morphological changes associated with cell exposure to extracellular alkaline pH were assessed by live cell microscopy and the effect of various ion pumps on this behavior was investigated by pretreatment with chemical inhibitors. The activity and expression profile of key signaling molecules was assessed by western blotting. Cell motility and invasion were examined by scratch and under-agarose assays respectively. Total matrix metalloproteinase (MMP activity and specifically of MMP2/9 was assessed in conditioned medium in response to brief alkaline pH exposure. RESULTS: Exposure of ER -ve but not ER +ve breast cancer cells to extracellular alkaline pH resulted in cell shrinkage and spherical appearance (termed contractolation; this was reversed by returning the pH back to 7.4. Contractolation was blocked by targeting the Na(+/K(+ and Na(+/H(+ pumps with specific chemical inhibitors. The activity and expression profile of key signaling molecules critical for cell adhesion were modulated by the exposure to alkaline pH. Brief exposure to alkaline pH enhanced MMP2/9 activity and the invasive potential of ER -ve cells in response to serum components and epithelial growth factor stimulation without affecting unhindered motility. CONCLUSIONS: Endocrine resistant breast cancer cells behave very differently to estrogen

  20. Effect of alkaline pH and associated Zn on the concentration and total uptake of Cd by lettuce: comparison with predictions from the CLEA model.

    Science.gov (United States)

    Podar, Dorina; Ramsey, Michael H

    2005-07-15

    An eight-fold underestimate of the potential Cd exposure to humans via ingestion of lettuce grown in moderately alkaline soil has been measured experimentally. Current models of Cd uptake by leafy vegetables, which are used in risk assessment (e.g. CLEA in UK) predict higher concentration factors in acid than in alkaline soils. Experimental evidence shows that Cd uptake, although it decreases with increasing pH from acid to neutral soils, increases again in alkaline soils, confirming recent finding from other workers. The concentration of Zn in the soil also significantly affects the uptake of Cd, although this is not included in the current prediction models either. The effect of Zn on the uptake of Cd by plants is greater in slightly alkaline soils (pH 7.7) than in slightly acidic or neutral soils. High concentrations of Zn in soil (1000 mg/kg), which are often associated with elevated Cd levels, further increase the Cd concentration factor to values 12 times higher than that predicted by the CLEA model. This is due in part to the effect of the high soil Zn on reducing the above-ground biomass of the plants.

  1. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    Directory of Open Access Journals (Sweden)

    Cherif Slim

    2011-11-01

    Full Text Available Abstract Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature.... Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1 were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations.

  2. Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells.

    Science.gov (United States)

    Eto, Kazuhiro; Yamashita, Tokuyuki; Hirose, Kenzo; Tsubamoto, Yoshiharu; Ainscow, Edward K; Rutter, Guy A; Kimura, Satoshi; Noda, Mitsuhiko; Iino, Masamitsu; Kadowaki, Takashi

    2003-08-01

    We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.

  3. Distribution of total alkalinity and pH in the Ross Sea (Antarctica waters during austral summer 2008

    Directory of Open Access Journals (Sweden)

    Paola Rivaro

    2014-10-01

    Full Text Available Measurements of total alkalinity (AT and pH were made in the Ross Sea in January–February 2008 in order to characterize the carbonate system in the Ross Sea and to evaluate the variability associated with different water masses. The main water masses of the Ross Sea, Antarctic Surface Water, High Salinity Shelf Water (HSSW, Deep Ice Shelf Water, Circumpolar Deep Water (CDW and Antarctic Bottom Water, were identified on the basis of the physical and chemical data. In particular, the AT ranged between 2275 and 2374 µmol kg−1 with the lowest values in the surface waters (2275–2346 µmol kg−1, where the influence of the sea-ice melting and of the variability of the physical properties was significant. In the deep layers of the water column, the AT maxima were measured in correspondence to the preferential pathways of the spreading HSSW. The pH had variable values in the surface layer (7.890–8.033 with the highest values in Terra Nova Bay and Ross Sea polynyas. A low pH (7.969±0.025 traced the intrusion of the CDW in the Ross Sea shelf area. All samples revealed waters that were oversaturated with respect to both calcite and aragonite, but near corrosive levels of aragonite saturation state (Ω ca. 1.1–1.2 were associated with the entrainment of CDW over the slope. Aragonite undersaturation is of particular concern for the zooplankton species comprising to calcifying organisms such as pteropods. The partial pressure of CO2 at the sea surface was undersaturated with respect to the atmospheric value, particularly in Terra Nova Bay and the Ross Sea polynyas, but a large variability in the sea–air CO2 fluxes was observed associated with different responses in the strength of the biological and physical processes.

  4. Alkaline pH Is a signal for optimal production and secretion of the heat labile toxin, LT in enterotoxigenic Escherichia coli (ETEC.

    Directory of Open Access Journals (Sweden)

    Lucia Gonzales

    Full Text Available Enterotoxigenic Escherichia coli (ETEC cause secretory diarrhea in children and travelers to endemic areas. ETEC spreads through the fecal-oral route. After ingestion, ETEC passes through the stomach and duodenum before it colonizes the lower part of the small intestine, exposing bacteria to a wide range of pH and environmental conditions. This study aimed to determine the impact of external pH and activity of the Cyclic AMP receptor protein (CRP on the regulation of production and secretion of heat labile (LT enterotoxin. ETEC strain E2863wt and its isogenic mutant E2863ΔCRP were grown in LBK media buffered to pH 5, 7 and 9. GM1 ELISA, cDNA and cAMP analyses were carried out on bacterial pellet and supernatant samples derived from 3 and 5 hours growth and from overnight cultures. We confirm that CRP is a repressor of LT transcription and production as has been shown before but we show for the first time that CRP is a positive regulator of LT secretion both in vitro and in vivo. LT secretion increased at neutral to alkaline pH compared to acidic pH 5 where secretion was completely inhibited. At pH 9 secretion of LT was optimal resulting in 600 percent increase of secreted LT compared to unbuffered LBK media. This effect was not due to membrane leakage since the bacteria were viable at pH 9. The results indicate that the transition to the alkaline duodenum and/or exposure to high pH close to the epithelium as well as activation of the global transcription factor CRP are signals that induce secretion of the LT toxin in ETEC.

  5. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand.

    Science.gov (United States)

    Goloran, Johnvie B; Chen, Chengrong; Phillips, Ian R; Elser, James J

    2015-10-07

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.

  6. Improving the expression of recombinant proteins in E. coli BL21 (DE3 under acetate stress: an alkaline pH shift approach.

    Directory of Open Access Journals (Sweden)

    Hengwei Wang

    Full Text Available Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3, a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3 in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST, green fluorescent protein (GFP and cytochrome P450 monooxygenase (CYP. Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5-8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3 at pH 8.0 ± 0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars.

  7. Hydrogen embrittlement on {alpha}-iron in high alkaline environment

    Energy Technology Data Exchange (ETDEWEB)

    Hu, R.; Habashi, M.; Galland, J. [Ecole Central Paris, Chatenay-Malabry (France)

    1994-12-31

    The partial pressure of hydrogen in concrete`s pore is very low. This hydrogen is due to the chemical reaction between the silica fumes and the alkaline solutions filling the concrete`s pore. Silica fumes are added in the concrete to increase its compression resistance. If the hydrogen pressure is low, the risk of hydrogen embrittlement is also low. However, for constructional works destined to endure more than 50 years, is this risk negligible? To answer this question, the authors have studied the hydrogen embrittlement on {alpha}-iron in alkaline solutions, in the pH range 9.5 to 13.3, presenting the liquids found in the concrete`s pores after different aging, periods. Cathodic charging has been performed for low current densities in the range 0.25 to 90 A/m{sup 2} simulating several partial pressures of hydrogen on the {alpha}-iron surface with and without EDTA inhibitor. The deformation rate was 2.5{times}10{sup {minus}5} s{sup {minus}1}. Finally {alpha}-iron samples and tensile specimens have been immersed in a mixture of silica fumes and an alkaline solution at pH 13.3 in an autoclave during 1,000 hours with the aim to measure the outgassed quantity of hydrogen under vacuum at 600C and to measure also the hydrogen embrittlement. The main conclusions of this study are as following: (1) Hydrogen embrittlement is promoted by oxide Fe{sub 3}O{sub 4} film rupture and/or hydroxide Fe(OH){sub 2}. This mechanism is efficient for current densities equivalent to a cathodic potential lower or equal to {minus}1V/NHE. (2) Silica fumes in contact with a solution of pH 13.3 provoke hydrogen release and its diffusion into the {alpha}-iron, but this quantity is not enough to embrittle it.

  8. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis.

    Science.gov (United States)

    Li, Fei; Xie, Jingcong; Zhang, Xuesong; Zhao, Linguo

    2015-01-01

    In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB- 164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.

  9. Computational design of a pH stable enzyme: understanding molecular mechanism of penicillin acylase's adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Dmitry Suplatov

    Full Text Available Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties.

  10. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    OpenAIRE

    W. T. Luo; Nelson, P N; Li, M.-H.; J. P. Cai; Zhang, Y.Y.; Zhang, Y. G.; S. Yang; R. Z. Wang; Wang, Z. W.; Wu, Y. N.; X. G. Han; Y. Jiang

    2015-01-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate-containing soils and 1700 km sub-transect with non-carbonate-containing soils) across northern China. Soil pHBC was greater in the carbonate-containing soils ...

  11. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland.

    Science.gov (United States)

    Kalwasińska, Agnieszka; Felföldi, Tamás; Szabó, Attila; Deja-Sikora, Edyta; Kosobucki, Przemysław; Walczak, Maciej

    2017-07-01

    Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH ~11 and ECe up to 423 dS m(-1)) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus.

  12. Factors affecting pH change in alkaline waste water treatment - I

    NARCIS (Netherlands)

    Lijklema, L.

    1969-01-01

    The pH of wastewater in various stages of its purification depends mainly upon the equilibria of carbonic acid. Thus relations between pH and the concentrations of carbon dioxide, bicarbonate and carbonate can be formulated. Corrections for the non-ideal character of the sewage are necessary. With s

  13. Coordinate responses to alkaline pH stress in budding yeast

    Directory of Open Access Journals (Sweden)

    Albert Serra-Cardona

    2015-05-01

    Full Text Available Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products.

  14. High-performance alkaline polymer electrolyte for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jing; Lu, Shanfu; Li, Yan; Huang, Aibin; Zhuang, Lin; Lu, Juntao [College of Chemistry and Molecular Sciences, Hubei Key Lab. of Electrochemical Power Sources, Wuhan University (China)

    2010-01-22

    Although the proton exchange membrane fuel cell (PEMFC) has made great progress in recent decades, its commercialization has been hindered by a number of factors, among which is the total dependence on Pt-based catalysts. Alkaline polymer electrolyte fuel cells (APEFCs) have been increasingly recognized as a solution to overcome the dependence on noble metal catalysts. In principle, APEFCs combine the advantages of and alkaline fuel cell (AFC) and a PEMFC: there is no need for noble metal catalysts and they are free of carbonate precipitates that would break the waterproofing in the AFC cathode. However, the performance of most alkaline polyelectrolytes can still not fulfill the requirement of fuel cell operations. In the present work, detailed information about the synthesis and physicochemical properties of the quaternary ammonia polysulfone (QAPS), a high-performance alkaline polymer electrolyte that has been successfully applied in the authors' previous work to demonstrate an APEFC completely free from noble metal catalysts (S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, Proc. Natl. Acad. Sci. USA 2008, 105, 20611), is reported. Monitored by NMR analysis, the synthetic process of QAPS is seen to be simple and efficient. The chemical and thermal stability, as well as the mechanical strength of the synthetic QAPS membrane, are outstanding in comparison to commercial anion-exchange membranes. The ionic conductivity of QAPS at room temperature is measured to be on the order of 10{sup -2} S cm{sup -1}. Such good mechanical and conducting performances can be attributed to the superior microstructure of the polyelectrolyte, which features interconnected ionic channels in tens of nanometers diameter, as revealed by HRTEM observations. The electrochemical behavior at the Pt/QAPS interface reveals the strong alkaline nature of this polyelectrolyte, and the preliminary fuel cell test verifies the feasibility of QAPS for fuel cell applications. (Abstract Copyright [2010

  15. Spatial and temporal variations in pH and total alkalinity at the beginning of the rainy season in the Changjiang Estuary, China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that pH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region.Like salinity, transect distributions of pH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and pH gradients, and the salinity gradient was earlier than the pH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater,for both pH and total alkalinity had significant linear relationships with salinity and temperature. For pH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, pH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, pH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on pH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.

  16. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    Directory of Open Access Journals (Sweden)

    W. Luo

    2015-08-01

    Full Text Available Soil pH buffering capacity (pHBC plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate containing soils and 1700 km sub-transect with non-carbonate containing soils across northern China. Soil pHBC was greater in the carbonate containing soils than in the non-carbonate containing soils. Acid addition decreased soil pH in the non-carbonate containing soils more markedly than in the carbonate containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC, carbonate content and exchangeable sodium (Na concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate containing soils and CEC was the main determinant of buffering capacity in the non-carbonate containing soils. Soil pHBC was positively related to aridity index and carbonate content across the carbonate containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate and non-carbonate containing soils, leading to different rates, risks, and impacts of acidification. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  17. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    Science.gov (United States)

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13.

  18. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors

    Science.gov (United States)

    When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...

  19. Two pore channel 2 (TPC2) inhibits autophagosomal-lysosomal fusion by alkalinizing lysosomal pH.

    Science.gov (United States)

    Lu, Yingying; Hao, Bai-Xia; Graeff, Richard; Wong, Connie W M; Wu, Wu-Tian; Yue, Jianbo

    2013-08-16

    Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca(2+) mobilizing messengers, elicits Ca(2+) release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca(2+) signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.

  20. Factors affecting pH change in alkaline waste water treatment - II: Carbon dioxide production

    NARCIS (Netherlands)

    Lijklema, L.

    1971-01-01

    The carbon dioxide produced during biological oxidation of wastewater has a pronounced influence upon the pH that is attained in the activated sludge process. The quantity produced is proportional to the COD removed, its degree of oxidation and depends also on the oxidation level of the substrate. A

  1. Urease-induced alkalinization of extracellular pH and its antitumor activity in human breast and lung cancers.

    Science.gov (United States)

    Wong, Wah Yau; DeLuca, Carl I; Tian, Baomin; Wilson, Iain; Molund, Sharon; Warriar, Nalini; Govindan, Manjapra V; Segal, Donald; Chao, Heman

    2005-01-01

    Jack bean urease catalyzes the decomposition of urea into ammonia, which in turn increases the pH of the surrounding medium. Based on these two properties, we have investigated the antitumor effects of urease in vitro and in vivo on human lung and breast cancer cell lines either by the enzyme itself or in combination with other chemotherapeutic drugs. First, through the generation of toxic ammonia, urease exerted direct cytotoxicity on A549 and MDA-MB-231 tumor cells with LC50 of 0.22 and 0.45 U/ml, respectively. The cytotoxic effects could effectively be blocked using the reversible urease inhibitor acetohydroxamic acid. Complete protection was observed at dose > or = 2 mM. In addition, nude mouse xenograft models demonstrated that intratumoral urease injections (1 - 10 U/dose) inhibited A549 and MCF-7 tumor growth in vivo. Second, when combined with weak-base anticancer drugs, urease provided indirect antitumor effects via pH augmentation. Alkalinization of extracellular pH by urease (2 U/ml) and urea (> or = 2 mM) was found to enhance the antitumor efficacy of doxorubicin (50 microM) and vinblastine (100 microM) significantly.

  2. Escherichia coli YqjA, a Member of the Conserved DedA/Tvp38 Membrane Protein Family, Is a Putative Osmosensing Transporter Required for Growth at Alkaline pH.

    Science.gov (United States)

    Kumar, Sujeet; Doerrler, William T

    2015-07-01

    The ability to persist and grow under alkaline conditions is an important characteristic of many bacteria. In order to survive at alkaline pH, Escherichia coli must maintain a stable cytoplasmic pH of about 7.6. Membrane cation/proton antiporters play a major role in alkaline pH homeostasis by catalyzing active inward proton transport. The DedA/Tvp38 family is a highly conserved membrane protein family of unknown function present in most sequenced genomes. YqjA and YghB are members of the E. coli DedA family with 62% amino acid identity and partially redundant functions. We have shown that E. coli with ΔyqjA and ΔyghB mutations cannot properly maintain the proton motive force (PMF) and is compromised in PMF-dependent drug efflux and other PMF-dependent functions. Furthermore, the functions of YqjA and YghB are dependent upon membrane-embedded acidic amino acids, a hallmark of several families of proton-dependent transporters. Here, we show that the ΔyqjA mutant (but not ΔyghB) cannot grow under alkaline conditions (ranging from pH 8.5 to 9.5), unlike the parent E. coli. Overexpression of yqjA restores growth at alkaline pH, but only when more than ∼100 mM sodium or potassium is present in the growth medium. Increasing the osmotic pressure by the addition of sucrose enhances the ability of YqjA to support growth under alkaline conditions in the presence of low salt concentrations, consistent with YqjA functioning as an osmosensor. We suggest that YqjA possesses proton-dependent transport activity that is stimulated by osmolarity and that it plays a significant role in the survival of E. coli at alkaline pH. The ability to survive under alkaline conditions is important for many species of bacteria. Escherichia coli can grow at pH 5.5 to 9.5 while maintaining a constant cytoplasmic pH of about 7.6. Under alkaline conditions, bacteria rely upon proton-dependent transporters to maintain a constant cytoplasmic pH. The DedA/Tvp38 protein family is a highly conserved

  3. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.

    Science.gov (United States)

    Tam, Y S; Elefsiniotis, P

    2009-10-01

    This study explored the potential of lead and copper leaching from brass plumbing in the Auckland region of New Zealand. A five-month field investigation, at six representative locations, indicated that Auckland's water can be characterized as soft and potentially corrosive, having low alkalinity and hardness levels and a moderately alkaline pH. More than 90% of the unflushed samples contained lead above the maximum acceptable value (MAV) of 10 microg/L (New Zealand Standards). In contrast, the copper level of unflushed samples remained consistently below the corresponding MAV of 2 mg/L. Flushing however reduced sharply metal concentrations, with lead values well below the MAV limit. Generally, metal leaching patterns showed a limited degree of correlation with the variations in temperature, dissolved oxygen and free chlorine residual at all sampling locations. Furthermore, a series of bench-scale experiments was conducted to evaluate the effectiveness of pH and alkalinity adjustment, as well as orthophosphate addition as corrosion control tools regarding lead and copper dissolution. Results demonstrated that lead and copper leaching was predominant during the first 24 hr of stagnation, but reached an equilibrium state afterwards. Since the soluble fraction of both metals was small (12% for lead, 29% for copper), it is apparent that the non-soluble compounds play a predominant role in the dissolution process. The degree of leaching however was largely affected by the variations in pH and alkalinity. At pH around neutrality, an increase in alkalinity promoted metal dissolution, while at pH 9.0 the effect of alkalinity on leaching was marginal. Lastly, addition of orthophosphate as a corrosion inhibitor was more effective at pH 7.5 or higher, resulting in approximately 70% reduction in both lead and copper concentrations.

  4. Rhesus glycoprotein and urea transporter genes in rainbow trout embryos are upregulated in response to alkaline water (pH 9.7) but not elevated water ammonia.

    Science.gov (United States)

    Sashaw, Jessica; Nawata, Michele; Thompson, Sarah; Wood, Chris M; Wright, Patricia A

    2010-03-01

    Recent studies have shown that genes for the putative ammonia transporter, Rhesus glycoproteins (Rh) and the facilitated urea transporter (UT) are expressed before hatching in rainbow trout (Oncorhychus mykiss Walbaum) embryos. We tested the hypothesis that Rh and UT gene expressions are regulated in response to environmental conditions that inhibit ammonia excretion during early life stages. Eyed-up embryos (22 days post-fertilization (dpf)) were exposed to control (pH 8.3), high ammonia (1.70 mmol l(-1) NH4HCO3) and high pH (pH 9.7) conditions for 48h. With exposure to high water ammonia, ammonia excretion rates were reversed, tissue ammonia concentration was elevated by 9-fold, but there were no significant changes in mRNA expression relative to control embryos. In contrast, exposure to high water pH had a smaller impact on ammonia excretion rates and tissue ammonia concentrations, whereas mRNA levels for the Rhesus glycoprotein Rhcg2 and urea transporter (UT) were elevated by 3.5- and 5.6-fold, respectively. As well, mRNAs of the genes for H+ATPase and Na+/H+ exchanger (NHE2), associated with NH3 excretion, were also upregulated by 7.2- and 13-fold, respectively, in embryos exposed to alkaline water relative to controls. These results indicate that the Rhcg2, UT and associated transport genes are regulated in rainbow trout embryos, but in contrast to adults, there is no effect of high external ammonia at this stage of development.

  5. Biohydrogen Fermentation from Sucrose and Piggery Waste with High Levels of Bicarbonate Alkalinity

    Directory of Open Access Journals (Sweden)

    Jeongdong Choi

    2015-03-01

    Full Text Available This study examined the influence of biohydrogen fermentation under the high bicarbonate alkalinity (BA and pH to optimize these critical parameters. When sucrose was used as a substrate, hydrogen was produced over a wide range of pH values (5–9 under no BA supplementation; however, BA affected hydrogen yield significantly under different initial pHs (5–10. The actual effect of high BA using raw piggery waste (pH 8.7 and BA 8.9 g CaCO3/L showed no biogas production or propionate/acetate accumulation. The maximum hydrogen production rate (0.32 L H2/g volatile suspended solids (VSS-d was observed at pH 8.95 and 3.18 g CaCO3/L. BA greater than 4 g CaCO3/L also triggered lactate-type fermentation, leading to propionate accumulation, butyrate reduction and homoacetogenesis, potentially halting the hydrogen production rate. These results highlight that the substrate with high BA need to amend adequately to maximize hydrogen production.

  6. Quantification of the dissolved inorganic carbon species and of the pH of alkaline solutions exposed to CO2 under pressure: a novel approach by Raman scattering.

    Science.gov (United States)

    Beuvier, Thomas; Calvignac, Brice; Bardeau, Jean-François; Bulou, Alain; Boury, Frank; Gibaud, Alain

    2014-10-07

    Dissolved inorganic carbon (DIC) content of aqueous systems is a key function of the pH, of the total alkanility (TA), and of the partial pressure of CO2. However, common analytical techniques used to determine the DIC content in water are unable to operate under high CO2 pressure. Here, we propose to use Raman spectroscopy as a novel alternative to discriminate and quantitatively monitor the three dissolved inorganic carbon species CO2(aq), HCO3(-), and CO3(2-) of alkaline solutions under high CO2 pressure (from P = 0 to 250 bar at T = 40 °C). In addition, we demonstrate that the pH values can be extracted from the molalities of CO2(aq) and HCO3(-). The results are in very good agreement with those obtained from direct spectrophotometric measurements using colored indicators. This novel method presents the great advantage over high pressure conventional techniques of not using breakable electrodes or reference additives and appears of great interest especially in marine biogeochemistry, in carbon capture and storage and in material engineering under high CO2 pressure.

  7. Irrigation water acidification to neutralize alkalinity for nursery crop production: Substrate pH, electrical conductivity, and nutrient concentrations; and plant nutrition and growth

    Science.gov (United States)

    Liming agents (LA) in irrigation water, typically associated with carbonates and bicarbonates of calcium (Ca) and magnesium (Mg), contribute to water alkalinity. Repeated application of LA to container crops can cause media-solution pH to rise overtime, that uncorrected, can lead to a nutrient avail...

  8. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    Science.gov (United States)

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  9. Manganese Dioxide with High Specific Surface Area for Alkaline Battery

    Institute of Scientific and Technical Information of China (English)

    HUANG You-ju; LIN Yu-li; LI Wei-shan

    2012-01-01

    The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature.The prepared sample was characterized with X-ray diffraction(XRD),scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET) surface analysis,Fourier transform infrared(FTIR) spectrometry,cyclic voltammetry,altemative current(AC) impedance test and battery discharge test.It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area.The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution,and exhibits larger discharge capacity than EMD,especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.

  10. Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology.

    Science.gov (United States)

    Canon-Rubio, Karen A; Sharp, Christine E; Bergerson, Joule; Strous, Marc; De la Hoz Siegler, Hector

    2016-02-01

    Phototrophic microorganisms have been proposed as an alternative to capture carbon dioxide (CO2) and to produce biofuels and other valuable products. Low CO2 absorption rates, low volumetric productivities, and inefficient downstream processing, however, currently make algal biotechnology highly energy intensive, expensive, and not economically competitive to produce biofuels. This mini-review summarizes advances made regarding the cultivation of phototrophic microorganisms at highly alkaline conditions, as well as other innovations oriented toward reducing the energy input into the cultivation and processing stages. An evaluation, in terms of energy requirements and energy return on energy invested, is performed for an integrated high-pH, high-alkalinity growth process that uses biofilms. Performance in terms of productivity and expected energy return on energy invested is presented for this process and is compared to previously reported life cycle assessments (LCAs) for systems at near-neutral pH. The cultivation of alkaliphilic phototrophic microorganisms in biofilms is shown to have a significant potential to reduce both energy requirements and capital costs.

  11. Calcium aluminate cement hydration in a high alkalinity environment

    Directory of Open Access Journals (Sweden)

    Palomo, Á.

    2009-03-01

    Full Text Available The present paper forms part of a broader research project that aims primarily to devise new cementitious products via the alkali activation of silico-aluminous materials. This work addresses the possibility of using small percentages of calcium aluminate cement (CAC as a source of reactive aluminium. For this reason, a preliminary review was needed of the behaviour of CACs in highly alkaline media (2, 8 and 12M NaOH solutions. Two, 28- and 180-day mechanical strength was determined and the reaction products were characterized with XRD and FTIR. The water-hydrated CAC was used as the control.The results obtained showed that CAC hardening took place much more slowly in highly alkaline media than in water. Nonetheless, the 28-day compressive strength obtained, ≥80MPa. As main reaction products, to ambient temperature and from the two days of cured, cubic aluminate C3AH6, and AH3 polymorphs are formed, instead of the usual hexagonal aluminatos (CAH10 and C2AH8 that are formed in the normal hydrate with water.El presente trabajo forma parte de una amplia investigación cuyo objetivo principal es el de elaborar nuevos materiales con propiedades cementantes mediante la activación alcalina de materiales de naturaleza silito-aluminosa. En estos estudios se contempla la posibilidad de utilizar pequeños porcentajes de cemento de aluminato de calcio (CAC como fuente de aluminio reactivo. Por ello inicialmente se ha estudiado el comportamiento de los CAC en medios fuertemente alcalinos (disoluciones de NaOH 2M, 8M y 12M. Se determinaron las resistencias mecánicas a 2, 28 y 180 días y se realizó una caracterización de los productos de reacción formados por DRX, FTIR. Como sistema de referencia se consideró la hidratación del CAC con agua.Los resultados obtenidos muestran que en medios fuertemente alcalinos se retrasan los procesos de rápido endurecimiento de CAC con agua. No obstante a 28 días se obtienen valores de resistencia a compresión

  12. The synthesis of Phosphate-repressible alkaline phosphatase do not appear to be regulated by ambient pH in the filamentous mould Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Nozawa Sérgio R.

    2002-01-01

    Full Text Available In order to investigate further the adaptive response of moulds to ambient pH, we have measured by ELISA the pho-2-encoded Pi-repressible alkaline phosphatase synthesised by Neurospora crassa. We showed that the 74A and pho-2A strains of this mould secrete similar amounts of the pho-2-encoded enzyme irrespective of ambient pH, when both the preg and pgov genes are not functional, i.e., in strains nuc-2+ growing under Pi-starvation. This suggests that pho-2, which is responsive to Pi starvation via the action of genes nuc-2, preg, pgov and nuc-1, is not a gene responsive to ambient pH and that the differential glycosylation observed for the Pi-repressible alkaline phosphatase retained by the mycelium at pH 5.6 or secreted into the growth medium at pH 8.0 is the genetic response to ambient pH sensing in N. crassa.

  13. Alkaline pH induces IRR-mediated phosphorylation of IRS-1 and actin cytoskeleton remodeling in a pancreatic beta cell line.

    Science.gov (United States)

    Deyev, Igor E; Popova, Nadezhda V; Serova, Oxana V; Zhenilo, Svetlana V; Regoli, Marì; Bertelli, Eugenio; Petrenko, Alexander G

    2017-07-01

    Secretion of mildly alkaline (pH 8.0-8.5) juice to intestines is one of the key functions of the pancreas. Recent reports indicate that the pancreatic duct system containing the alkaline juice may adjoin the endocrine cells of pancreatic islets. We have previously identified the insulin receptor-related receptor (IRR) that is expressed in islets as a sensor of mildly alkaline extracellular media. In this study, we show that those islet cells that are in contact with the excretory ducts are also IRR-expressing cells. We further analyzed the effects of alkaline media on pancreatic beta cell line MIN6. Activation of endogenous IRR but not of the insulin receptor was detected that could be inhibited with linsitinib. The IRR autophosphorylation correlated with pH-dependent linsitinib-sensitive activation of insulin receptor substrate 1 (IRS-1), the primary adaptor in the insulin signaling pathway. However, in contrast with insulin stimulation, no protein kinase B (Akt/PKB) phosphorylation was detected as a result of alkali treatment. We observed overexpression of several early response genes (EGR2, IER2, FOSB, EGR1 and NPAS4) upon alkali treatment of MIN6 cells but those were IRR-independent. The alkaline medium but not insulin also triggered actin cytoskeleton remodeling that was blocked by pre-incubation with linsitinib. We propose that the activation of IRR by alkali might be part of a local loop of signaling between the exocrine and endocrine parts of the pancreas where alkalinization of the juice facilitate insulin release that increases the volume of secreted juice to control its pH and bicabonate content. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Chronic high glucose inhibits albumin reabsorption by lysosomal alkalinization in cultured porcine proximal tubular epithelial cells (LLC-PK1).

    Science.gov (United States)

    Ishibashi, Fukashi

    2006-06-01

    Lysosomal acidification is a key step of albumin reabsorption in proximal tubular epithelial cells (PTECs). This study was performed to examine the influence of chronic high glucose on lysosomal acidification in cultured PTECs. Porcine PTECs (LLC-PK(1) cells) were cultured in 16.7 mM (300 mg/dl) glucose (HG) alone or with 0.5 mM phlorizin for 24 weeks and subsequently for 12 weeks in 5.5 mM (100 mg/dl) glucose (NG). Chronic HG inhibited the fluorescein isothiocyanate (FITC)-albumin (A) uptake progressively, while phlorizin reversed the inhibition. NG for 12 weeks after HG normalized the uptake. The time-dependent uptake of FITC-A was inhibited by HG and bafilomycin A(1) (BafA(1)) after 15 min and by 4,4'-diisothiocyanato-2,2'-disulfonic acid (DIDS) and N-ethyl-N-isopropyl-amiloride (EIPA) after 3 min. Cellular ATP was depleted by HG and restored by NG. Lysosomal pH, assessed by an acidotropic fluorescent probe, was alkalinized (pH 4.5-7.8) with 5.5-27.8 mM glucose and normalized by subsequent NG. BafA(1) alkalinized lysosomes, and the concentration required to 50% change for the pH and 50% inhibition of FITC-A uptake was similar. EIPA inhibited FITC-A uptake, but did not influence lysosomal pH. DIDS inhibited FITC-A uptake, and unexpectedly lowered lysosomal pH. Real time PCR showed that HG reduced the mRNA level for vacuolar H(+)-ATPase, but did not alter those of chloride channel-5 and Na(+)-H(+)-exchanger-3. In conclusion, the chronic HG inhibits albumin reabsorption by lysosomal alkalinization in PTECs, probably due to ATP depletion and down-regulation of vacuolar H(+)-ATPase.

  15. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    Science.gov (United States)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  16. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  17. Activation of fly ashes by the high temperature and high alkalinity in ASR tests

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    High temperature and high alkalinity are typical testing conditions to accelerate the appraisal process of the suppressing effect of fly ashes on alkali silica reaction(ASR),but the reaction mechanism of fly ashes would be quite different under such conditions compared to the normal condition of temperature and alkalinity.To make a reasonable analysis of the suppressing effect of fly ashes,13 types of fly ashes were tested in this paper by both the accelerated mortar bar test method and the 60°C accelerated concrete prism test method.The results showed that the effect of fly ashes would be magnified under the condition of high temperature and high alkalinity.The XRD analysis showed that all the phases of fly ash could react with the hot alkaline solution except for mullite and a small amount of quartz.Fly ash could be significantly activated by the 80°C 1 mol/L NaOH solution,and form mainly C-S-H phase and P type zeolite,but its effect on inhibiting ASR was exaggerated then.According to the mortar strength test and the ASR suppressing test results,C-S-H phase contributed to mortar strength,but its amount did not decide the ASR suppressing effect of fly ash.

  18. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  19. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  20. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding.

    Science.gov (United States)

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Estrada-Alvarado, Isabel; Zavala-Díaz de la Serna, Francisco Javier; Dendooven, Luc; Marsch, Rodolfo

    2009-07-01

    Flooding an extreme alkaline-saline soil decreased alkalinity and salinity, which will change the bacterial populations. Bacterial 16S rDNA libraries were generated of three soils with different electrolytic conductivity (EC), i.e. soil with EC 1.7 dS m(-1) and pH 7.80 (LOW soil), with EC 56 dS m(-1) and pH 10.11 (MEDIUM soil) and with EC 159 dS m(-1) and pH 10.02 (HIGH soil), using universal bacterial oligonucleotide primers, and 463 clone 16S rDNA sequences were analyzed phylogenetically. Library proportions and clone identification of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Firmicutes and Cloroflexi showed that the bacterial communities were different. Species and genera of the Rhizobiales, Rhodobacterales and Xanthomonadales orders of the alpha- and gamma-subdivision of Proteobacteria were found at the three sites. Species and genera of the Rhodospirillales, Sphingobacteriales, Clostridiales, Oscillatoriales and Caldilineales were found only in the HIGH soil, Sphingomonadales, Burkholderiales and Pseudomonadales in the MEDIUM soil, Myxococcales in the LOW soil, and Actinomycetales in the MEDIUM and LOW soils. It was found that the largest diversity at the order and species level was found in the MEDIUM soil as bacteria of both the HIGH and LOW soils were found in it.

  1. Production and Characterization of Alkaline Protease from a High Yielding and Moderately Halophilic Strain of SD11 Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Hongxia Cui

    2015-01-01

    Full Text Available A marine bacterium SD11, which was isolated from sea muds (Geziwo Qinhuangdao Sea area, China, was used to produce thermostable alkaline serine nonmetal protease in the skim milk agar plate medium with 10% NaCl. The optimal temperature about the manufacture of the extracellular protease was ~60°C. The crude enzyme was stable at 20–50°C. The activity was retained to 60% and 45% after heating for 1 h at 60 and 70°C, respectively. The protease was highly active in a wide pH scope (8.0–10.0 and maximum protease activity exhibited at pH 10.0. The activity was restrained by phenylmethylsulfonyl fluoride (PMSF but mildly increased (~107% in the presence of ethylenediaminetetraacetic acid (EDTA, indicating that the production contains serine-protease(s and nonmetal protease(s. Moreover, the crude alkaline protease was active with the 5 mM Ca2+, Mn2+, Zn2+, Cu2+, Na+, and K+ that existed separately. In addition, the protease showed superduper stability when exposed to an anionic surfactant (5 mM SDS, an oxidizing agent (1% H2O2, and several organic solvents (methanol, isopropanol, and acetone. These results suggest that the marine bacterium SD11 is significant in the industry from the prospects of its ability to produce thermally stable alkaline protease.

  2. Characterization of high temperature-tolerant rhizobia isolated from Prosopis juliflora grown in alkaline soil.

    Science.gov (United States)

    Kulkarni, Suneeta; Nautiyal, Chandra Shekhar

    1999-10-01

    A method was developed for the fast screening and selection of high-temperature tolerant rhizobial strains from root nodules of Prosopis juliflora growing in alkaline soils. The high-temperature tolerant rhizobia were selected from 2,500 Rhizobium isolates with similar growth patterns on yeast mannitol agar plates after 72 h incubation at 30 and 45 degrees C, followed by a second screening at 47.5 degrees C. Seventeen high-temperature tolerant rhizobial strains having distinguishable protein band patterns were finally selected for further screening by subjecting them to temperature stress up to 60 degrees C in yeast mannitol broth for 6 h. The high-temperature tolerant strains were NBRI12, NBRI329, NBRI330, NBRI332, and NBRI133. Using this procedure, a large number of rhizobia from root nodules of P. juliflora were screened for high-temperature tolerance. The assimilation of several carbon sources, tolerance to high pH and salt stress, and ability to nodulate P. juliflora growing in a glasshouse and nursery of the strains were studied. All five isolates had higher plant dry weight in the range of 29.9 to 88.6% in comparison with uninoculated nursery-grown plants. It was demonstrated that it is possible to screen in nature for superior rhizobia exemplified by the isolation of temperature-tolerant strains, which established effective symbiosis with nursery-grown P. juliflora. These findings indicate a correlation between strain performance under in vitro stress in pure culture and strain behavior under symbiotic conditions. Pure culture evaluation may be a useful tool in search for Rhizobium strains better suited for soil environments where high temperature, pH, and salt stress constitutes a limitation for symbiotic biological nitrogen fixation.

  3. Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin from R/Vs GORIZONT and OKEANOGRAF, 1960 - 1969 (NODC Accession 0074609)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin of the Mediterranean...

  4. Temperature, salinity, oxygen, phosphate, silicate, nitrite, alkalinity, and pH data collected by multiple former Soviet Union institutions from Okhotsk Sea from 1981-09-23 to 1988-06-17 (NODC Accession 0081217)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, phosphate, silicate, nitrite, alkalinity, and pH data collected by multiple former Soviet Union institutions from Okhotsk...

  5. Pho4 Is Essential for Dissemination of Cryptococcus neoformans to the Host Brain by Promoting Phosphate Uptake and Growth at Alkaline pH

    Science.gov (United States)

    Kaufman-Francis, Keren; Desmarini, Desmarini; Juillard, Pierre G.; Li, Cecilia; Stifter, Sebastian A.; Feng, Carl G.; Sorrell, Tania C.; Grau, Georges E. R.; Bahn, Yong-Sun

    2017-01-01

    ABSTRACT Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical

  6. Evaluation of High Solids Alkaline Pretreatment of Rice Straw

    OpenAIRE

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M.; Jenkins, Bryan M.; VanderGheynst, Jean S.

    2010-01-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H2O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H2O/g straw by hydrated lime (Ca(OH)2). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held c...

  7. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  8. Evaluation of high solids alkaline pretreatment of rice straw.

    Science.gov (United States)

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M; Jenkins, Bryan M; VanderGheynst, Jean S

    2010-11-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H(2)O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H(2)O/g straw by hydrated lime (Ca(OH)(2)). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95 degrees C for lime pretreatment and 55 degrees C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p pretreatment at 95 degrees C, but there was little effect observed at 55 degrees C. Post-pretreatment washing of biomass was not necessary for subsequent enzymatic hydrolysis. Maximum glucose yields were 176.3 mg/g dried biomass (48.5% conversion efficiency of total glucose) in lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass.

  9. [Advances of alkaline amylase production and applications].

    Science.gov (United States)

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  10. Spatial and temporal variation in pH, alkalinity and conductivity in surface runoff and groundwater for the Upper River Severn catchment

    Directory of Open Access Journals (Sweden)

    T. Hill

    1997-01-01

    Full Text Available Measurements of pH, alkalinity and electrical conductivity are used to examine the extent of the spatial and temporal variation in stream and ground water chemistry for the Upper Severn catchment, Plynlimon. Wide temporal variations in stream waters broadly reflect flow conditions and complex soil and ground water interactions but not soil type, land usage or geology. The results have major implications for the use of critical load analysis and the development and application of models in upland catchments. They point to the value of field measurements for assessing the environmental management of upland catchments, rather than the present use of over simplistic or inappropriate models.

  11. High Ph, Ammonia Toxicity, and the Search for Life on the Jovian Planets

    Science.gov (United States)

    Deal, P. H.; Souza, K. A.; Mack, H. M.

    1975-01-01

    The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural environments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, urvival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is two to three orders of magnitude longer than for E. coli. Results support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  12. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    Science.gov (United States)

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-03-11

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm(-2) , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH(-) ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility.

  13. Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization.

    Science.gov (United States)

    Yan, Mingquan; Wang, Dongsheng; Qu, Jiuhui; Ni, Jinren; Chow, Christopher W K

    2008-04-01

    Conventional coagulation is not an effective treatment option to remove natural organic matter (NOM) in water with high alkalinity/pH. For this type of water, enhanced coagulation is currently proposed as one of the available treatment options and is implemented by acidifying the raw water and applying increased doses of hydrolyzing coagulants. Both of these methods have some disadvantages such as increasing the corrosive tendency of water and increasing cost of treatment. In this paper, an improved version of enhanced coagulation through coagulant optimization to treat this kind of water is demonstrated. A novel coagulant, a composite polyaluminum chloride (HPAC), was developed with both the advantages of polyaluminum chloride (PACl) and the additive coagulant aids: PACl contains significant amounts of highly charged and stable polynuclear aluminum hydrolysis products, which is less affected by the pH of the raw water than traditional coagulants (alum and ferric salts); the additives can enhance both the charge neutralization and bridging abilities of PACl. HPAC exhibited 30% more efficiency than alum and ferric salts in dissolved organic carbon (DOC) removal and was very effective in turbidity removal. This result was confirmed by pilot-scale testing, where particles and organic matter were removed synergistically with HPAC as coagulant by sequential water treatment steps including pre-ozonation, coagulation, flotation and sand filtration.

  14. Use of 24 h Esophageal pH Monitoring to Demonstrate Alkaline Reflux as a Complication of Gastric Bypass Surgery

    Directory of Open Access Journals (Sweden)

    J Patrick Shoenut

    1994-01-01

    Full Text Available A 35-year-old female who had previously undergone a gastric stapling procedure for morbid obesity presented with a persistent nocturnal cough that was treated over a three-year period as a gastric acid reflux complication of the bypass surgery. A barium swallow demonstrated gastroesophageal reflux, but the symptoms did not resolve after treatment with omeprazole and cisapride. Twenty-four hour esophageal pH monitoring subsequently found alkaline reflux in excess of 17% of the total time, with no acid reflux demonstrated. Surgical revision of the bypass Leaving the hiatus alone corrected the reflux complication and the symptoms resolved without further treatment. The diagnostic capability of pH monitoring is illustrated in a patient with an unusual surgical complication.

  15. Performance and application of a fluidized bed limestone reactor designed for control of alkalinity, hardness and pH at the Warm Springs Regional Fisheries Center

    Science.gov (United States)

    Watten, Barnaby J.; Mudrak, Vincent A.; Echevarria, Carlos; Sibrell, Philip; Summerfelt, Steven T.; Boyd, Claude E.

    2017-01-01

    Springs serving the Warm Springs Regional Fisheries Center, Warm Springs, Georgia, have pH, alkalinity, and hardness levels thatlie under the range required for successful fish propagation while free CO2 is well above allowable targets. We evaluate a pretreatment process that exploits limestone’s (CaCO3) ability to react away hydrogen ions (H+) and carbon dioxide (CO2) while increasing alkalinity (HCO3−) and calcium (Ca2+) concentrations, i.e. CaCO3 + H+ ↔ HCO3− + Ca2+ CaCO3 + CO2 + H2O ↔ Ca2+ + 2HCO3− Limestone sand was tested in both pilot and full scale fluidized bed reactors (CycloBio®). We first established the bed expansion characteristics of three commercial limestone products then evaluated the effect of hydraulic flux and bed height on dissolution rate of a single selected product (Type A16 × 120). Pilot scale testing at 18C showed limestone dissolution rates were relatively insensitive to flux over the range 1.51–3.03 m3/min/m2 but were sensitive (P 0.05) demonstrating that limestone was present in the reactor effluent primarily in the form of dissolved Ca(HCO3)2. Effluent alkalinity exceeded our target level of 50 mg/L under most operating conditions evaluated with typical pilot scale values falling within the range of 90–100 mg/L despite influent concentrations of about 4 mg/L. Concurrently, CO2 fell from an average of 50.6 mg/L to 8.3 mg/L (90%), providing for an increase in pH from 5.27 to a mean of 7.71. The ability of the test reactor to provide changes in water chemistry variables that exceeded required changes allowed for a dilution ratio of 0.6. Here, alkalinity still exceeded 50 mg/L, the CO2 concentration remained well below our limit of 20 mg/L (15.4 mg/L) and the pH was near neutral (7.17). Applying the dilution ratio of 0.6 in a full scale treatment plant at the site reduced by 40% the volume of spring water that is directed through each of three parallel reactors that combined react away 49,000 kg of limestone/yr.

  16. Effects of pH, acidity and alkalinity on the microbiota activity of an anaerobic sludge blanket reactor (UASB treating pigmanure effluents

    Directory of Open Access Journals (Sweden)

    Fabricio Moterani

    2009-12-01

    Full Text Available The anaerobic processes used for treating wastewater have been often applied mainly for optimizing treatment systems. Among many of these systems, the UASB is one of the most successfully used. This type of reactor presents a good condition for microorganisms development, and therefore, for organic matter degradation. As a result, the goal of this research was to evaluate the effect of parameters, such as: temperature, pH, acidity and alkalinity on the microorganisms consortia, acclimatized in an UASB reactor, and simultaneously, observing the sludge morphology through a scanning electronic microscopy (SEM, in order to identify the response of the bacteria consortia under this environmental circumstances. The biomass operated under a mesophilic temperature, varying from 190C to 210C. The maximum concentration of volatile acids was 100 mg L-1, and the volumetric organic loading rate was 59 kgCOD m-3d-1. The total alkalinity concentration values were between 2500 and 5550 mgCaCO3 L-1. The average pH value of the sludge was 7.3. Under these conditions it was observed the development of a well acclimatized granular biomass, composed mainly of filamentous bacteria.

  17. Halotolerant cyanobacterium Aphanothece halophytica contains NapA-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH.

    Science.gov (United States)

    Wutipraditkul, Nuchanat; Waditee, Rungaroon; Incharoensakdi, Aran; Hibino, Takashi; Tanaka, Yoshito; Nakamura, Tatsunosuke; Shikata, Masamitsu; Takabe, Tetsuko; Takabe, Teruhiro

    2005-08-01

    Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow at NaCl concentrations up to 3.0 M and at pH values up to 11. The genome sequence revealed that the cyanobacterium Synechocystis sp. strain PCC 6803 contains five putative Na+/H+ antiporters, two of which are homologous to NhaP of Pseudomonas aeruginosa and three of which are homologous to NapA of Enterococcus hirae. The physiological and functional properties of NapA-type antiporters are largely unknown. One of NapA-type antiporters in Synechocystis sp. strain PCC 6803 has been proposed to be essential for the survival of this organism. In this study, we examined the isolation and characterization of the homologous gene in Aphanothece halophytica. Two genes encoding polypeptides of the same size, designated Ap-napA1-1 and Ap-napA1-2, were isolated. Ap-NapA1-1 exhibited a higher level of homology to the Synechocystis ortholog (Syn-NapA1) than Ap-NapA1-2 exhibited. Ap-NapA1-1, Ap-NapA1-2, and Syn-NapA1 complemented the salt-sensitive phenotypes of an Escherichia coli mutant and exhibited strongly pH-dependent Na+/H+ and Li+/H+ exchange activities (the highest activities were at alkaline pH), although the activities of Ap-NapA1-2 were significantly lower than the activities of the other polypeptides. Only one these polypeptides, Ap-NapA1-2, complemented a K+ uptake-deficient E. coli mutant and exhibited K+ uptake activity. Mutagenesis experiments suggested the importance of Glu129, Asp225, and Asp226 in the putative transmembrane segment and Glu142 in the loop region for the activity. Overexpression of Ap-NapA1-1 in the freshwater cyanobacterium Synechococcus sp. strain PCC 7942 enhanced the salt tolerance of cells, especially at alkaline pH. These findings indicate that A. halophytica has two NapA1-type antiporters which exhibit different ion specificities and play an important role in salt tolerance at alkaline pH.

  18. 2,4-Dichlorophenoxyacetic acid (2,4-D) utilization by Delftia acidovorans MC1 at alkaline pH and in the presence of dichlorprop is improved by introduction of the tfdK gene.

    Science.gov (United States)

    Hoffmann, Doreen; Müller, Roland H

    2006-06-01

    Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain's degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (mu max) of 0.158 h(-1). The half-maximum rate-associated substrate concentration (Ks) was 45 microM. At pH 8.5 mu max was only 0.05 h(-1) and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that mu max with dichlorprop was around 0.2 h(-1) at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with mu max of 0.147 h(-1) and Ks of 267 microM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 microM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)-2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h(-1) at pH 6.8 and up to D = 0.2 h(-1) at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.

  19. Facile Alkaline Lysis of Escherichia coli Cells in High-Throughput Mode for Screening Enzyme Mutants: Arylsulfatase as an Example.

    Science.gov (United States)

    Yuan, Mei; Yang, Xiaolan; Li, Yuwei; Liu, Hongbo; Pu, Jun; Zhan, Chang-Guo; Liao, Fei

    2016-06-01

    Facile alkaline lysis of Escherichia coli cells in high-throughput (HTP) mode for screening enzyme mutants was tested with Pseudomonas aeruginosa arylsulfatase (PAAS). The alkaline lysis buffer was 1.0 M Tris-HCl at pH 9.0 plus 0.1 % Tween-20 and 2.0 mM 4-aminobenzamidine, mixed with cell suspension at 8:1 to 12:1 ratio for continuous agitation of mixtures in 96-well plates under room temperature; enzymatic activity in lysates was measured with 96-well microplate. PAAS activity tolerated final 0.1 % Tween-20. Individual clones were amplified for 12 h in 0.50 mL TB medium with 48-well plates to enhance the repeatability of induced expression. During continuous agitation of the mixture of cells and the lysis buffer, PAAS activities in lysates were steady from 3 to 9 h and comparable to sonication treatment but better than freezing-thawing. Coefficients of variation of activities of PAAS/mutants in lysates after treatment for 7 h reached ∼22 %. The mutant M72Q had specific activity 2-fold of G138S. By HTP lysis of cells, M72Q was recognized as a positive mutant over G138S with the area under the curve of 0.873. Therefore, for enzymes tolerating concentrated alkaline buffers, the proposed alkaline lysis approach may be generally applicable for HTP lysis of host cells during directed evolution.

  20. Combination of Successive Alkalinity Producing System (SAPS) and Aeration for Passive Treatment of Highly Acidic Mine Drainage

    Science.gov (United States)

    Oh, C.; Ji, S.

    2015-12-01

    Passive treatment system has been widely used for remediation of mine drainage since its advantage of low installation and maintenance cost. The system, however, has also a disadvantage in assuring remediation and management efficiency if the drainage is highly acidic mine drainage. To remediate acid mine drainage (AMD) especially showing high acidity, passive treatment system which consists of successive alkalinity producing system (SAPS) and subsequent aeration pond was proposed and its mechanisms and efficiency was evaluated in this research. Target AMD was obtained from Waryong coal mine and showed typical characteristics of AMD having high metal concentration and low pH (acidity > 300 mg/L as CaCO3). Four experimental cases were conducted; untreated, treated with SAPS, treated with aeration, treated with SAPS and aeration to compare role and mechanism of each unit. Between organic matter and limestone layer which constitute SAPS, the former eliminated most of Fe(III) and Al in the AMD so that the latter was kept from being clogged by precipitates. Net acidity of the AMD rapidly decreased by supplement of alkalinity at the limestone layer. A primary function of SAPS, producing alkalinity constantly without clogging, was attained due to addition a portion of limestone particle into the organic matter layer. The discharge from SAPS had low ORP and DO values because of an anaerobic environment formed at the organic matter layer although its alkalinity was increased. This water quality was unfavorable for Fe(II) to be oxidized. Installation of aeration pond after SAPS, therefore, could be effective way of enhancing oxidation rate of Fe(II). Among the experimental cases, the combination of SAPS and aeration pond was only able to remediate the AMD. This concluded that to remediate highly acidic mine drainage with passive treatment system, three critical conditions were required; pre-precipitation of Fe(III) and Al at organic matter layer in SAPS, constant alkalinity

  1. Stopped-flow studies of spectral changes in human serum albumin following an alkaline pH jump

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    A stopped-flow technique was used to study the spectral changes occurring in albumin following a pH jump from 11.3 to 11.8 at 25 degrees C. Ultraviolet difference spectra between various albumin species participating in the process are reported. These spectra are similar in shape to the differenc...

  2. Automated high precision secondary pH measurements

    Science.gov (United States)

    Bastkowski, F.; Jakobsen, P. T.; Stefan, F.; Kristensen, H. B.; Jensen, H. D.; Kawiecki, R.; Wied, C. E.; Kauert, A.; Seidl, B.; Spitzer, P.; Eberhardt, R.; Adel, B.

    2013-04-01

    A new setup for high precision, automated secondary pH measurements together with a reference measurement procedure has been developed and tested in interlaboratory comparisons using buffers pH 4.005, pH 7.000, and pH 10.012 at 25 °C and 37 °C. Using primary buffers as standards, a standard uncertainty in pH better than 0.005 can be reached. The central measuring device is a one piece, thermostatted cell of PFA (perfluoroalkoxy) with a built-in Hamilton® Single Pore™ Glass electrode. Due to its flow-through principle this device allows pH measurements with low consumption of measurement solutions. The very hydrophobic and smooth PFA as construction material facilitates complete emptying of the cell. Furthermore, the tempering unit affords very precise temperature control and hence contributes to the low target uncertainty of the produced secondary buffer solutions. Use of a symmetric measurement sequence and the two point calibration was sufficient to reach high precision and accuracy.

  3. Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature.

    Science.gov (United States)

    Pandey, Sandeep; Rakholiya, Kalpna D; Raval, Vikram H; Singh, Satya P

    2012-09-01

    A haloalkaliphilic bacterium, isolated from Coastal Gujarat (India) was identified as Oceanobacillus sp. (GQ162111) based on 16S rRNA gene sequence. The organism grew and secreted extra cellular protease in presence of various organic solvents. At 30% (v/v) concentration of hexane, heptane, isooctane, dodecane and decane, significant growth and protease production was evident. The alkaline protease was purified in a single step on phenyl sepharose 6 FF with 28% yield. The molecular mass as judged by SDS-PAGE was 30 kDa. The temperature optimum of protease was 50°C and the enzyme retained 70% activity in 10% (v/v) isooctane. Effect of salt and pH was investigated in combination to assess the effect of isooctane. In organic solvents, the enzyme was considerably active at pH 8-11, with optimum activity at pH 10. Salt at 2 M was optimum for activity and enzyme maintained significant stability up to 18 h even at 3 M salt concentration. Patters of growth, protease production, catalysis and stability of the enzyme are presented. The study resumes significance as limited information is available on the interaction of haloalkaliphilic bacteria and their enzymes with organic solvents.

  4. Continuous determination of the boiler water and industrial circulating cooling water pH value,alkalinity and chloride%锅炉水及工业循环冷却水的pH值、碱度和氯化物的连续测定

    Institute of Scientific and Technical Information of China (English)

    张居光; 吴继权; 黄容

    2013-01-01

    At automatic potentiometric titrator attached double electrodes, Using the direct potential and potentiometric titration methods, pH value, alkalinity and chloride concentration were obtained. pH combination electrode applies to the pH and alkalinity measured, and the reference pH electrode and indicator Ag electrode apply to precipitation titrated.The methods can be used for pH, alkalinity and chloride continuous determination of boiler water and industrial circulating cooling water. For high alkalinity and high chloride samples, the measured relative standard deviation is less than 0. 5%. For low alkalinity and chloride samples, the measured relative standard deviation is about 2%.%在双电极电位滴定仪上,应用直接电位法和电位滴定法依次获得pH值、碱度和氯化物浓度.pH复合电极不仅应用于pH值和碱度测定,还在沉淀滴定中发挥参比电极作用,银电极作为沉淀滴定的指示电极.该方法用于锅炉水和工业循环冷却水的pH值、碱度和氯化物连续的测定,对于碱度、氯化物浓度较高的样品,测定结果相对标准偏差小于0.5%.对于碱度、氯化物浓度较低的补水,测定结果的相对标准偏差约2%.

  5. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  6. On the characterization of intermediates in the isodesmic aggregation pathway of hen lysozyme at alkaline pH.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Protein aggregation leading to formation of amyloid fibrils is a symptom of several diseases like Alzheimer's, type 2 diabetes and so on. Elucidating the poorly understood mechanism of such phenomena entails the difficult task of characterizing the species involved at each of the multiple steps in the aggregation pathway. It was previously shown by us that spontaneous aggregation of hen-eggwhite lysozyme (HEWL at room temperature in pH 12.2 is a good model to study aggregation. Here in this paper we investigate the growth kinetics, structure, function and dynamics of multiple intermediate species populating the aggregation pathway of HEWL at pH 12.2. The different intermediates were isolated by varying the HEWL monomer concentration in the 300 nM-0.12 mM range. The intermediates were characterized using techniques like steady-state and nanosecond time-resolved fluorescence, atomic force microscopy and dynamic light scattering. Growth kinetics of non-fibrillar HEWL aggregates were fitted to the von Bertalanffy equation to yield a HEWL concentration independent rate constant (k = (6.6 ± 0.6 × 10(-5 s(-1. Our results reveal stepwise changes in size, molecular packing and enzymatic activity among growing HEWL aggregates consistent with an isodesmic aggregation model. Formation of disulphide bonds that crosslink the monomers in the aggregate appear as a unique feature of this aggregation. AFM images of multiple amyloid fibrils emanating radially from amorphous aggregates directly confirmed that on-pathway fibril formation was feasible under isodesmic polymerization. The isolated HEWL aggregates are revealed as polycationic protein nanoparticles that are robust at neutral pH with ability to take up non-polar molecules like ANS.

  7. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    Alkaline electrolysis cells operating at 250°C and 40 bar are able to convert electrical energy into hydrogen at very high efficiencies and power densities. In the present work we demonstrate the application of a PTFE hydrophobic network and Ag nanowires as oxygen evolution electrocatalyst...

  8. Critical parameters in cost-effective alkaline extraction for high protein yield from leaves

    NARCIS (Netherlands)

    Zhang, C.; Sanders, J.P.M.; Bruins, M.E.

    2014-01-01

    Leaves are potential resources for feed or food, but their applications are limited due to a high proportion of insoluble protein and inefficient processing. To overcome these problems, parameters of alkaline extraction were evaluated using green tea residue (GTR). Protein extraction could be maximi

  9. In-situ potentiostatic activation to optimize electrodeposited cobalt-phosphide electrocatalyst for highly efficient hydrogen evolution in alkaline media

    Science.gov (United States)

    Wei, Mengmeng; Yang, Liming; Wang, Longlu; Liu, Tian; Liu, Chengbin; Tang, Yanhong; Luo, Shenglian

    2017-08-01

    We first report a novel cobalt-phosphide (Co-P) hybrid with flake-like structure by a facile one-step electrodeposition combined with in-situ potentiostatic activation technique. Exotic microstructure transformation of Co-P hybrid from microspheres to nanosheets has been noted during the activation process. The Co-P catalyst exhibits striking kinetic metrics with an overpotential of 85 mV (at 10 mA cm-2) and Tafel slope of 37 mV dec-1, performing among the best of all the HER catalysts in strong alkaline media (at pH 14). This study offers a new in-situ approach to optimize catalytic materials for high-performance electrocatalysts towards energy-related applications.

  10. Synthesis of High-Quality Graphene through Electrochemical Exfoliation of Graphite in Alkaline Electrolyte

    OpenAIRE

    Tripathi, Prashant; Patel, Ch. Ravi Prakash; Shaz, M. A.; Srivastava, O N

    2013-01-01

    Owing to wide variety of applications of graphene, high-quality and economical way of synthesizing graphene is highly desirable. In this study, we report a cost effective and simple approach to production of high-quality graphene. Here the synthesis route is based on electrochemical exfoliation of graphite. Instead of using strong acids (which oxidise and damage the geometrical topology of graphene), we have used alkaline solution (KOH dissolved in water) as electrolyte. TEM analysis shows th...

  11. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  12. The dissolution of high-FeO olivine rock from the Lovasjaervi intrusion (SE-Finland) at 25 deg. C as a function of pH

    Energy Technology Data Exchange (ETDEWEB)

    Duro, Lara [Enviros-Spain S.L. Passeig de Rubi, 29-31, 08197 Valldoreix (Spain); El Aamrani, Fatima [Departament d' Enginyeria Quimica, ETSEIB-UPC (H4), Av. Diagonal 647, 08028 Barcelona (Spain); Rovira, Miquel [CTM-Centre Technologic, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Gimenez, Javier [Departament d' Enginyeria Quimica, ETSEIB-UPC (H4), Av. Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Casas, Ignasi [Departament d' Enginyeria Quimica, ETSEIB-UPC (H4), Av. Diagonal 647, 08028 Barcelona (Spain); Pablo, Joan de [CTM-Centre Technologic, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Bruno, Jordi [Enviros-Spain S.L. Passeig de Rubi, 29-31, 08197 Valldoreix (Spain)

    2005-07-15

    The high-FeO olivine-rich rock from the Lovasjaervi intrusion (65% olivine, 20% plagioclase, 8% magnetite, 4% pyroxene and 3% serpentine) has been proposed as a potential redox-active backfill-additive in deep high level nuclear waste repositories. In this work, the authors report on kinetic dissolution studies of this solid under different pH and redox conditions performed by using a flow-through methodology. Assuming that silicon is mainly released to solution from the olivine contained in the solid, the experimental results have been adjusted to an empirical rate law as a function of proton concentration. The proton concentration reaction orders agree with results found in the literature for both acidic and alkaline pH ranges. The calculations conducted with the reactive transport code RETRASO show that at alkaline pH, the olivine rock might have a lower redox buffer capacity than expected.

  13. Preliminary Study on Optimization of pH, Oxidant and Catalyst Dose for High COD Content: Solar Parabolic Trough Collector

    Directory of Open Access Journals (Sweden)

    Chandan Singh

    2013-01-01

    Full Text Available In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater.Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using aparabolic trough reactor. Parameters affecting the oxidation of organics have been investigated.The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst and finally photocatalytic studies in presence and absence of additional oxidant(H2O2. All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH. For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8. The reaction rate was significantly enhanced in presence ofhydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%.

  14. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    Science.gov (United States)

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  15. Modulation by extracellular pH of low- and high-voltage-activated calcium currents of rat thalamic relay neurons.

    Science.gov (United States)

    Shah, M J; Meis, S; Munsch, T; Pape, H C

    2001-03-01

    The effects of changes in the extracellular pH (pH(o)) on low-voltage- (LVA) and high-voltage- (HVA) activated calcium currents of acutely isolated relay neurons of the ventrobasal thalamic complex (VB) were examined using the whole cell patch-clamp technique. Modest extracellular alkalinization (pH 7.3 to 7.7) reversibly enlarged LVA calcium currents by 18.6 +/- 3.2% (mean +/- SE, n = 6), whereas extracellular acidification (pH 7.3 to 6.9) decreased the current by 24.8 +/- 3.1% (n = 9). Normalized current amplitudes (I/I(7.3)) fitted as a function of pH(o) revealed an apparent pK(a) of 6.9. Both, half-maximal activation voltage and steady-state inactivation were significantly shifted to more negative voltages by 2-4 mV on extracellular alkalinization and to more positive voltages by 2-3 mV on extracellular acidification, respectively. Recovery from inactivation of LVA calcium currents was not significantly affected by changes in pH(o). In contrast, HVA calcium currents were less sensitive to changes in pH(o). Although extracellular alkalinization increased maximal HVA current by 6.0 +/- 2.0% (n = 7) and extracellular acidification decreased it by 11.9 +/- 0.02% (n = 11), both activation and steady-state inactivation were only marginally affected by the moderate changes in pH(o) used in the present study. The results show that calcium currents of thalamic relay neurons exhibit different pH(o) sensitivity. Therefore activity-related extracellular pH transients might selectively modulate certain aspects of the electrogenic behavior of thalamic relay neurons.

  16. Optimization of Soilless Media for Alkaline Irrigation Water

    OpenAIRE

    Tramp, Cody Alexander; Chard, Julie K.; Bugbee, Bruce

    2009-01-01

    High root zone pH reduces nutrient availability and high alkalinity water is strongly buffered around an alkaline pH. Soilless media can be altered to improve nutrient availability. This study was conducted to optimize the composition of soilless media for use with high alkalinity water. Mixes of peat and/or perlite or vermiculite in 50/50 and 33/33/33 volumetric ratios were tested. In some studies, mixes were also amended with up to 2.4 g/L of dolomite limestone to neutralize the initial aci...

  17. High Iridium concentration of alkaline rocks of Deccan and implications to K/T boundary

    Indian Academy of Sciences (India)

    P N Shukla; N Bhandari; Anirban Das; A D Shukla; J S Ray

    2001-06-01

    We report here an unusually high concentration of iridium in some alkali basalts and alkaline rocks of Deccan region having an age of about 65Ma, similar to the age of the Cretaceous-Tertiary boundary. The alkali basalts of Anjar, in the western periphery of Deccan province, have irid-ium concentration as high as 178pg/g whereas the alkaline rocks and basalts associated with the Amba Dongar carbonatite complex have concentrations ranging between 8 and 80 pg/g. Some of these values are more than an order of magnitude higher than the concentration in the tholeiiticbasalts of Deccan, indicating the significance of alkaline magmatism in the iridium inventory at the Cretaceous-Tertiary boundary. Despite higher concentration, their contribution to the global inventory of iridium in the Cretaceous-Tertiary boundary clays remains small. The concentration of iridium in uorites from Amba Dongar was found to be < 30 pg/g indicating that iridium is not incorporated during their formation in hydrothermal activity.

  18. Influence of pH on the survival of Dictyosphaerium chlorelloides populations living in aquatic environments highly contaminated with chromium.

    Science.gov (United States)

    Pereira, María; Bartolomé, M Carmen; Sánchez-Fortún, Sebastián

    2013-12-01

    The accommodation of photosynthetic organisms to adverse conditions, such as pH changes in the aquatic environment, and their response to aquatic pollutants is essential to develop future biosensors. The present study reports the ability of both Cr(VI)-sensitive and tolerant Dyctiosphaerium chlorelloides strains to live in aqueous solutions highly contaminated with hexavalent chromium under varying ranges of pH, by the determination of chromium toxic effects on these strains. Studies of cell growth, photosynthetic quantum yield and gross photosynthesis rate show that both D. chlorelloides strains are able to survive in alkaline and moderately acidified (pH 4.25) aquatic environments. Below this pH value cell populations from both strains exposed for short periods of time to Cr(VI) showed alterations in the three parameters studied. There were no significant differences comparing the response of both strains at pH change in the culture medium. However, Cr(VI)-tolerant strain exhibits a better fit to maintain cell growth than Cr(VI)-sensitive strain when both were subjected to pH 4.25 in the culture medium. The absence of significant differences in photosynthetic activity results for both strains suggests that the lower sensitivity exhibited by Cr(VI)-tolerant strain would be due to cellular morphological changes rather than changes in cellular activity. © 2013 Published by Elsevier Inc.

  19. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: solar parabolic trough collector

    Directory of Open Access Journals (Sweden)

    Singh Chandan

    2013-01-01

    Full Text Available Abstract In the present study, solar photocatalytic oxidation has been investigated through laboratory experiments as an alternative to conventional secondary treatment for the organic content reduction of high COD wastewater. Experiments have been performed on synthetic high COD wastewater for solar photocatalytic oxidation using a parabolic trough reactor. Parameters affecting the oxidation of organics have been investigated. The experimental design followed the sequence of dark adsorption studies of organics, followed by photolytic studies (in absence of catalyst and finally photocatalytic studies in presence and absence of additional oxidant (H2O2. All the experimental studies have been performed at pH values of 2, 4, 6,8,10 and the initial pH value of the wastewater (normal pH. For photocatalytic studies, TiO2 has been used as a photocatalyst. Optimization of catalyst dose, pH and H2O2 concentration has been done. Maximum reduction of organic content was observed at the normal pH value of the wastewater (pH = 6.8. The reaction rate was significantly enhanced in presence of hydrogen peroxide. The optimum pH other than the Normal was in the alkaline range. Acidic pH was not found to be favourable for organic content reduction. pH was found to be a dominant factor affecting reaction rate even in presence of H2O2 as an additional oxidant. Also, the solar detoxification process was effective in treating a waste with a COD level of more than 7500 mg/L, which is a otherwise a difficult waste to treat. It can therefore be used as a treatment step in the high organic wastewater treatment during the primary stage also as it effectively reduces the COD content by 86%.

  20. Comparative contributions of solution geochemistry, microbial metabolism and aquatic photosynthesis to the development of high pH in ephemeral wetlands in South East Australia.

    Science.gov (United States)

    Reid, R J; Mosley, L M

    2016-01-15

    The development of alkaline conditions in lakes and wetlands is common but the process of alkalinisation is not well elaborated. In this study we investigated causes of the seasonal alkalinisation of ephemeral wetlands in the South East of South Australia where pH values above 10 are frequently observed. This research combined field observations, geochemical analysis of wetland sediment and surface water, with mesocosm studies under controlled conditions. The results revealed a complex interplay between a number of different processes. A primary cause was attributed to sequestration of CO2 from the water column by plant photosynthesis, coupled with slow diffusion of CO2 from the air which led to its depletion in the water. Abundant plant growth also modified the water chemistry via uptake of nutrient elements, in particular calcium and magnesium and increased carbonate alkalinity in the water. Assessment of field results and geochemical modeling showed that low Ca/(HCO3(-) and CO3(-2)) ratios in the water, coupled with carbonate mineral (calcite, Mg substituted calcite, dolomite) precipitation and evapoconcentration, create a high alkalinity and pH (>9) baseline in many wetlands. The high baseline pH is then further increased by CO2 depletion due to photosynthesis. We could find no evidence that reduction of sulfate to sulfides by sulfur-reducing bacteria significantly contributed to the very high pH conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. pH measurement and a rational and practical pH control strategy for high throughput cell culture system.

    Science.gov (United States)

    Zhou, Haiying; Purdie, Jennifer; Wang, Tongtong; Ouyang, Anli

    2010-01-01

    The number of therapeutic proteins produced by cell culture in the pharmaceutical industry continues to increase. During the early stages of manufacturing process development, hundreds of clones and various cell culture conditions are evaluated to develop a robust process to identify and select cell lines with high productivity. It is highly desirable to establish a high throughput system to accelerate process development and reduce cost. Multiwell plates and shake flasks are widely used in the industry as the scale down model for large-scale bioreactors. However, one of the limitations of these two systems is the inability to measure and control pH in a high throughput manner. As pH is an important process parameter for cell culture, this could limit the applications of these scale down model vessels. An economical, rapid, and robust pH measurement method was developed at Eli Lilly and Company by employing SNARF-4F 5-(-and 6)-carboxylic acid. The method demonstrated the ability to measure the pH values of cell culture samples in a high throughput manner. Based upon the chemical equilibrium of CO(2), HCO(3)(-), and the buffer system, i.e., HEPES, we established a mathematical model to regulate pH in multiwell plates and shake flasks. The model calculates the required %CO(2) from the incubator and the amount of sodium bicarbonate to be added to adjust pH to a preset value. The model was validated by experimental data, and pH was accurately regulated by this method. The feasibility of studying the pH effect on cell culture in 96-well plates and shake flasks was also demonstrated in this study. This work shed light on mini-bioreactor scale down model construction and paved the way for cell culture process development to improve productivity or product quality using high throughput systems.

  2. High-rate capability of zinc anodes in alkaline primary cells

    Science.gov (United States)

    Huot, Jean-Yves; Malservisi, Martin

    This work is devoted to the electrochemical aspects of high-power testing of primary alkaline LR6 ("AA") cells and to the factors influencing cell performance, namely the corresponding zinc anode behaviour under such high-rate conditions. The influence of the high-rate testing regime, such as the discharge mode and the end-potential, on zinc utilisation in alkaline cells has been monitored and its behaviour has been isolated by means of a pseudo-reference electrode. As anticipated, anode formulation, including zinc alloy composition and size distribution, is found to affect the cell's discharge curve and the corresponding zinc electrode potential and utilisation. The effects of these parameters on the discharge curve are discussed in terms of three stages of discharge. Finally, the high-rate capability of commercial LR6 cells is analysed in terms of zinc anode formulation. It was concluded that zinc electrode polarisation is very small and is relatively independent of manufacturer, of zinc anode formulation and of zinc alloying. On the other hand, metallic zinc utilisation remains very low under high-rate conditions.

  3. Alkaline electrolysis cell at high temperature and pressure of 250 °C and 42 bar

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    A new type of alkaline electrolysis cells with nickel foam based gas diffusion electrodes and KOH (aq) immobilized in mesoporous SrTiO3 has been developed and tested at temperatures and pressures up to 250 °C and 42 bar, respectively. Current densities of 1.0 A cm−2 have been measured at a cell...... voltage of 1.5 V without the use of expensive noble metal catalysts. High electrical efficiency and current density combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production....

  4. High Serum Alkaline Phosphatase, Hypercalcaemia, Race, and Mortality in South African Maintenance Haemodialysis Patients

    Science.gov (United States)

    Duarte, Raquel; Naicker, Saraladevi

    2017-01-01

    Objective. To determine the association between serum total alkaline phosphatase (TAP) and mortality in African maintenance haemodialysis patients (MHD). Patients and Methods. The study enrolled a total of 213 patients on MHD from two dialysis centers in Johannesburg between January 2009 and March 2016. Patients were categorized into a low TAP group (≤112 U/L) versus a high TAP group (>112 U/L) based on a median TAP of 112 U/L. Results. During the follow-up period of 7 years, there were 55 (25.8%) deaths. After adjusting for cofounders such as age, other markers of bone disorder, and comorbidity (diabetes mellitus), patients in the high TAP group had significantly higher risk of death compared to patients in the low TAP group (hazard ratio, 2.50; 95% CI 1.24–5.01, P = 0.01). Similarly, serum calcium >2.75 mmol/L was associated with increased risk of death compared to patients within levels of 2.10–2.37 mmol/L (HR 6.34, 95% CI 1.40–28.76; P = 0.02). The HR for death in white patients compared to black patients was 6.88; 95% CI 1.82–25.88; P = 0.004. Conclusion. High levels of serum alkaline phosphatase, hypercalcaemia, and white race are associated with increased risk of death in MHD patients. PMID:28168054

  5. Regional scale hydrological and biogeochemical processes controlling high biodiversity of a groundwater fed alkaline fen

    Science.gov (United States)

    van der Zee, Sjoerd E. A. T. M.; (D. G.) Cirkel, Gijsbert; (J. P. M) witte, Flip

    2014-05-01

    The high floral biodiversity of groundwater fed fens and mesotrophic grasslands depends on the different chemical signatures of the shallow rainwater fed topsoil water and the slightly deeper geochemically affected groundwater. The relatively abrupt gradients between these two layers of groundwater enable the close proximity of plants that require quite different site factors and have different rooting depths. However, sulphur inflow into such botanically interesting areas is generally perceived as a major threat to biodiversity. Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems because of 'so called' internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. Complementary to conventions, we propose that upwelling sulphate rich groundwater may, in fact, promote the conservation of rare and threatened alkaline fens: excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness of the inflowing groundwater. For a very species-rich wetland nature reserve, we show that sulphate is reduced and effectively precipitated as iron sulphides, when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Also, we show that sulphate reduction occurs simultaneously with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction, we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with

  6. Effects of different substrates in the mitigation of algae-induced high pH wastewaters in a pilot-scale free water surface wetland system.

    Science.gov (United States)

    Jin, Meng; Champagne, Pascale; Hall, Geoffrey

    2017-01-01

    Waste stabilization ponds (WSPs), as part of municipal wastewater treatment strategies, can exhibit variability in performance due to climatic conditions. Under elevated temperature and strong solar radiation, algal blooms and subsequent high pH effluents have often been observed. In this study, four substrates (gravel, peat, organic mulch, and topsoil) were evaluated for their ability to attenuate high pH effluents from a WSP. Synthetic wastewater with pH > 9.5, and low organic and nutrient loadings, was used to mimic algal-induced high pH effluents in 72 L rectangular bench-scale superficial constructed wetland configuration reactors. Peat exhibited the highest attenuation ability, where the effluent pH decreased substantially from 10.3 to 7.7, primarily due to its high organic contents. Peat also removed 53.7% of the influent total phosphorus, which could effectively limit algal growth. No statistically significant differences were discovered among gravel, topsoil, and organic mulch in terms of pH attenuation. Topsoil and organic mulch both have a relatively high alkalinity, making them ideal to maintain consistent pH levels. However, naturally high chemical oxygen demand levels in organic mulch raised concerns in the leaching of these compounds into the treated wastewater, making it less appealing for systems with low organic loading.

  7. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community.

    Science.gov (United States)

    Cang, Long; Zhou, Dong-Mei; Alshawabkeh, Akram N; Chen, Hai-Feng

    2007-04-02

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.

  8. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Zhou Dongmei [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)]. E-mail: dmzhou@issas.ac.cn; Alshawabkeh, Akram N. [Department of Civil and Environmental Engineering, Northeastern University, Boston, MA (United States); Chen Haifeng [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2007-04-02

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.

  9. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    Moving away from fossil fuels requires harvesting more and more intermittent renewable energy resources and establishing a sustainable system for the production of chemicals. This brings forward the need for efficient large scale energy storage technologies 1-3 and technologies for the conversion...... densities. This work will provide an overview of our efforts to develop components of such high temperature alkaline electrochemical reactors for different applications. Low-cost large-scale production methods have been successfully employed for the production of ceramic diaphragms and full cells...... of renewable electricity to chemicals. Electrochemical reactors can play a crucial role in this endeavor, since they can efficiently and reversibly transform electricity to high-value chemicals, and thus serve as energy storage and recovery devices for balancing the grid, while offering a means...

  10. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  11. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest

    Directory of Open Access Journals (Sweden)

    C. A. Frieder

    2012-10-01

    within the kelp forest. With knowledge of local alkalinity conditions and high-frequency temperature, salinity, and pH data, we estimated pCO2 and calcium carbonate saturation states with respect to calcite and aragonite (Ωcalc and Ωarag for the La Jolla kelp forest at 7 m and 17 m water depth. pCO2 ranged from 246 to 1016 μatm, Ωcalc was always supersaturated, and Ωarag was undersaturated at the beginning of March for five days when pH was less than 7.75 and DO was less than 115 μmol kg−1. These findings raise the possibility that the benthic communities along eastern boundary current systems are currently acclimatized and adapted to natural, variable, and low DO and pH. Still, future exposure of coastal California populations to even lower DO and pH may increase as upwelling intensifies and hypoxic boundaries shoal, compressing habitats and challenging the physiological capacity of intolerant species.

  12. Thermal poling of alkaline earth boroaluminosilicate glasses with intrinsically high dielectric breakdown strength

    Science.gov (United States)

    Smith, Nicholas J.; Lanagan, Michael T.; Pantano, Carlo G.

    2012-04-01

    Per the rectification model of thermal poling, it has been proposed that intrinsic breakdown strength plays a strong limiting role in the internal DC fields supported by the glass from the poling process. One might therefore hypothesize proportionately larger second-order nonlinearity (SON) in glasses with intrinsically high dielectric breakdown strength. We test these ideas by thermal poling of two different commercial alkali-free alkaline-earth boroaluminosilicate display glasses—one with barium only (AF45 from Schott), and the other with a mixture of alkaline-earth ions (OA-10 G from NEG). Not only are such compositions relevant from a commercial standpoint, they are also interesting in that they have been recently shown to exhibit remarkably high intrinsic dielectric breakdown strengths of 11-14 MV/cm. Quantitative Maker fringe and stack Maker-fringe measurements provide an accurate evaluation of the poling-induced SON susceptibilities, and indicate maximum χ(2) values of 0.44 and 0.26 pm/V in these glasses. These values are comparable to those reported for silica and other multicomponent glasses. Thus, the hypothesis that higher χ(2) would be observed in high intrinsic breakdown strength glasses was not validated. Based on our application of the rectification model, internal fields of the order 2-4 MV/cm were calculated, which are well below the measured intrinsic breakdown strengths at room temperature. The most plausible explanation for these observations is nonlinear electronic conduction effects taking place within the depletion region at the poling temperature, limiting internal fields to a fraction of the breakdown field.

  13. High-performance liquid chromatography of oligoguanylates at high pH

    Science.gov (United States)

    Stribling, R.; Deamer, D. (Principal Investigator)

    1991-01-01

    Because of the stable self-structures formed by oligomers of guanosine, standard high-performance liquid chromatography techniques for oligonucleotide fractionation are not applicable. Previously, oligoguanylate separations have been carried out at pH 12 using RPC-5 as the packing material. While RPC-5 provides excellent separations, there are several limitations, including the lack of a commercially available source. This report describes a new anion-exchange high-performance liquid chromatography method using HEMA-IEC BIO Q, which successfully separates different forms of the guanosine monomer as well as longer oligoguanylates. The reproducibility and stability at high pH suggests a versatile role for this material.

  14. Association of alkaline phosphatase phenotypes with arthritides

    Directory of Open Access Journals (Sweden)

    Padmini A

    2004-01-01

    Full Text Available Arthritides, a symmetrical polyarticular disease of the bone are a heterogenous group of disorders in which hereditary and environmental factors in combination with an altered immune response appear to play a causative and pathogenic role in its occurrence. Alkaline phosphatase (ALP is an enzyme found in all tissues, with particularly high concentrations of ALP observed in the liver, bile ducts, placenta, and bone.Alkaline phosphatase is an orthophosphoric monoester phosphohydrolase catalyzing the hydrolysis of organic esters at alkaline pH, indicating that alkaline phosphatase is involved in fundamental biological processes.1 The present study envisages on identifying the specific electromorphic association of alkaline phosphatase with arthritides. Phenotyping of serum samples was carried out by PAGE (Polyacrylamide gel electrophoresis following Davies (19642 protocol on 41 juvenile arthritis, 150 rheumatoid arthritis and 100 osteo arthritis apart from, 25 normal children and 100 adult healthy subjects. Phenotyping of alkaline phosphatase revealed an increase in preponderance of p+ and p++ phenotypes in juvenile, rheumatoid and osteo arthritic patients. However a significant association of these phenotypes was observed only with rheumatoid arthritis condition (c2:17.46. Similarly, a significant increase of p+ phenotypes in female rheumatoid arthritis patients was observed (c2:14.973, suggesting that the decrease in p° (tissue non specific synthesis/secretion of alkaline phosphatase could be associated with decreased mineralization and ossification process in arthritis condition.

  15. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization.

    Science.gov (United States)

    Shrinivas, Dengeti; Savitha, Gunashekaran; Raviranjan, Kumar; Naik, Gajanan Ramchandra

    2010-11-01

    A highly thermostable alkaline xylanase was purified to homogeneity from culture supernatant of Bacillus sp. JB 99 using DEAE-Sepharose and Sephadex G-100 gel filtration with 25.7-fold increase in activity and 43.5% recovery. The molecular weight of the purified xylanase was found to be 20 kDA by SDS-PAGE and zymogram analysis. The enzyme was optimally active at 70 °C, pH 8.0 and stable over pH range of 6.0-10.0.The relative activity at 9.0 and 10.0 were 90% and 85% of that of pH 8.0, respectively. The enzyme showed high thermal stability at 60 °C with 95% of its activity after 5 h. The K (m) and V (max) of enzyme for oat spelt xylan were 4.8 mg/ml and 218.6 µM min(-1) mg(-1), respectively. Analysis of N-terminal amino acid sequence revealed that the xylanase belongs to glycosyl hydrolase family 11 from thermoalkalophilic Bacillus sp. with basic pI. Substrate specificity showed a high activity on xylan-containing substrate and cellulase-free nature. The hydrolyzed product pattern of oat spelt xylan on thin-layer chromatography suggested xylanase as an endoxylanase. Due to these properties, xylanase from Bacillus sp. JB 99 was found to be highly compatible for paper and pulp industry.

  16. Temperature, salinity, dissolved oxygen, phosphate, nitrite, pH, alkalinity, bottom depth, and meteorology data collected from Arctic Seas and North Western Pacific by various Soviet Union institutions from 1925-11-16 to 1989-05-18 (NODC Accession 0075099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, dissolved oxygen, phosphate, nitrite, pH, alkalinity, bottom depth, and meteorology data collected from Arctic Seas and North Western Pacific...

  17. Dissolved inorganic carbon, total alkalinity, pH, phosphate, dissolved oxygen, and other variables collected from surface discrete observations using Niksin bottle and other instruments from R/V Sultana in the southwest coast of Puerto Rico from 2009-01-05 to 2016-02-01 (NCEI Accession 0145164)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This time series dataset includes weekly and bi-weekly discrete seawater samples of pH and total alkalinity, dissolved inorganic carbon, phosphates and profile...

  18. Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian Sea and White Sea from R/Vs Artemovsk, Atlantida, Okeanograf, Professor Rudovits, and ice observations, 1957 - 1995 (NODC Accession 0073674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian...

  19. Control Effect of Regulating pH and Alkalinity on Iron Release in Drinking Water Distribution System%调节pH值和碱度对给水管网铁释放的控制作用

    Institute of Scientific and Technical Information of China (English)

    米子龙; 张晓健; 王洋; 陈超; 顾军农

    2012-01-01

    The control effect of regulating pH and alkalinity on iron release in the drinking water distribution system was investigated. Experiments using the pipe section simulation reactor found that the iron release rate, turbidity and color decreased significantly with increasing pH and alkalinity. Specifically, after increasing pH from 7.6 to 8.2 for 15 d, the iron release rate, turbidity and color decreased by 47% , 54% and 46% , respectively. Meanwhile, increasing alkalinity from 135 mg/L to 260 mg/L (calculated as CaCO3) for 15 d, the iron release rate, turbidity and color decreased by 50% , 58% and 52% , respectively. The cost-effectiveness of regulating pH and alkalinity to control iron release in drinking water was evaluated. The results showed that the cost of regulating pH of finished water was appropriate. This method can be used as an emergency water treatment technology for red water control.%利用管段模拟反应器,定量分析了调节pH值和调节碱度技术对给水管网铁释放的控制作用.研究发现,提高pH值和增加碱度均可使管网铁释放速率、浊度和色度明显降低.调节pH值从7.6增加至8.2,15 d后管网铁释放速率降低了47%,浊度降低了54%,色度降低了46%;调节碱度从135 mg/L增加至260 mg/L(以CaCO3计),15 d后管网铁释放速率降低了50%,浊度降低了58%,色度降低了52%.对比评价了调节pH值和调节碱度技术的经济性,结果表明;调节出厂水pH值控制管网铁释放的经济成本适宜,可作为突发性管网“黄水”问题的应急控制技术.

  20. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Science.gov (United States)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  1. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation

    NARCIS (Netherlands)

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.

    2015-01-01

    This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8–10). Application of pH shock to a value of 9 at the start of a s

  2. Highly efficient anode catalyst with a Ni@PdPt core–shell nanostructure for methanol electrooxidation in alkaline media

    Institute of Scientific and Technical Information of China (English)

    Pei-shu Yu; Chun-tao Liu; Bo Feng; Jia-feng Wan; Li Li; Chun-yu Du

    2015-01-01

    To enhance the electrocatalytic activity of anode catalysts used in alkaline-media direct methanol fuel cells (DMFCs), a Ni@PdPt electrocatalyst was successfully prepared using a three-phase-transfer method. The Ni@PdPt electrocatalyst was characterized by X-ray dif-fraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) techniques. The experimental results indicate that the average particle size of the core–shell-structured Ni@PdPt electrocatalyst is approxi-mately 5.6 nm. The Ni@PdPt electrocatalyst exhibits a catalytic activity 3.36 times greater than that of PdPt alloys for methanol oxidation in alkaline media. The developed Ni@PdPt electrocatalyst offers a promising alternative as a highly electrocatalytically active anode catalyst for alkaline DMFCs.

  3. Effect of Proteolysis with Alkaline Protease Following High Hydrostatic Pressure Treatment on IgE Binding of Buckwheat Protein.

    Science.gov (United States)

    Lee, Chaeyoon; Lee, Wonhui; Han, Youngshin; Oh, Sangsuk

    2017-03-01

    Buckwheat is a popular food material in many Asian countries and it contains major allergenic proteins. This study was performed to analyze the effects of hydrolysis with alkaline protease following high hydrostatic pressure (HHP) treatment on the IgE binding of buckwheat protein. Extracted buckwheat protein was treated with HHP at 600 MPa for 30 min and hydrolyzed with alkaline protease for 240 min. IgE binding was examined using an enzyme-linked immunosorbent assay (ELISA) with serum samples from 14 patients who were allergic to buckwheat. Depending on the serum samples, HHP treatment of buckwheat protein without enzymatic hydrolysis decreased the IgE binding by 8.9% to 73.2% or increased by 31% to 78%. The IgE binding of buckwheat protein hydrolyzed with alkaline protease decreased by 73.8% to 100%. The IgE binding of buckwheat protein hydrolyzed with alkaline protease following HHP treatment decreased by 83.8% to 100%. This suggested that hydrolysis with alkaline protease following HHP treatment could be applied to reduce the IgE binding of buckwheat protein. © 2017 Institute of Food Technologists®.

  4. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region

    OpenAIRE

    Ndounla, J.; Pulgarin, C

    2015-01-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 +/- 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 ...

  5. Project Opalinus Clay: Sorption Data Bases For Opalinus Clay Influenced By A High pH Plume

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H.; Baeyens, B

    2004-11-01

    The interaction of groundwater with the large quantities of cement/concrete used in the construction and backfilling of emplacement tunnels containing long-lived intermediate level radioactive waste may give rise to the release of a pulse of hyper alkaline fluid (pH plume) into the surrounding rock. Since the pH of this plume could remain in excess of 12.5 for tens of thousands of years, many minerals in a sedimentary host rock would be unstable leading to dissolution reactions, secondary mineral precipitation and changes in groundwater chemistry. An Opalinus day formation in the Zuercher Weinland, is under consideration by Nagra as a potential host rock for a repository of spent fuel (SF), vitrified high-level waste (HLW) from reprocessing of spent fuel and long-lived intermediate-Ievel radioactive waste (ILW). The purpose of this report is to assess the effects of the interactions between a pH plume and Opalinus day on the sorption properties of the formation and to provide appropriate sorption data bases. (author)

  6. Alkaline earth silicate wools - A new generation of high temperature insulation.

    Science.gov (United States)

    Brown, Robert C; Harrison, Paul T C

    2012-11-01

    Intensive study of the natural asbestiform minerals that cause human diseases, and the consequent understanding of their hazardous characteristics, has enabled the development of manufactured fibres whose physical and/or chemical properties, in particular as they relate to biopersistence, have been adjusted to minimize possible harm to health. A strong driver for the developmentof new high temperature insulation materials wasthe perception of the toxicity of refractory ceramic fibres (RCF)and their classification in the EU as a category 2 carcinogen under Directive 67/548/EEC. Such classification carries with it the requirement for substitution by less hazardous materials. This paper focuses on the development of alkaline earth silicate (AES) wools as a new class of high temperature insulation with the capability of such substitution in a number of applications. These wools have only a low potential to cause harm because they do not persist in lung tissue once deposited, and have produced minimal effects in experimental test systems. AES wools are increasingly being used in a wide range of high temperature applications.

  7. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    Science.gov (United States)

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties.

  8. Anti-obesity effect of alkaline reduced water in high fat-fed obese mice.

    Science.gov (United States)

    Ignacio, Rosa Mistica Coles; Kang, Tae-Young; Kim, Cheol-Su; Kim, Soo-Ki; Yang, Young-Chul; Sohn, Joon-Hyung; Lee, Kyu-Jae

    2013-01-01

    Whether or not alkaline reduced water (ARW) has a positive effect on obesity is unclear. This study aims to prove the positive effect of ARW in high-fat (HF) diet-induced obesity (DIO) in C57BL/6 mice model. Toward this, obesity was induced by feeding the C57BL/6 male mice with high-fat diet (w/w 45% fat) for 12 weeks. Thereafter, the animals were administered with either ARW or tap water. Next, the degree of adiposity and DIO-associated parameters were assessed: clinico-pathological parameters, biochemical measurements, histopathological analysis of liver, the expression of cholesterol metabolism-related genes in the liver, and serum levels of adipokine and cytokine. We found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice. Accordingly, ARW coordinated the level of adiponectin and leptin. Further, mRNA expression of cytochrome P450 (CYP)7A1 was upregulated. In summary, our data shows that ARW intake inhibits the progression of HF-DIO in mice. This is the first note on anti-obesity effect of ARW, clinically implying the safer fluid remedy for obesity control.

  9. The Effects of High Alkaline Fly Ash on Strength Behaviour of a Cohesive Soil

    Directory of Open Access Journals (Sweden)

    A. Binal

    2016-01-01

    Full Text Available Contemporarily, there are 16 coal-burning thermal power plants currently operating in Turkey. This number is expected to rise to 46 in the future. Annually, about 15 million tons of fly ash are removed from the existing thermal power plants in Turkey, but a small proportion of it, 2%, is recyclable. Turkey’s plants are fired by lignite, producing Class C fly ash containing a high percentage of lime. Sulfate and alkali levels are also higher in Class C fly ashes. Therefore, fly ash is, commonly, unsuitable as an additive in cement or concrete in Turkey. In this study, highly alkaline fly ash obtained from the Yeniköy thermal power plants is combined with soil samples in different proportions (5%, 10%, 15%, 20%, and 25% and changes in the geomechanical properties of Ankara clay were investigated. The effect of curing time on the physicomechanical properties of the fly ash mixed soil samples was also analyzed. The soil classification of Ankara clay changed from CH to MH due to fly ash additives. Free swelling index values showed a decrease of 92.6%. Direct shear tests on the cohesion value of Ankara clay have shown increases by multiples of 15.85 and 3.01 in internal friction angle values. The California bearing ratio has seen a more drastic increase in value (68.7 times for 25% fly ash mix.

  10. 皮蛋腌制过程中碱度、pH及质构特性变化规律的研究%Change of alkalinity, pH and texture properties during pidan pickling

    Institute of Scientific and Technical Information of China (English)

    杨有仙; 赵燕; 涂勇刚; 黄新球; 李建科; 罗序英; 王俊杰

    2012-01-01

    Pidan(Chinese preserved egg) had prepared by the traditional copper method. The change of alkalinity of curing liquid,pH and free alkalinity of albumen and yolk,textural properties of albumen were studied during pickling,which could provide basic data for the quality control of pidan during pickling,exploiting the substitute of metal additives,and researching new processing technic. The result showed that alkalinity of curing liquid presented a declining curve. The pH and free alkalinity of albumen increased rapidly at first and decreased gradually,then slowly increased again. The pH and free alkalinity of yolk showed an increasing trend. Hardness of albumen presented an upward trend overall. Flexibility,chewing and cohesion of albumen all increased firstly,then decreased slightly,and finally remain stable.%采用简易传统铜盐清料法腌制皮蛋,研究皮蛋腌制过程中料液碱浓度、蛋内pH和游离碱度、蛋白的质构特性的变化规律,旨为皮蛋加工过程中的质量控制,开发代金属添加剂和研究新加工工艺提供基础数据。结果表明,在腌制过程中,料液碱浓度呈下降趋势;蛋白pH和游离碱度呈现先迅速升高,后逐渐下降,再缓慢回升的趋势;蛋黄pH和游离碱度则一直呈升高的趋势;蛋白硬度总体呈上升趋势;蛋白弹性、咀嚼性、内聚性均是先上升再略有下降,然后基本保持稳定。

  11. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  12. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  13. A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime.

    Science.gov (United States)

    Franco-Morgado, Mariana; Alcántara, Cynthia; Noyola, Adalberto; Muñoz, Raúl; González-Sánchez, Armando

    2017-08-15

    Microalgal-bacterial processes have emerged as environmental friendly systems for the cost-effective treatment of anaerobic effluents such as biogas and nutrients-laden digestates. Environmental parameters such as temperature, irradiation, nutrient concentration and pH effect the performance of the systems. In this paper, the potential of a microalgal-bacterial photobioreactor operated under high pH (≈9.5) and high alkalinity to convert biogas into biomethane was evaluated. The influence of the illumination regime (continuous light supply vs 12h/12h light/dark cycles) on the synthetic biogas upgrading efficiency, biomass productivity and nutrient removal efficiency was assessed in a High-Rate Algal Pond interconnected to a biogas absorption bubble column. No significant differences in the removal efficiency of CO2 and H2S (91.5±2% and 99.5%±0.5, respectively) were recorded regardless of the illumination regime. The high fluctuations of the dissolved oxygen concentration during operation under light/dark cycles allowed to evaluate the specific growth rate and the specific partial degradation rate of the microalgae biomass by photosynthesis and respiration, respectively. The respiration reduced the net microalgae biomass productivity under light/dark cycles compared with process operation under the continuous light supply. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparative Study of the Preparation of Reducing Sugars Hydrolyzed from High-Lignin Lignocellulose Pretreated with Ionic Liquid, Alkaline Solution and Their Combination

    Directory of Open Access Journals (Sweden)

    Hanny F. Sangian

    2015-05-01

    Full Text Available The ionicliquid [MMIM][DMP] was synthesized from the reactants methyl imidazole [MIM] and trimethylphosphate [TMP] and verified using 1HNMR and FTIR. Coconut coir dust was pretreated with a 1% alkaline solution.Its crystalline structure increased significantly due to the dissolution of lignin and hemicelluloses under alkaline conditions, exposing the cellulose. After NaOH and IL were employed, the XRD showed that peak (002 decreased significantly and peak (101 almost vanished. This significant decrease in crystallinity was related to the alteration of the substrate from the cellulose I structure to the cellulose II structure. The pretreated substrates were hydrolyzed to convert them to reducing sugars by pure cellulase and xylanase,and the reaction was conducted at 60°C, pH 3, for 12 or 48 hours. The yields of sugar hydrolyzed from untreated and NaOH-pretreated substrates were 0.07 and 0.12 g sugar/g lignocellulose, respectively. Pretreatment with IL or the combination of NaOH+IL resulted in yields of reducing sugars of 0.11 and 0.13 g/g, respectively. These findings showed that IL pretreatment of the high-lignin lignocellulose is a new prospect for the economical manufacture of reducing sugars and bioethanol in the coming years.

  15. Photo-Fenton oxidation of phenol and organochlorides (2,4-DCP and 2,4-D) in aqueous alkaline medium with high chloride concentration.

    Science.gov (United States)

    Luna, Airton J; Chiavone-Filho, Osvaldo; Machulek, Amilcar; de Moraes, José Ermírio F; Nascimento, Cláudio A O

    2012-11-30

    A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe(2+) ([Fe(2+)](0)) from 1.0 up to 2.5 mM, the rate in mmol of H(2)O(2) fed into the system (FH(2)O(2);in) from 3.67 up to 7.33 mmol of H(2)O(2)/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes.

  16. Stopped-flow studies of spectral changes in bilirubin-human serum albumin following an alkaline pH jump and following binding of bilirubin

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    A stopped-flow technique was used to study the spectral changes occurring in bilirubin-albumin following a pH jump as well as following binding of bilirubin at 25 degrees C. The changes were studied in two wavelength ranges, 280-310 nm (tyrosine residues) and 400-510 nm (bound bilirubin). The cha......A stopped-flow technique was used to study the spectral changes occurring in bilirubin-albumin following a pH jump as well as following binding of bilirubin at 25 degrees C. The changes were studied in two wavelength ranges, 280-310 nm (tyrosine residues) and 400-510 nm (bound bilirubin......). The changes were analyzed according to a scheme of consecutive unimolecular reactions. Spectral monitoring of a pH jump from 11.3 to 11.8 reveals that the bilirubin-albumin complex changes its structure in several steps. The UV absorption spectra show that 3.8 tyrosine residues ionize in the first step, 2......, indicating a change of the dihedral angle between the two bilirubin chromophores in a three-step reaction. It is suggested that 1 tyrosine residue is located close to the bilirubin site and is externalized in the second step. Bilirubin binding to albumin was monitored at two pH values, 11.3 and 11.8. At pH...

  17. Identification of novel chromone based sulfonamides as highly potent and selective inhibitors of alkaline phosphatases.

    Science.gov (United States)

    al-Rashida, Mariya; Raza, Rabia; Abbas, Ghulam; Shah, Muhammad Shakil; Kostakis, George E; Lecka, Joanna; Sévigny, Jean; Muddassar, Muhammad; Papatriantafyllopoulou, Constantina; Iqbal, Jamshed

    2013-08-01

    A new series of structurally diverse chromone containing sulfonamides has been developed. Crystal structures of three representative compounds (2a, 3a and 4a) in the series are reported. All compounds were screened for their inhibitory potential against alkaline phosphatases (ALPs). Two main classes of ALP isozymes were selected for this study, the tissue non-specific alkaline phosphatase (TNALP) from bovine and porcine source and the tissue-specific intestinal alkaline phosphatases (IALPs) from bovine source. All sulfonamide compounds had a marked preference for IALP (K(i), up to 0.01 ± 0.001 μM) over TNALPs. Kinetics studies of the compounds showed competitive mode of inhibition. Molecular docking studies were carried out in order to characterize the selective inhibition of the compounds. An additional interesting aspect of these chromone sulfonamides is their inhibitory activity against ecto-5'-nucleotidase enzyme. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Effect of pH and Alkalinity on Operation of Anaerobic Baffled Reactor%pH值和碱度对厌氧折流板反应器运行的影响

    Institute of Scientific and Technical Information of China (English)

    刘宇红; 曲颖; 宋虹苇; 于晓英

    2012-01-01

    为考察pH值和碱度对厌氧折流板反应器(ABR)高效、稳定运行的影响,采用一个有效容积为28 L的4格室ABR反应器处理豆制品废水.ABR反应器运行72 d的结果表明:在启动阶段的前期外加碱液调节进水pH值,使pH值和碱度分别基本稳定在6.0 ~7.0和1 000~1 300mg/L,运行效果良好.启动45 d时,停止外加碱液对进水pH值进行调节,系统仍稳定运行,但启动阶段出现丙酸浓度缓慢上升现象.在反应器稳定运行阶段,各格室的pH值分别为(4.5 ~6.0)、(5.5 ~6.8)、(6.8 ~7.2)、(7.1 ~7.3),碱度基本处在1 000 ~1 400 mg/L,反应器出水的发酵产物含量< 100 mg/L(乙酸占90%以上),对COD的去除率保持在90%以上.%A 4-compartment anaerobic baffled reactor (ABR) with an effective volume of 28 L was used to treat soybean processing wastewater. The influence of pH and alkalinity on the operation of ABR was investigated. The operation results for 72 d indicated that the reactor attained good operation effect in the early stage of start-up by adding alkaline to the influent. pH and alkalinity were controlled at 6.0 to 7.0 and 1 000 to 1 300 mg/L, respectively. After 45 d of startup without adding alkalinity to control pH of the influent, the reactor could also run well. However, slow increase of propionic acid in the start-up stage was observed. In continuous operation stage of ABR, the pH of each compartment was 4.5 to 6.0, 5.5 to 6.8, 6.8 to 7.2, and 7.1 to 7.3, and the alkalinity was 1 000 mg/L to 1 400 mg/L. The fermentation product in the effluent was less than 100 mg/L (acetic acid was more than 90% ) , and the removal rate of COD was above 90%.

  19. Preparation of Reducing Sugar Hydrolyzed from High-Lignin Coconut Coir Dust Pretreated by the Recycled Ionic Liquid [mmim][dmp] and Combination with Alkaline

    Directory of Open Access Journals (Sweden)

    Hanny Frans Sangian

    2015-03-01

    Full Text Available This study aims to produce reducing sugar hydrolyzed from substrate, coconut coir dust pretreated by recycled ionic liquid and its combination with alkaline. The 1H NMR and FTIR were performed to ver-ify the synthesized ionic liquid methylmethylimidazolium dimethyl phosphate ([mmim][dmp]. The structure of pretreated substrates was analyzed by XRD measurement. The used ionic liquid was recy-cled twice to re-employ for substrate pretreatment. The treated- and untreated-coconut coir dust were hydrolyzed into sugars using pure cellulase. The reaction, which called an enzymatic hydrolysis, was conducted at 60 °C, pH 3, for 48 h. The yields of sugar hydrolyzed from fresh IL-pretreated, 1R*IL-pretreated and 2R*IL-pretreated substrates were of 0.19, 0.15 and 0.15 g sugar / g cellu-lose+hemicellulose, respectively. Pretreatment with NaOH or the combination of NaOH+IL resulted in yields of reducing sugars of 0.25, 0.28 g/g, respectively. When alkaline combined with the recycled ionic liquids, NaOH+1R*IL, NaOH+2R*IL in the pretreatment, the yields of sugar were relatively similar to those obtained using alkaline followed by fresh ionic liquid. If the mixture enzymes, cellu-lase+xylanase, used to liberate sugars from fresh IL-pretreated, or recycled IL-pretreated substrates, the amount of sugar (concentration or yield increased slightly compared to that employing a single cel-lulase. These findings showed that recycled IL pretreatment of the high-lignin lignocellulose, coconut coir dust, is a new prospect for the economical manufacture of fermentable sugars and biofuel in the coming years. © 2015 BCREC UNDIP. All rights reservedReceived: 1st July 2014; Revised: 5th September 2014; Accepted: 5th September 2014 How to Cite: Sangian, H.F., Kristian, J., Rahma, S., Dewi, H., Puspasari, D., Agnesty, S., Gunawan, S., Widjaja, A. (2015. Preparation of Reducing Sugar Hydrolyzed from High-Lignin Coconut Coir Dust Pretreated by the Recycled Ionic Liquid [mmim

  20. Nonlinear friction characteristics between silica surfaces in high pH solution.

    Science.gov (United States)

    Taran, Elena; Kanda, Yoichi; Vakarelski, Ivan U; Higashitani, Ko

    2007-03-15

    Molecular-scale characteristics of friction forces between silica particles and silica wafers in aqueous solutions of the normal (pH 5.6) and high pH (pH 10.6) are investigated, using the lateral force measuring procedure of the atomic force microscope (AFM). Various significant differences of friction characteristics between solutions of normal and high pH's are found. In the case of solutions of normal pH, the friction force increases linearly with increasing loading force, as the Amonton's law for solid bodies indicates. However, in the case of high pH solutions, the increasing rate with the loading force is considerably reduced in the low loading region, but the value increases abruptly above a critical loading force to overcome the magnitude of friction force of normal pH above the region of very high loading. It is very interesting to know that this nonlinear force curve at high pH is independent of the atomic-scale roughness of surfaces, although the magnitude of friction is greatly influenced by the roughness in the case of normal pH. The reason why the friction at high pH is independent of the surface roughness is postulated to be due to the hairy-like layer formed on the silica surface. The existence of hairy-like layers at high pH is proven directly by the dynamic method of normal force measurements with AFM and the thickness is estimated to be at least ca. 1.3 nm.

  1. Intercomparison 9408. pH, conductivity, alkalinity, nitrate + nitrite, chloride, sulfate, calcium, magnesium, sodium, potassium, total aluminium, dissolved organic carbon, and chemical oxygen demand (ICP Waters report)

    OpenAIRE

    Hovind, H.

    1994-01-01

    26 laboratories in 17 countries participated in intercomparison 9408. Based on the general target accuracy of +-20%, 81% of the results were acceptable. However, for pH only 54% and 59% of the result pairs in the two sample sets were acceptable in relation to the extended target accuracy of +-0.2 units. A total error of +-0.2 units for accuracy of +-0.2 units. A total error of +-0.2 units for pH measurements seems to be reasonable assessment of the accuracy between laboratories. 23 laboratori...

  2. Nanowire-templated microelectrodes for high-sensitivity pH detection

    DEFF Research Database (Denmark)

    Antohe, V.A.; Radu, Adrian; Mátéfi-Tempfli, Mária

    2009-01-01

    A highly sensitive pH capacitive sensor has been designed by confined growth of vertically aligned nanowire arrays on interdigited microelectrodes. The active surface of the device has been functionalized with an electrochemical pH transducer (polyaniline). We easily tune the device features...... by combining lithographic techniques with electrochemical synthesis. The reported electrical LC resonance measurements show considerable sensitivity enhancement compared to conventional capacitive pH sensors realized with microfabricated interdigited electrodes. The sensitivity can be easily improved...

  3. Thermodynamics of a Ca(2+)-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete.

    Science.gov (United States)

    Gohel, S D; Singh, S P

    2015-01-01

    An alkaline protease from salt-tolerant alkaliphilic actinomycetes, Nocardiopsis alba OK-5 was purified by a single-step hydrophobic interaction chromatography and characterized. The purified protease with an estimated molecular mass of 20 kDa was optimally active at 70 °C in 0-3 M NaCl and 0-100 mM Ca(2+) displaying significant stability at 50-80 °C. The enzyme was stable at 80 °C in 100 mM Ca(2+) with Kd of 17 × 10(-3) and t1/2 of 32 min. The activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*) for the protease deactivation calculated in the presence of 200 mM Ca(2+) were 38.15 kJ/mol, 35.49 kJ/mol and 183.48 J/mol, respectively. The change in free energy (ΔG*) for protease deactivation at 60 °C in 200 mM Ca(2+) was 95.88 kJ/mol. Decrease in ΔH* reflected reduced cooperativity of deactivation and unfolding. The enzyme was intrinsically stable that counteracted heat denaturation by a weak cooperativity during the unfolding. Further, the enzyme was highly stable in the presence of various cations, surfactants, H2O2, β-mercaptoethanol, and commercial detergents. The compatibility of the enzyme with various cations, surfactants, and detergent matrices suggests its suitability as an additive in the detergents and peptide synthesis.

  4. Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa).

    Science.gov (United States)

    Bhunia, Biswanath; Basak, Bikram; Mandal, Tamal; Bhattacharya, Pinaki; Dey, Apurba

    2013-03-01

    A novel extracellular serine protease (70 kDa by SDS-PAGE) was purified and characterized. This enzyme retained more than 93% of its initial activity after preincubation for 30 min at 37 °C in the presence of 25% (v/v) tested organic solvents and showed feather degradation activity. The purified enzyme was deactivated at various combinations of pH and temperature to examine the interactive effect of them on enzyme activity. The deactivation process was modeled as first-order kinetics and the deactivation rate constant (k(d)) was found to be minimum at pH 9 and 37 °C. The kinetic analysis of enzyme over a range of pH values indicated two pK values at 6.21 and at 10.92. The lower pK value was likely due to the catalytic histidine in the free enzyme and higher pK value likely reflected deprotonation of the proline moiety of the substrate but ionization of the active site serine is another possibility. Inhibition kinetic showed that enzyme is serine protease because enzyme was competitively inhibited by antipain and aprotinin as these compounds are known to be competitive inhibitors of serine protease. The organic solvent, thermal and pH tolerances of enzyme suggested that it may have potential for use as a biocatalyst in industry.

  5. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization

    NARCIS (Netherlands)

    Leerdam, van R.C.; Bonilla-Salinas, M.; Bok, de F.A.M.; Bruning, H.; Lens, P.N.L.; Stams, A.J.M.; Janssen, A.J.H.

    2008-01-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda l

  6. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    Science.gov (United States)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  7. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups

    Science.gov (United States)

    Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall

    2017-03-01

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.

  8. Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups

    Science.gov (United States)

    Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall

    2017-01-01

    Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy. PMID:28272523

  9. High-resolution ocean pH dynamics in four subtropical Atlantic benthic habitats

    Science.gov (United States)

    Hernández, C. A.; Clemente, S.; Sangil, C.; Hernández, J. C.

    2015-12-01

    Oscillations of ocean pH are largely unknown in coastal environments and ocean acidification studies often do not account for natural variability yet most of what is known about marine species and populations is found out via studies conducted in near shore environments. Most experiments designed to make predictions about future climate change scenarios are carried out in coastal environments with no research that takes into account the natural pH variability. In order to fill this knowledge gap and to provide reliable measures of pH oscillation, seawater pH was measured over time using moored pH sensors in four contrasting phytocenoses typical of the north Atlantic subtropical region. Each phytocenosis was characterized by its predominant engineer species: (1) Cystoseira abies-marina, (2) a mix of gelidiales and geniculate corallines, (3) Lobophora variegata, and (4) encrusting corallines. The autonomous pH measuring systems consisted of a pH sensor; a data logger and a battery encased in a waterproof container and allowed the acquisition of high-resolution continuous pH data at each of the study sites. The pH variation observed ranged by between 0.09 and 0.24 pHNBS units. A clear daily variation in seawater pH was detected at all the studied sites (0.04-0.12 pHNBS units). Significant differences in daily pH oscillations were also observed between phytocenoses, which shows that macroalgal communities influence the seawater pH in benthic habitats. Natural oscillations in pH must be taken into account in future ocean acidification studies to put findings in perspective and for any ecological recommendations to be realistic.

  10. Creating opportunities for science PhDs to pursue careers in high school education.

    Science.gov (United States)

    Doyle, Kari M H; Vale, Ronald D

    2013-11-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K-12 education, a recent National Research Council report (Successful K-12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K-12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education.

  11. Static and Dynamic Structure Factors with Account of the Ion Structure for High-temperature Alkali and Alkaline Earth Plasmas

    CERN Document Server

    Sadykova, S P; Tkachenko, I M

    2010-01-01

    The $e-e$, $e-i$, $i-i$ and charge-charge static structure factors are calculated for alkali and Be$^{2+}$ plasmas using the method described by Gregori et al. in \\cite{bibGreg2006}. The dynamic structure factors for alkali plasmas are calculated using the method of moments \\cite{bibAdam83}, \\cite{bibAdam93}. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the ion structure \\cite{bib73}. PACS: 52.27.Aj (Alkali and alkaline earth plasmas, Static and dynamic structure factors), 52.25.Kn (Thermodynamics of plasmas), 52.38.Ph (X-ray scattering)

  12. Microbial population responses to pH and salt shock during phenols degradation under high salt conditions revealed by RISA and AFDRA.

    Science.gov (United States)

    Yan, Bin; Wang, Ping; Liao, Wenchao; Ye, Qian; Xu, Meilan; Zhou, Jiti

    2013-01-01

    The responses of microbial community to pH and salt shock during phenols degradation under high salt conditions were revealed by two DNA fingerprint methods, i.e. ribosomal intergenic spacer analysis (RISA) and amplified functional DNA restriction analysis (AFDRA), together with 16S rDNA clone library analysis. It was shown that the phenols removal rate was improved with increasing NaCl concentration from 0 to 50 mg/L, and could remain at a high level even in the presence of 100 mg/L NaCl. The degradation efficiency remained stable under neutral conditions (pH 7.0-9.0), but decreased sharply under acidic (below pH 5.0) or more alkaline conditions (above pH 10.0). The community structure was dramatically changed during salt fluctuations, with Halomonas sp. and Marinobacter sp. as the predominant salt-tolerant species. Meanwhile, Marinobacter sp. and Alcaligenes faecalis sp. were the major species which might play the key role for stabilizing the treatment systems under different pH conditions. Moreover, the changes of phenol hydroxylase genes were analyzed by AFDRA, which showed that these functional genes were substantially different under any shock conditions.

  13. Immunological detection of alkaline-diaminobenzidine-negative peroxisomes of the nematode Caenorhabditis elegans: Purification and unique pH optima of peroxisomal catalase

    OpenAIRE

    Togo, Summanuna H.; Maebuchi, Motohiro; Yokota, Sadaki; Bun-ya, Masanori; Kawahara, Akira; Kamiryo, Tatsuyuki

    2000-01-01

    We purified catalase-2 of the nematode Caenorhabditis elegans and identified peroxisomes in this organism. The peroxisomes of C. elegans were not detectable by cytochemical staining using 3,3'-diaminobenzidine, a commonly used method depending on the peroxidase activity of peroxisomal catalase at pH 9 in which genuine peroxidases are inactive. The cDNA sequences of C. elegans predict two catalases very similar to each other throughout the molecule, except for the short C-terminal sequence; ca...

  14. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    Science.gov (United States)

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  15. Lipophilicity measurement of drugs by reversed phase HPLC over Wide pH range using an alkaline-resistant silica-based stationary phase, XBridge Shield RP(18).

    Science.gov (United States)

    Liu, Xiangli; Hefesha, Hossam; Tanaka, Hideji; Scriba, Gerhard; Fahr, Alfred

    2008-10-01

    We propose a reversed phase HPLC (RP-HPLC) with an alkaline-resistant silica-based stationary phase, XBridge Shield RP(18), for the determination of the lipophilicity of drugs with diverse chemical nature ranging from acidic to basic. A set of 40 model compounds with well-defined solvatochromic parameters was selected to allow a broad distribution of structural properties. The chromatographic results showed that the lipophilicity index log k(w) obtained with XBridge Shield RP(18) was well correlated with experimental log P(oct) values (r(2)=0.96). Linear solvation free-energy relationship (LSER) analyses revealed that the retention mechanism of the stationary phase and 1-octanol/water partitioning were controlled by almost the same balance of intermolecular forces (hydrophobicity as expressed by the van der Waals volume V(w), H-bond acceptor basicity beta, and dipolarity/polarizability pi*). The results showed that XBridge Shield RP(18) phase overcomes the shortcomings of the silica-based stationary phases, the application of which to lipophilicity measurements had been limited to neutral and acidic compounds.

  16. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  17. Applications of High-Throughput Nucleotide Sequencing (PhD)

    DEFF Research Database (Denmark)

    Waage, Johannes

    The recent advent of high throughput sequencing of nucleic acids (RNA and DNA) has vastly expanded research into the functional and structural biology of the genome of all living organisms (and even a few dead ones). With this enormous and exponential growth in biological data generation come......-sequencing, a study of the effects on alternative RNA splicing of KO of the nonsense mediated RNA decay system in Mus, using digital gene expression and a custom-built exon-exon junction mapping pipeline is presented (article I). Evolved from this work, a Bioconductor package, spliceR, for classifying alternative...... splicing events and coding potential of isoforms from full isoform deconvolution software, such as Cufflinks (article II), is presented. Finally, a study using 5’-end RNA-seq for alternative promoter detection between healthy patients and patients with acute promyelocytic leukemia is presented (article III...

  18. Dephosphorylation of endotoxin by alkaline phosphatase in vivo

    NARCIS (Netherlands)

    Poelstra, Klaas; Bakker, W.W; Klok, P.A; Kamps, J.AAM; Hardonk, M.J; Meijer, D.K F

    1997-01-01

    Natural substrates for alkaline phosphatase (AP) are at present not identified despite extensive investigations. Difficulties in imagining a possible physiological function involve its extremely high pH optimum for the usual exogenous substrates and its localization as an ecto-enzyme. As endotoxin i

  19. PhD Wang Xingchu,A Successful Leader of A High-tech Company Reform

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ PhD Wang Xingchu was born in 1962. He is the Board Chairman of Shanghai Biotechnology Industrial Garden Coalition Development Co., Ltd. and the General Manager of Shanghai Hua Xin High-Biotechnology Co., Ltd.

  20. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.).

    Science.gov (United States)

    Touloupakis, Eleftherios; Cicchi, Bernardo; Benavides, Ana Margarita Silva; Torzillo, Giuseppe

    2016-02-01

    Culturing cyanobacteria in a highly alkaline environment is a possible strategy for controlling contamination by other organisms. Synechocystis PCC 6803 cells were grown in continuous cultures to assess their growth performance at different pH values. Light conversion efficiency linearly decreased with the increase in pH and ranged between 12.5 % (PAR) at pH 7.5 (optimal) and decreased to 8.9 % at pH 11.0. Photosynthetic activity, assessed by measuring both chlorophyll fluorescence and photosynthesis rate, was not much affected going from pH 7.5 to 11.0, while productivity, growth yield, and biomass yield on light energy declined by 32, 28, and 26 % respectively at pH 11.0. Biochemical composition of the biomass did not change much within pH 7 and 10, while when grown at pH 11.0, carbohydrate content increased by 33 % while lipid content decreased by about the same amount. Protein content remained almost constant (average 65.8 % of dry weight). Cultures maintained at pH above 11.0 could grow free of contaminants (protozoa and other competing microalgae belonging to the species of Poterioochromonas).

  1. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  2. Validation of a high-throughput in vitro alkaline elution/rat hepatocyte assay for DNA damage.

    Science.gov (United States)

    Gealy, Robert; Wright-Bourque, Jennifer L; Kraynak, Andrew R; McKelvey, Troy W; Barnum, John E; Storer, Richard D

    2007-04-20

    In vitro alkaline elution is a sensitive and specific short term assay which measures DNA strand breakage in a mammalian test system (primary rat hepatocytes). This lab has previously demonstrated the performance of the assay with known genotoxic and non-genotoxic compounds. The methodology employed has relatively low sample throughput and is labor-intensive, requiring a great deal of manual processing of samples in a format that is not amenable to automation. Here, we present an automated version of the assay. This high-throughput alkaline elution assay (HT-AE) was made possible through 3 key developments: (1) DNA quantitation using PicoGreen and OliGreen fluorescent DNA binding dyes; (2) design and implementation of a custom automation system; and (3) reducing the assay to a 96-well plate format. The assay can now be run with 5-50mg of test compound. HT-AE was validated in a similar manner as the original assay, including assessment of non-genotoxic and non-carcinogenic compounds and evaluation of cytotoxicity to avoid confounding effects of toxicity-associated DNA degradation. The validation test results from compounds of known genotoxic potential were used to set appropriate criteria to classify alkaline elution results for genotoxicity.

  3. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    Science.gov (United States)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  4. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    Science.gov (United States)

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  5. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Science.gov (United States)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-01

    The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H+) and hydroxide (OH-) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H+ and OH- ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the relative resistance variations of the sensor increases linearly with increasing the pH values in the range from 5 to 9 and the response time ranges from 0.2 s to 22.6 s. The pH sensor also shows high performance in mechanical bendability, which benefited from the combination of flexible PET substrates and SWNTs. The SWNT-based flexible pH sensor demonstrates great potential in a wide range of areas due to its simple structure, excellent performance, low power consumption, and compatibility with integrated circuits.

  6. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    Science.gov (United States)

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. High power density alkaline fuel cell technology for MMW space burst power

    Science.gov (United States)

    Preston, J. Lawrence, Jr.; Trocciola, John C.; Wertheim, Ronald J.

    The use of advanced alkaline regenerative fuel cell energy storage systems to provide 10's to 100's of MWe of sprint (burst) power for 100's of seconds per orbit of SDI weapons platform was studied. Recharge power is supplied by a multimegawatt space based nuclear power system. Regenerative fuel cell energy storage systems offer the potential for significant platform mass reduction by reducing the size and mass of the nuclear power source required. This is because the reactor can be sized for the smaller average power level for the energy storage system, rather than the sprint power level. The regenerative fuel cell is a particularly attractive energy storage device because the fuel cell is essentially a static power conversion device, which results in excellent platform stability for weapon pointing and tracking. Based upon the detailed point design and conceptual layout, the alkaline regenerative fuel cell energy storage system is an attractive choice for integration with a nuclear thermionic system for providing multimegawatt burst power and multi orbit capability.

  8. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress

    OpenAIRE

    Gómez-Galera, Sonia; Sudhakar, Duraialagaraja; Ana M. Pelacho; Capell, Teresa; Christou, Paul

    2012-01-01

    Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilizati...

  9. Effects of high concentrations of calcium salts in the substrate and its pH on the growth of selected rhododendron cultivars

    Directory of Open Access Journals (Sweden)

    Piotr Giel

    2011-07-01

    Full Text Available For proper growth and development, rhododendrons need acidic soils, whereas calcium carbonate (CaCO3 in the substrate markedly limits their growth. In this study, we analysed the reactions of rhododendrons to high concentrations of calcium salts and pH in the substrate. We used 4-month-old seedlings of Rhododendron 'Cunningham's White' and 1.5-year-old seedlings and rooted cuttings of R. 'Cunningham's White' and R. 'Catawbiense Grandiflorum'. Their reactions depended mostly on calcium salt type added to the substrate (sulphate or carbonate. An increase in concentrations of phenolic compounds was detected mostly in roots of the plants grown in a substrate with a high calcium carbonate content. Addition of calcium salts to the substrate caused a significant rise in total nonstructural carbohydrates in leaves and roots of the studied plants. As compared to the control, an increase in substrate pH in the variant with calcium carbonate limited the activity of acid phosphatase, while lowering of substrate pH in the variant with calcium sulphate, significantly increased its activity. Along with the rise in substrate pH, a remarkable increase was observed in the activity of nonspecific dehydrogenase (DHA in the substrate with CaCO3, as compared to the control. Unfavourable soil conditions (high calcium content and alkaline pH caused a decrease in assimilation of minerals by the studied plants (mostly phosphorus and manganese. Our results show that the major factor limiting rhododendron growth is an increase in substrate pH, rather than an increase in the concentration of calcium ions.

  10. 两种碱性pH调节剂对1,3-丙二醇发酵过程的影响%Effects of two alkaline pH regulators on the fermentation of 1,3-propanediol

    Institute of Scientific and Technical Information of China (English)

    张霖; 樊亚超; 李晓姝; 廖莎; 王鹏翔; 乔凯

    2016-01-01

    氢氧化钠、氢氧化钙作为碱性pH调节剂,被广泛应用于发酵行业。两种pH调节剂在发酵过程中形成的有机酸盐,其溶解性存在显著差异,从而间接影响发酵过程。本文重点考察了两种碱性pH调节剂对1,3-丙二醇发酵过程的影响,通过发酵液渗透压、尾气组成、发酵周期、生产强度等过程参数的试验考察,分析了可溶性强碱作为pH调节剂不利于1,3-丙二醇发酵的原因,并且在以氢氧化钠作为pH调节剂的发酵体系中,考察了区间厌氧发酵方案的可行性。从氢氧化钠pH调控下的发酵周期来看,约21h后转入发酵末期,发酵活跃期相对较短,因此缩短发酵周期,有利于提高平均生产强度。另外,通过区间厌氧通气方案,能够进一步减少氮气使用量,提高该工艺的经济性。%As alkaline pH regulators,sodium hydroxide and calcium hydroxide are widely applied in fermentation industry. In the fermentation process,these two pH regulators produce organic acid salts with significantly different solubility,which can indirectly affect the fermentation process. This study focused on investigating the effects of two alkaline pH regulators on the 1,3-propanediol fermentation process. Through laboratory investigations on the process parameters(including osmotic pressure of the fermentation liquor,composition of tail gas,fermentation period and production intensity),the negative effect of using soluble strong alkali as pH regulator in 1,3-propanediol fermentation has been analyzed. The feasibility of interval anaerobic fermentation has also been examined using sodium hydroxide as pH regulator,and the fermentation grows into its end stage after about 21 hours within one period. So,the active stage of fermentation is relatively short,and shortening the fermentation period should be helpful to raise the production intensity. In addition,by ventilation during the interval anaerobic fermentation

  11. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    Science.gov (United States)

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples.

  12. Effects of high medium pH on growth, metabolism and transport in Saccharomyces cerevisiae.

    Science.gov (United States)

    Peña, Antonio; Sánchez, Norma Silvia; Álvarez, Helber; Calahorra, Martha; Ramírez, Jorge

    2015-03-01

    Growth of Saccharomyces cerevisiae stopped by maintaining the pH of the medium in a pH-stat at pH 8.0 or 9.0. Studying its main physiological capacities and comparing cells after incubation at pH 6.0 vs. 8.0 or 9.0, we found that (a) fermentation was moderately decreased by high pH and respiration was similar and sensitive to the addition of an uncoupler, (b) ATP and glucose-6-phosphate levels upon glucose addition increased to similar levels and (c) proton pumping and K(+) transport were also not affected; all this indicating that energy mechanisms were preserved. Growth inhibition at high pH was also not due to a significant lower amino acid transport by the cells or incorporation into proteins. The cell cycle stopped at pH 9.0, probably due to an arrest as a result of adjustments needed by the cells to contend with the changes under these conditions, and microarray experiments showed some relevant changes to this response.

  13. Highly Dispersed Palladium Nanoparticles on Functional MWNT Surfaces for Methanol Oxidation in Alkaline Solutions

    Institute of Scientific and Technical Information of China (English)

    WANG zhe; ZHU Zan-Zan; LI You-Xiang; LI Hu-Lin

    2008-01-01

    Palladium nanoparticles were crystallized on 4-aminobenzoic acid monolayer-grafted multi-walled carbon nanotubes (MWNT) by diazotization. The structure and nature of the resulting Pd/MWNT composite were characterized by transmission electron microscopy and X-ray diffraction, the results show that the chemically synthesized Pd nanoparticles were homogeneously dispersed and well-separated from one another on the modified MWNT surfaces. Cyclic voltammogram showed that the Pd-MWNT composite materials performed higher electrocatalytic activity and better long-term stability toward methanol oxidation in alkaline solution than Pd-C. The results imply that the Pd-MWNT composite materials as a promising support material improve the excellent electrocatalytic activity for methanol oxidation greatly. So the Pd/MWNT composites have a good application potential to fuel cells.

  14. A binary palladium-bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation

    Science.gov (United States)

    Chen, Cheng-Chuan; Lin, Cheng-Lan; Chen, Lin-Chi

    2015-08-01

    Binary palladium-bismuth nanocatalysts supported on functionalized multi-walled carbon nanotubes (Pd-Bi/C) are synthesized using a one-pot polyol method. The prepared Pd-Bi/C catalysts have a metal particle range from 5.25 to 12.98 nm and are investigated for alkaline electrocatalytic glucose oxidation reaction (GOR). The physical properties of the catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrochemical activities are determined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis and chronoamperomtry (CA) for comparing the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate and cycling stability of the Pd-Bi/C catalysts. It is found that Pd-Bi/C (1:0.14) can significantly enhance the electrocatalytic activity on GOR about 40% times higher than Pd/C and as well as has a 3.7-fold lower poisoning rate. The in-use stability of Pd-Bi/C (1:0.14) is also remarkably improved, according to the results of the 200 cycling CV test. The effects of the operating temperature and the concentration of glucose and NaOH electrolyte on Pd-Bi/C (1:0.14) are further studied in this work. The highest Pd-Bi/C catalyzed GOR current density of 29.5 mA cm-2 is attained in alkaline medium.

  15. Thermal stability of high concentration lysozyme across varying pH: A Fourier Transform Infrared study

    Directory of Open Access Journals (Sweden)

    Sathyadevi Venkataramani

    2013-01-01

    Full Text Available Aim: The current work is aimed at understanding the effect of pH on the thermal stability of hen egg white lysozyme (HEWL at high concentration (200 mg/mL. Materials and Methods: Fourier Transform Infrared (FTIR Spectroscopy with modified hardware and software to overcome some of the traditional challenges like water subtraction, sample evaporation, proper purging etc., are used in this study. Results: HEWL was subjected to thermal stress at pH 3.0-7.0 between 25°C and 95°C and monitored by FTIR spectroscopy. Calculated T m values showed that the enzyme exhibited maximum thermal stability at pH 5.0. Second derivative plots constructed in the amide I region suggested that at pH 5.0 the enzyme possessed higher amount of α-helix and lower amount of aggregates, when compared to other pHs. Conclusions: Considering the fact that HEWL has attractive applications in various industries and being processed under different experimental conditions including high temperatures, our work is able to reveal the reason behind the pH dependent thermal stability of HEWL at high concentration, when subjected to heat denaturation. In future, studies should aim at using various excipients that may help to increase the stability and activity of the enzyme at this high concentration.

  16. Microbial impacts on (99m)Tc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal.

    Science.gov (United States)

    Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R

    2017-01-01

    Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting (99m)Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H2 and CO2, may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H2-oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.

  17. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    Science.gov (United States)

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen.

  18. High-frequency dynamics of ocean pH: a multi-ecosystem comparison.

    Directory of Open Access Journals (Sweden)

    Gretchen E Hofmann

    Full Text Available The effect of Ocean Acidification (OA on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO(2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO(2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

  19. Photodegradation of Acid Violet 7 with AgBr-ZnO under highly alkaline conditions.

    Science.gov (United States)

    Krishnakumar, B; Swaminathan, M

    2012-12-01

    The photocatalytic activity of AgBr-ZnO was investigated for the degradation of Acid Violet 7 (AV 7) in aqueous solution using UV-A light. AgBr-ZnO is found to be more efficient than commercial ZnO and prepared ZnO at pH 12 for the mineralization of AV 7. The effects of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization have been analyzed. Expect oxone, other oxidants decrease the degradation efficiency. Addition of metal ions and anions decrease the degradation efficiency of AgBr-ZnO significantly. The mineralization of AV 7 has also been confirmed by COD measurements. The mechanism of degradation by AgBr-ZnO is proposed to explain its higher activity under UV light. The catalyst is found to be reusable.

  20. Polyamine stress at high pH in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Tate Daniel P

    2005-10-01

    Full Text Available Abstract Background Polyamines such as spermine and spermidine are required for growth of Escherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress. Results The effect of polyamines was tested on survival of Escherichia coli K-12 W3110 in extreme acid or base (pH conditions outside the growth range. At pH 2, 10 mM spermine increased survival by 2-fold, and putrescine increased survival by 30%. At pH 9.8, however, E. coli survival was decreased 100-fold by 10 mM spermine, putrescine, cadaverine, or spermidine. At pH 8.5, spermine decreased the growth rate substantially, whereas little effect was seen at pH 5.5. Spermidine required ten-fold higher concentrations to impair growth. On proteomic 2-D gels, spermine and spermidine caused differential expression of 31 different proteins. During log-phase growth at pH 7.0, 1 mM spermine induced eight proteins, including PykF, GlpK, SerS, DeaD, OmpC and OmpF. Proteins repressed included acetate-inducible enzymes (YfiD, Pta, Lpd as well as RapA (HepA, and FabB. At pH 8.5, spermine induced additional proteins: TnaA, OmpA, YrdA and NanA (YhcJ and also repressed 17 proteins. Four of the proteins that spermine induced (GlpK, OmpA, OmpF, TnaA and five that were repressed (Lpd, Pta, SucB, TpiA, YfiD show similar induction or repression, respectively, in base compared to acid. Most of these base stress proteins were also regulated by spermidine, but only at ten-fold higher concentration (10 mM at high pH (pH 8.5. Conclusion Polyamines increase survival in extreme acid, but decrease E. coli survival in extreme base. Growth inhibition by spermine and

  1. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien, E-mail: dien.li@srs.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Egodawatte, Shani [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Larsen, Sarah C. [Department of Chemistry, University of Iowa, Iowa City, IA 52242 (United States); Serkiz, Steven M. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Seaman, John C. [Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802 (United States)

    2016-11-05

    Highlights: • Magnetic mesoporous silica nanoparticles were functionalized with organic molecules. • The functionalized nanoparticles had high surface areas and consistent pore sizes. • The functionalized nanoparticles were easily separated due to their magnetism. • They exhibited high capacity for uranium removal from low- or high-pH groundwater. - Abstract: U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N{sub 2} adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), {sup 13}C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100–200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  2. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    Science.gov (United States)

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications.

  3. Insights from the genome of a high alkaline cellulase producing Aspergillus fumigatus strain obtained from Peruvian Amazon rainforest.

    Science.gov (United States)

    Paul, Sujay; Zhang, Angel; Ludeña, Yvette; Villena, Gretty K; Yu, Fengan; Sherman, David H; Gutiérrez-Correa, Marcel

    2017-06-10

    Here, we report the complete genome sequence of a high alkaline cellulase producing Aspergillus fumigatus strain LMB-35Aa isolated from soil of Peruvian Amazon rainforest. The genome is ∼27.5mb in size, comprises of 228 scaffolds with an average GC content of 50%, and is predicted to contain a total of 8660 protein-coding genes. Of which, 6156 are with known function; it codes for 607 putative CAZymes families potentially involved in carbohydrate metabolism. Several important cellulose degrading genes, such as endoglucanase A, endoglucanase B, endoglucanase D and beta-glucosidase, are also identified. The genome of A. fumigatus strain LMB-35Aa represents the first whole sequenced genome of non-clinical, high cellulase producing A. fumigatus strain isolated from forest soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A model to explain high values of pH in an alkali sodic soil Modelo para explicar valores elevados de pH em um solo sódico alcalino

    Directory of Open Access Journals (Sweden)

    José Guerrero-Alves

    2002-12-01

    Full Text Available For alkali sodic soils (pH>8.5, the "hydrolysis of exchangeable sodium" has been used as a possible explanation for the alkalinity production and rise in pH of these soils. As an alternative to this hypothesis, a model was developed to simulate and to explain that the alkalinity production and rise in pH is possible in a soil that accumulates alkaline sodium salts and CaCO3. Several simulations were performed by using different combinations of CO2 partial pressures (P, presence or absence of MgCO3, along with experimental values of exchangeable sodium percentage (ESP and ion concentrations in saturation extracts from an alkali sodic soil (named Pantanal. A hypothetical system with similar conditions to the Pantanal soil but with a Gapon selectivity coefficient (KG of 0.01475 (mmol L-1-1/2 was also considered. Good agreement was obtained between experimental and predicted values for pH and ion concentrations in the soil solution when the model (without MgCO3 was applied to the Pantanal soil. However, KG values calculated for the Pantanal soil were generally higher than 0.01475 (mmol L-1-1/2. Moreover, high pH values and elevated ionic strength were obtained when a KG of 0.01475 (mmol L-1-1/2 was used at high ESP (similar to those found in the Pantanal soil. KG values obtained for the Pantanal soil and the results obtained in the simulation of the hypothetical system are suggesting that a value higher than 0.01475 (mmol L-1-1/2 should be used to adequately simulate the behavior of the Pantanal soil at low ionic strength and high ESP values.Em solos alcalino sódicos (pH>8,5, a "hidrólise de sódio trocável" tem sido usada como uma possível explicação para a produção de álcali e elevação do pH nestes solos. Como uma alternativa a essa hipótese, um modelo foi desenvolvido para simular e explicar que a produção de álcali e elevação do pH é possível num solo que acumula sais alcalinos de sódio e CaCO3. Várias simulações foram

  5. Adaptability of Typha domingensis to high pH and salinity.

    Science.gov (United States)

    Mufarrege, M M; Di Luca, G A; Hadad, H R; Maine, M A

    2011-03-01

    The aim of this work was to compare the adaptability of two different populations of Typha domingensis exposed to high pH and salinity. The plants were sampled from an uncontaminated natural wetland (NW) and a constructed wetland (CW) for the treatment of an industrial effluent with high pH and salinity. The plants from each population were exposed to the following combined treatments of salinity (mg l(-1)) and pH: 8,000/10 (values found in the CW); 8,000/7; 200/10 and 200/7 (typical values found in the NW). Chlorophyll concentration, relative growth rates (RGR) and root structure parameters (cross-sectional areas of root, stele and metaxylem vessels) were measured. Images of roots and leaves by scanning electronic microscopy (SEM) were obtained, and X-ray microanalysis in different tissues was carried out. In all treatments, the RGR and chlorophyll increase were significantly lower in the plants from the NW than in the plants from the CW. However, stress was observed when the plants from the CW were exposed to treatment 200/7. In treatment 8,000/10 the tissues of the plants from the NW showed severe damages. The root structure of plants from the CW was modified by salinity, while pH did not produce changes. In plants from the CW there were no differences between Na concentration in leaves of the treatments 8,000/10 and 200/7, indicating that Na was not transported to leaves. The CW population already possesses physiological and morphological adaptations due to the extreme conditions of pH and salinity. Because of its adaptive capacity, T. domingensis is an efficient species to treat wastewater of high pH and salinity.

  6. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH

    DEFF Research Database (Denmark)

    Berge, Terje; Daugbjerg, Niels; Hansen, Per Juel

    2012-01-01

    Harmful microalgal blooms or red tides are often associated with high levels of pH. Similarly, species and strains of microalgae cultivated in the laboratory with enriched media experience recurrent events of high pH between dilutions with fresh medium. To study the potential for laboratory...... of upper pH tolerance limits were higher in the younger (20 years). These results suggest selection of strains best adapted to tolerate or postpone/avoid events of high pH in the laboratory. Our data have implications for experimental studies of pH response and reaction norms in general of microalgae...

  7. Antibacterial and antifungal effect of high pH and paraffin wax ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... While viruses have the capacity to damage both plant and animal ... plant. But they are always present to invade the flesh on the skins and peels of fruits and vegetables, or if the skin .... Preservative Effect of High pH and.

  8. PhD Wang Xingchu,A Successful Leader of A High-tech Company Reform

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

      PhD Wang Xingchu was born in 1962. He is the Board Chairman of Shanghai Biotechnology Industrial Garden Coalition Development Co., Ltd. and the General Manager of Shanghai Hua Xin High-Biotechnology Co., Ltd.……

  9. Advances in alkaline cooling water treatment technology: An update

    Energy Technology Data Exchange (ETDEWEB)

    Shaffer, A.E. Jr.; Klatskin, S.D.

    1985-01-01

    A series of chromate and non-chromate treatment programs, specifically designed for alkaline pH cooling waters, have been developed. The treatments provide excellent corrosion and scale control over a broad range of water chemistries and are applicable to high conductivity and iron contaminated waters. Low levels of zinc are used to reduce the dependency on alkalinity, chromate and calcium carbonate supersaturation for corrosion control. The precipitation and fouling problems previously encountered with zinc containing treatments have been eliminated by the use of polymeric dispersants.

  10. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study

    Science.gov (United States)

    Petrezsélyová, Silvia; López-Malo, María; Canadell, David; Roque, Alicia; Serra-Cardona, Albert; Marqués, M. Carmen; Vilaprinyó, Ester; Alves, Rui; Yenush, Lynne

    2016-01-01

    Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase. PMID:27362362

  11. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems

    Directory of Open Access Journals (Sweden)

    S. Aßmann

    2011-10-01

    Full Text Available Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH – a key variable of the seawater carbon system – is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a~new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunity and is applicable to the open ocean as well as to coastal waters with a complex matrix and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min−1 with a precision of ±0.0007 pH units, an average offset of +0.0005 pH units to a reference system, and an offset of +0.0081 pH units to a certified standard buffer. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding of the marine carbon system.

  12. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems

    Science.gov (United States)

    Aßmann, S.; Frank, C.; Körtzinger, A.

    2011-10-01

    Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH - a key variable of the seawater carbon system - is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox) since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a~new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunity and is applicable to the open ocean as well as to coastal waters with a complex matrix and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C) using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min-1 with a precision of ±0.0007 pH units, an average offset of +0.0005 pH units to a reference system, and an offset of +0.0081 pH units to a certified standard buffer. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding of the marine carbon system.

  13. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems

    Directory of Open Access Journals (Sweden)

    S. Aßmann

    2011-06-01

    Full Text Available Autonomous sensors are required for a comprehensive documentation of the changes in the marine carbon system and thus to differentiate between its natural variability and anthropogenic impacts. Spectrophotometric determination of pH – a key variable of the seawater carbon system – is particularly suited to achieve precise and drift-free measurements. However, available spectrophotometric instruments are not suitable for integration into automated measurement systems (e.g. FerryBox since they do not meet the major requirements of reliability, stability, robustness and moderate cost. Here we report on the development and testing of a new indicator-based pH sensor that meets all of these requirements. This sensor can withstand the rough conditions during long-term deployments on ships of opportunities and is applicable on the open ocean as well as in coastal waters with complex background and highly variable conditions. The sensor uses a high resolution CCD spectrometer as detector connected via optical fibers to a custom-made cuvette designed to reduce the impact of air bubbles. The sample temperature can be precisely adjusted (25 °C ± 0.006 °C using computer-controlled power supplies and Peltier elements thus avoiding the widely used water bath. The overall setup achieves a measurement frequency of 1 min−1 with a precision of ± 0.0007 pH units and an average offset of +0.0018 pH units to a pH reference during shipboard operation. Application of this sensor allows monitoring of seawater pH in autonomous underway systems, providing a key variable for characterization and understanding the marine carbon system.

  14. Effects of Extracellular pH and Its Fluctuation on High - phosphate - induced Apoptosis of Rat Vascular Smooth Muscle Cells and Its Mechanism%细胞外 pH 值及其波动对高磷诱导的大鼠血管平滑肌细胞凋亡的作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    崔立文; 徐金升; 白亚玲; 张俊霞; 张胜雷

    2015-01-01

    + phosphate group and pH 7. 7 + phosphate group were higher than pH 7. 4 group in Caspase - 3 mRNA expression(P < 0. 05);pH 7. 4 + phosphate group,pH 7. 7 + phosphate group and pH 6. 8/ 7. 7 + phosphate group were higher than pH 6. 8 + phosphate group in Caspase - 3 mRNA expression( P < 0. 05);pH 7. 7+ phosphate group was higher than pH 7. 4 + phosphate group in Caspase - 3 mRNA expression(P < 0. 05),and pH 6. 8 / 7. 7+ phosphate group was lower than pH 7. 4 + phosphate group in Caspase - 3 mRNA expression( P < 0. 05);pH 6. 8 / 7. 7+ phosphate group was lower than pH 7. 7 + phosphate group in Caspase - 3 mRNA expression ( P < 0. 05 ) . pH 7. 4+ phosphate group,pH 7. 7 + phosphate group and pH 6. 8 / 7. 7 + phosphate group were lower than pH 7. 4 + phosphate group and pH 6. 8 + phosphate group in Bcl - 2 mRNA/ Bax mRNA(P < 0. 05);pH 7. 7 + phosphate group was lower than pH 7. 4+ phosphate group in Bcl - 2 mRNA/ Bax mRNA( P < 0. 05);pH 6. 8 / 7. 7 + phosphate group was higher than pH 7. 7+ phosphate group in Bcl - 2 mRNA/ Bax mRNA. pH 6. 8 + phosphate group,pH 7. 4 + phosphate group,pH 7. 7 + phosphate group and pH 6. 8 / 7. 7 + phosphate group were higher than pH 7. 4 group in cell apoptosis rate ( P < 0. 05 );pH 7. 4+ phosphate group,pH 7. 7 + phosphate group and pH 6. 8 / 7. 7 + phosphate group were higher than pH 6. 8 group in cell apoptosis rate(P < 0. 05);pH 7. 7 + phosphate group was higher than pH 7. 4 + phosphate group in cell apoptosis rate(P <0. 05),and pH 6. 8 / 7. 7 + phosphate group was lower pH 7. 4 + phosphate group in cell apoptosis rate(P < 0. 05);pH 6. 8/ 7. 7 + phosphate group was lower than pH 7. 7 + phosphate group in cell apoptosis rate(P < 0. 05). Conclusion Extracellular acidic environment can inhibit high - phosphorus - induced VSMCs apoptosis,whereas extracellular alkaline environment and pH fluctuations induce apoptosis. The mechanism may be that pH value may influence Bcl - 2 and Bax expression and further influence Caspase - 3 expression

  15. Expression and Characterization of Recombinant Thermostable Alkaline Phosphatase from a Novel Thermophilic Bacterium Thermus thermophilus XM

    Institute of Scientific and Technical Information of China (English)

    Jianbo LI; Limei XU; Feng YANG

    2007-01-01

    A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co2+, Fe2+, Mg2+, or Mn2+ but was strongly inhibited by 2.0 mM Fe2+. Under optimal conditions, the Michaelis constant (Km) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.

  16. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sobolewski, R.; Gierlowski, P.; Kula, W.; Zarembinski, S.; Lewandowski, S.J.; Berkowski, M.; Pajaczkowska, A. (Instytut Fizyki, Polska Akatlemia Nauk, Al. Lotnikow 32/46, PL-02668 Warszawa (PL)); Gorshunov, B.P.; Lyudmirsky, D.B.; Sirotinsky, O.I. (Institute of General Physics, USSR Academy of Sciences, 38 Vavilova Street, SU-117924 Moscow (SU))

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  17. Eco-physiological Characteristics of Alfalfa Seedlings in Response to Various Mixed Salt-alkaline Stresses

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Soil salinization and alkalization frequently co-occur in nature, but little is known about the mixed effects of salt-alkaline stresses on plants. An experiment with mixed salts (NaCl, Na2SO4, NaHCO3 and Na2CO3) and 30 salt-alkaline combinations(salinity 24-120 mmol/L and pH 7.03-10.32) treating Medicago sativa seedlings was conducted. The results demonstrated that salinity and alkalinity significantly affected total biomass and biomass components of seedlings. There were interactive effects of salt composition and concentration on biomass (P ≤ 0.001). The interactions between salinity and alkalinity stresses led to changes in the root activity along the salinity gradient (P ≤ 0.001). The effects of alkalinity on seedling survival rate were more significant than those of salinity, and the seedlings demonstrated some physiological responses(leaf electrolyte leakage rate and proline content) in order to adapt to mixed salt-alkaline stresses. It was concluded that the mixed salt-alkaline stresses, which differ from either salt or alkali stress, emphasize the significant interaction between salt concentration (salinity) and salt component (alkalinity). Further, the effects of the interaction between high alkalinity and salinity are more severe than those of either salt or alkali stress, and such a cooperative interaction results in more sensitive responses of ecological and physiological characteristics in plants.

  18. AMP makes native snake muscle fructose-1,6-bisphosphatase to an alkaline enzyme

    Institute of Scientific and Technical Information of China (English)

    赵辅昆; 徐松琴; 杜立林; 许根俊

    2000-01-01

    A substance in the crude preparation of NADP+ has been found, which activates snake muscle fructose-1,6-bisphosphatase at pH 9.2 and inhibits the enzyme at pH 7.5. After isolation and extensive characterization, the substance has been determined to be AMP. The activation depends on the concentrations of Mg2+ and could be observed only at concentrations above 1 mmol/L. In the presence of AMP, snake muscle fructose-1,6-bisphosphatase resembles an alkaline enzyme. Kinetic studies indicate that AMP and Mg2+ competitively regulate the activity of the enzyme. AMP releases the inhibition of Mg2+ at high concentration at alkaline pH. It has been reported that fructose-1,6-bisphosphatase with a pH optimum in the alkaline region is caused by limited proteolysis. AMP is also able to make fructose-1,6-bisphosphatase to be an alkaline enzyme. This finding indicates that proteolysis may not be the only reason for shift of the optimum pH of fructose-1,6-bisphosphatase to alkaline side and it may imply some significanc

  19. Transcriptome Analysis of Enterococcus faecalis in Response to Alkaline Stress

    Directory of Open Access Journals (Sweden)

    Ran eshujun

    2015-08-01

    Full Text Available E. faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing.We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections.

  20. Effect of carbon source on alkaline phosphatase production and excretion in Aspergillus caespitosus.

    Science.gov (United States)

    Guimarães, Luis Henrique Souza; Jorge, João Atilio; Terenzi, Héctor Francisco; Jamur, Maria Célia; Oliver, Constance; De Lourdes Teixeira De Moraes Polizeli, Maria

    2003-01-01

    The effect of several carbon sources on the production of alkaline phosphatase by the thermotolerant Aspergillus caespitosus was analysed. The fungus released high levels of alkaline phosphatases into the medium after being cultured for long periods with xylan or industrial residues such as wheat raw and sugar cane bagasse in the culture media. In contrast, the alkaline phosphatase activities were found only intracellulary when the fungus was cultured in glucose-supplemented media. The pH of the medium likely affects the process of enzyme secretion according to the carbon source used. Addition of xylan or industrial residues in the culture medium stimulated the secretion of phosphatases. In contrast, media supplemented with glucose or disaccharides promoted retention of these enzymes into the cells. The subcellular location activities of alkaline phosphatases were studied using histochemical and immunochemical methods and showed that alkaline phosphatases were present in the mycelial walls and septa.

  1. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater.

    Science.gov (United States)

    Li, Dien; Egodawatte, Shani; Kaplan, Daniel I; Larsen, Sarah C; Serkiz, Steven M; Seaman, John C

    2016-11-05

    U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH 8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), (13)C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  2. Spectrophotometric studies on alkaline isomerization of spinach ferredoxin.

    Science.gov (United States)

    Hasumi, H; Nagata, E; Nakamura, S

    1985-10-01

    The gross protein structure, the microenvironment of the iron-sulfur cluster, and the effect of neutral salts on the molecular structure of spinach ferredoxin were studied by CD and absorption spectroscopy in the alkaline pH range. In the pH range of 7-11, the existence of reversible isomerization which consisted of at least two proton dissociation processes was indicated by the statical CD and absorption spectra. The CD changes in the visible and far-UV regions were dramatic upon elevation of the pH from neutral to alkaline, indicating a significant alteration of the microenvironment of the cluster and a decrease in the ordered secondary structures. The absorption change in the visible region due to pH elevation was small but clearly observed with a high signal-to-noise ratio. The numbers of protons involved in the respective processes and the apparent pK values obtained from the pH-dependence of the CD changes were in good agreement with those obtained from the pH-dependence of the absorption changes in the visible region. In addition, the rate constants obtained from the time courses of the CD and absorption changes agreed with one another. By the addition of 1 M NaCl, the CD and absorption spectra at alkaline pH were reversed almost to those at neutral pH without significant pH change. On the other hand, above pH 11, ferredoxin was found to be irreversibly denatured. Based on analyses of the statical CD and absorption spectra and of the time courses of the CD changes, the probable mechanism of the isomerization was considered to be as follows: (Formula: see text) where H stands for a proton, N-form for native ferredoxin at neutral pH, N*-form for alkaline ferredoxin below pH 11 which still has the iron-sulfur cluster but with disordered secondary structures of the polypeptide chain, and D-form for completely denatured ferredoxin above pH 11. These results lead to the conclusions that (1) the interaction between the protein moiety and the iron-sulfur cluster is

  3. Systemic and local effects of long-term exposure to alkaline drinking water in rats.

    Science.gov (United States)

    Merne, M E; Syrjänen, K J; Syrjänen, S M

    2001-08-01

    Alkaline conditions in the oral cavity may be caused by a variety of stimuli, including tobacco products, antacids, alkaline drinking water or bicarbonate toothpaste. The effects of alkaline pH on oral mucosa have not been systematically studied. To assess the systemic (organ) and local (oral mucosal) effects of alkalinity, drinking water supplemented with Ca(OH)2 or NaOH, with pH 11.2 or 12 was administered to rats (n = 36) for 52 weeks. Tissues were subjected to histopathological examination; oral mucosal biopsy samples were also subjected to immunohistochemical (IHC) analyses for pankeratin, CK19, CK5, CK4, PCNA, ICAM-1, CD44, CD68, S-100, HSP 60, HSP70, and HSP90. At completion of the study, animals in the study groups had lower body weights (up to 29% less) than controls despite equal food and water intake, suggesting a systemic response to the alkaline treatment. The lowest body weight was found in rats exposed to water with the highest pH value and starting the experiment when young (6 weeks). No histological changes attributable to alkaline exposure occurred in the oral mucosa or other tissues studied. Alkaline exposure did not affect cell proliferation in the oral epithelium, as shown by the equal expression of PCNA in groups. The up-regulation of HSP70 protein expression in the oral mucosa of rats exposed to alkaline water, especially Ca(OH)2 treated rats, may indicate a protective response. Intercellular adhesion molecule-1 (ICAM-1) positivity was lost in 6/12 rats treated with Ca(OH)2 with pH 11.2, and loss of CD44 expression was seen in 3/6 rats in both study groups exposed to alkaline water with pH 12. The results suggest that the oral mucosa in rats is resistant to the effects of highly alkaline drinking water. However, high alkalinity may have some unknown systemic effects leading to growth retardation, the cause of which remains to be determined.

  4. High electrocatalytic performance of nitrogen-doped carbon nanofiber-supported nickel oxide nanocomposite for methanol oxidation in alkaline medium

    Science.gov (United States)

    Al-Enizi, Abdullah M.; Elzatahry, Ahmed A.; Abdullah, Aboubakr M.; Vinu, Ajayan; Iwai, Hideo; Al-Deyab, Salem S.

    2017-04-01

    Nitrogen-Doped Carbon Nanofiber (N-CNF)-supported NiO composite was prepared by electrospinning a sol-gel mixture of graphene and polyaniline (PANi) with aqueous solutions of Polyvinylpyrrolidone (PVP) followed by a high-temperature annealing process. The electrospun was stabilized for 2 h at 280 °C, carbonized for 5 h at 1200 °C then loaded by 10% NiO. The electrocatalytic activities of the produced nanocomposite have been studied using cyclic voltammetry, and chronoamperometry. Also, N-CNF was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and scanning-electron microscopy (SEM). The obtained N-doped carbon nanofiber was found to have a nitrogen content of 2.6 atomic% with a diameter range of (140-160) nm, and a surface area (393.3 m2 g-1). In addition, it showed a high electrocatalytic behavior towards methanol oxidation reaction in alkaline medium and high stability and resistivity to the adsorption of intermediates.

  5. A High Level of Intestinal Alkaline Phosphatase Is Protective Against Type 2 Diabetes Mellitus Irrespective of Obesity.

    Science.gov (United States)

    Malo, Madhu S

    2015-12-01

    Mice deficient in intestinal alkaline phosphatase (IAP) develop type 2 diabetes mellitus (T2DM). We hypothesized that a high level of IAP might be protective against T2DM in humans. We determined IAP levels in the stools of 202 diabetic patients and 445 healthy non-diabetic control people. We found that compared to controls, T2DM patients have approx. 50% less IAP (mean +/- SEM: 67.4 +/- 3.2 vs 35.3 +/- 2.5 U/g stool, respectively; p diabetes status. With each 25 U/g decrease in stool IAP, there is a 35% increased risk of diabetes. The study revealed that obese people with high IAP (approx. 65 U/g stool) do not develop T2DM. Approx. 65% of the healthy population have diabetes', and might develop T2DM and other metabolic disorders in the near future. In conclusion, high IAP levels appear to be protective against diabetes irrespective of obesity, and a 'temporal IAP profile' might be a valuable tool for predicting 'the incipient metabolic syndrome', including 'incipient diabetes'.

  6. Fe/Al bimetallic particles for the fast and highly efficient removal of Cr(VI) over a wide pH range: Performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, OH 45221-0012 (United States); Cheng, Zihang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, OH 45221-0012 (United States); Tang, Bing [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-11-15

    Highlights: • Bimetallic particles with different Fe/Al mass ratios were prepared. • High removal rate of Cr(VI) was achieved in acidic, neutral, and alkaline pH. • No total iron ions at pH 3.0–11.0 and nearly no Al{sup 3+} at pH 3.0–7.0 were released. • Galvanic cell effect and high specific surface area contributed to Cr(VI) removal. - Abstract: The iron/aluminum (Fe/Al) bimetallic particles with high efficiency for the removal of Cr(VI) were prepared. Fe/Al bimetallic particles were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), SEM mapping, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM mapping showed that the core of bimetal was Al, and the planting Fe was deposited on the surface of Al. In acidic and neutral conditions, Fe/Al bimetal can completely remove Cr(VI) from wastewater in 20 min. Even at pH 11.0, the Cr(VI) removal efficiency achieved was 93.5%. Galvanic cell effect and high specific surface area are the main reasons for the enhanced removal of Cr(VI) by bimetallic particles. There were no iron ions released in solutions at pH values ranging from 3.0 to 11.0. The released Al{sup 3+} ions concentrations in acidic and neutral conditions were all less than 0.2 mg/L. The bimetal can be used 4 times without losing activity at initial pH 3.0. XPS indicated that the removed Cr(VI) was immobilized via the formation of Cr(III) hydroxide and Cr(III)–Fe(III) hydroxide/oxyhydroxide on the surface of Fe/Al bimetal. The Fe/Al bimetallic particles are promising for further testing for the rapid and effective removal of contaminants from water.

  7. PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR ALKALINE PROTEASE PRODUCED FROM AN ISOLATED BACILLUS SUBTILIS

    Directory of Open Access Journals (Sweden)

    Vijaya Bundela

    2013-03-01

    Full Text Available This paper describes the studies on the purification and partial characterization of serine alkaline protease produced through submerged fermentation process from a locally isolated Bacillus subtilis. This strain, grown in a highly alkaline medium (pH 10, produces an extracellular proteolytic enzyme. The alkaline protease was purified in a simple two-step procedure involving ammonium sulphate precipitation and gel filtration. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE analysis of the purified alkaline protease indicated an estimated molecular mass of 30KDa. It was more active in the range of 20-60ºC and had an optimum activity at 55ºC with optimum pH of 10.5. Characterization of the protease showed that it required certain cations such as Mg++, Mn++ and Ca++ for maximal activity. The serine nature of the alkaline protease was confirmed by PMSF inhibition. The temperature and pH stability of this Alkaline Protease from Bacillus Subtilismakes it potentially useful forindustrial applications.

  8. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  9. Explanation for the enhanced dissolution of silica column packing in high pH phosphate and carbonate buffers.

    Science.gov (United States)

    Tindall, G W; Perry, R L

    2003-02-28

    It has been reported that at high pH, the rate of bonded phase packing degradation in methanol/water mobile phases is greater for carbonate and phosphate buffers than for amine buffers. This conclusion was based on buffer pH determined in the aqueous buffer before dilution with methanol. Changes in buffer species pKa, and therefore buffer pH, upon methanol dilution are consistent with the observed degradation results. Measurements of pH in the methanol/water solutions confirm that the carbonate and phosphate buffers were considerably more basic than the amine buffer, even though all the buffers were pH 10 before dilution with methanol. These results demonstrate that it can be misleading to extrapolate aqueous pH data to partially aqueous solutions. Measurements of pH in the mixed solvent provide more reliable predictions of column and sample stability.

  10. Feasible metabolisms in high pH springs of the Philippines.

    Science.gov (United States)

    Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

  11. Feasible Metabolic Schema Associated with High pH Springs in the Philippines

    Directory of Open Access Journals (Sweden)

    DAWN eCARDACE

    2015-02-01

    Full Text Available A field campaign targeting high pH springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to evaluate feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs, and examine how the environment supports or prevents the function of certain microbial metabolisms.

  12. Alkaline Exchange Membrane (AEM) for High-Efficiency Fuel Cells, Electrolyzers and Regenerative Fuel Cell Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an alkaline exchange membrane (AEM)for use as a polymer electrolyte in both fuel cell and electrolyzer systems.  The ultimate goal in AEM development is...

  13. Application conditions for ester cured alkaline phenolic resin sand

    Institute of Scientific and Technical Information of China (English)

    Ren-he Huang; Bao-ping Zhang; Yao-ji Tang

    2016-01-01

    Five organic esters with different curing speeds: propylene carbonate (i.e. high-speed ester A); 1, 4-butyrolactone; glycerol triacetate (i.e. medium-speed ester B); glycerol diacetate; dibasic ester (DBE) (i.e. low-speed ester C), were chosen to react with alkaline phenolic resin to analyze the application conditions of ester cured alkaline phenolic resin. The relationships between the curing performances of the resin (including pH value, gel pH value, gel time of resin solution, heat release rate of the curing reaction and tensile strength of the resin sand) and the amount of added organic ester and curing temperature were investigated. The results indicated the folowing: (1) The optimal added amount of organic ester should be 25wt.%-30wt.% of alkaline phenolic resin and it must be above 20wt.%-50 wt.% of the organic ester hydrolysis amount. (2) High-speed ester A (propylene carbonate) has a higher curing speed than 1, 4-butyrolactone, and they were both used as high-speed esters. Glycerol diacetate is not a high-speed ester in alkaline phenolic resin although it was used as a high-speed ester in ester cured sodium silicate sand; glycerol diacetate and glycerol triacetate can be used as medium-speed esters in alkaline phenolic resin. (3) High-speed ester A, medium-speed ester B (glycerol triacetate) and low-speed ester C (dibasic ester, i.e., DBE) should be used below 15 ºC, 35 ºC and 50 ºC, respectively. High-speed ester A or low-speed ester C should not be used alone but mixed with medium-speed ester B to improve the strength of the resin sand. (4) There should be a suitable solid content (generaly 45wt.%-65wt.% of resin), alkali content (generaly 10wt.%-15wt.% of resin) and viscosity of alkaline phenolic resin (generaly 50-300 mPa·s) in the preparation of alkaline phenolic resin. Finaly, the technique conditions of alkaline phenolic resin preparation and the application principles of organic ester were discussed.

  14. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    Science.gov (United States)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  15. High Temperature and Pressure Alkaline Electrochemical Reactor for Conversion of Power to Chemicals

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos

    2016-01-01

    Moving away from fossil fuels requires harvesting more and more intermittent renewable energy resources and establishing a sustainable system for the production of chemicals. This brings forward the need for efficient large scale energy storage technologies 1-3 and technologies for the conversion...... of renewable electricity to chemicals. Electrochemical reactors can play a crucial role in this endeavor, since they can efficiently and reversibly transform electricity to high-value chemicals, and thus serve as energy storage and recovery devices for balancing the grid, while offering a means...

  16. Alkaline Protease Production by a Strain of Marine Yeasts

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; CHI Zhenming; MA Chunling

    2006-01-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China.The protease had the highest activity at pH 9.0 and 45 ℃.The optimal medium for the maximum alkaline protease production of strain 10 was 2.5 g soluble starch and 2.0 g NaNO3 in 100 mL seawater with initial pH6.0.The optimal cultivation conditions for the maximum protease production were temperature 24.5 ℃, aeration rate 8.0 L min -1 and agitation speed 150 r min-1.Under the optimal conditions, 623.1 Umg-1 protein of alkaline protease was reached in the culture within 30 h of fermentation.

  17. Alkaline protease production by a strain of marine yeasts

    Science.gov (United States)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  18. Alkaline phosphatase of Physarum polycephalum is insoluble.

    Science.gov (United States)

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  19. A multi-scale model of the oxygen reduction reaction on highly active graphene nanosheets in alkaline conditions

    Science.gov (United States)

    Vazquez-Arenas, Jorge; Ramos-Sanchez, Guadalupe; Franco, Alejandro A.

    2016-10-01

    A multi-scale model based on a mean field approach, is proposed to describe the ORR mechanism on N-GN catalysts in alkaline media. The model implements activation energies calculated with Density Functional Theory (DFT) at the atomistic level, and scales up them into a continuum framework describing the cathode/electrolyte interface at the mesoscale level. The model also considers mass and momentum transports arising in the region next to the rotating electrode for all ionic species and O2; correction of potential drop and electrochemical double-layer capacitance. Most fitted parameters describing the kinetics of ORR elementary reactions are sensitive in the multi-scale model, which results from the incorporation of activation energies using the mean field method, unlike single-scale modelling Errors in the deviations from activation energies are found to be moderate, except for the elementary step (2) related to the formation of O2ads, which can be assigned to the inherent DFT limitations. The consumption of O2ads to form OOHads is determined as the rate-determining step as a result of its highest energy barrier (163.10 kJ mol-1) in the system, the largest error obtained for the deviation from activation energy (28.15%), and high sensitivity. This finding is confirmed with the calculated surface concentration and coverage of electroactive species.

  20. Tissue non-specific alkaline phosphatase production by human dental pulp stromal cells is enhanced by high density cell culture.

    Science.gov (United States)

    Tomlinson, Matthew J; Dennis, Caitriona; Yang, Xuebin B; Kirkham, Jennifer

    2015-08-01

    The cell surface hydrolase tissue non-specific alkaline phosphatase (TNAP) (also known as MSCA-1) is used to identify a sub-population of bone marrow stromal cells (BMSCs) with high mineralising potential and is found on subsets of cells within the dental pulp. We aim to determine whether TNAP is co-expressed by human dental pulp stromal cells (hDPSCs) alongside a range of BMSC markers, whether this is an active form of the enzyme and the effects of culture duration and cell density on its expression. Cells from primary dental pulp and culture expanded hDPSCs expressed TNAP. Subsequent analyses revealed persistent TNAP expression and co-expression with BMSC markers such as CD73 and CD90. Flow cytometry and biochemical assays showed that increased culture durations and cell densities enhanced TNAP expression by hDPSCs. Arresting the hDPSC cell cycle also increased TNAP expression. These data confirm that TNAP is co-expressed by hDPSCs together with other BMSC markers and show that cell density affects TNAP expression levels. We conclude that TNAP is a potentially useful marker for hDPSC selection especially for uses in mineralised tissue regenerative therapies.

  1. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D. [and others

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

  2. High-solid Anaerobic Co-digestion of Sewage Sludge and Cattle Manure: The Effects of Volatile Solid Ratio and pH

    Science.gov (United States)

    Dai, Xiaohu; Chen, Yang; Zhang, Dong; Yi, Jing

    2016-10-01

    High-solid anaerobic digestion is an attractive solution to the problem of sewage sludge disposal. One method that can be used to enhance the production of volatile fatty acids (VFAs) and the generation of methane from anaerobic digestion involves combining an alkaline pretreatment step with the synergistic effects of sewage sludge and cattle manure co-digestion, which improves the activity of key enzymes and microorganisms in the anaerobic co-digestion system to promote the digestion of organic waste. In this study, we describe an efficient strategy that involves adjusting the volatile solid (VS) ratio (sewage sludge/cattle manure: 3/7) and initial pH (9.0) to improve VFA production and methane generation from the co-digestion of sludge and manure. The experimental results indicate that the maximum VFA production was 98.33 g/kg-TS (total solid) at the optimal conditions. Furthermore, methane generation in a long-term semi-continuously operated reactor (at a VS ratio of 3/7 and pH of 9.0) was greater than 120.0 L/kg-TS.

  3. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  4. 过碳酰胺对土壤pH和5种交换态金属离子含量的影响%Effects of Applying Percarbamide on Soil pH and Exchangeable Content of Five Metals in Different Acidic and Alkaline Soils,China

    Institute of Scientific and Technical Information of China (English)

    钟宁; 李顺兴; 曾清如; 蔡秋亮

    2012-01-01

    用过碳酰胺溶液(与尿素溶液作对照)对中国南方3种酸性土壤和中国北方3种碱性土壤进行室内土培试验,研究氮肥施用对土壤pH和5种交换态金属(Mn、Cu、Zn、Ca、Mg)离子含量的影响。结果表明:酸性土壤pH在短期内随过碳酰胺浓度增大而急剧上升,碱性土壤pH则随过碳酰胺浓度增加呈先增加再减少然后又增加,且其变化幅度小于酸性土壤;动态试验表明,pH上升的现象是短期的,6种土壤pH达到最大值后缓慢下降,9d后3种碱性土壤的pH均降到比原来更低的程度。酸性土壤中交换性Mn、Cu、Zn的整体变化趋势表现为随过碳酰胺施用时间延长呈先降低再逐步上升,与土壤pH呈负相关;而碱性土壤中交换态Mn、Cu、Zn的含量变化不明显。6种土壤中交换态金属Ca、Mg离子含量的变化与土壤pH变化基本呈正相关。研究表明,与施用普通尿素相比,作为一种新型氮肥,施用过碳酰胺对土壤中金属元素活性不会产生新的负影响。%The effects of percarbamide on the changes of pH and soil exchangeable Mn,Cu,Zn,Ca and Mg contents in 3 acidic soils and 3 alkaline soils in China were studied by indoor incubation test.The results showed that the pH of acidic soils increased quickly,and pH in alkaline soils increased first,then fell,rose again,with the increasing concentrations of applied percarbamide,and the changing range of pH in alkaline soils was smaller than that in acidic soils.The time-course experiment revealed that the rise of soil pH was short-term,with a subsequently slow drop after reaching their maximum,and pH value of 3 alkaline soils was less than the original pH value after 9 days.The dynamic changes of exchangeable mentals(Mn,Cu,Zn) in acidic soils were negative correlated with soil pH,and the contents of Mn,Cu,Zn decreased first and then increased gradually.However,the changes of Mn,Cu,Zn in alkaline soils were not very obviously.There was a

  5. Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from Mediterranean region of Turkey.

    Science.gov (United States)

    Uz, Ilker; Tavali, Ismail Emrah

    2014-01-01

    This study was conducted to investigate direct short-term impact of vermicompost on some soil biological properties by monitoring changes after addition of vermicompost as compared to farmyard manure in an alkaline soil with high lime content from semiarid Mediterranean region of Turkey. For this purpose, mixtures of soil and organic fertilizers in different doses were incubated under greenhouse condition. Soil samples collected in regular intervals were analyzed for biological parameters including dehydrogenase, β-glucosidase, urease, alkaline phosphatase activities, and total number of aerobic mesophilic bacteria. Even though soil dehydrogenase activity appeared to be dose-independent based on overall evaluation, organic amendments were found to elevate dehydrogenase activity when sampling periods are evaluated individually. β-glucosidase, urease, alkaline phosphatase activity, and aerobic mesophilic bacterial numbers in vermicompost treatments fluctuated but remained significantly above the control. A slight but statistically significant difference was detected between organic amendments in terms of urease activity. Vermicompost appeared to more significantly increase bacterial number in soil. Clearly, vermicompost has a potential to be used as an alternative to farmyard manure to improve and maintain soil biological activity in alkaline calcareous soils from the Mediterranean region of Turkey. Further studies are needed to assess its full potential for these soils.

  6. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Olsen, Jesper V

    2016-01-01

    Protein phosphorylation, a process in which kinases modify serines, threonines, and tyrosines with phosphoryl groups is of major importance in eukaryotic biology. Protein phosphorylation events are key initiators of signaling responses which determine cellular outcomes after environmental...... and metabolic stimuli, and are thus highly regulated. Therefore, studying the mechanism of regulation by phosphorylation, and pinpointing the exact site of phosphorylation on proteins is of high importance. This protocol describes in detail a phosphoproteomics workflow for ultra-deep coverage by fractionating...... peptide mixtures based on high pH (basic) reversed-phase chromatography prior to phosphopeptide enrichment and mass spectrometric analysis. Peptides are separated on a C18 reversed-phase column under basic conditions and fractions collected in timed intervals followed by concatenation of the fractions...

  7. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  8. Bilayers and wormlike micelles at high pH in fatty acid soap systems.

    Science.gov (United States)

    Xu, Wenlong; Liu, Huizhong; Song, Aixin; Hao, Jingcheng

    2016-03-01

    Bilayers at high pH in the fatty acid systems of palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O and stearic acid/CsOH/H2O can form spontaneously (Xu et al., 2014, 2015). In this work, the bilayers can still be observed at 25°C with an increase of the concentration of fatty acids. We found that wormlike micelles can also be prepared in the fatty acid soap systems at high pH, even though the temperature was increased to be 50°C. The viscoelasticity, apparent viscosity, yield stress of the bilayers were determined by the rheological measurements. Wormlike micelles were identified by cryogenic transmission electron microscopy (cryo-TEM) and emphasized by the rheological characterizations, which are in accordance with the Maxwell fluids with good fit of Cole-Cole plots. The phase transition temperature was determined by differential scanning calorimetry (DSC) and the transition process was recorded. The regulating role of counterions of fatty acids were discussed by (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) as comparison, concluding that counterions with appropriate hydrated radius were the vital factor in the formation wormlike micelles.

  9. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of

  10. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects.

    Science.gov (United States)

    Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R

    2013-06-01

    To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P iron-reducing bacteria were identified with low abundance, yet relatively high diversity. The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.

  11. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries

    Science.gov (United States)

    Shangguan, Enbo; Guo, Litan; Li, Fei; Wang, Qin; Li, Jing; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi

    2016-09-01

    A new nanocomposite formulation of the iron-based anode for alkaline secondary batteries is proposed. For the first time, FeS nanoparticles anchored on reduced graphene oxide (RGO) nanosheets are synthesized via a facile, environmentally friendly direct-precipitation approach. In this nanocomposite, FeS nanoparticles are anchored uniformly and tightly on the surface of RGO nanosheets. As an alkaline battery anode, the FeS@RGO electrode delivers a superior high-rate charge/discharge capability and outstanding cycling stability, even at a condition without any conductive additives and a high electrode loading of ∼40 mg cm-2. At high charge/discharge rates of 5C, 10C and 20C (6000 mA g-1), the FeS@RGO electrode presents a specific capacity of ∼288, 258 and 220 mAh g-1, respectively. Moreover, the FeS@RGO electrode exhibits an admirable long cycling stability with a superior capacity retention of 87.6% for 300 cycles at a charge/discharge rate of 2C. The excellent electrochemical properties of the FeS@RGO electrode can be stemmed from the high specific surface area, peculiar electric conductivity and robust sheet-anchored structure of the FeS@RGO nanocomposite. By virtue of its superior fast charge/discharge properties, the FeS@RGO nanocomposite is suitable as an advanced anode material for high-performance alkaline secondary batteries.

  12. The search for more pH stable stationary phases for high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Carol H.; Silva, Cesar R.; Faria, Anizio M.; Collins, Kenneth E.; Jardim, Isabel Cristina S.F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2009-07-01

    High performance liquid chromatographic (HPLC) separations are largely carried out using reversed phase conditions with stationary phases based on silica. A serious problem with these stationary phases is the tendency of silica to dissolve in high pH solutions often needed to separate basic compounds. The literature reports many different ways that have been tried to resolve this problem. This paper reports the results obtained in our laboratory with stationary phases prepared using silica supports having a layer of a metal oxide (zirconia or titania) attached on their surfaces, followed by immobilization of a polysiloxane or by organofunctionalization with a trimethoxyalkylsilane. Stability tests, also developed in our laboratory, indicate that the metal oxide layer increases the HPLC column lifetimes by making the stationary phase less susceptible to dissolution. (author)

  13. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.

    Science.gov (United States)

    Khodadoust, Amid P; Theis, Thomas L; Murarka, Ishwar P; Naithani, Pratibha; Babaeivelni, Kamel

    2013-12-01

    The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.

  14. Evaluation of gardenia yellow using crocetin from alkaline hydrolysis based on ultra high performance liquid chromatography and high-speed countercurrent chromatography.

    Science.gov (United States)

    Inoue, Koichi; Tanada, Chihiro; Nishikawa, Hiroaki; Matsuda, Satoru; Tada, Atsuko; Ito, Yusai; Min, Jun Zhe; Todoroki, Kenichiro; Sugimoto, Naoki; Toyo'oka, Toshimasa; Akiyama, Hiroshi

    2014-12-01

    Gardenia yellow is globally the most valuable spice and food color. It is generally a mixture of water-soluble carotenoid glycosyl esters which consist of crocetin bis(gentiobiosyl) ester as the main component. Crocetin is a natural carotenoid dicarboxylic acid that may be a candidate drug for pharmaceutical development, however, it is either present in trace amounts or is absent in natural gardenia yellow products. We here propose that crocetin produced by alkaline hydrolysis can be used to qualitatively evaluate gardenia yellow products using an ultra high performance liquid chromatographic assay. A useful and efficient isolation technique for isolating high-purity crocetin from gardenia yellow using high-speed countercurrent chromatography is described. High-speed countercurrent chromatographic fractionation followed by an ultra high performance liquid chromatographic assay showed that trans-crocetin is easily converted to about 15% cis-crocetin (85% trans-crocetin). Crocetin in gardenia yellow was quantitatively evaluated. Our approach is based on the hydrolysis process for converting crocetin glycosyl esters to crocetin before evaluation and isolation using the ultra high performance liquid chromatographic and high-speed countercurrent chromatographic methods. The combination of hydrolysis and chromatographic methods allows evaluation of the purity and quantity of crocetin in gardenia yellow.

  15. Growth at high pH and sodium and potassium tolerance in media above the cytoplasmic pH depend on ENA ATPases in Ustilago maydis.

    Science.gov (United States)

    Benito, Begoña; Garciadeblás, Blanca; Pérez-Martín, José; Rodríguez-Navarro, Alonso

    2009-06-01

    Potassium and Na(+) effluxes across the plasma membrane are crucial processes for the ionic homeostasis of cells. In fungal cells, these effluxes are mediated by cation/H(+) antiporters and ENA ATPases. We have cloned and studied the functions of the two ENA ATPases of Ustilago maydis, U. maydis Ena1 (UmEna1) and UmEna2. UmEna1 is a typical K(+) or Na(+) efflux ATPase whose function is indispensable for growth at pH 9.0 and for even modest Na(+) or K(+) tolerances above pH 8.0. UmEna1 locates to the plasma membrane and has the characteristics of the low-Na(+)/K(+)-discrimination ENA ATPases. However, it still protects U. maydis cells in high-Na(+) media because Na(+) showed a low cytoplasmic toxicity. The UmEna2 ATPase is phylogenetically distant from UmEna1 and is located mainly at the endoplasmic reticulum. The function of UmEna2 is not clear, but we found that it shares several similarities with Neurospora crassa ENA2, which suggests that endomembrane ENA ATPases may exist in many fungi. The expression of ena1 and ena2 transcripts in U. maydis was enhanced at high pH and at high K(+) and Na(+) concentrations. We discuss that there are two modes of Na(+) tolerance in fungi: the high-Na(+)-content mode, involving ENA ATPases with low Na(+)/K(+) discrimination, as described here for U. maydis, and the low-Na(+)-content mode, involving Na(+)-specific ENA ATPases, as in Neurospora crassa.

  16. An autonomous spectrophotometric system for high resolution measurement of seawater pH

    Science.gov (United States)

    Reggiani, E. R.; Bellerby, R. G. J.

    2012-04-01

    The increase in carbon dioxide (CO2) concentration in the ocean is a growing concern and is undergoing considerable research. A comprehensive monitoring of the carbonate system in seawater is essential to understand ocean acidification and modification to oceanic carbon transport and the ocean's atmospheric CO2 uptake. Providing calibration and drift-free measurements, spectrophotometric detection of pH, with the monitoring of one of the other "major" carbonate variables (pCO2, total alkalnity, dissolved inorganic carbon) allows the determination of the entire carbonate system speciation with the uncertainty required to detect long-term oceanic acidification. Stability, reliability and robustness are the critical features when in-situ long-term deployment is required. We have developed a method that makes use of a high-resolution low noise miniature spectrophotometer and a combined low power LED source, an optimal absorbance detection is achieved in a custom designed bubble-free cuvette with a sample volume of 6 ml, limiting indicator perturbations within the on-line precision of the instrument, currently evaluated at 0,0005 pH units and achieving the adequate uncertainty for systematic shifts evaluation. The system operates unattended with a sampling frequency up to 2 samples per minute and the actual temperature of the sample is monitored, not controlled, thus reducing power consumption. With its portability, the system is ideally suitable for both underway operation on ships of opportunity and for discrete sample analysis in remote research campaigns.

  17. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  18. Bicarbonate utilization and pH polarity. The response of photosynthetic electron transport to carbon limitation in Potamogeton lucens leaves

    NARCIS (Netherlands)

    van Ginkel, LC; Prins, HBA

    1998-01-01

    By the process of pH polarity, several submersed angiosperms can use bicarbonate as carbon source for photosynthesis. Under conditions of relatively high light intensity and low CO2 availability, the pH of the apoplast and unstirred layer becomes acid at one side of the leaf and alkaline at the othe

  19. High-Mg# andesitic lavas of the Shisheisky Complex, Northern Kamchatka: implications for primitive calc-alkaline magmatism

    Science.gov (United States)

    Bryant, J. A.; Yogodzinski, G. M.; Churikova, T. G.

    2011-05-01

    Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian-Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66-0.73 at intermediate SiO2 (54-58 wt%) with low CaO (3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock `melts', consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984-1,143°C and 4-7 wt% H2O. For primitive basalts they are 1,149-1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with

  20. pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes.

    Science.gov (United States)

    Koseki, Shigenobu; Yamamoto, Kazutaka

    2006-09-01

    The effect of pH and solute concentration of suspension media on high hydrostatic pressure (HHP) induced inactivation of Listeria monocytogenes (approximate 10(8) CFU/ml) was investigated by the using treatment between 300 MPa and 600 MPa at 25 degrees C for 10 min. The suspension media used in this study represented different concentrations (0.1% to 10%) of buffered peptone water (BPW) with an adjusted pH of 4 to 7. An increase in the concentration of BPW resulted in a decreased HHP-induced inactivation of L. monocytogenes that was dependent on the pH of the medium. HHP-treatment at 300 MPa showed no bactericidal effect at neutral pH regardless of the BPW concentration. When the pH of BPW (0.1% to 5%) was reduced to 4, L. monocytogenes was completely inactivated (more than an 8 log cycle reduction) with a HHP-treatment of at least 300 MPa. HHP-treatment above 400 MPa completely inactivated L. monocytogenes in a relatively dilute BPW (0.1% and 1%) with an adjusted pH below 6. While only a 2 log cycle reduction was observed in 10% BPW at the pH ranging from 5 to 7 after treatment with 600 MPa, L. monocytogenes in 10% BPW at pH 4 was completely inactivated. Even though a significant bactericidal effect of HHP-treatment was not observed when applied with a low pressure such as 300 MPa or suspended in higher BPW at neutral pH, a reduction of the pH greatly affected the HHP-induced inactivation of L. monocytogenes. These results indicated that information concerning the pH of food or media would greatly assist an optimization of HHP-treatment for the inactivation of bacteria.

  1. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Li Jianghua

    2011-10-01

    Full Text Available Abstract Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229 was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min, respectively. The effects of medium compositions (starch, peptone, and soybean meal and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v, peptone concentration 1.45% (w/v, soybean meal concentration 1.3% (w/v, and temperature 37°C, the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis.

  2. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    Science.gov (United States)

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control.

  3. High CO2 levels impair alveolar epithelial function independently of pH.

    Directory of Open Access Journals (Sweden)

    Arturo Briva

    Full Text Available BACKGROUND: In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2 is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. PRINCIPAL FINDINGS: We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. CONCLUSIONS: Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  4. Alkaline solution neutralization capacity of soil.

    Science.gov (United States)

    Asakura, Hiroshi; Sakanakura, Hirofumi; Matsuto, Toshihiko

    2010-10-01

    Alkaline eluate from municipal solid waste (MSW) incineration residue deposited in landfill alkalizes waste and soil layers. From the viewpoint of accelerating stability and preventing heavy metal elution, pH of the landfill layer (waste and daily cover soil) should be controlled. On the other hand, pH of leachate from existing MSW landfill sites is usually approximately neutral. One of the reasons is that daily cover soil can neutralize alkaline solution containing Ca(2+) as cation. However, in landfill layer where various types of wastes and reactions should be taken into consideration, the ability to neutralize alkaline solutions other than Ca(OH)(2) by soil should be evaluated. In this study, the neutralization capacities of various types of soils were measured using Ca(OH)(2) and NaOH solutions. Each soil used in this study showed approximately the same capacity to neutralize both alkaline solutions of Ca(OH)(2) and NaOH. The cation exchange capacity was less than 30% of the maximum alkali neutralization capacity obtained by the titration test. The mechanism of neutralization by the pH-dependent charge can explain the same neutralization capacities of the soils. Although further investigation on the neutralization capacity of the soils for alkaline substances other than NaOH is required, daily cover soil could serve as a buffer zone for alkaline leachates containing Ca(OH)(2) or other alkaline substances.

  5. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    Directory of Open Access Journals (Sweden)

    Wei Shi

    Full Text Available A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T, which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl. Electrical output was further demonstrated in microbial fuel cells (MFCs with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH.

  6. Gabbroic xenoliths in alkaline lavas in the region of Sanganguey Volcano, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giosa, T.A.; Nelson, S.A.

    1985-01-01

    Gabbroic xenoliths occur in alkaline cinder cones and lava flows erupted from vents along five parallel lines trending through the calc-alkaline volcano, Sanganguey in the northwestern portion of the Mexican Volcanic Belt. The xenoliths consist of varying proportions of olivine, clinopyroxene, orthopyroxene, and plagioclase. The complete lack of hydrous phases indicates that the gabbros crystallized under conditions of low PH/sub 2/O. Many xenoliths show textures indicative of a cumulate origin and others exhibit recrystallization indicative of subsolidus reactions prior to incorporation in the host liquids. Reaction between xenolithic minerals and host liquids are also observed. The range of Mg numbers calculated for liquids that would have been in equilibrium with olivines in the xenoliths suggests that these olivines crystallized from magmas such as those represented by either calc-alkaline basaltic andesites and andesites or the more evolved alkalic rocks which occur throughout the area. Crystal fractionation models show that the xenoliths may be related to such magmas. The fact that xenoliths occur most commonly in the alkaline rocks suggests that alkaline magmas rise to the surface more rapidly than the more chemically evolved calc-alkaline and alkaline magmas. Alternatively the lack of xenoliths in the more evolved magmas produced by high level crystal fractionation may indicate that the xenoliths are derived from zones below that from which the differentiated magmas begin their final ascent to the surface.

  7. The detection and characterization of high frequency and high wavenumber solar oscillations. Ph.D. Thesis

    Science.gov (United States)

    Fernandes, David Neil

    1992-01-01

    Doppler shift measurements of the Na D(sub 1) absorption line have revealed solar oscillations in a new regime of frequency and wavenumber. Oscillations of vertical velocities in the temperature minimum and low chromosphere of the Sun are observed with frequencies ranging up to 9.5 mHz. There is no evidence for chromospheric modes of 3 minute period. This indicates that the chromosphere does not form a good cavity for acoustic waves. The fundamental-modes appear with wavenumbers up to 5.57 M per m (equivalent spherical harmonic degree, 3877). The frequencies lie below the predicted values at wavenumbers above 1 M per m. The values are in agreement with previous measurements that exist for wavenumbers up to 2.67 M per m. Spatial maps of velocity power show that high wavenumber oscillations are suppressed in active regions. The shape of the power depression indicates that wave motion is affected in the layer of atmosphere where the measurement is made. The f-modes are suppressed in the same way as p-modes, indicating that the mechanism for wave suppression affects velocity fluctuations. Mode frequencies are not affected by the magnetic fields by more than 50 micro Hz, the precision of the measurement.

  8. Electroactivity of Polyaniline in High pH Solutions%聚苯胺在高pH值溶液中的电化学活性

    Institute of Scientific and Technical Information of China (English)

    宋晔; 吕惠玲; 胡颂伟; 杨春艳; 朱绪飞

    2013-01-01

    由于聚苯胺(PANI)独特的质子酸掺杂机制,其在高pH值溶液中会发生去质子化过程,导致失去导电性和电化学活性,故普通PANI只有在酸性介质中(pH<4)才具有电化学氧化-还原活性,这成为PANI应用的一大障碍.为解决PANI在高pH值溶液中的“失活”问题,人们提出了各种各样的方法.从基于质子酸掺杂机理和基于电荷转移机理的两大解决途径入手,就提高PANI在高pH环境中电化学活性的方法进行了系统综述,重点评述了自掺杂、高分子酸掺杂和碳纳米管掺杂PANI的制备方法、电化学特性以及提高电化学活性的作用机制,并指出了提高PANI高pH环境下的电化学活性所存在的难点及今后的研究方向.%Generally,the redox activity of polyaniline (PANI) can only be retained in acidic media at pH<4,because the occurrence of deprotonation of the nitrogen atoms in the PANI backbone at high pH values may result in the loss of conductivity and electroactivity in neutral or alkaline solutions.This high acidity requirement greatly limits its potential applications like biosensor,marine antifouling and anticorrosion,where neutral or alkaline environments must be faced.Much effort has been exerted in the development of approaches to overcome this issue.In summary,two principal strategies have been proposed to shift the electroactivity of PANI to a high pH environment.One is based on a mechanism of protonic acid doping,the other is based on a charge transfer process.The former is to introduce acidic groups into the PANI chains or PANI systems to hinder the deprotonation of its conducting form and thus to preserve its electroactivity at higher pH values.The main approaches to introduction of acidic groups include the sulfonation of the emeraldine base of PANI,the homopolymerization of aniline derivatives with acidic ionogenic groups or the copolymerization of aniline and aniline derivatives,and the formation of PANI complexes by

  9. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    Science.gov (United States)

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  10. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    Science.gov (United States)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  11. Effect of high pH column regeneration on the separation performances in reversed phase chromatography of peptides.

    Science.gov (United States)

    Gétaz, David; Gencoglu, Mumun; Forrer, Nicola; Morbidelli, Massimo

    2010-05-21

    Caustic regeneration procedures are often used in chromatographic purification processes of peptides and proteins to remove irreversibly bound impurities from the stationary phase. Silica-based materials are the most commonly used materials in reversed phase chromatography of peptides. Their limited chemical stability at high pH can be, however, problematic when high pH column regeneration (i.e. cleaning in place) is required. The effect of cleaning in place on the surface chemistry of the stationary phase has been investigated using the Tanaka test. It has been shown that the high pH treatment does not significantly affect the hydrophobicity of the material, but it strongly increases its silanol activity. A representative peptide purification process has been used to investigate the impact of cleaning in place on the separation performance. It has been shown that the caustic regeneration increases the peptide retention at high pH (pH 6.5), due to the interactions between the peptide and the negatively charged silanol groups. These unwanted interactions reduce the separation performances by decreasing the selectivity between the late eluting impurities and the main peptide. However, it has been shown that the effect of the silanol groups on the peptide adsorption and on the separation performance can be minimized by carrying out the purification process at low pH (pH approximately 2). In this case, the silanol groups are protonated and their electrostatic interactions with the positively charged analyte (i.e. peptides) are suppressed. In these conditions, the peptide adsorption and the impurity selectivity is not changing upon high pH column regeneration and the separation performance is not affected.

  12. A universal indicator dye pH assay for crystallization solutions and other high-throughput applications.

    Science.gov (United States)

    Newman, Janet; Sayle, Roger A; Fazio, Vincent J

    2012-08-01

    In protein crystallization, as well as in many other fields, it is known that the pH at which experiments are performed is often the key factor in the success or failure of the trials. With the trend towards plate-based high-throughput experimental techniques, measuring the pH values of solutions one by one becomes prohibitively time- and reagent-expensive. As part of an HT crystallization facility, a colour-based pH assay that is rapid, uses very little reagent and is suitable for 96-well or higher density plates has been developed.

  13. Enhanced reductive dechlorination of tetrachloroethene by nano-sized mackinawite with cyanocobalamin in a highly alkaline condition.

    Science.gov (United States)

    Kim, Sangwoo; Park, Taehyung; Lee, Woojin

    2015-03-15

    In this study, we characterize the reductive dechlorination of tetrachloroethene (PCE) by nano-sized mackinawite (nFeS) with cobalamin (Cbl(III)) at a high pH and investigate the effects of environmental factors, including the concentrations of the target contaminant, reductant, and catalyst and suspension ions on the dechlorination kinetics of PCE. Ninety five percent of the PCE was degraded by nFeS with Cbl(III) in 15 h. Cyclic voltammetry conducted with regard to the reductive dechlorination showed a higher redox potential of mackinawite under a high-pH condition (-1.01 V), suggesting that the oxidation state of the central cobalt ion in the cobalamin could be reduced to Cbl(I). The change of cobalamin species on the nFeS surface was verified under different pH conditions by UV-vis spectroscopy. The rate constant of PCE dechlorination increased from 0.1582 to 0.4284 h(-1) due to the increase in the nFeS content (2.085-20.85 g/L). As the concentration of Cbl(III) increased from 0 to 0.5 mM, the dechlorination kinetics of PCE was accelerated (0-1.4091 h(-1)) but reached a state of equilibrium from 0.5 to 1 mM. The increase in the initial PCE concentration (0.035-1.0 mM) slowed down the dechlorination kinetics (0.2036-0.0962 h(-1)). The dechlorination kinetics was enhanced by 1.5-11 times when 10 mM of ions (Na(+), K(+), Mg(2+), Ca(2+), CO3(2-), SO4(2-), and NO3(-)) were added, while an addition of HCO3 decelerated it by 10 times. This study can provide background knowledge pertaining to the PCE dechlorination by a natural reductant under a high-pH condition and the effect of environmental factors on the dechlorination kinetics for the development of novel remediation technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-11-01

    Full Text Available In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  15. The use of an economical medium for the production of alkaline ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... marine-processing by-products for the production of alkaline proteases by Bacillus ... Key words: Fish powder, hulled grain of wheat, heads and viscera, alkaline ... detergent industry, because the pH of laundry detergents.

  16. Low affinity and slow Na+-binding precedes high affinity aspartate binding in GltPh

    NARCIS (Netherlands)

    Hänelt, Inga; Jensen, Sonja; Wunnicke, Dorith; Slotboom, Dirk Jan

    2015-01-01

    GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters (EAATs) that take up the neurotransmitter glutamate. Each protomer in GltPh consis

  17. Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)

    2014-07-01

    Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.

  18. The evolution of Neoproterozoic magmatism in Southernmost Brazil: shoshonitic, high-K tholeiitic and silica-saturated, sodic alkaline volcanism in post-collisional basins

    Directory of Open Access Journals (Sweden)

    Sommer Carlos A.

    2006-01-01

    Full Text Available The Neoproterozoic shoshonitic and mildly alkaline bimodal volcanism of Southernmost Brazil is represented by rock assemblages associated to sedimentary successions, deposited in strike-slip basins formed at the post-collisional stages of the Brasilian/Pan-African orogenic cycle. The best-preserved volcano sedimentary associations occur in the Camaquã and Campo Alegre Basins, respectively in the Sul-riograndense and Catarinense Shields and are outside the main shear belts or overlying the unaffected basement areas. These basins are characterized by alternation of volcanic cycles and siliciclastic sedimentation developed dominantly on a continental setting under subaerial conditions. This volcanism and the coeval plutonism evolved from high-K tholeiitic and calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, and its evolution were developed during at least 60 Ma. The compositional variation and evolution of post-collisional magmatism in southern Brazil are interpreted as the result mainly of melting of a heterogeneous mantle source, which includes garnet-phlogopite-bearing peridotites, veined-peridotites with abundant hydrated phases, such as amphibole, apatite and phlogopite, and eventually with the addition of an asthenospheric component. The subduction-related metasomatic character of post-collisional magmatism mantle sources in southern Brazil is put in evidence by Nb-negative anomalies and isotope features typical of EM1 sources.

  19. A General Silica-Templating Synthesis of Alkaline Mesoporous Carbon Catalysts for Highly Efficient H2S Oxidation at Room Temperature.

    Science.gov (United States)

    Zhang, Zixiao; Jiang, Wuyou; Long, Donghui; Wang, Jitong; Qiao, Wenming; Ling, Licheng

    2017-01-25

    A general synthesis of alkaline mesoporous carbons (AMCs) is developed based on a simplified silica-templating method for room-temperature catalytic oxidation of H2S. The key to the success relies on dissolving the silica templates to create the interconnected mesoporous structure as well as leaving parts of the alkaline products in the pores; both of them are prerequisites for H2S oxidation. By adjusting the alkaline etching degree and organic/inorganic ratio, the porosity and basicity of the AMC could be simultaneously tuned, allowing the AMCs direct use for H2S catalytic oxidation with an unprecedented removal capacities of 4.49 ± 0.12 g/g. Such excellent catalytic performance should be attributed to the developed pore structure that stores the product sulfur and the strong basicity that promotes the dissociation of H2S into HS(-) ions. Moreover, this simplified silica-templating method could be easily extended to the preparation of various silica templated mesoporous carbon catalysts. All these AMCs demonstrate a successful combination of low cost with high performance, which may well be the answer for the technical development of industrial H2S removal.

  20. Exposure to Fasciola hepatica miracidia increases the sensitivity of Lymnaea (Fossaria) humilis to high and low pH.

    Science.gov (United States)

    Cruz-Mendoza, I; Naranjo-García, E; Quintero-Martínez, M T; Ibarra-Velarde, F; Correa, D

    2006-06-01

    Humidity and temperature have been considered important factors affecting the infectivity of Fasciola hepatica to its molluscan host. One hundred and thirty laboratory-reared Lymnaea humilis were exposed for 4 hr to the miracidia of F. hepatica over a pH range from 4.0 to 10.0, and their rates of survival were compared with 130 similarly treated but unexposed control snails. All control snails died within 24 hr at pH 4.0, but they showed better survival at pH 5.0-10.0. Their sensitivity to solutions with high and low pH, however, was increased if kept in the presence of F. hepatica miracidia. Snails exposed at pH 5.0 died within 24 hr, whereas most other pHs also affected survival such that by day 18 only those snails exposed at pH 7.2 remained alive. The increased sensitivity of the snails to pH could be explained by a damage-mediated release of parasite enzymes, because infectivity was highest at pHs associated with the lowest host mortality.

  1. High pH thresholding of beef with VNIR hyperspectral imaging.

    Science.gov (United States)

    Crichton, Stuart O J; Kirchner, Sascha M; Porley, Victoria; Retz, Stefanie; von Gersdorff, Gardis; Hensel, Oliver; Sturm, Barbara

    2017-12-01

    Initial quality grading of meat is generally carried out using invasive and occasionally destructive sampling for the purposes of pH testing. Precise pH and thresholds exist to allow the classification of different statuses of meat, e.g. for detection of dry, firm, and dark (DFD) (when dealing with cattle and sheep), or pale, soft exudative meat (when dealing with pork). This paper illustrates that threshold detection for pH level in beef with different freshness levels (fresh, fresh frozen-thawed, matured, and matured frozen-thawed). Use of support vector machine (SVM) analysis allowed for the classification of beef samples with a pH above 5.9, and below 5.6, with an accuracy of 91% and 99% respectively. Biochemical and physical conditions of the meat concerning the pH are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Long photoperiods sustain high pH in Arctic kelp forests.

    Science.gov (United States)

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M

    2016-12-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

  3. High Speed Intensified Video Observations of TLEs in Support of PhOCAL

    Science.gov (United States)

    Lyons, Walter A.; Nelson, Thomas E.; Cummer, Steven A.; Lang, Timothy; Miller, Steven; Beavis, Nick; Yue, Jia; Samaras, Tim; Warner, Tom A.

    2013-01-01

    The third observing season of PhOCAL (Physical Origins of Coupling to the upper Atmosphere by Lightning) was conducted over the U.S. High Plains during the late spring and summer of 2013. The goal was to capture using an intensified high-speed camera, a transient luminous event (TLE), especially a sprite, as well as its parent cloud-to-ground (SP+CG) lightning discharge, preferably within the domain of a 3-D lightning mapping array (LMA). The co-capture of sprite and its SP+CG was achieved within useful range of an interferometer operating near Rapid City. Other high-speed sprite video sequences were captured above the West Texas LMA. On several occasions the large mesoscale convective complexes (MCSs) producing the TLE-class lightning were also generating vertically propagating convectively generated gravity waves (CGGWs) at the mesopause which were easily visible using NIR-sensitive color cameras. These were captured concurrent with sprites. These observations were follow-ons to a case on 15 April 2012 in which CGGWs were also imaged by the new Day/Night Band on the Suomi NPP satellite system. The relationship between the CGGW and sprite initiation are being investigated. The past year was notable for a large number of elve+halo+sprite sequences sequences generated by the same parent CG. And on several occasions there appear to be prominent banded modulations of the elves' luminosity imaged at >3000 ips. These stripes appear coincident with the banded CGGW structure, and presumably its density variations. Several elves and a sprite from negative CGs were also noted. New color imaging systems have been tested and found capable of capturing sprites. Two cases of sprites with an aurora as a backdrop were also recorded. High speed imaging was also provided in support of the UPLIGHTS program near Rapid City, SD and the USAFA SPRITES II airborne campaign over the Great Plains.

  4. Effect of low pH on surface rehardening efficacy of high concentration fluoride treatments on non-cavitated lesions.

    Science.gov (United States)

    González-Cabezas, C; Jiang, H; Fontana, M; Eckert, G

    2012-06-01

    Professionally applied acidulated phosphate fluoride has been shown to reduce caries incidence. However, it has been suggested that its efficacy might be reduced in advanced non-cavitated lesions. This study aimed to compare the surface rehardening and fluoride uptake effect of 2%-NaF solutions at different pH on non-cavitated caries-like lesions with two different levels of demineralization. Human enamel specimens were demineralized to create early and advanced non-cavitated lesions. Specimens for each type of lesion were divided into 3 groups, treated for four minutes with either 2%-NaF pH 3.5, 2%-NaF at pH 7.0, or neutral deionized water, and exposed to a pH cycling remineralization/demineralization model for five days. An additional treatment was then done as described above followed by five more days of cycling (total of 2 treatments, ten-day pH cycling). Specimens were analyzed for surface microhardness change and fluoride uptake. It was found that for both types of lesions, acidic pH fluoride treatment was significantly (pfluoride uptake. Furthermore, the low pH vs neutral pH difference in rehardening was significantly larger in the less demineralized lesions (p=0.0001). Water treatment resulted in no rehardening or fluoride uptake. Results from this study suggest that high concentration fluoride treatments at acidic pH are more effective in rehardening the surface of non-cavitated caries lesions and promoting fluoride uptake than those at neutral pH. This effect appears to be greater in less demineralized lesions when compared to more advanced ones. The results of this investigation suggest that when no other attenuating circumstances are present (e.g., the possibility of damaging tooth-coloured restorations), high concentration fluoride treatments for high risk individuals might be more efficacious using products at low pH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor

    Science.gov (United States)

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M.; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N.

    2016-01-01

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions. PMID:27338381

  6. High Sensitivity pH Sensor Based on Porous Silicon (PSi Extended Gate Field-Effect Transistor

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan

    2016-06-01

    Full Text Available In this study, porous silicon (PSi was prepared and tested as an extended gate field-effect transistor (EGFET for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  7. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  8. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    Science.gov (United States)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  9. Solubility controls on aluminum in drinking water at relatively low and high pH.

    Science.gov (United States)

    Kvech, Steve; Edwards, Marc

    2002-10-01

    Potential control of soluble aluminum in drinking water by formation of solids other than Al(OH)3 was examined. At pHs below 6.0, Al(+3) solids containing sulfate, silica or potassium are thermodynamically favored versus amorphous Al(OH)3; however, in this work no evidence could be obtained that solids other than Al(OH)3 would form in practice. At pHs above 9, aluminum and magnesium were discovered to form complex solid phases of approximate composition AlMg2(OH)7, AlMg2SiO2(OH)7 or Al(SiO2)2(OH)3 dependent on circumstance. Formation of these solids provide a mechanistic explanation for enhancements to precipitative softening obtained in practice by dosing Al(+3) salts; that is, improved flocculation/settling and removal of silica from water that interferes with calcium precipitation. The solids also maintain residual aluminum below regulatory guidelines at high pH > 9.5.

  10. The Effect of Alkaline Material Particle Size on Adjustment Ability of Buffer Capacity

    Directory of Open Access Journals (Sweden)

    Girts Bumanis

    2015-09-01

    Full Text Available The pH control in biotechnological processes like anaerobic digestion is one of the key factors to ensure high efficiency in the biogas production process. The decrease of pH level in the digestion process occurs due to the rapid acid formation during metabolic processes of bacteria which leads to the inhibition of the methane producing bacteria; therefore further digestion process is limited. The efficiency of anaerobic digestion reactor decreases dramatically if the pH level falls under pH 6.6. This problem is common for single-stage continuous digesters with a high organic solid content; therefore the active pH controlling method is commonly used. By creating inorganic alkaline material, the passive pH controlling system could be created. Soluble alkalis are enclosed in the matrix of material during the activation process thus providing slow leaching of free alkalis from the material structure in water medium and ensuring pH increase. In this research a porous alkaline composite material was developed as a pH controlling agent for the biogas production. Two mixture compositions with a different Si/Al and Si/Na ratio were created. The effect of particle size of the material was investigated in order to provide different leaching rates for the described material. Granular material with particle fractions 1/2 mm, 2/4 mm and 4/8 mm and a cubical specimen with dimensions 20×20×20 mm were tested. The pH level of water medium increased up to pH 11.6 during the first day and final pH value decreased to 7.8 after 20-day leaching. Alkali leaching can be increased by 19-32% changing the mixture composition by adding glass powder to the alkaline material. The particle size factor was negligible for leaching rate of alkaline material due to the high porosity of material. Research results show that this composite material has a potential to be applied in pH control for biotechnological purposes.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7325

  11. Effects of Bicarbonate and High pH Conditions on Zinc and Other Nutrients Absorption in Rice

    Institute of Scientific and Technical Information of China (English)

    LU Zhong-xian; MENG Fan-hua; S. VILLAREAL; WEI You-zhang; YU Xiao-ping; YANG Xiao-e; K. L. HEONG; LIN Jian-jun; HU Cui; LIU Jian-xiang

    2004-01-01

    Zinc deficiency was widely observed in calcareous soil where bicarbonate and high pH were always related with low zinc availability. In a hydroponic experiment, one zinc-efficient rice (IR36) and one zinc-inefficient rice (IR26) genotypes were employed to investigate the effects of bicarbonate and high pH conditions on absorption, transport of zinc and other nutrients (P, K, Ca, Mg,Fe, Cu, Mn) in rice. As compared with the control, high pH inhibited absorption, translocation and accumulation of zinc and other nutrients in both rice genotypes. Bicarbonate had minor effect on zinc-efficient rice genotype (IR36) whereas it could decrease zinc and other nutrient absorption in zinc-inefficient rice genotype (IR26). These results implied that increasing rice tolerance to bicarbonate is one of the most important strategies to improve rice adaptation for zinc-deficit calcareous soil.

  12. A fluorescent probe which allows highly specific thiol labeling at low pH

    DEFF Research Database (Denmark)

    Nielsen, Jonas W.; Jensen, Kristine Steen; Hansen, Rosa E.

    2012-01-01

    and properties of a thiol-specific reagent, fluorescent cyclic activated disulfide (FCAD), which includes the fluorescein moiety as fluorophore and utilizes a variation of thiol-disulfide exchange chemistry. The leaving-group character of FCAD makes it reactive at pH 3, allowing modification at low pH, limiting...... thiol-disulfide exchange. Different applications are demonstrated including picomolar thiol detection, determination of redox potentials, and in-gel detection of labeled proteins....

  13. Origins of high pH mineral waters from ultramafic rocks, Central Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Jose M. [Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa (Portugal)], E-mail: jose.marques@ist.ult.pt; Carreira, Paula M. [Instituto Tecnologico e Nuclear, Estrada Nacional No 10, 2686-953 Sacavem (Portugal); Carvalho, Maria Rosario [Departamento de Geologia, Faculdade de Ciencias, Universidade de Lisboa, Ed. C6, 3oP, Campo Grande, 1749-016 Lisboa (Portugal); Matias, Maria J. [Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa (Portugal); Goff, Fraser E. [Earth and Planetary Sciences Department MSCO3-2040, University of New Mexico, Albuquerque, New Mexico 87131-000 (United States); Basto, Maria J.; Graca, Rui C.; Aires-Barros, Luis [Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001, Lisboa (Portugal); Rocha, Luis [Junta de Freguesia, Av. da Libertacao, 45-D, 7460-002, Cabeco de Vide (Portugal)

    2008-12-15

    This paper reviews the geochemical, isotopic ({sup 2}H, {sup 18}O, {sup 13}C, {sup 3}H and {sup 14}C) and numerical modelling approaches to evaluate possible geological sources of the high pH (11.5)/Na-Cl/Ca-OH mineral waters from the Cabeco de Vide region (Central-Portugal). Water-rock interaction studies have greatly contributed to a conceptual hydrogeological circulation model of the Cabeco de Vide mineral waters, which was corroborated by numerical modelling approaches. The local shallow groundwaters belong to the Mg-HCO{sub 3} type, and are derived by interaction with the local serpentinized rocks. At depth, these type waters evolve into the high pH/Na-Cl/Ca-OH mineral waters of Cabeco de Vide spas, issuing from the intrusive contact between mafic/ultramafic rocks and an older carbonate sequence. The Cabeco de Vide mineral waters are supersaturated with respect to serpentine indicating that they may cause serpentinization. Magnesium silicate phases (brucite and serpentine) seem to control Mg concentrations in Cabeco de Vide mineral waters. Similar {delta}{sup 2}H and {delta}{sup 18}O suggest a common meteoric origin and that the Mg-HCO{sub 3} type waters have evolved towards Cabeco de Vide mineral waters. The reaction path simulations show that the progressive evolution of the Ca-HCO{sub 3} to Mg-HCO{sub 3} waters can be attributed to the interaction of meteoric waters with serpentinites. The sequential dissolution at CO{sub 2} (g) closed system conditions leads to the precipitation of calcite, magnesite, amorphous silica, chrysotile and brucite, indicating that the waters would be responsible for the serpentinization of fresh ultramafic rocks (dunites) present at depth. The apparent age of Cabeco de Vide mineral waters was determined as 2790 {+-} 40 a BP, on the basis of {sup 14}C and {sup 13}C values, which is in agreement with the {sup 3}H concentrations being below the detection limit.

  14. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest

    Directory of Open Access Journals (Sweden)

    C. A. Frieder

    2012-03-01

    Full Text Available Predicting consequences of ocean deoxygenation and ocean acidification for nearshore marine ecosystems requires baseline dissolved oxygen (DO and carbonate chemistry data that are both high-frequency and high-quality. Such data allow accurate assessment of environmental variability and present-day organism exposure regimes. In this study, scales of DO and pH variability were characterized over one year in a nearshore, kelp forest ecosystem in the Southern California Bight. DO and pH were strongly, positively correlated revealing that organisms on this upwelling shelf are not only exposed to low pH but also low DO. The dominant temporal scale of DO and pH variability occurred on semidiurnal, diurnal and event (days–weeks time scales. Daily ranges in DO and pH at 7 m water depth (13 mab could be as large as 220 μmol kg−1 and 0.36 units, respectively. This range is much greater than the expected decreases in pH in the open ocean by the year 2100. Sources of pH and DO variation include photosynthesis within the kelp forest ecosystem, which can elevate DO and pH by up to 60 μmol kg−1 and 0.1 units over one week following the intrusion of high-density, nutrient-rich water. Accordingly, highly productive macrophyte-based ecosystems could serve as deoxygenation and acidification refugia by acting to elevate DO and pH relative to surrounding waters. DO and pH exhibited greater spatial variation over a 10 m increase in water depth (from 7 to 17 m than along a 5-km stretch of shelf in a cross-shore or alongshore direction. Over a three-month time period mean DO and pH at 17-m water depth were 168 μmol kg−1 and 7.87, respectively. These values represent a 35% decrease in mean DO and 37% increase in [H+] relative to surface waters. High-frequency variation was also reduced at depth. The mean daily range in DO and pH was 39% and 37% less, respectively, at 17-m water depth relative to the surface. As a

  15. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  16. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  17. The thesis of the alkaline milieu in oncology: a review.

    Science.gov (United States)

    Malhotra, S L

    1993-02-01

    An alkaline milieu is a common factor in some carcinomas of the oropharynx and oesophagus, the stomach, the bronchus, the cervix and the large bowel. The hypothesis is advanced that a change to an alkaline pH enhances the mitotic activity of mucous cells and that this change can be often avoided by alterations in diet and habit.

  18. Optimization of alkaline protease production by Streptomyces sp ...

    African Journals Online (AJOL)

    Hacene

    2016-06-29

    Jun 29, 2016 ... The results showed the presence of an alkaline protease with optimal pH and ... significant effect on the production of the enzyme (fructose and malt extract), then defining theirs ..... Urease test. + ..... terminating inhibitors. Proc.

  19. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  20. Starch source in high concentrate rations does not affect rumen pH, histamine and lipopolysaccharide concentrations in dairy cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakom, C.; Everts, H.; Hendriks, W.H.

    2012-01-01

    The replacement of ground corn by cassava meal on rumen pH, lipopolysaccharide (LPS) and histamine concentrations under typical Thai feeding conditions (high concentrate diets and rice straw as the sole source of roughage) was investigated. Four rumen-fistulated crossbred Holstein, non-pregnant, dry

  1. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    Science.gov (United States)

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor.

  2. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH

    NARCIS (Netherlands)

    Pennacchietti, E.; Lammens, T.M.; Capitani, G.; Franssen, M.C.R.; John, R.A.; Bossa, F.; Biase, De D.

    2009-01-01

    Glutamate decarboxylase (GadB) from Escherichia coli is a hexameric, pyridoxal 5'-phosphate-dependent enzyme catalyzing CO2 release from the a-carboxyl group of l-glutamate to yield ¿-aminobutyrate. GadB exhibits an acidic pH optimum and undergoes a spectroscopically detectable and strongly cooperat

  3. Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Julian; Vaneski, Aleksandar; Susha, Andrei S.; Rogach, Andrey L., E-mail: andrey.rogach@cityu.edu.hk [Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong); Pesch, Georg R.; Yang Teoh, Wey [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2014-12-01

    We demonstrate enhanced hydrogen generation rates at high pH using colloidal cadmium sulphide nanorods decorated with Pt nanoparticles. We introduce a simplified procedure for the decoration and subsequent hydrogen generation, reducing both the number of working steps and the materials costs. Different Pt precursor concentrations were tested to reveal the optimal conditions for the efficient hydrogen evolution. A sharp increase in hydrogen evolution rates was measured at pH 13 and above, a condition at which the surface charge transfer was efficiently mediated by the formation of hydroxyl radicals and further consumption by the sacrificial triethanolamine hole scavenger.

  4. Enhanced hydrogen evolution rates at high pH with a colloidal cadmium sulphide–platinum hybrid system

    Directory of Open Access Journals (Sweden)

    Julian Schneider

    2014-12-01

    Full Text Available We demonstrate enhanced hydrogen generation rates at high pH using colloidal cadmium sulphide nanorods decorated with Pt nanoparticles. We introduce a simplified procedure for the decoration and subsequent hydrogen generation, reducing both the number of working steps and the materials costs. Different Pt precursor concentrations were tested to reveal the optimal conditions for the efficient hydrogen evolution. A sharp increase in hydrogen evolution rates was measured at pH 13 and above, a condition at which the surface charge transfer was efficiently mediated by the formation of hydroxyl radicals and further consumption by the sacrificial triethanolamine hole scavenger.

  5. An alkaline element

    Energy Technology Data Exchange (ETDEWEB)

    Arita, T.; Murakami, K.; Okha, K.

    1983-04-28

    A cathode with a dual layer active mass is installed in the disk shaped alkaline silver and zinc element. The first layer, which is turned towards the anode, contains 85 parts Ag2O, 5 parts electrolytic MnO2 and 10 parts graphite. The second layer, which contacts the bottom of the element, contains 35 parts Ag2O, 60 parts electrolytic MnO2 and 5 parts graphite. The electrical capacity of the first and second layers is 60 and 40, respectively. The first layer may be discharged with a high current density and the second layer with less current density. The element has high characteristics with comparatively low cost.

  6. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    Science.gov (United States)

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  7. Long photoperiods sustain high pH in Arctic kelp forests

    DEFF Research Database (Denmark)

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, M.

    2016-01-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in p...

  8. Low pH, high salinity: too much for Microbial Fuel Cells?

    CERN Document Server

    Jannelli, Nicole; Cigolotti, Viviana; Minutillo, Mariagiovanna; Falcucci, Giacomo

    2016-01-01

    Twelve single chambered, air-cathode Tubular Microbial Fuel Cells (TMFCs) have been filled up with fruit and vegetable residues. The anodes were realized by means of a carbon fiber brush, while the cathodes were realized through a graphite-based porous ceramic disk with Nafion membranes (117 Dupont). The performances in terms of polarization curves and power production were assessed according to different operating conditions: percentage of solid substrate water dilution, adoption of freshwater and a 35mg/L NaCl water solution and, finally, the effect of an initial potentiostatic growth. All TMFCs operated at low pH (pH$=3.0 \\pm 0.5$), as no pH amendment was carried out. Despite the harsh environmental conditions, our TMFCs showed a Power Density (PD) ranging from 20 to 55~mW/m$^2 \\cdot$kg$_{\\text{waste}}$ and a maximum CD of 20~mA/m$^2 \\cdot$kg$_{\\text{waste}}$, referred to the cathodic surface. COD removal after a $28-$day period was about $45 \\%$. The remarkably low pH values as well as the fouling of Nafi...

  9. Hybrid of g-C3N4 Assisted Metal-Organic Frameworks and Their Derived High-Efficiency Oxygen Reduction Electrocatalyst in the Whole pH Range.

    Science.gov (United States)

    Gu, Wenling; Hu, Liuyong; Li, Jing; Wang, Erkang

    2016-12-28

    A highly active electrocatalyst in the whole pH range for oxygen reduction reaction (ORR) is produced by employing the g-C3N4 assisted metal-organic frameworks (MOF) of C3N4@NH2-MIL-101 as the precursor. By pyrolyzing the hybrid at 700 °C, the C3N4@NH2-MIL-101 could be easily transformed into an abundant iron and nitrogen codoped porous carbon skeleton. The selective use of g-C3N4 as a support template plays a critical role in facilitating the formation of the architecture with high surface area and rich N content. The obtained catalyst of C3N4@NH2-MIL-101-700 manifested remarkable oxygen reduction activity over the pH 0-14. Noteworthy, the catalyst displayed outstanding ORR activity with more positive half-wave potential than that of the commercial Pt/C catalyst in both alkaline and neutral conditions. Additionally, the optimal C3N4@NH2-MIL-101-700 also exhibited prominent ORR activity which is almost equal to that of commercial Pt/C in acidic electrolyte with high selectivity and very low H2O2 yield. Most importantly, the better methanol tolerance and much higher stability than the commercial Pt/C of C3N4@NH2-MIL-101-700 no matter under alkaline, neutral, or acid conditions further demonstrate the catalyst to be a promising candidate for practical electrocatalytic applications.

  10. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  11. Hypoxia induced expression of endogenous markers in vitro is highly influenced by pH

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Alsner, Jan; Overgaard, Jens

    2007-01-01

    BACKGROUND: Genes such as carbonic anhydrase IX (Ca9), glucose transporter 1 (Glut1), lactate dehydrogenase A (LDH-A), osteopontin (OPN) and lysyl oxidase (LOX) have been suggested as hypoxic markers, but inconsistent results suggest that factors other than oxygen influence their expression......Ha and FaDu(DD) cells Ca9 and LOX reached the highest level of expression at 1% oxygen. In FaDu(DD) cells, a pH of 6.5 had a medium suppression effect on the hypoxia induced expression of Ca9. pH 6.3 resulted in severe suppression of expression for Ca9 and LOX in both SiHa and FaDu(DD). Glut1 and LDH-A had...

  12. Hypoxia induced expression of endogenous markers in vitro is highly influenced by pH

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Alsner, Jan; Overgaard, Jens;

    2007-01-01

    BACKGROUND: Genes such as carbonic anhydrase IX (Ca9), glucose transporter 1 (Glut1), lactate dehydrogenase A (LDH-A), osteopontin (OPN) and lysyl oxidase (LOX) have been suggested as hypoxic markers, but inconsistent results suggest that factors other than oxygen influence their expression......Ha and FaDu(DD) cells Ca9 and LOX reached the highest level of expression at 1% oxygen. In FaDu(DD) cells, a pH of 6.5 had a medium suppression effect on the hypoxia induced expression of Ca9. pH 6.3 resulted in severe suppression of expression for Ca9 and LOX in both SiHa and FaDu(DD). Glut1 and LDH-A had...

  13. Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris.

    Science.gov (United States)

    Zhu, Taicheng; You, Lijin; Gong, Fuyu; Xie, Minfeng; Xue, Yanfen; Li, Yin; Ma, Yanhe

    2011-09-10

    A process for efficient production of an alkaline β-mannanases from Bacillus sp. N16-5 was established by heterologous expression using Pichia pastoris. A high producing strain was generated by removing the native β-mannanases signal peptide and increasing the copy number of the mature β-mannanases gene. High cell density fermentation of this strain in 1-L bioreactor led to a production level of 4164 U/mL after 96 h of induction. Sorbitol co-feeding and temperature-lowering strategies both increased the β-mannanase production levels. Combined usage of these two strategies achieved the most effective result-the enzyme level reached 6336 U/mL within 84 h, which to our best knowledge is the highest production level reported for the expression of extreme β-mannanase thus far. The strategy described in this work can also be adapted to express other important industrial enzymes with extreme properties.

  14. Usefulness of Organic Acid Produced by Exiguobacterium sp. 12/1 on Neutralization of Alkaline Wastewater

    Directory of Open Access Journals (Sweden)

    Niha Mohan Kulshreshtha

    2012-01-01

    Full Text Available The aim of this study was to investigate the role of organic acids produced by Exiguobacterium sp. strain 12/1 (DSM 21148 in neutralization of alkaline wastewater emanated from beverage industry. This bacterium is known to be able to grow in medium of pH as high as pH 12.0 and to neutralize alkaline industrial wastewater from pH 12.0 to pH 7.5. The initial investigation on the type of functional groups present in medium, carried out using FT-IR spectroscopy, revealed the presence of peaks corresponding to carbonyl group and hydroxyl group, suggesting the release of carboxylic acid or related metabolic product(s. The identification of specific carboxylic group, carried out using RP-HPLC, revealed the presence of a single peak in the culture supernatant with retention time most similar to formic acid. The concentration of acid produced on different carbon sources was studied as a function of time. Although acid was present in same final concentration, the rate of acid production was highest in case of medium supplemented with sucrose followed by fructose and glucose. The knowledge of metabolic products of the bacterium can be considered as a first step towards realization of its potential for large-scale bioremediation of alkaline wastewater from beverage industry.

  15. Process for treating alkaline wastes for vitrification

    Science.gov (United States)

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  16. Structural analysis of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5: implications for adaptation to alkaline conditions.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5, has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α(8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α(8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK(a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further

  17. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  18. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies.

    Science.gov (United States)

    Koziolek, M; Schneider, F; Grimm, M; Modeβ, Chr; Seekamp, A; Roustom, T; Siegmund, W; Weitschies, W

    2015-12-28

    The intraluminal conditions of the fed stomach are critical for drug release from solid oral dosage forms and thus, often associated with the occurrence of food effects on oral bioavailability. In this study, intragastric pH and pressure profiles present after the ingestion of the high-caloric, high-fat (964 kcal) FDA standard breakfast were investigated in 19 healthy human subjects by using the telemetric SmartPill® capsule system (26 × 13 mm). Since the gastric emptying of such large non-digestible objects is typically accomplished by the migrating motor complex phase III activity, the time required for recurrence of fasted state motility determined the gastric emptying time (GET). Following the diet recommendations of the FDA guidance on food effect studies, the mean GET of the telemetric motility capsule was 15.3 ± 4.7 h. Thus, the high caloric value of the standard breakfast impeded gastric emptying before lunch in 18 out of 19 subjects. During its gastric transit, the capsule was exposed to highly dynamic conditions in terms of pH and pressure, which were mainly dependent on further meal and liquid intake, as well as the intragastric capsule deposition behavior. Maximum pH values in the stomach were measured immediately after capsule intake. The median pH value of the 5 min period after capsule ingestion ranged between pH 3.3 and 5.3. Subsequently, the pH decreased relatively constantly and reached minimum values of pH 0-1 after approximately 4 h. The maximum pressure within the stomach amounted to 293 ± 109 mbar and was clearly higher than the maximum pressure measured at the ileocaecal junction (60 ± 35 mbar). The physiological data on the intraluminal conditions within the fed stomach generated in this study will hopefully contribute to a better understanding of food effects on oral drug product performance.

  19. The Dynamic Changes of Gastroesophageal pH in Children with Duodenogastric Reflux and Alkaline Gastroesophageal Reflux%小儿十二指肠胃返流与碱性胃食管返流的pH动态变化特点

    Institute of Scientific and Technical Information of China (English)

    王维林; 吉士俊; 王慧贞

    1997-01-01

    Objective:To study the physiopathologic significance of duodenogastric reflux and alkaline gastroesophageal reflux in children.Methods:Twenty-four hour double gastroesophageal pH monitoring was performed on 68 patients with pathologic reflux and 39 normal children.The gastroesophageal pH was monitored in feeding state,gastric emptying and upright or supine posture.Results:Duodenogastric reflux was observed on 19 cases(48.7%)of the control group.It was a transitory gastric pH alkalization after feeding and mainly in upright posture.Alkaline gastroesophageal reflux and duodenogastric reflux were observed on 22 cases(32.4%)of pathologic reflux group and it was a marked gastroesophageal pH alkalization of longer duration,mainly in gastric emptying state and supine posture.Conclusions:Transitory duodenogastric reflux after feeding might be a physiologic phenomenon.Alkaline gastroesophageal reflux occurred on the basis of duodenogastric reflux may be an important type of reflux in children with reflux diseases.To monitor the gastroesophageal pH in gastric emptying state and supine posture may be of great value to detect the pathologic reflux.%目的:动态监测小儿十二指肠胃返流与碱性胃食管返流的pH变化特点,研究返流发生的病理生理意义.方法:对68例病理性胃食管返流小儿及39例正常小儿进行胃食管双pH24小时动态监测,观察小儿在进餐及胃排空后以及不同体位下胃食管pH值的变化特点.结果:对照组中19例(48.7%)监测到十二指肠胃返流,以立位及进餐后发生为主,持续时间短暂.病理性胃食管返流者中22例(32.4%)监测到十二指肠胃返流及碱性胃食管返流,以空腹及卧位时发生为主,持续时间及pH值碱化强度显著高于对照组.结论:进餐后短暂的十二指肠胃返流可能为生理现象;在十二指肠胃返流基础上发生的碱性胃食管返流是小儿胃食管返流的主要类型之一;空腹及卧位时的胃食管双pH监测在

  20. Alkaline resistant ceramics; Alkalimotstaandskraftiga keramer

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Stig-Bjoern [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-02-01

    Despite durability in several environments, ceramics and refractories can not endure alkaline environments at high temperature. An example of such an environment is when burning biofuel in modern heat and power plants in which the demand for increasing efficiency results in higher combustion temperatures and content of alkaline substances in the flue gas. Some experiences of these environments has been gained from such vastly different equipment as regenerator chambers in the glass industry and MHD-generators. The grains of a ceramic material are usually bonded together by a glassy phase which despite it frequently being a minor constituent render the materials properties and limits its use at elevated temperature. The damage is usually caused by alkaline containing low-melting phases and the decrease of the viscosity of the bonding glass phase which is caused by the alkaline. The surfaces which are exposed to the flue gas in a modern power plant are not only exposed to the high temperature but also a corroding and eroding, particle containing, gas flow of high velocity. The use of conventional refractory products is limited to 1300-1350 deg C. Higher strength and fracture toughness as well as durability against gases, slag and melts at temperatures exceeding 1700 deg C are expected of the materials of the future. Continuous transport of corrosive compounds to the surface and corrosion products from the surface as well as a suitable environment for the corrosion to occur in are prerequisites for extensive corrosion to come about. The highest corrosion rate is therefore found in a temperature interval between the dew point and the melting point of the alkaline-constituent containing compound. It is therefore important that the corrosion resistance is sufficient in the environment in which alkaline containing melts or slag may appear. In environments such as these, even under normal circumstances durable ceramics, such as alumina and silicon carbide, are attacked

  1. Survival of prokaryotes in a polluted waste dump during remediation by alkaline hydrolysis.

    Science.gov (United States)

    Nielsen, Marie Bank; Kjeldsen, Kasper Urup; Lever, Mark Alexander; Ingvorsen, Kjeld

    2014-04-01

    A combination of culture-dependent and culture-independent techniques was used to characterize bacterial and archaeal communities in a highly polluted waste dump and to assess the effect of remediation by alkaline hydrolysis on these communities. This waste dump (Breakwater 42), located in Denmark, contains approximately 100 different toxic compounds including large amounts of organophosphorous pesticides such as parathions. The alkaline hydrolysis (12 months at pH >12) decimated bacterial and archaeal abundances, as estimated by 16S rRNA gene-based qPCR, from 2.1 × 10(4) and 2.9 × 10(3) gene copies per gram wet soil respectively to below the detection limit of the qPCR assay. Clone libraries constructed from PCR-amplified 16S rRNA gene fragments showed a significant reduction in bacterial diversity as a result of the alkaline hydrolysis, with preferential survival of Betaproteobacteria, which increased in relative abundance from 0 to 48 %. Many of the bacterial clone sequences and the 27 isolates were related to known xenobiotic degraders. An archaeal clone library from a non-hydrolyzed sample showed the presence of three main clusters, two representing methanogens and one representing marine aerobic ammonia oxidizers. Isolation of alkalitolerant bacterial pure cultures from the hydrolyzed soil confirmed that although alkaline hydrolysis severely reduces microbial community diversity and size certain bacteria survive a prolonged alkaline hydrolysis process. Some of the isolates from the hydrolyzed soil were capable of growing at high pH (pH 10.0) in synthetic media indicating that they could become active in in situ biodegradation upon hydrolysis.

  2. A new alkaline elastase of an alkalophilic bacillus.

    Science.gov (United States)

    Tsai, Y C; Yamasaki, M; Yamamoto-Suzuki, Y; Tamura, G

    1983-11-01

    A new alkaline elastase was purified from the culture broth of an alkalophilic Bacillus sp. Ya-B. This was a serine proteinase. Molecular weight was 25,000. The optimum pH for elastin and casein was 11.75. The enzyme had very high specific activity, 12,400 units/mg protein for casein, and 2,440 units/mg protein for elastin at the optimum pH. It showed marked preference for elastin. The relative activity of elastin/casein of this enzyme was 17 and 6 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively. This enzyme also had higher keratin and collagen hydrolyzing activity in comparison with subtilisin.

  3. Microfilament Dynamics is Required for Root Growth under Alkaline Stress in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yue Zhou; Zijun Yang; Guangqin Guo; Yan Guo

    2010-01-01

    The microfilament (MF) cytoskeleton has crucial functions in plant development. Recent studies have revealed the function of MFs in diverse stress response. Alkaline stress is harmful to plant growth;however, it remains unclear whether the MFs play a role in alkaline stress. In the present study, we find that blocking MF assembly with latrunculin B (Lat B) leads to inhibition of plant root growth, and stabilization of MFs with phalloidin does not significantly affect plant root growth under normal conditions. In high external pH conditions, MF de-polymerization is induced and that associates with the reduction of root growth; phalloidin treatment partially rescues this reduction. Moreover, Lat B treatment further decreases the survival rate of seedlings growing in high external pH conditions. However, a high external pH (8.0) does not affect MF stability in vitro. Taken together, our results suggest that alkaline stress may trigger a signal that leads the dynamics of MFs and in turn regulates root growth.

  4. Petrogenesis and its significance to continental dynamics of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang, Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    赖绍聪; 刘池阳; S.Y.O’Reilly

    2001-01-01

    Detailed studies indicate that the main rock type of the Neogene high-potassium calc-alkaline volcanic rock association from north Qiangtang is andesite, dacite and rhyolite. They belong to typical crust-generation magmatic system and originate from the special thickened crust of the Tibetan Plateau by dehydration melting. This group of rocks exhibits LREE enrichment but no remarkable Eu anomaly that shows their source region should be a thickened deep crust consisting of eclogitic mass group, implying that the crust had been thickened and an eclogitic deep crust had been formed during the Neogene period in Qiangtang area. This understanding is important and significant to making further discussion on the uplift mechanism and continental dynamics of the Tibetan Plateau.

  5. Characterization of a Highly pH Stable Chi-Class Glutathione S-Transferase from Synechocystis PCC 6803.

    Science.gov (United States)

    Pandey, Tripti; Singh, Sudhir Kumar; Chhetri, Gaurav; Tripathi, Timir; Singh, Arvind Kumar

    2015-01-01

    Glutathione S-transferases (GSTs) are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium--Synechocystis PCC 6803. The gene sll0067 was expressed in Escherichia coli (E. coli), and the protein was purified to homogeneity. The expressed protein exists as a homo-dimer, which is composed of about 20 kDa subunit. The results of the steady-state enzyme kinetics displayed protein's glutathione conjugation activity towards its class specific substrate- isothiocyanate, having the maximal activity with phenethyl isothiocyanate. Contrary to the poor catalytic activity and low specificity towards standard GST substrates such as 1-chloro-2,4-dinitrobenzene by bacterial GSTs, PmGST B1-1 from Proteus mirabilis, and E. coli GST, sll0067 has broad substrate degradation capability like most of the mammalian GST. Moreover, we have shown that cyanobacterial GST sll0067 is catalytically efficient compared to the best mammalian enzymes. The structural stability of GST was studied as a function of pH. The fluorescence and CD spectroscopy in combination with size exclusion chromatography showed a highly stable nature of the protein over a broad pH range from 2.0 to 11.0. To the best of our knowledge, this is the first GST with such a wide range of pH related structural stability. Furthermore, the presence of conserved Proline-53, structural motifs such as N-capping box and hydrophobic staple further aid in the stability and proper folding of cyanobacterial GST-sll0067.

  6. Characterization of a Highly pH Stable Chi-Class Glutathione S-Transferase from Synechocystis PCC 6803.

    Directory of Open Access Journals (Sweden)

    Tripti Pandey

    Full Text Available Glutathione S-transferases (GSTs are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium--Synechocystis PCC 6803. The gene sll0067 was expressed in Escherichia coli (E. coli, and the protein was purified to homogeneity. The expressed protein exists as a homo-dimer, which is composed of about 20 kDa subunit. The results of the steady-state enzyme kinetics displayed protein's glutathione conjugation activity towards its class specific substrate- isothiocyanate, having the maximal activity with phenethyl isothiocyanate. Contrary to the poor catalytic activity and low specificity towards standard GST substrates such as 1-chloro-2,4-dinitrobenzene by bacterial GSTs, PmGST B1-1 from Proteus mirabilis, and E. coli GST, sll0067 has broad substrate degradation capability like most of the mammalian GST. Moreover, we have shown that cyanobacterial GST sll0067 is catalytically efficient compared to the best mammalian enzymes. The structural stability of GST was studied as a function of pH. The fluorescence and CD spectroscopy in combination with size exclusion chromatography showed a highly stable nature of the protein over a broad pH range from 2.0 to 11.0. To the best of our knowledge, this is the first GST with such a wide range of pH related structural stability. Furthermore, the presence of conserved Proline-53, structural motifs such as N-capping box and hydrophobic staple further aid in the stability and proper folding of cyanobacterial GST-sll0067.

  7. Efficacy of alkaline washing for the decontamination of orange fruit surfaces inoculated with Escherichia coli.

    Science.gov (United States)

    Pao, S; Davis, C L; Kelsey, D F

    2000-07-01

    The effectiveness of washing treatments to decontaminate orange fruit surfaces inoculated with Escherichia coli was evaluated. Washing on roller brushes with fruit cleaners or sanitizers followed by potable water rinse reduced E. coli by 1.9 to 3.5 log cycles. Prewetting fruit for 30 s before washing provided no significant benefit in most cases. Additional sanitizing treatments either with chlorine or acid sanitizers did not enhance the results of alkaline washing. In general, high pH washing solutions (pH 11.8) applied with an adequate spray volume effectively reduced the surface contamination of fruit that lowered the microbial load of fresh juice as well.

  8. Six months of daily high-dose xylitol in high-risk schoolchildren: a randomized clinical trial on plaque pH and salivary mutans streptococci.

    Science.gov (United States)

    Campus, G; Cagetti, M G; Sacco, G; Solinas, G; Mastroberardino, S; Lingström, P

    2009-01-01

    A randomized clinical trial was designed to evaluate the effect of daily high-dose xylitol chewing gum on plaque pH and salivary mutans streptococci (MS) in a sample of schoolchildren at high risk of caries. The study was performed on 204 subjects (acceptance rate 88.3%). Inclusion criteria were: >1 and salivary MS concentration >10(5) CFU/ml. Subjects were randomly assigned to the xylitol or control group. Study design included one examination at baseline (t(0)), one after 3 months of chewing (t(1)), one after 6 months of chewing (t(2)) and the last 3 months after the end of chewing period (t(3)). Plaque pH was assessed using the MicroTouch technique, following a sucrose challenge. The area under the curve (AUC(5.7) and AUC(6.2)) was recorded. Whole saliva was collected in sterile vials and MS CFU/ml were counted. Data were analysed using repeated-measures ANOVA. The main result was that plaque acidogenicity was reduced in both groups. The differences between treatments were statistically significant both for plaque pH and MS concentration; the interaction term for treatment and time was statistically significant (p salivary MS concentration >10(5) and those with pH, and that this effect was statistically greater when using xylitol chewing gums, both on plaque pH and MS salivary concentration.

  9. Alkaline battery operational methodology

    Science.gov (United States)

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  10. Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH

    Science.gov (United States)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-12-01

    Carboxymethylcellulose (CMC) hydrogel formed by ionizing radiation at highly concentrated aqueous solutions was found to undergo swelling depending on the pH of the swelling media. Swelling increases at neutral and basic pH due to ionization of carboxymethyl groups on side chains. The presence of charges develops repulsive forces between polymer chains of the network causing its expansion. Hydrogel in relaxed state as well as dried gel reveals good mechanical properties. It was considered that intermolecular crosslinking reactions occur by a radical route. Radicals placed on anhydroglucose repeating unit as well as on side chains were distinguished from ESR spectra of CMC. A stable doublet signal with 2.0 mT splitting constant belongs to a radical placed on the α-carbon atom of the substituent group, R-O- rad CH-COO -. It was assumed that this species participates in intermolecular crosslinking.

  11. Differences in the Effect of Coal Pile Runoff (Low pH, High Metal Concentrations) Versus Natural Carolina Bay Water (Low pH, Low Metal Concentrations) on Plant Condition and Associated Bacterial Epiphytes of Salvinia minima.

    Science.gov (United States)

    Lindell, A H; Tuckfield, R C; McArthur, J V

    2016-05-01

    Numerous wetlands and streams have been impacted by acid mine drainage (AMD) resulting in lowered pH and increased levels of toxic heavy metals. Remediation of these contaminated sites requires knowledge on the response of microbial communities (especially epiphytic) and aquatic plants to these altered environmental conditions. We examined the effect of coal pile runoff waters as an example of AMD in contrast to natural water from Carolina Bays with low pH and levels of metals on Salvinia minima, a non-native, metal accumulating plant and associated epiphytic bacteria. Treatments included water from two Carolina Bays, one AMD basin and Hoagland's Solution at two pH levels (natural and adjusted to 5.0-5.5). Using controlled replicated microcosms (N = 64) we determined that the combination of low pH and high metal concentrations has a significant negative impact (p epiphytes. Solution metal concentrations dropped indicating removal from solution by S. minima in all microcosms.

  12. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon-Polyaniline Composite.

    Science.gov (United States)

    Rahimi, Rahim; Ochoa, Manuel; Tamayol, Ali; Khalili, Shahla; Khademhosseini, Ali; Ziaie, Babak

    2017-03-15

    The development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This method produces highly porous carbonized 2D serpentine traces that are subsequently permeated with polyaniline (PANI) as the conductive filler, binding material, and pH-sensitive membrane. The experimental and simulation results demonstrate that the stretchable serpentine PANI/C-PI interconnections with an optimal trace width of 0.3 mm can withstand elongations of up to 135% and are robust to more than 12 000 stretch-and-release cycles at 20% strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity of -53 mV/pH (r(2) = 0.976) with stable performance in the physiological range of pH 4-10. The sensor shows excellent stability to applied longitudinal and transverse strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. The material biocompatibility is confirmed with NIH 3T3 fibroblast cells via PrestoBlue assays.

  13. Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries.

    Science.gov (United States)

    Dadshahi, Zahra; Homaei, Ahmad; Zeinali, Farrokhzad; Sajedi, Reza H; Khajeh, Khosro

    2016-07-01

    A novel thermostable protease was purified from Penaeus vannamei from Persian Gulf to homogeneity level using ammonium sulfate precipitation and anion-exchange chromatography. The purified protease showed a single band on native and SDS-PAGE with a molecular weight of 24kDa on SDS-PAGE. The enzyme showed the broad highest catalytic activity for hydrolysis of the substrate with maximal activity at pH 7 and 80°C. Activity of the enzyme was inhibited by Hg(2+), Zn(2+) Co(2+) and Cu(2+), while protease activity was increased in the presence of Fe(2+) and Mn(2+) by factors of 173% and 102%, respectively. Enzyme shows a broad substrate specificity and hydrolyzes both natural and synthetic substrates. Based on the Michaelis-Menten plots, the Km with casein as substrate was 16.8μM and Vmax was 82.6μM/min. The enzyme, derived from L. vannamei, possesses unique characteristics and could be used in various industrial and biotechnological applications.

  14. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  15. Acid/alkaline ash diets: time for assessment and change.

    Science.gov (United States)

    Dwyer, J; Foulkes, E; Evans, M; Ausman, L

    1985-07-01

    The purpose of this article is to review critically the assumptions made to predict the effects of different diets on the pH of urine by calculations from food tables and lists of acid or alkaline ash in foods. Acid/alkaline ash calculations were completed for 7 days' worth of omnivore, lacto-ovo, and vegan diets. The vegetarian diets were significantly more alkaline than the omnivore diets, and the vegan diets were more alkaline than lacto-ovo vegetarian diets. The article discusses the history of the acid/alkaline ash concept, assumptions underlying it, mechanisms by which urine is acidified, how the acid/alkaline ash content of diets is calculated from food tables, difficulties arising in acid/ash calculations, and their validity in predicting urine pH. The authors conclude that while diet does influence the pH of urine, present calculation methods are time consuming, imprecise, and do not permit quantitative prediction of urine pH. Better methods for calculating the effects of diet on acid-base balance are needed.

  16. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography.

    Science.gov (United States)

    Farnan, Dell; Moreno, G Tony

    2009-11-01

    In the biotechnology industry, ion-exchange chromatography is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies. Ionic strength based ion exchange separations, while having excellent resolving power and robustness, are product specific and time-consuming to develop. In the present work, a pH gradient based separation using a cation exchange column is described and shown to be a multiproduct charge sensitive separation method for monoclonal antibodies. Simple mixtures of defined buffer components were used to generate the pH-gradients that separate closely related antibody species. The form of the pH gradient was controlled and optimized by the pump as well as the buffer composition if necessary. During this work, the buffer compositions for the separation were optimized in parallel for several MAbs. The data shows that the multiproduct method is optimal for all of the MAbs studied. Operational aspects of the separation such as column chemistry, column length, and sample matrix indicate a very robust method. The pH gradient ion-exchange method is demonstrated to have significant resolving power and peak capacities far in excess of what we would expect for ionic strength elution ion-exchange. Data obtained demonstrates that the separation is relatively insensitive to column length. Direct analysis (no buffer exchange) of samples in matrixes consistent with in-process manufacturing pools is demonstrated. Such a capability is extremely useful for the high throughput evaluation of in-process and final product samples.

  17. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  18. Determination of equilibrium constant of amino carbamate adduct formation in sisomicin by a high pH based high performance liquid chromatography.

    Science.gov (United States)

    Wlasichuk, Kenneth B; Tan, Li; Guo, Yushen; Hildebrandt, Darin J; Zhang, Hao; Karr, Dane E; Schmidt, Donald E

    2015-01-01

    Amino carbamate adduct formation from the amino group of an aminoglycoside and carbon dioxide has been postulated as a mechanism for reducing nephrotoxicity in the aminoglycoside class compounds. In this study, sisomicin was used as a model compound for amino carbamate analysis. A high pH based reversed-phase high performance liquid chromatography (RP-HPLC) method is used to separate the amino carbamate from sisomicin. The carbamate is stable as the breakdown is inhibited at high pH and any reactive carbon dioxide is removed as the carbonate. The amino carbamate was quantified and the molar fraction of amine as the carbamate of sisomicin was obtained from the HPLC peak areas. The equilibrium constant of carbamate formation, Kc, was determined to be 3.3 × 10(-6) and it was used to predict the fraction of carbamate over the pH range in a typical biological systems. Based on these results, the fraction of amino carbamate at physiological pH values is less than 13%, and the postulated mechanism for nephrotoxicity protection is not valid. The same methodology is applicable for other aminoglycosides. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Long-term, High Frequency, High Precision pH Measurements on the MBARI deep-water FOCE Experiment at the MARS Cabled Observatory in Monterey Bay, CA

    Science.gov (United States)

    Peltzer, E. T.; Maughan, T.; Barry, J. P.; Brewer, P. G.; Headley, K. L.; Herlien, R.; Kirkwood, W. J.; Matsumoto, G. I.; O'Reilly, T. C.; Salamy, K. A.; Scholfield, J.; Shane, F. F.; Walz, P. M.

    2012-12-01

    The MBARI deep-water FOCE experiment was deployed on the MARS cabled observatory in Monterey Bay on May 4th, 2011. It has been in continuous operation (excluding a few minor shore based power outages) ever since. During the fifteen months of deployment, we have been able to observe both the daily variation in pH in response to water mass movements associated with the semi-diurnal tides, internal waves and longer-term trends as a function of the seasonal variations in the water masses within the Monterey Bay Canyon. Our experimental site is located at 890 meters, just below the oxygen minimum for Monterey Bay, and we clearly see the anticipated inverse correlation between seawater temperature and pH. Daily variation in pH is on the order of 0.020-0.030 pH units with longer term trends adding an additional variation of similar magnitude. Instrumentation on this experiment included two CTDs with oxygen sensors (Sea-Bird 52). One CTD is mounted on the external FOCE framework to measure the background conditions, and one CTD is installed within the FOCE pH control area to monitor the experimentally manipulated conditions. In addition, 6 MBARI modified Sea-Bird 18 pH sensors were mounted on the FOCE apparatus. Four of these pH sensors monitored pH inside the experimental chamber and two monitored the external background seawater conditions. Although we originally intended to conduct several in situ CO2 enrichment experiments to study the impact of ocean acidification on the benthic biology and then recover the apparatus after one year, unanticipated changes in the ship schedule have left the FOCE experiment in place for nearly fifteen months at the time of this writing. Throughout this time period, all sensor data has been logged by the MBARI Shore-Side Data System (SSDS) resulting in the longest continuous record of high precision pH measurements in the intermediate water column. We present an analysis of the data obtained from this unique data set, and discuss our in

  20. Corrosion of copper in alkaline chloride environments

    Energy Technology Data Exchange (ETDEWEB)

    King, F. [Integrity Corrosion Consulting Ltd., Calgary (Canada)

    2002-08-01

    The available literature information on the corrosion and electrochemical behaviour of copper in alkaline environments has been reviewed. The purpose of the review was to assess the impact of an alkaline plume from cementitious material on the corrosion behaviour of a copper canister in an SKB-3 type repository. The effect of the evolution of the environmental conditions within the repository have been considered, including the effects of temperature, redox conditions, pore-water salinity and pH. If the pore-water pH increases prior to the establishment of anoxic conditions, the canister surface will passivate as the pore-water pH exceeds a value of {approx} pH 9. Passivation will result from the formation of a duplex Cu{sub 2}O/Cu(OH){sub 2} film. The corrosion potential will be determined by the equilibrium potential for the Cu{sub 2}O/Cu(OH){sub 2} couple under oxic conditions, or by the Cu/Cu{sub 2}O redox couple under anoxic conditions (in the absence of sulphide). Pitting corrosion is only likely to occur early in the evolution of the repository environment, whilst the canister is still relatively cool (<40 deg C), whilst there is still O{sub 2} available to support localised corrosion, and prior to the increase in pore-water pH and salinity. The subsequent increase in canister surface temperature, pore-water pH and salinity, and decrease in O{sub 2} will make pit initiation less likely, although the canister will remain passive provided the pore-water pH is maintained above pH 9. The higher the pore-water pH, the more strongly the canister is passivated and the less likely the surface is to undergo localised attack. If the pore-water salinity increases prior to the increase in pH, there could be a period of active canister corrosion before passivation occurs.Under these circumstances, the corrosion potential will be a true mixed potential, determine by the relative kinetics of Cu dissolution as CuCl{sub 2} - and of the reduction of O{sub 2}. The development

  1. Effects of high pressure, subzero temperature, and pH on survival of Listeria monocytogenes in buffer and smoked salmon.

    Science.gov (United States)

    Ritz, M; Jugiau, F; Federighi, M; Chapleau, N; de Lamballerie, M

    2008-08-01

    High pressure processing is a novel food preservation technology, applied for over 15 years in the food industry to inactivate spoilage and pathogenic microorganisms. Many studies have shown the differential resistance of bacterial cells to high pressure. Listeria monocytogenes is a bacterium able to grow at refrigerated temperature and to survive for a long time in minimally processed foods such as raw smoked fish. The freezing process does not cause significant decline of L. monocytogenes. The phase diagram of water under pressure permits a pressure treatment under subzero temperature, without the disadvantages of freezing for food quality. The aim of this study was to estimate if combined effects of pressure and subzero temperature could increase the destruction of L. monocytogenes in buffer and in smoked salmon. We investigated effects of high pressure processing (100, 150, and 200 MPa) combined with subzero temperatures (-10, -14, and -18 degrees C) and pH (7.0 and 4.5). Results showed that the most effective high-pressure treatment to inactivate L. monocytogenes was 200 MPa, -18 degrees C, and pH 4.5. The relevance of pressure holding time and the synergistic effect of pressure coupled with the subzero temperature to inactivate bacteria are highlighted. Modifications of physical properties (color and texture) were a lightening of color and an increase of toughness, which might be accepted by consumers, since safety is increased.

  2. Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet.

    Science.gov (United States)

    Lynes, Matthew D; Widmaier, Eric P

    2011-02-28

    The vertebrate intestine is notable for its plasticity in response to environmental, pathologic, reproductive, and dietary challenges. The molecular mechanisms of intestinal adaptations typically involve both morphologic and functional changes. In response to chronic ingestion of a high-fat diet, for example, the mammalian small intestine quickly adapts to efficiently accommodate increased transport of long-chain fatty acids across the mucosa. Whereas this may be adaptive in the short term, in the long term it may contribute to the pathologies associated with chronic high-fat diets in humans and other mammals. This review focuses on some of the known and putative mechanisms by which fatty acids are transported across the intestinal epithelium in addition to simple diffusion, and how these mechanisms may be regulated in part by a high-fat diet. A model is proposed in which two key proteins, CD36 and the enzyme intestinal alkaline phosphatase, work in a coordinated manner to optimize fatty acid transport across enterocytes in mice. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. High serum alkaline phosphatase cooperating with MMP-9 predicts metastasis and poor prognosis in patients with primary osteosarcoma in Southern China

    Directory of Open Access Journals (Sweden)

    Han Ju

    2012-02-01

    Full Text Available Abstract Background Osteosarcoma is a malignant tumor with high ability to form invasion and metastasis. Identifying prognostic factor in osteosarcoma is helpful to select those patients for more aggressive management. Our study evaluated serum alkaline phosphatase (ALP cooperating with matrix metalloproteinase-9 (MMP-9 as an important prognostic predictor for local recurrence and distant metastasis of osteosarcoma. Methods 177 cases were included from the osteosarcoma patients treated at 1st Affiliated Hospital of Sun Yat-sen University (1999-2008. Pre-chemotherapy serum ALP (pre-ALP were studied and correlated with tumor recurrence, lung metastasis and patient survival. MMP-9 protein in tumor tissues was detected by immunohistochemistry and correlated with pre-ALP level. Results Pre-ALP were partitioned into normal, high, and very high groups, in each group the incidence of metastases was 12.2%, 21.2% and 34.6%, respectively (p = 0.007. In the three groups the mean disease-free survival (DFS was 57 ± 3.15, 28 ± 3.57 and 14 ± 3.35 months, respectively (p Conclusions Pre-ALP was an independent prognostic factor for the survival of osteosarcoma patients in south China, and correlated with MMP-9 expression and lung metastasis. ALP can also serve as a prognostic marker for treatment, and merit large-scale validation studies.

  4. High serum alkaline phosphatase cooperating with MMP-9 predicts metastasis and poor prognosis in patients with primary osteosarcoma in Southern China.

    Science.gov (United States)

    Han, Ju; Yong, Bicheng; Luo, Canqiao; Tan, Pingxian; Peng, Tingsheng; Shen, Jingnan

    2012-02-15

    Osteosarcoma is a malignant tumor with high ability to form invasion and metastasis. Identifying prognostic factor in osteosarcoma is helpful to select those patients for more aggressive management. Our study evaluated serum alkaline phosphatase (ALP) cooperating with matrix metalloproteinase-9 (MMP-9) as an important prognostic predictor for local recurrence and distant metastasis of osteosarcoma. 177 cases were included from the osteosarcoma patients treated at 1st Affiliated Hospital of Sun Yat-sen University (1999-2008). Pre-chemotherapy serum ALP (pre-ALP) were studied and correlated with tumor recurrence, lung metastasis and patient survival. MMP-9 protein in tumor tissues was detected by immunohistochemistry and correlated with pre-ALP level. Pre-ALP were partitioned into normal, high, and very high groups, in each group the incidence of metastases was 12.2%, 21.2% and 34.6%, respectively (p = 0.007). In the three groups the mean disease-free survival (DFS) was 57 ± 3.15, 28 ± 3.57 and 14 ± 3.35 months, respectively (p lung metastasis rate decreased (p = 0.028); DFS and OS were both prolonged (p osteosarcoma patients in south China, and correlated with MMP-9 expression and lung metastasis. ALP can also serve as a prognostic marker for treatment, and merit large-scale validation studies.

  5. Facile electrochemical co-deposition of a graphene-cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions.

    Science.gov (United States)

    Guo, Si-Xuan; Liu, Yuping; Bond, Alan M; Zhang, Jie; Esakki Karthik, P; Maheshwaran, I; Senthil Kumar, S; Phani, K L N

    2014-09-21

    A facile electrochemical co-deposition method has been developed for the fabrication of graphene-cobalt nanocomposite modified electrodes that achieve exceptionally efficient water oxidation in highly alkaline media. In the method reported, a graphene-cobalt nanocomposite film was deposited electrochemically from a medium containing 1 mg ml(-1) graphene oxide, 0.8 mM cobalt nitrate and 0.05 M phytic acid (pH 7). The formation of the nanocomposite film was confirmed using electrochemical, Raman spectroscopic and scanning electron microscopic techniques. The nanocomposite film exhibits excellent activity and stability towards water oxidation to generate oxygen in 1 M NaOH aqueous electrolyte media. A turn over frequency of 34 s(-1) at an overpotential of 0.59 V and a faradaic efficiency of 97.7% were deduced from analysis of data obtained by rotating ring disk electrode voltammetry. Controlled potential electrolysis data suggests that the graphene supported catalyst exhibits excellent stability under these harsh conditions. Phytate anion acts as stabilizer for the electrochemical formation of cobalt nanoparticles. Fourier transformed ac voltammetry allowed the redox chemistry associated with catalysis to be detected directly under catalytic turnover conditions. Estimates of formal reversible potentials obtained from this method and derived from the overall reactions 3Co(OH)2 + 2OH(-) ⇌ Co3O4 + 4H2O + 2e(-), Co3O4 + OH(-) ⇌ 3CoOOH + e(-) and CoOOH + OH(-) ⇌ CoO2 + H2O + e(-) are 0.10, 0.44 and 0.59 V vs. Ag/AgCl, respectively.

  6. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  7. Significant improvement in photoluminescence of ZnSe(S) alloyed quantum dots prepared in high pH solution.

    Science.gov (United States)

    Zan, Feng; Ren, Jicun

    2010-01-01

    In this paper, we described a simple approach for aqueous synthesis of highly luminescent ZnSe(S) alloyed quantum dots (QDs) in the presence of 3-mercaptopropionic acid as stabilizers using zinc chloride and NaHSe as precursors. The synthesis conditions were systematically investigated. We observed that the pH value of the Zn precursor solution had significant influence on the optical properties and the structure of the as-prepared ZnSe(S) QDs. The optimal pH value and molar ratio of Zn(2+) to HSe(-) were 12.0 and 25 : 1 respectively. Under the optimal conditions, we prepared highly photoluminescent ZnSe(S) QDs at up to 31% quantum yield (compared with Rhodamine 6G). The characterization of HRTEM and XRD showed that the ZnSe(S) QDs had good monodispersity and nice crystal structure. The fluorescence life time spectra demonstrated that ZnSe(S) QDs had a long lifetime in contrast to fluorescent dyes. Compared with the currently used organometallic approach, our method was 'green', the reaction condition was mild and the as-prepared ZnSe(S) QDs were water-soluble. More importantly, our method was low cost, and was very suitable for large-scale synthesis of highly luminescent ZnSe(S) QDs for the future applications. Copyright © 2009 John Wiley & Sons, Ltd.

  8. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress.

    Science.gov (United States)

    Gómez-Galera, Sonia; Sudhakar, Duraialagaraja; Pelacho, Ana M; Capell, Teresa; Christou, Paul

    2012-04-01

    Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilization. Transgenic plants developed secondary tillers and set seeds when grown in standard soil although iron concentration remained similar in leaves and seeds compared to wild type. However, when grown in alkaline soil transgenic plants exhibited enhanced growth, yield and iron concentration in leaves compared to the wild type plants which were severely stunted. Transgenic plants took up iron more efficiently from alkaline soil compared to wild type, indicating an enhanced capacity to increase iron mobility ex situ. Interestingly, all the additional iron accumulated in vegetative tissues, i.e. there was no difference in iron concentration in the seeds of wild type and transgenic plants. Our data suggest that iron uptake from the rhizosphere can be enhanced through expression of HvYS1 and confirm the operation of a partitioning mechanism that diverts iron to leaves rather than seeds, under stress.

  9. Effect of ethanol and pH on the adsorption of acetaminophen (paracetamol) to high surface activated charcoal, in vitro studies

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle R; Christophersen, A Bolette

    2002-01-01

    the maximum adsorption capacity for paracetamol for two types of high surface-activated charcoal [Carbomix and Norit Ready-To-Use (not yet registered trademark in Denmark) both from Norit Cosmara, Amersfoort, The Netherlands] in simulated in vivo environments: At pH 1.2 (gastric environment), at pH 7...

  10. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution

    Science.gov (United States)

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-08-01

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution.Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition

  11. Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India.

    Science.gov (United States)

    Dhakar, Kusum; Sharma, Avinash; Pandey, Anita

    2014-04-01

    Twenty five fungal cultures (Penicillium spp.), isolated from soil samples from the high altitudes in the Indian Himalayan region, have been characterized following polyphasic approach. Colony morphology performed on five different media gave varying results; potato dextrose agar being the best for the vegetative growth and sporulation as well. Microscopic observations revealed 18 isolates to be biverticillate and 7 monoverticillate. Based on the phenotypic characters (colony morphology and microscopy), all the isolates were designated to the genus Penicillium. Exposure to low temperature resulted in enhanced sporulation in 23 isolates, while it ceased in case of two. The fungal isolates produced watery exudates in varying amount that in many cases increased at low temperature. All the isolates could grow between 4 and 37 °C, (optimum 24 °C), hence considered psychrotolerant. While all the isolates could tolerate pH from 2 to 14 (optimum 5-9), 7 isolates tolerated pH 1.5 as well. While all the fungal isolates tolerated salt concentration above 10 %; 10 isolates showed tolerance above 20 %. Based on ITS region (ITS1-5.8S-ITS2) analysis the fungal isolates belonged to 25 different species of Penicillium (showing similarity between 95 and 100 %). Characters like tolerance for low temperature, wide range of pH, and high salt concentration, and enhancement in sporulation and production of secondary metabolites such as watery exudates at low temperature can be attributed to the ecological resilience possessed by these fungi for survival under low temperature environment of mountain ecosystem.

  12. Second generation of pseudotype-based serum neutralization assay for Nipah virus antibodies: sensitive and high-throughput analysis utilizing secreted alkaline phosphatase.

    Science.gov (United States)

    Kaku, Yoshihiro; Noguchi, Akira; Marsh, Glenn A; Barr, Jennifer A; Okutani, Akiko; Hotta, Kozue; Bazartseren, Boldbaatar; Fukushi, Shuetsu; Broder, Christopher C; Yamada, Akio; Inoue, Satoshi; Wang, Lin-Fa

    2012-01-01

    Nipah virus (NiV), Paramyxoviridae, Henipavirus, is classified as a biosafety level (BSL) 4 pathogen, along with the closely related Hendra virus (HeV). A novel serum neutralization test was developed for measuring NiV neutralizing antibodies under BSL2 conditions using a recombinant vesicular stomatitis virus (VSV) expressing secreted alkaline phosphatase (SEAP) and pseudotyped with NiV F/G proteins (VSV-NiV-SEAP). A unique characteristic of this novel assay is the ability to obtain neutralization titers by measuring SEAP activity in supernatant using a common ELISA plate reader. This confers a remarkable advantage over the first generation of NiV-pseudotypes expressing green fluorescent protein or luciferase, which require expensive and specific measuring equipment. Using panels of NiV- and HeV-specific sera from various species, the VSV-NiV-SEAP assay demonstrated neutralizing antibody status (positive/negative) consistent with that obtained by conventional live NiV test, and gave higher antibody titers than the latter. Additionally, when screening sixty-six fruit bat sera at one dilution, the VSV-NiV-SEAP assay produced identical results to the live NiV test and only required a very small amount (2μl) of sera. The results suggest that this novel VSV-NiV-SEAP assay is safe, useful for high-throughput screening of sera using an ELISA plate reader, and has high sensitivity and specificity.

  13. Control of residual aluminum during coagulation in treatment of reservoir source water with high alkalinity%高碱度水库水混凝过程中残留铝控制

    Institute of Scientific and Technical Information of China (English)

    郭婷婷; 刘锐平; 易秀; 陈桂霞; 胡承志

    2013-01-01

    针对高碱度水库水源的某水厂残留铝超标问题,选取碱化度(B)与Alb含量不同的3种铝盐絮凝剂,研究不同投量与pH值下混凝效果与残留铝浓度水平.结果表明,碱化度和Alb含量显著影响混凝效果.DOC和浊度的去除率随着3种絮凝剂AlCl3(B=0)、PACl-1(B=1.2)、PACl-2(B=2.2)投量增大而升高.3种絮凝剂投量在1.5 ~2.0 mg/L(以铝计)范围内,总铝和溶解铝含量最低.对于该水厂自制的絮凝剂PACl-2,可通过降低絮凝剂碱化度,或将水的pH值降低至7 ~7.5之间,以此可以提高PACl-2混凝效果,而且可以降低出厂水残留铝浓度.考虑工程应用可行性,可优先考虑调整絮凝剂生产工艺.%To minimize the residual aluminum ( Al) levels in the effluent of a drinking water treatment plant (DWTP) with reservoirs source water of high alkalinity, the coagulation performances and the residual Al concentrations using three flocculants, with different basicity ( B ) and Alb content, were investigated under varib-ale Al doses and pH. The results indicate that the basicity and Alb content significantly affect coagulation behaviors. The removal efficiency of DOC and turbidity increases with elevated doses of A1C13(B =0) , PAC1-1 (B -1.2), and PAC1-2 ( B = 2.2). The concentrations of total Al and dissolved Al are the lowest at Al doses of 1. 5 ~ 2. 0 mg/L for three flocculants. As for the PAC1-2, which is prepared by this DWTP, both strategies of decreasing the basicity of flocculant and adjusting the solution pH to 7 ~ 7. 5 are useful to enhance the coagulation performances and to decrease the residual Al levels. Moreover, the adjustment of flocculant preparation is preferred in the future application.

  14. The pH Value of Fungicide, Insecticide and Mineral Fertilizer Mixtures Depending on Water Quality

    Directory of Open Access Journals (Sweden)

    Dušanka Inđić

    2008-01-01

    Full Text Available The paper deals with the effect of water quality on the pH value of fungicides, insecticides, mineral fertilizers and their mixtures. The fungicides propineb (Antracol WP-70 and mancozeb (Dithane M-70, insecticides pirimiphos-methyl (Actellic-50 and imidacloprid(Confidor 200-SL, several fertilizers (Ferticare I, Ferticare II, Ferticare III and Wuxal Super and their mixtures were analyzed for pH value under laboratory conditions using a potentiometric pH meter. Measurements were made directly after preparation or mixing with tap and well water and 24 hours later. Tap water exhibited a neutral reaction. A slightly alkaline reaction of well water was mostlikely due to high ammonium content. The suspensions of Antracol WP-70 exhibited slightly alkaline reactions with both water types during 24 hours. The spray liquids of Dithane M-70 mixed with tap or well water had neutral reaction after preparation and slightly alkaline reaction after 24 hours. The emulsions of Actellic-50 showed neutral reaction with both water types, followed by a pH increase in tap water after 24 hours. The solutions of Confidor200-SL had a slightly alkaline reaction after mixing and the pH value increased with both water types after 24 hours. It is therefore recommended to apply these insecticides directly after preparation. Mineral fertilizers considerably reduced pH values of the fungicide and insecticide components in double and triple mixtures, especially Ferticare nutrients which had a moderately acid reaction. Wuxal Super had a neutral reaction with both water types.The mixtures with well water increased pH values, which indicates that water pH does affect the pH value of the mixture. Both individual fertilizers and all mixtures (double and triple with Ferticare had pH values between 2.4 and 6, which allows their active liquids to be stored for 12 to 24 hours. The suspensions (Antracol WP-70, double and triple mixtures, emulsions (Actellic-50 and Actellic-50+Wuxal Super

  15. The alkaline tolerance in Arabidopsis requires stabilizing microfilament partially through inactivation of PKS5 kinase

    Institute of Scientific and Technical Information of China (English)

    Juntao Liu; Yan Guo

    2011-01-01

    High soil pH is harmful to plant growth and development. The organization and dynamics of microfilament (MF) cytoskeleton play important roles in the plant anti-alkaline process. In the previous study, we determined that alkaline stress induces a signal that triggers MF dynamicsdependent root growth. In this study we identified that PKS5 kinase involves in this regulatory process to facilitate the signal to reach the downstream target MF. Under pH 8.3 treatment, the depolymerization of MF was faster in pks5-4 (PKS5 kinase constitutively activated) than that in wild-type plants. The inhibition of wild-type, pks5-1, and pks5-4 root growth by pH 8.3 was correlated to their MF depolymerization rate.When the plants were treated with phalioidin to stabilize MF, the high pH sensitive phenotype of pks5-4 can be partially rescued. When the plants were treated with a kinase inhibitor Staurosporine, the MF depolymerization rate in pks5-4 was similar as that in wild-type under pH 8.3 treatment and the sensitivity of root growth was also rescued. However, when the plants were treated with LaCl3, a calcium channel blocker, the root growth sensitivity ofpks5-4 under pH 8.3 was rescued but MF depolymerization was even faster than that of plants without LaCl3 treatment.These results suggest that the PKS5 involves in external high pH signal mediated MF depolymerization, and that may be independent of calcium signal.

  16. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots.

    Science.gov (United States)

    Wu, Zhu Lian; Gao, Ming Xuan; Wang, Ting Ting; Wan, Xiao Yan; Zheng, Lin Ling; Huang, Cheng Zhi

    2014-04-07

    A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water to intracellular contents.

  17. Extracellular Alkalinization as a Defense Response in Potato Cells

    OpenAIRE

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-de...

  18. High levels of both serum gamma-glutamyl transferase and alkaline phosphatase are independent preictors of mortality in patients with stage 4-5 chronic kidney disease.

    Science.gov (United States)

    Caravaca-Fontán, Fernando; Azevedo, Lilia; Bayo, Miguel Ángel; Gonzales-Candia, Boris; Luna, Enrique; Caravaca, Francisco

    High serum gamma-glutamyl transferase (GGT) levels are associated with increased mortality in the general population. However, this association has scarcely been investigated in patients with chronic kidney disease (CKD). This study aims to investigate the clinical characteristics of CKD patients with abnormally elevated serum GGT, and its value for predicting mortality. Retrospective observational study in a population cohort of adults with stage 4-5 CKD not yet on dialysis. Demographic, clinical, and biochemical parameters of prognostic interest were recorded and used to characterise CKD patients with high levels of GGT (>36 IU/l). Cox proportional hazard regression models were used to analyse the influence of baseline serum GGT and alkaline phosphatase (ALP) levels on mortality for whatever reason. The study group consisted of 909 patients (mean age 65±15 years). Abnormally elevated GGT or ALP levels at baseline were observed in 209 (23%) and 172 (19%) patients, respectively, and concomitant elevations of GGT and ALP in 68 (7%). High GGT levels were associated with higher comorbidity burden, and a biochemical profile characterised by higher serum concentration of uric acid, triglycerides, alanine aminotransferase, ferritin, and C-reactive. During the study period, 365 patients (40%) died (median survival time=74 months). In adjusted Cox regression models, high levels of GGT (hazard ratio [HR]=1.39;CI 95%: 1.09-1.78, P=.009) and ALP (HR=1.31; CI95%: 1.02-1.68, P=.038) were independently associated with mortality. High serum levels of GGT are independent predictors of mortality in CKD patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Eukaryotic diversity at pH extremes

    Directory of Open Access Journals (Sweden)

    Linda A. Amaral-Zettler

    2013-01-01

    Full Text Available Extremely acidic (pH<3 and extremely alkaline (pH>9 environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from 7 diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA gene. A total of 946 Operational Taxonomic Units (OTUs were recovered at a 6% cut-off level (94% similarity across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity Percentage Analysis (SIMPER followed by Indicator OTU Analysis (IOA and Non-metric Multidimensional Scaling (NMDS were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain’s Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments respectively present good models for understanding adaptation and should be targeted for future investigations.

  20. An investigation of the plastic fracture of high strength steels. Ph.D. Thesis

    Science.gov (United States)

    Cox, T. B.; Low, J. R., Jr.

    1973-01-01

    Three generally recognized stages of plastic fracture in high strength steels are considered in detail. These stages consist of void initiation, void growth, and void coalescence. A brief review of the existing literature on plastic fracture is included along with an outline of the experimental approach used in the investigation.

  1. High pH reversed-phase chromatography with fraction concatenation as an alternative to strong-cation exchange chromatography for two-dimensional proteomic analysis

    OpenAIRE

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-01-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High pH reversed-phase liquid chromatography (RPLC) followed by fraction concatenation affords better peptide analysis than conventional strong-cation exchange (SCX) chromatography applied for the two-dimensional proteomic analysis. For example, concatenated high pH reversed-phase liquid chromatography increased identification for peptides (1.8-fo...

  2. Alkaline shift effect on the uptake of germanium by algae, Chlorella ellipsoideae, Oscillatoria sp. and Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Yanagimoto, M. (National Food Research Inst., Ibaraki, Japan); Saitoh, H.; Kakimoto, N.

    1983-01-01

    The uptake of germanium (Ge) by microalgae was interesting because of a therapeutic effect of organic germanium. In the case of blue green algae, Oscillatoria sp. and Spirulina platensis, satisfactory amounts of Ge were accumulated in the cells, where the pH of the culture was shifted to 11.8 or 12.3, after sufficient growth. These algae could hardly grow in a culture at pH 11.8 or pH 12.3. In the case of Chlorella ellipsoideae, a good result could not be obtained. But a relatively high uptake of Ge into the cells could be obtained in the culture shifted to pH 8.6, in which the alga could hardly grow. Although the effective pHs are different, the effect of the elevated pH of the cultures can be called an alkaline shift effect from the same feature.

  3. High background radiation areas of Ram sar in Iran: evaluation of DNA damage by alkaline single cell gel electrophoresis (SCE)

    Energy Technology Data Exchange (ETDEWEB)

    Masoomi, J.R. [Biophysics Department, College of Sciences, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Mohammadi, Sh. [Radiation Molecular Genetic Laboratory, National Radiation Protection Department (NRPD), Iranian Nuclear Regulatory Authority (INRA), P.O. Box 14155-4494, Tehran (Iran, Islamic Republic of); Amini, M. [Faculty of Pharmacy, Azad University of Tehran (Iran, Islamic Republic of); Ghiassi-Nejad, M. [Biophysics Department, College of Sciences, Tarbiat Modarres University, Tehran (Iran, Islamic Republic of)]. E-mail: ghiassi@mailcity.com

    2006-07-01

    The hot springs in special areas in Ram sar, a northern coastal town in Iran, contain {sup 226}Ra and {sup 222}Rn. The natural radiation effects, radiosensitivity or adaptive responses, on the inhabitants of high natural radiation in Ram sar were studied. The single cell gel electrophoresis was used to monitor DNA damages. Three groups of volunteers were selected, one from high natural background radiation areas as the case group and two from normal background radiation areas as controls (control 1 and control 2). The latter one had the similar living situation to case group while the other (control 2) had different living situation from the other groups. Peripheral blood mononuclear cells (PMNCs) were separated and irradiated by {sup 6}Co source at five different gamma doses. It was found that the spontaneous level of DNA damage and the induced DNA damage in all challenging doses in case group was considerably higher than control groups (p < 0.05). On the other hand, the repair rate in those volunteers, who received less than 10.2 mSv/y was significantly more than the control groups. In the contrary, individuals who live in homes with more than 10.2 mSv/y had incomplete repair. Additionally the plasma and urinary levels of vitamin C were measured spectrophotometrically. Although the concentration of vitamin C of plasma was equal in case and control 1 groups, the urinary level of vitamin C was found to be lower in the case group.

  4. Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy

    Science.gov (United States)

    Rottura, A.; Bargossi, G. M.; Caggianelli, A.; Del Moro, A.; Visonà, D.; Tranne, C. A.

    1998-12-01

    The Atesina Volcanic District, the Monte Luco volcanics, and the Cima d'Asta, Bressanone-Chiusa, Ivigna, Monte Croce and Monte Sabion intrusions, in the central-eastern Southern Alps, form a wide calc-alkaline association of Permian age (ca. 280-260 Ma). The magmatism originated during a period of post-orogenic extensional/transtensional faulting which controlled the magma ascent and emplacement. The magmatic products are represented by a continuum spectrum of rock types ranging from basaltic andesites to rhyolites, and from gabbros to monzogranites, with preponderance of the acidic terms. They constitute a metaluminous to weakly peraluminous series showing mineralogical, petrographic and chemical characteristics distinctive of the high-K calc-alkaline suites. In the MORB-normalized trace element diagrams, the most primitive volcanic and plutonic rocks (basaltic andesites and gabbros with Mg No.=66 to 70; Ni=25 to 83 ppm; Cr=248 to 679 ppm) show LILE and LREE enriched patterns with troughs at Nb-Ta and Ti, a distinctive feature of subduction-related magmas. Field, petrographic, geochemical and isotopic evidence (initial 87Sr/ 86Sr ratios from 0.7057 to 0.7114; ɛNd values from -2.7 to -7.4; ∂ 18O values between 7.6 and 9.5‰) support a hybrid nature for both volcanic and plutonic rocks, originating through complex interactions between mantle-derived magmas and crustal materials. Only the scanty andalusite-cordierite and orthopyroxene-cordierite bearing peraluminous granites in the Cima d'Asta and Bressanone-Chiusa intrusive complexes can be interpreted as purely crustal melts (initial 87Sr/ 86Sr=0.7143-0.7167; initial ɛNd values between -7.9 and -9.6, close to average composition of the granulitic metasedimentary crust from the Ivrea Zone in the western Southern Alps). Although the Permian magmatism shows geochemical characteristics similar to those of arc-related suites, palaeogeographic restorations, and geological and tectonic evidence, seem not to support

  5. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability

  6. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    Science.gov (United States)

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants.

  7. Fever of unknown origin (FUO) due to large B-cell lymphoma: the diagnostic significance of highly elevated alkaline phosphatase and serum ferritin levels.

    Science.gov (United States)

    Cunha, Burke A; Petelin, Andrew

    2013-01-01

    Determining the cause of fever of unknown origin (FUO) is often a vexing and difficult diagnostic process. In most cases, the signs and symptoms in adult FUOs suggest a malignant, infectious, or rheumatic/inflammatory etiology. The diagnosis of FUO may be narrowed if specific findings are present (eg, hepatosplenomegaly) that limit the diagnostic possibilities. Infectious causes of FUO with hepatosplenomegaly include miliary tuberculosis, typhoid fever, and visceral leishmanosis (kala-azar). However, FUOs with hepatosplenomegaly are most often attributable to malignant neoplasms, ie, Hodgkin lymphoma, non-Hodgkin lymphoma, hepatoma, hypernephroma (renal-cell carcinoma), or preleukemia. We present a middle-aged woman with FUO and hepatosplenomegaly. Inpatient nonspecific laboratory findings included a highly elevated erythrocyte sedimentation rate, and elevated levels of vitamin B12, lactate dehydrogenase, angiotensin-converting enzyme, ferritin, and alkaline phosphatase. These individual findings are nonspecific, but together point to a lymphoma. An important test in differentiating malignant from infectious FUOs is the Naprosyn test, and her Naprosyn test was positive, indicating malignancy. A gallium scan suggested a uterine lymphoma. A computed tomography scan revealed hepatosplenomegaly, but the gallium uptake was not increased in her liver and spleen. Uterine and bone marrow biopsies were negative for lymphoma. We present a case of FUO with hepatosplenomegaly attributable to large B-cell lymphoma as diagnosed via liver biopsy. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. [High current microsecond pulsed hollow cathode lamp excited ionic fluorescence spectrometry of alkaline earth elements in inductively coupled plasma with a Fassel-torch].

    Science.gov (United States)

    Zhang, Shao-Yu; Gong, Zhen-Bin; Huang, Ben-Li

    2006-02-01

    High current microsecond pulsed hollow cathode lamp (HCMP-HCL) excited ionic fluorescence spectrometry (IFS) of alkaline earth elements in inductively coupled plasma (ICP) with a Fassel-torch has been investigated. In wide condition ranges only IFS was observed, whilst atomic fluorescence spectrometry (AFS) was not detectable. More intense ionic fluorescence signal was observed at lower observation heights and at lower incident RF powers. Without introduction of any reduction organic gases into the ICP, the limit of detection (LOD, 3sigma) of Ba was improved by 50-fold over that of a conventional pulsed (CP) HCL with the Baird sleeve-extended torch. For Ca and Sr, the LODs by HCMP-HCL-ICP-IFS and CP-HCL-ICP-AFS show no significant difference. Relative standard deviations were 0.6%-1.4% (0.1-0.2 microg x mL(-1), n = 10) for 5 ionic fluorescence lines. Preliminary studies showed that the intensity of ionic fluorescence could be depressed in the presence of K, Al and P.

  9. Alkaline earth metal thioindates

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov-Ehmin, B.N.; Ivlieva, V.I.; Filatenko, L.A.; Zajtsev, B.E.; Kaziev, G.Z.; Sarabiya, M.G.

    1984-08-01

    Alkaline earth metal thioindates of MIn/sub 2/S/sub 4/ composition were synthesized by interaction of alkaline earth metal oxoindates with hydrogen sulfide during heating. Investigation into the compounds by X-ray analysis showed that calcium compound crystallizes in cubic crystal system and strontium and barium compounds in rhombic crystal system. Lattice parameters and the number of formula units were determined. Thioindates of M/sub 3/In/sub 2/S/sub 6/ composition were synthesized, their individuality was shown.

  10. Influence of Mn-dopant on the properties of {alpha}-FeOOH particles precipitated in highly alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Krehula, Stjepko [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)]. E-mail: music@irb.hr

    2006-12-21

    The effects of Mn-dopant on the formation of solid solutions {alpha}-(Fe, Mn)OOH in dependence on the initial concentration ratio r = [Mn]/([Mn] + [Fe]), as well as on the size and morphology of the corresponding particles were investigated using Moessbauer and FT-IR spectroscopies, high-resolution scanning electron microscopy (FE SEM) and an energy dispersive X-ray analyser (EDS). The value of the hyperfine magnetic field of 34.9 T, as recorded for the reference {alpha}-FeOOH sample at RT, decreased linearly up to 21.4 T for sample with r = 0.1667. Only a paramagnetic doublet at RT was recorded for sample with r = 0.2308, a ferrite phase was additionally found for r = 0.3333. Fe-OH bending IR bands, {delta} {sub OH} and {gamma} {sub OH}, were influenced by the Mn-substitution as manifested through their gradual shifts. FE SEM micrographs showed a great elongation of the starting acicular particles along the c-axis with an increase in Mn-doping. For r = 0.1667 and 0.2308 star-shaped and dendritic twin {alpha}-(Fe, Mn)OOH particles were observed. The length of these {alpha}-(Fe, Mn)OOH particles decreased, whereas their width increased. The {alpha}-Fe{sub 2}O{sub 3} phase was not detected in any of the samples prepared.

  11. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support

    Directory of Open Access Journals (Sweden)

    Parker Bruce R

    2009-07-01

    Full Text Available Abstract Background Osteopenia and rickets are common among extremely low birth weight infants (ELBW, Methods We evaluated all ELBW infants admitted to Texas Children's Hospital NICU in 2006 and 2007. Of 211 admissions, we excluded 98 patients who were admitted at >30 days of age or did not survive/stay for >6 weeks. Bone radiographs obtained in 32 infants were reviewed by a radiologist masked to laboratory values. Results In this cohort of 113 infants, P-APA was found to have a significant inverse relationship with BW, gestational age and serum phosphorus. In paired comparisons, P-APA of infants Conclusion Elevation of P-APA >600 IU/L was very common in ELBW infants. BW was significantly inversely related to both P-APA and radiologic rickets. No single value of P-APA was related to radiological findings of rickets. Given the very high risk of osteopenia and rickets among ELBW infants, we recommend consideration of early screening and early mineral supplementation, especially among infants

  12. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei [Far Eastern Federal Univ., Vladivostok (Russian Federation); Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Ozyorsk Technical Institute MEPHI, Ozersk (Russian Federation); Tokar, Eduard [Far Eastern Federal Univ., Vladivostok (Russian Federation); Zemskova, Larisa [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2016-11-01

    An organomineral sorbent based on mixed nickel-potassium ferrocyanide and chitosan to be used in removal of Cs-137 radionuclide from highly mineralized media with high pH has been fabricated. The synthesized sorbent was applied to remove Cs-137 from model solutions under static and dynamic conditions. The effects of contact time, pH, and presence of sodium ions and complexing agents in the process of Cs-137 removal have been investigated. The sorbent is distinguished by increased stability to the impact of alkaline media containing complexing agents, whereas the sorbent capacity in solutions with pH 11 exceeds 1000 bed volumes with the Cs-137 removal efficiency higher than 95%.

  13. [Osmotic modification of thermal damage in Escherichia coli bacteria at various pH values of the media].

    Science.gov (United States)

    Morozov, I I; Petin, V G

    2000-01-01

    A study was made of the influence of media with different osmotic pressure on cell survival and on optic density of supernatants from Escherichia coli B/r and E. coli Bs-1 cell suspensions heated under different pH values of media. Hyperthermia induced cell death accompanied with the loss of optically active (lambda = 260 nm) material. Both cell damage effects were increased in acid and alkaline conditions, compared to neutral condition of heating. Hypertonic media results in a decrease in thermic cell death and loss of cell substances. Under this condition, the protection influence of high osmotic pressure was seen to increase significantly in acid and alkaline conditions of heating, compared to neutral condition. It has been proposed that a higher thermal damage of microorganisms in acid and alkaline beating conditions and protection influence of hypertonic media, especially expressed in acid and alkaline medium, is caused to a great extent by the status of osmotic cell homeostasis.

  14. Crystal structures of acid blue and alkaline purple forms of bacteriorhodopsin.

    Science.gov (United States)

    Okumura, Hideo; Murakami, Midori; Kouyama, Tsutomu

    2005-08-19

    Bacteriorhodopsin, a light-driven proton pump found in the purple membrane of Halobacterium salinarum, exhibits purple at neutral pH but its color is sensitive to pH. Here, structures are reported for an acid blue form and an alkaline purple form of wild-type bacteriorhodopsin. When the P622 crystal prepared at pH 5.2 was acidified with sulfuric acid, its color turned to blue with a pKa of 3.5 and a Hill coefficient of 2. Diffraction data at pH 2-5 indicated that the purple-to-blue transition accompanies a large structural change in the proton release channel; i.e. the extracellular half of helix C moves towards helix G, narrowing the proton release channel and expelling a water molecule from a micro-cavity in the vicinity of the retinal Schiff base. In this respect, the acid-induced structural change resembles the structural change observed upon formation of the M intermediate. But, the acid blue form contains a sulfate ion in a site(s) near Arg82 that is created by re-orientations of the carboxyl groups of Glu194 and Glu204, residues comprising the proton release complex. This result suggests that proton uptake by the proton release complex evokes the anion binding, which in turn induces protonation of Asp85, a key residue regulating the absorption spectrum of the chromophore. Interestingly, a pronounced structural change in the proton release complex was also observed at high pH; i.e. re-orientation of Glu194 towards Tyr83 was found to take place at around pH 10. This alkaline transition is suggested to be accompanied by proton release from the proton release complex and responsible for rapid formation of the M intermediate at high pH.

  15. Unfolding and refolding of Coprinus cinereus peroxidase at high pH, in urea, and at high temperature. Effect of organic and ionic additives on these processes.

    Science.gov (United States)

    Tams, J W; Welinder, K G

    1996-06-11

    The unfolding and refolding rates of the heme-and Ca2+ -containing Coprinus cinereus peroxidase (CIP) have been measured at pH 12.1, in 4 M urea, and at 61.2 degrees C. The change in peroxidase activity paralleled the change in the Soret band absorbance of the heme group. The unfolding rate constant (ku), was determined independently in thermolysin digestion and EDTA experiments at 59.4 degrees C. Both gave ku values of 1.5 ms-1, and also showed that the presence of 4 mM EDTA made CIP unfolding practically irreversible. Unfolding and refolding rates could therefore be determined under identical conditions of denaturation having either EDTA or Ca2+ in excess. The refolding rates at high pH and in 4 M urea were measured by adding Ca2+ to the unfolded CIP, whereas refolding at 61.2 degrees C was evaluated by comparing the unfolding carried out under reversible (excess of Ca2+) and irreversible conditions (excess EDTA). The activation energies for the unfolding at 61.2 degrees C are approximately delta G++(u) 100, T delta S++(u) 200, and delta H++(u) 300 kJ/mol. Five different additives, glycerol, EtOH, Na2SO4, guanidinium chloride (GdmCl), and NaCl, all at 100 mM, were used as probes to evaluate the mechanism of base, urea, and heat on unfolding and refolding. Salts destabilized CIP at high pH, primarily by enhancing the unfolding rate but also by decreasing the refolding rate. Glycerol had the reverse effects and thus stabilized CIP at high pH. The unfolding rate in urea was only slightly affected by the additives, with the exception of GdmCl which enhanced the unfolding rate. The refolding rate was decreased in urea by EtOH and GdmCl, in contrast to glycerol and Na2SO4 which increased the refolding rate. At high temperature the unfolding was affected only slightly by the additives, except for GdmCl, and to a lesser extent NaCl, which enhanced the unfolding rate. The refolding rates were greatly decreased by Na2SO4, EtOH, and GdmCl, whereas glycerol and Nacl enhanced

  16. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings.

    Science.gov (United States)

    Cross, Adam T; Lambers, Hans

    2017-12-31

    Tailings are artificial soil-forming substrates that have not been created by the natural processes of soil formation and weathering. The extreme pH environment and corresponding low availability of some macro- and micronutrients in alkaline tailings, coupled with hostile physical and geochemical conditions, present a challenging environment to native biota. Some significant nutritional constraints to ecosystem reconstruction on alkaline tailings include i) predominant or complete absence of combined nitrogen (N) and poor soil N retention; ii) the limited bioavailability of some micronutrients at high soil pH (e.g., Mn, Fe, Zn and Cu); and iii) potentially toxic levels of biologically available soil phosphorus (P) for P-sensitive plants. The short regulatory time frames (years) for mine closure on tailings landforms are at odds with the long time required for natural pedogenic processes to ameliorate these factors (thousands of years). However, there are similarities between the chemical composition and nutrient status of alkaline tailings and the poorly-developed, very young calcareous soils of biodiverse regions such as south-western Australia. We propose that basic knowledge of chronosequences that start with calcareous soils may provide an informative model for understanding the pedogenic processes required to accelerate soil formation on tailings. Development of a functional, stable root zone is crucial to successful ecological restoration on tailings, and three major processes should be facilitated as early as possible during processing or in the early stages of restoration to accelerate soil development on alkaline tailings: i) acidification of the upper tailings profile; ii) establishment of appropriate and resilient microbial communities; and iii) the early development of appropriate pioneer vegetation. Achieving successful ecological restoration outcomes on tailings landforms is likely one of the greatest challenges faced by restoration ecologists and the

  17. An in situ FTIR-ATR study of polyacrylate adsorbed onto hematite at high pH and high ionic strength.

    Science.gov (United States)

    Kirwan, Luke J; Fawell, Phillip D; van Bronswijk, Wilhelm

    2004-05-11

    FTIR-ATR was used to examine in situ the interaction of polyacrylate and hematite at pH 13. Static light scattering and mobility measurements were used to assess solution polyacrylate dimensions and hematite surface charge, respectively. Polyacrylate adsorption occurred only with the addition of electrolyte (e.g., NaCl), and it was found that excess cations, up to approximately 1 M, facilitated adsorption, above which the effect was found to plateau. At pH 13 and at low ionic strength, adsorption of polyacrylate onto hematite is facilitated by cations in solution shielding both the negative acrylate functionality of the polymer and the negative hematite surface. The shielding of the hematite surface continues to increase with increasing salt concentration up to a measured 3 M. Similarly, the shielding of the polymer increased with electrolyte concentration up to approximately 1 M salt, beyond which no further increase in shielding was observed. At this concentration the polymer assumes a finite minimum size in solution that ultimately limits the amount adsorbed. The dimension of the polymer in solution was found to be independent of monovalent cation type. Thus, at high pH and high ionic strength adsorption is determined by the degree of hematite surface charge reduction. The cation-hematite surface interaction was found to be specific, with lithium leading to greater polyacrylate adsorption than sodium, which was followed by cesium. The stronger affinity of lithium for the hematite surface over sodium and cesium is indicative of the inverse lyotropic adsorption series and has been rationalized in the past by the "structure-making-structure-breaking" model. These results provide a useful insight into the likely adsorption mechanism for polyacrylate flocculants at high pH and ionic strength onto residues in the Bayer processing of bauxite.

  18. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    Directory of Open Access Journals (Sweden)

    Bernhardt Harold S

    2012-01-01

    Full Text Available Abstract Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11 deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent, acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(tRNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline

  19. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  20. The pH of Enceladus' ocean

    CERN Document Server

    Glein, Christopher; Waite, Hunter

    2015-01-01

    Observational data from the Cassini spacecraft are used to obtain a chemical model of ocean water on Enceladus. The model indicates that Enceladus' ocean is a Na-Cl-CO3 solution with an alkaline pH of ~11-12. The dominance of aqueous NaCl is a feature that Enceladus' ocean shares with terrestrial seawater, but the ubiquity of dissolved Na2CO3 suggests that soda lakes are more analogous to the Enceladus ocean. The high pH implies that the hydroxide ion should be relatively abundant, while divalent metals should be present at low concentrations owing to buffering by clays and carbonates on the ocean floor. The high pH is interpreted to be a key consequence of serpentinization of chondritic rock, as predicted by prior geochemical reaction path models; although degassing of CO2 from the ocean may also play a role depending on the efficiency of mixing processes in the ocean. Serpentinization leads to the generation of H2, a geochemical fuel that can support both abiotic and biological synthesis of organic molecule...

  1. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production.

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang

    2013-05-07

    Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.

  2. Stabilisation of acid generating waste rock with fly ash : immobilization of arsenic under alkaline conditions

    Energy Technology Data Exchange (ETDEWEB)

    Backstrom, M. [Orebro Univ. (Sweden). Man-Technology Environment Research Centre; Sartz, L. [Bergslagen, Kopparberg (Sweden)

    2010-07-01

    This study evaluated the potential for using fly ash as an alkaline material for increasing the pH and decreasing arsenic leaching from highly acidic mine waste. A wood ash sample known to contain high concentrations of both calcium and barium was tested with highly acidic mine waste samples that leached approximately 200 mg/L of arsenic at a liquid/solid ratio of 2. Samples were mixed with the fly ash. Control samples consisted of only mine waste, while the amended samples contained 10 g of mine waste and 10 g of wood ash. Ultra pure water was used as a leachant for both systems until the liquid-solid ratio that corresponded to 900 years of drainage for a waste pile that was 3 m high with an annual run-off of 300 mm. Results of the experimental study showed that the pH in the control increased from 1.7 to 2.7, while the pH in the amended system decreased from 12.6 to 11.5. Initial concentrations of arsenic decreased by almost 3 orders of magnitude in the amended systems. Co-precipitation with the iron, and the calcium arsenate precipitation process were identified as the principal arsenic immobilization mechanisms. The study demonstrated that under the right chemical conditions, alkaline amendments can be used to reduce arsenic leaching from mine wastes. 5 refs., 2 tabs., 1 fig.

  3. The pH sensitivity of Aqp0 channels in tetraploid and diploid teleosts.

    Science.gov (United States)

    Chauvigné, François; Zapater, Cinta; Stavang, Jon Anders; Taranger, Geir Lasse; Cerdà, Joan; Finn, Roderick Nigel

    2015-05-01

    Water homeostasis and the structural integrity of the vertebrate lens is partially mediated by AQP0 channels. Emerging evidence indicates that external pH may be involved in channel gating. Here we show that a tetraploid teleost, the Atlantic salmon, retains 4 aqp0 genes (aqp0a1, -0a2, -0b1, and -0b2), which are highly, but not exclusively, expressed in the lens. Functional characterization reveals that, although each paralog permeates water efficiently, the permeability is respectively shifted to the neutral, alkaline, or acidic pH in Aqp0a1, -0a2, and -0b1, whereas that of Aqp0b2 is not regulated by external pH. Mutagenesis studies demonstrate that Ser(38), His(39), and His(40) residues in the extracellular transmembrane domain of α-helix 2 facing the water pore are critical for the pH modulation of water transport. To validate these findings, we show that both zebrafish Aqp0a and -0b are functional water channels with respective pH sensitivities toward alkaline or acid pH ranges and that an N-terminal allelic variant (Ser(19)) of Aqp0b exists that abolishes water transport in Xenopus laevis oocytes. The data suggest that the alkaline pH sensitivity is a conserved trait in teleost Aqp0 a-type channels, whereas mammalian AQP0 and some teleost Aqp0 b-type channels display an acidic pH permeation preference.

  4. Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations

    Science.gov (United States)

    Zaghmarzi, Fatemeh Alipour; Zahedi, Mansour; Mola, Adeleh; Abedini, Saboora; Arshadi, Sattar; Ahmadzadeh, Saeed; Etminan, Nazanin; Younesi, Omran; Rahmanifar, Elham; Yoosefian, Mehdi

    2017-03-01

    Fullerenes are effective acceptor components with high electron affinity for charge transfer. The significant influences of chemical adsorption of the cations on the electrical sensitivity of pristine C60 and 15-(C2H4O)5/C60 nanocages could be the basis of new generation of electronic sensor design. The density functional theory calculation for alkali and alkaline earth cations detection by pristine C60 and 15-(C2H4O)5/C60 nanocages are considered at B3LYP level of theory with 6-31 G(d) basis set. The quantum theory of atoms in molecules analysis have been performed to understand the nature of intermolecular interactions between the cations and nanocages. Also, the natural bond orbital analysis have been performed to assess the intermolecular interactions in detail. Furthermore, the frontier molecular orbital, energy gap, work function, electronegativity, number of transferred electron (∆N), dipole moment as well as the related chemical hardness and softness are investigated and calculated in this study. The results show that the adsorption of cations (M=Na+, K+, Mg2+ and Ca2+) are exothermic and the binding energy in pristine C60 nanocage and 15-(C2H4O)5/C60 increases with respect to the cations charge. The results also denote a decrease in the energy gap and an increase in the electrical conductivity upon the adsorption process. In order to validate the obtained results, the density of state calculations are employed and presented in the end as well.

  5. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    Science.gov (United States)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  6. The Anfeg post-collisional Pan-African high-K calc-alkaline batholith (Central Hoggar, Algeria), result of the LATEA microcontinent metacratonization

    Science.gov (United States)

    Acef, Kaissa; Liégeois, Jean Paul; Ouabadi, Aziouz; Latouche, Louis

    2003-10-01

    The Anfeg batholith (or composite laccolith) occupies a large surface (2000 km 2) at the northern tip of the Laouni terrane, just south of Tamanrasset in Hoggar. It is granodioritic to granitic in composition and comprises abundant enclaves that are either mafic microgranular enclaves (MME) or gneissic xenoliths. It intruded an Eburnian (≈2 Ga) high-grade basement belonging to the LATEA metacraton at approximately 608 Ma (recalculated from the U-Pb dating of [Tectonics 5 (1986) 955]) and cooled at approximately 4 kbar, with a temperature of about 750 °C. This emplacement occurred mainly along subhorizontal thrust planes related to Pan-African subvertical mega-shear zones close to the attachment zone of a strike-slip partitioned transpression system. Although affected by some LILE mobility, the Anfeg batholith can be ascribed to a high-K calc-alkaline suite but characterized by low heavy REE contents and high LREE/HREE ratios. The MME belong to the Anfeg magmatic trend while some xenoliths belong to Neoproterozoic island arc rocks. The Anfeg batholith defines a Nd-Sr isotopic initial ratios trend ( ɛNd/( 87Sr/ 86Sr) i from -2.8/0.7068 to -11.8/0.7111) pointing to a mixing between a depleted mantle and an old Rb-depleted granulitic lower crust. Both sources have been identified within LATEA and elsewhere in the Tuareg shield ( ɛNd/ 87Sr/ 86Sr) i of +6.2/0.7028 for the depleted mantle, -22/0.708 for the old lower crust. The model proposed relates the above geochemical features to a lithospheric delamination along the subvertical mega-shear zones that dissected the rigid LATEA former passive margin without major crustal thickening (metacratonization) during the general northward tectonic escape of the Tuareg terranes, a consequence of the collision with the West African craton. This delamination allowed the uprise of the asthenosphere. In turn, this induced the melting of the asthenosphere by adiabatic pressure release and of the old felsic and mafic lower crust

  7. Coagulation behavior of polyaluminum chloride:Effects of pH and coagulant dosage☆

    Institute of Scientific and Technical Information of China (English)

    Ning Wei; Zhongguo Zhang; Dan Liu; Yue Wu; Jun Wang; Qunhui Wang

    2015-01-01

    Coagulation mechanisms of polyaluminum chloride (PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution pH values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition wil facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final pH 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final pH values fixed at 7.0 and 8.0, but restabilization zone disappears at final pH 10.0. When the final pH is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial pH for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and pH than those of alum. The results are helpful for us to treat water and wastewa-ter using PACl and to understand the coagulation process of PACl.

  8. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. OPTIMIZATION OF MEDIA CONSTITUENTS FOR THE PRODUCTION OF ALKALINE PROTEASE FROM BACILLUS LICHENIFORMIS Mohideen

    Directory of Open Access Journals (Sweden)

    Mohideen Askar Nawas P

    2015-07-01

    Full Text Available Production of alkaline protease by Bacillus licheniformis has been investigated under submerged fermentation. The physical and chemical parameters influencing submerged fermentation were optimized. The effect of incubation time, temperature, pH, carbon sources and nitrogen sources and additional nutrients on the production of alkaline protease was characterized. The optimum conditions for the protease production by Bacillus licheniformis were found to be at pH 9.0 and temperature at 40ºC. The outcome of carbon and inorganic nitrogen sources on protease production proved that glucose and casein were the effective medium ingredients for Bacillus licheniformis respectively. The maximum amount of protease production was recorded in medium supplemented with ammonium sulphate. Among the tested metal ions, the level of protease yield was found to be high in medium supplemented with magnesium chloride. The protease production was amplified in the presence of 1.5% sodium chloride. The extreme stability towards Triton X-100, Tween 20 and SDS was observed in Bacillus licheniformis alkaline protease.

  10. Alkaline broadening in Stars

    CERN Document Server

    De Kertanguy, A

    2015-01-01

    Giving new insight for line broadening theory for atoms with more structure than hydrogen in most stars. Using symbolic software to build precise wave functions corrected for ds;dp quantum defects. The profiles obtained with that approach, have peculiar trends, narrower than hydrogen, all quantum defects used are taken from atomic database topbase. Illustration of stronger effects of ions and electrons on the alkaline profiles, than neutral-neutral collision mechanism. Keywords : Stars: fundamental parameters - Atomic processes - Line: profiles.

  11. DNA extraction from archival formalin-fixed, paraffin-embedded tissues: heat-induced retrieval in alkaline solution.

    Science.gov (United States)

    Shi, Shan-Rong; Datar, Ram; Liu, Cheng; Wu, Lin; Zhang, Zina; Cote, Richard J; Taylor, Clive R

    2004-09-01

    Based on the antigen retrieval principle, our previous study has demonstrated that heating archival formalin-fixed, paraffin-embedded (FFPE) tissues at a higher temperature and at higher pH value of the retrieval solution may achieve higher efficiency of extracted DNA, when compared to the traditional enzyme digestion method. Along this line of heat-induced retrieval, this further study is focused on development of a simpler and more effective heat-induced DNA retrieval technique by testing various retrieval solutions. Three major experiments using a high temperature heating method to extract DNA from FFPE human lymphoid and other tissue sections were performed to compare: (1) different concentrations of alkaline solution (NaOH or KOH, pH 11.5-12) versus Britton and Robinson type of buffer solution (BR buffer) of pH 12 that was the only retrieval solution tested in our previous study; (2) several chemical solutions (SDS, Tween 20, and GITC of various concentrations) versus BR buffer or alkaline solution; and (3) alkaline solution mixed with chemicals versus BR buffer or single alkaline solution. Efficiency of DNA extraction was evaluated by measuring yields using spectrophotometry, electrophoretic pattern, semiquantitation of tissue dissolution, PCR amplification, and kinetic thermocycling-PCR methods. Results showed that boiling tissue sections in 0.1 M NaOH or KOH or its complex retrieval solutions produced higher yields and better quality of DNA compared to BR buffer or chemical solutions alone. The conclusion was that boiling FFPE tissue sections in 0.1 M alkaline solution is a simpler and more effective heat-induced retrieval protocol for DNA extraction. Combination with some chemicals (detergents) may further significantly improve efficiency of the heat-induced retrieval technique.

  12. Trypanosoma cruzi alkaline 2-DE: Optimization and application to comparative proteome analysis of flagellate life stages

    Directory of Open Access Journals (Sweden)

    Santana Jaime M

    2008-09-01

    Full Text Available Abstract Background Trypanosoma cruzi, a flagellate protozoan, is the etiological agent of Chagas disease, a chronic illness that causes irreversible damage to heart and digestive tract in humans. Previous 2-DE analyses of T. cruzi proteome have not focused on basic proteins, possibly because of inherent difficulties for optimizing 2-DE in the alkaline pH range. However, T. cruzi wide pH range 2-DE gels have shown few visible spots in the alkaline region, indicating that the parasite either did not have an appreciable amount of alkaline proteins or that these proteins were underrepresented in the 2-DE gels. Results Different IEF conditions using 6–11 pH gradient strips were tested for separation of T. cruzi alkaline proteins. The optimized methodology described here was performed using anodic "paper bridge" sample loading supplemented by increased concentration of DTT and Triton X-100 on Multiphor II (GE Healthcare equipment and an electrode pad embedded in DTT- containing solution near the cathode in order to avoid depletion of reducing agent during IEF. Landmark proteins were identified by peptide mass fingerprinting allowing the production of an epimastigote 2-DE map. Most identified proteins corresponded to metabolic enzymes, especially those related to amino acid metabolism. The optimized 2-DE protocol was applied in combination with the "two-in-one gel" method to verify the relative expression of the identified proteins between samples from epimastigote and trypomastigote life stages. Conclusion High resolution 2-DE gels of T. cruzi life forms were achieved using the optimized methodology and a partial epimastigote alkaline 2-DE map was built. Among 700 protein spots detected, 422 were alkaline with a pI above 7.0. The "two-in-one gel" method simplified the comparative analysis between T. cruzi life stages since it minimized variations in spot migration and silver-stained spot volumes. The comparative data were in agreement with

  13. Titanium corrosion in alkaline hydrogen peroxide environments

    Science.gov (United States)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  14. The potential for constructed wetlands to treat alkaline bauxite residue leachate: laboratory investigations.

    Science.gov (United States)

    R, Buckley; T, Curtin; R, Courtney

    2016-07-01

    High alkalinity (pH > 12) of bauxite residue leachates presents challenges for the long-term storage and managements of the residue. Whilst the use of constructed wetlands is gaining in interest for its use in the treatment of alkaline waters, thus far, there is limited evidence of its suitability for treating NaOH dominated bauxite residue leachate. A series of batch trials were conducted to investigate the potential for constructed wetland conferred mechanisms (dilution water quality, contact with CO2, and substrate type) for treating NaOH solutions to levels permissible for discharge (p constructed wetland. Formation of a calcite precipitate was observed in some treatments and further characterisation by XRD and XPS suggested surface coating with Na2CO3. It is therefore suggested that, under suitable conditions, constructed wetland technology can reduce leachate pH to constructed wetland.

  15. Full-scale alkaline hydrolysis of organic explosives in soil

    Energy Technology Data Exchange (ETDEWEB)

    Britto, R.; Nolin, J. [Tetra Tech Inc., Oakville, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed the remediation of explosives at defence sites in North America. Organic explosives and residues are prevalent at ordinance, ammunition, and range sites, as well as at federal explosives manufacturing and storage facilities. The predominant explosives residues include trinitrotoluene (TNT), dinitrotoluenes (DNTs), and royal demolition explosive (RDX). Chemical oxidation treatments for the residues can require several applications and are costly. Biological treatments are feasible, but can be slow and difficult to apply. An alkaline hydrolysis process was used to destroy contaminants at an army ammunition site. Soil pan studies were conducted to characterize the nucleophilic substitution processes under varying quantities of chemical amendments. Effectiveness sampling included pH and moisture content; nitrates and nitrites; and explosives SW8330B. The study showed that high levels of explosives can be rapidly treated using the alkaline hydrolytic agent, which produced nitrites as the largest identifiable end product. Citric acid was then used to treat elevated nitrate and nitrite concentrations in soil samples resulting from the chemical destruction of TNT and DNT. An analysis of the treated samples showed a substantial decrease in nitroaromatic compounds. Details of full-scale ex situ treatments conducted to further assess the remediation processes were included. tabs., figs.

  16. Key factors governing alkaline pretreatment of waste activated sludge

    Institute of Scientific and Technical Information of China (English)

    Xianli Shi; Li Deng; Fangfang Sun; Jieyu Liang; Xu Deng

    2015-01-01

    Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. pH value or alkali concentration is usually adjusted in order to deter-mine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge (Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Cs and reten-tion time t are two other important factors to consider. The validity of these arguments is confirmed with model-ing and experiments. The individual effect of Ra/s, Cs and t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7%was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3%was achieved while the energy consumption of microwave was much lower than previously reported.

  17. Predicting species’ tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses

    Science.gov (United States)

    Saslis-Lagoudakis, C. Haris; Hua, Xia; Bui, Elisabeth; Moray, Camile; Bromham, Lindell

    2015-01-01

    Background and Aims Salt tolerance has evolved many times independently in different plant groups. One possible explanation for this pattern is that it builds upon a general suite of stress-tolerance traits. If this is the case, then we might expect a correlation between salt tolerance and other tolerances to different environmental stresses. This association has been hypothesized for salt and alkalinity tolerance. However, a major limitation in investigating large-scale patterns of these tolerances is that lists of known tolerant species are incomplete. This study explores whether species’ salt and alkalinity tolerance can be predicted using geochemical modelling for Australian grasses. The correlation between taxa found in conditions of high predicted salinity and alkalinity is then assessed. Methods Extensive occurrence data for Australian grasses is used together with geochemical modelling to predict values of pH and electrical conductivity to which species are exposed in their natural distributions. Using parametric and phylogeny-corrected tests, the geochemical predictions are evaluated using a list of known halophytes as a control, and it is determined whether taxa that occur in conditions of high predicted salinity are also found in conditions of high predicted alkalinity. Key Results It is shown that genera containing known halophytes have higher predicted salinity conditions than those not containing known halophytes. Additionally, taxa occurring in high predicted salinity tend to also occur in high predicted alkalinity. Conclusions Geochemical modelling using species’ occurrence data is a potentially useful approach to predict species’ relative natural tolerance to challenging environmental conditions. The findings also demonstrate a correlation between salinity tolerance and alkalinity tolerance. Further investigations can consider the phylogenetic distribution of specific traits involved in these ecophysiological strategies, ideally by

  18. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications

    Science.gov (United States)

    Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos

    2016-10-01

    An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.

  19. Effects of pH on aquatic biodegradation processes

    Directory of Open Access Journals (Sweden)

    R. F. Krachler

    2009-01-01

    Full Text Available To date, little is known about the pH-stimulated mineralization of organic matter in aquatic environments. In this study, we investigated biodegradation processes in alkaline waters. Study site is a large shallow soda lake in Central Europe (Neusiedler See/Ferto. The decomposition rate of plant litter was measured as a function of pH by incubating air-saturated lake-water samples in contact with Phragmites litter (leaves from the littoral vegetation. All samples showed high decomposition rates (up to 32% mass loss within 35 days and a characteristic two-step degradation mechanism. During the degradation process, the solid plant litter was dissolved forming humic colloids. Subsequently, the humic colloids were mineralized to CO2 in the water column. The decomposition rate was linearly related to pH. Increasing pH values accelerated significantly the leaching of humic colloids as well as the final degradation process. The observed two-step mechanism controls the wetland/lake/air carbon fluxes, since large quantities of humic colloids are currently produced in the reed belt, exported through wind-driven circulations and incorporated into the open lake foodweb. At present, the lake is rapidly shrinking due to peat deposition in the littoral zone, whereas it has been resistant to silting-up processes for thousands of years. In order to investigate the cause of this abrupt change, the chemical composition of the lake-water was measured during 1995–2007. A thorough analysis of these data revealed that major lake-water discharges through the lake's artificial outlet channel led to a decline in salinity and alkalinity. According to our estimates, the lake's original salinity and alkalinity was 70–90% higher compared to the present conditions, with the consequence of substantially lower pH values in the present lake. The observed pH dependence of reed litter biodegradation rates points to a causal connection between low pH

  20. Low serum alkaline phosphatase activity in Wilson's disease.

    Science.gov (United States)

    Shaver, W A; Bhatt, H; Combes, B

    1986-01-01

    Low values for serum alkaline phosphatase activity were observed early in the course of two patients with Wilson's disease presenting with the combination of severe liver disease and Coombs' negative acute hemolytic anemia. A review of other cases of Wilson's disease revealed that 11 of 12 patients presenting with hemolytic anemia had values for serum alkaline phosphatase less than their respective sex- and age-adjusted mean values; in eight, serum alkaline phosphatase activity was less than the lower value for the normal range of the test. Low values for serum alkaline phosphatase were much less common in Wilson's disease patients with more chronic forms of presentation. Copper added in high concentration to serum in vitro did not have an important effect on serum alkaline phosphatase activity. The mechanism responsible for the decrease in serum alkaline phosphatase activity in patients is uncertain.

  1. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    Science.gov (United States)

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  2. Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency

    DEFF Research Database (Denmark)

    Nielsen, Inge Lise F.; Ravn-Haren, Gitte; Magnussen, Eva Loftin

    2003-01-01

    Quantitative determinations of the four black currant anthocyanins, cyanidin 3-O-beta-glucoside, cyanidin 3-O-beta-rutinoside, delphinidin 3-O-beta-glucoside, and delphinidin 3-O-beta-rutinoside, were achieved in black currant juices by a rapid and sensitive high-performance liquid chromatographic...... for 24 h in aqueous solutions at 13 different pH levels between 0.6 and 5.2, after which the samples were analyzed by HPLC. More than 90% of each anthocyanin remained intact up to pH 3.3. At pH 3.8 a local minimum in stability was detected, and at pH >4.5 the stability rapidly decreased. The antioxidant...

  3. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  4. Eukaryotic diversity at pH extremes.

    Science.gov (United States)

    Amaral-Zettler, Linda A

    2012-01-01

    Extremely acidic (pH 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations.

  5. Nitrification Enhancement through pH Control with Rotating Biological Contactors

    Science.gov (United States)

    1981-09-01

    Inst. of Sew. Purif., 130 (1964). 31. Engel, M. S. and M. Alexander, " Growth and Autotrophic Metabolism of Nitrosomonas Europaea ," Jour. Bact., 76, 217...relative effectiveness of four different alkaline chemicals on enhancing the nitrifying process under optimum pH conditions was evaluated in Phase II...111 6.12 Relative RBC Heterotrophic Bacteria Growth Under pH Conditions from pH 7.0 to pH 8.5 ....... ............. .. 112 6.13 Batch Alkalinity

  6. Some durability aspects of hybrid alkaline cements

    Directory of Open Access Journals (Sweden)

    Donatello S.

    2014-04-01

    Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements

  7. Recent Alkaline Lakes: Clues to Understanding the Evolution of Early Planetary Alkaline Oceans and Biogenesis

    Science.gov (United States)

    Kempe, S.; Hartmann, J.; Kazmierczak, J.

    2008-09-01

    Abstract New models suggest that terrestrial weathering consumes 0.26GtC/a (72% silicate-, 28% carbonateweathering), equivalent to a loss of one atmospheric C content every 3700a. Rapid weathering leads in volcanic areas to alkaline conditions, illustrated by the crater lake of Niuafo`ou/Tonga and Lake Van/Turkey, the largest soda lake on Earth. Alkaline conditions cause high CaCO3 supersaturation, permineralization of algal mats and growth of stromatolites. Alkaline conditions can nearly depress free [Ca2+] to levels necessary for proteins to function. Therefore early oceans on Earth (and possibly on Mars) should have been alkaline (i.e. "Soda Oceans"). Recent findings of MgSO4 in top soils on Mars may be misleading about the early history of martian oceans.

  8. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    Science.gov (United States)

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  9. In situ arsenic removal in an alkaline clastic aquifer

    Science.gov (United States)

    Welch, A.H.; Stollenwerk, K.G.; Paul, A.P.; Maurer, D.K.; Halford, K.J.

    2008-01-01

    In situ removal of As from ground water used for water supply has been accomplished elsewhere in circum-neutral ground water containing high dissolved Fe(II) concentrations. The objective of this study was to evaluate in situ As ground-water treatment approaches in alkaline ground-water (pH > 8) that contains low dissolved Fe (water in the two aquifers studied are similar except for the inorganic As species. Although total inorganic As concentrations were similar, one aquifer has dominantly aqueous As(III) and the other has mostly As(V). Dissolved O2, Fe(II), and HCl were added to water and injected into the two aquifers to form Fe-oxide and lower the pH to remove As. Cycles of injection and withdrawal involved varying Fe(II) concentrations in the injectate. The As concentrations in water withdrawn from the two aquifers were as low as 1 and 6 ??g/L, with greater As removal from the aquifer containing As(V). However, Fe and Mn concentrations increased to levels greater than US drinking water standards during some of the withdrawal periods. A balance between As removal and maintenance of low Fe and Mn concentrations may be a design consideration if this approach is used for public-supply systems. The ability to lower As concentrations in situ in high-pH ground water should have broad applicability because similar high-As ground water is present in many parts of the world. ?? 2008.

  10. Constructing and screening a metagenomic library of a cold and alkaline extreme environment

    DEFF Research Database (Denmark)

    Glaring, Mikkel Andreas; Vester, Jan Kjølhede; Stougaard, Peter

    2017-01-01

    Natural cold or alkaline environments are common on Earth. A rare combination of these two extremes is found in the permanently cold (less than 6 °C) and alkaline (pH above 10) ikaite columns in the Ikka Fjord in Southern Greenland. Bioprospecting efforts have established the ikaite columns...

  11. Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide

    NARCIS (Netherlands)

    Kapojos, Jola Jovita; Poelstra, Klaas; Borghuis, Theo; van den Berg, Anke; Baelde, Hans J.; Klok, P.A; Bakker, W.W

    2003-01-01

    Alkaline phosphatase (AP) can be considered as a host defence molecule since this enzyme is able to detoxify bacterial endotoxin at physiological pH. The question emerged whether this anti-endotoxin principle is inducible in the glomerulus and if so, which glomerular cells might be involved in the e

  12. Field screening of cowpea cultivars for alkaline soil tolerance

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  13. Yield performance of cowpea genotypes grown in alkaline soils

    Science.gov (United States)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  14. Helix stability in succinylated and acetylated ovalbumins: effect of high pH, urea and guanidine hydrochloride.

    Science.gov (United States)

    Batra, P P; Uetrecht, D

    1990-08-01

    Previous studies (Batra, P.P., Roebuck, M.A. and Uetrecht, D. (1990) J. Protein Chem. 9, 37-44) showed that succinylation or acetylation of 75% of the lysine residues has little effect on the secondary structure of ovalbumin. The acylation of the remaining 25% lysine residues, which apparently are partially buried, results in a substantial loss of the helical structure. These conformational changes may be due not only to electrostatic repulsions introduced by succinylation or acetylation of the positively charged epsilon-amino groups but also to steric hindrance, since an increase in the ionic strength failed to reverse the loss of the helical structure. An increase in pH to 12.2 results in a complete helix-to-coil transition in the maximally succinylated ovalbumin (but not in the partially succinylated or in any of the acetylated ovalbumins including the maximally acetylated derivative), perhaps because it is most expanded and its molecular interior most accessible to solvent as succinylation replaces +1 charge of epsilon-amino group with a -1 charge so that a net of -2 charge per succinyl group is placed on the protein molecule. This helix-to-coil transition in the maximally succinylated ovalbumin induced by high pH is fully reversed by increasing the ionic strength, indicating that only electrostatic effects are responsible for this disruption. Studies have also shown that although there is no loss of the helical structure until after the 75% surface lysine residues have been acylated, the helical structure does become progressively destabilized with increasing degree of modification, a conclusion drawn from urea unfolding curves. This destabilization of the helical structure is due primarily to electrostatic effects, as an increase in the ionic strength led to an increase in the urea transition mid-point. Unlike urea, the guanidine hydrochloride unfolding curves indicate that the transition mid-point for the native protein, as well as for the maximally

  15. The Effect of Two African Mineral Dyes on the Activity of Alkaline ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    activity of alkaline phosphatase (ALP) in the skin and serum of albino rats was ... analyses of the dyes were first carried out using solubility test, pH determination and X-ray fluorescence (XRF) ..... measurement to detect renal damage.

  16. Urinary stone formers with hypocitraturia and 'normal' urinary pH are at high risk for recurrence

    National Research Council Canada - National Science Library

    Strohmaier, Walter Ludwig; Seilnacht, Jürgen; Schubert, Gernot

    2012-01-01

    .... Citrate excretion is regulated - amongst others - by acidosis and protein intake. A considerable number of stone formers, however, show hypocitraturia in the presence of normal urine pH levels...

  17. TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons.

    Science.gov (United States)

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X Z Shawn

    2016-07-06

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form a Na(+)-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9, which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception.

  18. Performance and Application of Corrosion Inhibitor TH-658B in High Hardness and High Alkalinity Water%新型高硬高碱水缓蚀阻垢剂TH-658B的应用性能

    Institute of Scientific and Technical Information of China (English)

    贺茂才; 齐晓婧; 高灿柱

    2012-01-01

    针对华北、西北等地补充水硬度、碱度高,浓缩后极易引起结垢和腐蚀的难题,开发了高硬、高碱水缓蚀阻垢剂TH-658B。采用静态阻碳酸钙垢试验、阻硫酸钙垢试验、梯度浓缩试验等研究了TH658B的性能。结果表明,相同的药剂浓度,TH-658B的碳酸钙阻垢率均高于ATMP和HEDP且TH-658B的碳酸钙和硫酸钙阻垢率均符合Q/SY126—2007要求;TH-658B可以使高硬、高碱水浓缩至钙硬总碱之和大于1500mg/L而不会导致系统结垢。此外,参照GB/T18175-2000,在TH-658B的存在下,高硬、高碱配水(〉1500mg/L)中的碳钢、不锈钢和铜的腐蚀速率分别为0.036、0.0018、0.0012mm/a,均符合GB50050—2007的要求。通过华北一电厂的现场应用,证明了TH-658B对高硬、高碱,特别是钙硬总碱之和达到1500mg/L以上的高浓缩倍率循环水系统具有良好的缓蚀和阻垢效果。%Aiming at the scaling and corrosion problem of high hardness and alkalinity water in north and northwest of China, a new type of scale and corrosion inhibitor TH-658B was developed. The performance of TH-658B was evaluated by means of scale inhibition test, gradient concentration test and rotary coupon corrosion test. The results show that the calcium carbonate scale inhibition rate of TH-658B was higher than ATMP and HEDP under the same concentration condition. The calcium carbonate and calcium sulfate scale inhibition rate of TH-658B can meet the standard requirements of Q/SY 126--2007. Gradient enrichment test results indicate that the summation of calcium hardness and total alkalinity could reach more than 1500 mg/L as TH-658B existed in water, which is much higher than the standard requirements of GBS0050- 2007. Furthermore, TH-658B has good inhibition corrosion performance for carbon steel, stainless steel and copper in high hardness and alkalinity water. The corrosion rates for carbon steel, stainless steel and

  19. Inhibition of pH fronts in corrosion cells due to the formation of cerium hydroxide

    NARCIS (Netherlands)

    Soestbergen, M. van; Erich, S.J.F.; Huinink, H.P.; Adan, O.C.G.

    2013-01-01

    The effect of cerium-based corrosion inhibitors on the pH front between the alkaline cathode and acidic anode in corrosion cells has been studied. The cerium component of these inhibitors can affect the pH front since it precipitates in an alkaline environment as cerium hydroxide, which is important

  20. Identification of strain isolated from dates (Phœnix dactylifera L.) for enhancing very high gravity ethanol production.

    Science.gov (United States)

    Djelal, Hayet; Chniti, Sofien; Jemni, Monia; Weill, Amélie; Sayed, Walaa; Amrane, Abdeltif

    2016-11-12

    Ethanol production from by-products of dates in very high gravity was conducted in batch fermentation using two yeasts, Saccharomyces cerevisiae and Zygosaccharomyces rouxii, as well as a native strain: an osmophilic strain of bacteria which was isolated for the first time from the juice of dates (Phoenix dactylifera L.). The phylogenetic analysis based on the 16S ribosomal RNA and gyrB sequence and physiological analysis indicated that the strain identified belongs to the genus of Bacillus, B. amyloliquefaciens. The ethanol yields produced from the syrup of dates (175 g L(-1) and 360 g L(-1) of total sugar) were 40.6% and 29.5%, respectively. By comparing the ethanol production by the isolated bacteria to that obtained using Z. rouxii and S. cerevisiae, it can be concluded that B. amyloliquefaciens was suitable for ethanol production from the syrup of dates and can consume the three types of sugar (glucose, fructose, and sucrose). Using Z. rouxii, fructose was preferentially consumed, while glucose was consumed only after fructose depletion. From this, B. amyloliquefaciens was promising for the bioethanol industry. In addition, this latter showed a good tolerance for high sugar concentration (36%), allowing ethanol production in batch fermentation at pH 5.0 and 28 °C in date syrup medium. Promising ethanol yield produced to sugar consumed were observed for the two osmotolerant microorganisms, Z. rouxii and B. amyloliquefaciens, nearly 32-33%, which were further improved when they were cocultivated, leading to an ethanol to glucose yield of 42-43%.

  1. [Alkaline phosphatase in Amoeba proteus].

    Science.gov (United States)

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  2. Carbon system measurements and potential climatic drivers at a site of rapidly declining ocean pH.

    Science.gov (United States)

    Wootton, J Timothy; Pfister, Catherine A

    2012-01-01

    We explored changes in ocean pH in coastal Washington state, USA, by extending a decadal-scale pH data series, by reporting independent measures of dissolved inorganic carbon (DIC), spectrophotometric pH, and total alkalinity (TA), by exploring pH patterns over larger spatial scales, and by probing for long-term trends in environmental variables reflecting potentially important drivers of pH. We found that pH continued to decline in this area at a rapid rate, that pH exhibited high natural variability within years, that our measurements of pH corresponded well to spectrophotometric pH measures and expected pH calculated from DIC/TA, and that TA estimates based on salinity predicted well actual alkalinity. Multiple datasets reflecting upwelling, including water temperature, nutrient levels, phytoplankton abundance, the NOAA upwelling index, and data on local wind patterns showed no consistent trends over the period of our study. Multiple datasets reflecting precipitation change and freshwater runoff, including precipitation records, local and regional river discharge, salinity, nitrate and sulfate in rainwater, and dissolved organic carbon (DOC) in rivers also showed no consistent trends over time. Dissolved oxygen did not decline over time, indicating that long-term changes did not result from shifts in contributions of respiration to pH levels. These tests of multiple potential drivers of the observed rapid rate of pH decline indicate a primary role for inorganic carbon and suggest that geochemical models of coastal ocean carbon fluxes need increased investigation.

  3. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    Science.gov (United States)

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  4. Corrosion-wear behavior of nanocrystalline Fe88Si12 alloy in acid and alkaline solutions

    Science.gov (United States)

    Fu, Li-cai; Qin, Wen; Yang, Jun; Liu, Wei-min; Zhou, Ling-ping

    2017-01-01

    The corrosion-wear behavior of a nanocrystalline Fe88Si12 alloy disc coupled with a Si3N4 ball was investigated in acid (pH 3) and alkaline (pH 9) aqueous solutions. The dry wear was also measured for reference. The average friction coefficient of Fe88Si12 alloy in the pH 9 solution was approximately 0.2, which was lower than those observed for Fe88Si12 alloy in the pH 3 solution and in the case of dry wear. The fluctuation of the friction coefficient of samples subjected to the pH 9 solution also showed similar characteristics. The wear rate in the pH 9 solution slightly increased with increasing applied load. The wear rate was approximately one order of magnitude less than that in the pH 3 solution and was far lower than that in the case of dry wear, especially at high applied load. The wear traces of Fe88Si12 alloy under different wear conditions were examined and analyzed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results indicated that the tribo-chemical reactions that involve oxidation of the worn surface and hydrolysis of the Si3N4 ball in the acid solution were restricted in the pH 9 aqueous solution. Thus, water lubrication can effectively improve the wear resistance of nanocrystalline Fe88Si12 alloy in the pH 9 aqueous solution.

  5. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    Science.gov (United States)

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  6. Measuring pH variability using an experimental sensor on an underwater glider

    Science.gov (United States)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian

  7. Analysis of Cocoa Proanthocyanidins Using Reversed Phase High-Performance Liquid Chromatography and Electrochemical Detection: Application to Studies on the Effect of Alkaline Processing.

    Science.gov (United States)

    Stanley, Todd H; Smithson, Andrew T; Neilson, Andrew P; Anantheswaran, Ramaswamy C; Lambert, Joshua D

    2015-07-01

    Flavan-3-ols and proanthocyanidins play a key role in the health beneficial effects of cocoa. Here, we developed a new reversed phased high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method for the analysis of flavan-3-ols and proanthocyanidins of degree of polymerization (DP) 2-7. We used this method to examine the effect of alkalization on polyphenol composition of cocoa powder. Treatment of cocoa powder with NaOH (final pH 8.0) at 92 °C for up to 1 h increased catechin content by 40%, but reduced epicatechin and proanthocyanidins by 23-66%. Proanthocyanidin loss could be modeled using a two-phase exponential decay model (R(2) > 0.7 for epicatchin and proanthocyanidins of odd DP). Alkalization resulted in a significant color change and 20% loss of total polyphenols. The present work demonstrates the first use of HPLC-ECD for the detection of proanthocyanidins up to DP 7 and provides an initial predictive model for the effect of alkali treatment on cocoa polyphenols.

  8. EIS Behavior of Experimental High-Strength Steel in Near-Neutral pH and Load Conditions

    Science.gov (United States)

    Barraza-Fierro, Jesus Israel; Serna-Barquera, Sergio Alonso; Campillo-Illanes, Bernardo Fabian; Castaneda, Homero

    2017-04-01

    Two thermomechanical heat treatments were applied to a high-strength low carbon steel with an experimental chemical composition, and as a result two different microstructures were obtained. Steel A had a ferritic microstructure, and steel B had a bainitic-martensitic one. The corrosion behavior was reviewed at long times in samples without load by means of Electrochemical Impedance Spectroscopy (EIS) in a near-neutral pH (NNpH) environment. The results showed that the quantity and adherence of corrosion products on the sample surface at long times are different. Hence, the impedance was higher for steel B. Slow strain rate testing (SSRT) was applied to tempered samples of the two steels at 473 K, 673 K, and 873 K (200 °C, 400 °C, and 600 °C), and the corrosion behavior was acquired using EIS at the same time as the SSRT in NNpH conditions. This is a novel result because the tension samples were not electrically isolated from the rest of the load frame. The impedance for the ferritic steel was higher than the bainitic-martensitic one, while it slightly decreased for both steel over time. Tempering improved the corrosion resistance for steel A, while it was not modified for steel B. The corrosion behavior could be associated with the susceptibility of these steels to stress corrosion cracking. A transmission line model was proposed to show qualitatively the corrosion behavior of a crack in the steel, if there is a potential profile inside the crack. A hypothetical potential profile was acquired as well as different impedance behaviors based on electrochemical variables.

  9. Diode Pumped Alkaline Laser System: A High Powered, Low SWaP Directed Energy Option for Ballistic Missile Defense High-Level Summary - April 2017

    Energy Technology Data Exchange (ETDEWEB)

    Wisoff, P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-28

    The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform and deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.

  10. Stability of the calcium hydroxyzincate protective layer developed on galvanized reinforcements after a further increase of the pH value

    OpenAIRE

    Andrade, C.; Macías, A

    1986-01-01

    In previous works on galvanized reinforcements in contact with Ca- containing highly alkaline media, the authors have reported the existence of a threshold pH of 13,3 ± 0,1, below which the Zn in contact with such a medium is passivated by formation of a continuous layer of calcium hydroxyzincate, but at pH values above this it corrodes continuously until it totally disappears. The investigation on the stability of the calcium hydroxyzincate layer after an increase of the pH to very high...

  11. High-performance chromatofocusing using linear and concave pH gradients formed with simple buffer mixtures. II. Separation of proteins.

    Science.gov (United States)

    Kang, X; Bates, R C; Frey, D D

    2000-08-18

    The separation of proteins using high-performance chromatofocusing with linear or concave pH gradients formed using simple mixtures of buffering species in the elution buffer is investigated experimentally. The separation achieved is comparable to that using polyampholyte elution buffers with these types of systems. More specifically, protein band widths at one half of the band height in the range between 0.1 and 0.025 pH units were observed, and good resolution was achieved of protein variants differing by a single amino acid residue in separation times of 30 min or less. An especially useful elution buffer is investigated that contains only four buffering species and that produces a linear pH gradient in the range between pH 9.5 and 6.0 when used together with a particular high-performance column packing made specifically for chromatofocusing. This elution buffer and column packing combination is evaluated by using it for the chromatofocusing of equine myoglobin and human hemoglobin variants. Additional applications are described in which a polyethyleneimine derivatized silica column packing and a pH gradient that is concave in shape are used for the separation of proteins in an E. coli cell lysate.

  12. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chenju, E-mail: cliang@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan (China); Lin, Ya-Ting [Department of Environmental Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan City 320, Taiwan (China); Shiu, Jia-Wei [Department of Environmental Engineering, National Chung Hsing University 250, Kuo-kuang Road, Taichung 402, Taiwan (China)

    2016-01-25

    Highlights: • Alkaline ascorbic acid (a.k.a. vitamin C) is capable of reductively degrading NB. • The pH above the pK{sub a2} of ascorbic acid increases reductive electron transfer to NB. • The rate equation for the reactions between NB and AA is determined. • NSB, AZOXY, and AZO are identified as intermediates and aniline as a final product. • Alkaline pH is essential for AA remediation of NB contaminated soils. - Abstract: Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO{sub 2}{sup −}) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pK{sub a2} of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r = ((0.89 ± 0.11) × 10{sup −4} mM{sup 1−(a} {sup +} {sup b)} h{sup −1}) × [NB]{sup a} {sup =} {sup 1.35} {sup ±} {sup 0.10}[AA]{sup b} {sup =} {sup 0.89} {sup ±} {sup 0.01}. The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  13. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    Science.gov (United States)

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.

  14. Acid rock drainage passive remediation: Potential use of alkaline clay, optimal mixing ratio and long-term impacts.

    Science.gov (United States)

    Plaza, Fernando; Wen, Yipei; Perone, Hanna; Xu, Yi; Liang, Xu

    2017-01-15

    Acid rock drainage (ARD) is one of the most adverse environmental problems of the mining industry. Surface and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and metals/metalloids. In this study, alkaline clay (AC), an industrial waste with a high alkalinity, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation in waste coal piles. Through a series of laboratory experiments (static and kinetic), complemented with field measurements and geochemical modeling, three important issues associated with this passive and sustainable ARD remediation method were investigated: 1) the potential use of alkaline clay as an ARD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values close to neutral conditions, and, 3) the implications for long-term performance, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a local waste coal site. Through the analysis of the field measurements and the outcome of the laboratory experiments, AC proved to be an effective remediation material for ARD. Compared to those found in mine tailings, the concentrations of contaminants such as iron, manganese or sulfate were significantly reduced with this remediation approach. Moreover, results suggest a reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating. These processes also made the amended layer less porous, thus increased water retention and hindered oxygen diffusion.

  15. Alkaline hydrothermal zeolites synthesized from high SiO{sub 2} and Al{sub 2}O{sub 3} co-disposal fly ash filtrates

    Energy Technology Data Exchange (ETDEWEB)

    Vernon S. Somerset; Leslie F. Petrik; Richard A. White; Michael J. Klink; David Key; Emmanuel I. Iwuoha

    2005-12-01

    A co-disposal reaction was used wherein fly ash (FA) was reacted with acid mine drainage (AMD), to collect filtrates for zeolite synthesis. Raw fly ash as well as fly ash leached with HCl were subjected to the same alkaline hydrothermal zeolite synthesis conditions, as for the co-disposal filtrates, in order to evaluate the zeolitic material obtained. The Si and Al contents of the fly ash (FA) filtrates were used as precursor species for the alkaline hydrothermal conversion of the fly ash filtrates into zeolites. These filtrates were then analysed by XRF spectrometry for quantitative determination of SiO{sub 2} and Al{sub 2}O{sub 3}. The (SiO{sub 2})/(Al{sub 2}O{sub 3}) ratio obtained in the filtrates range from 1.4 to 2.5. The (SiO{sub 2})/(Al{sub 2}O{sub 3}) ratio was used to predict whether the fly ash filtrates could successfully be converted into faujasite zeolitic material by the adopted synthesis procedures. If the (SiO{sub 2})/(Al{sub 2}O{sub 3}) ratio is higher than 1.5 in the co-disposal filtrates, it favours the formation of faujasite. The zeolite synthesis included an alkaline fusion of the co-disposal filtrates, followed by aging for 8 hours and hydrothermal conversion by crystallisation at 100{sup o}C. Different variables were investigated during the synthesis of zeolite to ascertain their influence on the end product. These variables include adding different amounts of deionised water to the FA-related starting material, using different compositions of FA related starting material and different FA:NaOH ratios in fusing the starting material. 15 refs., 3 figs., 2 tabs.

  16. Chromatographic separation of alkaline phosphatase from dental enamel

    DEFF Research Database (Denmark)

    Moe, D; Kirkeby, S; Salling, E

    1989-01-01

    Alkaline phosphatase (AP) was prepared from partly mineralized bovine enamel by extraction in phosphate buffer, centrifugation and various chromatographic techniques. Chromatofocusing showed that the enamel enzyme possessed five isoelectric points at the acid pH level ranging from pH 5.7 to pH 4.......4. Three enzyme peaks were eluted using low pressure chromatography with a Bio-gel column. With a HPLC gel filtration column the separation of the enamel extract resulted in only one peak with AP activity. The fractions of this peak were used to produce an antibody against bovine AP....

  17. High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: effect of pH and polymer concentration.

    Science.gov (United States)

    Wijaya, Wahyu; Van der Meeren, Paul; Wijaya, Christofora Hanny; Patel, Ashok R

    2017-02-22

    In recent years, there has been significant progress in edible emulsion technology especially with respect to creating and stabilizing surfactant-free emulsion systems for food applications. In this paper, we demonstrate the fabrication of high internal phase emulsions (HIPE) (φoil = 0.82) stabilized using colloidal complexes of non-gelling biopolymers (at concentrations as low as 0.3 wt%). The colloidal complexes were pre-formed by combining whey protein isolate (WPI) and low-methoxyl pectin (LMP) at three different pH values (i.e. pH 3.5, 4.5, 5.5) and used further for fabricating stable HIPEs. In addition to the effect of pH, the influence of total biopolymer concentration on the formation and properties of HIPEs was also evaluated. Depending on the total concentration of biopolymers used, the WPI-LMP complexes (formed at pH 4.5) showed a Z-average diameter in the range of 250-350 nm. It was found that the formation of HIPEs was strongly influenced by the pH of the colloidal complexes. At a pH close to the isoelectric point of WPI (≈pH 4.8) and WPI-LMP complexes (≈pH 3.4), severe aggregation of colloidal particles occurred, resulting in poor formation and stability of HIPEs. On comparing the stabilization behaviour of the complexes with the uncomplexed protein, it was noticed that the former provided comparatively better stabilization to the HIPEs against coalescence at pH 4.5 and 5.5. Based on the rheological data (low amplitude oscillatory shear rheology and flow measurements), all HIPE samples showed viscoelastic and shear-thinning behaviour. We believe that such viscoelastic gel-like systems could find potential commercial applications in the development of label-friendly novel food products with interesting textures.

  18. Cenozoic high-K alkaline magmatism and associated Cu-Mo-Au mineralization in the Jinping-Fan Si Pan region, southeastern Ailao Shan-Red River shear zone, southwestern China-northwestern Vietnam

    Science.gov (United States)

    Tran, My Dung; Liu, Junlai; Nguyen, Quang Luat; Chen, Yue; Tang, Yuan; Song, Zhijie; Zhang, Zhaochong; Zhao, Zhidan

    2014-01-01

    The Jinping-Fan Si Pan (JFP) Cenozoic magmatic and Cu-Mo-Au metallogenic belt in the southeastern part of the Ailao Shan shear zone host the Tongchang, Chang‧an, Habo, and Chinh Sang Cu-Mo-Au deposits. These deposits form an integrated epithermal-porphyry regional mineralization system associated with 40-32 Ma high-K alkaline magmatism. The magmatic rocks in the belt have relatively low TiO2 (<0.73 wt%), P2O5 (<0.29 wt%), and FeO* (<4.99 wt%), and high Na2O (2.86-4.75 wt%) and K2O (4.01-7.98 wt%). They also have high contents of incompatible trace elements, and are enriched in LILE (Rb, Ba, K, Sr) and LREE. They have marked Nb, Ta, Ti and P depletion in primitive mantle-normalized spidergrams, and plot close to the EMII mantle field in the Sr-Nd isotopic diagram. These characteristics are similar to those of the Eocene high-K alkaline rocks along the northern Ailao Shan belt, eastern Tibet plateau. The sulfur and lead isotope analyses of sulfide minerals from both the ores and related magmatic rocks confirm the involvement of a magmatic ore fluid. The Cenozoic alkaline intrusions and Cu-Mo-Au mineralization in the JFP were formed prior to the initiation of left-lateral shearing along the Ailao Shan shear zone. The magmas appear to have been derived from enriched mantle, possibly with mixing of materials from the buried Tethyan oceanic lithosphere, and/or crust.

  19. Four weeks of normobaric "live high-train low" do not alter muscular or systemic capacity for maintaining pH and K+ homeostasis during intense exercise

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai B; Siebenmann, C; Jacobs, R A

    2012-01-01

    It was investigated if athletes subjected to 4 wk of living in normobaric hypoxia (3,000 m; 16 h/day) while training at 800-1,300 m ["live high-train low" (LHTL)] increase muscular and systemic capacity for maintaining pH and K(+) homeostasis as well as intense exercise performance. The design wa...

  20. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa : an in vitro study

    NARCIS (Netherlands)

    van der Waal, S. V.; van der Sluis, L. W. M.; Ozok, A. R.; Exterkate, R. A. M.; van Marle, J.; Wesselink, P. R.; de Soet, J. J.

    2011-01-01

    van der Waal SV, van der Sluis LWM, Ozok AR, Exterkate RAM, van Marle J, Wesselink PR, de Soet JJ. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: an in vitro study. International Endodontic Journal, 44, 11101117, 2011. Aim To inv

  1. Curing mechanism of alkaline phenolic resin with organic ester

    Institute of Scientific and Technical Information of China (English)

    Huang Renhe; Wang Yanmin; Zhang Baoping

    2014-01-01

    To study the curing mechanism of alkaline phenolic resin with organic ester, three esters were chosen to react with three systems - alkaline phenolic resin, potassium hydroxide aqueous solution containing phenol, and potassium hydroxide aqueous solution. The variations of pH, heat release and gel pH during the reactions were monitored and measured. Infrared spectroscopy (IR) and thermal gravity analysis (TG) techniques were used to characterize the curing reaction. It was found that organic ester is only partial y hydrolyzed and resin can be cured through organic ester hydrolysis process as wel as the reaction with redundant organic ester. The sequential curing mechanism of alkaline phenolic resin cured by organic ester was identified as fol ows: a portion of organic ester is firstly hydrolyzed owing to the effect of the strong alkaline; the gel is then formed after the pH decreases to about 10.8-10.88, meanwhile, the redundant organic ester (i.e. non-hydrolysis ester) starts the curing reaction with the resin. It has also been found that the curing rate depends on the hydrolysis velocity of organic ester. The faster the hydrolysis speed of the ester, the faster the curing rate of the resin.

  2. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.

    Science.gov (United States)

    Dhakar, Kusum; Pandey, Anita

    2016-03-01

    Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance).

  3. Metal mobilization under alkaline conditions in ash-covered tailings.

    Science.gov (United States)

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Lipase-producing microorganisms from a Kenyan alkaline soda lake.

    Science.gov (United States)

    Vargas, Virginia A; Delgado, Osvaldo D; Hatti-Kaul, Rajni; Mattiasson, Bo

    2004-01-01

    Lipolytic enzyme production of 150 isolated strains from samples of Lake Bogoria (Kenya) was examined. Among these, fifteen isolates were selected on the basis of their lipolytic activities and subjected to morphological and 16S rRNA gene sequencing analyses for their identification. All the microorganisms have been selected under culture conditions with pH ranges between 7-10 and temperatures of 37-55 degrees C. Most of them showed optimal growth at 37 degrees C and tolerated salinity up to 10% (w/v). Ten of the isolates were Gram-negative, nine of which were closely related to the Pseudomonas cluster and one to the Halomonas cluster sharing high similarity profile with Halomonas desiderata. The remaining Gram-positive isolates were closely related to the Bacillus cluster, and were grouped with Bacillus halodurans, Bacillus alcalophilus and Bacillus licheniformis. Four members of the Bacillus cluster and the Halomonas sp. produced lipolytic activity under alkaline conditions, while others did so at neutral pH values.

  5. Effects of high voltage electrical stimulation on the rate of pH decline, meat quality and color stability in chilled beef carcasses

    Institute of Scientific and Technical Information of China (English)

    Ehsan Gharib Mombeni; Manoochehr Gharib Mombeini; Lucas Chaves Figueiredo; Debora Testoni Dias

    2013-01-01

    Objective:To determine the effects of high voltage electrical stimulation (HVES, 800 Voltage) on rapid decreases in pH values and improvements in meat quality. Methods:A total of 50 beef carcasses were applied, divided into two groups, one as a control and another for HVES. Meat quality was evaluated based on M. longissimus dorsi by examining pH and temperature levels at 1, 2, 5, 10 and 24 h, while color stability was examined seven days after slaughter. Results:HVES decreased the pH values of the meat and accelerated rigor mortis (P Conclusion:the HVES had positive effects on meat quality and color stability, in contrast to undesirable consumer preferences.

  6. Combined Use of Alkaline Slag and Rapeseed Cake to Ameliorate Soil Acidity in an Acid Tea Garden Soil

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; YANG Xing-Lun; K.RACHEL; WANG Yu; TONG De-Li; YE Mao; JIANG Xin

    2013-01-01

    Rapeseed cake (RC),the residue of rapeseed oil extraction,is effective for improving tea (Camellia sinensis) quality,especially taste and aroma,but it has limited ability to ameliorate strongly acidic soil.In order to improve the liming potential of RC,alkaline slag (AS),the by-product of recovery of sodium carbonate,was incorporated.Combined effects of different levels of RC and AS on ameliorating acidic soil from a tea garden were investigated.Laboratory incubations showed that combined use of AS and RC was an effective method to reduce soil exchangeable acidity and A1 saturation and increase base saturation,but not necessarily for soil pH adjustment.The release of alkalinity from the combined amendments and the mineralization of organic nitrogen increased soil pH initially,but then soil pH decreased due to nitrifications.Various degrees of nitrification were correlated with the interaction of different Ca levels,pH and N contents.When RC was applied at low levels,high Ca levels from AS repressed soil nitrification,resulting in smaller pH fluctuations.In contrast,high AS stimulated soil nitrification,when RC was applied at high levels,and resulted in a large pH decrease.Based on the optimum pH for tea production and quality,high ratios of AS to RC were indicated for soil acidity amelioration,and 8.0 g kg-1 and less than 2.5 g kg-1 were indicated for AS and RC,respectively.Further,field studies are needed to investigate the variables of combined amendments.

  7. Alkaline protease production by solid state fermentation on polyurethane foam

    OpenAIRE

    Hongzhang, Chen; Hui, Wang; Aijun, Zhang; Zuohu, Li

    2006-01-01

    This paper investigated the process of solid state fermentation (SSF) using PUF (polyurethane foam) as inert solid support to produce alkaline protease. Maximal enzyme activity was 2185U/ml at pH 9.0, incubation temperature 32 0C inoculum amount of 1.0 % (v/v) , nutrient solution3.75 ml/g PUF, incubation time for 2 h and 15.0 mM of added CaCl2. Under the same conditions, the yield of alkaline protease produced by SSF using PUF as support is higher than that by submerged fermentation (SMF).

  8. High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization.

    Directory of Open Access Journals (Sweden)

    Md Sainur Samad

    Full Text Available Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O and N2O/(N2O+N2 product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial were significantly associated with C mineralization (CO2 μmol/h/vial measured both under oxic (r2 = 0.62, p = 0.0015 and anoxic (r2 = 0.89, p<0.0001 conditions.

  9. Use of dicarboxylic acids and polyphenols to attenuate reticular pH drop and acute phase response in dairy heifers fed a high grain diet.

    Science.gov (United States)

    De Nardi, Roberta; Marchesini, Giorgio; Plaizier, Jan C; Li, Shucong; Khafipour, Ehsan; Ricci, Rebecca; Andrighetto, Igino; Segato, Severino

    2014-11-26

    The aim of this study was to determine the ability of two feed additives, a fumarate-malate (FM) and a polyphenol-essential oil mixture (PM), in attenuating the drop of ruminal pH and the metabolic and immune response resulting from an excessively high grain diet. Six heifers were used in a 3 × 3 Latin square experiment and fed a low starch (LS) diet for 14 d, followed by a high starch (HS) diet for 8 d (NDF 33.6%, starch 30.0% DM). In the last 5 days of each period, barley meal was added to decrease rumen pH. During HS feeding all animals were randomly assigned to one of the following three dietary treatments: no supplement/control (CT), a daily dose of 60 g/d of FM, or 100 g/d of PM. Reticular pH was continuously recorded using wireless boluses. On d 21 of each period, rumen fluid was collected by rumenocentesis (1400 h), together with blood (0800 h) and fecal samples (0800, 1400, and 2100 h). The correlation coefficient of pH values obtained using the boluses and rumenocentesis was 0.83. Compared with CT and PM, the FM treatment led to a lower DMI. Nadir pH was lowest during CT (5.40, 5.69, and 5.62 for CT, FM and PM, respectively), confirming the effectiveness of both supplements in reducing the pH drop caused by high grain feeding. This result was confirmed by the highest average time spent daily below 5.6 pH (199, 16 and 18 min/d) and by the highest acetate to propionate ratio of the CT fed heifers. The PM decreased the concentrations of neutrophils (2.9, 3.2, and 2.8 10(9)/L) and acute phase proteins: SAA (37.1, 28.6 and 20.1 μg/mL), LBP (4.1, 3.8, and 2.9 μg/mL), and Hp (675, 695 and 601 μg/mL). Free lipopolysaccharides (LPS) were detected in blood and feces, but their concentrations were not affected by treatments, as the remaining blood variables. Data suggest that both additives could be useful in attenuating the effects of excessive grain feeding on rumen pH, but the PM supplement was more effective than FM in reducing the inflammatory response

  10. Time resolved calorimetry of photo-induced folding in horse heart cytochrome c at high pH.

    Science.gov (United States)

    Word, Tarah A; Larsen, Randy W

    2017-02-01

    Here the molar volume and enthalpy changes associated with the early events in the folding of ferrocytochrome c (Cc) at high pH have been examined using time resolved photoacoustic calorimetry (PAC). The data reveal an overall volume change of 1.3 ± 0.3 mL mol(-1) and an enthalpy change of 13 ± 7 kcal mol (-1) occurring subsequent to photodissociation of the unfolded CO bound Cc species in <∼20 ns. Two additional kinetic phases are observed that are associated with non-native His binding (ΔH and ΔV of 2 ± 4 kcal mol(-1) and -0.5 mL mol(-1), τ ∼ 2.5 μs ) and Met binding (ΔH and ΔV -0.4 ± 2 kcal mol(-1) and -0.1 ± 0.1 mL mol(-1), τ∼ 660 ns). Considering only protein conformational changes (excluding volume and enthalpies associated with heme ligation events) the initial conformational event exhibits a ΔH and ΔV of 6 ± 3 kcal mol(-1) and -3±0.1 mL mol(-1), respectively, that are attributed to a small contraction of the unfolded protein. The corresponding enthalpy associated with both native and non-native ligand binding are found to be -5±4 kcal mol(-1) (Fe-Met) and +20 ± 4 kcal mol(-1) (Fe-His) with the change in volume for both phases being essential negligible. This would indicate that non-native ligand binding likely occurs from an already collapsed conformation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sources of alkalinity and acidity along an acid mine drainage remediated stream in SE Ohio: Hewett Fork

    Science.gov (United States)

    Schleich, K. L.; Lopez, D. A.; Bowman, J. R.; Kruse, N. A.; Mackey, A. L.; VanDervort, D.; Korenowsky, R.

    2013-12-01

    In the remediation of acid mine drainage impacted streams, it is important to locate and quantify the sources of acidity and alkalinity inputs. These parameters affect the long-term recovery of the stream habitat. Previous studies have focused on treating the remediation of AMD as point source pollution, targeting the main acid seep for remediation. However, in the interest of biological and chemical recovery, it is important to understand how sources of alkalinity and acidity, throughout the stream, affect water and sediment quality. The Hewett Fork watershed in Southeastern Ohio is impacted by AMD from the AS-14 mine complex in Carbondale, Ohio. In attempts to remediate the stream, the water is being treated with a continuous alkaline input from a calcium oxide doser. While the section of watershed furthest downstream from the doser is showing signs of recovery, the water chemistry and aquatic life near the doser are still impacted. The objective of this study is to examine and model the chemistry of the tributaries of Hewett Fork to see how they contribute to the alkalinity and acidity budgets of the main stem of the stream. By examining the inputs of tributaries into the main stem, this project aims to understand processes occurring during remediation throughout the entire stream. Discharge was measured during a dry period in October, 2012 and at a high flow in May, 2013. Field parameters such as pH, TDS, DO, alkalinity and acidity were also determined. Low flow data collected during fall sampling shows variable flow along the stream path, the stream gains water from ground water at some points while it loses water at others, potentially due to variable elevation of the water table. Flow data collected during spring sampling shows that Hewett Fork is a gaining stream during that period with inputs from groundwater contributing to increasing flow downstream. When using this data to calculate the net alkalinity load along the stream, there are areas with alkaline

  12. Propagated fixed-bed mixed-acid fermentation: Part I: Effect of volatile solid loading rate and agitation at high pH.

    Science.gov (United States)

    Golub, Kristina W; Forrest, Andrea K; Mercy, Kevin L; Holtzapple, Mark T

    2011-11-01

    Countercurrent fermentation is a high performing process design for mixed-acid fermentation. However, there are high operating costs associated with moving solids, which is an integral component of this configuration. This study investigated the effect of volatile solid loading rate (VSLR) and agitation in propagated fixed-bed fermentation, a configuration which may be more commercially viable. To evaluate the role of agitation on fixed-bed configuration performance, continuous mixing was compared with periodic mixing. VSLR was also varied and not found to affect acid yields. However, increased VSLR and liquid retention time did result in higher conversions, productivity, acid concentrations, but lower selectivities. Agitation was demonstrated to be important for this fermentor configuration, the periodically-mixed fermentation had the lowest conversion and yields. Operating at a high pH (∼9) contributed to the high selectivity to acetic acid, which might be industrially desirable but at the cost of lower yield compared to a neutral pH.

  13. Faster onset and more comfortable injection with alkalinized 2% lidocaine with epinephrine 1:100,000.

    Science.gov (United States)

    Malamed, Stanley F; Tavana, Susan; Falkel, Mic

    2013-02-01

    The pH of lidocaine with epinephrine in dental cartridges ranges between 2.9 and 4.4. In this pH range, less than 0.1% of the anesthetic is in the de-ionized or "active" form. The acidity of the anesthetic may delay onset and contribute to injection pain. The study compared anesthetic latency and injection pain for alkalinized versus non-alkalinized anesthetic in inferior alveolar nerve blocks (IANBs). The study buffered the anesthetic directly in the cartridges using a mixing pen device. The study included 20 participants, each receiving one control and one test IANB injection. The control solution was non-alkalinized 2% lidocaine/epinephrine 1:100,000 at pH 3.85. The test solution was 2% lidocaine/ epinephrine 1:100,000 alkalinized to pH 7.31. Latency was measured using endodontic ice confirmed with an electric pulp tester (EPT), and injection pain was measured using a visual analog scale (VAS). ONSET TIME: With the alkalinized anesthetic, 71% of participants achieved pulpal analgesia in 2 minutes or less. With non-alkalinized anesthetic, 12% achieved pulpal analgesia in 2 minutes or less (P = 0.001). The average time to pulpal analgesia for the non-alkalinized anesthetic was 6:37 (range 0:55 to 13:25). Average time to pulpal analgesia for alkalinized anesthetic was 1:51 (range 0:11 to 6:10) (P = 0.001). INJECTION PAIN RESULTS: 72% of the participants rated the alkalinized injection as more comfortable, 11% rated the non-alkalinized injection as more comfortable, and 17% reported no preference (P = 0.013). Forty-four percent of the patients receiving alkalinized anesthetic rated the injection pain as zero ("no pain") on a 100-mm VAS, compared to 6% of the patients who received non-alkalinized anesthetic (P = 0.056). Alkalinizing lidocaine with epinephrine toward physiologic pH immediately before injection significantly reduces anesthetic onset time and increases the comfort of the injection. Clinicians can begin procedures more quickly and give a more comfortable

  14. Sulfate—Exchange Alkalinity of Ferralsol Colloid

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; ZHANGXIAONIAN

    1999-01-01

    The amount of OH- replaced by sulfate,i.e.,sulfate-exchange alkalinity,from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid.The exchange acidity was displayed as pH was higher than 5.6,If the negative effect of sodium ions was offset,the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the pH range of lower than 5.8.The amount of OH- released decreased rapidly as pH was higher than 6.0 and dropped to zero when pH reached 6.5.In the solution of 2.0molL-1 NaClO4,the amount of OH- repleaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction.The amount of OH- released in the solution of NaClO4 concentration below 2.0mol L-1 from which the amount of OH- adsorbed by ligand exchange reaction was subtracted could be conidered as the OH- adsorbed by electrostatic force,The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and pH and increased almost linearly with the increasing amount of Na2SON4 added.The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5mol L-1 NaClO4 in the total OH- released were calculated,respectively.

  15. Space-time variability of alkalinity in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    G. Cossarini

    2014-09-01

    Full Text Available The paper provides a basin assessment of the spatial distribution of ocean alkalinity in the Mediterranean Sea. The assessment is made using a 3-D transport-biogeochemical-carbonate model to integrate the available experimental findings, which also constrains model output. The results indicate that the Mediterranean Sea shows alkalinity values that are much higher than those observed in the Atlantic Ocean on a basin-wide scale. A marked west-to-east surface gradient of alkalinity is reproduced as a response to the terrestrial discharges, the mixing effect with the Atlantic water entering from the Gibraltar Strait and the Black Sea water from Dardanelles, and the surface flux of evaporation minus precipitation. Dense water production in marginal seas (Adriatic and Aegean Seas, where alkaline inputs are relevant, and the Mediterranean thermohaline circulation sustains the west-to-east gradient along the entire water column. In the surface layers, alkalinity has a relevant seasonal cycle (up to 40 μmol kg−1 that is driven both by physical and biological processes. A comparison of alkalinity vs. salinity indicates that different regions present different relationships. In regions of freshwater influence, the two measures are negatively correlated due to riverine alkalinity input, whereas they are positively correlated in open seas. Alkalinity always is much higher than in the Atlantic waters, which might indicate a higher than usual buffering capacity towards ocean acidification, even at high concentrations of dissolved inorganic carbon.

  16. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    Science.gov (United States)

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  17. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations.

    Science.gov (United States)

    Rea, Jennifer C; Moreno, G Tony; Lou, Yun; Farnan, Dell

    2011-01-25

    Ion-exchange chromatography is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies. Despite good resolving power and robustness, ionic strength-based ion-exchange separations are product-specific and time-consuming to develop. We have previously reported a novel pH-based separation of proteins by cation exchange chromatography that was multi-product, high-resolution, and robust against variations in sample matrix salt concentration and pH. In this study, a pH gradient-based separation method using cation exchange chromatography was evaluated in a mock validation. This method was shown to be robust for monoclonal antibodies and suitable for its intended purpose of charge heterogeneity analysis. Simple mixtures of defined buffer components were used to generate the pH gradients that separated closely related antibody species. Validation characteristics, such as precision and linearity, were evaluated. Robustness to changes in protein load, buffer pH and column oven temperature was demonstrated. The stability-indicating capability of this method was determined using thermally stressed antibody samples. In addition, intermediate precision was demonstrated using multiple instruments, multiple analysts, multiple column lots, and different column manufacturers. Finally, the precision for this method was compared to conventional ion-exchange chromatography and imaged capillary isoelectric focusing. These results demonstrate the superior precision and robustness of this multi-product method, which can be used for the high-throughput evaluation of in-process and final product samples.

  18. Digestive Alkaline Proteases from Zosterisessor ophiocephalus, Raja clavata, and Scorpaena scrofa: Characteristics and Application in Chitin Extraction.

    Science.gov (United States)

    Nasri, Rim; Younes, Islem; Lassoued, Imen; Ghorbel, Sofiane; Ghorbel-Bellaaj, Olfa; Nasri, Moncef

    2011-01-01

    The aim of this work was to study some biochemical characteristics of crude alkaline protease extracts from the viscera of goby (Zosterisessor ophiocephalus), thornback ray (Raja clavata), and scorpionfish (Scorpaena scrofa), and to investigate their applications in the deproteinization of shrimp wastes. At least four caseinolytic proteases bands were observed in zymogram of each enzyme preparation. The optimum pH for enzymatic extracts activities of Z. ophiocephalus, R. clavata, and S. scrofa were 8.0-9.0, 8.0, and 10.0, respectively. Interestingly, all the enzyme preparations were highly stable over a wide range of pH from 6.0 to 11.0. The optimum temperatures for enzyme activity were 50°C for Z. ophiocephalus and R. clavata and 55°C for S. scrofa crude alkaline proteases. Proteolytic enzymes showed high stability towards non-ionic surfactants (5% Tween 20, Tween 80, and Triton X-100). In addition, crude proteases of S. scrofa, R. clavata, and Z. ophiocephalus were found to be highly stable towards oxidizing agents, retaining 100%, 70%, and 66%, respectively, of their initial activity after incubation for 1 h in the presence of 1% sodium perborate. They were, however, highly affected by the anionic surfactant SDS. The crude alkaline proteases were tested for the deproteinization of shrimp waste in the preparation of chitin. All proteases were found to be effective in the deproteinization of shrimp waste. The protein removals after 3 h of hydrolysis at 45°C with an enzyme/substrate ratio (E/S) of 10 were about 76%, 76%, and 80%, for Z. ophiocephalus, R. clavata, and S. scrofa crude proteases, respectively. These results suggest that enzymatic deproteinization of shrimp wastes by fish endogenous alkaline proteases could be applicable to the chitin production process.

  19. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  20. Simple Fabrication of Mesoporous Silica with Remarkable High Temperature Stability at Neutral pH and Ambient Conditions from TEOS

    Science.gov (United States)

    Hess, David; Vippagunta, Radha; Watkins, James

    2007-03-01

    Traditional silica synthesis processes can yield well ordered materials, but the synthesis conditions also lead to incomplete condensation of the silica network, which results in significant structural contraction upon calcination and limited thermal, hydrothermal and mechanical stability. Here we report the synthesis that, surprisingly, yields nearly complete condensation of the silica network (virtually all Q4 linkages) using cysteamine as the catalyst and polyoxyethylene surfactants as the structure directing agents in buffered solution at neutral pH and ambient temperature. Recently, small molecule bifunctional amines, including cysteamine, were evaluated by Morse and co-workers and found to produce silica from TEOS(JACS 2005, 127, 35). Our work combines the cysteamine catalyst system with structure-directing block copolymer surfactants at neutral pH and ambient temperature to produce mesoporous silica. The addition of tetraethyl orthosilicate (TEOS) to a solution of containing cysteamine, citrate buffer (pH 7.2) and 5wt Brij amphiphilic block copolymer (polyethylene oxide-polyethylene) yields mesoporous silica. The resulting mesoporous silica powder was analyzed using XRD, TGA, FTIR, TEM, and NMR. The materials were found to exhibit stability under extreme temperature calcinations (up to 800 C) in the presence of water. SAXS shows that 1.0 shrinkage upon calcination up to 800C. 29Si NMR analysis indicates a fully condensed silica network, Q4 linkages, in accordance with this observation.

  1. A highly selective ratiometric fluorescent pH probe based on a PAMAM wavelength-shifting bichromophoric system

    Science.gov (United States)

    Alamry, Khalid A.; Georgiev, Nikolai I.; El-Daly, Samy Abdullah; Taib, Layla A.; Bojinov, Vladimir B.

    2015-01-01

    A novel PAMAM wavelength-shifting bichromophoric system has been successfully developed. Novel compound was configured as a light harvesting antenna where the system surface is labeled with yellow-green emitting 4-(N,N-dimethylamino)ethylamino-1,8-naphthalimide "donor" units capable of absorbing light and efficiently transferring the energy to a focal Rhodamine 6G "acceptor". The periphery of the system was designed on the "fluorophore-spacer-receptor" format, capable of acting as a molecular fluorescence photoinduced electron transfer based probe. Due to the both effects, photoinduced electron transfer in the periphery of the system and pH dependent rhodamine core absorption, novel antenna is able to act as a selective ratiometric pH fluorescence probe in aqueous medium. Thus, the distinguishing features of the fluorescence resonance energy transfer systems were successfully combined with the properties of classical ring-opening charge transfer systems, which may be beneficially for monitoring pH variations in complex samples.

  2. High titer and yield ethanol production from undetoxified whole slurry of Douglas-fir forest residue using pH profiling in SPORL.

    Science.gov (United States)

    Cheng, Jinlan; Leu, Shao-Yuan; Zhu, Jy; Gleisner, Rolland

    2015-01-01

    Forest residue is one of the most cost-effective feedstock for biofuel production. It has relatively high bulk density and can be harvested year round, advantageous for reducing transportation cost and eliminating onsite storage. However, forest residues, especially those from softwood species, are highly recalcitrant to biochemical conversion. A severe pretreatment for removing this recalcitrance can result in increased sugar degradation to inhibitors and hence cause difficulties in fermentation at high solid loadings. Here, we presented high titer ethanol production from Douglas-fir forest residue without detoxification. The strong recalcitrance of the Douglas-fir residue was removed by sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL). Sugar degradation to inhibitors was substantially reduced using a novel approach of "pH profiling" by delaying acid application in pretreatment, which facilitated the simultaneous enzymatic saccharification and fermentation of undetoxified whole slurry at a solid loading of 21%. "pH profiling" reduced furan production by approximately 70% in using SPORL pretreating Douglas-fir forest residue (FS-10) comparing with the control run while without sacrificing enzymatic saccharification of the resultant substrate. pH profiling also reduced carbohydrate degradation. The improved carbohydrate yield in pretreated solids and reduced fermentation inhibitors with pH profiling resulted in a terminal ethanol titer of 48.9 ± 1.4 g/L and yield of 297 ± 9 L/tonne FS-10, which are substantially higher, i.e., by 27% in titer and by 38% in yield, than those of a control SPORL run without pH profiling. Economical and large-volume production of commodity biofuels requires the utilization of feedstocks with low value (therefore low cost) and sustainably producible in large quantities, such as forest residues. However, most existing pretreatment technologies cannot remove the strong recalcitrance of forest

  3. Application of Alkaline Waterflooding to a High Acidity Crude Oil Application de l'injection d'eau alcaline au cas d'un pétrole brut à forte acidité

    Directory of Open Access Journals (Sweden)

    Abdel-Waly A.

    2006-11-01

    Full Text Available The main objective of this work was to study the enhanced recovery of a high acidity crude oil (South Geisum crude by alkaline solutions. Different properties of South Geisum crude oil, namely acidity, interfacial tension, and contact angle, were investigated. Displacement tests were carried out to study the effect of alkaline slug concentration, slug size, oil alkali type, and temperature viscosity on recovery. South Geisum crude oil is a highly acidic crude (4. 38 mg KOH/g. It was found that the interfacial tension between crude oil and formation water decreases with increasing alkaline concentration until it reaches a minimum, after which it increases again with a further increase in alkaline concentration. Interfacial tension between crude oil and displacement water also decreases with increasing alkaline concentration. Contact angle measurements indicated oil-wetting conditions that increase by the addition of alkaline solutions. Displacement floods showed that, at the early stages of displacement, oil recovery increases with increasing alkaline concentration until it reaches a maximum at 4 % by weight NaOH concentration. Also, at such early stages, an excessive increase in alkaline concentration results in lower oil recovery. On the other hand, after the injection of many pore volumes of water, oil recovery is almost the same regardless of the alkaline concentration. It was found also that oil recovery increases with increasing alkaline slug size until it reaches a maximum at 15 % PV, after which increasing slug size results in decreasing oil recovery (this result has not as yet been reported in the literature. Sodium hydroxide slugs produce more oil recovery than sodium carbonate slugs. Oil recovery increases with increasing temperature (from 25 to 55°C and decreasing oil viscosity. Cet article traite de la récupération, au moyen de solutions alcalines, d'un pétrole brut à forte acidité (brut de Geisum-Sud. Différentes propri

  4. Novel As-doped, As and N-codoped carbon nanotubes as highly active and durable electrocatalysts for O2 reduction in alkaline medium

    Science.gov (United States)

    Liu, Ziwu; Li, Meng; Wang, Fang; Wang, Quan-De

    2016-02-01

    To develop more efficient metal-free cathode electrocatalysts for fuel cells, novel arsenic (As)-doped, As and N-codoped carbon nanotubes are synthesized by chemical vapor deposition in this work. The as-prepared As-containing carbon nanotubes exhibit significantly enhanced activity and long-term durability for the oxygen reduction reaction (ORR) in alkaline medium, indicating that the doping of As or codoping As with other heteroatoms into carbon matrix could improve the ORR activity of carbon materials due to the changes in electronic and physical properties of carbon nanotubes evidenced by density functional theory calculations. Moreover, As-containing carbon nanotubes also display much better methanol tolerance, showing a good potential application for future fuel cells.

  5. Revisiting catechol derivatives as robust chromogenic hydrogen donors working in alkaline media for peroxidase mimetics.

    Science.gov (United States)

    Drozd, Marcin; Pietrzak, Mariusz; Pytlos, Jakub; Malinowska, Elżbieta

    2016-12-15

    Colloidal noble metal-based nanoparticles are able to catalyze oxidation of chromogenic substrates by H2O2, similarly to peroxidases, even in basic media. However, lack of robust chromogens, which work in high pH impedes their real applications. Herein we demonstrate the applicability of selected catechol derivatives: bromopyrogallol red (BPR) and pyrogallol (PG) as chromogenic substrates for peroxidase-like activity assays, which are capable of working over wide range of pH, covering also basic values. Hyperbranched polyglycidol-stabilized gold nanoparticles (HBPG@AuNPs) were used as model enzyme mimetics. Efficiency of several methods of improving stability of substrates in alkaline media by means of selective suppression of their autoxidation by molecular oxygen was evaluated. In a framework of presented studies the impact of borate anion, applied as complexing agent for PG and BPR, on their stability and reactivity towards oxidation mediated by catalytic AuNPs was investigated. The key role of high concentration of hydrogen peroxide in elimination of non-catalytic oxidation of PG and improvement of optical properties of BPR in alkaline media containing borate was underlined. Described methods of peroxidase-like activity characterization with the use of BPR and PG can become universal tools for characterization of nanozymes, which gain various applications, among others, they are used as catalytic labels in bioassays and biosensors.

  6. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis

    Science.gov (United States)

    Manazoğlu, Mert; Hapçı, Gökçe; Orhan, Gökhan

    2016-01-01

    In this study, Ni-Mo alloy coatings were electrochemically deposited on a copper plate in citrate solutions. The effects of Ni/Mo mole ratio in the electrolyte and pH value on hydrogen evolution reaction (HER) as well as the electrochemical stability were investigated in the alkaline solution for electrodeposited NiMo. The electrocatalytic activity of the fabricated NiMo alloys for HER in alkaline solutions was investigated by the polarization measurements and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni-Mo were investigated using SEM and EDS analyses. It was found that NiMo electrode with the highest molybdenum content (ca. 38 wt.%) and high surface area show high electrocatalytic activity in the HER. This was produced from a bath with a pH of 9.5, Ni/Mo ratio of 1/10 and 0.5 M sodium citrate concentration. The stability of this coating was tested by polarization measurements after different anodic and cathodic treatment in 1 M NaOH solution. The open circuit potential ( E ocp) of the electrode as a function of immersion time was also measured.

  7. Experimental Simulation of Long Term Weathering in Alkaline Bauxite Residue Tailings

    Directory of Open Access Journals (Sweden)

    Talitha C. Santini

    2015-07-01

    Full Text Available Bauxite residue is an alkaline, saline tailings material generated as a byproduct of the Bayer process used for alumina refining. Developing effective plans for the long term management of potential environmental impacts associated with storage of these tailings is dependent on understanding how the chemical and mineralogical properties of the tailings will change during weathering and transformation into a soil-like material. Hydrothermal treatment of bauxite residue was used to compress geological weathering timescales and examine potential mineral transformations during weathering. Gibbsite was rapidly converted to boehmite; this transformation was examined with in situ synchrotron XRD. Goethite, hematite, and calcite all precipitated over longer weathering timeframes, while tricalcium aluminate dissolved. pH, total alkalinity, and salinity (electrical conductivity all decreased during weathe