WorldWideScience

Sample records for high affinity ligands

  1. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  2. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  3. Statistical removal of background signals from high-throughput 1H NMR line-broadening ligand-affinity screens

    International Nuclear Information System (INIS)

    Worley, Bradley; Sisco, Nicholas J.; Powers, Robert

    2015-01-01

    NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein–ligand interaction at their binding interfaces. While simple one-dimensional 1 H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein 1 H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction

  4. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    Science.gov (United States)

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  5. Affinity chromatography with pseudobiospecific ligands on high-performance supports for purification of proteins of biotechnological interest

    Directory of Open Access Journals (Sweden)

    N.B. Iannucci

    2003-03-01

    Full Text Available High-performance affinity matrices were obtained by attaching pseudobiospecific ligands to hollow-fibre membranes. The neutral protease contained in FlavourzymeTM was purified to homogeneity with Yellow 4R-HE affinity hollow-fibre membranes. Immobilisation of Red HE-3B allowed purification of a milk-clotting enzyme obtained by solid-state culture of Mucor bacilliformis. Copper immobilisation through iminodiacetic acid allowed fractionation of Biocon Bioconcentrated PlusTM to separate the pectinesterase-containing fraction. The productivity of the developed processes - 1900, 94 and 750 U/ml.min, respectively - was 10- to 15-fold higher than that achieved with the same ligands immobilised on agarose-based soft gels, mainly due to the shortening of the purification processes.

  6. Amino propynyl benzoic acid building block in rigid spacers of divalent ligands binding to the Syk SH2 domains with equally high affinity as the natural ligand

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    The construction of rigid spacers composed of amino propynyl benzoic acid building blocks is described. These spacers were used to link two phosphopeptide ligand sites towards obtaining divalent ligands with a high affinity for Syk tandem SH2 domains, which are important in signal transduction. The

  7. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  8. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands.

    Directory of Open Access Journals (Sweden)

    M Lisa Phipps

    Full Text Available Peptides are important affinity ligands for microscopy, biosensing, and targeted delivery. However, because they can have low affinity for their targets, their selection from large naïve libraries can be challenging. When selecting peptidic ligands from display libraries, it is important to: 1 ensure efficient display; 2 maximize the ability to select high affinity ligands; and 3 minimize the effect of the display context on binding. The "helper cell" packaging system has been described as a tool to produce filamentous phage particles based on phagemid constructs with varying display levels, while remaining free of helper phage contamination. Here we report on the first use of this system for peptide display, including the systematic characterization and optimization of helper cells, their inefficient use in antibody display and their use in creating and selecting from a set of phage display peptide libraries. Our libraries were analyzed with unprecedented precision by standard or deep sequencing, and shown to be superior in quality than commercial gold standards. Using our helper cell libraries, we have obtained ligands recognizing Yersinia pestis surface antigen F1V and L-glutamine-binding periplasmic protein QBP. In the latter case, unlike any of the peptide library selections described so far, we used a combination of phage and yeast display to select intriguing peptide ligands. Based on the success of our selections we believe that peptide libraries obtained with helper cells are not only suitable, but preferable to traditional phage display libraries for selection of peptidic ligands.

  9. Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram

    DEFF Research Database (Denmark)

    Kumar, Vivek; Rahbek-Clemmensen, Troels; Billesbølle, Christian B

    2014-01-01

    Novel rhodamine-labeled ligands, based on (S)-citalopram, were synthesized and evaluated for uptake inhibition at the human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) and for binding at SERT, in transiently transfected COS7 cells. Compound 14 demons...... demonstrated high affinity binding and selectivity for SERT (K i = 3 nM). Visualization of SERT, using confocal laser scanning microscopy, validated compound 14 as a novel tool for studying SERT expression and distribution in living cells....

  10. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screen...

  11. Rational design of peptide affinity ligands for the purification of therapeutic enzymes.

    Science.gov (United States)

    Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj

    2018-04-25

    Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  12. Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion.

    Science.gov (United States)

    Prescher, Horst; Frank, Martin; Gütgemann, Stephan; Kuhfeldt, Elena; Schweizer, Astrid; Nitschke, Lars; Watzl, Carsten; Brossmer, Reinhard

    2017-02-09

    Natural killer cells are able to directly lyse tumor cells, thereby participating in the immune surveillance against cancer. Unfortunately, many cancer cells use immune evasion strategies to avoid their eradication by the immune system. A prominent escape strategy of malignant cells is to camouflage themselves with Siglec-7 ligands, thereby recruiting the inhibitory receptor Siglec-7 expressed on the NK cell surface which subsequently inhibits NK-cell-mediated lysis. Here we describe the synthesis and evaluation of the first, high-affinity low molecular weight Siglec-7 ligands to interfere with cancer cell immune evasion. The compounds are Sialic acid derivatives and bind with low micromolar K d values to Siglec-7. They display up to a 5000-fold enhanced affinity over the unmodified sialic acid scaffold αMe Neu5Ac, the smallest known natural Siglec-7 ligand. Our results provide a novel immuno-oncology strategy employing natural immunity in the fight against cancers, in particular blocking Siglec-7 with low molecular weight compounds.

  13. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of [3H]dextromethorphan and σligands to guinea pig brain

    International Nuclear Information System (INIS)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM 1 /σ 1 site binds dextromethorphan (DM) and σ receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of [ 3 H]dextromethorphan, [ 3 H]3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine and (+)-[ 3 H]1,3-Di-o-tolyl-guanidine ([ 3 H]DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K i values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM 1 σ 1 site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K i values of 9-13 and 3-4 μM respectively against the three labeled ligands. These results, the broad specificity of the DM 1 /σ 1 binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor

  14. Dextran as a Generally Applicable Multivalent Scaffold for Improving Immunoglobulin-Binding Affinities of Peptide and Peptidomimetic Ligands

    Science.gov (United States)

    2015-01-01

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654

  15. Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: matching high information content with high throughput.

    Science.gov (United States)

    Holdgate, Geoff A; Anderson, Malcolm; Edfeldt, Fredrik; Geschwindner, Stefan

    2010-10-01

    Affinity-based technologies have become impactful tools to detect, monitor and characterize molecular interactions using recombinant target proteins. This can aid the understanding of biological function by revealing mechanistic details, and even more importantly, enables the identification of new improved ligands that can modulate the biological activity of those targets in a desired fashion. The selection of the appropriate technology is a key step in that process, as each one of the currently available technologies offers a characteristic type of biophysical information about the ligand-binding event. Alongside the indisputable advantages of each of those technologies they naturally display diverse restrictions that are quite frequently related to the target system to be studied but also to the affinity, solubility and molecular size of the ligands. This paper discusses some of the theoretical and experimental aspects of the most common affinity-based methods, what type of information can be gained from each one of those approaches, and what requirements as well as limitations are expected from working with recombinant proteins on those platforms and how those can be optimally addressed.

  16. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  17. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Directory of Open Access Journals (Sweden)

    Person Alexandra M

    2011-11-01

    Full Text Available Abstract Background Along with high affinity binding of epibatidine (Kd1≈10 pM to α4β2 nicotinic acetylcholine receptor (nAChR, low affinity binding of epibatidine (Kd2≈1-10 nM to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after

  18. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Science.gov (United States)

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  19. High density and ligand affinity confer ultrasensitive signal detection by a guanylyl cyclase chemoreceptor

    Science.gov (United States)

    Pichlo, Magdalena; Bungert-Plümke, Stefanie; Weyand, Ingo; Seifert, Reinhard; Bönigk, Wolfgang; Strünker, Timo; Kashikar, Nachiket Dilip; Goodwin, Normann; Müller, Astrid; Körschen, Heinz G.; Collienne, Ursel; Pelzer, Patric; Van, Qui; Enderlein, Jörg; Klemm, Clementine; Krause, Eberhard; Trötschel, Christian; Poetsch, Ansgar; Kremmer, Elisabeth

    2014-01-01

    Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons. PMID:25135936

  20. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  1. High affinity, ligand specific uptake of complexed copper-67 by brain tissue incubated in vitro

    International Nuclear Information System (INIS)

    Barnea, A.; Hartter, D.E.

    1987-01-01

    Copper is an essential metal that is highly concentrated in the brain. The blood, the sole source of tissue Cu, contains 16-20 μM Cu, of which >95% is complexed to proteins and 2 was 10 times greater than that of CuAlbumin or Cu(II). Within the range of 0.2-150μM Cu, multiple uptake sites for CuHis were apparent. Increasing the molar ratio of His:Cu had a differential effect on Cu uptake: enhancing uptake at [Cu] 1 μM. Thus, using a His:Cu ratio of 1000, they observed a high affinity process exhibiting saturating and half saturating values of 5 μM and 1.5 μM Cu, respectively; using a His:Cu ratio of 2, they observed a low affinity process exhibiting saturating and half-saturating values of 100 μM and 40 μM Cu, respectively. Both processes required thermic but not metabolic energy, suggestive of facilitated diffusion. Considering the blood brain barrier for proteins, CuHis appears to be the major substrate for Cu uptake by neuronal tissue. They demonstrate the existence of a ligand specific, high affinity (apparent Km about 1.5 μM Cu) uptake process for CuHis in the brain, operative at the physiological concentration range of CuHis and histidine

  2. New polymer-supported ion-complexing agents: Design, preparation and metal ion affinities of immobilized ligands

    International Nuclear Information System (INIS)

    Alexandratos, Spiro D.

    2007-01-01

    Polymer-supported reagents are comprised of crosslinked polymer networks that have been modified with ligands capable of selective metal ion complexation. Applications of these polymers are in environmental remediation, ion chromatography, sensor technology, and hydrometallurgy. Bifunctional polymers with diphosphonate/sulfonate ligands have a high selectivity for actinide ions. The distribution coefficient for the uranyl ion from 1 M nitric acid is 70,000, compared to 900 for the monophosphonate/sulfonate polymer and 200 for the sulfonic acid ion-exchange resin. A bifunctional trihexyl/triethylammonium polymer has a high affinity and selectivity for pertechnetate and perchlorate anions from groundwater. In one example, its distribution coefficient for perchlorate ions in the presence of competing anions is 3,300,000, compared to 203,180 for a commercially available anion-exchange resin. Polystyrene modified with N-methyl-D-glucamine ligands is capable of selectively complexing arsenate from groundwater. It complexes 99% of the arsenate present in a solution of 100 mg/L arsenate with 560 mg/L sulfate ions. Its selectivity is retained even in the presence of 400 mg/L phosphate. There is no affinity for arsenate above pH 9, allowing for the polymer to be regenerated with moderate alkali solution. In studies aimed at developing a Hg(II)-selective resin, simple amine resins were found to have a high Hg(II) affinity and that affinity is dependent upon the solution pH and the counterion

  3. Photoaffinity labeling of mammalian α1-adrenergic receptors: identification of the ligand binding subunit with a high affinity radioiodinated probe

    International Nuclear Information System (INIS)

    Leeb-Lundberg, L.M.F.; Dickinson, K.E.J.; Heald, S.L.

    1984-01-01

    A description is given of the synthesised and characterization of a novel high affinity radioiodinated α 1 -adrenergic receptor photoaffinity probe, 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[ 125 I]iodophenyl)pentanoyl]-1-piperazinyl] quinazoline. In the absence of light, this ligand binds with high affinity (K/sub d/ = 130 pm) in a reverisble and saturable manner to sites in rat hepatic plasma membranes. The binding is stereoselective and competitively inhibited by adrenergic agonists and antagonists with an α 1 -adrenergic specificity. Upon photolysis, this ligand incorporates irreversibly into plasma membranes prepared from several mammalian tissues including rat liver, rat, guinea pig, and rabbit spleen, rabbit lung, and rabbit aorta vascular smooth muscle cells, also with typical α 1 -adrenergic specificity. Autoradiograms of such membrane samples subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveal a major specifically labeled polypeptide at M/sub 4/ = 78,000-85,000, depending on the tissue used, in addition to some lower molecular weight peptides. Protease inhibitors, in particular EDTA, a metalloprotease inhibitor, dramatically increases the predominance of the M/sub r/ = 78,000-85,000 polypeptide while attenuating the labeling of the lower molecular weight bands. This new high affinity radioiodinated photoaffinity probe should be of great value for the molecular characterization of the α 1 -adrenergic receptor

  4. Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High Affinity Ligand for STING

    Science.gov (United States)

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J.

    2013-01-01

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. This molecule, termed 2′3′-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2′3′-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation. PMID:23747010

  5. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING.

    Science.gov (United States)

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J

    2013-07-25

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2'-OH of GMP and 5'-phosphate of AMP, and the other between 3'-OH of AMP and 5'-phosphate of GMP. This molecule, termed 2'3'-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2'3'-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. The affinity plutonium(IV) for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; Hancock, R.D.

    1994-01-01

    Established ligand design principles are used to predict the solution chemistry of Pu(IV) with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxyalkyl groups causing Pu(IV) to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N'N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N',N'-tetrakis(2-hydroxyethyl)-1,2-diaminoethane; N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with Pu(IV) showed that Pu(IV) has a considerable aqueous solution chemistry with these ligands. Data were processed by the ESTA library of programs and stability constants for all the systems are reported. Implications for selective ligand design for Pu(IV) are discussed. (orig.)

  7. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    by chemical cross-linking, but quantitative binding/competition studies showed that the apparent ligand affinity was 100- to 1000-fold lower than that of the intact suPAR. This loss of affinity was comparable with the loss found after cleavage between the first domain (D1) and D(2 + 3), using chymotrypsin...

  8. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  9. PLASS: Protein-ligand affinity statistical score a knowledge-based force-field model of interaction derived from the PDB

    Science.gov (United States)

    Ozrin, V. D.; Subbotin, M. V.; Nikitin, S. M.

    2004-04-01

    We have developed PLASS (Protein-Ligand Affinity Statistical Score), a pair-wise potential of mean-force for rapid estimation of the binding affinity of a ligand molecule to a protein active site. This scoring function is derived from the frequency of occurrence of atom-type pairs in crystallographic complexes taken from the Protein Data Bank (PDB). Statistical distributions are converted into distance-dependent contributions to the Gibbs free interaction energy for 10 atomic types using the Boltzmann hypothesis, with only one adjustable parameter. For a representative set of 72 protein-ligand structures, PLASS scores correlate well with the experimentally measured dissociation constants: a correlation coefficient R of 0.82 and RMS error of 2.0 kcal/mol. Such high accuracy results from our novel treatment of the volume correction term, which takes into account the inhomogeneous properties of the protein-ligand complexes. PLASS is able to rank reliably the affinity of complexes which have as much diversity as in the PDB.

  10. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    Science.gov (United States)

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  12. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    Science.gov (United States)

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  13. Interactions between alkaline earth cations and oxo ligands. DFT study of the affinity of the Mg²+ cation for phosphoryl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; de Mesquita Carneiro, José Walkimar; Paes, Lilian Weitzel Coelho

    2011-08-01

    DFT (B3LYP/6-31+G(d)) calculations of Mg(2+) affinities for a set of phosphoryl ligands were performed. Two types of ligands were studied: a set of trivalent [O = P(R)] and a set of pentavalent phosphoryl ligands [O = P(R)(3)] (R = H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either bound directly to the phosphorus atom or to the para position of a phenyl ring. The affinity of the Mg(2+) cation for the ligands was quantified by means of the enthalpy for the substitution of one water molecule in the [Mg(H(2)O)(6)](2+) complex for a ligand. The enthalpy of substitution was correlated with electronic and geometric parameters. Electron-donor groups increase the interaction between the cation and the ligand, while electron-acceptor groups decrease the interaction enthalpy.

  14. The affinity of the uranyl ion for nitrogen donor ligands

    International Nuclear Information System (INIS)

    Jarvis, N.V.; De Sousa, A.S.; Hancock, R.D.

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO 2 2+ with nitrogen donor ligands which do not contain carboxylate donors. pK a 's of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO 2 2+ to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO 2 2+ showed that UO 2 2+ has a considerable aqueous solution chemistry with these ligands. (orig.)

  15. Characterization of SynCAM surface trafficking using a SynCAM derived ligand with high homophilic binding affinity

    International Nuclear Information System (INIS)

    Breillat, Christelle; Thoumine, Olivier; Choquet, Daniel

    2007-01-01

    In order to better probe SynCAM function in neurons, we produced a fusion protein between the extracellular domain of SynCAM1 and the constant fragment of human IgG (SynCAM-Fc). Whether in soluble form or immobilized on latex microspheres, the chimera bound specifically to the surface of hippocampal neurons and recruited endogenous SynCAM molecules. SynCAM-Fc was also used in combination with Quantum Dots to follow the mobility of transfected SynCAM receptors at the neuronal surface. Both immobile and highly mobile SynCAM were found. Thus, SynCAM-Fc behaves as a high affinity ligand that can be used to study the function of SynCAM at the neuronal membrane

  16. Interaction between alkaline earth cations and oxo-ligands. DFT study of the affinity of the Ca2+ cation for carbonyl ligands.

    Science.gov (United States)

    da Costa, Leonardo Moreira; Carneiro, José Walkimar de Mesquita; Romeiro, Gilberto Alves; Paes, Lilian Weitzel Coelho

    2011-02-01

    The affinity of the Ca(2+) ion for a set of substituted carbonyl ligands was analyzed with both the DFT (B3LYP/6-31+G(d)) and semi-empirical (PM6) methods. Two types of ligands were studied: a set of monosubstituted [O=CH(R)] and a set of disubstituted ligands [O=C(R)(2)] (R=H, F, Cl, Br, OH, OCH(3), CH(3), CN, NH(2) and NO(2)), with R either directly bound to the carbonyl carbon atom or to the para position of a phenyl ring. The interaction energy was calculated to quantify the affinity of the Ca(2+) cation for the ligands. Geometric and electronic parameters were correlated with the intensity of the metal-ligand interaction. The electronic nature of the substituent is the main parameter that determines the interaction energy. Donor groups make the interaction energy more negative (stabilizing the complex formed), while acceptor groups make the interaction energy less negative (destabilizing the complex formed).

  17. The affinity of the uranyl ion for nitrogen donor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, N.V. (Atomic Energy Corp. of South Africa Ltd., Pretoria (South Africa). Dept. of Process Technology); De Sousa, A.S.; Hancock, R.D. (Univ. of the Witwatersrand, Johannesburg (South Africa). Centre for Molecular Design)

    1992-01-01

    Established ligand design principles are used to predict the solution chemistry of UO[sub 2][sup 2+] with nitrogen donor ligands which do not contain carboxylate donors. pK[sub a]'s of the nitrogen donors are lowered by addition of hydroxylalkyl groups causing UO[sub 2][sup 2+] to have a greater affinity for these ligands than for hydroxide. Potentiometric studies using the ligands N,N,N',N',N''-pentakis(2-hydroxypropyl)-1,4,7-triazaheptane; N,N,N',N',N''-pentakis(2-hydroxyethyl)-1,4,7-triazaheptane; N,N,N',N'-tetrakis(2-hydroxypropyl)1,2-diaminoethane, N,N,N',N'-tetrakis(2-hydroxyethyl)-trans-1,2-diaminocyclohexane; 1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane and N,N-bis(2-hydroxyethyl)glycine with UO[sub 2][sup 2+] showed that UO[sub 2][sup 2+] has a considerable aqueous solution chemistry with these ligands. (orig.).

  18. Synthesis and characterization of [{sup 76}Br]-labeled high-affinity A{sub 3} adenosine receptor ligands for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kiesewetter, Dale O. [Positron Emission Tomography Radiochemistry Group, NIBIB, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States)], E-mail: dk7k@nih.gov; Lang Lixin; Ma Ying; Bhattacharjee, Abesh Kumar [Positron Emission Tomography Radiochemistry Group, NIBIB, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Gao, Zhan-Guo; Joshi, Bhalchandra V.; Melman, Artem; Castro, Sonia de; Jacobson, Kenneth A. [Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2009-01-15

    Introduction: Bromine-76-radiolabeled analogues of previously reported high-affinity A{sub 3} adenosine receptor (A{sub 3}AR) nucleoside ligands have been prepared as potential radiotracers for positron emission tomography. Methods: The radiosyntheses were accomplished by oxidative radiobromination on the N{sup 6}-benzyl moiety of trimethyltin precursors. Biodistribution studies of the kinetics of uptake were conducted in awake rats. Results: We prepared an agonist ligand {l_brace}[{sup 76}Br](1'S,2'R,3'S,4'R,5'S)-4'-{l_brace}2-chloro-6-[(3-bromophenylmethyl)amino] purin-9-yl{r_brace}-1'-(methylaminocarbonyl)bicyclo[3.1.0]hexane-2',3'-diol (MRS3581){r_brace} in 59% radiochemical yield with a specific activity of 19.5 GBq/{mu}mol and an antagonist ligand {l_brace}[{sup 76}Br](1'R,2'R,3'S,4'R,5'S)-4'-(6-(3-bromobenzylamino) -2-chloro-9H-purin-9-yl)bicyclo[3.1.0]hexane-2',3'-diol (MRS5147){r_brace} in 65% radiochemical yield with a specific activity of 22 GBq/{mu}mol. The resultant products exhibited the expected high affinity (K{sub i}{approx}0.6 nM) and specific binding at the human A{sub 3}AR in vitro. Biodistribution studies in the rat showed uptake in the organs of excretion and metabolism. The antagonist MRS5147 exhibited increasing uptake in testes, an organ that contains significant quantities of A{sub 3}AR, over a 2-h time course, which suggests the presence of a specific A{sub 3}AR retention mechanism. Conclusion: We were able to compare uptake of the [{sup 76}Br]-labeled antagonist MRS5147 to [{sup 76}Br]agonist MRS3581. The antagonist MRS5147 shows increasing uptake in the testes, an A{sub 3}AR-rich tissue, suggesting that this ligand may have promise as a molecular imaging agent.

  19. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Directory of Open Access Journals (Sweden)

    Bryan L Roth

    Full Text Available In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS-2-(ethylamino-2-(3-methoxyphenylcyclohexanone and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenylcyclohexanamine and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenylcyclohexyl]piperidine and 1-[1-(4-methoxyphenylcyclohexyl]piperidine, were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  20. Labeling by [3H]1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    International Nuclear Information System (INIS)

    Rothman, R.B.; Reid, A.; Mahboubi, A.; Kim, C.H.; De Costa, B.R.; Jacobson, A.E.; Rice, K.C.

    1991-01-01

    Equilibrium binding studies with the sigma receptor ligand [ 3 H]1,3-di(2-tolyl)guanidine ([ 3 H]DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. [Life Sci. 45:1721-1732 (1989)]. Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and low affinity for most other sigma ligands. Kinetic experiments demonstrated that [ 3 H]DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of [ 3 H]DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of [ 3 H]DTG from site 2, suggesting an association of this binding site with calcium channels

  1. Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  2. Covalent labeling of the beta-adrenergic ligand-binding site with para-(bromoacetamidyl)benzylcarazolol. A highly potent beta-adrenergic affinity label

    International Nuclear Information System (INIS)

    Dickinson, K.E.; Heald, S.L.; Jeffs, P.W.; Lefkowitz, R.J.; Caron, M.G.

    1985-01-01

    Para-(Bromoacetamidyl)benzylcarazolol (pBABC) was synthesized and found to be an extremely potent affinity label for beta-adrenergic receptors. Its interaction with mammalian (rabbit and hamster lung) and nonmammalian (turkey and frog erythrocyte) beta-adrenergic receptors was similar, displaying EC 50 values of 400-900 pM for inhibiting 125 I-cyanopindolol binding to these receptors. pBABC reduced the number of beta-adrenergic receptors in frog erythrocyte membranes, without any change in the affinity of the remaining sites for [ 125 I]iodocyanopindolol. pBABC has been radioiodinated. As assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this affinity probe specifically labeled the beta-adrenergic peptide of a purified preparation of hamster lung, with high efficiency (approximately 40%) and with a pharmacological specificity characteristic of an interaction at the beta 2-adrenergic receptor ligand-binding site. Comparison of the proteolyzed products derived from purified receptor labeled with [ 125 I]pBABC and with the photoaffinity agent [ 125 I]p-azidobenzylcarazolol suggested that covalent labeling of the beta-adrenergic receptor by these probes occurs at similar domains of the beta-adrenergic receptor

  3. Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex

    International Nuclear Information System (INIS)

    John, D.; Fox, I.V.

    1986-01-01

    The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM

  4. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, R.B.; Reid, A.; Mahboubi, A.; Kim, C.H.; De Costa, B.R.; Jacobson, A.E.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and low affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.

  5. Interrogating the Molecular Basis for Substrate Recognition in Serotonin and Dopamine Transporters with High-Affinity Substrate-Based Bivalent Ligands

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Kristensen, Trine N. Bjerre

    2016-01-01

    insight into substrate recognition in SERT and DAT. An optimized bivalent ligand comprising two serotonin moieties binds SERT with 3,800-fold increased affinity compared to that of serotonin, suggesting that the human transporters have two distinct substrate binding sites. We show that the bivalent...... ligands are inhibitors of SERT and an experimentally validated docking model suggests that the bivalent compounds bind with one substrate moiety in the central binding site (the S1 site), whereas the other substrate moiety binds in a distinct binding site (the S2 site). A systematic study of nonconserved...

  6. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    Science.gov (United States)

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  7. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. High-affinity multivalent wheat germ agglutinin ligands by one-pot click reaction

    Directory of Open Access Journals (Sweden)

    Henning S. G. Beckmann

    2012-06-01

    Full Text Available A series of six mono-, di-, and trivalent N,N’-diacetylchitobiose derivatives was conveniently prepared by employing a one-pot procedure for Cu(II-catalyzed diazo transfer and Cu(I-catalyzed azide–alkyne cycloaddition (CuAAC starting from commercially available amines. These glycoclusters were probed for their binding potencies to the plant lectin wheat germ agglutinin (WGA from Triticum vulgaris by an enzyme-linked lectin assay (ELLA employing covalently immobilized N-acetylglucosamine (GlcNAc as a reference ligand. IC50 values were in the low micromolar/high nanomolar range, depending on the linker between the two disaccharides. Binding enhancements β up to 1000 for the divalent ligands and 2800 for a trivalent WGA ligand, compared to N,N’-diacetylchitobiose as the corresponding monovalent ligand, were observed. Molecular modeling studies, in which the chitobiose moieties were fitted into crystallographically determined binding sites of WGA, correlate the binding enhancements of the multivalent ligands with their ability to bind to the protein in a chelating mode. The best WGA ligand is a trivalent cluster with an IC50 value of 220 nM. Calculated per mol of contained chitobiose, this is the best WGA ligand known so far.

  9. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  10. D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies

    Science.gov (United States)

    Gaieb, Zied; Liu, Shuai; Gathiaka, Symon; Chiu, Michael; Yang, Huanwang; Shao, Chenghua; Feher, Victoria A.; Walters, W. Patrick; Kuhn, Bernd; Rudolph, Markus G.; Burley, Stephen K.; Gilson, Michael K.; Amaro, Rommie E.

    2018-01-01

    The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank (http://www.pdb.org), and in affinity ranking and scoring of bound ligands.

  11. Affinity selection-mass spectrometry and its emerging application to the high throughput screening of G protein-coupled receptors.

    Science.gov (United States)

    Whitehurst, Charles E; Annis, D Allen

    2008-07-01

    Advances in combinatorial chemistry and genomics have inspired the development of novel affinity selection-based screening techniques that rely on mass spectrometry to identify compounds that preferentially bind to a protein target. Of the many affinity selection-mass spectrometry techniques so far documented, only a few solution-based implementations that separate target-ligand complexes away from unbound ligands persist today as routine high throughput screening platforms. Because affinity selection-mass spectrometry techniques do not rely on radioactive or fluorescent reporters or enzyme activities, they can complement traditional biochemical and cell-based screening assays and enable scientists to screen targets that may not be easily amenable to other methods. In addition, by employing mass spectrometry for ligand detection, these techniques enable high throughput screening of massive library collections of pooled compound mixtures, vastly increasing the chemical space that a target can encounter during screening. Of all drug targets, G protein coupled receptors yield the highest percentage of therapeutically effective drugs. In this manuscript, we present the emerging application of affinity selection-mass spectrometry to the high throughput screening of G protein coupled receptors. We also review how affinity selection-mass spectrometry can be used as an analytical tool to guide receptor purification, and further used after screening to characterize target-ligand binding interactions, enabling the classification of orthosteric and allosteric binders.

  12. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    Science.gov (United States)

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml -1 and 0.48mgml -1 for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10 6 M -1 affinity constants and Qmax values of 19.11±2.60ugg -1 and 79.39ugg -1 for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    Science.gov (United States)

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  14. Identification of the ligand-binding subunit of the human 5-hydroxytryptamine1A receptor with N-(p-azido-m-[125I] iodophenethyl)spiperone, a high affinity radioiodinated photoaffinity probe

    International Nuclear Information System (INIS)

    Raymond, J.R.; Fargin, A.; Lohse, M.J.; Regan, J.W.; Senogles, S.E.; Lefkowitz, R.J.; Caron, M.G.

    1989-01-01

    The ligand-binding subunit of the human 5-hydroxytryptamine1A (5-HT1A) receptor transiently expressed in COS-7 cells and of the native human 5-HT1A receptor derived from hippocampus and frontal cortex were identified by photoaffinity labeling with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS), previously characterized as a high affinity radioiodinated D2-dopamine receptor probe. The identity of the ligand-binding subunit was confirmed by immunoprecipitation with an antipeptide rabbit antiserum, JWR21, raised against a synthetic peptide derived from the predicted amino acid sequence of the putative third intracellular loop of the human 5-HT1A receptor. In transiently transfected COS-7 cells expressing 14 +/- 3 pmol/mg of protein human 5-HT1A receptors, a single broad 75-kDa band was photoaffinity labeled by [125I]N3-NAPS. This band displayed the expected pharmacology of the 5-HT1A receptor, as evidenced by the ability of a series of competing ligands to block [125I]N3-NAPS photoincorporation. Moreover, antiserum JWR21 specifically and quantitatively immunoprecipitated the 75-kDa photoaffinity-labeled band from a soluble extract of the transfected COS-7 cell membranes, further confirming its identity. Finally, utilizing a combination of photoaffinity labeling and immunoprecipitation, the native ligand-binding subunit of 62-64 kDa was identified in human hippocampus and frontal cortex. The availability of the high specific activity, high affinity, photoaffinity ligand [125I]N3-NAPS and of a potent immunoprecipitating antiserum (JWR21) should greatly facilitate the biochemical characterization of the human 5-HT1A receptor

  15. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides.

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-17

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a 'piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (K d =39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  16. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  17. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  18. Molecular basis of a high affinity murine interleukin-5 receptor.

    OpenAIRE

    Devos, R; Plaetinck, G; Van der Heyden, J; Cornelis, S; Vandekerckhove, J; Fiers, W; Tavernier, J

    1991-01-01

    The mouse interleukin-5 receptor (mIL-5R) consists of two components one of which, the mIL-5R alpha-chain, binds mIL-5 with low affinity. Recently we demonstrated that monoclonal antibodies (Mabs) recognizing the second mIL-5R beta-chain, immunoprecipitate a p130-140 protein doublet which corresponds to the mIL-3R and the mIL-3R-like protein, the latter chain for which so far no ligand has been identified. In this study we show that a high affinity mIL-5R can be reconstituted on COS1 cells by...

  19. Irreversible blockade of the high and low affinity (3H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    International Nuclear Information System (INIS)

    Krizsan, D.; Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A.; Hosztafi, S.

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ( 3 H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na + -index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ( 3 H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested

  20. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    Science.gov (United States)

    Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe

    2018-01-01

    Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of

  1. High-throughput and multiplexed regeneration buffer scouting for affinity-based interactions

    NARCIS (Netherlands)

    Geuijen, K.P.M.; Schasfoort, R.B.; Wijffels, R.H.; Eppink, M.H.M.

    2014-01-01

    Affinity-based analyses on biosensors depend partly on regeneration between measurements. Regeneration is performed with a buffer that efficiently breaks all interactions between ligand and analyte while maintaining the active binding site of the ligand. We demonstrated a regeneration buffer

  2. Hierarchy and Assortativity as New Tools for Binding-Affinity Investigation: The Case of the TBA Aptamer-Ligand Complex.

    Science.gov (United States)

    Cataldo, Rosella; Alfinito, Eleonora; Reggiani, Lino

    2017-12-01

    Aptamers are single stranded DNA, RNA, or peptide sequences having the ability to bind several specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually, they are generated in vitro, although computational approaches have been recently developed for the in silico production. Despite these efforts, the mechanism of aptamer-ligand formation is not completely clear, and producing high-affinity aptamers is still quite difficult. This paper aims to develop a computational model able to describe aptamer-ligand affinity. Topological tools, such as the conventional degree distribution, the rank-degree distribution (hierarchy), and the node assortativity are employed. In doing so, the macromolecules tertiary-structures are mapped into appropriate graphs. These graphs reproduce the main topological features of the macromolecules, by preserving the distances between amino acids (nucleotides). Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex produced in the presence of Na + or K + . The topological analysis is able to detect several differences between complexes obtained in the presence of the two cations, as expected by previous investigations. These results support graph analysis as a novel computational tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, revealing that the resistance is sensitively affected by the presence of sodium or potassium, thus suggesting resistance as a useful physical parameter for testing binding affinity.

  3. A viral, transporter associated with antigen processing (TAP)-independent, high affinity ligand with alternative interactions endogenously presented by the nonclassical human leukocyte antigen E class I molecule.

    Science.gov (United States)

    Lorente, Elena; Infantes, Susana; Abia, David; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Mir, Carmen; Morreale, Antonio; Admon, Arie; López, Daniel

    2012-10-12

    The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8(+) lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.

  4. Report: Affinity Chromatography.

    Science.gov (United States)

    Walters, Rodney R.

    1985-01-01

    Supports, affinity ligands, immobilization, elution methods, and a number of applications are among the topics considered in this discussion of affinity chromatography. An outline of the basic principles of affinity chromatography is included. (JN)

  5. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  6. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    Science.gov (United States)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  7. Carbon-11-labelling of a novel, trishomocubane-derived, high affinity and selectivity DAT ligand

    International Nuclear Information System (INIS)

    Dolle, F.; Le Helleix, St.; Peyronneau, M.A.; Saba, W.; Tournier, N.; Valette, H.; Banister, S.; Kassiou, M.

    2011-01-01

    Complete text of publication follows: Objectives: Parkinson's disease, schizophrenia, attention deficit disorder and drug abuse are related to abnormalities within the brain's dopaminergic system. The neuronal dopamine transporter (DAT) plays a key role in regulating the synaptic concentration of dopamine and thus dopamine neurotransmission in the brain. Since the DAT can be considered as a marker of the integrity and number of the presynaptic striatal dopamine-producing neurons, considerable efforts have been spent in recent years on the design and development of DAT-selective radioligands for use in Positron Emission Tomography (PET) studies. Notably, the tropane PE2I and its fluorinated analogue LBT-999 were identified as having high affinity and selectivity for the DAT over the norepinephrine transporter (NET) and the serotonin transporter (SERT). Besides tropanes, only a few bicyclic frameworks, e.g. bicyclo[2.2.2]octanes, have delivered compounds with high affinity for the DAT. Recently, novel poly-carbocyclic DAT ligands with selectivity over the NET and the SERT were reported. The lead compound of this series (1, N-methyl-N-(3-fluoro) benzyl-pentacyclo[5.4.0.0 2, 6 .0 3, 10 .0 5, 9 ] undec-8-ylamine, Ki = 1.2 nM, ≥ 8300-fold selectivity over NET and SERT) was selected as a potential candidate for imaging the DAT with PET and isotopically labelled with carbon-11 using [ 11 C]methyl triflate. Methods: The trishomocubane derivatives 1 (reference) and 2 (precursor for labelling with carbon-11) were prepared from commercially available Cookson's diketone in 6 and 7 steps, respectively. Carbon-11 labelling of 1 was performed using a TRACERLab FX-C Pro synthesizer (GEMS) and comprises (1) trapping at -10 C of [ 11 C]MeOTf in acetone (0.4 mL) containing the nor-derivative 2 (0.6-0.9 mg, free base) and aq. 3N NaOH (8 μL); (2) heating at 110 C for 2 min; (3) concentration to dryness and taking up the residue in 1.0 mL of the HPLC mobile phase; (4) purification

  8. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    International Nuclear Information System (INIS)

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-01-01

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 0 C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17β-[ 3 H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins

  9. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino......)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), using an ethylamino linker. The resulting rhodamine-labeled ligand 8 inhibited [3H]5-HT uptake in COS-7 cells (Ki = 225 nM) with similar potency to the tropane-based JHC 1-064 (1), but with higher specificity towards the SERT relative...

  10. Murine CMV Expressing the High Affinity NKG2D Ligand MULT-1: A Model for the Development of Cytomegalovirus-Based Vaccines

    Directory of Open Access Journals (Sweden)

    Lea Hiršl

    2018-05-01

    Full Text Available The development of a vaccine against human cytomegalovirus (CMV has been a subject of long-term medical interest. The research during recent years identified CMV as an attractive vaccine vector against infectious diseases and tumors. The immune response to CMV persists over a lifetime and its unique feature is the inflationary T cell response to certain viral epitopes. CMV encodes numerous genes involved in immunoevasion, which are non-essential for virus growth in vitro. The deletion of those genes results in virus attenuation in vivo, which enables us to dramatically manipulate its virulence and the immune response. We have previously shown that the murine CMV (MCMV expressing RAE-1γ, one of the cellular ligands for the NKG2D receptor, is highly attenuated in vivo but retains the ability to induce a strong CD8+ T cell response. Here, we demonstrate that recombinant MCMV expressing high affinity NKG2D ligand murine UL16 binding protein-like transcript (MULT-1 (MULT-1MCMV inserted in the place of its viral inhibitor is dramatically attenuated in vivo in a NK cell-dependent manner, both in immunocompetent adult mice and in immunologically immature newborns. MULT-1MCMV was more attenuated than the recombinant virus expressing RAE-1γ. Despite the drastic sensitivity to innate immune control, MULT-1MCMV induced an efficient CD8+ T cell response to viral and vectored antigens. By using in vitro assay, we showed that similar to RAE-1γMCMV, MULT-1 expressing virus provided strong priming of CD8+ T cells. Moreover, MULT-1MCMV was able to induce anti-viral antibodies, which after passing the transplacental barrier protect offspring of immunized mothers from challenge infection. Altogether, this study further supports the concept that CMV expressing NKG2D ligand possesses excellent characteristics to serve as a vaccine or vaccine vector.

  11. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells

    Energy Technology Data Exchange (ETDEWEB)

    Baldikova, Eva [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Ladakis, Dimitrios; Kookos, Ioannis K. [Department of Chemical Engineering, University of Patras, 26504 Patras, Rio (Greece); Koutinas, Apostolis A. [Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855 (Greece); Safarikova, Mirka [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Safarik, Ivo, E-mail: safarik@nh.cas.cz [Global Change Research Institute, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic); Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2017-02-01

    Bacterial cellulose (BC) produced by Komagataeibacter sucrofermentans was magnetically modified using perchloric acid stabilized magnetic fluid. Magnetic bacterial cellulose (MBC) was used as a carrier for the immobilization of affinity ligands, enzymes and cells. MBC with immobilized reactive copper phthalocyanine dye was an efficient adsorbent for crystal violet removal; the maximum adsorption capacity was 388 mg/g. Kinetic and thermodynamic parameters were also determined. Model biocatalysts, namely bovine pancreas trypsin and Saccharomyces cerevisiae cells were immobilized on MBC using several strategies including adsorption with subsequent cross-linking with glutaraldehyde and covalent binding on previously activated MBC using sodium periodate or 1,4-butanediol diglycidyl ether. Immobilized yeast cells retained approximately 90% of their initial activity after 6 repeated cycles of sucrose solution hydrolysis. Trypsin covalently bound after MBC periodate activation was very stable during operational stability testing; it could be repeatedly used for ten cycles of low molecular weight substrate hydrolysis without loss of its initial activity. - Highlights: • Bacterial cellulose was magnetically modified with magnetic fluid. • Magnetic cellulose is an efficient carrier for affinity ligands. • Enzymes and cells can be efficiently immobilized to magnetic cellulose.

  12. Bitopic Ligands and Metastable Binding Sites

    DEFF Research Database (Denmark)

    Fronik, Philipp; Gaiser, Birgit I; Sejer Pedersen, Daniel

    2017-01-01

    of orthosteric binding sites. Bitopic ligands have been employed to address the selectivity problem by combining (linking) an orthosteric ligand with an allosteric modulator, theoretically leading to high-affinity subtype selective ligands. However, it remains a challenge to identify suitable allosteric binding...... that have been reported to date, this type of bitopic ligands would be composed of two identical pharmacophores. Herein, we outline the concept of bitopic ligands, review metastable binding sites, and discuss their potential as a new source of allosteric binding sites....

  13. Ligand-Induced Cross-Linking of Z-Elastin-like Polypeptide-Functionalized E2 Protein Nanoparticles for Enhanced Affinity Precipitation of Antibodies.

    Science.gov (United States)

    Swartz, Andrew R; Sun, Qing; Chen, Wilfred

    2017-05-08

    Affinity precipitation is an ideal alternative to chromatography for antibody purification because it combines the high selectivity of an affinity ligand with the operational benefits of precipitation. However, the widespread use of elastin-like polypeptide (ELP) capture scaffolds for antibody purification has been hindered by the high salt concentrations and temperatures necessary for efficient ELP aggregation. In this paper, we employed a tandem approach to enhance ELP aggregation by enlarging the dimension of the capturing scaffold and by creating IgG-triggered scaffold cross-linking. This was accomplished by covalently conjugating the Z-domain-ELP (Z-ELP) capturing scaffold to a 25 nm diameter E2 protein nanocage using Sortase A ligation. We demonstrated the isothermal recovery of IgG in the virtual absence of salt due to the significantly increased scaffold dimension and cross-linking from multivalent IgG-E2 interactions. Because IgG cross-linking is reversible at low pH, it may be feasible to achieve a high yielding IgG purification by isothermal phase separation using a simple pH trigger.

  14. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  15. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent......Predicting binding affinities for receptor-ligand complexes is still one of the challenging processes in computational structure-based ligand design. Many computational methods have been developed to achieve this goal, such as docking and scoring methods, the linear interaction energy (LIE) method...

  16. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brian H. Carrick

    2016-03-01

    Full Text Available Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  17. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    International Nuclear Information System (INIS)

    Orito, N; Umekage, S; Sakai, E; Tanaka, T; Kikuchi, Y; Sato, K; Kawauchi, S; Tanaka, H

    2012-01-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be K D = 2.25x10 -9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  18. Synthesis, in vitro validation and in vivo pharmacokinetics of [{sup 125}I]N-[2-(4-iodophenyl)ethyl]-N-methyl-2-(1-piperidinyl) ethylamine: A high-affinity ligand for imaging sigma receptor positive tumors

    Energy Technology Data Exchange (ETDEWEB)

    John, Christy S; Gulden, Mary E; Vilner, Bertold J; Bowen, Wayne D

    1996-08-01

    N-[2-(4-iodophenyl)ethyl]-N-methyl-2-(1-piperidinyl)ethylamine, IPEMP, and the corresponding bromo derivative, BrPEMP, have been synthesized and characterized. Both BrPEMP and IPEMP were evaluated for sigma-1 and sigma-2 subtype receptor affinities and found to possess very high affinities for both receptor subtypes. The precursor for radioiodination n-tributylstannylphenylethylpiperidinylethylamine was prepared from its bromo derivative by palladium-catalyzed stannylation reaction. Radioiodinated 4-[{sup 125}I]PEMP was readily prepared in high yields and high specific activity by oxidative iododestannylation reaction using chloramine-T as oxidizing agent. Sites labeled by 4-[{sup 125}I]PEMP in guinea pig brain membranes showed high affinity for BD1008, haloperidol, and (+)-pentazocine (Ki = 5.06 {+-} 0.40, 32.6 {+-} 2.75, and 48.1 {+-} 8.60 nM, respectively), which is consistent with sigma receptor pharmacology. Competition binding studies of 4-[{sup 125}I]PEMP in melanoma (A375) and MCF-7 breast cancer cells showed a high affinity, dose-dependent inhibition of binding with known sigma ligand N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl) ethylamine, BD1008 (Ki = 5, 11 nM, respectively), supporting the labeling of sigma sites in these cells. Haloperidol, however showed a weaker (Ki 100-200 nM) affinity for the sites labeled by 4-[{sup 125}I]PEMP in these cells. Biodistribution studies of 4-[{sup 125}I]PEMP in rats showed a fast clearance of this radiopharmaceutical from blood, liver, lung, and other organs. A co-injection of 4-IPEMP with 4-[{sup 125}I]PEMP resulted in 37%, 69%, and 35% decrease in activity in liver, kidney, and brain (organs possessing sigma receptors), respectively at 1-h postinjection. These results suggest that 4-[{sup 125}I]PEMP is a promising radiopharmaceutical for pursuing further studies in animal models with tumors.

  19. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lázár-Molnár, Eszter; Scandiuzzi, Lisa; Basu, Indranil; Quinn, Thomas; Sylvestre, Eliezer; Palmieri, Edith; Ramagopal, Udupi A.; Nathenson, Stanley G.; Guha, Chandan; Almo, Steven C.

    2017-03-01

    Programmed Cell Death-1 (PD-1) is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered affinity and ligand-specificity. In particular, a high-affinity mutant PD-1 (HA PD-1) exhibited 45 and 30-fold increase in binding to PD-L1 and PD-L2, respectively, due to slower dissociation rates. This mutant (A132L) was used to engineer a soluble chimeric Ig fusion protein for cell-based and in vivo studies. HA PD-1 Ig showed enhanced binding to human dendritic cells, and increased T cell proliferation and cytokine production in a mixed lymphocyte reaction (MLR) assay. Moreover, in an experimental model of murine Lewis lung carcinoma, HA PD-1 Ig treatment synergized with radiation therapy to decrease local and metastatic tumor burden, as well as in the establishment of immunological memory responses. Our studies highlight the value of structural considerations in guiding the design of a high-affinity chimeric PD-1 Ig fusion protein with robust immune modulatory properties, and underscore the power of combination therapies to selectively manipulate the PD-1 pathway for tumor immunotherapy.

  20. Structure-guided development of a high-affinity human Programmed Cell Death-1: Implications for tumor immunotherapy

    Directory of Open Access Journals (Sweden)

    Eszter Lázár-Molnár

    2017-03-01

    Full Text Available Programmed Cell Death-1 (PD-1 is an inhibitory immune receptor, which plays critical roles in T cell co-inhibition and exhaustion upon binding to its ligands PD-L1 and PD-L2. We report the crystal structure of the human PD-1 ectodomain and the mapping of the PD-1 binding interface. Mutagenesis studies confirmed the crystallographic interface, and resulted in mutant PD-1 receptors with altered affinity and ligand-specificity. In particular, a high-affinity mutant PD-1 (HA PD-1 exhibited 45 and 30-fold increase in binding to PD-L1 and PD-L2, respectively, due to slower dissociation rates. This mutant (A132L was used to engineer a soluble chimeric Ig fusion protein for cell-based and in vivo studies. HA PD-1 Ig showed enhanced binding to human dendritic cells, and increased T cell proliferation and cytokine production in a mixed lymphocyte reaction (MLR assay. Moreover, in an experimental model of murine Lewis lung carcinoma, HA PD-1 Ig treatment synergized with radiation therapy to decrease local and metastatic tumor burden, as well as in the establishment of immunological memory responses. Our studies highlight the value of structural considerations in guiding the design of a high-affinity chimeric PD-1 Ig fusion protein with robust immune modulatory properties, and underscore the power of combination therapies to selectively manipulate the PD-1 pathway for tumor immunotherapy.

  1. Novel high-affinity and selective biaromatic 4-substituted ¿-hydroxybutyric acid (GHB) analogues as GHB ligands

    DEFF Research Database (Denmark)

    Høg, Signe; Wellendorph, Petrine; Nielsen, Birgitte

    2008-01-01

    Gamma-hydroxybutyrate (GHB) is a metabolite of gamma-aminobutyric acid (GABA) and has been proposed to function as a neurotransmitter or neuromodulator. GHB is used in the treatment of narcolepsy and is a drug of abuse. GHB binds to both GABA(B) receptors and specific high-affinity GHB sites...

  2. High-affinity small molecule-phospholipid complex formation: binding of siramesine to phosphatidicacid

    DEFF Research Database (Denmark)

    Khandelia, Himanshu

    2008-01-01

    , comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction of XPA ) 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 ( 80 × 106. An MD simulation on the siramesine:PA interaction...

  3. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    Science.gov (United States)

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  4. A response calculus for immobilized T cell receptor ligands

    DEFF Research Database (Denmark)

    Andersen, P S; Menné, C; Mariuzza, R A

    2001-01-01

    determine the level of T cell activation. When fitted to T cell responses against purified ligands immobilized on plastic surfaces, the 2D-affinity model adequately simulated changes in cellular activation as a result of varying ligand affinity and ligand density. These observations further demonstrated...

  5. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    Science.gov (United States)

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  6. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

    Science.gov (United States)

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-11-01

    Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  8. Homogeneous competitive assay of ligand affinities based on quenching fluorescence of tyrosine/tryptophan residues in a protein via Főrster-resonance-energy-transfer

    Science.gov (United States)

    Xie, Yanling; Yang, Xiaolan; Pu, Jun; Zhao, Yunsheng; Zhang, Ying; Xie, Guoming; Zheng, Jun; Yuan, Huidong; Liao, Fei

    2010-11-01

    A new homogeneous competitive assay of ligand affinities was proposed based on quenching the fluorescence of tryptophan/tyrosine residues in a protein via Főrster-resonance-energy-transfer using a fluorescent reference ligand as the acceptor. Under excitation around 280 nm, the fluorescence of a protein or a bound acceptor was monitored upon competitive binding against a nonfluorescent candidate ligand. Chemometrics for deriving the binding ratio of the acceptor with either fluorescence signal was discussed; the dissociation constant ( Kd) of a nonfluorescent candidate ligand was calculated from its concentration to displace 50% binding of the acceptor. N-biotinyl-N'-(1-naphthyl)-ethylenediamine (BNEDA) and N-biotinyl-N'-dansyl-ethylenediamine (BDEDA) were used as the reference ligands and acceptors to streptavidin to test this new homogeneous competitive assay. Upon binding of an acceptor to streptavidin, there were the quench of streptavidin fluorescence at 340 nm and the characteristic fluorescence at 430 nm for BNEDA or at 525 nm for BDEDA. Kd of BNEDA and BDEDA was obtained via competitive binding against biotin. By quantifying BNEDA fluorescence, Kd of each tested nonfluorescent biotin derivative was consistent with that by quantifying streptavidin fluorescence using BNEDA or BDEDA as the acceptor. The overall coefficients of variation were about 10%. Therefore, this homogeneous competitive assay was effective and promising to high-throughput-screening.

  9. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics

    International Nuclear Information System (INIS)

    Villarreal, Oscar D.; Yu, Lili; Rodriguez, Roberto A.; Chen, Liao Y.

    2017-01-01

    Computing the ligand-protein binding affinity (or the Gibbs free energy) with chemical accuracy has long been a challenge for which many methods/approaches have been developed and refined with various successful applications. False positives and, even more harmful, false negatives have been and still are a common occurrence in practical applications. Inevitable in all approaches are the errors in the force field parameters we obtain from quantum mechanical computation and/or empirical fittings for the intra- and inter-molecular interactions. These errors propagate to the final results of the computed binding affinities even if we were able to perfectly implement the statistical mechanics of all the processes relevant to a given problem. And they are actually amplified to various degrees even in the mature, sophisticated computational approaches. In particular, the free energy perturbation (alchemical) approaches amplify the errors in the force field parameters because they rely on extracting the small differences between similarly large numbers. In this paper, we develop a hybrid steered molecular dynamics (hSMD) approach to the difficult binding problems of a ligand buried deep inside a protein. Sampling the transition along a physical (not alchemical) dissociation path of opening up the binding cavity- -pulling out the ligand- -closing back the cavity, we can avoid the problem of error amplifications by not relying on small differences between similar numbers. We tested this new form of hSMD on retinol inside cellular retinol-binding protein 1 and three cases of a ligand (a benzylacetate, a 2-nitrothiophene, and a benzene) inside a T4 lysozyme L99A/M102Q(H) double mutant. In all cases, we obtained binding free energies in close agreement with the experimentally measured values. This indicates that the force field parameters we employed are accurate and that hSMD (a brute force, unsophisticated approach) is free from the problem of error amplification suffered by

  10. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency

    DEFF Research Database (Denmark)

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino

    2009-01-01

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. Th...

  11. Generation of high-affinity, internalizing anti-FGFR2 single-chain variable antibody fragment fused with Fc for targeting gastrointestinal cancers.

    Science.gov (United States)

    Borek, Aleksandra; Sokolowska-Wedzina, Aleksandra; Chodaczek, Grzegorz; Otlewski, Jacek

    2018-01-01

    Fibroblast growth factor receptors (FGFRs) are promising targets for antibody-based cancer therapies, as their substantial overexpression has been found in various tumor cells. Aberrant activation of FGF receptor 2 (FGFR2) signaling through overexpression of FGFR2 and/or its ligands, mutations, or receptor amplification has been reported in multiple cancer types, including gastric, colorectal, endometrial, ovarian, breast and lung cancer. In this paper, we describe application of the phage display technology to produce a panel of high affinity single chain variable antibody fragments (scFvs) against the extracellular ligand-binding domain of FGFR2 (ECD_FGFR2). The binders were selected from the human single chain variable fragment scFv phage display libraries Tomlinson I + J and showed high specificity and binding affinity towards human FGFR2 with nanomolar KD values. To improve the affinity of the best binder selected, scFvF7, we reformatted it to a bivalent diabody format, or fused it with the Fc region (scFvF7-Fc). The scFvF7-Fc antibody construct presented the highest affinity for FGFR2, with a KD of 0.76 nM, and was selectively internalized into cancer cells overexpressing FGFR2, Snu-16 and NCI-H716. Finally, we prepared a conjugate of scFvF7-Fc with the cytotoxic drug monomethyl-auristatin E (MMAE) and evaluated its cytotoxicity. The conjugate delivered MMAE selectively to FGFR2-positive tumor cells. These results indicate that scFvF7-Fc-vcMMAE is a highly potent molecule for the treatment of cancers with FGFR2 overexpression.

  12. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  13. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  14. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    Science.gov (United States)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  15. C[sub 10]-O[sub eq]-N-(4-azido-5-[sup 125]iodo salicyloyl)-[beta]-alanyl-[beta] alanyl ryanodine (Az-[beta]AR), a novel photo-affinity ligand for the ryanodine binding site

    Energy Technology Data Exchange (ETDEWEB)

    Bidasee, K.R.; Besch, H.R. Jr.; Kwon, Sangyeol; Emmick, J.T.; Besch, K.T.; Gerzon, Koert; Humerickhouse, R.A. (Indiana Univ., Indianapolis, IN (United States). School of Medicine)

    1994-01-01

    A high affinity, photoactivatable, radio-iodinated ligand for the ryanodine binding site(s) of the sarcoplasmic reticulum calcium-release channel, C[sub 10]-O[sub e]-N-(4-azido-5-[sup 125]iodo salicyloyl)-[beta]-alanyl-[beta]-alanyl ryanodine (Az-[beta]AR), was synthesized at a specific activity of 1400mCi/mmol. (Author).

  16. Development of an aptamer-based affinity purification method for vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Maren Lönne

    2015-12-01

    Full Text Available Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.

  17. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    Science.gov (United States)

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.

    Science.gov (United States)

    Landry, James P; Fei, Yiyan; Zhu, X D

    2011-12-01

    Small-molecule compounds remain the major source of therapeutic and preventative drugs. Developing new drugs against a protein target often requires screening large collections of compounds with diverse structures for ligands or ligand fragments that exhibit sufficiently affinity and desirable inhibition effect on the target before further optimization and development. Since the number of small molecule compounds is large, high-throughput screening (HTS) methods are needed. Small-molecule microarrays (SMM) on a solid support in combination with a suitable binding assay form a viable HTS platform. We demonstrate that by combining an oblique-incidence reflectivity difference optical scanner with SMM we can screen 10,000 small-molecule compounds on a single glass slide for protein ligands without fluorescence labeling. Furthermore using such a label-free assay platform we can simultaneously acquire binding curves of a solution-phase protein to over 10,000 immobilized compounds, thus enabling full characterization of protein-ligand interactions over a wide range of affinity constants.

  19. Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Martini, Lene; Schwartz, Thue W

    2005-01-01

    To dissect the interaction between beta-arrestin ((beta)arr) and family B G protein-coupled receptors, we constructed fusion proteins between the glucagon-like peptide 1 receptor and (beta)arr2. The fusion constructs had an increase in apparent affinity selectively for glucagon, suggesting...... that (beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands. The fusion constructs adopted a signaling phenotype governed by the tethered (beta)arr2 with an attenuated G protein-mediated cAMP signal and a higher maximal internalization...... of that which has previously been characterized for family A G protein-coupled receptors, suggesting similarities in the effect of (beta)arr interaction between family A and B receptors also at the molecular level....

  20. Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain.

    Science.gov (United States)

    Runge, Steffen; Schimmer, Susann; Oschmann, Jan; Schiødt, Christine Bruun; Knudsen, Sanne Möller; Jeppesen, Claus Bekker; Madsen, Kjeld; Lau, Jesper; Thøgersen, Henning; Rudolph, Rainer

    2007-05-15

    Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4.

  1. Preparation and characterization of fluorophenylboronic acid-functionalized affinity monolithic columns for the selective enrichment of cis-diol-containing biomolecules.

    Science.gov (United States)

    Li, Qianjin; Liu, Zhen

    2015-01-01

    Boronate affinity monolithic columns have been developed into an important means for the selective recognition and capture of cis-diol-containing biomolecules, such as glycoproteins, nucleosides and saccharides. The ligands of boronic acids are playing an important role in boronate affinity monolithic columns. Although several boronate affinity monoliths with high affinity toward cis-diol-containing biomolecules have been reported, only few publications are focused on their detailed procedures for preparation and characterization. This chapter describes in detail the preparation and characterization of a boronate affinity monolithic column applying 2,4-difluoro-3-formyl-phenylboronic acid (DFFPBA) as a ligand. The DFFPBA-functionalized monolithic column not only exhibited an ultrahigh boronate affinity toward cis-diol-containing biomolecules, but also showed great potential for the selective enrichment of cis-diol-containing biomolecules in real samples.

  2. USING MICROSCALE THERMOPHORESIS TO EASILY MEASURE BINDING AFFINITY

    Directory of Open Access Journals (Sweden)

    Dennis Breitsprecher*

    2018-03-01

    Full Text Available While it’s very common for biologists and chemists to test whether or not two molecules interact with each other, it’s much more useful to gather information on the nature of that interaction. How strong is it? How long will it last? What does that mean for its biological function? One way to answer these questions is to study affinity. Binding affinity is defined as the strength of the binding interaction between a single biomolecule to its binding partner, or ligand, and it can be quantifiably measured, providing information on whether or not molecules are interacting, as well as assigning a value to the affinity. When measuring binding affinity, there are several parameters to look at, but the dissociation constant (Kd, which defines the likelihood that an interaction between two molecules will break, is a very common measurement. The smaller the dissociation constant, the more tightly bound the ligand is, and the higher the affinity is between the two molecules.

  3. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Specific recognition of the C-terminal end of A beta 42 by a high affinity monoclonal antibody

    DEFF Research Database (Denmark)

    Axelsen, Trine Veje; Holm, Arne; Birkelund, Svend

    2009-01-01

    The neurotoxic peptide A beta(42) is derived from the amyloid precursor protein by proteolytic cleavage and is deposited in the brain of patients suffering from Alzheimer's disease (AD). In this study we generate a high affinity monoclonal antibody that targets the C-terminal end of A beta(42......) with high specificity. By this is meant that the paratope of the antibody must enclose the C-terminal end of A beta(42) including the carboxy-group of amino acid 42, and not just recognize a linear epitope in the C-terminal part of A beta. This has been accomplished by using a unique antigen construct made...... by the Ligand Presenting Assembly technology (LPA technology). This strategy results in dimeric presentation of the free C-terminal end of A beta(42). The generated Mab A beta1.1 is indeed specific for the C-terminal end of A beta(42) to which it binds with high affinity. Mab A beta1.1 recognizes the epitope...

  5. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications.

    Science.gov (United States)

    Imaduwage, Kasun P; Go, Eden P; Zhu, Zhikai; Desaire, Heather

    2016-11-01

    A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have K i values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods. Graphical Abstract ᅟ.

  6. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Paul, Sinu; Andreatta, Massimo

    2017-01-01

    by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging......Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway....... Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified...

  7. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    International Nuclear Information System (INIS)

    Tiberi, M.; Magnan, J.

    1990-01-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid [3H]D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid [3H]D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid [3H]U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by [3H]U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan [3H]ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, [3H]ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of [3H]ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with [3H]U69593. Saturation studies using the nonselective opioid [3H]bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue)

  8. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: Resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique

    Energy Technology Data Exchange (ETDEWEB)

    Tiberi, M.; Magnan, J. (Universite de Montreal, Quebec (Canada))

    1990-05-01

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, R = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).

  9. Ligand and membrane-binding behavior of the phosphatidylinositol transfer proteins PITPα and PITPβ.

    Science.gov (United States)

    Baptist, Matilda; Panagabko, Candace; Cockcroft, Shamshad; Atkinson, Jeffrey

    2016-12-01

    Phosphatidylinositol transfer proteins (PITPs) are believed to be lipid transfer proteins because of their ability to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments, in vitro. However, the detailed mechanism of this transfer process is not fully established. To further understand the transfer mechanism of PITPs we examined the interaction of PITPs with membranes using dual polarization interferometry (DPI), which measures protein binding affinity on a flat immobilized lipid surface. In addition, a fluorescence resonance energy transfer (FRET)-based assay was also employed to monitor how quickly PITPs transfer their ligands to lipid vesicles. DPI analysis revealed that PITPβ had a higher affinity to membranes compared with PITPα. Furthermore, the FRET-based transfer assay revealed that PITPβ has a higher ligand transfer rate compared with PITPα. However, both PITPα and PITPβ demonstrated a preference for highly curved membrane surfaces during ligand transfer. In other words, ligand transfer rate was higher when the accepting vesicles were highly curved.

  10. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    Science.gov (United States)

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  11. Tris-(hydroxyamino)triazines: high-affinity chelating tridentate O,N,O-hydroxylamine ligand for the cis-V(V)O2(+) cation.

    Science.gov (United States)

    Nikolakis, Vladimiros A; Exarchou, Vassiliki; Jakusch, Tamás; Woolins, J Derek; Slawin, Alexandra M Z; Kiss, Tamás; Kabanos, Themistoklis A

    2010-10-14

    The treatment of the trichloro-1,3,5-triazine with N-methylhydroxylamine hydrochloride results in the replacement of the three chlorine atoms of the triazine ring with the function -N(OH)CH(3) yielding the symmetrical tris-(hydroxyamino)triazine ligand H(3)trihyat. Reaction of the ligand H(3)trihyat with NaV(V)O(3) in aqueous solution followed by addition of Ph(4)PCl gave the mononuclear vanadium(V) compound Ph(4)P[V(V)O(2)(Htrihyat)] (1). The structure of compound 1 was determined by X-ray crystallography and indicates that this compound has a distorted square-pyramidal arrangement around vanadium. The ligand Htrihyat(2-) is bonded to vanadium atom in a tridentate fashion at the triazine ring nitrogen atom and the two deprotonated hydroxylamido oxygen atoms. The high electron density of the triazine ring nitrogen atoms, which results from the resonative contribution of electrons of exocyclic nitrogen atoms, leads to a very strong V-N bond. The cis-[V(V)O(2)(Htrihyat)](-) species exhibits high hydrolytic stability in aqueous solution over a wide pH range, 2.5-11.5, as was evidenced by potentiometry.

  12. Analytical developments for screening of lanthanides/ligands interactions

    International Nuclear Information System (INIS)

    Varenne, F.

    2012-01-01

    This work investigates the potential of hyphenated capillary electrophoresis and inductively coupled mass spectrometry to classify different ligands according to their europium binding affinity in a hydro-organic medium. On the one hand, this method enables to evaluate the affinity of phosphorus-containing ligands in less than two hours and using less than 15 ng of ligand. On the other hand, complexation constants could be determined. The results are in excellent agreement with the values obtained by spectrophotometric titrations.Moreover, a library of copolymers for solid/liquid extraction of europium is investigated. The extraction protocol enables to classify copolymers according to their europium affinity in a hydro-organic medium. This screening requires 60 mg of copolymers. For the most promising recognition properties and selectivity La 3+ /Eu 3+ /Lu 3+ are evaluated. (author)

  13. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  14. Novel nonphosphorylated peptides with conserved sequences selectively bind to Grb7 SH2 domain with affinity comparable to its phosphorylated ligand.

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    Full Text Available The Grb7 (growth factor receptor-bound 7 protein, a member of the Grb7 protein family, is found to be highly expressed in such metastatic tumors as breast cancer, esophageal cancer, liver cancer, etc. The src-homology 2 (SH2 domain in the C-terminus is reported to be mainly involved in Grb7 signaling pathways. Using the random peptide library, we identified a series of Grb7 SH2 domain-binding nonphosphorylated peptides in the yeast two-hybrid system. These peptides have a conserved GIPT/K/N sequence at the N-terminus and G/WD/IP at the C-terminus, and the region between the N-and C-terminus contains fifteen amino acids enriched with serines, threonines and prolines. The association between the nonphosphorylated peptides and the Grb7 SH2 domain occurred in vitro and ex vivo. When competing for binding to the Grb7 SH2 domain in a complex, one synthesized nonphosphorylated ligand, containing the twenty-two amino acid-motif sequence, showed at least comparable affinity to the phosphorylated ligand of ErbB3 in vitro, and its overexpression inhibited the proliferation of SK-BR-3 cells. Such nonphosphorylated peptides may be useful for rational design of drugs targeted against cancers that express high levels of Grb7 protein.

  15. Fundamental and practical studies on high-performance liquid affinity chromatography of biopolymers with novel stationary phases

    Energy Technology Data Exchange (ETDEWEB)

    Bacolod, M.D.

    1992-01-01

    Rigid microparticulate stationary phases having surface-bound metal chelating functions were developed and evaluated in high performance metal chelate affinity chromatography of proteins. Silica- and polystyrene-divinylbenzene-based metal chelate sorbents were produced in wide pore and in non-porous type of column packings. A major effort has been placed on development of non-porous highly crosslinked polystyrene-divinylbenzene (PSDVB). These PSDVB microparticles were produced by a two-step swelling polymerization, and exhibited excellent mechanical strength over a wide range of flow-rates and composition used in high performance liquid chromatography (HPLC). Simple and reproducible hydrophilic coatings were developed for the surface modification of hydrophobic PSDVB supports. A tetradentate metal chelating ligand, ethylenediamine-N, N[prime]-diacetic acid (EDDA), was covalently bound to the surface of the various supports. Sorbents having iminodiacetic acid (IDA) metal chelating functions were also evaluated. The hydrophilic character and surface coverage of various stationary phases were assessed chromatographically. Studies concerning the effects of eluent pH as well as the nature and concentration of salts on retention and selectivity with different metal chelate stationary phases having various immobilized metal ions were carried out. Elution schemes were developed for rapid separation of proteins in metal chelate affinity chromatography. EDDA stationary phases in metal forms can be viewed as complementary to IDA stationary phases since they afforded different selectivity and retentivity toward proteins. Hydrophilic PSDVB could be functionalized with IDA or EDDA metal chelating ligands or lectins. The non-porous metal chelate stationary phases afforded rapid separation of proteins by the development of multiple gradient systems, which permitted higher column peak capacity, enabling the separation of a greater number of proteins in a single chromatographic run.

  16. Comparison of high affinity binding of 3H-proadifen and 3H-(-)-cocaine t rat liver membranes

    International Nuclear Information System (INIS)

    Ross, S.B.

    1995-01-01

    The characteristics of the binding of 3 H-proadifen to rat liver membranes were studied and compared to those of 3 H-cocaine. It was found that 3 H-proadifen was bound reversibly with high affinity (K D =1.8±0.5 nM) and large capacity (B max =2010±340 pmol/g wet tissue) to liver membranes. The corresponding values for the 3 H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of 3 H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 μM CdCl 2 in the incubation buffer it was possible to differentiate between two 3 H-cocaine binding sites with K d values of 1.6 and 7.7 nM and B max values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of 3 H-proadifen and 3 H-cocaine inhibited the binding of 3 H-proadifen (IC 50 =10 nM) and proadifen that of 3 H-cocaine (IC 50 =1 nM). There was a high correlation coefficient (r r =0.972; P 50 =100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl 2 , ZnCl 2 and CuCl 2 inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd 2+ on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15μM. The similarity of the characteristics of the binding of these ligands with that of 3 H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.)

  17. Traceless affinity labeling of endogenous proteins for functional analysis in living cells.

    Science.gov (United States)

    Hayashi, Takahiro; Hamachi, Itaru

    2012-09-18

    affinity labeling method and allows for real-time monitoring of protein activity. With the high target specificity and biocompatibility of this technique, we have achieved individual labeling and imaging of endogenously expressed proteins in samples of high biological complexity. We also highlight applications in which our current approach enabled the monitoring of important biological events, such as ligand binding, in living cells. These novel chemical labeling techniques are expected to provide a molecular toolbox for studying a wide variety of proteins and beyond in living cells.

  18. Comparison of high affinity binding of {sup 3}H-proadifen and {sup 3}H-(-)-cocaine t rat liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B. [Astra Arcus AB, Dept. of Neuropharmacology, Soedertaelje (Sweden)

    1995-06-01

    The characteristics of the binding of {sup 3}H-proadifen to rat liver membranes were studied and compared to those of {sup 3}H-cocaine. It was found that {sup 3}H-proadifen was bound reversibly with high affinity (K{sub D}=1.8{+-}0.5 nM) and large capacity (B{sub max}=2010{+-}340 pmol/g wet tissue) to liver membranes. The corresponding values for the {sup 3}H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of {sup 3}H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 {mu}M CdCl{sub 2} in the incubation buffer it was possible to differentiate between two {sup 3}H-cocaine binding sites with K{sub d} values of 1.6 and 7.7 nM and B{sub max} values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of {sup 3}H-proadifen and {sup 3}H-cocaine inhibited the binding of {sup 3}H-proadifen (IC{sub 50}=10 nM) and proadifen that of {sup 3}H-cocaine (IC{sub 50}=1 nM). There was a high correlation coefficient (r{sub r}=0.972; P<0.01; n=12) in the Spearman rank test between the inhibitory potencies of compounds examined in both systems. Beside some potent alaproclate analogues a couple of compounds had moderately high affinity (IC{sub 50}=100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl{sub 2}, ZnCl{sub 2} and CuCl{sub 2} inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd{sup 2+} on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15{mu}M. The similarity of the characteristics of the binding of these ligands with that of {sup 3}H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.).

  19. Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specific ligand.

    Science.gov (United States)

    Barkey, Natalie M; Tafreshi, Narges K; Josan, Jatinder S; De Silva, Channa R; Sill, Kevin N; Hruby, Victor J; Gillies, Robert J; Morse, David L; Vagner, Josef

    2011-12-08

    The incidence of malignant melanoma is rising faster than that of any other cancer in the United States. Because of its high expression on the surface of melanomas, MC1R has been investigated as a target for selective imaging and therapeutic agents against melanoma. Eight ligands were screened against cell lines engineered to overexpress MC1R, MC4R, or MC5R. Of these, compound 1 (4-phenylbutyryl-His-dPhe-Arg-Trp-NH(2)) exhibited high (0.2 nM) binding affinity for MC1R and low (high nanomolar) affinities for MC4R and MC5R. Functionalization of the ligand at the C-terminus with an alkyne for use in Cu-catalyzed click chemistry was shown not to affect the binding affinity. Finally, formation of the targeted polymer, as well as the targeted micelle formulation, also resulted in constructs with low nanomolar binding affinity.

  20. Correcting binding parameters for interacting ligand-lattice systems

    Science.gov (United States)

    Hervy, Jordan; Bicout, Dominique J.

    2017-07-01

    Binding of ligands to macromolecules is central to many functional and regulatory biological processes. Key parameters characterizing ligand-macromolecule interactions are the stoichiometry, inducing the number of ligands per macromolecule binding site, and the dissociation constant, quantifying the ligand-binding site affinity. Both these parameters can be obtained from analyses of classical saturation experiments using the standard binding equation that offers the great advantage of mathematical simplicity but becomes an approximation for situations of interest when a ligand binds and covers more than one single binding site on the macromolecule. Using the framework of car-parking problem with latticelike macromolecules where each ligand can cover simultaneously several consecutive binding sites, we showed that employing the standard analysis leads to underestimation of binding parameters, i.e., ligands appear larger than they actually are and their affinity is also greater than it is. Therefore, we have derived expressions allowing to determine the ligand size and true binding parameters (stoichiometry and dissociation constant) as a function of apparent binding parameters retrieved from standard saturation experiments.

  1. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan

    2011-12-23

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative to all other isoreticular rht-type MOFs. The high adsorption capacity and remarkable selectivity of CO 2 are attributed to the high density of open metal and Lewis basic sites in the framework. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Complexation of biological ligands with lanthanides(III) for MRI: Structure, thermodynamic and methods; Complexation des cations lanthanides trivalents par des ligands d'origine biologique pour l'IRM: Structure, thermodynamique et methodes

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, C

    2006-07-15

    New cyclic ligands derived from sugars and amino-acids form a scaffold carrying a coordination sphere of oxygen atoms suitable to complex Ln(III) ions. In spite of their rather low molecular weights, the complexes display surprisingly high relaxivity values, especially at high field. The ACX and BCX ligands, which are acidic derivatives of modified and cyclo-dextrins, form mono and bimetallic complexes with Ln(III). The LnACX and LnBCX complexes show affinities towards Ln(III) similar to those of tri-acidic ligands. In the bimetallic Lu2ACX complex, the cations are deeply embedded in the cavity of the ligand, as shown by the X-ray structure. In aqueous solution, the number of water molecules coordinated to the cation in the LnACX complex depends on the nature and concentration of the alkali ions of the supporting electrolyte, as shown by luminescence and relaxometric measurements. There is only one water molecule coordinated in the LnBCX complex, which enables us to highlight an important second sphere contribution to relaxivity. The NMR study of the RAFT peptidic ligand shows the complexation of Ln(III), with an affinity similar to those of natural ligands derived from calmodulin. The relaxometric study also shows an important second sphere contribution to relaxivity. To better understand the intricate molecular factors affecting relaxivity, we developed new relaxometric methods based on probe solutes. These methods allow us to determine the charge of the complex, weak affinity constants, trans-metallation constants, and the electronic relaxation rate. (author)

  3. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme.

    Science.gov (United States)

    Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-06

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2  = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2  = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2  = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  4. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity.

    Science.gov (United States)

    Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding

    2017-11-07

    The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.

  5. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  6. DOTA-derivatives of octreotide dicarba-analogues with high affinity for somatostatin sst2,5 receptors

    Science.gov (United States)

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M.; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-02-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumours and their metastases. In fact, peptide ligands of somatostatin receptors (sst’s) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogues, which show interesting binding profiles at sst’s. In this context, it was mandatory to explore the possibility that our analogues could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogues of octreotide. Interestingly, two conjugated analogues exhibited nanomolar affinities on sst2 and sst5 somatostatin receptor subtypes.

  7. Pharmacokinetics and biodistribution of a radioiodine labeled peptidomimetic ligand for high-affinity nerve growth factor receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. H.; Kim, D. H.; Paik, J. Y.; Koh, B. H.; Bae, J. S.; Choe, Y. S.; Lee, K. H.; Kim, B. T. [Samsung Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    Some of the obstacles for the clinical application of whole nerve growth factor (NGF) may be overcome by utilizing small molecule mimetics. We thus investigated the in vivo pharmacokinetics and biodistribution of a small cyclic peptide derived from NGF-[C(92-96)] with high receptor binding affinity. I-125 C(92-96) was labeled with the Bolton-Hunter method, and binding to TrkA/IgG chimeric protein was confirmed on a polyacrylamide gel after cross-linking. Pharmacokinetic analysis was performed in normal ICR mice intravenously injected with 0.5 MBq I-125 C(92-96) containing varying doses of C(92-96). Biodistribution studies were done at 6 h after injection. Cross-linkage analysis confirmed binding of I-125 C(92-96) to the high affinity NGF receptor, TrkA. Intravenously injected I-125 C(92-96) was cleared from the blood in a biexponential manner with an early T1/2{alpha} of 5.2 min and late T1/2{beta} of 121.3 min. Log blood-concentration decreased over time with a k-slope of 0.0025, clearance of 11.8{+-}0.5 ml/min, T1/2 of 4.1{+-}0.4 hr, and volume of distribution of 69.7{+-}4.6 ml. The pattern of elimination from the blood remained essentially unchanged regardless of the dose of added C(92-96), with dose-proportionate increases in AUCs and peak concentrations consistent with linear pharmacokinetics. Biodistribution studies demonstrated high kidney activity suggesting renal excretion of I-125 C(92-96). There were moderate levels of accumulation in the spleen, lungs and liver, followed by the myocardium and skeletal muscle, whereas brain uptake was low (< 0.2 %ID/gm). Intravenously administered C(92-96) follows linear pharmacokinetics, and is cleared from the circulation at a rate comparable to whole NGF despite its substantially smaller size. Although intravenous C(92-96) does not adequately reach brain tissue, clinically relevant doses can achieve major organ accumulation levels that may be sufficient to elicit biologic responses through NGF receptors.

  8. Pharmacokinetics and biodistribution of a radioiodine labeled peptidomimetic ligand for high-affinity nerve growth factor receptors

    International Nuclear Information System (INIS)

    Jung, K. H.; Kim, D. H.; Paik, J. Y.; Koh, B. H.; Bae, J. S.; Choe, Y. S.; Lee, K. H.; Kim, B. T.

    2005-01-01

    Some of the obstacles for the clinical application of whole nerve growth factor (NGF) may be overcome by utilizing small molecule mimetics. We thus investigated the in vivo pharmacokinetics and biodistribution of a small cyclic peptide derived from NGF-[C(92-96)] with high receptor binding affinity. I-125 C(92-96) was labeled with the Bolton-Hunter method, and binding to TrkA/IgG chimeric protein was confirmed on a polyacrylamide gel after cross-linking. Pharmacokinetic analysis was performed in normal ICR mice intravenously injected with 0.5 MBq I-125 C(92-96) containing varying doses of C(92-96). Biodistribution studies were done at 6 h after injection. Cross-linkage analysis confirmed binding of I-125 C(92-96) to the high affinity NGF receptor, TrkA. Intravenously injected I-125 C(92-96) was cleared from the blood in a biexponential manner with an early T1/2α of 5.2 min and late T1/2β of 121.3 min. Log blood-concentration decreased over time with a k-slope of 0.0025, clearance of 11.8±0.5 ml/min, T1/2 of 4.1±0.4 hr, and volume of distribution of 69.7±4.6 ml. The pattern of elimination from the blood remained essentially unchanged regardless of the dose of added C(92-96), with dose-proportionate increases in AUCs and peak concentrations consistent with linear pharmacokinetics. Biodistribution studies demonstrated high kidney activity suggesting renal excretion of I-125 C(92-96). There were moderate levels of accumulation in the spleen, lungs and liver, followed by the myocardium and skeletal muscle, whereas brain uptake was low (< 0.2 %ID/gm). Intravenously administered C(92-96) follows linear pharmacokinetics, and is cleared from the circulation at a rate comparable to whole NGF despite its substantially smaller size. Although intravenous C(92-96) does not adequately reach brain tissue, clinically relevant doses can achieve major organ accumulation levels that may be sufficient to elicit biologic responses through NGF receptors

  9. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    International Nuclear Information System (INIS)

    Beck, J.T.; Ullman, B.

    1989-01-01

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 μM concentration of either activated [ 3 H]folate or activated [ 3 H]methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms

  10. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Progress on the application of ligand receptor binding assays in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zhou Xue; Qian Jinping; Kong Aiying; Zhu Lin

    2010-01-01

    Receptor binding assay is an important drug screening method, which can quickly and inexpensively study the interactions between the targeted receptor and the potential ligands in vitro and provide the information of the relative binding affinity of ligand-receptor. The imaging of many radiopharmaceuticals is based on highly selective radioligand-receptor binding. The technique plays an important role in the design and screening of receptor-targeting radiopharmaceuticals. (authors)

  12. Structure and function of the selectin ligand PSGL-1

    Directory of Open Access Journals (Sweden)

    Cummings R.D.

    1999-01-01

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 is a dimeric mucin-like 120-kDa glycoprotein on leukocyte surfaces that binds to P- and L-selectin and promotes cell adhesion in the inflammatory response. The extreme amino terminal extracellular domain of PSGL-1 is critical for these interactions, based on site-directed mutagenesis, blocking monoclonal antibodies, and biochemical analyses. The current hypothesis is that for high affinity interactions with P-selectin, PSGL-1 must contain O-glycans with a core-2 branched motif containing the sialyl Lewis x antigen (NeuAca2®3Galß1®4[Fuca1®3]GlcNAcß1®R. In addition, high affinity interactions require the co-expression of tyrosine sulfate on tyrosine residues near the critical O-glycan structure. This review addresses the biochemical evidence for this hypothesis and the evidence that PSGL-1 is an important in vivo ligand for cell adhesion.

  13. istar: a web platform for large-scale protein-ligand docking.

    Directory of Open Access Journals (Sweden)

    Hongjian Li

    Full Text Available Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1 filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2 monitoring job progress in real time, and 3 visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked

  14. istar: a web platform for large-scale protein-ligand docking.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Ballester, Pedro J; Wong, Man-Hon

    2014-01-01

    Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar

  15. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    International Nuclear Information System (INIS)

    Miles, L.A.; Plow, E.F.

    1986-01-01

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [ 125 I]EDP I, [ 125 I]Glu-plasminogen, and [ 125 I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [ 125 I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 μM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. α 2 -Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of [ 125 I]EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor

  16. Affinity Crystallography: A New Approach to Extracting High-Affinity Enzyme Inhibitors from Natural Extracts.

    Science.gov (United States)

    Aguda, Adeleke H; Lavallee, Vincent; Cheng, Ping; Bott, Tina M; Meimetis, Labros G; Law, Simon; Nguyen, Nham T; Williams, David E; Kaleta, Jadwiga; Villanueva, Ivan; Davies, Julian; Andersen, Raymond J; Brayer, Gary D; Brömme, Dieter

    2016-08-26

    Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.

  17. THERMODYNAMICS OF PROTEIN-LIGAND INTERACTIONS AND THEIR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Rummi Devi Saini

    2017-11-01

    Full Text Available Physiological processes are controlled mainly by intermolecular recognition mechanisms which involve protein–protein and protein–ligand interactions with a high specificity and affinity to form a specific complex. Proteins being an important class of macromolecules in biological systems, it is important to understand their actions through binding to other molecules of proteins or ligands. In fact, the binding of low molecular weight ligands to proteins plays a significant role in regulating biological processes such as cellular metabolism and signal transmission. Therefore knowledge of the protein–ligand interactions and the knowledge of the mechanisms involved in the protein-ligand recognition and binding are key in understanding biology at molecular level which will facilitate the discovery, design, and development of drugs. In this review, the mechanisms involved in protein–ligand binding, the binding kinetics, thermodynamic concepts and binding driving forces are discussed. Thermodynamic mechanisms involved in a few important protein-ligand binding are described. Various spectroscopic, non-spectroscopic and computational method for analysis of protein–ligand binding are also discussed.

  18. Isolation and characterization of high affinity aptamers against DNA polymerase iota.

    Science.gov (United States)

    Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V

    2012-02-01

    Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.

  19. Affinity chromatography: A versatile technique for antibody purification.

    Science.gov (United States)

    Arora, Sushrut; Saxena, Vikas; Ayyar, B Vijayalakshmi

    2017-03-01

    Antibodies continue to be extremely utilized entities in myriad applications including basic research, imaging, targeted delivery, chromatography, diagnostics, and therapeutics. At production stage, antibodies are generally present in complex matrices and most of their intended applications necessitate purification. Antibody purification has always been a major bottleneck in downstream processing of antibodies, due to the need of high quality products and associated high costs. Over the years, extensive research has focused on finding better purification methodologies to overcome this holdup. Among a plethora of different techniques, affinity chromatography is one of the most selective, rapid and easy method for antibody purification. This review aims to provide a detailed overview on affinity chromatography and the components involved in purification. An array of support matrices along with various classes of affinity ligands detailing their underlying working principles, together with the advantages and limitations of each system in purifying different types of antibodies, accompanying recent developments and important practical methodological considerations to optimize purification procedure are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The connection between metal ion affinity and ligand affinity in integrin I domains

    DEFF Research Database (Denmark)

    Vorup-Jensen, Thomas; Waldron, TT; Astrof, N

    2007-01-01

    Integrins are cell-surface heterodimeric proteins that mediate cell-cell, cell-matrix, and cell-pathogen interactions. Half of the known integrin alpha subunits contain inserted domains (I domains) that coordinate ligand through a metal ion. Although the importance of conformational changes withi...

  1. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  2. Methods for quantifying T cell receptor binding affinities and thermodynamics

    Science.gov (United States)

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  3. Cloud computing approaches for prediction of ligand binding poses and pathways.

    Science.gov (United States)

    Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S

    2015-01-22

    We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.

  4. Monitoring β-arrestin recruitment via β-lactamase enzyme fragment complementation: purification of peptide E as a low-affinity ligand for mammalian bombesin receptors.

    Directory of Open Access Journals (Sweden)

    Yuichi Ikeda

    Full Text Available Identification of cognate ligands for G protein-coupled receptors (GPCRs provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS. In a reporter cell, complementary fragments of β-lactamase (α and ω were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω, and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3. We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR and neuromedin B receptor (NMBR. Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.

  5. Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.

    Science.gov (United States)

    Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T

    2003-01-01

    The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.

  6. Towards the identification of alkaline phosphatase binding ligands in Li-Dan-Hua-Shi pills: A Box-Behnken design optimized affinity selection approach tandem with UHPLC-Q-TOF/MS analysis.

    Science.gov (United States)

    Tao, Yi; Huang, Surun; Gu, Xianghui; Li, Weidong; Cai, Baochang

    2018-05-30

    Alkaline phosphatase conjugated magnetic microspheres were synthesized via amide reaction, and employed as an effective adsorbent in affinity selection of binding ligands followed by UHPLC-Q-TOF/MS analysis. The analytical validity of the developed approach was evaluated under optimized conditions and the following figures of merit were obtained: linearity, 0.01-0.5 g L -1 with good determination coefficients (R 2  = 0.9992); limits of detection (LODs), 0.003 g L -1 ; and limits of quantitation (LOQ), 0.01 g L -1 . The precision (RSD%) of the proposed affinity selection approach was studied based on intra-day (0.8%) and inter-day (1.3%) precisions. Finally, the adsorbent was successfully applied to identification of binding ligands in Li-Dan-Hua-Shi pills and good recoveries were obtained in the range from 96.9 to 99.4% (RSDs 1.6-3.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Bräuner-Osborne, Hans

    2004-01-01

    The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocket...... resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations......, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R...

  8. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins.

    Science.gov (United States)

    Dias, Raquel; Manny, Austin; Kolaczkowski, Oralia; Kolaczkowski, Bryan

    2017-06-01

    Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Variation in one residue associated with the metal ion-dependent adhesion site regulates αIIbβ3 integrin ligand binding affinity.

    Directory of Open Access Journals (Sweden)

    Joel Raborn

    Full Text Available The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala(252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala(252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion.

  10. Simulating the influence of plasma protein on measured receptor affinity in biochemical assays reveals the utility of Schild analysis for estimating compound affinity for plasma proteins.

    Science.gov (United States)

    Blakeley, D; Sykes, D A; Ensor, P; Bertran, E; Aston, P J; Charlton, S J

    2015-11-01

    Plasma protein binding (PPB) influences the free fraction of drug available to bind to its target and is therefore an important consideration in drug discovery. While traditional methods for assessing PPB (e.g. rapid equilibrium dialysis) are suitable for comparing compounds with relatively weak PPB, they are not able to accurately discriminate between highly bound compounds (typically >99.5%). The aim of the present work was to use mathematical modelling to explore the potential utility of receptor binding and cellular functional assays to estimate the affinity of compounds for plasma proteins. Plasma proteins are routinely added to in vitro assays, so a secondary goal was to investigate the effect of plasma proteins on observed ligand-receptor interactions. Using the principle of conservation of mass and the law of mass action, a cubic equation was derived describing the ligand-receptor complex [LR] in the presence of plasma protein at equilibrium. The model demonstrates the profound influence of PPB on in vitro assays and identifies the utility of Schild analysis, which is usually applied to determine receptor-antagonist affinities, for calculating affinity at plasma proteins (termed KP ). We have also extended this analysis to functional effects using operational modelling and demonstrate that these approaches can also be applied to cell-based assay systems. These mathematical models can potentially be used in conjunction with experimental data to estimate drug-plasma protein affinities in the earliest phases of drug discovery programmes. © 2015 The British Pharmacological Society.

  11. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan; Zhang, Zhijuan; Li, Yi; Yao, Kexin; Zhu, Yihan; Deng, Zhiyong; Yang, Fen; Zhou, Xiaojing; Li, Guanghua; Wu, Haohan; Nijem, Nour; Chabal, Yves Jean; Lai, Zhiping; Han, Yu; Shi, Zhan; Feng, Shouhua; Li, Jing

    2011-01-01

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative

  12. Steric and Stereochemical Modulation in Pyridyl- and Quinolyl-Containing Ligands

    Directory of Open Access Journals (Sweden)

    Zhaohua Dai

    2016-12-01

    Full Text Available Nitrogen-containing pyridine and quinoline are outstanding platforms on which excellent ionophores and sensors for metal ions can be built. Steric and stereochemical effects can be used to modulate the affinity and selectivity of such ligands toward different metal ions on the coordination chemistry front. On the signal transduction front, such effects can also be used to modulate optical responses of these ligands in metal sensing systems. In this review, steric modulation of achiral ligands and stereochemical modulation in chiral ligands, especially ionophores and sensors for zinc, copper, silver, and mercury, are examined using published structural and spectral data. Although it might be more challenging to construct chiral ligands than achiral ones, isotropic and anisotropic absorption signals from a single chiroptical fluorescent sensor provide not only detection but also differentiation of multiple analytes with high selectivity.

  13. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples.

    Science.gov (United States)

    Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin

    2016-03-10

    Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.

  14. A twice-as-smart synthetic G-quartet: PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe.

    Science.gov (United States)

    Laguerre, Aurélien; Stefan, Loic; Larrouy, Manuel; Genest, David; Novotna, Jana; Pirrotta, Marc; Monchaud, David

    2014-09-03

    Recent and unambiguous evidences of the formation of DNA and RNA G-quadruplexes in cells has provided solid support for these structures to be considered as valuable targets in oncology. Beyond this, they have lent further credence to the anticancer strategies relying on small molecules that selectively target these higher-order DNA/RNA architectures, referred to as G-quadruplex ligands. They have also shed bright light on the necessity of designing multitasking ligands, displaying not only enticing quadruplex interacting properties (affinity, structural selectivity) but also additional features that make them usable for detecting quadruplexes in living cells, notably for determining whether, when, and where these structures fold and unfold during the cell cycle and also for better assessing the consequences of their stabilization by external agents. Herein, we report a brand new design of such multitasking ligands, whose structure experiences a quadruplex-promoted conformational switch that triggers not only its quadruplex affinity (i.e., smart ligands, which display high affinity and selectivity for DNA/RNA quadruplexes) but also its fluorescence (i.e., smart probes, which behave as selective light-up fluorescent reporters on the basis of a fluorogenic electron redistribution). The first prototype of such multifunctional ligands, termed PyroTASQ, represents a brand new generation of quadruplex ligands that can be referred to as "twice-as-smart" quadruplex ligands.

  15. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties.

    Science.gov (United States)

    Ogata, Makoto; Kameshima, Yumiko; Hattori, Takeshi; Michishita, Kousuke; Suzuki, Tomohiro; Kawagishi, Hirokazu; Totani, Kazuhide; Hiratake, Jun; Usui, Taichi

    2010-12-10

    Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study

    Science.gov (United States)

    Réau, Manon; Langenfeld, Florent; Zagury, Jean-François; Montes, Matthieu

    2018-01-01

    The Drug Design Data Resource (D3R) Grand Challenges are blind contests organized to assess the state-of-the-art methods accuracy in predicting binding modes and relative binding free energies of experimentally validated ligands for a given target. The second stage of the D3R Grand Challenge 2 (GC2) was focused on ranking 102 compounds according to their predicted affinity for Farnesoid X Receptor. In this task, our workflow was ranked 5th out of the 77 submissions in the structure-based category. Our strategy consisted in (1) a combination of molecular docking using AutoDock 4.2 and manual edition of available structures for binding poses generation using SeeSAR, (2) the use of HYDE scoring for pose selection, and (3) a hierarchical ranking using HYDE and MM/GBSA. In this report, we detail our pose generation and ligands ranking protocols and provide guidelines to be used in a prospective computer aided drug design program.

  17. Towards Automated Binding Affinity Prediction Using an Iterative Linear Interaction Energy Approach

    Directory of Open Access Journals (Sweden)

    C. Ruben Vosmeer

    2014-01-01

    Full Text Available Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.

  18. Peptide–polymer ligands for a tandem WW-domain, an adaptive multivalent protein–protein interaction: lessons on the thermodynamic fitness of flexible ligands

    Directory of Open Access Journals (Sweden)

    Katharina Koschek

    2015-05-01

    Full Text Available Three polymers, poly(N-(2-hydroxypropylmethacrylamide (pHPMA, hyperbranched polyglycerol (hPG, and dextran were investigated as carriers for multivalent ligands targeting the adaptive tandem WW-domain of formin-binding protein (FBP21. Polymer carriers were conjugated with 3–9 copies of the proline-rich decapeptide GPPPRGPPPR-NH2 (P1. Binding of the obtained peptide–polymer conjugates to the tandem WW-domain was investigated employing isothermal titration calorimetry (ITC to determine the binding affinity, the enthalpic and entropic contributions to free binding energy, and the stoichiometry of binding for all peptide–polymer conjugates. Binding affinities of all multivalent ligands were in the µM range, strongly amplified compared to the monovalent ligand P1 with a KD > 1 mM. In addition, concise differences were observed, pHPMA and hPG carriers showed moderate affinity and bound 2.3–2.8 peptides per protein binding site resulting in the formation of aggregates. Dextran-based conjugates displayed affinities down to 1.2 µM, forming complexes with low stoichiometry, and no precipitation. Experimental results were compared with parameters obtained from molecular dynamics simulations in order to understand the observed differences between the three carrier materials. In summary, the more rigid and condensed peptide–polymer conjugates based on the dextran scaffold seem to be superior to induce multivalent binding and to increase affinity, while the more flexible and dendritic polymers, pHPMA and hPG are suitable to induce crosslinking upon binding.

  19. Affinity-tuning leukocyte integrin for development of safe therapeutics

    Science.gov (United States)

    Park, Spencer

    Much attention has been given to the molecular and cellular pathways linking inflammation with cancer and the local tumor environment to identify new target molecules that could lead to improved diagnosis and treatment. Among the many molecular players involved in the complex response, central to the induction of inflammation is intercellular adhesion molecule (ICAM)-1, which is of particular interest for its highly sensitive and localized expression in response to inflammatory signals. ICAM-1, which has been implicated to play a critical role in tumor progression in various types of cancer, has also been linked to cancer metastases, where ICAM-1 facilitates the spread of metastatic cancer cells to secondary sites. This unique expression profile of ICAM-1 throughout solid tumor microenvironment makes ICAM-1 an intriguing molecular target, which holds great potential as an important diagnostic and therapeutic tool. Herein, we have engineered the ligand binding domain, or the inserted (I) domain of a leukocyte integrin, to exhibit a wide range of monovalent affinities to the natural ligand, ICAM-1. Using the resulting I domain variants, we have created drug and gene delivery nanoparticles, as well as targeted immunotherapeutics that have the ability to bind and migrate to inflammatory sites prevalent in tumors and the associated microenvironment. Through the delivery of diagnostic agents, chemotherapeutics, and immunotherapeutics, the following chapters demonstrate that the affinity enhancements achieved by directed evolution bring the affinity of I domains into the range optimal for numerous applications.

  20. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.

    Science.gov (United States)

    Melissis, S; Labrou, N E; Clonis, Y D

    2006-07-28

    The commercial availability of DNA polymerases has revolutionized molecular biotechnology and certain sectors of the bio-industry. Therefore, the development of affinity adsorbents for purification of DNA polymerases is of academic interest and practical importance. In the present study we describe the design, synthesis and evaluation of a combinatorial library of novel affinity ligands for the purification of DNA polymerases (Pols). Pyrococcus furiosus DNA polymerase (Pfu Pol) was employed as a proof-of-principle example. Affinity ligand design was based on mimicking the natural interactions between deoxynucleoside-triphosphates (dNTPs) and the B-motif, a conserved structural moiety found in Pol-I and Pol-II family of enzymes. Solid-phase 'structure-guided' combinatorial chemistry was used to construct a library of 26 variants of the B-motif-binding 'lead' ligand X-Trz-Y (X is a purine derivative and Y is an aliphatic/aromatic sulphonate or phosphonate derivative) using 1,3,5-triazine (Trz) as the scaffold for assembly. The 'lead' ligand showed complementarity against a Lys and a Tyr residue of the polymerase B-motif. The ligand library was screened for its ability to bind and purify Pfu Pol from Escherichia coli extract. One immobilized ligand (oABSAd), bearing 9-aminoethyladenine (AEAd) and sulfanilic acid (oABS) linked on the triazine scaffold, displayed the highest purifying ability and binding capacity (0,55 mg Pfu Pol/g wet gel). Adsorption equilibrium studies with this affinity ligand and Pfu Pol determined a dissociation constant (K(D)) of 83 nM for the respective complex. The oABSAd affinity adsorbent was exploited in the development of a facile Pfu Pol purification protocol, affording homogeneous enzyme (>99% purity) in a single chromatography step. Quality control tests showed that Pfu Pol purified on the B-motif-complementing ligand is free of nucleic acids and contaminating nuclease activities, therefore, suitable for experimental use.

  1. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    Science.gov (United States)

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  2. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  3. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes

    KAUST Repository

    Romeo, Giuseppe F.

    2011-07-01

    A number of new 4-phenylpiperidine-2,6-diones bearing at the 1-position an ω-[4-(substituted phenyl)piperazin-1-yl]alkyl moiety were designed and synthesized as ligands for the α1-adrenergic receptor (α1-AR) subtypes. Some synthesized compounds, tested in binding assays for the human cloned α1A-, α1B-, and α1D-AR subtypes, displayed affinities in the nanomolar range. Highest affinity values were found in derivatives having a butyl connecting chain between the 4-phenylpiperidine-2,6-dione and the phenylpiperazinyl moieties. 1-[4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl]-4-phenylpiperidine-2,6- dione (34) showed the best affinity for the α1A-AR (pK i = 8.74) and 10-fold selectivity compared to the other two α1-AR subtypes. Some representative compounds were also tested in order to evaluate their effects on the signal transduction pathway coupled to α1-AR subtypes. They all blocked norepinephrine-induced stimulation of inositol phospholipid hydrolysis, thus behaving as antagonists. Binding data were used to refine a previously developed pharmacophoric model for α1D-ARs. The revised model shows a highly predictive power and could be useful for the future design of high affinity α1D-AR ligands. © 2011 Elsevier Masson SAS. All rights reserved.

  4. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes

    KAUST Repository

    Romeo, Giuseppe F.; Materia, Luisa; Modica, Maria Nunziata; Pittal, Valeria; Salerno, Loredana; Siracusa, Maria Angela; Manetti, Fabrizio; Botta, Maurizio; Minneman, Kenneth P.

    2011-01-01

    A number of new 4-phenylpiperidine-2,6-diones bearing at the 1-position an ω-[4-(substituted phenyl)piperazin-1-yl]alkyl moiety were designed and synthesized as ligands for the α1-adrenergic receptor (α1-AR) subtypes. Some synthesized compounds, tested in binding assays for the human cloned α1A-, α1B-, and α1D-AR subtypes, displayed affinities in the nanomolar range. Highest affinity values were found in derivatives having a butyl connecting chain between the 4-phenylpiperidine-2,6-dione and the phenylpiperazinyl moieties. 1-[4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl]-4-phenylpiperidine-2,6- dione (34) showed the best affinity for the α1A-AR (pK i = 8.74) and 10-fold selectivity compared to the other two α1-AR subtypes. Some representative compounds were also tested in order to evaluate their effects on the signal transduction pathway coupled to α1-AR subtypes. They all blocked norepinephrine-induced stimulation of inositol phospholipid hydrolysis, thus behaving as antagonists. Binding data were used to refine a previously developed pharmacophoric model for α1D-ARs. The revised model shows a highly predictive power and could be useful for the future design of high affinity α1D-AR ligands. © 2011 Elsevier Masson SAS. All rights reserved.

  5. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  6. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  7. Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations

    Directory of Open Access Journals (Sweden)

    Franklin C. Wong

    2013-01-01

    Full Text Available Photoaffinity labeling, a useful in vivo biochemical tool, is limited when applied in vivo because of the poor tissue penetration by ultraviolet (UV photons. This study investigates affinity labeling using tissue-penetrating radiation to overcome the tissue attenuation and irreversibly label membrane receptor proteins. Using X-ray (115 kVp at low doses (<50 cGy or Rad, specific and irreversible binding was found on striatal dopamine transporters with 3 photoaffinity ligands for dopamine transporters, to different extents. Upon X-ray exposure (115 kVp, RTI-38 and RTI-78 ligands showed irreversible and specific binding to the dopamine transporter similar to those seen with UV exposure under other conditions. Similarly, gamma rays at higher energy (662 keV also affect irreversible binding of photoreactive ligands to peripheral benzodiazepine receptors (by PK14105 and to the dopamine (D2 membrane receptors (by azidoclebopride, respectively. This study reports that X-ray and gamma rays induced affinity labeling of membrane receptors in a manner similar to UV with photoreactive ligands of the dopamine transporter, D2 dopamine receptor (D2R, and peripheral benzodiazepine receptor (PBDZR. It may provide specific noninvasive irreversible block or stimulation of a receptor using tissue-penetrating radiation targeting selected anatomic sites.

  8. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.

    Directory of Open Access Journals (Sweden)

    Justina C Wolters

    2010-04-01

    Full Text Available The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC was characterized.The binding of glycine betaine to purified OpuA and OpuAC (K(D = 4-6 microM did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A and closed-liganded (2.3 A conformation. The binding pocket is formed by three tryptophans (Trp-prism coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher.Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.

  9. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. (-)PPAP: a new and selective ligand for sigma binding sites.

    Science.gov (United States)

    Glennon, R A; Battaglia, G; Smith, J D

    1990-11-01

    Most agents employed for the investigation of sigma (sigma) binding sites display relatively low affinity for these sites, bind both at sigma sites and at either phencyclidine (PCP) sites or dopamine receptors with similar affinity, and/or produce some dopaminergic activity in vivo. We describe a new agent, (-)PPAP or R(-)-N-(3-phenyl-n-propyl)-1-phenyl-2-aminopropane hydrochloride, that binds with high affinity and selectivity at sigma (IC50 = 24 nM) versus either PCP sites (IC50 greater than 75,000 nM) or D1 and D2 dopamine receptors (IC50 greater than 5,000 nM). The sigma affinity of this agent is comparable to that of the standard ligands (+)-3-PPP and DTG. Furthermore, although (-)PPAP is structurally related to amphetamine, it neither produces nor antagonizes amphetamine-like stimulus effect in rats trained to discriminate 1 mg/kg of S(+)amphetamine from saline.

  11. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.

  12. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Bultinck, Patrick; Kemmink, Johan; Hilbers, Hans W; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    A general approach in drug design is making ligands more rigid in order to avoid loss in conformational entropy (deltaS(conf)) upon receptor binding. We hypothesized that in the high affinity binding of pYEEI peptide ligands to the p56(lck) SH2 domain this loss in deltaS(conf) might be diminished

  13. High-throughput fragment screening by affinity LC-MS.

    Science.gov (United States)

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2013-02-01

    Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in 3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant (K (D)) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.

  14. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  15. In vivo evaluation of [11C]SA4503 as a PET ligand for mapping CNS sigma1 receptors

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Ishiwata, Kiichi; Tajima, Hisashi; Ishii, Shin-Ichi; Matsuno, Kiyoshi; Homma, Yoshio; Senda, Michio

    2000-01-01

    The potential of the 11 C-labeled selective sigma 1 receptor ligand 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine ([ 11 C]SA4503) was evaluated in vivo as a positron emission tomography (PET) ligand for mapping sigma 1 receptors in rats. SA4503 is known to have a high affinity (IC 50 17.4 nM) and a higher selectivity (sigma 1 /sigma 2 =103) for the sigma 1 receptor. A high and increasing brain uptake of [ 11 C]SA4503 was found. Pre-, co- and postinjection of cold SA4503 significantly decreased uptake of [ 11 C]SA4503 in the brain, spleen, heart, lung, and kidney in which sigma receptors are present as well as in the skeletal muscle. In the blocking study with one of four sigma receptor ligands including haloperidol, (+)-pentazocine, SA4503, and (-)-pentazocine (in the order of their affinity for sigma 1 receptor subtype), SA4503 and haloperidol significantly reduced the brain uptake of [ 11 C]SA4503 to approximately 30% of the control, but the other two benzomorphans did not. A high specific uptake of [ 11 C]SA4503 by the brain was also confirmed by ex vivo autoradiography (ARG) and PET. Ex vivo ARG showed a higher uptake in the vestibular nucleus, temporal cortex, cingulate cortex, inferior colliculus, thalamus, and frontal cortex, and a moderate uptake in the parietal cortex and caudate putamen. Peripherally, the blocking effects of the four ligands depended on their affinity for sigma 1 receptors. No 11 C-labeled metabolite was detected in the brain 30 min postinjection, whereas approximately 20% of the radioactivity was found as 11 C-labeled metabolites in plasma. These results have demonstrated that the 11 C-labeled sigma 1 receptor ligand [ 11 C]SA4503 has a potential for mapping sigma 1 receptors in the central nervous system and peripheral organs

  16. Rhodamine-labeled 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane analogues as high-affinity fluorescent probes for the dopamine transporter

    DEFF Research Database (Denmark)

    Cha, Joo Hwan; Zou, Mu-Fa; Adkins, Erika M

    2005-01-01

    linker. The resulting 2-substituted (5) and N-substituted (9) rhodamine-labeled ligands provided the highest DAT binding affinities expressed in COS-7 cells (Ki= 27 and 18 nM, respectively) in the series. Visualization of the DAT with 5 and 9 was demonstrated by confocal fluorescence laser scanning...

  17. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  18. Rational Ligand Design for U(VI) and Pu(IV)

    International Nuclear Information System (INIS)

    Szigethy, Geza

    2009-01-01

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO 2 2+ ). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation, these

  19. Rational Ligand Design for U(VI) and Pu(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Szigethy, Geza [Univ. of California, Berkeley, CA (United States)

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative

  20. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    Science.gov (United States)

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  1. Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Svensson, Birte

    2017-01-01

    Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate binding modules (CBMs). In recent years, carbohy...

  2. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  3. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    О. V. Sviatenko

    2014-04-01

    Full Text Available Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.

  4. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    Weinreich, R.; Argentini, M.; Guenther, I.; Koziorowski, J.; Larsson, B.; Nievergelt-Egido, M.C.; Salt, C.; Wyer, L.; Dos Santos, D.F.; Hansen, H.J.

    1997-01-01

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124 I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76 Br-, 123 I-, and 221 At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  5. PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS OF AFFINITY CHROMATOGRAPHY: RECENT TRENDS AND DEVELOPMENTS

    Science.gov (United States)

    Hage, David S.; Anguizola, Jeanethe A.; Bi, Cong; Li, Rong; Matsuda, Ryan; Papastavros, Efthimia; Pfaunmiller, Erika; Vargas, John; Zheng, Xiwei

    2012-01-01

    Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically-related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered. PMID:22305083

  6. Synthesis of a Hoechst 32258 Analogue Amino Acid Building Block for Direct Incorporation of a Fluorescent High-Affinity DNA Binding Motif into Peptides

    DEFF Research Database (Denmark)

    Harrit, Niels; Behrens, Carsten; Nielsen, P. E.

    2001-01-01

    The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...

  7. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    Science.gov (United States)

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Proadifen-sensitive high affinity binding of 3H-alaproclate to liver membranes

    International Nuclear Information System (INIS)

    Ross, S.B.

    1987-01-01

    3 H-alaproclate, a selective 5 h ydroxytryptamine uptake inhibitor, was found to bind to microsomal membranes from the rat liver with high affinity (K D -=3 nM) and large capacity (B max about 2 nmol/g liver). This binding was stereoselective since S-( - )-alaproclate was 30 times more potent than the R-( + )-enantiomer to displace the 3 H-labelled racemate. Proadifen (SKF 525A), an inhibitor of cytochrome P-450, displaced the 3 H-alaproclate binding with the same, high affinity (K i =3 nM) as alaproclate itself. Repeated treatment with phenobarbital sodium (5x75 mg/kg intraperitoneally) increased the number of alaproclate binding sites 7-8 times without changing the affinity. However, most of the phenobarbital induced 3 H-alaproclate binding was not displaceable by proadifen, showing the presence of at least two different high affinity binding sites. The possible involvement of cytochrome P-450 in the alaproclate binding is discussed. (author)

  9. Structure of Greyhound hemoglobin: origin of high oxygen affinity.

    Science.gov (United States)

    Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F

    2011-05-01

    This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.

  10. Haemoglobin Pierre-Benite--a high affinity variant associated with relative polycythaemia.

    Science.gov (United States)

    Beard, M E; Potter, H C; Spearing, R L; Brennan, S O

    2001-12-01

    This is the second reported example of Hb Pierre--Benite (beta90 Glu-->Asp). This mutation is associated with increased oxygen affinity and polycythaemia. No instability was found and there was no charge shift detected by cellulose acetate electrophoresis at pH 8.3. The mutation was however, clearly indicated by electrospray ionization mass spectrometry (ESI MS), which showed an abnormal beta chain with a 14 Da decrease in mass. Blood volume studies documented a relative rather than a true polycythaemia and this finding has been reported in at least two other high affinity haemoglobin variants--Hb Heathrow and Hb Rahere. This finding led to delay in diagnosis because high oxygen affinity variants are conventionally considered to cause a true polycythaemia.

  11. High affinity binding of [3H]cocaine to rat liver microsomes

    International Nuclear Information System (INIS)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    ] 3 H]cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in [ 3 H]cocaine binding. On the other hand, chronic administration of cocaine reduced [ 3 H]cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of [ 3 H]cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced [ 3 H]cocaine binding to liver with a different rank order of potency than their displacement of [ 3 H]cocaine binding to striatum. This high affinity [ 3 H]cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  12. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  13. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  14. Screening for Natural Inhibitors of Topoisomerases I from Rhamnus davurica by Affinity Ultrafiltration and High-Performance Liquid Chromatography–Mass Spectrometry

    Science.gov (United States)

    Chen, Guilin; Guo, Mingquan

    2017-01-01

    Topoisomerase I (Topo I) catalyzes topological interconversion of duplex DNA during DNA replication and transcription, and has been deemed as important antineoplastic targets. In this study, the fraction R.d-60 from ethyl acetate extracts of Rhamnus davurica showed higher inhibitory rates against SGC-7901 and HT-29 compared with the R.d-30 fraction in vitro. However, the specific active components of R.d-60 fraction remain elusive. To this end, a method based on bio-affinity ultrafiltration and high performance liquid chromatography/electrospray mass spectrometry (HPLC- ESI-MS/MS) was developed to rapidly screen and identify the Topo I inhibitors in this fraction. The enrichment factors (EFs) were calculated to evaluate the binding affinities between the bioactive constituents and Topo I. As a result, eight ligands were identified and six of which with higher EFs showed more potential antitumor activity. Furthermore, antiproliferative assays in vitro (IC50 values) with two representative candidates (apigenin, quercetin) against SGC-7901, HT-29 and Hep G2 cells were conducted and further validated. Finally, the structure-activity relationships revealed that flavones contain a C2-C3 double bond of C ring exhibited higher bio-affinities to Topo I than those without it. This integrated method combining Topo I ultrafiltration with HPLC-MS/MS proved to be very efficient in rapid screening and identification of potential Topo I inhibitors from the complex extracts of medicinal plants, and could be further explored as a valuable high-throughput screening platform in the early drug discovery stage. PMID:28919906

  15. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Biotinylated N-Acetyllactosamine- and N,N-Diacetyllactosamine-Based Oligosaccharides as Novel Ligands for Human Galectin-3

    Directory of Open Access Journals (Sweden)

    Sophia Böcker

    2017-04-01

    Full Text Available Galectin inhibitor design is an emerging research field due to the involvement of galectins in cancer. Galectin-3, in particular, plays an important role in tumor progression. To generate inhibitors, modifications of the glycan structure can be introduced. Conjugation of hydrophobic compounds to saccharides has proven to be promising as increased binding of galectin-3 can be observed. In the present study, we report on neo-glycans carrying hydrophobic biotin as novel ligands for human galectin-3. We modified N-acetyllactosamine- and N,N-diacetyllactosamine-based tetrasaccharides at the C6-position of the terminal saccharide unit using selective enzymatic oxidation and subsequent chemical conjugation of biotinamidohexanoic acid hydrazide. These neo-glycans were much better bound by galectin-3 than the unmodified counterparts. High selectivity for galectin-3 over galectin-1 was also proven. We generated multivalent neo-glycoproteins by conjugation of neo-glycans to bovine serum albumin showing high affinity for galectin-3. Compared to non-biotinylated neo-glycoproteins, we achieved high binding levels of galectin-3 with a lesser amount of conjugated neo-glycans. Multivalent ligand presentation of neo-glycoproteins significantly increased the inhibitory potency towards galectin-3 binding to asialofetuin when compared to free monovalent glycans. Our findings show the positive impact of 6-biotinylation of tetrasaccharides on galectin-3 binding, which broadens the recent design approaches for producing high-affinity ligands.

  17. Cartilage Acidic Protein 2 a hyperthermostable, high affinity calcium-binding protein.

    Science.gov (United States)

    Anjos, Liliana; Gomes, Ana S; Melo, Eduardo P; Canário, Adelino V; Power, Deborah M

    2013-03-01

    Cartilage Acidic Protein 2 (CRTAC2) is a novel protein present from prokaryotes to vertebrates with abundant expression in the teleost fish pituitary gland and an isoform of CRTAC1, a chondrocyte marker in humans. The two proteins are non-integrins containing N-terminal integrin-like Ca(2+)-binding motifs and their structure and function remain to be assigned. Structural studies of recombinant sea bream (sb)CRTAC2 revealed it is composed of 8.8% α-helix, 33.4% β-sheet and 57.8% unordered protein. sbCRTAC2 bound Ca(2+) with high affinity (K(d)=1.46nM) and favourable Gibbs free energy (∆G=-12.4kcal/mol). The stoichiometry for Ca(2+) bound to sbCRTAC2 at saturation indicated six Ca(2+) ligand-binding sites exist per protein molecule. No conformational change in sbCRTAC2 occurred in the presence of Ca(2+). Fluorescence emission revealed that the tertiary structure of the protein is hyperthermostable between 25°C and 95°C and the fully unfolded state is only induced by chemical denaturing (4M GndCl). sbCRTAC has a widespread tissue distribution and is present as high molecular weight aggregates, although strong reducing conditions promote formation of the monomer. sbCRTAC2 promotes epithelial cell outgrowth in vitro suggesting it may share functional homology with mammalian CRTAC1, recently implicated in cell-cell and cell-matrix interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Engineering cofactor and ligand binding in an artificial neuroglobin

    Science.gov (United States)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  19. Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels.

    Science.gov (United States)

    Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L

    2013-03-05

    AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine, and phenylalanine, which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate, and serine. AvGluR1 LBD crystal structures reveal an unusual scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, whereas in the alanine, methionine, and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl(-) lowers affinity for these ligands but not for glutamate or aspartate nor for phenylalanine, which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure-based studies on iGluR-ligand interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 99mTc(CO)3-DTMA bombesin conjugates having high affinity for the GRP receptor

    International Nuclear Information System (INIS)

    Lane, Stephanie R.; Veerendra, Bhadrasetty; Rold, Tammy L.; Sieckman, Gary L.; Hoffman, Timothy J.; Jurisson, Silvia S.; Smith, Charles J.

    2008-01-01

    Introduction: Targeted diagnosis of specific human cancer types continues to be of significant interest in nuclear medicine. 99m Tc is ideally suited as a diagnostic radiometal for in vivo tumor targeting due to its ideal physical characteristics and diverse labeling chemistries in numerous oxidation states. Methods: In this study, we report a synthetic approach toward design of a new tridentate amine ligand for the organometallic aqua-ion [ 99m Tc(H 2 O) 3 (CO) 3 ] + . The new chelating ligand framework, 2-(N,N'-Bis(tert-butoxycarbonyl)diethylenetriamine) acetic acid (DTMA), was synthesized from a diethylenetriamine precursor and fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy ( 1 H and 13 C). DTMA was conjugated to H 2 N-(X)-BBN(7-14)NH 2 , where X=an amino acid or aliphatic pharmacokinetic modifier and BBN=bombesin peptide, by means of solid phase peptide synthesis. DTMA-(X)-BBN(7-14)NH 2 conjugates were purified by reversed-phase high-performance chromatography and characterized by electrospray-ionization mass spectrometry. Results: The new conjugates were radiolabeled with [ 99m Tc(H 2 O) 3 (CO) 3 ] + produced via Isolink radiolabeling kits to produce [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ]. Radiolabeled conjugates were purified by reversed-phase high-performance chromatography. Effective receptor binding behavior was evaluated in vitro and in vivo. Conclusions: [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ] conjugates displayed very high affinity for the gastrin releasing peptide receptor in vitro and in vivo. Therefore, these conjugates hold some propensity to be investigated as molecular imaging agents that specifically target human cancers uniquely expressing the gastrin releasing peptide receptor subtypes

  1. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  2. Affinity resins as new tools for identifying target proteins of ascorbic acid.

    Science.gov (United States)

    Iwaoka, Yuji; Nishino, Kohei; Ishikawa, Takahiro; Ito, Hideyuki; Sawa, Yoshihiro; Tai, Akihiro

    2018-02-12

    l-Ascorbic acid (AA) has diverse physiological functions, but little is known about the functional mechanisms of AA. In this study, we synthesized two types of affinity resin on which AA is immobilized in a stable form to identify new AA-targeted proteins, which can provide important clues for elucidating unknown functional mechanisms of AA. To our knowledge, an affinity resin on which AA as a ligand is immobilized has not been prepared, because AA is very unstable and rapidly degraded in an aqueous solution. By using the affinity resins, cytochrome c (cyt c) was identified as an AA-targeted protein, and we showed that oxidized cyt c exhibits specific affinity for AA. These results suggest that two kinds of AA-affinity resin can be powerful tools to identify new target proteins of AA.

  3. Synthesis of aryl-substituted 5-[18F]fluoroalkylbenzamides: High affinity ligands for dopamine D-2 studies

    International Nuclear Information System (INIS)

    Mathis, C.A.; Bishop, J.E.; Gerdes, J.M.; Faggin, B.; Mailman, R.

    1990-01-01

    Recent studies of the structure-activity relationship of benzamides have shown that the 2,3-dimethoxy substitution pattern of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2,3-dimethoxy-5-iodobenzamide (PDB) resulted in a potent D-2 antagonist. Based upon these results and the concept that the potency of receptor ligands can be preserved when aromatic halogen substituents are replaced by fluoroalkyl functional groups, the authors synthesized a series of aryl-substituted fluoroalkyl PDBs and salicylamides. Synthetic pathways and an in vivo study in rats are outlined

  4. Titanium dioxide as chemo-affinity chromatographic sorbent of biomolecular compounds - Applications in acidic modification-specific proteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Larsen, Martin R

    2011-01-01

    biomolecules due to its unique ion and ligand exchange properties and high stability towards pH and temperature. Recently, titanium dioxide chromatography was introduced in proteomics as a highly specific method for enriching phosphorylated peptides - a method, which has been widely adapted by the field...... matrices for further characterization is affinity chromatography, which relies on the specific interaction between an analyte in solution and a solid adsorbent. Titanium dioxide-based affinity chromatography has proven to be a versatile tool in enrichment of various compounds such as phosphorylated....... The development of TiO(2)-based chromatographic strategies for separation of various biomolecules from its introduction for small molecules more than 20years ago until recent proteomics applications today will be reviewed here....

  5. Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.

    Science.gov (United States)

    Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G

    1998-04-10

    The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.

  6. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  7. Specificity and affinity motifs for Grb2 SH2-ligand interactions

    NARCIS (Netherlands)

    Kessels, Helmut W. H. G.; Ward, Alister C.; Schumacher, Ton N. M.

    2002-01-01

    Protein-protein interactions are often mediated by the recognition of short continuous amino acid stretches on target proteins by specific binding domains. Affinity-based selection strategies have successfully been used to define recognition motifs for a large series of such protein domains.

  8. Proadifen-sensitive high affinity binding of /sup 3/H-alaproclate to liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B.

    1987-01-01

    /sup 3/H-alaproclate, a selective 5/sub h/ydroxytryptamine uptake inhibitor, was found to bind to microsomal membranes from the rat liver with high affinity (K/sub D/-=3 nM) and large capacity (B/sub max/ about 2 nmol/g liver). This binding was stereoselective since S-( - )-alaproclate was 30 times more potent than the R-( + )-enantiomer to displace the /sup 3/H-labelled racemate. Proadifen (SKF 525A), an inhibitor of cytochrome P-450, displaced the /sup 3/H-alaproclate binding with the same, high affinity (K/sub i/=3 nM) as alaproclate itself. Repeated treatment with phenobarbital sodium (5x75 mg/kg intraperitoneally) increased the number of alaproclate binding sites 7-8 times without changing the affinity. However, most of the phenobarbital induced /sup 3/H-alaproclate binding was not displaceable by proadifen, showing the presence of at least two different high affinity binding sites. The possible involvement of cytochrome P-450 in the alaproclate binding is discussed.

  9. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences.

    Directory of Open Access Journals (Sweden)

    Fabian König

    Full Text Available The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv of S9.6 showed high affinity (0.6 nM for DNA-RNA and also a high affinity (2.7 nM for RNA-RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.

  10. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that [3H]dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    International Nuclear Information System (INIS)

    Leff, S.E.; Creese, I.

    1985-01-01

    The interactions of dopaminergic agonists and antagonists with 3 H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of [ 3 H]dopamine and [ 3 H]apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/[ 3 H]dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific [ 3 H]dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and [ 3 H]flupentixol-binding activities. The affinities of agonists to inhibit D3 specific [ 3 H]dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/[ 3 H]flupentixol competition curves. Both D3 specific [ 3 H] dopamine binding and the high affinity agonist-binding component of dopamine/[ 3 H]flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor

  11. The role of CH/π interactions in the high affinity binding of streptavidin and biotin.

    Science.gov (United States)

    Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi

    2017-08-01

    The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Identification of high- and low-affinity NGF receptors during development of the chicken central nervous system

    International Nuclear Information System (INIS)

    Escandon, E.; Chao, M.V.

    1990-01-01

    In order to study regulation of the nerve growth factor (NGF) receptor during embryogenesis in chick brain, we have used affinity crosslinking of tissues with 125 I-NGF. NGF interacts with high- and low-affinity receptors; high-affinity receptors are required for the majority of NGF's actions. Most measurements of receptor levels do not distinguish between high- and low-affinity forms of the receptor. We have used the lipophilic crosslinking agent HSAB to identify the high-affinity, functional receptor during development of the chicken central nervous system. A peak of expression during Embryonic Days 5-10 was detected in all regions of the chicken central nervous system, but, shortly after birth, only the cerebellar region displays significant levels of NGF receptor protein. The time course of expression confirms the dramatic regulation of the NGF receptor gene during defined embryonic periods. The detection of high-affinity NGF receptors in brain and neural retina provides strong evidence that NGF is involved in essential ontogenetic events in the development of the chicken central nervous system

  13. High affinity calmodulin target sequence in the signalling molecule PI 3-kinase

    DEFF Research Database (Denmark)

    Fischer, R; Julsgart, J; Berchtold, M W

    1998-01-01

    M-binding peptide derived from the p110gamma isoform interacts with CaM in a calcium-dependent way. Using gel shift analysis and fluorescence spectrophotometry we discovered that the peptide forms a high affinity complex with CaM. Titration experiments using dansylated CaM gave an affinity constant of 5 n...

  14. sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures.

    Science.gov (United States)

    Shimazu, S; Katsuki, H; Takenaka, C; Tomita, M; Kume, T; Kaneko, S; Akaike, A

    2000-01-28

    We investigated the potential neuroprotective effects of several sigma receptor ligands in organotypic midbrain slice cultures as an excitotoxicity model system. When challenged with 100-microM N-methyl-D-aspartate (NMDA) for 24 h, dopaminergic neurons in midbrain slice cultures degenerated, and this was prevented by (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5, 10-imine (MK-801; 1-10 microM). Concomitant application of ifenprodil (1-10 microM) or haloperidol (1-10 microM), both of which are high-affinity sigma receptor ligands, significantly attenuated the neurotoxicity of 100 microM NMDA. The sigma(1) receptor-selective ligand (+)-N-allylnormetazocine ((+)-SKF 10047; 1-10 microM) was also effective in attenuating the toxicity of NMDA. The effect of R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane hydrochloride ((-)-PPAP), a sigma receptor ligand with negligible affinity for the phencyclidine site of NMDA receptors, was also examined. (-)-PPAP (3-100 microM) caused a concentration-dependent reduction of NMDA cytotoxicity, with significant protection at concentrations of 30 and 100 microM. In contrast, (+)-SKF 10047 (10 microM) and (-)-PPAP (100 microM) showed no protective effects against cell death induced by the Ca(2+) ionophore ionomycin (1-3 microM). These results indicate that sigma receptor ligands attenuate the cytotoxic effects of NMDA on midbrain dopaminergic neurons, possibly via inhibition of NMDA receptor functions.

  15. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  16. Structural characterization of natural nickel and copper binding ligands along the US GEOTRACES Eastern Pacific Zonal transect

    Directory of Open Access Journals (Sweden)

    Rene M Boiteau

    2016-11-01

    Full Text Available Organic ligands form strong complexes with many trace elements in seawater. Various metals can compete for the same ligand chelation sites, and the final speciation of bound metals is determined by relative binding affinities, concentrations of binding sites, uncomplexed metal concentrations, and association/dissociation kinetics. Different ligands have a wide range of metal affinities and specificities. However, the chemical composition of these ligands in the marine environment remains poorly constrained, which has hindered progress in modeling marine metal speciation. In this study, we detected and characterized natural ligands that bind copper (Cu and nickel (Ni in the eastern South Pacific Ocean with liquid chromatography tandem inductively coupled plasma mass spectrometry (LC-ICPMS, and high resolution electrospray ionization mass spectrometry (ESIMS. Dissolved Cu, Ni, and ligand concentrations were highest near the coast. Chromatographically unresolved polar compounds dominated ligands isolated near the coast by solid phase extraction. Offshore, metal and ligand concentrations decreased, but several new ligands appeared. One major ligand was detected that bound both Cu2+ and Ni2+. Based on accurate mass and fragmentation measurements, this compound has a molecular formula of C20H21N4O8S2 + M+ (M = metal isotope and contains several azole-like metal binding groups. Additional lipophilic Ni complexes were also present only in oligotrophic waters, with masses of 649, 698, and 712 m/z (corresponding to the 58Ni metal complex. Molecular formulae of C32H54N3O6S2Ni+ and C33H56N3O6S2Ni+ were determined for two of these compounds. Addition of Cu and Ni to the samples also revealed the presence of additional compounds that can bind both Ni and Cu. Although these specific compounds represent a small fraction of the total dissolved Cu and Ni pool, they highlight the compositional diversity and spatial heterogeneity of marine Ni and Cu ligands, as

  17. High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design.

    Directory of Open Access Journals (Sweden)

    Antonella Paladino

    2017-01-01

    Full Text Available Understanding how binding events modulate functional motions of multidomain proteins is a major issue in chemical biology. We address several aspects of this problem by analyzing the differential dynamics of αvβ3 integrin bound to wild type (wtFN10, agonist or high affinity (hFN10, antagonist mutants of fibronectin. We compare the dynamics of complexes from large-scale domain motions to inter-residue coordinated fluctuations to characterize the distinctive traits of conformational evolution and shed light on the determinants of differential αvβ3 activation induced by different FN sequences. We propose an allosteric model for ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand, while different residues on the two FN10's act as the drivers that reorganize relevant interaction networks, guiding the shift towards inactive (hFN10-bound or active states (wtFN10-bound. We discuss the implications of results for the design of integrin inhibitors.

  18. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  19. Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: A new tool for plant extract ligand screening

    Science.gov (United States)

    Vanzolini, Kenia Lourenço; Jiang, Zhengjin; Zhang, Xiaoqi; Vieira, Lucas Campos Curcino; Corrêa, Arlene Gonçalvez; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Moaddel, Ruin

    2013-01-01

    The use of immobilized capillary enzyme reactors (ICERs) and enzymes coated to magnetic beads ((NT or CT)-MB) for ligand screening has been adopted as a new technique of high throughput screening (HTS). In this work the selected target was the enzyme acetylcholinesterase (AChE), which acts on the central nervous system and is a validated target for the treatment of Alzheimer’s disease, as well as for new insecticides. A new approach for the screening of plant extracts was developed based on the ligand fishing experiments and zonal chromatography. For that, the magnetic beads were used for the ligand fishing experiments and capillary bioreactors for the activity assays. The latter was employed also under non-linear conditions to determine the affinity constants of known ligands, for the first time, as well as for the active fished ligand. PMID:24148457

  20. N1'-fluoroethyl-naltrindole (BU97001) and N1'-fluoroethyl-(14-formylamino)-naltrindole (BU97018) potential δ-opioid receptor PET ligands

    International Nuclear Information System (INIS)

    Tyacke, Robin J.; Robinson, Emma S.J.; Schnabel, Rebecca; Lewis, John W.; Husbands, Stephen M.; Nutt, David J.; Hudson, Alan L.

    2002-01-01

    The properties of two prospective positron emission tomography (PET) ligands for the δ-opioid receptor, N1'-fluoroethyl-naltrindole (BU97001) and N1'-fluoroethyl-(14-formylamino)-naltrindole (BU97018) were investigated. Both were antagonists in the mouse vas deferens, and showed high affinity and selectivity, 1.81 nM and 3.09 nM respectively. [ 3 H]BU97001 binding to rat whole brain was also of high affinity, K D of 0.42 nM of and B MAX of 59.95 fmol mg of protein -1 . In autoradiographic studies, it was found to bind to brain areas previously shown to be associated with the δ-opioid receptor and good correlations were found to exist with naltrindole and DPDPE. BU97018 and especially BU97001 appear to show good potential as δ-opioid receptor PET ligands with the incorporation of 18 F

  1. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces

    NARCIS (Netherlands)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-01-01

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form

  2. Ligand deconstruction: Why some fragment binding positions are conserved and others are not

    Science.gov (United States)

    Kozakov, Dima; Hall, David R.; Jehle, Stefan; Luo, Lingqi; Ochiana, Stefan O.; Jones, Elizabeth V.; Pollastri, Michael; Allen, Karen N.; Whitty, Adrian; Vajda, Sandor

    2015-01-01

    Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots—regions of the protein where interactions with a ligand contribute substantial binding free energy—the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand. PMID:25918377

  3. Ligand deconstruction: Why some fragment binding positions are conserved and others are not.

    Science.gov (United States)

    Kozakov, Dima; Hall, David R; Jehle, Stefan; Jehle, Sefan; Luo, Lingqi; Ochiana, Stefan O; Jones, Elizabeth V; Pollastri, Michael; Allen, Karen N; Whitty, Adrian; Vajda, Sandor

    2015-05-19

    Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand.

  4. Novel peptide ligand with high binding capacity for antibody purification

    DEFF Research Database (Denmark)

    Lund, L. N.; Gustavsson, P. E.; Michael, R.

    2012-01-01

    Small synthetic ligands for protein purification have become increasingly interesting with the growing need for cheap chromatographic materials for protein purification and especially for the purification of monoclonal antibodies (mAbs). Today, Protein A-based chromatographic resins are the most...... commonly used capture step in mAb down stream processing; however, the use of Protein A chromatography is less attractive due to toxic ligand leakage as well as high cost. Whether used as an alternative to the Protein A chromatographic media or as a subsequent polishing step, small synthetic peptide...... ligands have an advantage over biological ligands; they are cheaper to produce, ligand leakage by enzymatic degradation is either eliminated or significantly reduced, and they can in general better withstand cleaning in place (CIP) conditions such as 0.1 M NaOH. Here, we present a novel synthetic peptide...

  5. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals

    International Nuclear Information System (INIS)

    Wild, Damian; Schmitt, Joerg S.; Ginj, Mihaela; Maecke, Helmut R.; Bernard, Bert F.; Krenning, Eric; Jong, Marion de; Wenger, Sandra; Reubi, Jean-Claude

    2003-01-01

    Earlier studies have shown that modification of the octapeptide octreotide in positions 3 and 8 may result in compounds with increased somatostatin receptor affinity that, if radiolabelled, display improved uptake in somatostatin receptor-positive tumours. The aim of a recent research study in our laboratory was to employ the parallel peptide synthesis approach by further exchanging the amino acid in position 3 of octreotide and coupling the macrocyclic chelator DOTA(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to these peptides for labelling with radiometals like gallium-67 or -68, indium-111, yttrium-90 and lutetium-177. The purpose was to find radiopeptides with an improved somatostatin receptor binding profile in order to extend the spectrum of targeted tumours. A first peptide, [ 111 In, 90 Y-DOTA]-1-Nal 3 -octreotide ( 111 In, 90 Y-DOTA-NOC), was isolated which showed an improved profile. In III -DOTA-NOC exhibited the following IC 50 values (nM) when studied in competition with [ 125 I][Leu 8 , d-Trp 22 , Tyr 25 ]somatostatin-28 (values for Y III -DOTA-NOC are shown in parentheses): sstr2, 2.9±0.1 (3.3±0.2); sstr3, 8±2 (26±1.9); sstr5, 11.2±3.5 (10.4±1.6). Affinity towards sstr1 and 4 was very low or absent. In III -DOTA-NOC is superior to all somatostatin-based radiopeptides having this particular type of binding profile, including DOTA-lanreotide, and has three to four times higher binding affinity to sstr2 than In III ,Y III -DOTA-Tyr 3 -octreotide (In III ,Y III -DOTA-TOC). In addition, [ 111 In]DOTA-NOC showed a specific and high rate of internalization into AR4-2J rat pancreatic tumour cells which, after 4 h, was about two times higher than that of [ 111 In]DOTA-TOC and three times higher than that of [ 111 In]DOTA-octreotide ([ 111 In]DOTA-OC). The internalized radiopeptides were externalized intact upon 2 h of internalization followed by an acid wash. After 2-3 h of externalization a plateau is reached, indicating a steady

  6. Stable coordination of the inhibitory Ca2+ ion at MIDAS in integrin CD11b/CD18 by an antibody-derived ligand aspartate: Implications for integrin regulation and structure-based drug design

    Science.gov (United States)

    Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin

    2011-01-01

    A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715

  7. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    Science.gov (United States)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  8. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-ht2 receptors

    DEFF Research Database (Denmark)

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine...... about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure...... but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure...

  9. Synthesis and receptor binding studies of novel 4,4-disubstituted arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as a new class of σ1 ligands.

    Science.gov (United States)

    Sadeghzadeh, Masoud; Sheibani, Shahab; Ghandi, Mehdi; Daha, Fariba Johari; Amanlou, Massoud; Arjmand, Mohammad; Hasani Bozcheloie, Abolfazl

    2013-06-01

    This study presents the synthesis and biological evaluation of a new series of arylalkyl/arylalkylsulfonyl piperazine and piperidine-based derivatives as sigma receptor ligands. It was found that a number of halogen substituted sulfonamides display relatively high and low affinities to σ1 and σ2 receptors, respectively. The σ1 affinities and subtype selectivities of four piperidine derivatives were also found to be generally comparable to those of piperazine analogues. Compared to σ1-Rs compounds with n = 0 and 2, those with n = 1 proved to have optimal length of carbon chain by exhibiting higher affinities. Within this series, the 4-benzyl-1-(3-iodobenzylsulfonyl)piperidine sigma ligand was identified with 96-fold σ1/σ2 selectivity ratio (Kiσ1 = 0.96 ± 0.05 nM and Kiσ2 = 91.8 ± 8.1 nM). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    International Nuclear Information System (INIS)

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.

    1988-01-01

    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H 2 O and D 2 O, and affinity cross-linking using 125 I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of 125 I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble 125 I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the 125 I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity

  11. Synthesis and binding studies of Alzheimer ligands on solid support.

    Science.gov (United States)

    Rzepecki, Petra; Geib, Nina; Peifer, Manuel; Biesemeier, Frank; Schrader, Thomas

    2007-05-11

    Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.

  12. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    Science.gov (United States)

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT

  13. Ligand-modulated interactions between charged monolayer-protected Au144 (SR)60 gold nanoparticles in physiological saline

    Science.gov (United States)

    Villarreal, Oscar; Chen, Liao; Whetten, Robert; Yacaman, Miguel

    2015-03-01

    We studied the interactions of functionalized Au144 nanoparticles (NPs) in a near-physiological environment through all-atom molecular dynamics simulations. The AuNPs were coated with a homogeneous selection of 60 thiolates: 11-mercapto-1-undecanesulfonate, 5-mercapto-1-pentanesulfonate, 5-mercapto-1-pentane-amine, 4-mercapto-benzoate or 4-mercapto-benzamide. These ligands were selected to elucidate how the aggregation behavior depends on the ligands' sign of charge, length, and flexibility. Simulating the dynamics of a pair of identical AuNPs in a cell of saline of 150 mM NaCl in addition to 120 Na+/Cl- counter-ions, we computed the aggregation affinities from the potential of mean force as a function of the pair separation. We found that NPs coated with negatively charged, short ligands have the strongest affinities mediated by multiple Na+ counter-ions residing on a plane in-between the pair and forming ``salt bridges'' to both NPs. Positively charged NPs have weaker affinities, as Cl counter-ions form fewer and weaker salt bridges. The longer ligands' large fluctuations disfavor the forming of salt bridges, enable hydrophobic contact between the exposed hydrocarbon chains and interact at greater separations due to the fact that the screening effect is rather incomplete. Supported by the CONACYT, NIH, NSF and TACC.

  14. Development of a high specific activity radioligand, 125I-LSD, and its application to the study of serotonin receptors

    International Nuclear Information System (INIS)

    Kadan, M.J.

    1987-01-01

    125 I-Labeled receptor ligands can be synthesized with specific activities exceeding 2000 Ci/mmol, making them nearly 70-fold more sensitive in receptor site assays than (mono) tritiated ligands. We have synthesized and characterized 125 I-lysergic acid diethylamide ( 125 I-LSD), the first radioiodinated ligand for serotonin receptor studies. The introduction of 125 I at the 2 position of LSD increased both the affinity and selectivity of this compound for serotonin 5-HT 2 receptors in rat cortex. The high specific activity of 125 I-LSD and its high ratio of specific to nonspecific binding make this ligand especially useful for autoradiographic studies of serotonin receptor distribution. We have found that 125 I-LSD binds with high affinity to a class of serotonin receptors in the CNS of the marine mollusk Aplysia californica

  15. General Linker Diversification Approach to Bivalent Ligand Assembly: Generation of an Array of Ligands for the Cation-Independent Mannose 6-Phosphate Receptor.

    Science.gov (United States)

    Fei, Xiang; Zavorka, Megan E; Malik, Guillaume; Connelly, Christopher M; MacDonald, Richard G; Berkowitz, David B

    2017-08-18

    A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.

  16. Determination, at equilibrium, of association constants of labelled or unlabelled ligands by a non-graphical method

    International Nuclear Information System (INIS)

    Goertz, G.; Longchampt, J.; Crepy, O.; Judas, O.; Jayle, M.-F.

    1976-01-01

    Determination, at equilibrium of association constants of labelled or unlabelled ligands by a non-graphical method are described. This work deals with the determination of association constants at equilibrium by a non-graphical method in binding systems containing one specific receptor. Equations have been derived from that originally described by Lea (Biochim. Biophys. Acta, 322, 68-74), the terms of which are obtained from the data of simple displacement curves of a bound radioactive ligand by unlabelled competitors identical or different in nature. By knowing the function relating the variations of the bound ligand (B) to the affinity constant (Ksub(i)) and the quantity (Msub(i)) of competitor for a given system, it is possible to calculate any of these parameters when the two others are measured. Thus, it becomes easy to compare the relative affinities of different receptors for the same ligand or that of one receptor for various labelled or unlabelled ligands. Furthermore, theoretical displacement curves can be drawn and compared to experimental data, only when knowing the affinity constant of a specific binding system in given conditions. These modes of calculation have been tested in a study of interactions between various steroids and a fraction of human serum proteins precipitated by ammonium sulfate (30-45%) and containing the sex hormone-binding globulin. Association constants thus obtained agree well with those reported in the literature and determined by graphical procedures

  17. Whole transcriptome analysis for T cell receptor-affinity and IRF4-regulated clonal expansion of T cells

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2014-12-01

    Full Text Available Clonal population expansion of T cells during an immune response is dependent on the affinity of the T cell receptor (TCR for its antigen [1]. However, there is little understanding of how this process is controlled transcriptionally. We found that the transcription factor IRF4 was induced in a manner dependent on TCR-affinity and was critical for the clonal expansion and maintenance of effector function of antigen-specific CD8+ T cells. We performed a genome-wide expression profiling experiment using RNA sequencing technology (RNA-seq to interrogate global expression changes when IRF4 was deleted in CD8+ T cells activated with either a low or high affinity peptide ligand. This allowed us not only to determine IRF4-dependent transcriptional changes but also to identify transcripts dependent on TCR-affinity [2]. Here we describe in detail the analyses of the RNA-seq data, including quality control, read mapping, quantification, normalization and assessment of differential gene expression. The RNA-seq data can be accessed from Gene Expression Omnibus database (accession number GSE49929.

  18. 125I-BH-8-MeO-N-PAT, a new ligand for studying 5-HT1A receptors in the central nervous system

    International Nuclear Information System (INIS)

    Ponchant, M.; Beaucourt, J.P.; Vanhove, A.

    1988-01-01

    Specific radioactive ligands are needed for studying the pharmacological properties and the regional distribution of the different classes of 5-HT 1 receptors within the central nervous system. We describe here the synthesis and some characteristics of the first iodinated specific ligand of 5-HT 1A receptors. Like its parent compound, the agonist 8-hydroxy-2-(di-n-propylamino)tetralin or 8-OH-DPAT, [ 125 I]-BH-8-MeO-N-PAT, exhibits a high affinity and excellent selectivity for 5-HT 1A sites. Its high specific radioactivity makes this ligand a useful tool for studying 5-HT 1A receptors in membranes and sections of the rat brain [fr

  19. Radiosynthesis and Evaluation of [(11)C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Jensen, Claus H; Hansen, Hanne D; Bay, Tina

    2017-01-01

    understanding of this population of binding sites. With its high specific affinity and monocarboxylate transporter (MCT1) mediated transport across the blood-brain barrier in pharmacological doses, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) seems like a suitable PET radiotracer candidate. Here, we report...... autoradiography on sections of pig brain was performed using [(3)H]HOCPCA. In vivo evaluation of [(11)C]HOCPCA showed no brain uptake, possibly due to a limited uptake of HOCPCA by the MCT1 transporter at tracer doses of [(11)C]HOCPCA....

  20. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2.

    Directory of Open Access Journals (Sweden)

    Juan A Bueren-Calabuig

    2015-06-01

    Full Text Available Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29 peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2.

  1. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Using chemical shift perturbation to characterise ligand binding.

    Science.gov (United States)

    Williamson, Mike P

    2013-08-01

    Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by

  3. Selective induction of high-ouabain-affinity isoform of Na+-K+-ATPase by thyroid hormone

    International Nuclear Information System (INIS)

    Haber, R.S.; Loeb, J.N.

    1988-01-01

    The administration of thyroid hormone is known to result in an induction of the Na + -K + -adenosinetriphosphatase (Na + -K + -ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na + -K + -ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3',5-triiodo-L-thyronine (T 3 ) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na + -K + -ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K I s) for ouabain of ∼10 -7 and 10 -4 M, respectively. Measurement of the specific binding of [ 3 H]ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K d ) of slightly less than 10 -7 M, whose maximal binding capacity was increased by T 3 treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T 3 treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na + -K + -ATPase by ouabain-dependent phosphorylation from [ 32 P]orthophosphate confirmed that T 3 treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na + -K + -ATPase are subject to selective hormonal induction

  4. High Performance Affinity Chromatography of Antithrombin III Based on Monodisperse Poly (glycidyl methacrylate) Beads

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new approach for the separation of antithrombin III with high performance affinity chromatography (HPAC) was described. A novel monodisperse,non-porous,cross-linked poly (glycidyl methacrylate) beads (PGMA) were used as the affinity support. With the water-soluble carbodiimide,heparin was linked covalently to amino-PGMA-beads,which was prepared by amination of PGMA. The adsorbent obtained exhibits high binding activity to antithrombin III (ATIII),good resolution and excellent mechanical properties and can be used under high flow rate.

  5. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    Science.gov (United States)

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

  6. Ligand fishing from Dioscorea nipponica extract using human serum albumin functionalized magnetic nanoparticles.

    Science.gov (United States)

    Qinga, Lin-Sen; Xue, Ying; Zheng, Yi; Xiong, Jing; Liao, Xun; Ding, Li-Sheng; Li, Bo-Gang; Liu, Yi-Ming

    2010-07-09

    Dioscorea nipponica and the preparations made from it have been used for long to prevent and treat coronary heart disease in traditional Chinese medicine. A group of steroidal saponins present in the plant are believed to be the active ingredients. It has been a challenge to study the individual saponins separately due to the similarities in their chemical and physical properties. In this work, human serum albumin (HSA) functionalized magnetic nanoparticles (MNPs) were used to isolate and identify saponin ligands that bind to HSA from D. nipponica extract. Electrospray ionization mass spectrometry (ESI-MS) was used for compound identification and semi-quantification. Three saponins, i.e. dioscin, gracillin, and pseudo-protodioscin showed affinity to HSA-MNPs and thus isolated effectively from the extract. The other two saponins detected in the extract (i.e. protodioscin and 26-O-β-D-glucopyranosyl-3β,20α,26-triol-25(R)-Δ(5,22)-dienofurostan-3-O-α-L-rhamnopyranosyl (1→2)-[α-L-rhamnopyranosyl (1→4)]-β-D-glucopyranoside) exhibited no affinity at all. Among the three saponins fished out, dioscin bound to HSA much stronger than gracillin and pseudo-protodioscin did. The results indicated that affinity interaction between HSA immobilized on MNPs and small molecule compounds were highly dependent on chemical structures and, potentially, medicinal usefulness. The present work demonstrates a facile and effective way to isolate and identify ligands of receptors from medicinal plants.

  7. Quantitative autoradiography of the binding sites for [125I] iodoglyburide, a novel high-affinity ligand for ATP-sensitive potassium channels in rat brain

    International Nuclear Information System (INIS)

    Gehlert, D.R.; Gackenheimer, S.L.; Mais, D.E.; Robertson, D.W.

    1991-01-01

    We have developed a high specific activity ligand for localization of ATP-sensitive potassium channels in the brain. When brain sections were incubated with [ 125 I]iodoglyburide (N-[2-[[[(cyclohexylamino)carbonyl]amino]sulfonyl]ethyl]-5- 125 I-2- methoxybenzamide), the ligand bound to a single site with a KD of 495 pM and a maximum binding site density of 176 fmol/mg of tissue. Glyburide was the most potent inhibitor of specific [ 125 I]iodoglyburide binding to rat forebrain sections whereas iodoglyburide and glipizide were slightly less potent. The binding was also sensitive to ATP which completely inhibited binding at concentrations of 10 mM. Autoradiographic localization of [ 125 I]iodoglyburide binding indicated a broad distribution of the ATP-sensitive potassium channel in the brain. The highest levels of binding were seen in the globus pallidus and ventral pallidum followed by the septohippocampal nucleus, anterior pituitary, the CA2 and CA3 region of the hippocampus, ventral pallidum, the molecular layer of the cerebellum and substantia nigra zona reticulata. The hilus and dorsal subiculum of the hippocampus, molecular layer of the dentate gyrus, cerebral cortex, lateral olfactory tract nucleus, olfactory tubercle and the zona incerta contained relatively high levels of binding. A lower level of binding (approximately 3- to 4-fold) was found throughout the remainder of the brain. These results indicate that the ATP-sensitive potassium channel has a broad presence in the rat brain and that a few select brain regions are enriched in this subtype of neuronal potassium channels

  8. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

    Science.gov (United States)

    Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric

    2016-09-01

    The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

  9. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    International Nuclear Information System (INIS)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-01-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17β to the four rainbow trout ER isoforms with that of three known environmental estrogens 17α-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ERα subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17β, bisphenol A binds less strongly to all four receptors, 17α-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the α subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  10. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.

    Directory of Open Access Journals (Sweden)

    Kate M Peters

    Full Text Available Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q and QacR(E120Q with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.

  11. Novel chalcone-based fluorescent human histamine H3 receptor ligands as pharmacological tools

    Directory of Open Access Journals (Sweden)

    Holger eStark

    2012-03-01

    Full Text Available Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R have been designed, synthesized and characterized. Compounds described are non-imidazole analogues of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like that of the reference antagonist ciproxifan (hH3R pKi value of 7.2. Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be taken to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues.

  12. Involvement of direct inhibition of NMDA receptors in the effects of sigma-receptor ligands on glutamate neurotoxicity in vitro.

    Science.gov (United States)

    Nishikawa, H; Hashino, A; Kume, T; Katsuki, H; Kaneko, S; Akaike, A

    2000-09-15

    This study was performed to examine the roles of the N-methyl-D-aspartate (NMDA) receptor/phencyclidine (PCP) channel complex in the protective effects of sigma-receptor ligands against glutamate neurotoxicity in cultured cortical neurons derived from fetal rats. A 1-h exposure of cultures to glutamate caused a marked loss of viability, as determined by Trypan blue exclusion. This acute neurotoxicity of glutamate was prevented by NMDA receptor antagonists. Expression of sigma(1) receptor mRNA in cortical cultures was confirmed by reverse transcription polymerase chain reaction (RT-PCR). sigma Receptor ligands with affinity for NMDA receptor channels including the PCP site, such as (+)-N-allylnormetazocine ((+)-SKF10,047), haloperidol, and R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane ((-)-PPAP), prevented glutamate neurotoxicity in a concentration-dependent manner. In contrast, other sigma-receptor ligands without affinity for NMDA receptors, such as carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), did not show neuroprotective effects. Putative endogenous sigma receptor ligands such as pregnenolone, progesterone, and dehydroepiandrosterone did not affect glutamate neurotoxicity. The protective effects of (+)-SKF10,047, haloperidol, and (-)-PPAP were not affected by the sigma(1) receptor antagonist rimcazole. These results suggested that a direct interaction with NMDA receptors but not with sigma receptors plays a crucial role in the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

  13. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.

    Science.gov (United States)

    Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M

    2016-09-01

    We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate

  14. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  15. (D-Pen2,4 prime -125I-Phe4,D-Pen5)enkephalin: A selective high affinity radioligand for delta opioid receptors with exceptional specific activity

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.J.; Sharma, S.D.; Toth, G.; Duong, M.T.; Fang, L.; Bogert, C.L.; Weber, S.J.; Hunt, M.; Davis, T.P.; Wamsley, J.K. (Department of Pharmacology, University of Arizona, College of Medicine, Tucson (United States))

    1991-09-01

    (D-Pen2,4{prime}-125I-Phe4,D-Pen5)enkephalin ((125I)DPDPE) is a highly selective radioligand for the delta opioid receptor with a specific activity (2200 Ci/mmol) that is over 50-fold greater than that of tritium-labeled DPDPE analogs. (125I)DPDPE binds to a single site in rat brain membranes with an equilibrium dissociation constant (Kd) value of 421 {plus minus} 67 pM and a receptor density (Bmax) value of 36.4 {plus minus} 2.7 fmol/mg protein. The high affinity of this site for delta opioid receptor ligands and its low affinity for mu or kappa receptor-selective ligands are consistent with its being a delta opioid receptor. The distribution of these sites in rat brain, observed by receptor autoradiography, is also consistent with that of delta opioid receptors. Association and dissociation binding kinetics of 1.0 nM (125I) DPDPE are monophasic at 25 degrees C. The association rate (k + 1 = 5.80 {plus minus} 0.88 {times} 10(7) M-1 min-1) is about 20- and 7-fold greater than that measured for 1.0 nM (3H) DPDPE and 0.8 nM (3H) (D-Pen2,4{prime}-Cl-Phe4, D-Pen5)enkephalin, respectively. The dissociation rate of (125I)DPDPE (0.917 {plus minus} 0.117 {times} 10(-2) min-1) measured at 1.0 nM is about 3-fold faster than is observed for either of the other DPDPE analogs. The rapid binding kinetics of (125I)DPDPE is advantageous because binding equilibrium is achieved with much shorter incubation times than are required for other cyclic enkephalin analogs. This, in addition to its much higher specific activity, makes (125I)DPDPE a valuable new radioligand for studies of delta opioid receptors.

  16. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities.

    Science.gov (United States)

    Lew, Erin D; Oh, Jennifer; Burrola, Patrick G; Lax, Irit; Zagórska, Anna; Través, Paqui G; Schlessinger, Joseph; Lemke, Greg

    2014-09-29

    The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.

  17. Coupling ligand recognition to protein folding in an engineered variant of rabbit ileal lipid binding protein.

    Science.gov (United States)

    Kouvatsos, Nikolaos; Meldrum, Jill K; Searle, Mark S; Thomas, Neil R

    2006-11-28

    We have engineered a variant of the beta-clam shell protein ILBP which lacks the alpha-helical motif that caps the central binding cavity; the mutant protein is sufficiently destabilised that it is unfolded under physiological conditions, however, it unexpectedly binds its natural bile acid substrates with high affinity forming a native-like beta-sheet rich structure and demonstrating strong thermodynamic coupling between ligand binding and protein folding.

  18. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yan

    Full Text Available Protein-nucleic acid (protein-DNA and protein-RNA recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions.

  19. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Characterization of high-affinity (/sup 3/H)ouabain binding in the rat central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Hauger, R.; Luu, H.M.; Meyer, D.K.; Goodwin, F.K.; Paul, S.M.

    1985-06-01

    The characteristics of (/sup 3/H)ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of high-affinity binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. (/sup 3/H)Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific (/sup 3/H)ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for (/sup 3/H)ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal (/sup 3/H)ouabain binding was examined. Kainic acid lesions of the striatum reduced (/sup 3/H)ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the high-affinity (/sup 3/H)ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of (/sup 3/H)ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.

  1. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.

    Science.gov (United States)

    Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R

    2004-01-01

    In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.

  2. An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Shimizu, Kazumi; Yokochi, Masashi; Burke, Terrence R.; Inagaki, Fuyuhiko

    2011-01-01

    A nuclear magnetic resonance-based ligand screening strategy utilizing a paramagnetic lanthanide probe is presented. By fixing a paramagnetic lanthanide ion to a target protein, a pseudo-contact shift (PCS) and a paramagnetic relaxation enhancement (PRE) can be observed for both the target protein and its bound ligand. Based on PRE and PCS information, the bound ligand is then screened from the compound library and the structure of the ligand–protein complex is determined. PRE is an isotropic paramagnetic effect observed within 30 Å from the lanthanide ion, and is utilized for the ligand screening in the present study. PCS is an anisotropic paramagnetic effect providing long-range (∼40 Å) distance and angular information on the observed nuclei relative to the paramagnetic lanthanide ion, and utilized for the structure determination of the ligand–protein complex. Since a two-point anchored lanthanide-binding peptide tag is utilized for fixing the lanthanide ion to the target protein, this screening method can be generally applied to non-metal-binding proteins. The usefulness of this strategy was demonstrated in the case of the growth factor receptor-bound protein 2 (Grb2) Src homology 2 (SH2) domain and its low- and high-affinity ligands.

  3. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  4. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  5. Crystal structure of an affinity-matured prolactin complexed to its dimerized receptor reveals the topology of hormone binding site 2

    DEFF Research Database (Denmark)

    Broutin, Isabelle; Jomain, Jean-Baptiste; Tallet, Estelle

    2010-01-01

    We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely relate...... and prostate cancer.......We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely related...... PRL receptor (PRLR) ligand. This structure allows one to draw up an exhaustive inventory of the residues involved at the PRL.PRLR site 2 interface, consistent with all previously reported site-directed mutagenesis data. We propose, with this description, an interaction model involving three structural...

  6. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  7. Development of radiohalogenated muscarinic ligands for the in vivo imaging of m-AChR by nuclear medicine techniques

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, D.W.; Luo, H.; Knapp, F.F. Jr.

    1994-06-01

    Alterations in the density of acetylcholinergic muscarinic receptors (m-AChR) have been observed in various dementias. This has spurred interest in the development of radiohalogenated ligands which can be used for the non-invasive in vivo detection of m-AChR by nuclear medicine techniques. We have developed a new ligand 1-azabicyclo[2.2.2]oct-3-yl ({alpha}-hydroxy-{alpha}-(1-iodo-1-propen-3-yl)-{alpha}-phenylacetate (IQNP,12) which demonstrates high affinity for the muscarinic receptor. When labeled with radioiodine it has been shown to be selective and specific for m-ACHR. Initial studies on the separation and in vivo evaluation of the various isomers of IQNP have shown that the stereochemistry of the chiral centers and the configuration around the double bond play an important role in m-AChR subtype specificity. In vivo evaluation of these stereoisomers demonstrate that E-(R,R)-IQNP has a high affinity for the M{sub 1} muscarinic subtype while Z-(R,R)-IQNP demonstrate a high affinity for M{sub 1} and M{sub 2} receptor subtypes. These data demonstrate IQNP (12) has potential for use in the non-evasive in vivo detection of m-AChR by single photon emission computed tomography (SPECT). A brominated analogue, ``BrQNP,`` in which the iodine has been replaced by a bromine atom, has also been prepared and was shown to block the in vivo uptake of IQNP in the brain and heart and therefore has potential for positron emission tomographic (PET) studies of m-AChR.

  8. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite

    KAUST Repository

    Zhang, Yuhai

    2018-02-23

    Although ligands of long carbon chains are very crucial to form stable colloidal perovskite nanocrystals (NCs), they create a severe barrier for efficient charge injection or extraction in quantum-dot-based optoelectronics, such as light emitting diode or solar cell. Here, we report a new approach to preparing ligand-free perovskite NCs of CsPbBr, which retained high photoluminescence quantum yield (44%). Such an approach involves a polar solvent (acetonitrile) and two small molecules (ammonium acetate and cesium chloride), which replace the organic ligand and still protect the nanocrystals from dissolution. The successful removal of hydrophobic long ligands was evidenced by Fourier transform infrared spectroscopy, ζ potential analysis, and thermogravimetric analysis. Unlike conventional perovskite NCs that are extremely susceptible to polar solvents, the ligand-free CsPbBr NCs show robust resistance to polar solvents. Our ligand-free procedure opens many possibilities not only from a material hybridization perspective but also in optimizing charge injection and extraction in semiconductor quantum-dot-based optoelectronics applications.

  9. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    International Nuclear Information System (INIS)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-01-01

    Forskolin labelled with [ 3 H] bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg 2+ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no further increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins

  10. Evaluation of TSPO PET Ligands [18F]VUIIS1009A and [18F]VUIIS1009B: Tracers for Cancer Imaging.

    Science.gov (United States)

    Tang, Dewei; Li, Jun; Buck, Jason R; Tantawy, Mohamed Noor; Xia, Yan; Harp, Joel M; Nickels, Michael L; Meiler, Jens; Manning, H Charles

    2017-08-01

    Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [ 18 F]VUIIS1009A ([ 18 F]3A) and [ 18 F]VUIIS1009B ([ 18 F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats. VUIIS1009A/B was synthesized and confirmed by X-ray crystallography. Interactions between TSPO binding pocket and novel ligands were evaluated and compared with contemporary TSPO ligands using 2D 1 H- 15 N heteronuclear single quantum coherence (HSQC) spectroscopy. In vivo biodistribution of [ 18 F]VUIIS1009A and [ 18 F]VUIIS1009B was carried out in healthy mice with and without radioligand displacement. Dynamic PET imaging data were acquired simultaneously with [ 18 F]VUIIS1009A/B injections in glioma-bearing rats, with binding reversibility and specificity evaluated by radioligand displacement. In vivo radiometabolite analysis was performed using radio-TLC, and quantitative analysis of PET data was performed using metabolite-corrected arterial input functions. Imaging was validated with histology and immunohistochemistry. Both VUIIS1009A (3A) and VUIIS1009B (3B) were found to exhibit exceptional binding affinity to TSPO, with observed IC 50 values against PK11195 approximately 500-fold lower than DPA-714. However, HSQC NMR suggested that VUIIS1009A and VUIIS1009B share a common binding pocket within mammalian TSPO (mTSPO) as DPA-714 and to a lesser extent, PK11195. [ 18 F]VUIIS1009A ([ 18 F]3A) and [ 18 F]VUIIS1009B ([ 18 F]3B) exhibited similar biodistribution in healthy mice. In rats bearing C6 gliomas, both [ 18 F]VUIIS1009A and [ 18 F]VUIIS1009B exhibited greater binding potential (k 3 /k 4 )in tumor tissue compared to [ 18 F]DPA-714. Interestingly, [ 18 F]VUIIS1009B exhibited significantly greater tumor uptake (V T ) than [ 18 F]VUIIS1009A, which was attributed primarily to greater plasma

  11. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.

    Science.gov (United States)

    Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing

    2010-05-04

    High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding

  12. The fourth dimension in immunological space: how the struggle for nutrients selects high-affinity lymphocytes.

    Science.gov (United States)

    Wensveen, Felix M; van Gisbergen, Klaas P J M; Eldering, Eric

    2012-09-01

    Lymphocyte activation via the antigen receptor is associated with radical shifts in metabolism and changes in requirements for nutrients and cytokines. Concomitantly, drastic changes occur in the expression of pro-and anti-apoptotic proteins that alter the sensitivity of lymphocytes to limiting concentrations of key survival factors. Antigen affinity is a primary determinant for the capacity of activated lymphocytes to access these vital resources. The shift in metabolic needs and the variable access to key survival factors is used by the immune system to eliminate activated low-affinity cells and to generate an optimal high-affinity response. In this review, we focus on the control of apoptosis regulators in activated lymphocytes by nutrients, cytokines, and costimulation. We propose that the struggle among individual clones that leads to the formation of high-affinity effector cell populations is in effect an 'invisible' fourth signal required for effective immune responses. © 2012 John Wiley & Sons A/S.

  13. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    Science.gov (United States)

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    Science.gov (United States)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  15. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    International Nuclear Information System (INIS)

    Moaddel, Ruin; Wainer, Irving W.

    2006-01-01

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K d values) and non-linear chromatography can be used to assess the association (k on ) and dissociation (k off ) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein

  16. Development of immobilized membrane-based affinity columns for use in the online characterization of membrane bound proteins and for targeted affinity isolations

    Energy Technology Data Exchange (ETDEWEB)

    Moaddel, Ruin [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States); Wainer, Irving W. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825 (United States)]. E-mail: Wainerir@grc.nia.nih.gov

    2006-03-30

    Membranes obtained from cell lines that express or do not express a target membrane bound protein have been immobilized on a silica-based liquid chromatographic support or on the surface of an activated glass capillary. The resulting chromatographic columns have been placed in liquid chromatographic systems and used to characterize the target proteins and to identify small molecules that bind to the target. Membranes containing ligand gated ion channels, G-protein coupled receptors and drug transporters have been prepared and characterized. If a marker ligand has been identified for the target protein, frontal or zonal displacement chromatographic techniques can be used to determine binding affinities (K {sub d} values) and non-linear chromatography can be used to assess the association (k {sub on}) and dissociation (k {sub off}) rate constants and the thermodynamics of the binding process. Membrane-based affinity columns have been created using membranes from a cell line that does not express the target protein (control) and the same cell line that expresses the target protein (experimental) after genomic transfection. The resulting columns can be placed in a parallel chromatography system and the differential retention between the control and experimental columns can be used to identify small molecules and protein that bind to the target protein. These applications will be illustrated using columns created using cellular membranes containing nicotinic acetylcholine receptors and the drug transporter P-glycoprotein.

  17. Cyclic cholecystokinin analogues with high selectivity for central receptors

    International Nuclear Information System (INIS)

    Charpentier, B.; Pelaprat, D.; Durieux, C.; Dor, A.; Roques, B.P.; Reibaud, M.; Blanchard, J.C.

    1988-01-01

    Taking as a model the N-terminal folding of the cholecystokinin tyrosine-sulfated octapeptide deduced from conformational studies, two cyclic cholecystokinin (CCK) analogues were synthesized by conventional peptide synthesis. The binding characteristics of these peptides were investigated on brain cortex membranes and pancreatic acini of guinea pig. Compounds I and II were competitive inhibitors of [ 3 H]Boc[Ahx 28,31 ]CCK-(27-33) binding to central CCK receptors and showed a high degree of selectivity for these binding sites. This high selectivity was associated with a high affinity for central CCK receptors. Similar affinities and selectivities were found when 125 I Bolton-Hunter-labeled CCK-8 was used as a ligand. Moreover, these compounds were only weakly active in the stimulation of amylase release from guinea pig pancreatic acini and were unable to induce contractions in the guinea pig ileum. The two cyclic CCK analogues, therefore, appear to be synthetic ligands exhibiting both high affinity and high selectivity for central CCK binding sites. These compounds could help clarify the respective role of central and peripheral receptors for various CCK-8-induced pharmacological effects

  18. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna

    2014-01-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low affinity ligands because L-Glu is difficult to displace...... crystallized as a mixed dimer with L-Glu present in one subunit while neither L-Asp nor L-Glu were found in the other subunit. Thus, residual L-Glu is still present from the expression. On the other hand, only L-Asp was found at the binding site when using 50 mM or 250 mM L-Asp for crystallization. The binding...... mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taken together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low affinity ligands for lead...

  19. Production and Identification of High Affinity Monoclonal Antibodies Against Pesticide Carbofuran

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To produce high-affinity monoclonal antibodies against pesticide carbofuran, and the develop immunochemical assays for people's health and environmental protection, the hapten 4-[[(2,3-dihydro-2,2-dimethyl-7-benzofuranyloxy) carbonyl]-amino]-butanoic acid (BFNB) of carbofuran was synthesized and Balb/c mice were immunized by the hapten-carrier (BFNB-bovine serum albumin, BFNB-BSA) conjugates. The splenocytes of immunized mice were fused with Sp2/0 cells and the cultural supernatants of hybridoma cells were screened by the indirect enzyme-linked immunoabsorbent assay (ELISA), based on BFNB-ovoalbumin conjugates (BFNB-OVA). Purified monoclonal antibody (McAb) was obtained from fluids of ascites, deposited by octanoic acid and ammonium sulfate. The affinity and the specificity of McAb were characterized by ELISA or indirect competitive ELISA. A hybridoma cell line (5D3) secreting anti-carbofuran McAb had been established. The titer of culture medium and ascites was up to 1:2.048 × 103 and 1:1.024 × 106, respectively, and the subtype of the McAb was IgG1. The affinity constant of the McAb was about 2.54 × 109 L mol-1, with an IC50 value of 1.18 ng mL-1 and a detection limit of 0.01 ng mL-1. Cross-reactivity studies showed that the McAb was quiet specific for carbofuran, as among the four analogous compounds, they were all hardly recognized (4.59 × 10-4% for 2,3-dihydro-2,2-dimethyl-7-benzofuranol and less than 3.0 × 10-4% for others). The prepared McAb had a very high affinity and specificity,and it could be used to develop ELISA for rapid determination of carbofuran.

  20. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    International Nuclear Information System (INIS)

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-01-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for [ 3 H]diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with [ 3 H]flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines

  1. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.

    Science.gov (United States)

    Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2010-02-05

    This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow

  2. Designing multiple ligands - medicinal chemistry strategies and challenges.

    Science.gov (United States)

    Morphy, Richard; Rankovic, Zoran

    2009-01-01

    It has been widely recognised over the recent years that parallel modulation of multiple biological targets can be beneficial for treatment of diseases with complex etiologies such as cancer asthma, and psychiatric disease. In this article, current strategies for the generation of ligands with a specific multi-target profile (designed multiple ligands or DMLs) are described and a number of illustrative example are given. Designing multiple ligands is frequently a challenging endeavour for medicinal chemists, with the need to appropriately balance affinity for 2 or more targets whilst obtaining physicochemical and pharmacokinetic properties that are consistent with the administration of an oral drug. Given that the properties of DMLs are influenced to a large extent by the proteomic superfamily to which the targets belong and the lead generation strategy that is pursued, an early assessment of the feasibility of any given DML project is essential.

  3. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  4. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  5. Improved pose and affinity predictions using different protocols tailored on the basis of data availability

    Science.gov (United States)

    Prathipati, Philip; Nagao, Chioko; Ahmad, Shandar; Mizuguchi, Kenji

    2016-09-01

    The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein-ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).

  6. High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.

    Science.gov (United States)

    Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias

    2014-12-01

    The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A control on hydrophobic and hydrophilic interactions between HEWL and metal Schiff-base complexes comprising of different metal ions and ligands

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2015-05-15

    The structural effects of different copper(II) and nickel(II) Schiff base complexes on hen egg white lysozyme (HEWL) have been investigated through steady state and time resolved absorption and fluorescence, and circular dichroism spectroscopy. The Schiff base ligands with N{sub 4} donor atoms show both hydrophobic and hydrophilic interactions, however hydrophilic interaction prevails with ligands having N{sub 2}O{sub 2} donor atoms. Variation of metal ions from Cu{sup 2+} to Ni{sup 2+} with each type of Schiff base ligand increases the probability of hydrophilic over hydrophobic interactions, which supports their significance in regulating the binding affinity between HEWL and metal complexes. On photo-excitation the complexes comprising of Cu{sup 2+} ion instead of Ni{sup 2+} ion and ligands with N{sub 4} donor system rather than N{sub 2}O{sub 2} donor system, increases the probability of intersystem crossing to populate the corresponding triplet state as observed from laser flash photolysis study. The better binding affinity of nickel complexes with different selectivities compared to copper complexes towards HEWL emphasizes the potentiality of less explored nickel complexes in drug–protein interactions. - Highlights: • Ni{sup II} and Cu{sup II} -Schiff base complexes bind hen egg white lysozyme spontaneously. • Both hydrophobic and hydrophilic interactions are effective for N{sub 4} ligands. • For N{sub 2}O{sub 2} ligands the hydrophilic is predominant over hydrophobic interaction. • Binding affinity and selectivity of Ni{sup II}-complexes are better than Cu{sup II}-complexes. • Replacement of Cu{sup 2+} by Ni{sup 2+} in a ligand enhances chance of hydrophilic interaction.

  8. First (18)F-labeled ligand for PET imaging of uPAR

    DEFF Research Database (Denmark)

    Persson, Morten; Liu, Hongguang; Madsen, Jacob

    2013-01-01

    Urokinase-type plasminogen activator receptor (uPAR) is overexpressed in human prostate cancer and uPAR has been found to be associated with metastatic disease and poor prognosis. AE105 is a small linear peptide with high binding affinity to uPAR. We synthesized an N-terminal NOTA......-conjugated version (NOTA-AE105) for development of the first (18)F-labeled uPAR positron-emission-tomography PET ligand using the Al(18)F radiolabeling method. In this study, the potential of (18)F-AlF-NOTA-AE105 to specifically target uPAR-positive prostate tumors was investigated....

  9. Introducing various ligands into superhalogen anions reduces their electronic stabilities

    Science.gov (United States)

    Smuczyńska, Sylwia; Skurski, Piotr

    2008-02-01

    The vertical electron detachment energies (VDE) of six NaX2- anions (where X = F, Cl, Br) were calculated at the OVGF level with the 6-311++G(3df) basis sets. In all the cases studied the VDE exceeds the electron affinity of chlorine atom and thus those species were classified as superhalogen anions. The largest vertical binding energy was found for the NaF2- system (6.644 eV). The strong VDE dependence on the ligand type, ligand-central atom distance, and the character of the highest occupied molecular orbital (HOMO) was observed and discussed.

  10. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  11. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Science.gov (United States)

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  12. Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands

    NARCIS (Netherlands)

    Paulusse, J.M.J.; Huijbers, J.P.J.; Sijbesma, R.P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  13. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  14. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  15. Structural analysis of prolyl oligopeptidases using molecular docking and dynamics: insights into conformational changes and ligand binding.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available Prolyl oligopeptidase (POP is considered as an important pharmaceutical target for the treatment of numerous diseases. Despite enormous studies on various aspects of POPs structure and function still some of the questions are intriguing like conformational dynamics of the protein and interplay between ligand entry/egress. Here, we have used molecular modeling and docking based approaches to unravel questions like differences in ligand binding affinities in three POP species (porcine, human and A. thaliana. Despite high sequence and structural similarity, they possess different affinities for the ligands. Interestingly, human POP was found to be more specific, selective and incapable of binding to a few planar ligands which showed extrapolation of porcine POP in human context is more complicated. Possible routes for substrate entry and product egress were also investigated by detailed analyses of molecular dynamics (MD simulations for the three proteins. Trajectory analysis of bound and unbound forms of three species showed differences in conformational dynamics, especially variations in β-propeller pore size, which was found to be hidden by five lysine residues present on blades one and seven. During simulation, β-propeller pore size was increased by ∼2 Å in porcine ligand-bound form which might act as a passage for smaller product movement as free energy barrier was reduced, while there were no significant changes in human and A. thaliana POPs. We also suggest that these differences in pore size could lead to fundamental differences in mode of product egress among three species. This analysis also showed some functionally important residues which can be used further for in vitro mutagenesis and inhibitor design. This study can help us in better understanding of the etiology of POPs in several neurodegenerative diseases.

  16. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity

    Science.gov (United States)

    Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.

    2006-01-01

    The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963

  17. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine

    International Nuclear Information System (INIS)

    Koehrle, J.R.; Rasmussen, U.B.; Rokos, H.; Leonard, J.L.; Hesch, R.D.

    1990-01-01

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney

  18. Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C.

    Science.gov (United States)

    Provenzani, Riccardo; Tarvainen, Ilari; Brandoli, Giulia; Lempinen, Antti; Artes, Sanna; Turku, Ainoleena; Jäntti, Maria Helena; Talman, Virpi; Yli-Kauhaluoma, Jari; Tuominen, Raimo K; Boije Af Gennäs, Gustav

    2018-01-01

    Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain-targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.

  19. [3H]naloxone as an opioid receptor label: Analysis of binding site heterogeneity and use for determination of opioid affinities of casomorphin analogues

    International Nuclear Information System (INIS)

    Schnittler, M.; Repke, H.; Liebmann, C.; Schrader, U.; Schulze, H.P.; Neubert, K.

    1990-01-01

    The nonselective antagonist [ 3 H]naloxone was used to identify opioid receptors in rat brain membranes. The multiple naloxone binding sites were related to different opioid receptors by means of selective opiod ligands as well as various β-casomorphin analogues. Analysis of binding site heterogeneity was performed using several computer curve fitting methods. The results indicate that structurally modified casomorphin peptides are able to discriminate between μ 1 and μ 2 binding sites. The affinities to the μ sites obtained with [ 3 H]naloxone as label are in a good agreement with those from experiments with the μ selective radioligand [ 3 H]DAGO. The μ 1 site affinities of these casomorphin derivatives are well correlated with their antinociceptive potencies. This finding suggests the mediation of the analgesic activity via the high-affinity μ 1 subtype. (author)

  20. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.

    Science.gov (United States)

    Amini, Ata; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E

    2007-12-01

    Despite the increased recent use of protein-ligand and protein-protein docking in the drug discovery process due to the increases in computational power, the difficulty of accurately ranking the binding affinities of a series of ligands or a series of proteins docked to a protein receptor remains largely unsolved. This problem is of major concern in lead optimization procedures and has lead to the development of scoring functions tailored to rank the binding affinities of a series of ligands to a specific system. However, such methods can take a long time to develop and their transferability to other systems remains open to question. Here we demonstrate that given a suitable amount of background information a new approach using support vector inductive logic programming (SVILP) can be used to produce system-specific scoring functions. Inductive logic programming (ILP) learns logic-based rules for a given dataset that can be used to describe properties of each member of the set in a qualitative manner. By combining ILP with support vector machine regression, a quantitative set of rules can be obtained. SVILP has previously been used in a biological context to examine datasets containing a series of singular molecular structures and properties. Here we describe the use of SVILP to produce binding affinity predictions of a series of ligands to a particular protein. We also for the first time examine the applicability of SVILP techniques to datasets consisting of protein-ligand complexes. Our results show that SVILP performs comparably with other state-of-the-art methods on five protein-ligand systems as judged by similar cross-validated squares of their correlation coefficients. A McNemar test comparing SVILP to CoMFA and CoMSIA across the five systems indicates our method to be significantly better on one occasion. The ability to graphically display and understand the SVILP-produced rules is demonstrated and this feature of ILP can be used to derive hypothesis for

  1. Effect of ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in human lung cancer cell lines

    International Nuclear Information System (INIS)

    He Pengfei; Borland, Michael G.; Zhu Bokai; Sharma, Arun K.; Amin, Shantu; El-Bayoumy, Karam; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    There is compelling evidence that peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) mediates terminal differentiation and is associated with inhibition of cell growth. However, it was recently suggested that growth of two human lung cancer cell lines is enhanced by PPARβ/δ. The goal of the present study was to provide insight in resolving this controversy. Therefore, the effect of ligand activation of PPARβ/δ in A549 and H1838 human lung cancer cell lines was examined using two high affinity PPARβ/δ ligands. Ligand activation of PPARβ/δ caused up-regulation of a known PPARβ/δ target gene, angiopoietin-like 4 (Angptl4) but did not influence expression of phosphatase and tensin homolog (PTEN) or phosphorylation of protein kinase B (Akt), and did not affect cell growth. Results from this study demonstrate that two human lung cancer cell lines respond to ligand activation of PPARβ/δ by modulation of target gene expression (Angptl4), but fail to exhibit significant modulation of cell proliferation

  2. Selective induction of high-ouabain-affinity isoform of Na sup + -K sup + -ATPase by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Haber, R.S.; Loeb, J.N. (Columbia Univ., New York, NY (USA))

    1988-12-01

    The administration of thyroid hormone is known to result in an induction of the Na{sup +}-K{sup +}-adenosinetriphosphatase (Na{sup +}-K{sup +}-ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na{sup +}-K{sup +}-ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3{prime},5-triiodo-L-thyronine (T{sub 3}) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na{sup +}-K{sup +}-ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K{sub I}s) for ouabain of {approximately}10{sup {minus}7} and 10{sup {minus}4} M, respectively. Measurement of the specific binding of ({sup 3}H)ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K{sub d}) of slightly less than 10{sup {minus}7}M, whose maximal binding capacity was increased by T{sub 3} treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T{sub 3} treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na{sup +}-K{sup +}-ATPase by ouabain-dependent phosphorylation from ({sup 32}P)orthophosphate confirmed that T{sub 3} treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na{sup +}-K{sup +}-ATPase are subject to selective hormonal induction.

  3. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Directory of Open Access Journals (Sweden)

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  4. Affinity column for purification of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor

    International Nuclear Information System (INIS)

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-01-01

    The TXA 2 /PGH 2 receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific 3 H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA 2 /PGH 2 receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor

  5. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  6. Affinity fluorescence-labeled peptides for the early detection of cancer in Barrett's esophagus

    Science.gov (United States)

    Li, Meng; Lu, Shaoying; Piraka, Cyrus; Appelman, Henry; Kwon, Rich; Soetikno, Roy; Kaltenbach, Tonya; Wang, Thomas D.

    2009-02-01

    Fluorescence-labeled peptides that affinity bind to neoplastic mucsosa are promising for use as a specific contrast agent in the detection of pre-malignant tissue in the esophagus. This method is can be used to identify expression of biological markers associated with dysplasia on endoscopic imaging as a guide for biopsy and represents a novel method for the early detection and prevention of cancer. We demonstrate the use of phage display to select affinity peptides and identify the sequence "ASYNYDA" that binds with high target-to-background ratio to dysplastic esophageal mucosa compared to that of intestinal metaplasia. Validation of preferential binding is demonstrated for neoplasia in the setting of Barrett's esophagus. An optimal tradeoff between sensitivity and specificity of 82% and 85% was found at the relative threshold of 0.60 with a target-to-background ratio of 1.81 and an area under the ROC curve of 0.87. Peptides are a novel class of ligand for targeted detection of pre-malignant mucosa for purposes of screening and surveillance.

  7. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints.

    Science.gov (United States)

    Liu, Jie; Su, Minyi; Liu, Zhihai; Li, Jie; Li, Yan; Wang, Renxiao

    2017-07-18

    In structure-based drug design, binding affinity prediction remains as a challenging goal for current scoring functions. Development of target-biased scoring functions provides a new possibility for tackling this problem, but this approach is also associated with certain technical difficulties. We previously reported the Knowledge-Guided Scoring (KGS) method as an alternative approach (BMC Bioinformatics, 2010, 11, 193-208). The key idea is to compute the binding affinity of a given protein-ligand complex based on the known binding data of an appropriate reference complex, so the error in binding affinity prediction can be reduced effectively. In this study, we have developed an upgraded version, i.e. KGS2, by employing 3D protein-ligand interaction fingerprints in reference selection. KGS2 was evaluated in combination with four scoring functions (X-Score, ChemPLP, ASP, and GoldScore) on five drug targets (HIV-1 protease, carbonic anhydrase 2, beta-secretase 1, beta-trypsin, and checkpoint kinase 1). In the in situ scoring test, considerable improvements were observed in most cases after application of KGS2. Besides, the performance of KGS2 was always better than KGS in all cases. In the more challenging molecular docking test, application of KGS2 also led to improved structure-activity relationship in some cases. KGS2 can be applied as a convenient "add-on" to current scoring functions without the need to re-engineer them, and its application is not limited to certain target proteins as customized scoring functions. As an interpolation method, its accuracy in principle can be improved further with the increasing knowledge of protein-ligand complex structures and binding affinity data. We expect that KGS2 will become a practical tool for enhancing the performance of current scoring functions in binding affinity prediction. The KGS2 software is available upon contacting the authors.

  8. Conformational destabilization of Immunoglobulin G increases the low pH-binding affinity with the Neonatal Fc Receptor

    DEFF Research Database (Denmark)

    Walters, Benjamin T; Jensen, Pernille Foged; Larraillet, Vincent

    2016-01-01

    Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the ......H-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.......Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain...... the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and Fc...

  9. Interaction of amatoxins with plant cells and RNA polymerases II: selection of amanitin-resistant cell lines and synthesis of amanitin-based affinity ligands

    International Nuclear Information System (INIS)

    Little, M.C.

    1984-01-01

    A series of experiments directed toward deriving basic information regarding plant RNA polymerase II is presented. The experiments described relate to the potential of isolating RNA polymerase II mutants in plants, using carrot cell cultures as models. Additionally, the synthesis of amanitin-based affinity ligands to immobilize isolated plant RNA polymerase II and associated transcriptional complexes is described. RNA polymerase II activities have been isolated from suspension cultures of carrot and compared to other plant RNA polymerases II with respect to subunit analysis and inhibition with α-amanitin. RNA polymerase II purified by polymin P absorption, DE52, phosphocellulose, and RNA-agarose chromatography is shown to copurify with proteins of 175 (and 200), 135, 70, 43, 28, 22, and 17 kdaltons apparent molecular weights. Conditions for accurate determination of amanitin inhibition of the enzyme are established using 3 H-amanitin and are presented for the first time for plant RNA polymerase II; RNA polymerase II from these cultures is shown to be inhibited by 50% at 3-5 nM by α-amanitin, a value 10-50 times lower than previously reported

  10. Carbon-11 labelling of eticlopride in two different positions - a selective high-affinity ligand for the study of dopamine D-2 receptors using PET

    International Nuclear Information System (INIS)

    Halldin, Christer; Hall, Haakan

    1990-01-01

    A new highly selective high-affinity dopamine D-2 receptor antagonist, eticlopride ((-)-(S)-5-chloro-3-ethyl-N-(1-ethyl-2-pyrrolidinyl)methyl)-6-methoxysalicylamide), was labelled with 11 C in two different positions ([N-ethyl- 11 C]eticlopride (I) and ([methyl- 11 C]eticlopride (II)). Product I was prepared by N-alkylation of the N-desethyl compound with [ 11 C]ethyl iodide. II was prepared by O-alkylation of the diphenolic precursor with [ 11 C]methyl iodide followed by separation of the two methylated products. The radiochemical yields were 15-20% (EOB) with an overall synthesis time of 45-60 min. Both compounds were isolated by semi-preparative HPLC and the radiochemical purity was in both cases > 99%. I was injected i.v. in a Cynomolgus monkey and brain radioactivity was measured by positron emission tomography (PET). The specific activity was 70 Ci/mmol at time of injection. There was a marked accumulation of radioactivity in the basal ganglia, regions known to have a high density of dopamine D-2 receptors. (author)

  11. Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Kyun, Nack Sung; Cho, Art E. [Korea Univ., Sejong (Korea, Republic of)

    2013-02-15

    It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding r{sup 2} = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.

  12. Effect of urea on protein-ligand association.

    Science.gov (United States)

    Stepanian, Lora; Son, Ikbae; Chalikian, Tigran V

    2017-12-01

    We combine experimental and theoretical approaches to investigate the influence of a cosolvent on a ligand-protein association event. We apply fluorescence measurements to determining the affinity of the inhibitor tri-N-acetylglucosamine [(GlcNAc) 3 ] for lysozyme at urea concentrations ranging from 0 to 8M. Notwithstanding that, at room temperature and neutral pH, lysozyme retains its native conformation up to the solubility limit of urea, the affinity of (GlcNAc) 3 for the protein steadily decreases as the concentration of urea increases. We analyze the urea dependence of the binding free energy within the framework of a simplified statistical thermodynamics-based model that accounts for the excluded volume effect and direct solute-solvent interactions. The analysis reveals that the detrimental action of urea on the inhibitor-lysozyme binding originates from competition between the free energy contributions of the excluded volume effect and direct solute-solvent interactions. The free energy contribution of direct urea-solute interactions narrowly overcomes the excluded volume contribution thereby resulting in urea weakening the protein-ligand association. More broadly, the successful application of the simple model employed in this work points to the possibility of its use in quantifying the stabilizing/destabilizing action of individual cosolvents on biochemical folding and binding reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  14. Lysosomal membrane permeabilization is an early event in Sigma-2 receptor ligand mediated cell death in pancreatic cancer.

    Science.gov (United States)

    Hornick, John R; Vangveravong, Suwanna; Spitzer, Dirk; Abate, Carmen; Berardi, Francesco; Goedegebuure, Peter; Mach, Robert H; Hawkins, William G

    2012-05-02

    -FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways.

  15. Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: Insight by NMR relaxation data and docking simulation.

    Science.gov (United States)

    Ma, Xiaoli; He, Jiawei; Yan, Jin; Wang, Qing; Li, Hui

    2016-03-25

    Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid in clinical practice. Considering the distribution and side-effect of the drug may change when co-administrated drug exist, this paper comparatively analyzed the binding ability of mycophenolic sodium and meprednisone toward human serum albumin by nuclear magnetic resonance relaxation data and docking simulation. The nuclear magnetic resonance approach was based on the analysis of proton selective and non-selective relaxation rate enhancement of the ligand in the absence and presence of macromolecules. The contribution of the bound ligand fraction to the observed relaxation rate in relation to protein concentration allowed the calculation of the affinity index. This approach allowed the comparison of the binding affinity of mycophenolic sodium and meprednisone. Molecular modeling was operated to simulate the binding model of ligand and albumin through Autodock 4.2.5. Competitive binding of mycophenolic sodium and meprednisone was further conducted through fluorescence spectroscopy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Fluorescent derivatives of σ receptor ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) as a tool for uptake and cellular localization studies in pancreatic tumor cells.

    Science.gov (United States)

    Abate, Carmen; Hornick, John R; Spitzer, Dirk; Hawkins, William G; Niso, Mauro; Perrone, Roberto; Berardi, Francesco

    2011-08-25

    Fluorescent derivatives of σ(2) high affinity ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) were synthesized. NBD or dansyl fluorescent tags were connected through a 5- or 6-atom linker in two diverse positions of 1 structure. Good σ(2) affinities were obtained when the fluorescent tag was linked to 5-methoxytetralin nucleus replacing the methyl function. NBD-bearing compound 16 displayed high σ(2) affinity (K(i) = 10.8 nM) and optimal fluorescent properties. Its uptake in pancreatic tumor cells was evaluated by flow cytometry, showing that it partially occurs through endocytosis. In proliferating cells, the uptake was higher supporting that σ(2) receptors are markers of cell proliferation and that the higher the proliferation is, the stronger the antiproliferative effect of σ(2) agonists is. Colocalization of 16 with subcellular organelles was studied by confocal microscopy: the greatest was in endoplasmic reticulum and lysosomes. Fluorescent σ(2) ligands show their potential in clarifying the mechanisms of action of σ(2) receptors. © 2011 American Chemical Society

  17. Measuring RNA-Ligand Interactions with Microscale Thermophoresis.

    Science.gov (United States)

    Moon, Michelle H; Hilimire, Thomas A; Sanders, Allix M; Schneekloth, John S

    2018-01-31

    In recent years, there has been dramatic growth in the study of RNA. RNA has gone from being known as an intermediate in the central dogma of molecular biology to a molecule with a large diversity of structure and function that is involved in all aspects of biology. As new functions are rapidly discovered, it has become clear that there is a need for RNA-targeting small molecule probes to investigate RNA biology and clarify the potential for therapeutics based on RNA-small molecule interactions. While a host of techniques exist to measure RNA-small molecule interactions, many of these have drawbacks that make them intractable for routine use and are often not broadly applicable. A newer technology called microscale thermophoresis (MST), which measures the directed migration of a molecule and/or molecule-ligand complex along a temperature gradient, can be used to measure binding affinities using very small amounts of sample. The high sensitivity of this technique enables measurement of affinity constants in the nanomolar and micromolar range. Here, we demonstrate how MST can be used to study a range of biologically relevant RNA interactions, including peptide-RNA interactions, RNA-small molecule interactions, and displacement of an RNA-bound peptide by a small molecule.

  18. Affinity partitioning of human antibodies in aqueous two-phase systems.

    Science.gov (United States)

    Rosa, P A J; Azevedo, A M; Ferreira, I F; de Vries, J; Korporaal, R; Verhoef, H J; Visser, T J; Aires-Barros, M R

    2007-08-24

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.

  19. Natural HLA-B*2705 Protein Ligands with Glutamine as Anchor Motif

    Science.gov (United States)

    Infantes, Susana; Lorente, Elena; Barnea, Eilon; Beer, Ilan; Barriga, Alejandro; Lasala, Fátima; Jiménez, Mercedes; Admon, Arie; López, Daniel

    2013-01-01

    The presentation of short viral peptide antigens by human leukocyte antigen (HLA) class I molecules on cell surfaces is a key step in the activation of cytotoxic T lymphocytes, which mediate the killing of pathogen-infected cells or initiate autoimmune tissue damage. HLA-B27 is a well known class I molecule that is used to study both facets of the cellular immune response. Using mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of HLA-B*2705+ cells, we identified 200 naturally processed HLA-B*2705 ligands. Our analyses revealed that a change in the position (P) 2 anchor motif was detected in the 3% of HLA-B*2705 ligands identified. B*2705 class I molecules were able to bind these six GlnP2 peptides, which showed significant homology to pathogenic bacterial sequences, with a broad range of affinities. One of these ligands was able to bind with distinct conformations to HLA-B27 subtypes differentially associated with ankylosing spondylitis. These conformational differences could be sufficient to initiate autoimmune damage in patients with ankylosing spondylitis-associated subtypes. Therefore, these kinds of peptides (short, with GlnP2, and similar low affinity to all HLA-B27 subtypes tested but with unlike conformations in differentially ankylosing spondylitis-associated subtypes) must not be excluded from future researches involving potential arthritogenic peptides. PMID:23430249

  20. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    Science.gov (United States)

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  1. Characterization of the Raf kinase inhibitory protein (RKIP binding pocket: NMR-based screening identifies small-molecule ligands.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2010-05-01

    Full Text Available Raf kinase inhibitory protein (RKIP, also known as phoshaptidylethanolamine binding protein (PEBP, has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE. In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized.In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity.This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  2. Synthesis and pre-clinical evaluation of a new class of high-affinity "1"8F-labeled PSMA ligands for detection of prostate cancer by PET imaging

    International Nuclear Information System (INIS)

    Kelly, James; Amor-Coarasa, Alejandro; Williams, Clarence; Ponnala, Shashikanth; Nikolopoulou, Anastasia; Kim, Dohyun; Babich, John W.

    2017-01-01

    Current clinical imaging of PSMA-positive prostate cancer by positron emission tomography (PET) mainly features "6"8Ga-labeled tracers, notably ["6"8Ga]Ga-PSMA-HBED-CC. The longer half-life of fluorine-18 offers significant advantages over Ga-68, clinically and logistically. We aimed to develop high-affinity PSMA inhibitors labeled with fluorine-18 as alternative tracers for prostate cancer. Six triazolylphenyl ureas and their alkyne precursors were synthesized from the Glu-urea-Lys PSMA binding moiety. PSMA affinity was determined in a competitive binding assay using LNCaP cells. The ["1"8F]triazoles were isolated following a Cu(I)-catalyzed click reaction between the alkynes and ["1"8F]fluoroethylazide. The "1"8F-labeled compounds were evaluated in nude mice bearing LNCaP tumors and compared to ["6"8Ga]Ga-PSMA-HBED-CC and ["1"8F]DCFPyL. Biodistribution studies of the two tracers with the highest imaged-derived tumor uptake and highest PSMA affinity were undertaken at 1 h, 2 h and 4 h post-injection (p.i.), and co-administration of PMPA was used to determine whether uptake was PSMA-specific. F-18-labeled triazolylphenyl ureas were prepared with a decay-corrected RCY of 20-40 %, >98 % radiochemical and chemical purity, and specific activity of up to 391 GBq/μmol. PSMA binding (IC_5_0) ranged from 3-36 nM. The position of the triazole influenced tumor uptake (3 > 4 > 2), and direct conjugation of the triazole with the phenylurea moiety was preferred to insertion of a spacer group. Image-derived tumor uptake ranged from 6-14 %ID/g at 2 h p.i., the time of maximum tumor uptake; uptake of ["6"8Ga]Ga-PSMA-HBED-CC and ["1"8F]DCFPyL was 5-6 %ID/g at 1-3 h p.i., the time of maximum tumor uptake. Biodistribution studies of the two most promising compounds gave maximum tumor uptakes of 10.9 ± 1.0 % and 14.3 ± 2.5 %ID/g, respectively, as compared to 6.27 ± 1.44 %ID/g for ["6"8Ga]Ga-PSMA-HBED-CC. Six ["1"8F]triazolylphenyl ureas were prepared in good radiochemical yield

  3. Synthesis and pre-clinical evaluation of a new class of high-affinity {sup 18}F-labeled PSMA ligands for detection of prostate cancer by PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, James; Amor-Coarasa, Alejandro; Williams, Clarence; Ponnala, Shashikanth [Weill Cornell Medicine, Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, New York, NY (United States); Nikolopoulou, Anastasia [Weill Cornell Medicine, Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, New York, NY (United States); Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY (United States); Kim, Dohyun [Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY (United States); Babich, John W. [Weill Cornell Medicine, Division of Radiopharmaceutical Sciences and Molecular Imaging Innovations Institute, Department of Radiology, New York, NY (United States); Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY (United States); Weill Cornell Medicine, Meyer Cancer Center, New York, NY (United States)

    2017-04-15

    Current clinical imaging of PSMA-positive prostate cancer by positron emission tomography (PET) mainly features {sup 68}Ga-labeled tracers, notably [{sup 68}Ga]Ga-PSMA-HBED-CC. The longer half-life of fluorine-18 offers significant advantages over Ga-68, clinically and logistically. We aimed to develop high-affinity PSMA inhibitors labeled with fluorine-18 as alternative tracers for prostate cancer. Six triazolylphenyl ureas and their alkyne precursors were synthesized from the Glu-urea-Lys PSMA binding moiety. PSMA affinity was determined in a competitive binding assay using LNCaP cells. The [{sup 18}F]triazoles were isolated following a Cu(I)-catalyzed click reaction between the alkynes and [{sup 18}F]fluoroethylazide. The {sup 18}F-labeled compounds were evaluated in nude mice bearing LNCaP tumors and compared to [{sup 68}Ga]Ga-PSMA-HBED-CC and [{sup 18}F]DCFPyL. Biodistribution studies of the two tracers with the highest imaged-derived tumor uptake and highest PSMA affinity were undertaken at 1 h, 2 h and 4 h post-injection (p.i.), and co-administration of PMPA was used to determine whether uptake was PSMA-specific. F-18-labeled triazolylphenyl ureas were prepared with a decay-corrected RCY of 20-40 %, >98 % radiochemical and chemical purity, and specific activity of up to 391 GBq/μmol. PSMA binding (IC{sub 50}) ranged from 3-36 nM. The position of the triazole influenced tumor uptake (3 > 4 > 2), and direct conjugation of the triazole with the phenylurea moiety was preferred to insertion of a spacer group. Image-derived tumor uptake ranged from 6-14 %ID/g at 2 h p.i., the time of maximum tumor uptake; uptake of [{sup 68}Ga]Ga-PSMA-HBED-CC and [{sup 18}F]DCFPyL was 5-6 %ID/g at 1-3 h p.i., the time of maximum tumor uptake. Biodistribution studies of the two most promising compounds gave maximum tumor uptakes of 10.9 ± 1.0 % and 14.3 ± 2.5 %ID/g, respectively, as compared to 6.27 ± 1.44 %ID/g for [{sup 68}Ga]Ga-PSMA-HBED-CC. Six [{sup 18}F

  4. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats

    DEFF Research Database (Denmark)

    Dagil, Robert; O'Shea, Charlotte; Nykjær, Anders

    2013-01-01

    megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described...... to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists....

  5. Isolation of Anti-Ricin Protective Antibodies Exhibiting High Affinity from Immunized Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tal Noy-Porat

    2016-03-01

    Full Text Available Ricin, derived from the castor bean plant Ricinus communis, is one of the most potent and lethal toxins known, against which there is no available antidote. To date, the use of neutralizing antibodies is the most promising post-exposure treatment for ricin intoxication. The aim of this study was to isolate high affinity anti-ricin antibodies that possess potent toxin-neutralization capabilities. Two non-human primates were immunized with either a ricin-holotoxin- or subunit-based vaccine, to ensure the elicitation of diverse high affinity antibodies. By using a comprehensive set of primers, immune scFv phage-displayed libraries were constructed and panned. A panel of 10 antibodies (five directed against the A subunit of ricin and five against the B subunit was isolated and reformatted into a full-length chimeric IgG. All of these antibodies were found to neutralize ricin in vitro, and several conferred full protection to ricin-intoxicated mice when given six hours after exposure. Six antibodies were found to possess exceptionally high affinity toward the toxin, with KD values below pM (koff < 1 × 10−7 s−1 that were well correlated with their ability to neutralize ricin. These antibodies, alone or in combination, could be used for the development of a highly-effective therapeutic preparation for post-exposure treatment of ricin intoxication.

  6. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    Science.gov (United States)

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    Science.gov (United States)

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  9. Affine and quasi-affine frames for rational dilations

    DEFF Research Database (Denmark)

    Bownik, Marcin; Lemvig, Jakob

    2011-01-01

    In this paper we extend the investigation of quasi-affine systems, which were originally introduced by Ron and Shen [J. Funct. Anal. 148 (1997), 408-447] for integer, expansive dilations, to the class of rational, expansive dilations. We show that an affine system is a frame if, and only if......, the corresponding family of quasi-affine systems are frames with uniform frame bounds. We also prove a similar equivalence result between pairs of dual affine frames and dual quasi-affine frames. Finally, we uncover some fundamental differences between the integer and rational settings by exhibiting an example...

  10. Sequestering agent for uranyl chelation: a new family of CAMS ligands

    International Nuclear Information System (INIS)

    Leydier, A.; Pellet-Rostaing, S.; Favre-Reguillon, A.; Lemaire, M.; Lecercle, D.; Taran, F.

    2008-01-01

    The synthesis of new dipodal bis-sulfo-catechol-amide uranophiles is presented. Their binding abilities for uranyl cation were determined by UV spectrophotometry in aqueous media under various pH conditions and further studied by 1 H NMR analysis of the resonance signal of both aromatic protons of the sulfo-catechol-amide groups. The results showed that the efficiency of these hydrosoluble chelating agents depends on the nature of the spacers. Each ligand shows a more or less pronounced affinity for uranium. The best receptor is the ligand CYCAMS 5d obtained as a mixture of cis/trans isomers, which achieves the best compromise between rigidity and steric hindrance. (authors)

  11. Protein-Ligand Empirical Interaction Components for Virtual Screening.

    Science.gov (United States)

    Yan, Yuna; Wang, Weijun; Sun, Zhaoxi; Zhang, John Z H; Ji, Changge

    2017-08-28

    A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.

  12. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    Science.gov (United States)

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  13. Fragment screening of cyclin G-associated kinase by weak affinity chromatography.

    Science.gov (United States)

    Meiby, Elinor; Knapp, Stefan; Elkins, Jonathan M; Ohlson, Sten

    2012-11-01

    Fragment-based drug discovery (FBDD) has become a new strategy for drug discovery where lead compounds are evolved from small molecules. These fragments form low affinity interactions (dissociation constant (K(D)) = mM - μM) with protein targets, which require fragment screening methods of sufficient sensitivity. Weak affinity chromatography (WAC) is a promising new technology for fragment screening based on selective retention of fragments by a drug target. Kinases are a major pharmaceutical target, and FBDD has been successfully applied to several of these targets. In this work, we have demonstrated the potential to use WAC in combination with mass spectrometry (MS) detection for fragment screening of a kinase target-cyclin G-associated kinase (GAK). One hundred seventy fragments were selected for WAC screening by virtual screening of a commercial fragment library against the ATP-binding site of five different proteins. GAK protein was immobilized on a capillary HPLC column, and compound binding was characterized by frontal affinity chromatography. Compounds were screened in sets of 13 or 14, in combination with MS detection for enhanced throughput. Seventy-eight fragments (46 %) with K(D) < 200 μM were detected, including a few highly efficient GAK binders (K(D) of 2 μM; ligand efficiency = 0.51). Of special interest is that chiral screening by WAC may be possible, as two stereoisomeric fragments, which both contained one chiral center, demonstrated twin peaks. This ability, in combination with the robustness, sensitivity, and simplicity of WAC makes it a new method for fragment screening of considerable potential.

  14. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties.

    Science.gov (United States)

    Soleimanpour, Saman; Hassannia, Tahereh; Motiee, Mahdieh; Amini, Abbas Ali; Rezaee, S A R

    2017-05-01

    Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.

  15. Full domain closure of the ligand-binding core of the ionotropic glutamate receptor iGluR5 induced by the high affinity agonist dysiherbaine and the functional antagonist 8,9-dideoxyneodysiherbaine

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Lash, L Leanne; Naur, Peter

    2009-01-01

    The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy and...

  16. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  17. Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFβ1 antibody

    Science.gov (United States)

    Honey, Denise M.; Best, Annie; Qiu, Huawei

    2018-01-01

    ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938

  18. Structures of the Streptococcus sanguinis SrpA Binding Region with Human Sialoglycans Suggest Features of the Physiological Ligand.

    Science.gov (United States)

    Loukachevitch, Lioudmila V; Bensing, Barbara A; Yu, Hai; Zeng, Jie; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-10-11

    Streptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life-threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence. Previous studies suggest that a serine-rich repeat adhesin termed SrpA mediates the binding of S. sanguinis to human platelets via its interaction with sialoglycans on the receptor GPIbα. However, in vitro binding assays with SrpA and defined sialoglycans failed to identify specific high-affinity ligands. To improve our understanding of the interaction between SrpA and human platelets, we determined cocrystal structures of the SrpA sialoglycan binding region (SrpA BR ) with five low-affinity ligands: three sialylated trisaccharides (sialyl-T antigen, 3'-sialyllactose, and 3'-sialyl-N-acetyllactosamine), a sialylated tetrasaccharide (sialyl-Lewis X ), and a sialyl galactose disaccharide component common to these sialoglyans. We then combined structural analysis with mutagenesis to further determine whether our observed interactions between SrpA BR and glycans are important for binding to platelets and to better map the binding site for the physiological receptor. We found that the sialoglycan binding site of SrpA BR is significantly larger than the sialoglycans cocrystallized in this study, which suggests that binding of SrpA to platelets either is multivalent or occurs via a larger, disialylated glycan.

  19. Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand

    Science.gov (United States)

    Askevold, Bjorn; Nieto, Jorge Torres; Tussupbayev, Samat; Diefenbach, Martin; Herdtweck, Eberhardt; Holthausen, Max C.; Schneider, Sven

    2011-07-01

    Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber-Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N-C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus-nitrogen-phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

  20. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase

    International Nuclear Information System (INIS)

    Penefsky, H.S.

    1985-01-01

    Incubation of [gamma- 32 P]ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the [gamma- 32 P]ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of [gamma- 32 P]ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide

  1. Synthesis and in vivo evaluation of [11C]SA6298 as a PET sigma1 receptor ligand

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Ishiwata, Kiichi; Tajima, Hisashi; Ishii, Shin-Ichi; Shimada, Yuhei; Matsuno, Kiyoshi; Homma, Yoshio; Senda, Michio

    1999-01-01

    The potential of a 11 C-labeled selective sigma 1 receptor ligand, 1-(3,4-dimethoxyphenethyl)-4-[3-(3,4-dichlorophenyl)propyl]piperazine ([ 11 C]SA6298), was evaluated as a positron emission tomography (PET) ligand for mapping sigma 1 receptors in the central nervous system and peripheral organs. [ 11 C]SA6298 was synthesized by methylation of the desmethyl SA6298 with [ 11 C]CH 3 I, with the decay-corrected radiochemical yield of 39±5% based on [ 11 C]CH 3 I and with the specific activity of 53±17 TBq/mmol within 20 min from end of bombardment (EOB). In mice, the uptake of [ 11 C]SA6298 was significantly decreased by carrier loading in the brain, liver, spleen, heart, lung, small intestine, and kidney in which sigma receptors are present as well as in the skeletal muscle. Pretreatment with SA6298 also blocked the uptake of [ 11 C]SA6298 by these organs except for the small intestine, but significant displacement of [ 11 C]SA6298 by posttreatment with SA6298 was observed only in the heart, lung, and muscle. In the blocking study with one of the eight sigma receptor ligands, including haloperidol, SA6298, NE-100, (+)-pentazocine, SA4503, (-)-pentazocine, (+)-3-PPP, and (+)-SKF 10,047 (in the order of the affinity for sigma 1 receptor subtype), only SA6298 and an analog SA4503 significantly reduced the brain uptake of [ 11 C]SA6298 to approximately 80% of the control, but the other six ligands did not. Peripherally, the uptake of [ 11 C]SA6298 by the organs described above was decreased predominantly by SA6298 or SA4503, but the blocking effects of the other five ligands except for NE-100 depended on their affinity for sigma 1 receptors. The saturable brain uptake of [ 11 C]SA6298, approximately 20%, was also observed by tissue dissection method in rats and by PET in a cat. Ex vivo autoradiography of the rat brain showed a high uptake in the cortex and thalamus. In the cat brain a relatively high uptake was found in the cortex, thalamus, striatum, and cerebellum

  2. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    Science.gov (United States)

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Applications of on-line weak affinity interactions in free solution capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Nissen, Mogens H; Chen, David D Y

    2002-01-01

    The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary...... electrophoresis approach is feasible when the migration of complexed molecules is different from the migration of free molecules and when separation conditions are nondenaturing. In this review, we focus on applying weak interactions as tools to enhance the separation of closely related molecules, e.g., drug...... enantiomers and on using capillary electrophoresis to characterize such interactions quantitatively. We describe the equations for binding isotherms, illustrate how selectivity can be manipulated by varying the additive concentrations, and show how the methods may be used to estimate binding constants. On...

  4. Synthesis of new isoxazoline-based acidic amino acids and investigation of their affinity and selectivity profile at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Pinto, Andrea; Conti, Paola; Grazioso, Giovanni

    2011-01-01

    The synthesis of four new isoxazoline-based amino acids being analogues of previously described glutamate receptor ligands is reported and their affinity for ionotropic glutamate receptors is analyzed in comparison with that of selected model compounds. Molecular modelling investigations have been...

  5. Dynamic Factors Affecting Gaseous Ligand Binding in an Artificial Oxygen Transport Protein‡

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M.E.; Khajo, Abdelahad; Magliozzo, Richard S.; Koder, Ronald L.

    2013-01-01

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7 this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime which may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when when exposed to oxygen. Compared to HP7, distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off-rate. EPR comparison of these ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation greatly increases water penetration into the protein core. The inability of the mutant protein to bind oxygen may be due to increased water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together these data underline the importance of the control of protein dynamics in the design of functional artificial proteins. PMID:23249163

  6. ISOLATION AND CHARACTERIZATION OF THE HIGH-AFFINITY K+-TRANSLOCATING ATPASE FROM RHODOBACTER-SPHAEROIDES

    NARCIS (Netherlands)

    ABEE, T; SIEBERS, A; ALTENDORF, K; KONINGS, WN

    1992-01-01

    Cells of the purple nonsulfur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. A vanadate-sensitive, K+-stimulated and Mg2+-stimulated ATPase was purified from membranes of these cells by solubilization with

  7. Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design.

    Science.gov (United States)

    Chandramohan, Arun; Tulsian, Nikhil K; Anand, Ganesh S

    2017-08-01

    Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.

  8. Crystallization and preliminary X-ray crystallographic study of the extracellular domain of the 4-1BB ligand, a member of the TNF family

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jung-Sue; Kim, Dong-Uk [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Byungchan; Kwon, Byoung Se [Immunomodulation Research Center, Ulsan University, Ulsan 680-749 (Korea, Republic of); Cho, Hyun-Soo, E-mail: hscho8@yonsei.ac.kr [Department of Biology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2006-01-01

    The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. The 4-1BB ligand, a member of the tumour necrosis factor (TNF) family, is an important co-stimulatory molecule that plays a key role in the clonal expansion and survival of CD8+ T cells. Signalling through binding of the 4-1BB ligand and 4-1BB has been reported to enhance CD8+ T-cell expansion and protect activated CD8+ T cells from death. The 4-1BB ligand is an integral protein expressed on activated antigen-presenting cells. The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from these crystals to 2.8 Å resolution and the crystals belong to space group C2, with unit-cell parameters a = 114.6, b = 73.8, c = 118.50 Å, β = 115.5°.

  9. Crystallization and preliminary X-ray crystallographic study of the extracellular domain of the 4-1BB ligand, a member of the TNF family

    International Nuclear Information System (INIS)

    Byun, Jung-Sue; Kim, Dong-Uk; Ahn, Byungchan; Kwon, Byoung Se; Cho, Hyun-Soo

    2005-01-01

    The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. The 4-1BB ligand, a member of the tumour necrosis factor (TNF) family, is an important co-stimulatory molecule that plays a key role in the clonal expansion and survival of CD8+ T cells. Signalling through binding of the 4-1BB ligand and 4-1BB has been reported to enhance CD8+ T-cell expansion and protect activated CD8+ T cells from death. The 4-1BB ligand is an integral protein expressed on activated antigen-presenting cells. The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from these crystals to 2.8 Å resolution and the crystals belong to space group C2, with unit-cell parameters a = 114.6, b = 73.8, c = 118.50 Å, β = 115.5°

  10. Lysosomal Membrane Permeabilization is an Early Event in Sigma-2 Receptor Ligand Mediated Cell Death in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Hornick John R

    2012-05-01

    caspase-dependent death following LMP protected by DEVD-FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways.

  11. Towards Coleoptera-specific high-throughput screening systems for compounds with ecdysone activity: development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis EcR ligand-binding pocket.

    Science.gov (United States)

    Soin, Thomas; Iga, Masatoshi; Swevers, Luc; Rougé, Pierre; Janssen, Colin R; Smagghe, Guy

    2009-08-01

    Molting in insects is regulated by ecdysteroids and juvenile hormones. Several synthetic non-steroidal ecdysone agonists are on the market as insecticides. These ecdysone agonists are dibenzoylhydrazine (DBH) analogue compounds that manifest their toxicity via interaction with the ecdysone receptor (EcR). Of the four commercial available ecdysone agonists, three (tebufenozide, methoxyfenozide and chromafenozide) are highly lepidopteran specific, one (halofenozide) is used to control coleopteran and lepidopteran insects in turf and ornamentals. However, compared to the very high binding affinity of these DBH analogues to lepidopteran EcRs, halofenozide has a low binding affinity for coleopteran EcRs. For the discovery of ecdysone agonists that target non-lepidopteran insect groups, efficient screening systems that are based on the activation of the EcR are needed. We report here the development and evaluation of two coleopteran-specific reporter-based screening systems to discover and evaluate ecdysone agonists. The screening systems are based on the cell lines BRL-AG-3A and BRL-AG-3C that are derived from the weevil Anthonomus grandis, which can be efficiently transduced with an EcR reporter cassette for evaluation of induction of reporter activity by ecdysone agonists. We also cloned the almost full length coding sequence of EcR expressed in the cell line BRL-AG-3C and used it to make an initial in silico 3D-model of its ligand-binding pocket docked with ponasterone A and tebufenozide.

  12. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    Science.gov (United States)

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  13. Molecular evolution of a peptide GPCR ligand driven by artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Bandholtz

    Full Text Available Peptide ligands of G protein-coupled receptors constitute valuable natural lead structures for the development of highly selective drugs and high-affinity tools to probe ligand-receptor interaction. Currently, pharmacological and metabolic modification of natural peptides involves either an iterative trial-and-error process based on structure-activity relationships or screening of peptide libraries that contain many structural variants of the native molecule. Here, we present a novel neural network architecture for the improvement of metabolic stability without loss of bioactivity. In this approach the peptide sequence determines the topology of the neural network and each cell corresponds one-to-one to a single amino acid of the peptide chain. Using a training set, the learning algorithm calculated weights for each cell. The resulting network calculated the fitness function in a genetic algorithm to explore the virtual space of all possible peptides. The network training was based on gradient descent techniques which rely on the efficient calculation of the gradient by back-propagation. After three consecutive cycles of sequence design by the neural network, peptide synthesis and bioassay this new approach yielded a ligand with 70fold higher metabolic stability compared to the wild type peptide without loss of the subnanomolar activity in the biological assay. Combining specialized neural networks with an exploration of the combinatorial amino acid sequence space by genetic algorithms represents a novel rational strategy for peptide design and optimization.

  14. A novel lentiviral scFv display library for rapid optimization and selection of high affinity antibodies.

    Science.gov (United States)

    Qudsia, Sehar; Merugu, Siva B; Mangukiya, Hitesh B; Hema, Negi; Wu, Zhenghua; Li, Dawei

    2018-04-30

    Antibody display libraries have become a popular technique to screen monoclonal antibodies for therapeutic purposes. An important aspect of display technology is to generate an optimization library by changing antibody affinity to antigen through mutagenesis and screening the high affinity antibody. In this study, we report a novel lentivirus display based optimization library antibody in which Agtuzumab scFv is displayed on cell membrane of HEK-293T cells. To generate an optimization library, hotspot mutagenesis was performed to achieve diverse antibody library. Based on sequence analysis of randomly selected clones, library size was estimated approximately to be 1.6 × 10 6 . Lentivirus display vector was used to display scFv antibody on cell surface and flow cytometery was performed to check the antibody affinity to antigen. Membrane bound scFv antibodies were then converted to secreted antibody through cre/loxP recombination. One of the mutant clones, M8 showed higher affinity to antigen in flow cytometery analysis. Further characterization of cellular and secreted scFv through western blot showed that antibody affinity was increased by three fold after mutagenesis. This study shows successful construction of a novel antibody library and suggests that hotspot mutagenesis could prove a useful and rapid optimization tool to generate similar libraries with various degree of antigen affinity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Structure-Activity Relationships of Truncated C2- or C8-Substituted Adenosine Derivatives as Dual Acting A2A and A3 Adenosine Receptor Ligands

    Science.gov (United States)

    Hou, Xiyan; Majik, Mahesh S.; Kim, Kyunglim; Pyee, Yuna; Lee, Yoonji; Alexander, Varughese; Chung, Hwa-Jin; Lee, Hyuk Woo; Chandra, Girish; Lee, Jin Hee; Park, Seul-gi; Choi, Won Jun; Kim, Hea Ok; Phan, Khai; Gao, Zhan-Guo; Jacobson, Kenneth A.; Choi, Sun; Lee, Sang Kook; Jeong, Lak Shin

    2011-01-01

    Truncated N6-substituted-4′-oxo- and 4′-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A2A and A3 adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA2AAR, but hydrophobic C8 substitution abolished binding at the hA2AAR. However, most of synthesized compounds displayed medium to high binding affinity at the hA3AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA2AAR agonists. C2 substitution probed geometrically through hA2AAR-docking, was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA2AAR agonist and hA3AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases. PMID:22142423

  16. Dual-affinity peptides to generate dense surface coverages of nanoparticles

    International Nuclear Information System (INIS)

    Del Re, Julia; Blum, Amy Szuchmacher

    2014-01-01

    Graphical abstract: - Highlights: • Stable nanoparticles were created with the Flg-A3 fusion peptide as a ligand. • Interactions of transition metal ions with Flg control aggregation of the nanoparticles in solution. • The QBP1-A3 fusion peptide improves surface attachment of gold nanoparticles. • Solution pre-aggregation of nanoparticles results in dense surface coverage. - Abstract: Depositing gold nanoparticles is of great interest because of the many potential applications of nanoparticle films; however, generating dense surface nanoparticle coverage remains a difficult challenge. Using dual-affinity peptides we have synthesized gold nanoparticles and then pre-aggregated the particles in solution via interactions with metal ions. These nanoparticle aggregates were then deposited onto silicon dioxide surfaces using another dual-affinity peptide to control binding to the substrate. The results demonstrate that when divalent ions like Zn 2+ or Ni 2+ are used, densely packed gold nanoparticle monolayers are formed on the silicon dioxide substrate, which may have applications in fields like molecular electronics

  17. Affinity monolith chromatography: A review of principles and recent analytical applications

    Science.gov (United States)

    Pfaunmiller, Erika L.; Paulemond, Marie Laura; Dupper, Courtney M.; Hage, David S.

    2012-01-01

    Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically-related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis or studies of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments or applications of this method, with particular emphasis being given to work that has appeared in the last five years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal-ions and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing and biotechnology. Current trends and possible future directions in AMC are also discussed. PMID:23187827

  18. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  20. Silica-supported Macroporous Chitosan Bead for Affinity Purification of Trypsin Inhibitor

    Institute of Scientific and Technical Information of China (English)

    Feng Na XI; Jian Min WU; Ming Ming LUAN

    2005-01-01

    Macroporous cross-linking chitosan layer coated on silica gel (CTS-SiO2) was prepared by phase inversion and polyethylene glycol (PEG) molecular imprinting methods. Formation of macroporous surface was investigated by scanning electron microscopy (SEM) and BET analysis.The prepared bead was activated by reacting with 1,2-ethylene diglycidyl ether for introducing epoxy groups, and trypsin could be efficiently immobilized on the bead as a biospecific ligand.The bead bearing trypsin was employed to purify trypsin inhibitor (TIs) from egg white as affinity adsorbent.

  1. Signal transduction by FcεRI: Analysis of the early molecular events

    Directory of Open Access Journals (Sweden)

    Henry Metzger

    1999-01-01

    Full Text Available We are analysing the initial molecular events stimulated by the high-affinity receptor for IgE, FcεRI. Earlier studies have shown that the first response when the receptor-bound IgE interacts with a multivalent antigen is a transphosphorylation of receptor tyrosines, induced by the approximation of two or more receptors by a constitutively associated src-family kinase (Lyn. The amount of weakly associated kinase regulates the intensity of the response. Several aspects are being analyzed: (i the sites on Lyn and the receptor that account for the constitutive interaction; (ii how the intrinsic affinity of a ligand for the receptor-bound IgE influences the responses; and (iii the mechanism(s by which low-affinity ligands can act as antagonists. In the latter studies, mast cell responses were followed by monitoring the phosphorylation of tyrosines on several proteins and secretion. At equivalent levels of receptor phosphorylation, a ligand with high affinity stimulated vigorous phosphorylation of downstream components, whereas a low-affinity ligand was unable to stimulate phosphorylation of the same components effectively. Cells stimulated with a mixture of high- and low-affinity ligands, under a protocol where simple displacement of one by the other was prevented, remarkably showed that excess low-affinity ligand inhibited the phosphorylation as well as degranulation by the high-affinity ligand. This antagonism results from a competition for the limiting amount of the constitutive initiating kinase. Related receptors that depend on recruitment of initiating kinases may be subject to similar regulatory mechanisms.

  2. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes.

    Science.gov (United States)

    Olsen, Richard W

    2015-01-01

    GABAA receptors (GABA(A)Rs) mediate rapid inhibitory transmission in the brain. GABA(A)Rs are ligand-gated chloride ion channel proteins and exist in about a dozen or more heteropentameric subtypes exhibiting variable age and brain regional localization and thus participation in differing brain functions and diseases. GABA(A)Rs are also subject to modulation by several chemotypes of allosteric ligands that help define structure and function, including subtype definition. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABA(A)Rs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Two classes of pharmacologically important allosteric modulatory ligand binding sites reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site and the high-affinity, relevant to intoxication, ethanol site. The benzodiazepine site is specific for certain GABA(A)R subtypes, mainly synaptic, while the ethanol site is found at a modified benzodiazepine site on different, extrasynaptic, subtypes. In the transmembrane domain are allosteric modulatory ligand sites for diverse chemotypes of general anesthetics: the volatile and intravenous agents, barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are endogenous positive allosteric modulators. X-ray crystal structures of prokaryotic and invertebrate pentameric ligand-gated ion channels, and the mammalian GABA(A)R protein, allow homology modeling of GABA(A)R subtypes with the various ligand sites located to suggest the structure and function of these proteins and their pharmacological modulation. © 2015 Elsevier Inc. All rights reserved.

  3. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    International Nuclear Information System (INIS)

    Lach, E.; Trifilieff, A.; Landry, Y.; Gies, J.P.

    1991-01-01

    The binding of the radiolabeled bombesin analogue [ 125 I-Tyr 4 ]bombesin to guinea-pig lung membranes was investigated. Binding of [ 125 I-Tyr 4 ]bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B max = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K D = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as [ 125 I-Tyr 4 ]bombesin, neuromedin B and neuromedin C inhibited the binding of [ 125 I-Tyr 4 ]bombesin in an order of potencies as follows: [ 125 I-Tyr 4 ]bombesin > bombesin ≥ neuromedin C much-gt neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B

  4. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  5. Kinetics of protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps

    Science.gov (United States)

    Tiwary, Pratyush; Limongelli, Vittorio; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    The ability to predict the mechanisms and the associated rate constants of protein–ligand unbinding is of great practical importance in drug design. In this work we demonstrate how a recently introduced metadynamics-based approach allows exploration of the unbinding pathways, estimation of the rates, and determination of the rate-limiting steps in the paradigmatic case of the trypsin–benzamidine system. Protein, ligand, and solvent are described with full atomic resolution. Using metadynamics, multiple unbinding trajectories that start with the ligand in the crystallographic binding pose and end with the ligand in the fully solvated state are generated. The unbinding rate koff is computed from the mean residence time of the ligand. Using our previously computed binding affinity we also obtain the binding rate kon. Both rates are in agreement with reported experimental values. We uncover the complex pathways of unbinding trajectories and describe the critical rate-limiting steps with unprecedented detail. Our findings illuminate the role played by the coupling between subtle protein backbone fluctuations and the solvation by water molecules that enter the binding pocket and assist in the breaking of the shielded hydrogen bonds. We expect our approach to be useful in calculating rates for general protein–ligand systems and a valid support for drug design. PMID:25605901

  6. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  7. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    International Nuclear Information System (INIS)

    Arnold, John

    2015-01-01

    The uranyl cation (UO 2 2+ ) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  8. In vivo assessment of [11C]MRB as a prospective PET ligand for imaging the norepinephrine transporter

    International Nuclear Information System (INIS)

    Severance, Alin J.; Milak, Matthew S.; Dileep Kumar, J.S.; Arango, Victoria; Parsey, Ramin V.; Prabhakaran, Jaya; Majo, Vattoly J.; Simpson, Norman R.; Van Heertum, Ronald L.; Mann, J.J.

    2007-01-01

    Antagonism of norepinephrine reuptake is now an important pharmacological strategy in the treatment of anxiety and depressive disorders, and many antidepressants have substantial potential occupancy of the norepinephrine transporter (NET) at recommended dosages. Despite the importance of understanding this transporter's role in psychiatric disease and treatment, a suitable radioligand for studying NET has been slow to emerge. (S,S)-Methylreboxetine (MRB) is among the more promising ligands recently adapted for positron emission tomography (PET), and the present study aimed to evaluate its potential for use in higher primates. Affinities for various brain targets were determined in vitro. PET studies were conducted in baboon under both test-retest and blocking conditions using 1 mg/kg nisoxetine. MRB has sixfold higher affinity for NET than the serotonin transporter, and negligible affinity for other sites. PET studies in baboons showed little regional heterogeneity in binding and were minimally affected by pretreatment with the NET antagonist nisoxetine. Despite improvement over previous ligands for imaging NET in vivo, the low signal to noise ratio indicates [ 11 C]MRB lacks sensitivity and reliability as a PET radiotracer in humans. (orig.)

  9. Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Fakhari, Mohamad Ali; Rahimpour, Farshad; Taran, Mojtaba

    2017-09-15

    Aqueous two phase affinity partitioning system using metal ligands was applied for partitioning and purification of xylanase produced by Aspergillus Niger. To minimization the number of experiments for the design parameters and develop predictive models for optimization of the purification process, response surface methodology (RSM) with a face-centered central composite design (CCF) has been used. Polyethylene glycol (PEG) 6000 was activated using epichlorohydrin, covalently linked to iminodiacetic acid (IDA), and the specific metal ligand Cu was attached to the polyethylene glycol-iminodiacetic acid (PEG-IDA). The influence of some experimental variables such as PEG (10-18%w/w), sodium sulfate (8-12%), PEG-IDA-Cu 2+ concentration (0-50% w/w of total PEG), pH of system (4-8) and crude enzyme loading (6-18%w/w) on xylanase and total protein partitioning coefficient, enzyme yield and enzyme specific activity were systematically evaluated. Two optimal point with high enzyme partitioning factor 10.97 and yield 79.95 (including 10% PEG, 12% Na 2 SO 4 , 50% ligand, pH 8 and 6% crude enzyme loading) and high specific activity in top phase 42.21 (including 14.73% PEG, 8.02% Na 2 SO 4 , 28.43% ligand, pH 7.7 and 6.08% crude enzyme loading) were attained. The adequacy of the RSM models was verified by a good agreement between experimental and predicted results. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase.

    Science.gov (United States)

    Amero, Carlos D; Byerly, Douglas W; McElroy, Craig A; Simmons, Amber; Foster, Mark P

    2009-08-18

    Peptide deformylase (PDF) is an enzyme that is responsible for removing the formyl group from nascently synthesized polypeptides in bacteria, attracting much attention as a potential target for novel antibacterial agents. Efforts to develop potent inhibitors of the enzyme have progressed on the basis of classical medicinal chemistry, combinatorial chemistry, and structural approaches, yet the validity of PDF as an antibacterial target hangs, in part, on the ability of inhibitors to selectively target this enzyme in favor of structurally related metallohydrolases. We have used (15)N NMR spectroscopy and isothermal titration calorimetry to investigate the high-affinity interaction of EcPDF with actinonin, a naturally occurring potent EcPDF inhibitor. Backbone amide chemical shifts, residual dipolar couplings, hydrogen-deuterium exchange, and (15)N relaxation reveal structural and dynamic effects of ligand binding in the immediate vicinity of the ligand-binding site as well as at remote sites. A comparison of the crystal structures of free and actinonin-bound EcPDF with the solution data suggests that most of the consequences of the ligand binding to the protein are lost or obscured during crystallization. The results of these studies improve our understanding of the thermodynamic global minimum and have important implications for structure-based drug design.

  11. Ligand recognition by RAR and RXR receptors: binding and selectivity.

    Science.gov (United States)

    Sussman, Fredy; de Lera, Angel R

    2005-10-06

    Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.

  12. A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders

    Science.gov (United States)

    Cui, Naiwen; Zhang, Huidan; Schneider, Nils; Tao, Ye; Asahara, Haruichi; Sun, Zhiyi; Cai, Yamei; Koehler, Stephan A.; de Greef, Tom F. A.; Abbaspourrad, Alireza; Weitz, David A.; Chong, Shaorong

    2016-01-01

    Drop-based microfluidics have recently become a novel tool by providing a stable linkage between phenotype and genotype for high throughput screening. However, use of drop-based microfluidics for screening high-affinity peptide binders has not been demonstrated due to the lack of a sensitive functional assay that can detect single DNA molecules in drops. To address this sensitivity issue, we introduced in vitro two-hybrid system (IVT2H) into microfluidic drops and developed a streamlined mix-and-read drop-IVT2H method to screen a random DNA library. Drop-IVT2H was based on the correlation between the binding affinity of two interacting protein domains and transcriptional activation of a fluorescent reporter. A DNA library encoding potential peptide binders was encapsulated with IVT2H such that single DNA molecules were distributed in individual drops. We validated drop-IVT2H by screening a three-random-residue library derived from a high-affinity MDM2 inhibitor PMI. The current drop-IVT2H platform is ideally suited for affinity screening of small-to-medium-sized libraries (103–106). It can obtain hits within a single day while consuming minimal amounts of reagents. Drop-IVT2H simplifies and accelerates the drop-based microfluidics workflow for screening random DNA libraries, and represents a novel alternative method for protein engineering and in vitro directed protein evolution. PMID:26940078

  13. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    Science.gov (United States)

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  14. Computational Approaches to the Chemical Equilibrium Constant in Protein-ligand Binding.

    Science.gov (United States)

    Montalvo-Acosta, Joel José; Cecchini, Marco

    2016-12-01

    The physiological role played by protein-ligand recognition has motivated the development of several computational approaches to the ligand binding affinity. Some of them, termed rigorous, have a strong theoretical foundation but involve too much computation to be generally useful. Some others alleviate the computational burden by introducing strong approximations and/or empirical calibrations, which also limit their general use. Most importantly, there is no straightforward correlation between the predictive power and the level of approximation introduced. Here, we present a general framework for the quantitative interpretation of protein-ligand binding based on statistical mechanics. Within this framework, we re-derive self-consistently the fundamental equations of some popular approaches to the binding constant and pinpoint the inherent approximations. Our analysis represents a first step towards the development of variants with optimum accuracy/efficiency ratio for each stage of the drug discovery pipeline. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation.

    Science.gov (United States)

    Mercader, Josep V; Agulló, Consuelo; Abad-Somovilla, Antonio; Abad-Fuentes, Antonio

    2011-03-07

    The design and synthesis of functional chemical derivatives of small organic molecules is usually a key step for the intricate production of a variety of bioconjugates. In this respect, the derivatization site at which the spacer arm is introduced in immunizing conjugates constitutes a highly critical parameter for the generation of high-affinity and selective antibodies. However, due to the usual complexity of the required synthetic procedures, the appropriate comparison of alternative tethering positions has often been neglected. In the present study, meticulous strategies were followed to prepare synthetic derivatives of pyraclostrobin with the same linkers located at diverse rationally-chosen sites. Activity appraisal of antibodies and bioconjugates was carried out by bidimensional competitive direct and indirect immunoassays, and a superior performance of two of the three synthesized haptens was found. Finally, a detailed analysis of the conformations of the target molecule and the synthesized haptens in aqueous solution was done using computer assisted molecular modeling techniques. This study suggested that the lower titers and affinities of one set of antibodies are most probably due to conformational effects of the spacer arm in the immunizing bioconjugate.

  16. Affinity imaging mass spectrometry (AIMS): high-throughput screening for specific small molecule interactions with frozen tissue sections.

    Science.gov (United States)

    Yoshimi, T; Kawabata, S; Taira, S; Okuno, A; Mikawa, R; Murayama, S; Tanaka, K; Takikawa, O

    2015-11-07

    A novel screening system, using affinity imaging mass spectrometry (AIMS), has been developed to identify protein aggregates or organ structures in unfixed human tissue. Frozen tissue sections are positioned on small (millimetre-scale) stainless steel chips and incubated with an extensive library of small molecules. Candidate molecules showing specific affinity for the tissue section are identified by imaging mass spectrometry (IMS). As an example application, we screened over a thousand compounds against Alzheimer's disease (AD) brain tissue and identified several compounds with high affinity for AD brain sections containing tau deposits compared to age-matched controls. It should also be possible to use AIMS to isolate chemical compounds with affinity for tissue structures or components that have been extensively modified by events such as oxidation, phosphorylation, acetylation, aggregation, racemization or truncation, for example, due to aging. It may also be applicable to biomarker screening programs.

  17. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  18. Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown.

    OpenAIRE

    Milton, N G

    1999-01-01

    Amyloid-beta (Abeta) specifically bound purified catalase with high affinity and inhibited catalase breakdown of H(2)O(2). The Abeta-induced catalase inhibition involved formation of the inactive catalase Compound II and was reversible. CatalaseAbeta interactions provide rapid functional assays for the cytotoxic domain of Abeta and suggest a mechanism for some of the observed actions of Abeta plus catalase in vitro.

  19. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    Directory of Open Access Journals (Sweden)

    Jim F White

    2010-09-01

    Full Text Available Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  20. Conditions With High Intracellular Glucose Inhibit Sensing Through Glucose Sensor Snf3 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Karhumaa, Kaisa; Wu, B.Q.; Kielland-Brandt, Morten

    2010-01-01

    as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose...... through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity...... of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors. J. Cell. Biochem. 110: 920...

  1. Probing Ligand Exchange in the P450 Enzyme CYP121 from Mycobacterium tuberculosis: Dynamic Equilibrium of the Distal Heme Ligand as a Function of pH and Temperature.

    Science.gov (United States)

    Fielding, Andrew J; Dornevil, Kednerlin; Ma, Li; Davis, Ian; Liu, Aimin

    2017-12-06

    CYP121 is a cytochrome P450 enzyme from Mycobacterium tuberculosis that catalyzes the formation of a C-C bond between the aromatic groups of its cyclodityrosine substrate (cYY). The crystal structure of CYP121 in complex with cYY reveals that the solvent-derived ligand remains bound to the ferric ion in the enzyme-substrate complex. Whereas in the generally accepted P450 mechanism, binding of the primary substrate in the active-site triggers the release of the solvent-derived ligand, priming the metal center for reduction and subsequent O 2 binding. Here we employed sodium cyanide to probe the metal-ligand exchange of the enzyme and the enzyme-substrate complex. The cyano adducts were characterized by UV-vis, EPR, and ENDOR spectroscopies and X-ray crystallography. A 100-fold increase in the affinity of cyanide binding to the enzyme-substrate complex over the ligand-free enzyme was observed. The crystal structure of the [CYP121(cYY)CN] ternary complex showed a rearrangement of the substrate in the active-site, when compared to the structure of the binary [CYP121(cYY)] complex. Transient kinetic studies showed that cYY binding resulted in a lower second-order rate constant (k on (CN) ) but a much more stable cyanide adduct with 3 orders of magnitude slower k off (CN) rate. A dynamic equilibrium between multiple high- and low-spin species for both the enzyme and enzyme-substrate complex was also observed, which is sensitive to changes in both pH and temperature. Our data reveal the chemical and physical properties of the solvent-derived ligand of the enzyme, which will help to understand the initial steps of the catalytic mechanism.

  2. Mobile Technology Affinity in Renal Transplant Recipients.

    Science.gov (United States)

    Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y

    Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Identification of high-affinity calmodulin-binding proteins in rat liver

    International Nuclear Information System (INIS)

    Hanley, R.M.; Dedman, J.R.; Shenolikar, S.

    1987-01-01

    The Ca 2+ -dependent binding of [ 125 I] calmodulin (CaM) to hepatic proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was utilized to identify CaM binding or acceptor proteins or CAPs. Two proteins of apparent molecular weight of 60,000 (CAP-60) and 45,000 (CAP-45) comprised > 80% of the Ca 2+ -dependent CaM binding in rat liver cytosol. CAP-60 and CAP-45 were partially purified by a variety of chromatographic steps, including affinity chromatography on CaM Sepharose. CAP-60 possessed a native molecular size of 400,000, indicating it to be the CaM-binding subunit of a larger oligomeric complex. In contrast, CAP-45 was monomeric as judged by gel filtration. Neither CAP-60 nor CAP-45 possessed chromatographic properties consistent with known CaM-dependent enzymes reported in the literature. Two-dimensional peptide mapping provided convincing evidence that CAP-60 and CAP-45 were unrelated to other well-characterized CAPs, namely Ca 2+ (CaM)-dependent protein kinase II, calcineurin, or the CaM-dependent cyclic nucleotide phosphodiesterase. The relative abundance and high affinity for CaM could suggest that these novel target proteins, CAP-60 and CAP-45, represent a dominant pathway for CaM action in the mammalian liver

  4. The universal statistical distributions of the affinity, equilibrium constants, kinetics and specificity in biomolecular recognition.

    Directory of Open Access Journals (Sweden)

    Xiliang Zheng

    2015-04-01

    Full Text Available We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity, the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.

  5. Production of lipase from Geotrichum sp and adsorption studies on affinity resin

    Directory of Open Access Journals (Sweden)

    E. S. KAMIMURA

    1999-06-01

    Full Text Available There is a growing interest in microbial lipase production due to its great potential for industrial applications such as food additives, industrial reagents and stain removers, as well as for medical applications. Specially for medical applications a high degree of purity is required, which is accomplished with high resolution chromatographic techniques. Affinity chromatography is considered a very high resolution chromatographic technique. In this work the adsorption isotherms and kinetics of the adsorption of lipase from Geotrichum sp on biospecific resin were determined. The resin was prepared using EAH sepharose 4B gel (Pharmacia, made to react with oleic acid as the specific ligand.The lipase was produced in a five-liter fermenter, with both complex and synthetic media. Fermentation conditions were a temperature of 30°C, an aeration of 1VVM and an agitation of 400 rpm. Maximum lipase activity was around 28 U/ml after 10 hours of fermentation for the complex medium. The kinetic model and parameters were determined by dynamic fitting to experimental results using the fourth-order Runge-Kutta method.

  6. Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat

    NARCIS (Netherlands)

    Gispen, W.H.; Adan, R.A.H.; Szklarczyk, A.W.; Oosterom, J.; Brakkee, J.H.; Nijenhuis, W.A.; Schaaper, W.M.; Meloen, R.H.

    1999-01-01

    Since the melanocortin MC3 and melanocortin MC4 receptors are the main melanocortin receptor subtypes expressed in rat brain, we characterized the activity and affinity of nine melanocortin receptor ligands using these receptors in vitro, as well as their activity in a well-defined

  7. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies.

    Science.gov (United States)

    Julian, Mark C; Lee, Christine C; Tiller, Kathryn E; Rabia, Lilia A; Day, Evan K; Schick, Arthur J; Tessier, Peter M

    2015-10-01

    An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.

  9. Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition.

    Directory of Open Access Journals (Sweden)

    Yves Nominé

    Full Text Available Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15 derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F was equally well tolerated as the wild type glutamine (Q at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology. Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.

  10. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    International Nuclear Information System (INIS)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M.

    1989-01-01

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125 I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity

  11. The utility of affine variables and affine coherent states

    International Nuclear Information System (INIS)

    Klauder, John R

    2012-01-01

    Affine coherent states are generated by affine kinematical variables much like canonical coherent states are generated by canonical kinematical variables. Although all classical and quantum formalisms normally entail canonical variables, it is shown that affine variables can serve equally well for many classical and quantum studies. This general purpose analysis provides tools to discuss two major applications: (1) the completely successful quantization of a nonrenormalizable scalar quantum field theory by affine techniques, in complete contrast to canonical techniques which only offer triviality; and (2) a formulation of the kinematical portion of quantum gravity that favors affine kinematical variables over canonical kinematical variables, and which generates a framework in which a favorable analysis of the constrained dynamical issues can take place. All this is possible because of the close connection between the affine and the canonical stories, while the few distinctions can be used to advantage when appropriate. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (review)

  12. Adsorption of endotoxins on Ca2+ -iminodiacetic acid by metal ion affinity chromatography.

    Science.gov (United States)

    Lopes, André Moreni; Romeu, Jorge Sánchez; Meireles, Rolando Páez; Perera, Gabriel Marquez; Morales, Rolando Perdomo; Pessoa, Adalberto; Cárdenas, Lourdes Zumalacárregui

    2012-11-01

    Endotoxins (also known as lipopolysaccharides (LPS)) are undesirable by-products of recombinant proteins, purified from Escherichia coli. LPS can be considered stable under a wide range of temperature and pH, making their removal one of the most difficult tasks in downstream processes during protein purification. The inherent toxicity of LPS makes their removal an important step for the application of these proteins in several biological assays and for a safe parenteral administration. Immobilized metal affinity chromatography (IMAC) enables the affinity interactions between the metal ions (immobilized on the support through the chelating compound) and the target molecules, thus enabling high-efficiency separation of the target molecules from other components present in a mixture. Affinity chromatography is applied with Ca2+ -iminodiacetic acid (IDA) to remove most of the LPS contaminants from the end product (more than 90%). In this study, the adsorption of LPS on an IDA-Ca2+ was investigated. The adsorption Freundlich isotherm of LPS-IDA-Ca2+ provides a theoretical basis for LPS removal. It was found that LPS is bound mainly by interactions between the phosphate group in LPS and Ca2+ ligands on the beads. The factors such as pH (4.0 or 5.5) and ionic strength (1.0 mol/L) are essential to obtain effective removal of LPS for contaminant levels between endotoxin' concentration values less than 100 EU/mL and 100 000 EU/mL. This new protocol represents a substantial advantage in time, effort, and production costs.

  13. Selection of imprinted nanoparticles by affinity chromatography.

    Science.gov (United States)

    Guerreiro, António R; Chianella, Iva; Piletska, Elena; Whitcombe, Michael J; Piletsky, Sergey A

    2009-04-15

    Soluble molecularly imprinted nanoparticles were synthesised via iniferter initiated polymerisation and separated by size via gel permeation chromatography. Subsequent fractionation of these particles by affinity chromatography allowed the separation of high affinity fractions from the mixture of nanoparticles. Fractions selected this way possess affinity similar to that of natural antibodies (K(d) 6.6x10(-8)) M and were also able to discriminate between related functional analogues of the template.

  14. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  15. Structural insights into a high affinity nanobody:antigen complex by homology modelling

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2017-01-01

    Porphyromonas gingivalis is a major periodontitis-causing pathogens. P. gingivalis secrete a cysteine protease termed RgpB, which is specific for Arg-Xaa bonds in substrates. Recently, a nanobody-based assay was used to demonstrate that RgpB could represent a novel diagnostic target, thereby...... simplifying. P. gingivalis detection. The nanobody, VHH7, had a high binding affinity and was specific for RgpB, when tested towards the highly identical RgpA. In this study a homology model of VHH7 was build. The complementarity determining regions (CDR) comprising the paratope residues responsible for Rgp...

  16. Alternative affinity tools: more attractive than antibodies?

    NARCIS (Netherlands)

    Ruigrok, V.J.B.; Levisson, M.; Eppink, M.H.M.; Smidt, H.; Oost, van der J.

    2011-01-01

    Antibodies are the most successful affinity tools used today, in both fundamental and applied research (diagnostics, purification and therapeutics). Nonetheless, antibodies do have their limitations, including high production costs and low stability. Alternative affinity tools based on nucleic acids

  17. Calculation of site affinity constants and cooperativity coefficients for binding of ligands and/or protons to macromolecules. II. Relationships between chemical model and partition function algorithm.

    Science.gov (United States)

    Fisicaro, E; Braibanti, A; Lamb, J D; Oscarson, J L

    1990-05-01

    The relationships between the chemical properties of a system and the partition function algorithm as applied to the description of multiple equilibria in solution are explained. The partition functions ZM, ZA, and ZH are obtained from powers of the binary generating functions Jj = (1 + kappa j gamma j,i[Y])i tau j, where i tau j = p tau j, q tau j, or r tau j represent the maximum number of sites in sites in class j, for Y = M, A, or H, respectively. Each term of the generating function can be considered an element (ij) of a vector Jj and each power of the cooperativity factor gamma ij,i can be considered an element of a diagonal cooperativity matrix gamma j. The vectors Jj are combined in tensor product matrices L tau = (J1) [J2]...[Jj]..., thus representing different receptor-ligand combinations. The partition functions are obtained by summing elements of the tensor matrices. The relationship of the partition functions with the total chemical amounts TM, TA, and TH has been found. The aim is to describe the total chemical amounts TM, TA, and TH as functions of the site affinity constants kappa j and cooperativity coefficients bj. The total amounts are calculated from the sum of elements of tensor matrices Ll. Each set of indices (pj..., qj..., rj...) represents one element of a tensor matrix L tau and defines each term of the summation. Each term corresponds to the concentration of a chemical microspecies. The distinction between microspecies MpjAqjHrj with ligands bound on specific sites and macrospecies MpAqHR corresponding to a chemical stoichiometric composition is shown. The translation of the properties of chemical model schemes into the algorithms for the generation of partition functions is illustrated with reference to a series of examples of gradually increasing complexity. The equilibria examined concern: (1) a unique class of sites; (2) the protonation of a base with two classes of sites; (3) the simultaneous binding of ligand A and proton H to a

  18. Trace element affinities in two high-Ge coals from China

    Energy Technology Data Exchange (ETDEWEB)

    Jing Li; Xinguo Zhuang; Xavier Querol [China University of Geosciences, Wuhan (China). Faculty of Earth Resources

    2011-01-15

    The Lincang (Yunnan Province, Southwest China) and Wulantuga (Inner Mongolia, Northeast China) coal deposits are known because of the high-Ge content. These coals have also a high concentration of a number of other elements. To determine the mode of occurrence of the enriched elements in both coals, six density fractions from {lt} 1.43 to {gt} 2.8 g/cm{sup 3} were obtained from two representative samples using heavy-liquids. A number of peculiar geochemical patterns characterize these high-Ge coals. Thus, the results of the chemical analysis of these density fractions showed that both coals (very distant and of a different geological age) are highly enriched (compared with the usual worldwide coal concentration ranges) in Ge, As, Sb, W, Be, and Tl. This may be due to similar geochemistry of hydrothermal fluids influencing the Earth Crust in these regions of China. Moreover, Wulantuga coal (Early Cretaceous subbituminous coal) is also enriched in Ca, Mg, and Na, and Lincang coal (Neogene subbituminous coal) in K, Rb, Nb, Mo, Sn, Cs, and U. A group of elements consisting of Ge, W, B, Nb, and Sb mostly occur with an organic affinity in both coals. Additionally, Be, U, and Mo (and partially Mn and Zn) in Lincang, and Na and Mg in Wulantuga occur also with a major organic affinity. Both coals have sulfide-arsenide mineral assemblages (Fe, S, As, Sn, and Pb, and in addition to Tl, Ta, and Cs in the Lincang coal). The occurrence of Al, P, Li, Sc, Ti, V, Cr, and Zr in both coals, and Ba in Lincang, are associated with the mineral assemblage of silico-aluminates and minor heavy minerals. Furthermore, P, Na, Li, Sc, Ti, Ga, Rb, Zr, Cr, Ba, Th, and LREE (La, Ce, Pr, Nd, and Gd) in Lincang are associated with mineral assemblages of phosphates and minor heavy minerals. The two later mineral assemblages are derived from the occurrence of detrital minerals. 34 refs., 7 figs., 3 tabs.

  19. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    International Nuclear Information System (INIS)

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H.

    1990-01-01

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the α-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor

  20. A computational approach to evaluate the androgenic affinity of iprodione, procymidone, vinclozolin and their metabolites.

    Directory of Open Access Journals (Sweden)

    Corrado Lodovico Galli

    Full Text Available Our research is aimed at devising and assessing a computational approach to evaluate the affinity of endocrine active substances (EASs and their metabolites towards the ligand binding domain (LBD of the androgen receptor (AR in three distantly related species: human, rat, and zebrafish. We computed the affinity for all the selected molecules following a computational approach based on molecular modelling and docking. Three different classes of molecules with well-known endocrine activity (iprodione, procymidone, vinclozolin, and a selection of their metabolites were evaluated. Our approach was demonstrated useful as the first step of chemical safety evaluation since ligand-target interaction is a necessary condition for exerting any biological effect. Moreover, a different sensitivity concerning AR LBD was computed for the tested species (rat being the least sensitive of the three. This evidence suggests that, in order not to over-/under-estimate the risks connected with the use of a chemical entity, further in vitro and/or in vivo tests should be carried out only after an accurate evaluation of the most suitable cellular system or animal species. The introduction of in silico approaches to evaluate hazard can accelerate discovery and innovation with a lower economic effort than with a fully wet strategy.

  1. A computational approach to evaluate the androgenic affinity of iprodione, procymidone, vinclozolin and their metabolites.

    Science.gov (United States)

    Galli, Corrado Lodovico; Sensi, Cristina; Fumagalli, Amos; Parravicini, Chiara; Marinovich, Marina; Eberini, Ivano

    2014-01-01

    Our research is aimed at devising and assessing a computational approach to evaluate the affinity of endocrine active substances (EASs) and their metabolites towards the ligand binding domain (LBD) of the androgen receptor (AR) in three distantly related species: human, rat, and zebrafish. We computed the affinity for all the selected molecules following a computational approach based on molecular modelling and docking. Three different classes of molecules with well-known endocrine activity (iprodione, procymidone, vinclozolin, and a selection of their metabolites) were evaluated. Our approach was demonstrated useful as the first step of chemical safety evaluation since ligand-target interaction is a necessary condition for exerting any biological effect. Moreover, a different sensitivity concerning AR LBD was computed for the tested species (rat being the least sensitive of the three). This evidence suggests that, in order not to over-/under-estimate the risks connected with the use of a chemical entity, further in vitro and/or in vivo tests should be carried out only after an accurate evaluation of the most suitable cellular system or animal species. The introduction of in silico approaches to evaluate hazard can accelerate discovery and innovation with a lower economic effort than with a fully wet strategy.

  2. Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting.

    Directory of Open Access Journals (Sweden)

    Aman P Mann

    Full Text Available Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA against E-selectin (ESTA-1 by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (K(D = 47 nM while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition of sLe(x positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1 that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.

  3. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.

    Science.gov (United States)

    Diribe, C O; Warhurst, D C

    1985-09-01

    A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.

  4. Glycan-decorated HPMA copolymers as high-affinity lectin ligands

    Czech Academy of Sciences Publication Activity Database

    Bojarová, Pavla; Chytil, Petr; Mikulová, Barbora; Bumba, Ladislav; Konefal, Rafal; Pelantová, Helena; Krejzová, Jana; Slámová, Kristýna; Petrásková, Lucie; Kotrchová, Lenka; Cvačka, Josef; Etrych, Tomáš; Křen, Vladimír

    2017-01-01

    Roč. 8, č. 17 (2017), s. 2647-2658 ISSN 1759-9954 R&D Projects: GA ČR GC15-02578J; GA MZd(CZ) NV16-28594A; GA MŠk(CZ) LD15085; GA MŠk(CZ) LM2015064; GA MŠk(CZ) LO1507 Institutional support: RVO:61388971 ; RVO:61389013 ; RVO:61388963 Keywords : BETA-N-ACETYLHEXOSAMINIDASE * WHEAT-GERM-AGGLUTININ * CLICK CHEMISTRY Subject RIV: CE - Biochemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Biochemistry and molecular biology; Polymer science (UMCH-V); Polymer science (UOCHB-X) Impact factor: 5.375, year: 2016

  5. Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain.

    Science.gov (United States)

    Runge, Steffen; Thøgersen, Henning; Madsen, Kjeld; Lau, Jesper; Rudolph, Rainer

    2008-04-25

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.

  6. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    Science.gov (United States)

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  7. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abu Samra, Dina Bashir Kamil

    2016-01-01

    The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E-selectin was confirmed using some static and flow-based assays. E-selectin binds to CD34 with an affinity comparable to the well-described E-selLs CD44/HCELL and PSGL-1. CD34 knockdown resulted in faster-rolling velocities compared to control cells especially at and above three dyne/cm2. CD34 is the first selectin ligand since PSGL-1 reported to bind E-/P-/L-selectins and likely plays a key role in directing the migration of human HSPCs to the bone marrow.

  8. Characterization of a high affinity cocaine binding site in rat brain

    International Nuclear Information System (INIS)

    Calligaro, D.; Eldefrawi, M.

    1986-01-01

    Binding of [ 3 H]cocaine to synaptic membranes from whole rat brain was reversible and saturable. Nonlinear regression analysis of binding isotherms indicated two binding affinities: one with k/sub d/ = 16 nM, B/sub max/ = 0.65 pmoles/mg protein and the other with K/sub d/ = 660 nM, B/sub max/ = 5.1 pmoles/mg protein. The high-affinity binding of [ 3 H]cocaine was sensitive to the actions of trypsin and chymotrypsin but not carboxypeptidase, and was eliminated by exposure of the membranes to 95 0 C for 5 min. Specific binding at 2 nM was higher at pH 8.8 than at pH 7.0. Binding of [ 3 H]cocaine (15 nM) was inhibited by increasing concentrations of Na + ions. Several cocaine analogues, neurotransmitter uptake inhibitors and local anesthetics displaced specific [ 3 H]cocaine binding at 2 nM with various potencies. The cocaine analogue (-)-norcocaine was the most potent (IC 50 = 10 nM), while the local anesthetic tetracaine was the least potent in inhibiting [ 3 H]cocaine binding. Several biogenic amine uptake inhibitors, including tricyclic antidepressants and phencyclidine, had IC 50 values below μM concentrations

  9. 2,2'-Dithiobis(N-ethyl-spermine-5-carboxamide) is a high affinity, membrane-impermeant antagonist of the mammalian polyamine transport system.

    Science.gov (United States)

    Huber, M; Pelletier, J G; Torossian, K; Dionne, P; Gamache, I; Charest-Gaudreault, R; Audette, M; Poulin, R

    1996-11-01

    We have synthesized 2,2'-dithiobis(N-ethyl-spermine-5-carboxamide) (DESC), its thiol monomer (MESC), and the mixed MESC-cysteamine disulfide (DEASC) as potential inhibitors of polyamine transport in mammalian cells. DESC was the most potent antagonist of spermine transport in ZR-75-1 human breast cancer cells, with Ki values of 5. 0 +/- 0.7, 80 +/- 31, and 16 +/- 3 microM for DESC, MESC, and DEASC, respectively. DESC also strongly blocked putrescine and spermidine uptake in ZR-75-1 cells (Ki = 1.6 +/- 0.5 and 2.7 +/- 1.1 microM, respectively). While DESC and MESC were purely competitive inhibitors of putrescine transport, DEASC was a mixed competitive/noncompetitive antagonist. Remarkably, DESC was virtually impermeant in ZR-75-1 cells despite its low Ki toward polyamine transport. The marked difference in affinity between DESC and MESC was essentially due to the tail-to-tail juxtaposition of two spermine-like structures, suggesting that dimeric ligands of the polyamine transporter might simultaneously interact with more than one binding site. While DESC strongly decreased the initial rate of [3H]spermidine transport, even a 40-fold molar excess of antagonist could not completely abolish intracellular spermidine accumulation. Moreover, as little as 0.3 microM spermidine fully restored growth in ZR-75-1 cells treated with an inhibitor of polyamine biosynthesis in the presence of 50 microM DESC, thus emphasizing the importance of uptake of trace amounts of exogenous polyamines. Thus, reducing the exogenous supply of polyamines with a potent competitive inhibitor may be kinetically inadequate to block replenishment of the polyamine pool in polyamine-depleted tumor cells that display high transport capacity. These results demonstrate that polyamine analogues cross-linked into a dimeric structure such as DESC interact with high affinity with the mammalian polyamine carrier without being used as substrates. These novel properties provide a framework for the design of

  10. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay.

    Science.gov (United States)

    Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen

    2017-01-01

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

  11. High-Affinity Methanotrophy Informed by Genome-Wide Analysis of Upland Soil Cluster Alpha (USCα) from Axel Heiberg Island, Canadian High Arctic

    Science.gov (United States)

    Rusley, C.; Onstott, T. C.; Lau, M.

    2017-12-01

    Methane (CH4) is a potent greenhouse gas whose proper budgeting is vital to climate predictions. Recent studies have identified upland Arctic mineral cryosols as consistent CH4 sinks, drawing CH4 from both the atmosphere and underlying anaerobic soil layers. Global atmospheric CH4 uptake is proposed to be mediated by high-affinity methanotrophs based on the detection of the marker gene pmoA (particulate methane monooxygenase beta subunit). However, a lack of pure cultures and scarcity of genomic information have hindered our understanding of their metabolic capabilities and versatility. Together with the missing genetic linkage between its pmoA and 16S ribosomal RNA (rRNA) gene, the factors that control the distribution and magnitude of high-affinity methanotrophy in the Arctic permafrost-affected region have remained elusive. Using 21 metagenomic datasets of surface soils obtained from long-term core incubation experiments,1 this bioinformatics study aimed to reconstruct the draft genome of the Upland Soil Cluster α-proteobacteria (USCα), the high-affinity methanotroph previously detected in the samples,2 and to determine its phylogeny and metabolic requirements. We obtained a genome bin containing the high-affinity form of the USCα-like pmoA gene. The 3.03 Mbp assembly is 91.6% complete with a unique set of single-copy marker genes. The 16S rRNA gene fragment of USCα belongs to the α-proteobacterial family Beijerinckiaceae. Genome annotation indicates possible formaldehyde oxidation via tetrahydromethanopterin-linked C1 transfer pathways, acetate utilization, carbon fixation via the Calvin-Benson-Bassham cycle, and glycogen production. Notably, the key enzymes for formaldehyde assimilation via the serine and ribulose monophosphate pathways are missing. The presence of genes encoding nitrate reductase and hemoglobin suggests adaptation to low O2 under water-logged conditions. Since USCα has versatile carbon metabolisms, it may not be an obligate methanotroph

  12. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  13. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    Science.gov (United States)

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  14. Prediction of the Iron-Based Polynuclear Magnetic Superhalogens with Pseudohalogen CN as Ligands.

    Science.gov (United States)

    Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Liu, Yun; Mu, Qiang

    2017-07-17

    To explore stable polynuclear magnetic superhalogens, we perform an unbiased structure search for polynuclear iron-based systems based on pseudohalogen ligand CN using the CALYPSO method in conjunction with density functional theory. The superhalogen properties, magnetic properties, and thermodynamic stabilities of neutral and anionic Fe 2 (CN) 5 and Fe 3 (CN) 7 clusters are investigated. The results show that both of the clusters have superhalogen properties due to their electron affinities (EAs) and that vertical detachment energies (VDEs) are significantly larger than those of the chlorine element and their ligand CN. The distribution of the extra electron analysis indicates that the extra electron is aggregated mainly into pseudohalogen ligand CN units in Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ cluster. These features contribute significantly to their high EA and VDE. Besides superhalogen properties, these two anionic clusters carry a large magnetic moment just like the Fe 2 F 5 ¯ cluster. Additionally, the thermodynamic stabilities are also discussed by calculating the energy required to fragment the cluster into various smaller stable clusters. It is found that Fe(CN) 2 is the most favorable fragmentation product for anionic Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ clusters, and both of the anions are less stable against ejection of Fe atoms than Fe(CN) n-x .

  15. Ligand-Free Nanocrystals of Highly Emissive Cs4PbBr6 Perovskite

    KAUST Repository

    Zhang, Yuhai; Sinatra, Lutfan; Alarousu, Erkki; Yin, Jun; El-Zohry, Ahmed M.; Bakr, Osman; Mohammed, Omar F.

    2018-01-01

    diode or solar cell. Here, we report a new approach to preparing ligand-free perovskite NCs of CsPbBr, which retained high photoluminescence quantum yield (44%). Such an approach involves a polar solvent (acetonitrile) and two small molecules (ammonium

  16. Thermodynamic studies of the complexation of plutonium(IV) by linear and macrocyclic poly-amino-carboxylate ligands

    International Nuclear Information System (INIS)

    Burgat, Romain

    2007-01-01

    In the framework of a collaboration between the CEA (Commissariat a l Energie Atomique) of Valduc and the ICMUB (Institut de Chimie Moleculaire de l Universite de Bourgogne), a study platform of the structural and physico-chemical properties of the radioelements U, Pu and Am complexes has been implemented. The plutonium(IV) complexation has been studied in a molar nitrate medium. The affinity of three linear poly-amino-carboxylates (EDTA, CDTA and DTPA) towards plutonium(IV) has then been estimated. For the three ligands, the formation constants of the monoleptic complexes Pu(EDTA), Pu(CDTA) and [Pu(DTPA)] - have been determined in a (H,K)NO 3 1 M medium and then extrapolated at a zero ionic force with the specific interactions theory (SIT). For the three complexes, mono-hydroxylated monoleptic species have been observed. With the EDTA and the CDTA, protonated dileptic complexes of a general formula [Pu(L) 2 H h ] (4-h)- have been revealed too. Nevertheless, the steric hindrance around the metallic center is too important to allow to a second molecule of DTPA to coordinate the Pu 4+ cation. The exclusive formation of the species [Pu(DTPA)] - and [Pu(DTPA)(OH)] 2- has been confirmed by capillary electrophoresis (EC-ICP-MS). On account of the preliminary results obtained during the titration of the cyclame tetraacetic product (TETRA) in presence of plutonium(IV), the adding of a competitive ligand such as EDTA has been considered for the study of the complexation of this radioelement by macrocyclic ligands. At last, the affinity of different macrocyclic ligands containing either four amide functions (TETAMMe 2 and TETAMMEt 2 ) or carboxylate groups (TETA, DOTPr and TETPr) towards lanthanides(III) has been estimated too. Although the complexation reaction be fast with the two first ligands, these complexes are less stable than those formed with the carboxylic macrocycles. (O.M.)

  17. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszkiewicz, Marek, E-mail: mpietraszkiewicz@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Dutkiewicz, Grzegorz; Borowiak, Teresa [Adam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań (Poland); Kaczmarek, Anna M. [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium); Van Deun, Rik, E-mail: rik.vandeun@ugent.be [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium)

    2016-02-15

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu{sup 3+} to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip){sub 3}. The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  18. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  19. Structural insights into a high affinity nanobody:antigen complex by homology modelling.

    Science.gov (United States)

    Skottrup, Peter Durand

    2017-09-01

    Porphyromonas gingivalis is a major periodontitis-causing pathogens. P. gingivalis secrete a cysteine protease termed RgpB, which is specific for Arg-Xaa bonds in substrates. Recently, a nanobody-based assay was used to demonstrate that RgpB could represent a novel diagnostic target, thereby simplifying. P. gingivalis detection. The nanobody, VHH7, had a high binding affinity and was specific for RgpB, when tested towards the highly identical RgpA. In this study a homology model of VHH7 was build. The complementarity determining regions (CDR) comprising the paratope residues responsible for RgpB binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified. Collectively, the VHH7 homology model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 5-Chloro-2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine: a new serotonin transporter ligand

    International Nuclear Information System (INIS)

    Oya, Shunichi; Choi, Seok-Rye; Kung, Mei-Ping; Kung, Hank F.

    2007-01-01

    Two novel ligands with 4' substitution on the Phenyl Ring B of biphenylthiol, 5-chloro-2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine (7) and 2-(2'-((dimethylamino)methyl)-4'-methoxyphenylthio)-5-iodobenzenamine (8), were prepared and tested as potential serotonin transporter (SERT) imaging agents. The new ligands displayed extremely high binding affinities to SERT (K i =0.22±0.09 and 0.11±0.04 nM, respectively), with very low binding affinities to dopamine and norepinephrine transporters (K i >1000 nM). The corresponding [ 125 I]7 and [ 125 I]8 were successfully prepared from tri-n-butyltin derivatives. They showed good brain uptakes and prolonged retention after intravenous injection in rats (brain uptake was 1.77% and 0.98% dose/g for [ 125 I]7, and 0.92% and 0.29% dose/g for [ 125 I]8, at 2 and 120 min, respectively). Significantly, [ 125 I]7 showed excellent uptake and prolonged retention in the hypothalamus, where SERT concentration was highest. The hypothalamus/cerebellum (HY/CB) ratios (target/background ratios) were 4.24, 7.10, 8.24 and 12.6 at 2, 4, 6 and 12 h, respectively. The HY/CB ratios for [ 125 I]8 were 3.97, 5.57 and 5.06 at 1, 2 and 4 h, respectively. Adding the 4'-iodo group to the Phenyl Ring B of Compound (7) appeared to reduce the rate of clearance from the brain, and kinetics favored uptake and retention in the hypothalamus. The localization of [ 125 I]7 in the hypothalamus region in the rat brain could be blocked by pretreatment with (+)McN5652, escitalopram and ADAM (2), which are all selective SERT ligands (at 2 mg/kg iv, 5 min pretreatment). Ex vivo autoradiograms of rat brain sections (at 4 h after intravenous injection of [ 125 I]7) showed intense labeling in regions of the brain known to have high SERT density. The excellent selective uptake and retention in the hypothalamus region suggest that [ 123 I]7 is a potential lead compound for developing new imaging agents targeting SERT-binding sites with single

  1. The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35

    OpenAIRE

    MacKenzie, Amanda E.; Caltabiano, Gianluigi; Kent, Toby C.; Jenkins, Laura; McCallum, Jennifer E.; Hudson, Brian D.; Nicklin, Stuart A.; Fawcett, Lindsay; Markwick, Rachel; Charlton, Steven J.; Milligan, Graeme

    2014-01-01

    Lack of high potency agonists has restricted analysis of the G protein–coupled receptor GPR35. Moreover, marked variation in potency and/or affinity of current ligands between human and rodent orthologs of GPR35 has limited their productive use in rodent models of physiology. Based on the reported modest potency of the antiasthma and antiallergic ligands cromolyn disodium and nedocromil sodium, we identified the related compounds lodoxamide and bufrolin as high potency agonists of human GPR35...

  2. Characterization of high affinity [3H]triazolam binding in rat brain

    International Nuclear Information System (INIS)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-01-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on [ 3 H]TZ binding. Saturation studies showed a shift to lower affinity at 37 0 C (K/sub d/ = 0.25 +/- 0.01 nM at O 0 C; K/sub d/ = 1.46 +/- 0.03 nM at 37 0 C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0 0 C and 1001 +/- 43 fmoles/mg prot. at 37 0 C). Inhibition studies showed that [ 3 H]TZ binding displayed no GABA shift at 0 0 C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37 0 C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37 0 C. In Ro 15-1788/[ 3 H]TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on [ 3 H]TZ binding at both temperatures. In conclusion [ 3 H]TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists

  3. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-05

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An Unusual Ligand Coordination Gives Rise to a New Family of Rhodium Metalloinsertors with Improved Selectivity and Potency

    Science.gov (United States)

    2015-01-01

    Rhodium metalloinsertors are octahedral complexes that bind DNA mismatches with high affinity and specificity and exhibit unique cell-selective cytotoxicity, targeting mismatch repair (MMR)-deficient cells over MMR-proficient cells. Here we describe a new generation of metalloinsertors with enhanced biological potency and selectivity, in which the complexes show Rh–O coordination. In particular, it has been found that both Δ- and Λ-[Rh(chrysi)(phen)(DPE)]2+ (where chrysi =5,6 chrysenequinone diimmine, phen =1,10-phenanthroline, and DPE = 1,1-di(pyridine-2-yl)ethan-1-ol) bind to DNA containing a single CC mismatch with similar affinities and without racemization. This is in direct contrast with previous metalloinsertors and suggests a possible different binding disposition for these complexes in the mismatch site. We ascribe this difference to the higher pKa of the coordinated immine of the chrysi ligand in these complexes, so that the complexes must insert into the DNA helix with the inserting ligand in a buckled orientation; spectroscopic studies in the presence and absence of DNA along with the crystal structure of the complex without DNA support this assignment. Remarkably, all members of this new family of compounds have significantly increased potency in a range of cellular assays; indeed, all are more potent than cisplatin and N-methyl-N′-nitro-nitrosoguanidine (MNNG, a common DNA-alkylating chemotherapeutic agent). Moreover, the activities of the new metalloinsertors are coupled with high levels of selective cytotoxicity for MMR-deficient versus proficient colorectal cancer cells. PMID:25254630

  5. Murine interleukin 1 receptor. Direct identification by ligand blotting and purification to homogeneity of an interleukin 1-binding glycoprotein

    International Nuclear Information System (INIS)

    Bird, T.A.; Gearing, A.J.; Saklatvala, J.

    1988-01-01

    Functional receptors (IL1-R) for the proinflammatory cytokine interleukin 1 (IL1) were solubilized from plasma membranes of the NOB-1 subclone of murine EL4 6.1 thymoma cells using the zwitterionic detergent 3[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Membrane extracts were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and ligand blotted with 125 I-labeled recombinant human IL1 alpha in order to reveal proteins capable of specifically binding IL1. A single polydisperse polypeptide of Mr approximately equal to 80,000 was identified in this way, which bound IL1 alpha and IL1 beta with the same affinity as the IL1-R on intact NOB-1 cells (approximately equal to 10(-10) M). The IL1-binding polypeptide was only seen in membranes from IL1-R-bearing cells and did not react with interleukin 2, tumor necrosis factor alpha, or interferon. IL1-R was purified to apparent homogeneity from solubilized NOB-1 membranes by affinity chromatography on wheat germ agglutinin-Sepharose and IL1 alpha-Sepharose. Gel electrophoresis and silver staining of purified preparations revealed a single protein of Mr approximately equal to 80,000 which reacted positively in the ligand-blotting procedure and which we identify as the ligand-binding moiety of the murine IL1-R. Purified IL1-R exhibited the same affinity and specificity as the receptor on intact cells. The relationship of this protein to proteins identified by covalent cross-linking studies is discussed

  6. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    Science.gov (United States)

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Functional evaluation of carbohydrate-centred glycoclusters by enzyme-linked lectin assay: ligands for concanavalin A.

    Science.gov (United States)

    Köhn, Maja; Benito, Juan M; Ortiz Mellet, Carmen; Lindhorst, Thisbe K; García Fernández, José M

    2004-06-07

    The affinities of the mannose-specific lectin concanavalin A (Con A) towards D-glucose-centred mannosyl clusters differing in the anomeric configuration of the monosaccharide core, nature of the bridging functional groups and valency, have been measured by a competitive enzyme-linked lectin assay. Pentavalent thioether-linked ligands (5 and 7) were prepared by radical addition of 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranose to the corresponding penta-O-allyl-alpha- or -beta-D-glucopyranose, followed by deacetylation. The distinct reactivity of the anomeric position in the D-glucose scaffold was exploited in the preparation of a tetravalent cluster (10) that keeps a reactive aglyconic group for further manipulation, including incorporation of a reporter group or attachment to a solid support. Hydroboration of the double bonds in the penta-O-allyl-alpha-D-glucopyranose derivative and replacement of the hydroxy groups with amine moieties gave a suitable precursor for the preparation of pentavalent and 15-valent mannosides through the thiourea-bridging reaction (17 and 20, respectively). The diastereomeric 1-thiomannose-coated clusters 5 and 7 were demonstrated to be potent ligands for Con A, with IC(50) values for the inhibition of the Con A-yeast mannan association indicative of 6.4- and 5.5-fold increases in binding affinity (valency-corrected values), respectively, relative to the value for methyl alpha-D-mannopyranoside. The tetravalent cluster 10 exhibited a valency-corrected relative lectin-binding potency virtually identical to that of the homologous pentavalent mannoside 7. In sharp contrast, replacement of the 1-thiomannose wedges of 5 with alpha-D-mannopyranosylthioureido units (17) virtually abolished any multivalent or statistic effects, with a dramatic decrease of binding affinity. The 15-valent ligand 20, possessing classical O-glycosidic linkages, exhibited a twofold increase in lectin affinity relative to the penta-O-(thioglycoside) 5; it is

  8. Enhancement of GABAergic transmission by zolpidem, an imidazopyridine with preferential affinity for type I benzodiazepine receptors.

    Science.gov (United States)

    Biggio, G; Concas, A; Corda, M G; Serra, M

    1989-02-28

    The effect of zolpidem, an imidazopyridine derivative with high affinity at the type I benzodiazepine recognition site, on the function of the GABAA/ionophore receptor complex was studied in vitro. Zolpidem, mimicking the action of diazepam, increased [3H]GABA binding, enhanced muscimol-stimulated 36Cl- uptake and reduced [35S]TBPS binding in rat cortical membrane preparations. Zolpidem was less effective than diazepam on the above parameters. Zolpidem induced a lower increase of [3H]GABA binding (23 vs. 35%) and muscimol-stimulated 36Cl- uptake (22 vs. 40%) and a smaller decrease of [35S]TBPS binding (47 vs. 77%) than diazepam. The finding that zolpidem enhanced the function of GABAergic synapses with an efficacy qualitatively and quantitatively different from that of diazepam suggests that this compound is a partial agonist at the benzodiazepine recognition site. Thus, our results are consistent with the view that the biochemical and pharmacological profile of a benzodiazepine recognition site ligand reflects its efficacy to enhance GABAergic transmission. Whether the preferential affinity of zolpidem at the type I site is involved in its atypical biochemical and pharmacological profile remains to be clarified.

  9. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores

    Science.gov (United States)

    Benson, Mark L.; Faver, John C.; Ucisik, Melek N.; Dashti, Danial S.; Zheng, Zheng; Merz, Kenneth M.

    2012-05-01

    Two families of binding affinity estimation methodologies are described which were utilized in the SAMPL3 trypsin/fragment binding affinity challenge. The first is a free energy decomposition scheme based on a thermodynamic cycle, which included separate contributions from enthalpy and entropy of binding as well as a solvent contribution. Enthalpic contributions were estimated with PM6-DH2 semiempirical quantum mechanical interaction energies, which were modified with a statistical error correction procedure. Entropic contributions were estimated with the rigid-rotor harmonic approximation, and solvent contributions to the free energy were estimated with several different methods. The second general methodology is the empirical score LISA, which contains several physics-based terms trained with the large PDBBind database of protein/ligand complexes. Here we also introduce LISA+, an updated version of LISA which, prior to scoring, classifies systems into one of four classes based on a ligand's hydrophobicity and molecular weight. Each version of the two methodologies (a total of 11 methods) was trained against a compiled set of known trypsin binders available in the Protein Data Bank to yield scaling parameters for linear regression models. Both raw and scaled scores were submitted to SAMPL3. Variants of LISA showed relatively low absolute errors but also low correlation with experiment, while the free energy decomposition methods had modest success when scaling factors were included. Nonetheless, re-scaled LISA yielded the best predictions in the challenge in terms of RMS error, and six of these models placed in the top ten best predictions by RMS error. This work highlights some of the difficulties of predicting binding affinities of small molecular fragments to protein receptors as well as the benefit of using training data.

  10. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  11. A high pressure study of calmodulin-ligand interactions using small-angle X-ray and elastic incoherent neutron scattering.

    Science.gov (United States)

    Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus

    2018-01-31

    Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.

  12. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa

    2016-06-01

    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  13. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen (UMASS, MED); (Pfizer)

    2017-09-21

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

  14. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Xuelu Huan

    Full Text Available The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD, which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity

  15. Visual and Plasmon Resonance Absorption Sensor for Adenosine Triphosphate Based on the High Affinity between Phosphate and Zr(IV)

    OpenAIRE

    Qi, Wenjing; Liu, Zhongyuan; Zhang, Wei; Halawa, Mohamed Ibrahim; Xu, Guobao

    2016-01-01

    Zr(IV) can form phosphate and Zr(IV) (?PO3 2??Zr4+?) complex owing to the high affinity between Zr(IV) with phosphate. Zr(IV) can induce the aggregation of gold nanoparticles (AuNPs), while adenosine triphosphate(ATP) can prevent Zr(IV)-induced aggregation of AuNPs. Herein, a visual and plasmon resonance absorption (PRA)sensor for ATP have been developed using AuNPs based on the high affinity between Zr(IV)with ATP. AuNPs get aggregated in the presence of certain concentrations of Zr(IV). Aft...

  16. Tuning affinity and reversibility for O2 binding in dinuclear Co(II) complexes

    DEFF Research Database (Denmark)

    Vad, Mads Sørensen; Johansson, Frank Bartnik; Seidler-Egdal, Rune Kirk

    2013-01-01

    The O2 binding affinity of a series of dicobalt(II) complexes can be tuned between p(O2)50% = 2.3 × 10−3 and 700 × 10−3 atm at 40 °C by varying the number of H and Cl atoms in the bridging acetato ligands of [Co2(bpbp)(CH(3−n)ClnCO2)(CH3CN)2]2+, where bpbp− = 2,6-bis(N,N-bis(2-pyridylmethyl)amino...

  17. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    Energy Technology Data Exchange (ETDEWEB)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Marco, Ario de, E-mail: ario.demarco@ung.si [IFOM-IEO Campus, Via Adamello 16, 20139 Milano (Italy); Dept. Environmental Sciences, University of Nova Gorica (UNG), Vipavska 13, P.O. Box 301-SI-5000, Rozna Dolina, Nova Gorica (Slovenia)

    2011-05-20

    Highlights: {yields} Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. {yields} These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. {yields} The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  18. Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1

    International Nuclear Information System (INIS)

    Veggiani, Gianluca; Ossolengo, Giuseppe; Aliprandi, Marisa; Cavallaro, Ugo; Marco, Ario de

    2011-01-01

    Highlights: → Recombinant antibodies for FGFR1 were isolated from a llama naive library in VHH format. → These antibodies compete with the natural ligand FGF-2 for the same epitope on FGFR1. → The antibody competition inhibits the FGF-2-dependent internalization of FGFR1. -- Abstract: Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naive library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.

  19. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    Science.gov (United States)

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  1. Human NKG2D-ligands: cell biology strategies to ensure immune recognition

    Directory of Open Access Journals (Sweden)

    Lola eFernández-Messina

    2012-09-01

    Full Text Available Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumours and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, MICA/B and ULBPs, are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarise the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.

  2. Biotechnological Fluorescent Ligands of the Bradykinin B1 Receptor: Protein Ligands for a Peptide Receptor.

    Directory of Open Access Journals (Sweden)

    Xavier Charest-Morin

    Full Text Available The bradykinin (BK B1 receptor (B1R is a peculiar G protein coupled receptor that is strongly regulated to the point of being inducible in immunopathology. Limited clinical evidence suggests that its expression in peripheral blood mononuclear cells is a biomarker of active inflammatory states. In an effort to develop a novel imaging/diagnostic tool, we report the rational design and testing of a fusion protein that is a ligand of the human B1R but not likely to label peptidases. This ligand is composed of a fluorescent protein (FP (enhanced green FP [EGFP] or mCherry prolonged at its N-terminus by a spacer peptide and a classical peptide agonist or antagonist (des-Arg9-BK, [Leu8]des-Arg9-BK, respectively. The design of the spacer-ligand joint peptide was validated by a competition assay for [3H]Lys-des-Arg9-BK binding to the human B1R applied to 4 synthetic peptides of 18 or 19 residues. The labeling of B1R-expressing cells with EGFP or mCherry fused with 7 of such peptides was performed in parallel (microscopy. Both assays indicated that the best design was FP-(Asn-Glyn-Lys-des-Arg9-BK; n = 15 was superior to n = 5, suggesting benefits from minimizing steric hindrance between the FP and the receptor. Cell labeling concerned mostly plasma membranes and was inhibited by a B1R antagonist. EGFP-(Asn-Gly15-Lys-des-Arg9-BK competed for the binding of [3H]Lys-des-Arg9-BK to human recombinant B1R, being only 10-fold less potent than the unlabeled form of Lys-des-Arg9-BK to do so. The fusion protein did not label HEK 293a cells expressing recombinant human BK B2 receptors or angiotensin converting enzyme. This study identifies a modular C-terminal sequence that can be adapted to protein cargoes, conferring high affinity for the BK B1R, with possible applications in diagnostic cytofluorometry, histology and drug delivery (e.g., in oncology.

  3. Affinity Purification and Comparative Biosensor Analysis of Citrulline-Peptide-Specific Antibodies in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Eszter Szarka

    2018-01-01

    Full Text Available Background: In rheumatoid arthritis (RA, anti-citrullinated protein/peptide antibodies (ACPAs are responsible for disease onset and progression, however, our knowledge is limited on ligand binding affinities of autoantibodies with different citrulline-peptide specificity. Methods: Citrulline-peptide-specific ACPA IgGs were affinity purified and tested by ELISA. Binding affinities of ACPA IgGs and serum antibodies were compared by surface plasmon resonance (SPR analysis. Bifunctional nanoparticles harboring a multi-epitope citrulline-peptide and a complement-activating peptide were used to induce selective depletion of ACPA-producing B cells. Results: KD values of affinity-purified ACPA IgGs varied between 10−6 and 10−8 M and inversely correlated with disease activity. Based on their cross-reaction with citrulline-peptides, we designed a novel multi-epitope peptide, containing Cit-Gly and Ala-Cit motifs in two–two copies, separated with a short, neutral spacer. This peptide detected antibodies in RA sera with 66% sensitivity and 98% specificity in ELISA and was recognized by 90% of RA sera, while none of the healthy samples in SPR. When coupled to nanoparticles, the multi-epitope peptide specifically targeted and depleted ACPA-producing B cells ex vivo. Conclusions: The unique multi-epitope peptide designed based on ACPA cross-reactivity might be suitable to develop better diagnostics and novel therapies for RA.

  4. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.

    Science.gov (United States)

    Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T

    2006-12-21

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.

  5. Refolding and characterization of the functional ligand-binding domain of human lectin-like oxidized LDL receptor.

    Science.gov (United States)

    Xie, Qiuhong; Matsunaga, Shigeru; Shi, Xiaohua; Ogawa, Setsuko; Niimi, Setsuko; Wen, Zhesheng; Tokuyasu, Ken; Machida, Sachiko

    2003-11-01

    Lectin-like oxidized low-density lipoprotein receptor (LOX-1), a type II membrane protein that can recognize a variety of structurally unrelated macromolecules, plays an important role in host defense and is implicated in atherogenesis. To understand the interaction between human LOX-1 and its ligands, in this study the functional C-type lectin-like domain (CTLD) of LOX-1 was reconstituted at high efficiency from inactive aggregates in Escherichia coli using a refolding technique based on an artificial chaperone. The CD spectra of the purified domain suggested that the domain has alpha-helical structure and the blue shift of Trp residues was observed on refolding of the domain. Like wild-type hLOX-1, the refolded CTLD domain was able to bind modified LDL. Thus, even though CTLD contains six Cys residues that form disulfide bonds, it recovered its specific binding ability on refolding. This suggests that the correct disulfide bonds in CTLD were formed by the artificial chaperone technique. Although the domain lacked N-glycosylation, it showed high affinity for its ligand in surface plasmon resonance experiments. Thus, unglycosylated CTLD is sufficient for binding modified LDL.

  6. Investigation of ‘Head-to-Tail’-Connected Oligoaryl N,O-Ligands as Recognition Motifs for Cancer-Relevant G-Quadruplexes

    Directory of Open Access Journals (Sweden)

    Natalia Rizeq

    2017-12-01

    Full Text Available Oligomeric compounds, constituted of consecutive N,O-heteroaromatic rings, introduce useful and tunable properties as alternative ligands for biomolecular recognition. In this study, we have explored a synthetic scheme relying on Van Leusen oxazole formation, in conjunction with C–H activation of the formed oxazoles and their subsequent C–C cross-coupling to 2-bromopyridines in order to assemble a library of variable-length, ‘head-to-tail’-connected, pyridyl-oxazole ligands. Through investigation of the interaction of the three longer ligands (5-mer, 6-mer, 7-mer with cancer-relevant G-quadruplex structures (human telomeric/22AG and c-Myc oncogene promoter/Myc2345-Pu22, the asymmetric pyridyl-oxazole motif has been demonstrated to be a prominent recognition element for G-quadruplexes. Fluorescence titrations reveal excellent binding affinities of the 7-mer and 6-mer for a Na+-induced antiparallel 22AG G-quadruplex (KD = 0.6 × 10−7 M−1 and 0.8 × 10−7 M−1, respectively, and satisfactory (albeit lower affinities for the 22AG/K+ and Myc2345-Pu22/K+ G-quadruplexes. All ligands tested exhibit substantial selectivity for G-quadruplex versus duplex (ds26 DNA, as evidenced by competitive Förster resonance energy transfer (FRET melting assays. Additionally, the 7-mer and 6-mer are capable of promoting a sharp morphology transition of 22AG/K+ G-quadruplex.

  7. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration.

    Science.gov (United States)

    Lee, Tai-Sung; Hu, Yuan; Sherborne, Brad; Guo, Zhuyan; York, Darrin M

    2017-07-11

    We report the implementation of the thermodynamic integration method on the pmemd module of the AMBER 16 package on GPUs (pmemdGTI). The pmemdGTI code typically delivers over 2 orders of magnitude of speed-up relative to a single CPU core for the calculation of ligand-protein binding affinities with no statistically significant numerical differences and thus provides a powerful new tool for drug discovery applications.

  8. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    Science.gov (United States)

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  9. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker

    Science.gov (United States)

    Helliwell, Matthew V.; Zhang, Yihong; El Harchi, Aziza; Du, Chunyun; Hancox, Jules C.; Dempsey, Christopher E.

    2018-01-01

    Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block. PMID:29545312

  10. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation

    KAUST Repository

    Handberg-Thorsager, Mette

    2018-02-22

    Retinoic acid (RA) is an important intercellular signaling molecule in vertebrate development, with a well-established role in the regulation of hox genes during hindbrain patterning and in neurogenesis. However, the evolutionary origin of the RA signaling pathway remains elusive. To elucidate the evolution of the RA signaling system, we characterized RA metabolism and signaling in the marine annelid Platynereis dumerilii, a powerful model for evolution, development, and neurobiology. Binding assays and crystal structure analyses show that the annelid retinoic acid receptor (RAR) binds RA and activates transcription just as vertebrate RARs, yet with a different ligand-binding pocket and lower binding affinity, suggesting a permissive rather than instructive role of RA signaling. RAR knockdown and RA treatment of swimming annelid larvae further reveal that the RA signal is locally received in the medial neuroectoderm, where it controls neurogenesis and axon outgrowth, whereas the spatial colinear hox gene expression in the neuroectoderm remains unaffected. These findings suggest that one early role of the new RAR in bilaterian evolution was to control the spatially restricted onset of motor and interneuron differentiation in the developing ventral nerve cord and to indicate that the regulation of hox-controlled anterior-posterior patterning arose only at the base of the chordates, concomitant with a high-affinity RAR needed for the interpretation of a complex RA gradient.

  11. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation

    Science.gov (United States)

    Handberg-Thorsager, Mette; Gutierrez-Mazariegos, Juliana; Arold, Stefan T.; Kumar Nadendla, Eswar; Bertucci, Paola Y.; Germain, Pierre; Tomançak, Pavel; Pierzchalski, Keely; Jones, Jace W.; Albalat, Ricard; Kane, Maureen A.; Bourguet, William; Laudet, Vincent; Arendt, Detlev; Schubert, Michael

    2018-01-01

    Retinoic acid (RA) is an important intercellular signaling molecule in vertebrate development, with a well-established role in the regulation of hox genes during hindbrain patterning and in neurogenesis. However, the evolutionary origin of the RA signaling pathway remains elusive. To elucidate the evolution of the RA signaling system, we characterized RA metabolism and signaling in the marine annelid Platynereis dumerilii, a powerful model for evolution, development, and neurobiology. Binding assays and crystal structure analyses show that the annelid retinoic acid receptor (RAR) binds RA and activates transcription just as vertebrate RARs, yet with a different ligand-binding pocket and lower binding affinity, suggesting a permissive rather than instructive role of RA signaling. RAR knockdown and RA treatment of swimming annelid larvae further reveal that the RA signal is locally received in the medial neuroectoderm, where it controls neurogenesis and axon outgrowth, whereas the spatial colinear hox gene expression in the neuroectoderm remains unaffected. These findings suggest that one early role of the new RAR in bilaterian evolution was to control the spatially restricted onset of motor and interneuron differentiation in the developing ventral nerve cord and to indicate that the regulation of hox-controlled anterior-posterior patterning arose only at the base of the chordates, concomitant with a high-affinity RAR needed for the interpretation of a complex RA gradient. PMID:29492455

  12. The interrelationship between ligand binding and thermal unfolding of the folate binding protein. The role of self-association and pH

    DEFF Research Database (Denmark)

    Holm, Jan; Babol, Linnea N.; Markova, Natalia

    2014-01-01

    The present study utilized a combination of DLS (dynamic light scattering) and DSC (differential scanning calorimetry) to address thermostability of high-affinity folate binding protein (FBP), a transport protein and cellular receptor for the vitamin folate. At pH7.4 (pI=7-8) ligand binding......, intermolecular forces involved in concentration-dependent multimerization thus contribute to the thermostability of holo-FBP. Hence, thermal unfolding and dissociation of holo-FBP multimers occur simultaneously consistent with a gradual decrease from octameric to monomeric holo-FBP (10μM) in DLS after a step-wise...

  13. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    Science.gov (United States)

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  14. Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding

    DEFF Research Database (Denmark)

    Kristiansen, M; Kozyraki, R; Jacobsen, Christian

    1999-01-01

    of conditioned media and cell extracts of transfected cells revealed that the N-terminal cubilin region conveys membrane association. Helical plotting of this region demonstrated a conserved amphipathic helix pattern (Lys74-Glu109) as a candidate site for hydrophobic interactions. Ligand affinity chromatography...

  15. Hirota's solitons in the affine and the conformal affine Toda models

    International Nuclear Information System (INIS)

    Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1993-01-01

    We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)

  16. A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties*

    Science.gov (United States)

    Campos, Bruna Medeia; Alvarez, Thabata Maria; Zanphorlin, Letícia Maria; Ematsu, Gabriela Cristina; Barud, Hernane; Polikarpov, Igor; Ruller, Roberto; Gilbert, Harry J.; Zeri, Ana Carolina de Mattos; Squina, Fabio Marcio

    2016-01-01

    Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked β1,3-β1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical β-sandwich fold comprising two β-sheets. The planar ligand binding site, observed in a parallel orientation with the β-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs. PMID:27621314

  17. Affinity chromatography of serine proteases on the triazine dye ligand Cibacron Blue F3G-A

    DEFF Research Database (Denmark)

    Koch, C; Borg, L; Skjødt, K

    1998-01-01

    The interaction between complement component factor B and the triazine dye ligand Cibacron Blue F3G-A coupled to a cross-linked agarose matrix (Blue Sepharose) was found to involve the Bb part of the molecule, and to be inhibited by benzamidine. Human, chicken and rainbow trout factor B which had...

  18. Effects of a novel, selective, sigma1-ligand, MS-377, on phencyclidine-induced behaviour.

    Science.gov (United States)

    Takahashi, S; Takagi, K; Horikomi, K

    2001-07-01

    Phencyclidine (PCP)-induced head-weaving is inhibited by a novel selective sigma1-ligand, (R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), but not by dopamine D2 antagonists. In the present study, we examined the effects of two potent and selective sigma1-ligands, MS-377 and N,N-dipropyl-2-(4-methoxy-3-(2-phenylethoxy)phenyl) ethylamine (NE-100), on PCP-induced rearing behaviour, hyperlocomotion and ataxia in comparison with the currently available antipsychotic agents with affinity for D2 receptors, haloperidol, sultopride and risperidone. Male Wistar rats or ddY mice were administered MS-377, NE-100, haloperidol, sultopride or risperidone, and PCP was administered 60 min later (in the case of NE-100 10 min later). Rearing behaviour, hyperlocomotion and ataxia were examined 10 min after PCP administration. MS-377, haloperidol, sultopride and risperidone dose-dependently inhibited PCP-induced rearing and hyperlocomotion, but did not antagonize PCP-induced ataxia. In contrast, the other selective sigma1-ligand, NE-100, did not affect any of the PCP-induced behaviour patterns in this study. These results suggest that there are at least two types of ligands for sigma1-receptors and that some sigma1-ligands, including MS-377, have more comprehensive effects against PCP-induced abnormal behaviour than other sigma1-ligands or D2 antagonists.

  19. Improving image segmentation by learning region affinities

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Lakshman [Los Alamos National Laboratory; Yang, Xingwei [TEMPLE UNIV.; Latecki, Longin J [TEMPLE UNIV.

    2010-11-03

    We utilize the context information of other regions in hierarchical image segmentation to learn new regions affinities. It is well known that a single choice of quantization of an image space is highly unlikely to be a common optimal quantization level for all categories. Each level of quantization has its own benefits. Therefore, we utilize the hierarchical information among different quantizations as well as spatial proximity of their regions. The proposed affinity learning takes into account higher order relations among image regions, both local and long range relations, making it robust to instabilities and errors of the original, pairwise region affinities. Once the learnt affinities are obtained, we use a standard image segmentation algorithm to get the final segmentation. Moreover, the learnt affinities can be naturally unutilized in interactive segmentation. Experimental results on Berkeley Segmentation Dataset and MSRC Object Recognition Dataset are comparable and in some aspects better than the state-of-art methods.

  20. Haptoglobin preferentially binds β but not α subunits cross-linked hemoglobin tetramers with minimal effects on ligand and redox reactions.

    Science.gov (United States)

    Jia, Yiping; Wood, Francine; Buehler, Paul W; Alayash, Abdu I

    2013-01-01

    Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation.

  1. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    Science.gov (United States)

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The solutions of affine and conformal affine Toda field theory

    International Nuclear Information System (INIS)

    Papadopoulos, G.; Spence, B.

    1994-02-01

    We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions and give the general static solutions for the affine theory. (authors). 10 refs

  3. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  4. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  5. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Directory of Open Access Journals (Sweden)

    Stéphanie Pérot

    Full Text Available Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely

  6. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    Science.gov (United States)

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  7. Influence of self-affine roughness on the friction coefficient of rubber at high sliding velocity

    NARCIS (Netherlands)

    Palasantzas, G

    2004-01-01

    In this work we investigate the influence of self-affine roughness on the friction coefficient of a rubber body onto a solid surface at high speeds. The roughness is characterized by the rms amplitude w, the correlation length xi, and the roughness exponent H. It is shown that the friction

  8. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  9. Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux

    NARCIS (Netherlands)

    Bosdriesz, Evert; Wortel, Meike T.; Haanstra, Jurgen R.; Wagner, Marijke J.; De La Torre Cortés, Pilar; Teusink, Bas

    2018-01-01

    Many organisms have several similar transporters with different affinities for the same substrate. Typically, high-affinity transporters are expressed when substrate is scarce and low-affinity ones when it is abundant. The benefit of using low instead of high-affinity transporters remains unclear,

  10. Low affinity uniporter carrier proteins can increase net substrate uptake rate by reducing efflux

    NARCIS (Netherlands)

    Bosdriesz, Evert; Wortel, M.T.; Haanstra, Jurgen R.; Wagner, Marijke J.; De La Torre, P.; Teusink, Bas

    2018-01-01

    Many organisms have several similar transporters with different affinities for the same substrate. Typically, high-affinity transporters are expressed when substrate is scarce and low-affinity ones when it is abundant. The benefit of using low instead of high-affinity transporters remains

  11. Hexachlorobenzene stimulates uroporphyria in low affinity AHR mice without increasing CYP1A2

    International Nuclear Information System (INIS)

    Gorman, Nadia; Trask, Heidi S.; Robinson, Susan W.; Sinclair, Jacqueline F.; Gerhard, Glenn S.; Smith, Andrew G.; Sinclair, Peter R.

    2007-01-01

    Hexachlorobenzene (HCB), a weak ligand of the aryl hydrocarbon receptor (AHR), causes hepatic uroporphyrin (URO) accumulation (uroporphyria) in humans and animals. CYP1A2 has been shown to be necessary in the development of uroporphyria in mice. Using mice expressing the low affinity form of the AH receptor (AHRd), we investigated whether the enhancement of uroporphyria by HCB involves an obligatory increase in CYP1A2 as measured by specific enzyme assays and immunoblotting. We compared the ability of HCB, in combination with iron dextran and the porphyrin precursor, 5-aminolevulinate (ALA), to cause uroporphyria in a strain of mice (C57BL/6) which expresses the high affinity form of the receptor (AHRb 1 ), with three strains of mice (SWR and two 129 sublines) expressing the low affinity AHRd. In C57BL/6 mice, HCB-enhanced uroporphyria was associated with a doubling of CYP1A2. HCB treatment produced uroporphyria in iron-loaded mice expressing AHRd, even though there was little or no increase in CYP1A2. Cyp1a2(-/-) mice in a 129 background were completely resistant to HCB-induced uroporphyria, and female Hfe(-/-) 129 mice, in which the levels of hepatic CYP1A2 were half of those of the male levels, responded poorly. The effect of exogenous iron, administered in the form of iron dextran, on HCB enhancement of uroporphryia could be replicated utilizing the endogenous hepatic iron accumulated in 129 Hfe(-/-) mice. In conclusion, some minimal basal expression of CYP1A2 is essential for HCB-mediated enhancement of uroporphyria, but increases in CYP1A2 above that level are not essential

  12. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  13. High-Affinity Accumulation of Chloroquine by Mouse Erythrocytes Infected with Plasmodium berghei

    Science.gov (United States)

    Fitch, Coy D.; Yunis, Norman G.; Chevli, Rekha; Gonzalez, Yolanda

    1974-01-01

    Washed erythrocytes infected with chloroquine-susceptible (CS) or with chloroquine-resistant (CR) P. berghei were used in model systems in vitro to study the accumulation of chloroquine with high affinity. The CS model could achieve distribution ratios (chloroquine in cells: chloroquine in medium) of 100 in the absence of substrate. 200—300 in the presence of 10 mM pyruvate or lactate, and over 600 in the presence of 1 mM glucose or glycerol. In comparable studies of the CR model, the distribution ratios were 100 in the absence of substrate and 300 or less in the presence of glucose or glycerol. The presence of lactate stimulated chloroquine accumulation in the CR model, whereas the presence of pyruvate did not. Lactate production from glucose and glycerol was undiminished in the CR model, and ATP concentrations were higher than in the CS model. Cold, iodoacetate, 2,4-dinitrophenol, or decreasing pH inhibited chloroquine accumulation in both models. These findings demonstrate substrate involvement in the accumulation of chloroquine with high affinity. In studies of the CS model, certain compounds competitively inhibited chloroquine accumulation, while others did not. This finding is attributable to a specific receptor that imposes structural constraints on the process of accumulation. For chloroquine analogues, the position and length of the side chain, the terminal nitrogen atom of the side chain, and the nitrogen atom in the quinoline ring are important determinants of binding to this receptor. PMID:4600044

  14. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface

    DEFF Research Database (Denmark)

    Ahring, Philip K.; Olsen, Jeppe A.; Nielsen, Elsebet O.

    2015-01-01

    The nicotinic acetylcholine receptor alpha 4 beta 2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (alpha 4)(2)(beta 2)(3) and (alpha 4)(3)(beta 2)(2). While these are similar in many aspects, the (alpha 4)(3)(beta 2)(2) stoichiometry...... differs by harboring a third orthosteric acetylcholine binding site located at the alpha 4-alpha 4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known....... The present study was therefore aimed at determining binding affinities of nicotinic ligands to the alpha 4-alpha 4 interface. Given that epibatidine shows large functional potency differences at alpha 4-beta 2 vs. alpha 4-alpha 4 interfaces, biphasic binding properties would be expected at (alpha 4)(3)(beta...

  15. Na+-Dependent High-Affinity Nitrate, Phosphate and Amino Acids Transport in Leaf Cells of the Seagrass Posidonia oceanica (L. Delile

    Directory of Open Access Journals (Sweden)

    Lourdes Rubio

    2018-05-01

    Full Text Available Posidonia oceanica (L. Delile is a seagrass, the only group of vascular plants to colonize the marine environment. Seawater is an extreme yet stable environment characterized by high salinity, alkaline pH and low availability of essential nutrients, such as nitrate and phosphate. Classical depletion experiments, membrane potential and cytosolic sodium measurements were used to characterize the high-affinity NO3−, Pi and amino acids uptake mechanisms in this species. Net uptake rates of both NO3− and Pi were reduced by more than 70% in the absence of Na+. Micromolar concentrations of NO3− depolarized mesophyll leaf cells plasma membrane. Depolarizations showed saturation kinetics (Km = 8.7 ± 1 μM NO3−, which were not observed in the absence of Na+. NO3− induced depolarizations at increasing Na+ also showed saturation kinetics (Km = 7.2 ± 2 mM Na+. Cytosolic Na+ measured in P. oceanica leaf cells (17 ± 2 mM Na+ increased by 0.4 ± 0.2 mM Na+ upon the addition of 100 μM NO3−. Na+-dependence was also observed for high-affinity l-ala and l-cys uptake and high-affinity Pi transport. All together, these results strongly suggest that NO3−, amino acids and Pi uptake in P. oceanica leaf cells are mediated by high-affinity Na+-dependent transport systems. This mechanism seems to be a key step in the process of adaptation of seagrasses to the marine environment.

  16. A highly sensitive quantitative cytosensor technique for the identification of receptor ligands in tissue extracts.

    Science.gov (United States)

    Lenkei, Z; Beaudet, A; Chartrel, N; De Mota, N; Irinopoulou, T; Braun, B; Vaudry, H; Llorens-Cortes, C

    2000-11-01

    Because G-protein-coupled receptors (GPCRs) constitute excellent putative therapeutic targets, functional characterization of orphan GPCRs through identification of their endogenous ligands has great potential for drug discovery. We propose here a novel single cell-based assay for identification of these ligands. This assay involves (a) fluorescent tagging of the GPCR, (b) expression of the tagged receptor in a heterologous expression system, (c) incubation of the transfected cells with fractions purified from tissue extracts, and (d) imaging of ligand-induced receptor internalization by confocal microscopy coupled to digital image quantification. We tested this approach in CHO cells stably expressing the NT1 neurotensin receptor fused to EGFP (enhanced green fluorescent protein), in which neurotensin promoted internalization of the NT1-EGFP receptor in a dose-dependent fashion (EC(50) = 0.98 nM). Similarly, four of 120 consecutive reversed-phase HPLC fractions of frog brain extracts promoted internalization of the NT1-EGFP receptor. The same four fractions selectively contained neurotensin, an endogenous ligand of the NT1 receptor, as detected by radioimmunoassay and inositol phosphate production. The present internalization assay provides a highly specific quantitative cytosensor technique with sensitivity in the nanomolar range that should prove useful for the identification of putative natural and synthetic ligands for GPCRs.

  17. High Affinity IgE-Fc Receptor alpha and gamma Subunit Interactions

    International Nuclear Information System (INIS)

    Rashid, A.; Housden, J. E. M.; Sabban, S.; Helm, B.

    2014-01-01

    Objective: To explore the relationships between the subunits (alpha, beta and gamma) of the high affinity IgE receptor (Fc and RI) and its ability to mediate transmembrane signaling. Study Design: Experimental study. Place and Duration of Study: Department of Molecular Biology and Biotechnology, University of Sheffield, UK, from 2008 to 2009. Methodology: The approach employed was to create a chimera (human alpha-gamma-gamma) using the extracellular (EC) domain of the human high affinity IgE receptor. The alpha subunit (huFc and RIalpha) of IgE receptor was spliced onto the rodent gamma TM and cytoplasmic domain (CD). This was transfected into the Rat Basophilic Leukemia cell line in order to assess the possibility of selectively activating cells transfected with this single pass construct for antigen induced mediator release. Results: The RBLs cell lines transfected with the huFc and RIalpha/gamma/gamma cDNA constructs were assessed for the cell surface expression of the huFc and RIalpha subunit and the response to the antigenic stimulus by looking for degranulation and intracellular Ca2+ mobilisation. The results obtained showed the absence of huFc and RIalpha subunit expression on the surface of transfected cells as seen by flowcytometric studies, beta-hexosaminidase assays and intracellular calcium mobilisation studies. Conclusion: In the present study the grounds for non-expression of huFc and RIalpha/gamma/gamma cDNA remains elusive but may be due to the fact that the human-rodent chimeric receptors are assembled differently than the endogenous rodent receptors as seen in study in which COS 7 cells were transfected with human/rat chimeric complexes. (author)

  18. 5-Chloro-2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine: a new serotonin transporter ligand

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Shunichi [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Choi, Seok-Rye [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Mei-Ping [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Kung, Hank F. [Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2007-02-15

    Two novel ligands with 4' substitution on the Phenyl Ring B of biphenylthiol, 5-chloro-2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine (7) and 2-(2'-((dimethylamino)methyl)-4'-methoxyphenylthio)-5-iodobenzenamine (8), were prepared and tested as potential serotonin transporter (SERT) imaging agents. The new ligands displayed extremely high binding affinities to SERT (K {sub i}=0.22{+-}0.09 and 0.11{+-}0.04 nM, respectively), with very low binding affinities to dopamine and norepinephrine transporters (K {sub i}>1000 nM). The corresponding [{sup 125}I]7 and [{sup 125}I]8 were successfully prepared from tri-n-butyltin derivatives. They showed good brain uptakes and prolonged retention after intravenous injection in rats (brain uptake was 1.77% and 0.98% dose/g for [{sup 125}I]7, and 0.92% and 0.29% dose/g for [{sup 125}I]8, at 2 and 120 min, respectively). Significantly, [{sup 125}I]7 showed excellent uptake and prolonged retention in the hypothalamus, where SERT concentration was highest. The hypothalamus/cerebellum (HY/CB) ratios (target/background ratios) were 4.24, 7.10, 8.24 and 12.6 at 2, 4, 6 and 12 h, respectively. The HY/CB ratios for [{sup 125}I]8 were 3.97, 5.57 and 5.06 at 1, 2 and 4 h, respectively. Adding the 4'-iodo group to the Phenyl Ring B of Compound (7) appeared to reduce the rate of clearance from the brain, and kinetics favored uptake and retention in the hypothalamus. The localization of [{sup 125}I]7 in the hypothalamus region in the rat brain could be blocked by pretreatment with (+)McN5652, escitalopram and ADAM (2), which are all selective SERT ligands (at 2 mg/kg iv, 5 min pretreatment). Ex vivo autoradiograms of rat brain sections (at 4 h after intravenous injection of [{sup 125}I]7) showed intense labeling in regions of the brain known to have high SERT density. The excellent selective uptake and retention in the hypothalamus region suggest that [{sup 123}I]7 is a potential lead compound for

  19. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  20. Inhibiting HER3-mediated tumor cell growth with affibody molecules engineered to low picomolar affinity by position-directed error-prone PCR-like diversification.

    Science.gov (United States)

    Malm, Magdalena; Kronqvist, Nina; Lindberg, Hanna; Gudmundsdotter, Lindvi; Bass, Tarek; Frejd, Fredrik Y; Höidén-Guthenberg, Ingmarie; Varasteh, Zohreh; Orlova, Anna; Tolmachev, Vladimir; Ståhl, Stefan; Löfblom, John

    2013-01-01

    The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 pM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.

  1. The opioid receptors of the rat periaqueductal gray

    Energy Technology Data Exchange (ETDEWEB)

    Fedynyshyn, J.P.

    1989-01-01

    The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO, DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.

  2. Fenobody: A Ferritin-Displayed Nanobody with High Apparent Affinity and Half-Life Extension.

    Science.gov (United States)

    Fan, Kelong; Jiang, Bing; Guan, Zhe; He, Jiuyang; Yang, Dongling; Xie, Ni; Nie, Guohui; Xie, Can; Yan, Xiyun

    2018-04-10

    Nanobodies consist of a single domain variable fragment of a camelid heavy-chain antibody. Nanobodies have potential applications in biomedical fields because of their simple production procedures and low cost. Occasionally, nanobody clones of interest exhibit low affinities for their target antigens, which, together with their short half-life limit bioanalytical or therapeutic applications. Here, we developed a novel platform we named fenobody, in which a nanobody developed against H5N1 virus is displayed on the surface of ferritin in the form of a 24mer. We constructed a fenobody by substituting the fifth helix of ferritin with the nanobody. TEM analysis showed that nanobodies were displayed on the surface of ferritin in the form of 6 × 4 bundles, and that these clustered nanobodies are flexible for antigen binding in spatial structure. Comparing fenobodies with conventional nanobodies currently used revealed that the antigen binding apparent affinity of anti-H5N1 fenobody was dramatically increased (∼360-fold). Crucially, their half-life extension in a murine model was 10-fold longer than anti-H5N1 nanobody. In addition, we found that our fenobodies are highly expressed in Escherichia coli, and are both soluble and thermo-stable nanocages that self-assemble as 24-polymers. In conclusion, our results demonstrate that fenobodies have unique advantages over currently available systems for apparent affinity enhancement and half-life extension of nanobodies. Our fenobody system presents a suitable platform for various large-scale biotechnological processes and should greatly facilitate the application of nanobody technology in these areas.

  3. Development of a radioiodinated ligand for characterising α1-adrenoceptors

    International Nuclear Information System (INIS)

    Adams, A.; Jarrott, B.

    1982-01-01

    Two α-adrenoceptor antagonists, phentolamine and 2-(β-(4-hydroxyphenyl)-ethylaminomethyl)-tetralone (BE 2254) which are phenolic derivatives were radioiodinated after chloramine-T oxidation of Na 125 I and the labelled material isolated by chromatography. 125 I-Phentolamine does not bind selectively to α-adrenoceptors in guinea pig brain whereas the 125 I-BE 2254 derivative binds rapidly, reversibly and with high affinity to these receptors with a K/sub d/ of 230 pM. At low concentrations of 125 I-BE 2254 ( 1 subclass of adrenoceptors. Binding measurements to kidney and smooth muscle membrane preparations indicate that 125 I-BE 2254 may also be a useful tool in the study of α-adrenoceptors in peripheral tissues. The high specific activity of 125 I-BE 2254 permits the use of minimal quantities of membrane material for receptor assay and ligand displacement measurements, e.g. 250 μg per assay tube, and this provides a significant advantage over the use of existing radioligands such as 3 H-prazosin which requires approx. 40 times as much tissue

  4. In Vivo Neutralization of α-Cobratoxin with High-Affinity Llama Single-Domain Antibodies (VHHs) and a VHH-Fc Antibody

    Science.gov (United States)

    Richard, Gabrielle; Meyers, Ashley J.; McLean, Michael D.; Arbabi-Ghahroudi, Mehdi; MacKenzie, Roger; Hall, J. Christopher

    2013-01-01

    Small recombinant antibody fragments (e.g. scFvs and VHHs), which are highly tissue permeable, are being investigated for antivenom production as conventional antivenoms consisting of IgG or F(ab’)2 antibody fragments do not effectively neutralize venom toxins located in deep tissues. However, antivenoms composed entirely of small antibody fragments may have poor therapeutic efficacy due to their short serum half-lives. To increase serum persistence and maintain tissue penetration, we prepared low and high molecular mass antivenom antibodies. Four llama VHHs were isolated from an immune VHH-displayed phage library and were shown to have high affinity, in the low nM range, for α-cobratoxin (α–Cbtx), the most lethal component of Naja kaouthia venom. Subsequently, our highest affinity VHH (C2) was fused to a human Fc fragment to create a VHH2-Fc antibody that would offer prolonged serum persistence. After in planta (Nicotiana benthamiana) expression and purification, we show that our VHH2-Fc antibody retained high affinity binding to α–Cbtx. Mouse α–Cbtx challenge studies showed that our highest affinity VHHs (C2 and C20) and the VHH2-Fc antibody effectively neutralized lethality induced by α–Cbtx at an antibody:toxin molar ratio as low as ca. 0.75×:1. Further research towards the development of an antivenom therapeutic involving these anti-α-Cbtx VHHs and VHH2-Fc antibody molecules should involve testing them as a combination, to determine whether they maintain tissue penetration capability and low immunogenicity, and whether they exhibit improved serum persistence and therapeutic efficacy. PMID:23894495

  5. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xueqing; Chang, Bianca W. [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States); Mans, Ben J. [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States); Agricultural Research Council, Onderstepoort 0110 (South Africa); Ribeiro, Jose M. C.; Andersen, John F., E-mail: jandersen@niaid.nih.gov [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States)

    2013-01-01

    Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.

  6. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Xu, Xueqing; Chang, Bianca W.; Mans, Ben J.; Ribeiro, Jose M. C.; Andersen, John F.

    2013-01-01

    Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity

  7. Novel Chemical Strategies for Labeling Small Molecule Ligands for Androgen, Progestin, and Peroxisome Proliferator-Activated Receptors for Imaging Prostate and Breast Cancer and the Heart

    International Nuclear Information System (INIS)

    Katzenellenbogen, John A.

    2007-01-01

    Summary of Progress The specific aims of this project can be summarized as follows: Aim 1: Prepare and evaluate radiolabeled ligands for the peroxisome proliferator-activated receptor γ (PPARγ), a new nuclear hormone receptor target for tumor imaging and hormone therapy. Aim 2: Prepare steroids labeled with a cyclopentadienyl tricarbonyl technetium or rhenium unit. Aim 3: Prepare and evaluate other organometallic systems of novel design as ligand mimics and halogenated ligands for nuclear hormone receptor-based tumor imaging. As is described in detail in the report, we made excellent progress on all three of these aims; the highlights of our progress are the following: (1) we have prepared the first fluorine-18 labeled analogs of ligands for the PPARγ receptor and used these in tissue distribution studies in rats; (2) we have developed three new methods for the synthesis of cyclopentadienyltricarbonyl rhenium and technetium (CpRe(CO)3 and CpTc(CO)3) systems and we have adapted these to the synthesis of steroids labeled with these metals, as well as ligands for other receptor systems; (3) we have prepared a number of fluorine-18 labeled steroidal and non-steroidal androgens and measured their tissue distribution in rats; (4) we have prepared iodine and bromine-labeled progestins with high progesterone receptor binding affinity; and (5) we have prepared inorganic metal tricarbonyl complexes and steroid receptor ligands in which the metal tricarbonyl unit is an integral part off the ligand core

  8. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Shayla K Shorter

    Full Text Available T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL, have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4 are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant.

  9. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abusamra, Dina

    2016-12-01

    The human bone marrow vasculature constitutively expresses both E-selectin and P-selectin where they interact with the cell-surface glycan moiety, sialyl Lewis x, on circulating hematopoietic stem/progenitor cells (HSPCs) to mediate the essential tethering/rolling step. Although several E-selectin glycoprotein ligands (E-selLs) have been identified, the importance of each E-selL on human HSPCs is debatable and requires additional methodologies to advance their specific involvement. The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E

  10. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  11. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX).

    Science.gov (United States)

    Huang, Chao-June; Lin, Hsin-I; Shiesh, Shu-Chu; Lee, Gwo-Bin

    2010-03-15

    The systematic evolution of ligands by exponential enrichment (SELEX) is an experimental procedure that allows screening of given molecular targets by desired binding affinities from an initial random pool of oligonucleotides and oligomers. The final products of SELEX are usually referred as aptamers, which are recognized as promising molecules for a variety of biomedical applications. However, SELEX is an iterative process requiring multiple rounds of extraction and amplification that demands significant time and labor. Therefore, this study presents a novel, automatic, miniature SELEX platform. As a demonstration, the rapid screening of C-reactive protein (CRP) aptamers was performed. By utilizing microfluidic technologies and magnetic beads conjugated with CRP, aptamers with a high affinity to CRP were extracted from a random single-strand deoxyribonucleic acid (ssDNA) pool. These aptamers were further amplified by an on-chip polymerase chain reaction (PCR) process. After five consecutive extraction and amplification cycles, a specific aptamer with the highest affinity was screened automatically. The screened aptamers were used as a recognition molecule for the detection of CRP. The developed microsystem demonstrated fast screening of CRP aptamers and can be used as a powerful tool to select analyte-specific aptamers for biomedical applications. (c) 2009 Elsevier B.V. All rights reserved.

  12. Monomeric immunoglobulin E stabilizes FcepsilonRIalpha from the human basophil cell line KU812 by protecting it from natural turnover

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Hansen, Jens Bo; Dissing, S

    2003-01-01

    The high affinity IgE receptor (FcepsilonRI) on mast cells and basophils is up-regulated by its own ligand IgE; however, the mechanism is unknown.......The high affinity IgE receptor (FcepsilonRI) on mast cells and basophils is up-regulated by its own ligand IgE; however, the mechanism is unknown....

  13. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    Science.gov (United States)

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  14. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  15. Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy.

    Science.gov (United States)

    Braun, Michael B; Traenkle, Bjoern; Koch, Philipp A; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-21

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies.

  16. Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?

    Directory of Open Access Journals (Sweden)

    Michel Ferreira

    2017-01-01

    Full Text Available The behaviour of platinum(II and palladium(0 complexes coordinated by various hydrosoluble monodentate phosphane ligands has been investigated by 31P{1H} NMR spectroscopy in the presence of randomly methylated β-cyclodextrin (RAME-β-CD. This molecular receptor can have no impact on the organometallic complexes, induce the formation of phosphane low-coordinated complexes or form coordination second sphere species. These three behaviours are under thermodynamic control and are governed not only by the affinity of RAME-β-CD for the phosphane but also by the phosphane stereoelectronic properties. When observed, the low-coordinated complexes may be formed either via a preliminary decoordination of the phosphane followed by a complexation of the free ligand by the CD or via the generation of organometallic species complexed by CD which then lead to expulsion of ligands to decrease their internal steric hindrance.

  17. Novel photoaffinity ligands for the GA-receptor

    International Nuclear Information System (INIS)

    Suttle, J.C.; Hultstrand, J.F.; Tanaka, F.S.

    1990-01-01

    Previous studies from this laboratory have shown that certain N-substituted phthalimides (NSPs) exhibit GA-like activity in a range of specific bioassays and that bioactive NSPs compete with [ 3 H]-GA 4 for soluble binding sites in cucumber homogenates. As such, these compounds may prove useful in the purification and characterization of GA receptor proteins. To this end, five azido-NSPs have been synthesized and are currently being screened for biological activity and photochemical stability. Three azido-NSPs elicit α-amylase production in barley half-seeds and stimulate tissue elongation in d 5 maize, lettuce, sunflower, and soybean. Further evaluations are in progress and these data as well as the utility of these compounds as photo-affinity ligands will be discussed

  18. N-Acetyl-2-Aminofluorene (AAF) Processing in Adult Rat Hepatocytes in Primary Culture Occurs by High-Affinity Low-Velocity and Low-Affinity High-Velocity AAF Metabolite-Forming Systems.

    Science.gov (United States)

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    N-acetyl-2-aminofluorene (AAF) is a procarcinogen used widely in physiological investigations of chemical hepatocarcinogenesis. Its metabolic pathways have been described extensively, yet little is known about its biochemical processing, growth cycle expression, and pharmacological properties inside living hepatocytes-the principal cellular targets of this hepatocarcinogen. In this report, primary monolayer adult rat hepatocyte cultures and high specific-activity [ring G-3 H]-N-acetyl-2-aminofluorene were used to extend previous observations of metabolic activation of AAF by highly differentiated, proliferation-competent hepatocytes in long-term cultures. AAF metabolism proceeded by zero-order kinetics. Hepatocytes processed significant amounts of procarcinogen (≈12 μg AAF/106 cells/day). Five ring-hydroxylated and one deacetylated species of AAF were secreted into the culture media. Extracellular metabolite levels varied during the growth cycle (days 0-13), but their rank quantitative order was time invariant: 5-OH-AAF > 7-OH-AAF > 3-OH-AAF > N-OH-AAF > aminofluorene (AF) > 1-OH-AAF. Lineweaver-Burk analyses revealed two principal classes of metabolism: System I (high-affinity and low-velocity), Km[APPARENT] = 1.64 × 10-7  M and VMAX[APPARENT] = 0.1 nmol/106 cells/day and System II (low-affinity and high-velocity), Km[APPARENT] = 3.25 × 10-5  M and VMAX[APPARENT] = 1000 nmol/106 cells/day. A third system of metabolism of AAF to AF, with Km[APPARENT] and VMAX[APPARENT] constants of 9.6 × 10-5  M and 4.7 nmol/106 cells/day, was also observed. Evidence provided in this report and its companion paper suggests selective roles and intracellular locations for System I- and System II-mediated AAF metabolite formation during hepatocarcinogenesis, although some of the molecules and mechanisms responsible for multi-system processing remain to be fully defined.

  19. Ligand intermediates in metal-catalyzed reactions; Annual technical report, August 1, 1992--August 1, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, J.A.

    1993-08-10

    Achievements are reported for the following 4 areas: {pi}/{sigma} equillibria in aldehyde and ketone complexes; thermodynamic ligand binding affinities ({alpha},{beta} unsaturated organic carbonyl compounds); (a new form of coordinated carbon) an unsupported C{sub 3} chain that spans two different transition metals; and (a new form of coordinated carbon) an C{sub 3} chain that is anchored by a metal on each end and spanned by a third.

  20. Mixed-ligand Al complex—a new approach for more high efficient OLEDs

    International Nuclear Information System (INIS)

    Petrova, Petia K.; Tomova, Reni L.; Stoycheva-Topalova, Rumiana T.; Kaloyanova, Stefka S.; Deligeorgiev, Todor G.

    2012-01-01

    The mixed-ligand Aluminum bis(8-hydroxyquinoline) acetylacetonate (Alq 2 Acac) complex was presented and its performance as electroluminescent and electron transporting layer for OLED was studied. The photophysical properties of the novel complex were investigated and compared with the properties of the parent Alq 3 . Highly efficient OLED based on the mixed-ligand Al complex was developed with two times higher luminescence and efficiency compared to the identical OLED based on the conventional Alq 3 The better performance of the devices make the novel Al complex a very promising material for OLEDs. - Highlights: ► A novel electroluminescent Alq 2 Acac complex is presented as material for OLED. ► Electroluminescent emission of Alq 2 Acac is very similar to that of commercial Alq 3 . ► Devices with Alq 2 Acac show better characteristics compared to those with Alq 3 .