WorldWideScience

Sample records for high aeration rates

  1. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland.

    Science.gov (United States)

    Hu, Yuansheng; Zhao, Yaqian; Zhao, Xiaohong; Kumar, Jeyakumar L G

    2012-04-17

    A new development on treatment wetland technology for the purpose of achieving high rate nitrogen removal from high strength wastewater has been made in this study. The laboratory scale alum sludge-based intermittent aeration constructed wetland (AlS-IACW) was integrated with predenitrification, intermittent aeration, and step-feeding strategies. Results obtained from 280 days of operation have demonstrated extraordinary nitrogen removal performance with mean total nitrogen (TN) removal efficiency of 90% under high N loading rate (NLR) of 46.7 g N m(-2) d(-1). This performance was a substantial improvement compared to the reported TN removal performance in literature. Most significantly, partial nitrification and simultaneous nitrification denitrification (SND) via nitrite was found to be the main nitrogen conversion pathways in the AlS-IACW system under high dissolved oxygen concentrations (3-6 mg L(-1)) without specific control. SND under high dissolved oxygen (DO) brings high nitrogen conversion rates. Partial nitrification and SND via nitrite can significantly reduce the demand for organic carbon compared with full nitrification and denitrification via nitrate (up to 40%). Overall, these mechanisms allow the system to maintaining efficient and high rate TN removal even under carbon limiting conditions.

  2. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed...

  3. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements.

    Science.gov (United States)

    Syron, Eoin; Casey, Eoin

    2008-03-15

    Diffusion of the electron acceptor is the rate controlling step in virtually all biofilm reactors employed for aerobic wastewater treatment. The membrane-aerated biofilm reactor (MABR) is a technology that can deliver oxygen at high rates and transfer efficiencies, thereby enhancing the biofilm activity. This paper provides a comparative performance rate analysis of the MABR in terms of its application for carbonaceous pollutant removal, nitrification/denitrification and xenobiotic biotreatment. We also describe the mechanisms influencing process performance in the MABR and the inter-relationships between these factors. The challenges involved in scaling-up the process are discussed with recommendations for prioritization of research needs.

  4. Sawdust discharge rate from aerated hoppers

    Institute of Scientific and Technical Information of China (English)

    Pan Chen; Zhulin Yuan; Chien-Song Chyang; Fu-Xiong Zhuan

    2011-01-01

    This paper presents a numerical and experimental study of the discharge rate of sawdust from an aerated hopper as an important parameter in many industrial processes involving the handling of other granular materials. Numerical experiments are conducted by means of an Eulerian-Eulerian approach coupled with the kinetic theory of granular flow (KTGF). Emphasis is given to the effects of particle size, hopper outlet width, hopper half angle, aeration height and air flow rate. The results show that the discharge rate is significantly affected by hopper outlet width, particle size and air flow rate, but is not sensitive to the hopper half angle and aeration height: increasing hopper outlet width or air flow rate increases discharge rate, while increasing particle size decreases discharge rate. Close agreement between numerical predictions and experimental results is obtained.

  5. Effect of aeration rate on composting of penicillin mycelial dreg.

    Science.gov (United States)

    Chen, Zhiqiang; Zhang, Shihua; Wen, Qinxue; Zheng, Jun

    2015-11-01

    Pilot scale experiments with forced aeration were conducted to estimate effects of aeration rates on the performance of composting penicillin mycelial dreg using sewage sludge as inoculation. Three aeration rates of 0.15, 0.50 and 0.90L/(min·kg) organic matter (OM) were examined. The principal physicochemical parameters were monitored during the 32day composting period. Results showed that the higher aeration rate of 0.90L/(min·kg) did not corresponded to a longer thermophilic duration and higher rates of OM degradation; but the lower aeration rate of 0.15L/(min·kg) did induce an accumulation of NH4(+)-N contents due to the inhibition of nitrification. On the other hand, aeration rate has little effect on degradation of penicillin. The results show that the longest phase of thermophilic temperatures≥55°C, the maximum NO3(-)-N content and seed germination, and the minimum C/N ratio were obtained with 0.50L/(min·kg) OM. Therefore, aeration rates of 0.50L/(min·kg) OM can be recommended for composting penicillin mycelial dreg.

  6. Effects of aeration method and aeration rate on greenhouse gas emissions during composting of pig feces in pilot scale.

    Science.gov (United States)

    Jiang, Tao; Li, Guoxue; Tang, Qiong; Ma, Xuguang; Wang, Gang; Schuchardt, Frank

    2015-05-01

    The aim of this study was to uncover ways to mitigate greenhouse gas (GHG) emissions and reduce energy consumption during the composting process. We assessed the effects of different aeration rates (0, 0.18, 0.36, and 0.54 L/(kg dry matter (dm)·min)) and methods (continuous and intermittent) on GHG emissions. Pig feces and corn stalks were mixed at a ratio of 7:1. The composting process lasted for 10 weeks, and the compost was turned approximately every 2 weeks. Results showed that both aeration rate and method significantly affected GHG emissions. Higher aeration rates increased NH3 and N2O losses, but reduced CH4 emissions. The exception is that the CH4 emission of the passive aeration treatment was lower than that of the low aeration rate treatment. Without forced aeration, the CH4 diffusion rates in the center of the piles were very low and part of the CH4 was oxidized in the surface layer. Intermittent aeration reduced NH3 and CH4 losses, but significantly increased N2O production during the maturing periods. Intermittent aeration increased the nitrification/denitrification alternation and thus enhanced the N2O production. Forced aeration treatments had higher GHG emission rates than the passive aeration treatment. Forced aeration accelerated the maturing process, but could not improve the quality of the end product. Compared with continuous aeration, intermittent aeration could increase the O2 supply efficiency and reduced the total GHG emission by 17.8%, and this reduction increased to 47.4% when composting was ended after 36 days.

  7. Effects of loading rate and aeration on nitrogen removal and N2O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse wastewater at 11 °C.

    Science.gov (United States)

    Pan, Min; Hu, Zhenhu; Liu, Rui; Zhan, Xinmin

    2015-04-01

    This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification-denitrification (PND), "DO elbow" point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.

  8. Design of high efficiency and energy saving aeration device for aquaculture

    Science.gov (United States)

    Liu, Sibo

    2017-03-01

    Energy efficient aeration device for aquaculture, in line with "by more than a generation, dynamic aeration" train of thought for technical design and improvement. Removable aeration terminal as the core, multi-level water to improve the method, the mobile fading pore aeration, intelligent mobile and open and close as the main function, aimed at solving the existing pond aeration efficiency, low energy consumption is high, the function of a single problem. From energy saving, efficiency, biological bacteria on the three directions, the aquaculture industry of energy conservation and emissions reduction. Device of the main advantages are: 1, original mobile fading aerator on the one hand, to expand the scope of work, playing a micro porous aeration of dissolved oxygen with high efficiency and to achieve "by more than a generation", on the other hand, through the sports equipment, stir the mixture of water, the water surface of photosynthesis of plants rich in dissolved oxygen input parts of the tank, compared to the stillness of the aerator can be more fully dissolved oxygen.2, through the opening of the pressure sensor indirect control device, can make the equipment timely and stop operation, convenient in use at the same time avoid the waste of energy.3, the biofilm suspension in aeration terminal, can be accomplished by nitration of microbial multi-level water improvement, still can make biofilm increase rate of netting in the movement process, the biological and mechanical aerobic promote each other, improve the efficiency of both. In addition, the device has small power consumption, low cost of characteristics. And have a certain degree of technical barriers, have their own intellectual property rights, and high degree of product market demand, easily accepted by customers, has a very high popularization value.

  9. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.

    Science.gov (United States)

    Alfenore, S; Cameleyre, X; Benbadis, L; Bideaux, C; Uribelarrea, J-L; Goma, G; Molina-Jouve, C; Guillouet, S E

    2004-02-01

    In order to identify an optimal aeration strategy for intensifying bio-fuel ethanol production in fermentation processes where growth and production have to be managed simultaneously, we quantified the effect of aeration conditions--oxygen limited vs non limited culture (micro-aerobic vs aerobic culture)--on the dynamic behaviour of Saccharomyces cerevisiae cultivated in very high ethanol performance fed-batch cultures. Fermentation parameters and kinetics were established within a range of ethanol concentrations (up to 147 g l(-1)), which very few studies have addressed. Higher ethanol titres (147 vs 131 g l(-1) in 45 h) and average productivity (3.3 vs 2.6 g l(-1) h(-1)) were obtained in cultures without oxygen limitation. Compared to micro-aerobic culture, full aeration led to a 23% increase in the viable cell mass as a result of the concomitant increase in growth rate and yield, with lower ethanol inhibition. The second beneficial effect of aeration was better management of by-product production, with production of glycerol, the main by-product, being strongly reduced from 12 to 4 g l(-1). We demonstrate that aeration strategy is as much a determining factor as vitamin feeding (Alfenore et al. 2002) in very high ethanol performance (147 g l(-1) in 45 h) in order to achieve a highly competitive dynamic process.

  10. Effects of impeller speed and aeration rate on flotation performance of sulphide ore

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of aeration rate and impeller speed on the concentrate sulfur grade and recovery for batch flotation of a complex sulphide ore were investigated. The relationships between the water recovery and solid entrainment were discussed. It is found that the solid entrainment is linearly related to the water recovery regardless of aeration rate and impeller speed, and the higher sulfur recovery at the aeration rate of 2 and 4 L/min for the impeller speed of 1 500 r/min is considered to be the contribution of true flotation. Finally, the sulfur recovery flux is correlated with the bubble surface area flux based on the froth image at the different aeration rates and impeller speeds.

  11. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    Science.gov (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  12. Application of airlift bioreactor for the cultivation of aerobic oleaginous yeast Rhodotorula glutinis with different aeration rates.

    Science.gov (United States)

    Yen, Hong-Wei; Liu, Yi Xian

    2014-08-01

    The high cost of microbial oils produced from oleaginous microorganisms is the major obstacle to commercial production. In this study, the operation of an airlift bioreactor is examined for the cultivation of oleaginous yeast-Rhodotorula glutinis, due to the low process cost. The results suggest that the use of a high aeration rate could enhance cell growth. The maximum biomass concentration of 25.40 g/L was observed in the batch with a 2.0 vvm aeration rate. In addition, a higher aeration rate of 2.5 vvm could achieve the maximum growth rate of 0.46 g/L h, about twice the 0.22 g/L h obtained in an agitation tank. However, an increase in tank pressure instead of the aeration rate did not enhance cell growth. The operation of airlift bioreactor described in this work has the advantages of simple operation and low energy consumption, thus making it suitable for the accumulation of microbial oils.

  13. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    Science.gov (United States)

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  14. Influence of agitation speeds and aeration rates on the Xylanase activity of Aspergillus niger SS7

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2011-08-01

    Full Text Available In this study, the effect of agitation and aeration rates on xylanase activity of Aspergillus niger SS7 in 3-litre stirred tank bioreactor was investigated. The agitation rates tested were 100, 200 and 300 rpm at each airflow rates of 0.5, 1.0 and 1.5 vvm. The maximum xylanase activity in mono- agitator system was at the agitation speed of 200 rpm and aeration rate of 1.0 vvm. In bi-agitator system, at low agitation speed (100 rpm, the xylanase activity was enhanced by 13% compared to mono- agitator system for an aeration rate of 1.0 vvm. Xylanase productivity in continuous culture was higher by approximately 3.5 times than in batch culture.

  15. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  16. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.

  17. Optimizing aeration rates for minimizing membrane fouling and its effect on sludge characteristics in a moving bed membrane bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Yousef, E-mail: yrahimi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Mehrdadi, Naser, E-mail: mehrdadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Habibi-Rezaie, Mehran, E-mail: mhabibi@khayam.ut.ac.ir [Department of Biotechnology, Faculty of Biology, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Pezeshk, Hamid, E-mail: pezeshk@khayam.ut.ac.ir [Department of Statistics, Faculty of Mathematics and Computer, College of Science, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of); Nabi-Bidhendi, Gholam-Reza, E-mail: ghhendi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran, No. 25 Qods St., Enghelab Ave., Tehran (Iran, Islamic Republic of)

    2011-02-28

    Research highlights: {yields} There is an optimum aeration rate in the MBMBR process compartments. {yields} Optimum aeration rate maximizes nutrients removal. {yields} Optimum aeration rate minimizes membrane fouling. {yields} Both aeration rates in MBBR and membrane compartment can affect on membrane permeability. - Abstract: In MBR processes, sufficient aeration is necessary to maintain sustainable flux and to retard membrane fouling. Membrane permeability, sludge characteristics, nutrient removal and biomass growth at various air flow rates in the membrane and moving bed biofilm reactor (MBBR) compartments were studied in a pilot plant. The highest nitrogen and phosphorous removal rates were found at MBBR aeration rates of 151 and 85 L h{sup -1} and a specific aeration demand per membrane area (SAD{sub m}) of 1.2 and 0.4m{sub air}{sup 3} m{sup -2} h{sup -1}, respectively. A linear correlation was found between the amount of attached biofilm and the nutrient removal rate. The aeration rate in the MBBR compartment and SAD{sub m} significantly influenced the sludge characteristics and membrane permeability. The optimum combination of the aeration rate in the MBBR compartment and SAD{sub m} were 151 L h{sup -1} and 0.8-1.2m{sub air}{sup 3}m{sub membrane}{sup -2} h{sup -1}, respectively.

  18. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h ...

  19. Production of Candida utilis Biomass and Intracellular Protein Content: Effect of Agitation Speed and Aeration Rate

    Directory of Open Access Journals (Sweden)

    Rosma, A.

    2006-01-01

    Full Text Available The effects of agitation speed and aeration rate on the Candida utilis biomass and the intracellular protein content were investigated in this study. C. utilis inoculum of 10^6 cells/mL (7.8 % v/v was cultured in 1.5 L pineapple waste medium (3 % Brix in a 2-L fermentor for 30 h at 30 °C. Agitation speed and aeration rate have significant effects on the dissolved oxygen concentration, which in turn affect the cell growth and the intracellular protein content. The agitation speed of 100, 300, 500, 700 and 900 rpm was employed. The highest yield of protein content (1.2 g/L media and total biomass (7.8 g/L media were resulted from yeast cultivation with agitation speed of 900 rpm. Thus, the effects of aeration rate (0.5, 1.0, 2.0 and 3.0 L/min were studied at agitation speed of 900 rpm. A maximum yield of protein content (1.6 g/L media and biomass (9.5 g/L media were attained at aeration rate of 2.0 L/min.

  20. EXPERIMENTAL INVESTIGATION ON SOUND SPEED PROPAGATING THROUGH HIGH SPEED AERATED FLOW IN OPEN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experiment concerning the sound propaga-tion in aerated open channel flow was designed and conductedin a variable slope chute. The acquisition of sound data wasdone by the hydro-phones installed into the bottom wall of thechute. The data were analyzed and processed by the tape re-corder and a 3562A analyzer. The primary experimetal resultsindicated that the sound speed in aerated flow is varied with the air concentration and highly lower than each of the soundspeed in pure water or air. As released by the derived theoryformula, the minimum sound of 24m/s in aerated flow hap-pened when the air concentration achieved to 50%. This resultshows that the compressibility of high speed aerated flowshould be considered when the air concentration is near to50%. A criterion of compressibility of high speed aerated flowwas also giv. En in this paper.

  1. Positive effect of reduced aeration rate on growth and stereospecificity of DL-malic acid consumption by Azospirillum brasilense: improving the shelf life of a liquid inoculant formulation.

    Science.gov (United States)

    Carrasco-Espinosa, Karen; García-Cabrera, Ramsés I; Bedoya-López, Andrea; Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A

    2015-02-10

    Azospirillum brasilense has significance as a growth promoter in plants of commercial interest. Two industrial native strains (Start and Calf), used as a part of an inoculant formulation in Mexico during the last 15 years, were incubated in laboratory-scale pneumatic bioreactors at different aeration rates. In both strains, the positive effect of decreased aeration was observed. At the lowest (0.1 vvm, air volume/liquid volume×minute), the highest biomass were obtained for Calf (7.8 × 10(10)CFU/ml), and Start (2.9 × 10(9)CFU/ml). These were higher in one magnitude order compared to cultures carried out at 0.5 vvm, and two compared to those at 1.0 vvm. At lower aeration, both stereoisomeric forms of malic acid were consumed, but at higher aeration, just L-malate was consumed. A reduction in aeration allows an increase of the shelf life and the microorganism saved higher concentrations of polyhydroxybutyrate. The selected fermentation conditions are closely related to those prevalent in large-scale bioreactors and offer the possibility of achieving high biomass titles with high shelf life at a reduced costs, due to the complete use of a carbon source at low aeration of a low cost raw material as DL-malic acid mixture in comparison with the L-malic acid stereoisomer.

  2. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    Science.gov (United States)

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal.

  3. Experimental investigations of aeration efficiency in high-head gated circular conduits.

    Science.gov (United States)

    Cihat Tuna, M; Ozkan, Fahri; Baylar, Ahmet

    2014-01-01

    The primary purpose of water aeration is to increase the oxygen saturation of the water. This can be achieved by using hydraulic structures because of substantial air bubble entrainment at these structures. Closed conduit aeration is a particular instance of this. While there has been a great deal of research on air-demand ratio within closed conduit, very little research has specifically addressed aeration efficiency of closed conduit. In the present work an experimental study was conducted to investigate the aeration efficiency of high-head gated circular conduits. Results showed that high-head gated circular conduits were effective for oxygen transfer. The effects of Froude number and ratio of the water cross-sectional flow area to the conduit cross-sectional area on aeration efficiency were particularly significant, whereas the effect of conduit length was only moderate. Further, a design formula for the aeration efficiency was presented relating the aeration efficiency to ratio of water cross-sectional flow area to conduit cross-sectional area and Froude number. The obtained results will be useful in future modeling processes and aid the practicing engineer in predicting aeration efficiency for design purposes.

  4. Effects of aeration rate on degradation process of oil palm empty fruit bunch with kinetic-dynamic modeling.

    Science.gov (United States)

    Talib, Ahmad Tarmezee; Mokhtar, Mohd Noriznan; Baharuddin, Azhari Samsu; Sulaiman, Alawi

    2014-10-01

    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.

  5. Optimization of Aeration and Agitation Rate for Lipid and Gamma Linolenic Acid Production by Cunninghamella bainieri 2A1 in Submerged Fermentation Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Normah Saad

    2014-01-01

    Full Text Available The locally isolated filamentous fungus Cunninghamella bainieri 2A1 was cultivated in a 5 L bioreactor to produce lipid and gamma-linolenic acid (GLA. The optimization was carried out using response surface methodology based on a central composite design. A statistical model, second-order polynomial model, was adjusted to the experimental data to evaluate the effect of key operating variables, including aeration rate and agitation speed on lipid production. Process analysis showed that linear and quadratic effect of agitation intensity significantly influenced lipid production process (P<0.01. The quadratic model also indicated that the interaction between aeration rate and agitation speed had a highly significant effect on lipid production (P<0.01. Experimental results showed that a lipid content of 38.71% was produced in optimum conditions using an airflow rate and agitation speed of 0.32 vvm and 599 rpm, respectively. Similar results revealed that 0.058 (g/g gamma-linolenic acid was produced in optimum conditions where 1.0 vvm aeration rate and 441.45 rpm agitation rate were used. The regression model confirmed that aeration and agitation were of prime importance for optimum production of lipid in the bioreactor.

  6. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio......-char on GHG and NH3 emissions from composting cattle slurry and hen manure in small-scale laboratory composters. Depending on treatment, cumulative C losses via CO2 and CH4 emissions accounted for 11.4-22.5% and 0.004-0.2% of initial total carbon, while N losses as N2O and NH3 emissions comprised 0.......05-0.1% and 0.8-26.5% of initial total nitrogen, respectively. Decreasing the flow rate reduced cumulative NH3 losses non-significantly (by 88%) but significantly increased CH4 losses (by 51%) from composting of cattle slurry with barley straw. Among the hen manure treatments evaluated, bio-char addition...

  7. Minimization of nitrous oxide emission from CASS process treating low carbon source domestic wastewater: Effect of feeding strategy and aeration rate.

    Science.gov (United States)

    Liang, Weihao; Yu, Chao; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2015-12-01

    Nitrous oxide (N2O) emission during wastewater treatment can be mitigated by improving operational conditions, e.g., organic carbon supply and dissolved oxygen. To evaluate the control parameters for N2O emission in the low carbon source domestic wastewater treatment process, N2O emissions from Cyclic Activated Sludge System (CASS) under different feeding strategies and aeration rates were investigated. Results showed that continuous feeding enhanced nitrogen removal and reduced N2O emission compared to batch feeding, while a higher aeration rate led to less N2O emission. N2O was mainly produced during non-aeration phases in batch feeding CASS and the amount of N2O generated from denitrification decreased under continuous feeding, indicating that carbon source in the continuous influent relieved the electron competition between denitrification reductases during non-aeration phase. Moreover, taxonomic analysis based on high-throughput 16S rRNA gene sequencing revealed higher abundance of denitrifying bacteria, especially N2O-reducing bacteria in continuous feeding CASS.

  8. Combination of Successive Alkalinity Producing System (SAPS) and Aeration for Passive Treatment of Highly Acidic Mine Drainage

    Science.gov (United States)

    Oh, C.; Ji, S.

    2015-12-01

    Passive treatment system has been widely used for remediation of mine drainage since its advantage of low installation and maintenance cost. The system, however, has also a disadvantage in assuring remediation and management efficiency if the drainage is highly acidic mine drainage. To remediate acid mine drainage (AMD) especially showing high acidity, passive treatment system which consists of successive alkalinity producing system (SAPS) and subsequent aeration pond was proposed and its mechanisms and efficiency was evaluated in this research. Target AMD was obtained from Waryong coal mine and showed typical characteristics of AMD having high metal concentration and low pH (acidity > 300 mg/L as CaCO3). Four experimental cases were conducted; untreated, treated with SAPS, treated with aeration, treated with SAPS and aeration to compare role and mechanism of each unit. Between organic matter and limestone layer which constitute SAPS, the former eliminated most of Fe(III) and Al in the AMD so that the latter was kept from being clogged by precipitates. Net acidity of the AMD rapidly decreased by supplement of alkalinity at the limestone layer. A primary function of SAPS, producing alkalinity constantly without clogging, was attained due to addition a portion of limestone particle into the organic matter layer. The discharge from SAPS had low ORP and DO values because of an anaerobic environment formed at the organic matter layer although its alkalinity was increased. This water quality was unfavorable for Fe(II) to be oxidized. Installation of aeration pond after SAPS, therefore, could be effective way of enhancing oxidation rate of Fe(II). Among the experimental cases, the combination of SAPS and aeration pond was only able to remediate the AMD. This concluded that to remediate highly acidic mine drainage with passive treatment system, three critical conditions were required; pre-precipitation of Fe(III) and Al at organic matter layer in SAPS, constant alkalinity

  9. Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation.

    Science.gov (United States)

    Yao, Shulin; Zhao, Shengming; Lu, Zhaoxin; Gao, Yuqi; Lv, Fengxia; Bie, Xiaomei

    2015-01-01

    Bacillus amyloliquefaciens fmb50 produces a high yield of surfactin, a lipopeptide-type biosurfactant that has been widely studied and has potential applications in many fields. A foam overflowing culture has been successfully used in the combined production-enrichment fermentation of surfactin. In this study, the agitation and aeration rates were found to have relationships with foam formation and surfactin enrichment. A maximum surfactin concentration of 4.7g/l of foam was obtained after 21h of culture with an agitation rate of 150rpm and an aeration rate of 1vvm in fed-batch culture. By controlling the foam overflow rate (fout) of a fed-batch culture, surfactin concentration in the foam was continuously maintained above 4g/l. Copyright © 2015. Publicado por Elsevier España, S.L.U.

  10. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    Science.gov (United States)

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days.

  11. Hydraulic characteristics of converse curvature section and aerator in high-head and large discharge spillway tunnel

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The hydraulic characteristics and cavitation erosion near the converse curvature section in the high-head and large discharge spillway tunnel have been important issues of concern to the hydropower project.In this paper,the evolutions of hydraulic elements such as pressure,flow velocity,wall shear stress,etc.in the converse curvature section are analyzed and the impacts of bottom aerator on hydraulic characteristics are discussed,with the commercial software FLUENT6.3 as a platform and combining the k-model and VOF method.The flow pattern in the converse curvature section of spillway tunnel is given by the three-dimensional numerical simulation.It indicates that the pressure changes rapidly with great pressure gradient from the beginning to the end of the curve.It also shows that the shear stress on side wall just downstream the end of the converse curvature curve is still increasing;the aeration cavity formed downstream the bottom aerator may cause the side wall pressure decreased to worsen the cavitation characteristics near the side wall.By means of the physical model experiment,the three-dimensional aerator composed of side wall baffling aerator and bottom aerator is studied,the baffling aerator suitable for the water flow conditions with water depth of 6.0 to 8.0 m and flow velocity of 35 to 50 m/s is proposed.

  12. Protease obtention using Bacillus subtilis 3411 and amaranth seed meal medium at different aeration rates

    Directory of Open Access Journals (Sweden)

    Pastor Maria Delia

    2001-01-01

    Full Text Available The influence of the addition of Amaranthus cruenthus seed meal to the medium, as nutrient and growth factor, on protease production by Bacillus subtilis 3411 was studied. Tests were carried out in a rotary shaker and in mechanically stirred fermenters. The influence of aeration was also evaluated. The addition of amaranth in a concentration of 20 g/L resulted in 400% increase in protease production. Aeration up to 750 r.p.m. and 1 L/L.min had a favorable effect.

  13. Catfish production using intensive aeration

    Science.gov (United States)

    For the last 3 years, researchers at UAPB and NWAC have been monitoring and verifying production yields in intensively aerated catfish ponds with aeration rates greater than 6 hp/acre. We now have three years of data on commercial catfish production in intensively aerated ponds. With stocking densi...

  14. Gas transfer rates from airlifts used for concurrent aeration, carbon dioxide stripping, and recirculation

    Science.gov (United States)

    Airlifts simplify recirculating aquaculture systems and can potentially reduce capital costs and minimize maintenance issues. Airlifts have the ability to move and aerate water as well as degass the water of any carbon dioxide. This study evaluated the oxygen transfer and carbon dioxide removal abil...

  15. Effects of the rate of releases from Sam Rayburn Reservoir on the Aeration Capacity of the Angelina River, eastern Texas

    Science.gov (United States)

    Rawson, Jack; Goss, Richard L.; Rathbun, Ira G.

    1980-01-01

    A three-phase study was conducted during July and August 1979 to determine the effects of varying release rates through the power-outlet works at Sam Rayburn Reservoir, eastern Texas, on aeration capacity of a 14-mile reach of the Angelina River below Sam Rayburn Dam. The dominant factors that affected the aeration capacity during the study time were time of travel and the dissolved-oxygen deficit of the releases. Aeration was low throughout the study but increased in response to increases in the dissolved-oxygen deficit and the duration of time that the releases were exposed to the atmosphere (time of travel). The average concentration of dissolved oxygen sustained by release of 8,800 cubic feet per second decreased from 5.0 milligrams per liter at a site near the power outlet to 4.8 milligrams per liter at a site about 14 miles downstream; the time of travel averaged about 8 hours. The average concentration of dissolved oxygen in flow sustained by releases of 2,200 cubic feet per second increased from 5.2 to 5.5 milligrams per liter; the time of travel averaged about 20 hours. (USGS)

  16. Effect of cyclic aeration on fouling in submerged membrane bioreactor for wastewater treatment.

    Science.gov (United States)

    Wu, Jun; He, Chengda

    2012-07-01

    Due to the inefficiency of aeration measures in preventing fouling by soluble and colloidal particles. The effect of alternating high/low cyclic aeration mode on the membrane fouling in the submerged membrane bioreactor was studied by comparing to fouling in a constant aeration mode. Results indicated a higher overall fouling rate in the cyclic aeration mode than in the constant aeration. However, a higher percentage of reversible fouling was observed for the cyclic aeration mode. The membrane permeability can be more easily recovered from physical cleaning such as backwashing in the cyclic aeration mode. The activated sludge floc size distribution analysis revealed a floc destruction and re-flocculation processes caused by the alternating high/low aeration. The short high aeration period could prevent the destruction of strong strength bonds within activated sludge flocs. Therefore, less soluble and colloidal material was observed in the supernatant due to the preservation of the strong strength bonds. The weak strength bonds damaged in the high aeration period could be recovered in the re-flocculation process in the low aeration period. The floc destruction and re-flocculation processes were suggested to be the main reason for the low irreversible fouling in the cyclic aeration mode.

  17. A new dynamic model for highly efficient mass transfer in aerated bioreactors and consequences for kLa identification.

    Science.gov (United States)

    Müller, Stefan; Murray, Douglas B; Machne, Rainer

    2012-12-01

    Gas-liquid mass transfer is often rate-limiting in laboratory and industrial cultures of aerobic or autotrophic organisms. The volumetric mass transfer coefficient k(L) a is a crucial characteristic for comparing, optimizing, and upscaling mass transfer efficiency of bioreactors. Reliable dynamic models and resulting methods for parameter identification are needed for quantitative modeling of microbial growth dynamics. We describe a laboratory-scale stirred tank reactor (STR) with a highly efficient aeration system (k(L) a ≈ 570 h(-1)). The reactor can sustain yeast culture with high cell density and high oxygen uptake rate, leading to a significant drop in gas concentration from inflow to outflow (by 21%). Standard models fail to predict the observed mass transfer dynamics and to identify k(L) a correctly. In order to capture the concentration gradient in the gas phase, we refine a standard ordinary differential equation (ODE) model and obtain a system of partial integro-differential equations (PIDE), for which we derive an approximate analytical solution. Specific reactor configurations, in particular a relatively short bubble residence time, allow a quasi steady-state approximation of the PIDE system by a simpler ODE model which still accounts for the concentration gradient. Moreover, we perform an appropriate scaling of all variables and parameters. In particular, we introduce the dimensionless overall efficiency κ, which is more informative than k(L) a since it combines the effects of gas inflow, exchange, and solution. Current standard models of mass transfer in laboratory-scale aerated STRs neglect the gradient in the gas concentration, which arises from highly efficient bubbling systems and high cellular exchange rates. The resulting error in the identification of κ (and hence k(L) a) increases dramatically with increasing mass transfer efficiency. Notably, the error differs between cell-free and culture-based methods of parameter identification

  18. Enhancement of ultrasonic disintegration of sewage sludge by aeration.

    Science.gov (United States)

    Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong

    2016-04-01

    Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge.

  19. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater.

    Science.gov (United States)

    Foladori, Paola; Ruaben, Jenny; Ortigara, Angela R C

    2013-12-01

    Vertical subsurface-flow constructed wetlands at pilot-scale have been applied to treat high hydraulic and organic loads by implementing the following configurations: (1) intermittent recirculation of the treated wastewater from the bottom to the top of the bed, (2) intermittent artificial aeration supplied at the bottom of the bed and (3) the combination of both. These configurations were operated with a saturated bottom layer for a 6h-treatment phase, followed by a free drainage phase prior to a new feeding. COD removal efficiency was 85-90% in all the configurations and removed loads were 54-70 gCOD m(-2)d(-1). The aerated and recirculated wetland resulted in a higher total nitrogen removal (8.6 gN m(-2)d(-1)) due to simultaneous nitrification/denitrification, even in the presence of intermittent aeration (6.8 Nm(3)m(-2)d(-1)). The extra investment needed for implementing aeration/recirculation would be compensated for by a reduction of the surface area per population equivalent, which decreased to 1.5m(2)/PE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. 高速给水曝气生物滤池应用于大型自来水厂的预处理%Application of High-Rate Up-Flow Biological Aerated Filter to Pretreatment for Large-Scale Waterworks

    Institute of Scientific and Technical Information of China (English)

    陆少鸣; 李芳; 李少文

    2012-01-01

    In order to avoid the micro-pollution of drinking water source due to ammonia nitrogen (NH3-N) and or-ganics, for the first time, a waterworks in Guangzhou city adopted the high-rate up-flow biological aerated filter ( HUBAF) with a flow rate of 735 thousand ton per day as a pretreatment process. In the first three months after the stable operation, the NH3-N content and CODMn in raw water respectively reached 0. 44 ~ 2. 22 mg/L and 1. 84 ~ 6. 06 mg/L, and those in the pretreatment effluent were respectively below 0.5mg/L and 2. Omg/L. Moreover, the iron and manganese contents in the raw water were respectively up to 1. 16 and 0.22 mg/L, while those in the waterworks effluent were respectively 0. 05 and 0. 03 mg/L. Due to the large-particle ceramic filter media combined with fluid-bed technology, the average removal of turbidity was only about 2.5 NTU and the head loss was steadily below 1.0m. HUBAF adopts an air-water-combined backwashing system with up-and-down flow, which keeps the change of head loss within 0.1m and makes it possible to share a common aeration system in the filter. The application of HUBAF demonstrates that, as compared with the biological pretreatment technologies that have been put into application, such as the elastic packing-contact oxidation technology and the suspended-ball fluidized technology, HUBAF possesses stronger resistance to impact loading, higher NH3-N nitration rate and better removal of iron and manganese, and that the "HUBAF-conventional treatment" combined system is of a organics removal similar to that of the "O3-BAC" advanced process.%为克服氨氮和有机物对饮用水源的微污染,广州市某水厂首次采用了高速给水曝气生物滤池(HUBAF)生物预处理新工艺,处理规模为73.5万m3/d.工程投产稳定运行后,初期3个月原水氨氮和CODMn分别为0.44~2.22 mg/L和1.84~6.06 mg/L,预处理出水分别小于0.5 mg/L和2.0mg/L;原水的铁和锰最高达1.16 mg/L和0.22 mg

  1. Canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1: effects of inoculation and aeration rate

    Directory of Open Access Journals (Sweden)

    Forouzan Rostami

    2014-06-01

    Full Text Available The interest in production of natural colorants by microbial fermentation has been currently increased. The effects of D-glucose concentration (3.18-36.82 g/L, inoculum size (12.5 x 10(9-49.5 x 10(9 cfu cells/mL and air-flow rate (1.95-12.05 L/L min on the biomass, total carotenoid and canthaxanthin (CTX accumulation of Dietzia natronolimnaea HS-1 in a batch bioreactor was scrutinized using a response surface methodology-central composite rotatable design (RSM-CCRD. Second-order polynomial models with high R² values ranging from 0.978 to 0.990 were developed for the studied responses using multiple linear regression analysis. The models showed the maximum cumulative amounts of biomass (7.85 g/L, total carotenoid (5.48 mg/L and CTX (4.99 mg/L could be achieved at 23.38 g/L of D-glucose, 31.2 x 10(9 cfu cells/mL of inoculation intensity and air-flow rate of 7.85 L/L min. The predicted values for optimum conditions were in good agreement with experimental data.

  2. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field.

    Science.gov (United States)

    Yang, Zongbo; Cheng, Jun; Lin, Richen; Zhou, Junhu; Cen, Kefa

    2016-07-01

    A novel oscillating gas aerator combined with an oscillating baffle was proposed to generate smaller aeration bubbles and enhance solution mass transfer, which can improve microalgal growth in a raceway pond. A high-speed photography system (HSP) was used to measure bubble diameter and generation time, and online precise dissolved oxygen probes and pH probes were used to measure mass-transfer coefficient and mixing time. Bubble diameter and generation time decreased with decreased aeration gas rate, decreased orifice diameter, and increased water velocity in the oscillating gas aerator. The optimized oscillating gas aerator decreased bubble diameter and generation time by 25% and 58%, respectively, compared with a horizontal tubular gas aerator. Using an oscillating gas aerator and an oscillating baffle in a raceway pond increased the solution mass-transfer coefficient by 15% and decreased mixing time by 32%; consequently, microalgal biomass yield increased by 19%.

  3. Aeration-Induced Changes in Temperature and Nitrogen Dynamics in a Dimictic Lake.

    Science.gov (United States)

    Holmroos, Heidi; Horppila, Jukka; Laakso, Sanna; Niemistö, Juha; Hietanen, Susanna

    2016-07-01

    Low levels of oxygen (O) in the hypolimnion layer of lakes are harmful to benthic animals and fish; they may also adversely affect nutrient cycles. Artificial aeration is often used in lake management to counteract these problems, but the effects of aeration on nitrogen (N) cycling are not known. We studied the effects of hypolimnetic aeration on N dynamics and temperature in a eutrophic lake by comparing continuous and pulsed aeration with a nonaerated station. Aeration decreased the accumulation of NH-N deep in the lake (20-33 m) by supplying O for nitrification, which in turn provided substrate for denitrification and promoted N removal. Aeration also increased the temperature in the hypolimnion. Denitrification rate was highest in the nonaerated deep areas (average, 7.62 mg N m d) due to very high rates during spring turnover of the water column, demonstrating that natural turnover provides O for nitrification. During stratification, denitrification was highest at the continuously aerated station (4.06 mg N m d) and lowest at the nonaerated station (3.02 mg N m d). At the periodically aerated station, aeration pauses did not restrict the increase in temperature but resulted in accumulation of NH-N and decreased the contribution of denitrification as a nitrate reduction process. Our findings demonstrate that hypolimnetic aeration can substantially affect N cycling in lakes and that the effect depends on the aeration strategy. Because N is one of the main nutrients controlling eutrophication, the effects of aeration methods on N removal should be considered as part of strategies to manage water quality in lakes.

  4. AN EXPERIMENTAL INVESTIGATION OF PRESSURE AND CAVITATION CHARACTERISTICS OF HIGH VELOCITY FLOW OVER A CYLINDRICAL PROTRUSION IN THE PRESENCE AND ABSENCE OF AERATION

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LIU Zhi-ping; WU Yi-hong; ZHANG Dong

    2008-01-01

    This article experimentally investigated the pressure and cavitation characteristics of high velocity flow over a surface irregularity with and without aeration in a non-circulating water tunnel system. The surface irregularity is a cylindrical protrusion made of stainless steel of 6 mm diameter and 2 mm height. Pressures with and without aeration were measured with MPX400D pressure transducers and real-timely acquired by a SINOCERA YE6263 data acquisition system. Variations in flow regimes with and without aeration were observed. Pressure profiles and their variations with air concentration upper and lower cylindrical protrusion on the invert and obvert walls were determined. Variations of cavitation number with air concentration lower cylindrical protrusion were analyzed. Also, cavitation numbers in the presence and absence of aeration were compared.

  5. Effect of hydraulic loading rate on pollutant removal efficiency in subsurface infiltration system under intermittent operation and micro-power aeration.

    Science.gov (United States)

    Yang, Yongqiang; Zhan, Xuan; Wu, Shijun; Kang, Mingliang; Guo, Jianan; Chen, Fanrong

    2016-04-01

    The low hydraulic loading rate (HLR) greatly restricts the wide application of subsurface wastewater infiltration system (SWIS) in densely populated areas. To increase the HLR, an innovative SWIS was developed using cyclic operation mode. In each cycle, a wastewater feeding period is followed by a drying period, in which the aeration is conducted by a medium-pressure fan. Results indicated that the removal rate of TOC and NH4(+)-N were more than 85% at HLR of 0.5m(3)/m(2)d, whereas the TN removal rate was lower than 20%, indicating that the aeration was efficient and denitrification process was largely limited in the SWIS. When HLR decreased from 0.5 to 0.2m(3)/m(2)d, the pollutant removal efficiency enhanced slightly except for TN. Overall, the intermittent operation and micro-power aeration, combined with shunting the pollutant loading were really helpful for SWIS to achieve higher HLR, which offers a reference for the design of innovative SWIS.

  6. Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors.

    Science.gov (United States)

    Tang, Cong-Cong; Zuo, Wei; Tian, Yu; Sun, Ni; Wang, Zhen-Wei; Zhang, Jun

    2016-12-01

    This study investigated aeration rate (0, 0.2, 0.4 and 1.0L/min) effects on algal-bacterial symbiosis (ABS) and conventional activated sludge (CAS) systems while treating domestic wastewater in sequencing batch reactors. Experiment results showed that ABS system performed better on NH4(+)-N, total nitrogen and total phosphorus removal than CAS system, especially under lower aeration rate condition (0.2Lair/min), with removal efficiencies improvements of 18.90%, 12.45% and 46.66%, respectively. The mechanism study demonstrated that a favorable aeration rate reduction (half of traditional value in CAS system) could enhance algae growth but weaken hydraulic shear force, which contributed to the interactions between algae and sludge flocs and further stability of ABS system. In addition, algae growth protected both ammonia and nitrite oxidizing bacteria from optical damage. It is expected that the present study would provide some new insights into ABS system and be helpful for development of low-energy demand wastewater treatment process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Influence of oxygen flow rate and compost addition on reduction of organic matter in aerated waste layer containing mainly incineration residue

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Asakrura; Kei Nakagawa; Kazuto Endo; Masato Yamada; Yusaku Ono; Yoshiro Ono

    2013-01-01

    Landfilling municipal solid waste incineration (MSWI) residue alkalizes the waste layer,causing a subsequent decrease in microbial activity and a delay in the decomposition of organic matter.In this study,efficiencies of neutralization of the leachate and organic matter decomposition in the waste layer in a column filled with MSWI residue using aeration and compost addition were evaluated.Total organic carbon (TOC) reduction in the waste layer is large at high oxygen flow rate (OFR).To effectively accelerate TOC reduction in the waste layer to which compost was added,a high OFR exceeding that by natural ventilation was required.At day 65,the pH of the leachate when OFR was above 102 mol-O2/(day·m3) was lower than that when OFR was below 101 mol-O2/(day·m3).At the same OFR,the pH of waste sample was lower than that of waste sample with compost.Although leachate neutralization could be affected by compost addition,TOC reduction in the waste layer became rather small.It is possible that humic substances in compost prevent the decomposition of TOC in MSWI residue.

  8. Effects of intermittent aeration on pollutants removal in subsurface wastewater infiltration system.

    Science.gov (United States)

    Pan, Jing; Fei, Hexin; Song, Siyu; Yuan, Fang; Yu, Long

    2015-09-01

    In this study, the pollutant removal performances in two pilot-scale subsurface wastewater infiltration systems (SWISs) with and without intermittent aeration were investigated. Matrix oxidation reduction potential (ORP) results showed that intermittent aeration well developed aerobic conditions in upper matrix and anoxic or anaerobic conditions in the subsequent sections, which resulted in high NH4(+)-N and TN removal. Moreover, intermittent aeration increased removal rates of COD and TP. Microbial populations and enzyme activities analysis proved that intermittent aeration not only obviously boosted the growth and reproduction of bacteria, fungus, actinomyces, nitrifying bacteria and denitrifying bacteria, but also successfully increased nitrate reductase (NR) and nitrite reductase (NIR) in the depth of 80 and 110 cm. The results suggest that the intermittent aeration could be a widespread research and application strategy for achieving the high removal performance in SWISs.

  9. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions

    DEFF Research Database (Denmark)

    Nordkvist, Mikkel; Jensen, N.B.S.; Villadsen, John

    2003-01-01

    Lactococcus lactis subsp. lactis MG1363 was grown in batch cultures on a defined medium with glucose as the energy source under different aeration conditions, namely, anaerobic conditions, aerobic conditions, and microaerobic conditions with a dissolved oxygen tension of 5% (when saturation...... with air was used as the reference). The maximum specific growth rate was high (0.78 to 0.91 h(-1)) under all aeration conditions but decreased with increasing aeration, and more than 90% of the glucose was converted to lactate. However, a shift in by-product formation was observed. Increasing aeration...

  10. CAVITATION CHARACTERISTICS OF HIGH VELOCITY FLOW WITH AND WITHOUT AERATION ON THE ORDER OF 50 m/s

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experimental study of cavitation characteristics with and without aeration was conducted at the flow velocity 50m/s in the non-circulating type water tunnel in the Hydraulics Laboratory at Zhejiang University of Technology. Variations of pressure and cavitation number with air concentration, pressure waveforms as well as cavitation erosion level of concrete specimen with and without aeration were obtained. The effects of cavitation control by aeration were analyzed.

  11. Optimization of aeration and agitation rate for lipid and gamma linolenic acid production by Cunninghamella bainieri 2A1 in submerged fermentation using response surface methodology.

    Science.gov (United States)

    Saad, Normah; Abdeshahian, Peyman; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul

    2014-01-01

    The locally isolated filamentous fungus Cunninghamella bainieri 2A1 was cultivated in a 5 L bioreactor to produce lipid and gamma-linolenic acid (GLA). The optimization was carried out using response surface methodology based on a central composite design. A statistical model, second-order polynomial model, was adjusted to the experimental data to evaluate the effect of key operating variables, including aeration rate and agitation speed on lipid production. Process analysis showed that linear and quadratic effect of agitation intensity significantly influenced lipid production process (P production (P production of lipid in the bioreactor.

  12. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots.

    Science.gov (United States)

    Nakamura, Motoka; Nakamura, Takatoshi; Tsuchiya, Takayoshi; Noguchi, Ko

    2013-02-01

    We evaluated the specific strategies of hydrophytes for root O(2) consumption in relation to N acquisition and investigated whether the strategies varied depending on the aeration capacity. Aeration capacity of roots is an important factor for determining hypoxia tolerance in plants. However, some hydrophytes possessing quite different aeration capacities often co-occur in wetlands, suggesting that root O(2) consumption also strongly affects hypoxia tolerance. We cultivated Phragmites australis with high aeration capacity and Zizania latifolia with low aeration capacity in hypoxic conditions with NH(4)(+) or NO(3)(-) treatment and compared the growth, N uptake, N assimilation and root respiration between the two species. In Z. latifolia grown with NH(4)(+) treatment, high N uptake activity and restrained root growth led to sufficient N acquisition and decrease in whole-root respiration rate. These characteristics consequently compensated for the low aeration capacity. In contrast, in P. australis, low N uptake activity was compensated by active root growth, but the whole-root respiration rate was high. This high root respiration rate was allowed by the high aeration capacity. The O(2) consumption-related traits of hydrophyte roots were closely correlated with N acquisition strategies, which consequently led to a compensational relationship with the root aeration capacity. It is likely that this functional linkage plays an important role as a core mechanism in the adaptation of plants to hypoxic soils.

  13. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water

    Institute of Scientific and Technical Information of China (English)

    Huiyu Dong; Zhimin Qiang; Tinggang Li; Hui Jin; Weidong Chen

    2012-01-01

    Three lab-scale vertical-flow constructed wetlands (VFCWs),including the non-aerated (NA),intermittently aerated (IA) and continuously aerated (CA) ones,were operated at different hydraulic loading rates (HLRs) to evaluate the effect of artificial aeration on the treatment efficiency of heavily polluted river water.Results indicated that artificial aeration increased the dissolved oxygen (DO) concentrations in IA and CA,which significantly favored the removal of organic matter and NH4+-N.The DO grads caused by intermittent aeration formed aerobic and anoxic regions in IA and thus promoted the removal of total nitrogen (TN).Although the removal efficiencies of CODcr,NH4+-N and TN in the three VFCWs all decreased with an increase in HLR,artificial aeration enhanced the reactor resistance to the fluctuation of pollutant loadings.The maximal removal efficiencies of CODcr,NH4+-N and total phosphorus (TP) (i.e.,81%,87% and 37%,respectively) were observed in CA at 19 cm/day HLR,while the maximal TN removal (i.e.,57%) was achieved in IA.Although the improvement of artificial aeration on TP removal was limited,this study has demonstrated the feasibility of applying artificial aeration to VFCWs treating polluted eiver water,particularly at a high HLR.

  14. Water quality and bacteriology in an aquaculture facility equipped with a new aeration system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Kulkarni, S.S.; Shirodkar, R.R.; Karekar, S.V.; PraveenKumar, R.; Sreepada, R.A.; Vogelsang, C.; LokaBharathi, P.A.

    stream_size 41210 stream_content_type text/plain stream_name Environ_Monit_Assess_164_81a.pdf.txt stream_source_info Environ_Monit_Assess_164_81a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 1... revealed high nitrification rates in aerated systems (Cottingham et al. 1999). Studies by Mota et al. (2005) to assess the effects of aeration cycles on nitrifiers and nitrogen removal in intermittently aerated reactors have shown that under non...

  15. Characteristics of integrated biological aerated filter in municipal wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; ZHANG Yu-ping; XU Jian-bin

    2005-01-01

    In this paper, the characteristics of integrated biological aerated filter (IBAF) applied to municipal wastewater treatment were studied in a pilot scale experiment. The experimental results showed that IBAF has high efficiencies in removing organic pollutants, such as CODCr and SS, in municipal wastewater. The removal rates of CODCr and SS can reach over 90% and 80%, respectively, when COD and SS in the influent are 234 mg L-1 and 112 mg L-1, hydraulic retention time (HRT) is 8 h, and the aerated intensity is in the range of (0.5 to 0.6) L m-2 s-1.

  16. Methanogenesis acceleration of fresh landfilled waste by micro-aeration

    Institute of Scientific and Technical Information of China (English)

    SHAO Li-ming; HE Pin-jing; ZHANG Hua; YU Xiao-hua; LI Guo-jian

    2005-01-01

    When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids(VFA) and decrease of pH value.This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH4 in the frequency of twice/d, could amount to 40% (v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.

  17. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater.

    Science.gov (United States)

    Pan, Jing; Yuan, Fang; Yu, Long; Huang, Linli; Fei, Hexin; Cheng, Fan; Zhang, Qi

    2016-07-01

    Organics and nitrogen removal in four subsurface wastewater infiltration systems (SWISs), named SWIS A (without intermittent aeration and shunt distributing wastewater), SWIS B (with intermittent aeration), SWIS C (with shunt distributing wastewater) and SWIS D (with intermittent aeration and shunt distributing wastewater) was investigated. High average removal rates of 92.3% for COD, 90.2% for NH4-N and 88.1% for TN were achieved simultaneously in SWIS D compared with SWIS A, B and C. The excellent TN removal of SWIS D was due to intermittent aeration provided sufficient oxygen for nitrification in upper matrix and the favorable anoxic or anaerobic environment for denitrification in subsequent matrix, and moreover, shunt distributing wastewater provided sufficient carbon source for denitrification process. The results indicated that intermittent artificial aeration combined with shunt distributing wastewater could achieve high organics and nitrogen removal in SWISs.

  18. Nitrate-removal activity of a biofilm attached to a perlite carrier under continuous aeration conditions.

    Science.gov (United States)

    Yamashita, Takahiro; Yokoyama, Hiroshi; Kanafusa, Sumiyo; Ogino, Akifumi; Ishida, Mitsuyoshi; Osada, Takashi; Tanaka, Yasuo

    2011-01-01

    The nitrate-removal activity of a biofilm attached to a perlite carrier from an aerobic bioreactor used for treating dairy farm wastewater was examined by batch experiments under continuous aeration conditions. Despite aeration, the biofilm removed nitrate at a rate of 114.4 mg-N/kg-perlite/h from wastewater containing cow milk and manure. In a clone library analysis of the biofilm, bacteria showing high similarity to the denitrifying bacteria Thauera spp. were detected.

  19. Aerated lagooning of agro-industrial wastewater: depuration performance and energy requirements

    Directory of Open Access Journals (Sweden)

    Serafina Andiloro

    2013-09-01

    Full Text Available Intensive depuration plants have often shown low reliability and economic sustainability, when utilised for agro-industrial wastewater treatment, due to the particular wastewater properties: high organic load and essential oil concentrations, acidity, nutrient scarcity and qualitative-quantitative variability of effluents. Aerated lagooning systems represent a suitable alternative, because they are able to assure good reliability and low energy requirements, avoiding the drawbacks shown by the intensive depuration plants. In order to optimize performance of the lagooning systems, particularly in terms of energy requirements, depuration processes of aerobic-anaerobic aerated lagoons were investigated, both at full- and laboratory-scale. Citrus processing wastewater were subject to bubble aeration with low flow rates and limited time; the removal rate of organic load was evaluated and energy requirements of different depuration schemes were compared. The experimental investigations in full-scale aerated lagoons showed a low energy supply (0.21-0.59 kWh per kg of COD (Chemical Oxygen Demand removed with an average value of 0.45 kWh kgCOD –1, an adequate equalisation capability and constantly good depurative performance also with high concentrations of essential oil (500-1000 ppm. The experimental investigations in lab-scale aerated tanks under controlled conditions indicated the possibility of decreasing energy requirements (down to 0.16 kWh kgCOD –1 by reducing aeration power (down to 0.6 W m–3 and limiting aeration time to night 12 hours only, when energy price is lower. In spite of the low aeration, the COD removal rates were on the average six-fold higher compared to the anaerobic tank. Other outcomes indicated an ability of the spontaneous microflora to adapt to high concentrations of essential oils, which however did not provide an increase of the removal rate of the organic load in the experimented scheme.

  20. The influence of aeration and temperature on the structure of bacterial complexes in high-moor peat soil

    Science.gov (United States)

    Kukharenko, O. S.; Pavlova, N. S.; Dobrovol'Skaya, T. G.; Golovchenko, A. V.; Pochatkova, T. N.; Zenova, G. M.; Zvyagintsev, D. G.

    2010-05-01

    The number and taxonomic structure of the heterotrophic block of aerobic and facultative anaerobic bacteria were studied in monoliths from a high-moor peat (stored at room temperature and in a refrigerator) and in the peat horizons mixed in laboratory vessels. The monitoring lasted for a year. In the T0 horizon, spirilla predominated at room and low temperatures; in the T1 and T2 horizons, bacilli were the dominants. The continuous mixing of the peat layers increased the oxygen concentration and the peat decomposition; hence, the shares of actinomycetes and bacilli (bacteria of the hydrolytic complex) increased. In the peat studied, the bacilli were in the active state; i.e., vegetative cells predominated, whose amount ranged from 65 to 90%. The representatives of the main species of bacilli (the facultative anaerobic forms prevailed) hydrolyzed starch, pectin, and carboxymethylcellulose. Thus, precisely sporiferous bacteria can actively participate in the decomposition of plant polysaccharides in high-moor peat soils that are characterized by low temperatures and an oxygen deficit. The development of actinomycetes is inhibited by low temperatures; they can develop only under elevated temperature and better aeration.

  1. Process Optimization on Micro-Aeration Supply for High Production Yield of 2,3-Butanediol from Maltodextrin by Metabolically-Engineered Klebsiella oxytoca.

    Science.gov (United States)

    Chan, Sitha; Jantama, Sirima Suvarnakuta; Kanchanatawee, Sunthorn; Jantama, Kaemwich

    2016-01-01

    An optimization process with a cheap and abundant substrate is considered one of the factors affecting the price of the production of economical 2,3-Butanediol (2,3-BD). A combination of the conventional method and response surface methodology (RSM) was applied in this study. The optimized levels of pH, aeration rate, agitation speed, and substrate concentration (maltodextrin) were investigated to determine the cost-effectiveness of fermentative 2,3-BD production by metabolically-engineered Klebsiella oxytoca KMS005. Results revealed that pH, aeration rate, agitation speed, and maltodextrin concentration at levels of 6.0, 0.8 vvm, 400 rpm, and 150 g/L respectively were the optimal conditions. RSM also indicated that the agitation speed was the most influential parameter when either agitation and aeration interaction or agitation and substrate concentration interaction played important roles for 2,3-BD production by the strain from maltodextrin. Under interim fed-batch fermentation, 2,3-BD concentration, yield, and productivity were obtained at 88.1±0.2 g/L, 0.412±0.001 g/g, and 1.13±0.01 g/L/h respectively within 78 h.

  2. USING AERATION FOR CORROSION CONTROL

    Science.gov (United States)

    Aeration is a useful drinking water treatment process. Aeration has been used to remove hydrogen sulfide, methane, radon, iron, manganese, and volatile organic contaminants (VOCs) from drinking water. Aeration is also effective in removing carbon dioxide which directly impacts ...

  3. Study of the liquid-film-forming apparatus as an alternative aeration system: design criteria and operating condition.

    Science.gov (United States)

    Hongprasith, Narapong; Imai, Tsuyoshi; Painmanakul, Pisut

    2017-06-01

    Aeration is an important factor in aquaculture systems because it is a vital condition for all organisms that live in water and respire aerobically. Generally, mechanical surface aerators are widely used in Thailand due to their advantage for increasing dissolved oxygen (DO) and for their horizontal mixing of aquaculture ponds with large surface areas. However, these systems still have some drawbacks, primarily the low oxygen transfer efficiency (OTE) and energy. Regarding this issue, alternative aeration systems should be studied and applied. Therefore, this research aims to study the aeration mechanism obtained by the diffused-air aeration combined with a liquid-film-forming apparatus (LFFA). The effect of gas flow rates, types, and patterns of aerator installation were investigated in an aquaculture pond of 10 m × 10 m × 1.5 m. The analytical parameters were volumetric mass transfer coefficient (kLa), OTE, and aeration efficiency (AE). From the results, the '4-D' with partitions was proposed as the suitable pattern for the LFFA installation. The advantage could be obtained from high energy performance with 1.2 kg/kW h of AE. Then, the operation conditions can be applied as a design guideline for this alternative aeration system in the aquaculture ponds.

  4. HYDRAULIC RESEARCH OF AERATORS ON TUNNEL SPILLWAYS

    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping; WU Jian-hua; WU Wei-wei; XI Ru-ze

    2007-01-01

    The selection of the configuration and size of an aerator was of importance for a tunnel spillway under the conditions of high speed flows. Experimental investigations were conducted on the effects of entrained air on the tunnel spillway in the Goupitan Project, based on the criterion of gravity similarity and the condition of aerated flow velocity of over 6 m/s, with physical models. The configurations of the aerators were presented of a larger bottom air concentration, to protect the tunnel spillway from cavitation as well as to see no water fills in the grooves.

  5. Development of aerated confectionery products of high nutritional value using triticale flour

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2016-01-01

    Full Text Available Pastries are very popular among the Russian population. Pastry are the most promising targets for the enrichment of their function ingredients.. One of the most promising feedstocks for the production of flour confectionery products is flour from grain crops ofspring triticale. The different varieties of triticale were studied in particular, triticale flour grade "Ukro" for use in technologies of shortbread-butter cookies with enhanced food value. The first in the history of our country varieties of spring triticale "Ukro" was included in the State Register of selection achievements since 2004. Triticale is characterized by high-protein content. Triticale, protein is higher than in wheat by amino acids lysine and tryptophan, minerals (calcium, potassium, magnesium, iron, B vitamins. It was pointed the choice and ratio of prescription ingredients. Recipe shortbread-butter cookies based on the seeded triticale flour and flour from coarse whole meal grain, grade "Ukro", with high consumer properties was developed. Cake samples prepared on the basis of flour triticale exceed the reference sample of prime grade wheat flour. Biscuits have a high content of complete protein, vitamins, macro - and microelements, dietary fibers, high gustatory qualities. The influence of prescription components on organoleptic and physical-chemical properties of sandy butter cookies was studied. The nutritional and biological value was calculated. It was state the daily needs of the organism in these materials when using 100 g. As a result of the conducted studies proved the feasibility of the use of flour from grain triticale in the production of flour confectionery products of functional purpose.

  6. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Suyun [Department of Environmental and Low-Carbon Science, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai (China); Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Selvam, Ammaiyappan [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong); Wong, Jonathan W.C., E-mail: jwcwong@hkbu.edu.hk [Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region (Hong Kong)

    2014-02-15

    Highlights: • Effect of micro-aeration on acidogenesis and hydrolysis of food waste was investigated. • Micro-aeration at 258 L-air/kg TS/d increased the VFAs production 3-fold. • High aeration leads to loss of substrate through microbial biomass and respiration. • Optimum aeration increased methane recovery while high aeration intensity reduced methane yield. - Abstract: Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH{sub 4}/g VS{sub added} in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO{sub 2} respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  7. EMERGENCE ANGLE OF FLOW OVER AN AERATOR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.

  8. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  9. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard

    2009-01-01

    In industrial production of enzymes using the filamentous fungus Aspergilhis niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect...... of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations...

  10. Research on the High Performance and Low Density Aerated Concrete%高性能低密度加气混凝土的研究

    Institute of Scientific and Technical Information of China (English)

    黄政宇; 樊峻; 谢学钦

    2013-01-01

    The properties of high performance and low density aerated concrete,including setting time,compressive strength,dry bulk density,water absorption and thermal conductivity were investigated.The results showed that adding 7.5% sulfur aluminate cement mixed with 0.03% lithium carbonate can significantly shorten the setting time of aerated concrete.In addition,adjustment of water temperature has great influence on setting time.Potassium permanganate can significantly increase the amount of foaming.For the aerated concrete of the same density grade,compressive strength under the condition of low water to binder ratio was obviously higher,and its thermal conductivity and water absorption properties were lower.%研究了高性能低密度加气混凝土的凝结时间、抗压强度、干密度、吸水率、导热系数.实验结果表明,掺入7.5%的硫铝酸盐水泥和0.03%的碳酸锂,可以显著缩短加气混凝土料浆的凝结时间,水温也可调节料浆凝结时间;高锰酸钾可以提高双氧水发泡量;同密度等级的加气混凝土,在低水灰比条件下抗压强度明显较高,导热系数和吸水率较低.

  11. Effects of chemical oxygen demand (COD)/N ratios on pollutants removal in the subsurface wastewater infiltration systems with/without intermittent aeration.

    Science.gov (United States)

    Song, Siyu; Pan, Jing; Wu, Shiwei; Guo, Yijing; Yu, Jingxiao; Shan, Qingchi

    2016-01-01

    The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4(+)-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.

  12. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application.

    Science.gov (United States)

    Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua

    2016-04-15

    Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs.

  13. Aerated bunker discharge of fine dilating powders

    NARCIS (Netherlands)

    Ouwerkerk, C.E.D.; Molenaar, H.J.; Frank, M.J.W.

    1992-01-01

    The discharge rate of coarse powders (mean particle size 500 ¿m) from bunkers without aeration can be described by both empirical relations and theoretical models. In the case of small particles the discharge rate is largely overestimated. As the powder dilates during flow a negative pressure gradie

  14. Performance of a fixed-bed biofilm reactor with microbubble aeration in aerobic wastewater treatment.

    Science.gov (United States)

    Zhang, Lei; Liu, Junliang; Liu, Chun; Zhang, Jing; Yang, Jingliang

    2016-01-01

    Microbubble aeration is supposed to be highly efficient for oxygen supply in aerobic wastewater treatment. In the present study, the performance of a fixed-bed biofilm reactor microbubble-aerated using a Shirasu porous glass (SPG) membrane system was investigated when treating synthetic municipal wastewater. The biofilm formation on the carriers was enhanced with microbubble aeration due to the strong adhesion of microbubbles to the solid surface. The dissolved oxygen concentration, the removals of chemical oxygen demand (COD) and nitrogen, and the oxygen utilization efficiency were influenced by the organic loading rate at a certain oxygen supply capacity. The relatively optimal organic loading rate was determined as 0.82 kgCOD/(m(3)d) when the oxygen supply capacity was 0.93 kgO(2)/(m(3)d), where COD and ammonia removal efficiencies were 91.7% and 53.9%, respectively. The corresponding SPG membrane area-based COD removal capacity was 6.88 kgCOD/(m(2)d). The oxygen utilization efficiency of microbubble aeration was obviously higher compared to conventional bubble aeration. The simultaneous nitrification and denitrification occurred in the biofilm reactor and the total nitrogen removal efficiency of 50.4% was achieved under these conditions. In addition, the increase in air supply capacity of the SPG membrane system was suggested to improve its energy utilization efficiency.

  15. High rate drift chambers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.C. (Fermilab, Batavia, IL 60510 (United States)); Berisso, M.C. (Fermilab, Batavia, IL 60510 (United States)); Gutierrez, G. (Fermilab, Batavia, IL 60510 (United States)); Holmes, S.D. (Fermilab, Batavia, IL 60510 (United States)); Wehmann, A. (Fermilab, Batavia, IL 60510 (United States)); Avilez, C. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Felix, J. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Moreno, G. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Romero, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Sosa, M. (Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico)); Forbush, M. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Huson, F.R. (Department of Physics, Texas A and M University, College Station, TX 77843 (United States)); Wightman, J.A. (Department of Physi

    1994-06-01

    Fermilab experiment 690, a study of target dissociation reactions pp[yields]pX using an 800 GeV/c proton beam and a liquid hydrogen target, collected data in late 1991. The incident beam and 600-800 GeV/c scattered protons were measured using a system of six 6 in.x4 in. and two 15 in.x8 in. pressurized drift chambers spaced over 260 m. These chambers provided precise measurements at rates above 10 MHz (2 MHz per cm of sense wire). The measurement resolution of the smaller chambers was 90 [mu]m, and the resolution of the larger chambers was 125 [mu]m. Construction details and performance results, including radiation damage, are presented. ((orig.))

  16. Influence of aeration and initial water thickness on axial velocity attenuation of jet flows

    Institute of Scientific and Technical Information of China (English)

    Wang-ru WEI; Jun DENG; Bin LIU

    2013-01-01

    With the development of ski-jump energy dissipation for high and large discharge among the hydraulic projects,the effects of characteristics of water flow on energy dissipation are increasingly important.In the present study,the effects of aeration and the initial water thickness on axial velocity attenuation of jet flow were analyzed,using variance analysis and numerical calculated methods.From the analysis of test data,both of the air concentration and initial water thickness are sensitive factors for the axial velocity attenuation of jet flow along the axial way,and there is no significant interaction effect between the aeration and initial water thickness.Aeration has a more significant effect on the axial velocity attenuation of jet flow.Decreasing the initial water thickness of jet flow can reduce the length of jet core,and make the initial position of axial velocity attenuation closer to the nozzle exit.The numerical calculation results show that aeration can contribute to the enhancement of entrainment ability of jet flow,which may improve the interaction between jet flow and surroundings.For ski-jump energy dissipation among the hydraulic projects,combining aeration with decreasing initial water thickness of jet flow is an effective way to enhance the rate of axial velocity attenuation.

  17. Toward an understanding of the effects of agitation and aeration on growth and laccases production by Pleurotus ostreatus.

    Science.gov (United States)

    Tinoco-Valencia, Raunel; Gómez-Cruz, Cristina; Galindo, Enrique; Serrano-Carreón, Leobardo

    2014-05-10

    Mycelial growth and laccase production by Pleurotus ostreatus CP50 cultured in a 10-L mechanically agitated bioreactor were assessed through a 2(3) factorial experimental design. The main effects and interactions of three factors (agitation, aeration and copper induction) over five responses (μ, αLacc, βLacc, maximal volumetric laccase activity and maximal biomass concentration) were analyzed. P. ostreatus growth was significantly improved when culturing was conducted with high agitation (5.9kW/m(3)s) and aeration flow (0.5vvm) rates. Under the experimental conditions evaluated, no evidence of hydrodynamic stress affecting fungal growth was observed. However, the high agitation and aeration conditions were detrimental for the growth-associated laccase production constant (αLacc), leading to a very complex optimization of the process. The maximal laccase volumetric activity (1.2 and 3.8U/ml for non-induced and copper-induced cultures, respectively) was observed when the culturing was performed at a low agitation rate (0.9kW/m(3)s) and a high aeration flow rate (0.5vvm). Laccase proteolysis may explain the complex interactions observed between agitation and aeration and the effects of these factors on the laccase volumetric activity observed in the cultures. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. 不同曝气比率对蛋白核小球藻生长的影响%Effects of Different Aeration Rates on the Growth of Chlorella vulgaris

    Institute of Scientific and Technical Information of China (English)

    万晓安; 刘德富; 杨正建; 方丽娟; 崔玉洁; 朱小明; 胡雪

    2014-01-01

    通过室内控制实验,研究了不同曝气比率对蛋白核小球藻(Chlorella vulgaris)生长过程影响,构建了曝气比率与ODmax、μmax、Cmax的适配曲线。实验设置0%、2%、10%、20%、30%、50%、70%共计7组曝气比率,在1000 lx光强和20℃条件下,采用BG-11培养基培养小球藻至稳定生长。结果显示,适宜的曝气能促进小球藻生长,其最适曝气比率为20%,过量曝气会抑制小球藻生长;曝气比率(x)与 ODmax、Cmax、μmax拟合方程分别为:Omax =170.63x3-231.83x2+84.341x +1.8439(0<x<50%;R2=0.9850)、Cmax =15.844x3-19.803x2+6.8594x+0.0521(0<x <50%;R2=0.9285)、μmax =8.1202x3-11.428x2+4.4963x +0.1173(20%<x <30%;R2=0.8581);50%<x<70%的关系式有待进一步验证。探究不同曝气比率对小球藻生长的影响,可为其优化培养与资源化利用提供理论依据。%The study aimed to investigate the effects of varying aeration rates (0%,2%,10%,20%,30%, 50%,and 70%)on the growth of Chlorella vulgaris.The experiment was conducted under 1000 lx light intensity at 20℃,and the Chlorella vulgaris was cultivated on the BG-1 1 culture medium to stable condition.Fitted curves between aeration ratio and the maximum optical density (ODmax),the maximum growth rate (μmax)and the maxi-mum concentration of daily biomass (Cmax)were created.The results showed that appropriate aeration promoted the growth of Chlorella vulgaris,with the best aeration rate of 20%,while the excessive aeration inhibited the growth;the mathematical relationships between aeration ratio and ODmax,μmax and Cmax simulated by cubic curve equation were shown as follows:ODmax=170.63x3 -231.83x2 +84.341x+1.8439 (0

  19. Soil Aeration deficiencies in urban sites

    Science.gov (United States)

    Weltecke, Katharina; Gaertig, Thorsten

    2010-05-01

    Soil aeration deficiencies in urban sites Katharina Weltecke and Thorsten Gaertig On urban tree sites reduction of soil aeration by compaction or sealing is an important but frequently underestimated factor for tree growth. Up to 50% of the CO2 assimilated during the vegetation period is respired in the root space (Qi et al. 1994). An adequate supply of the soil with oxygen and a proper disposal of the exhaled carbon dioxide are essential for an undisturbed root respiration. If the soil surface is smeared, compacted or sealed, soil aeration is interrupted. Several references show that root activity and fine root growth are controlled by the carbon dioxide concentration in soil air (Qi et al.1994, Burton et al. 1997). Gaertig (2001) found that decreasing topsoil gas permeability leads to reduced fine root density and hence to injury in crown structure of oaks. In forest soils a critical CO2 concentration of more than 0.6 % indicates a bad aeration status (Gaertig 2001). The majority of urban tree sites are compacted or sealed. The reduction of soil aeration may lead to dysfunctions in the root space and consequently to stress during periods of drought, which has its visible affects in crown structure. It is reasonable to assume that disturbances in soil aeration lead to reduced tree vigour and roadworthiness, resulting in high maintenance costs. The assessment of soil aeration in urban sites is difficult. In natural ecosystems the measurement of gas diffusivity and the gas-chromatical analysis of CO2 in soil air are accepted procedures in analyzing the state of aeration (Schack-Kirchner et al. 2001, Gaertig 2001). It has been found that these methods can also be applied for analyzing urban sites. In particular CO2 concentration in the soil atmosphere can be considered as a rapidly assessable, relevant and integrating indicator of the aeration situation of urban soils. This study tested the working hypothesis that soil aeration deficiencies lead to a decrease of fine

  20. Soil Aeration Variability as Affected by Reoxidation

    Institute of Scientific and Technical Information of China (English)

    A.WOLI(N)SKA; Z.ST(E)PNIEWSKA

    2013-01-01

    The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized.This study was conducted to characterise the soil aeration status and derive correlations between variable aeration factors during reoxidation.Surface layers (0-30 cm) of three soil types,Haplic Phaeozem,Mollic Gleysol,and Eutric Cambisol (FAO soil group),were selected for analysis.The moisture content was determined for a range of pF values (0,1.5,2.2,2.7,and 3.2),corresponding to the available water for microorganisms and plant roots.The variability of a number of soil aeration parameters,such as water potential (pF),air-filled porosity (Eg),oxygen diffusion rate (ODR),and redox potential (Eh),were investigated.These parameters were found to be interrelated in most cases.There were significant (P < 0.001) negative correlations of pF,Eg,and ODR with Eh.A decrease in water content as a consequence of soil reoxidation was manifested by an increase in the values of aeration factors in the soil environment.These results contributed to understanding of soil redox processes during recovery from flooding and might be useful for development of agricultural techniques aiming at soil reoxidation and soil fertility optimisation.

  1. Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland.

    Science.gov (United States)

    Uggetti, Enrica; Hughes-Riley, Theodore; Morris, Robert H; Newton, Michael I; Trabi, Christophe L; Hawes, Patrick; Puigagut, Jaume; García, Joan

    2016-07-15

    Forced aeration of horizontal subsurface flow constructed wetlands (HSSF CWs) is nowadays a recognized method to improve treatment efficiency, mainly in terms of ammonium removal. While numerous investigations have been reported testing constant aeration, scarce information can be found about the efficiency of intermittent aeration. This study aims at comparing continuous and intermittent aeration, establishing if there is an optimal regime that will increase treatment efficiency of HSSF CWs whilst minimizing the energy requirement. Full and intermittent aeration were tested in a pilot plant of three HSSF CWs (2.64m(2) each) fed with primary treated wastewater. One unit was fully aerated; one intermittently aerated (i.e. by setting a limit of 0.5mg/L dissolved oxygen within the bed) with the remaining unit not aerated as a control. Results indicated that intermittent aeration was the most successful operating method. Indeed, the coexistence of aerobic and anoxic conditions promoted by the intermittent aeration resulted in the highest COD (66%), ammonium (99%) and total nitrogen (79%) removals. On the other hand, continuous aeration promotes ammonium removal (99%), but resulted in nitrate concentrations in the effluent of up to 27mg/L. This study demonstrates the high potential of the intermittent aeration to increase wastewater treatment efficiency of CWs providing an extreme benefit in terms of the energy consumption.

  2. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    Science.gov (United States)

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation.

  3. Experimental Study of High-speed Discharge Aeration Cavitation Alleviating for Chute of Overflow Dam in Hydropower Station%某水电站溢流坝陡槽高速泄流掺气减蚀试验研究

    Institute of Scientific and Technical Information of China (English)

    赵业彬; 徐艺绯; 骆少泽; 张陆陈

    2012-01-01

    为有效解决陡槽高速泄流情况下的空化空蚀问题,借鉴二滩水电站# 1泄洪洞掺气坎的修复经验,通过国内某溢流坝陡槽段大比尺模型试验,研究了底掺气设施有无加设侧掺气坎的掺气空腔长度、掺气浓度、通气量等参数与流速的关系.结果表明,泄水陡槽加设适宜的侧掺气坎后,未影响底空腔的长度,有助于形成稳定完整的底空腔和侧空腔,且使水体掺气浓度及通气量显著增加,不仅避免了陡槽侧墙空蚀的发生,还可加强过流底板的保护作用.%To effectively solve the problem of cavitation in the case of high-speed discharge chute and use the aerator repair experience of # 1 spillway tunnel of Ertan hydropower station for reference, the relationship between bottom aerator parameters of lateral aeration cavity length, air concentration, ventilation and velocity is studied with large-scale model test of overflow dam chute. The results show that the discharge chute added appropriate lateral aerator does not affect the bottom cavity length, contributes to the formation of stable complete bottom and lateral cavities, and significantly increa ses water body aeration concentration and ventilation volume. Thus, it avoids the occurrence of cavitation in chute side wall and strengthens the protection of the bottom of the chute.

  4. RESEARCH ON THE VOLATILE RATES OF VOCs FROM AERATION TANK IN WWTP IN COLD REGION%寒地污水厂曝气池VOCs逸散速率研究

    Institute of Scientific and Technical Information of China (English)

    王源; 杨俊晨; 白秀梅

    2011-01-01

    In order to research the volatile rate of BTEX and chlorinated hydrocarbon coming from aeration tank in municipal WWTP in cold region, a mathematical model were applied to calculate volatile rates of BTEX ( benzene, toluene, xylene) and chlorinated hydrocarbon ( chloroform, carbon tetrachlo-ride, trichloroethylene, tetrachloroethylene). The results showed that the volatile raters of benzene, toluene, xylene, chloroform, carbon tetrachloride, trichloroethylene, tetrachloroethylene were highest in winter, whose values were 5. 22, 0. 37, 0.46, 1.46, 1. 18, 18. 92 and 2. 22g/s respectively. The discharge of BTEX and chlorinated hydrocarbon coming from aeration tank in municipal WWTP meet the needs of .%本文以寒冷地区某城市污水处理厂曝气池作为研究对象,应用数学模型计算曝气池中苯系物(苯,甲苯,二甲苯)和氯代烃(三氯甲烷,四氯化碳,三氯乙烯,四氯乙烯)的逸散速率.计算结果表明寒冷地区污水处理厂苯系物和氯代烃在冬季的逸散速率最高.苯、甲苯、二甲苯、三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯在冬季的逸散速率分别为5.22、0.37、0.46、1.46、1.18、18.92和2.22g/s.污水处理厂曝气池苯系物和氯代烃的排放标准满足《大气污染物综合排放标准( GB16297 - 1996)》.

  5. Use of a Doehlert factorial design to investigate the effects of pH and aeration on the accumulation of lactones by Yarrowia lipolytica.

    Science.gov (United States)

    García, E Escamilla; Belin, J-M; Waché, Y

    2007-11-01

    To detect rate-limiting steps in the production of lactones by studying the combined effect of pH and aeration on their accumulation. A Doehlert experimental design was chosen to evaluate the accumulation of four lactones in the pH (3.5-7.3) and K(L)a (4.1 h(-1) to 26 h(-1)) experimental domain. The accumulation of gamma-decalactone was higher at pH around 5 and increased at low aeration reaching 496 mg l(-1) at pH 6.35 and K(L)a 4.5 h(-1). The specific accumulation increased at low aeration. The 3-hydroxy-gamma-decalactone accumulation was higher at low pH and high aeration conditions: 660 mg l(-1) at pH 4.4 and 26 h(-1). For dec-2-en-4-olide and dec-3-en-4-olide, lower amounts were reached (104 mg l(-1) and 66 mg l(-1), respectively). Although the accumulation of the four lactones should be related to catalytic steps requiring oxygen, the accumulation of gamma-decalactone was higher in low aeration conditions whereas the one of 3-hydroxy-gamma-decalactone was promoted for high aeration. Decenolides accumulate independently of pH or aeration. This study gives new insights into the catabolism of lipids, such as the role of co-factor regulation and the fact that the 3-hydroxylactone dehydration step is insensitive to pH or aeration.

  6. [Technological characteristics of bioreactor landfill with aeration in the upper layer].

    Science.gov (United States)

    Tian, Ying; Wang, Shen; Xu, Qi-Yong

    2014-11-01

    In order to study the effects of upper-layer aerobic pretreatment in bioreactors on refuse degradation, leachate condition and methane production, two simulated columns were constructed, including traditional anaerobic bioreactor A1 and hybrid bioreactor C1 with aeration pretreatment in the upper layer. Results indicated that A1 was seriously inhibited by the accumulation of volatile fatty acids (VFA) with nearly no methane production and slower settlements. At the end of operations, refuse in A1 only deposited 5.4 cm which was less than half of that in C1. And up to 70 000 mg x L(-1) COD and 30 000 mg x L(-1) VFA could be monitored in the leachate. On the contrary, aerobic pretreatment effectively improved the removal of high VFA concentrations and remarkably accelerated the degradation rate. In bioreactor C1, COD and VFA concentrations were reduced to less than 14000 mg x L(-1) and 8900 mg x L(-1) at the end of the experiment, respectively. And about 61 976 mL methane gases were produced since aeration ceased on day 60 with its methane recovery efficiency rising to over 95%. However, the performance of hybrid bioreactors was still closely related to its operation conditions, such as aeration supply and leachate recirculation. Therefore, in order to guarantee better performance, appropriate aeration and leachate operations need to be provided.

  7. Aeration equipment for small depths

    Science.gov (United States)

    Sluše, Jan; Pochylý, František

    2015-05-01

    Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena "algal bloom" appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  8. CFD model of an aerating hydrofoil

    Science.gov (United States)

    Scott, D.; Sabourin, M.; Beaulieu, S.; Papillon, B.; Ellis, C.

    2014-03-01

    Improving water quality in the tailrace below hydroelectric dams has become a priority in many river systems. In warm climates, water drawn by the turbine from deep in a reservoir can be deficient in dissolved oxygen (DO), a critical element in maintaining a healthy aquatic ecosystem. Many different solutions have been proposed in order to increase the DO levels in turbine discharge, including: turbine aeration systems (adding air to the water through either the turbine hub, the periphery or through distributed aeration in the runner blades); bubble diffusers in the reservoir or in the tailrace; aerating weirs downstream of the dams; and surface water pumps in the reservoir near the dam. There is a significant potential to increase the effectiveness of these solutions by improving the way that oxygen is introduced into the water; better distributions of bubbles will result in better oxygen transfer. In the present study, a two-phase Computational Fluid Dynamics model has been formulated using a commercial code to study the distribution of air downstream of a simple aerating hydrofoil. The two-phase model uses the Eulerian-Eulerian approach. Appropriate relations are used to model the interphase forces, including the Grace drag force model, the Favre averaged drag force and the Sato enhanced eddy viscosity. The model is validated using experimental results obtained in the water tunnel at the University of Minnesota's Saint Anthony Falls Laboratory. Results are obtained for water velocities between 5 and 10 m/s, air flow rates between 0.5 and 1.5 sL/min and for angles of attack between 0° and -8°. The results of this study show that the CFD model provides a good qualitative comparison to the experimental results by well predicting the wake location at the different flow rates and angles of attack used.

  9. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Ninet M. Ahmed

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  10. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  11. Targeted modification of organic components of municipal solid waste by short-term pre-aeration and its enhancement on anaerobic degradation in simulated landfill bioreactors.

    Science.gov (United States)

    Ni, Zhe; Liu, Jianguo; Girotto, Francesca; Cossu, Raffaello; Qi, Guangxia

    2016-09-01

    Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling.

  12. Wind-powered dugout aeration

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, B. [Alberta Agriculture, Barrhead, AB (Canada); Chang, J. [Engineering Services, Edmonton, AB (Canada)

    1993-12-31

    A review is presented of past and present use of wind power on Alberta farms, concentrating on the merits of wind-powered aeration systems for improving water quality in farm dugouts. Dugout water quality is seriously affected by nutrient-rich sediments causing excessive algae and plant growth. If dissolved oxygen is not maintained anaerobic decomposition begins, resulting in black, smelly water. Aeration assures an adequate level of dissolved oxygen to control taste and odor and maintains good water quality. There are two common means of aerating dugouts from windmills: use of a floating mechanical type aerator, and a bank-mounted windmill and diaphragm-type pump. Bank-mounted windmill aerators were studied as they were considered to have the most potential for aerating dugouts. Windmill monitoring was carried out on a farm near Manning, Alberta using a Koenders windmill (12 blade rotor). Tests showed that the windmill maintained the dissolved oxygen levels near saturation, and averaged ca 1.0 cubic feet of air pumped per minute. Operating pressure was 5 psi, windmill starting speed was 12 km/h wind, and stopping speed was 8 km/h winds. Tests were also carried out on a Breeze-1 windmill, a 3 blade airplane propeller type windmill. The system average 3.3 cubic feet of air per minute, and started at very low wind speeds of 5-8 km/h. 2 figs.

  13. High Data Rate Quantum Cryptography

    Science.gov (United States)

    Kwiat, Paul; Christensen, Bradley; McCusker, Kevin; Kumor, Daniel; Gauthier, Daniel

    2015-05-01

    While quantum key distribution (QKD) systems are now commercially available, the data rate is a limiting factor for some desired applications (e.g., secure video transmission). Most QKD systems receive at most a single random bit per detection event, causing the data rate to be limited by the saturation of the single-photon detectors. Recent experiments have begun to explore using larger degree of freedoms, i.e., temporal or spatial qubits, to optimize the data rate. Here, we continue this exploration using entanglement in multiple degrees of freedom. That is, we use simultaneous temporal and polarization entanglement to reach up to 8.3 bits of randomness per coincident detection. Due to current technology, we are unable to fully secure the temporal degree of freedom against all possible future attacks; however, by assuming a technologically-limited eavesdropper, we are able to obtain 23.4 MB/s secure key rate across an optical table, after error reconciliation and privacy amplification. In this talk, we will describe our high-rate QKD experiment, with a short discussion on our work towards extending this system to ship-to-ship and ship-to-shore communication, aiming to secure the temporal degree of freedom and to implement a 30-km free-space link over a marine environment.

  14. Effects of aeration frequency on leachate quality and waste in simulated hybrid bioreactor landfills.

    Science.gov (United States)

    Ko, Jae Hac; Ma, Zeyu; Jin, Xiao; Xu, Qiyong

    2016-12-01

    Research has been conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement in simulated hybrid landfill bioreactors. Four laboratory-scale reactors were constructed and operated for about 10 months to simulate different bioreactor operations, including one anaerobic bioreactor and three hybrid bioreactors with different aeration frequencies (one, two, and four times per day). Chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) reduced more than 96% of the initial concentrations in all aerated bioreactors. The differences of COD and BOD5 reductions among tested aeration frequencies were relatively small. For ammonia nitrogen, the higher aeration frequency (two or four times per day) resulted in the quicker reduction. Overall, the concentrations of heavy metals (Cr, Co, Cu, Mn, Ni, and Zn) decreased over time except Cd and Pb. The reduction of redox-sensitive metal concentrations (Mn, Co, Ni, and Cu) was greater in aerated bioreactors than in anaerobic bioreactor. Settlement of municipal solid waste (MSW) was enhanced with higher frequency of aeration events (four times per day). In recent years, hybird bioreactor landfill technology has gained a lot of attention. Appropriate aeration rate is crucial for hybrid bioreactor operation, but few studies have been done and different results were obtained. Research was conducted to investigate the effects of daily aeration frequency on leachate quality and waste settlement. Results indicated that aeration can effectively accelerate waste stabilization and remove organic carbon concentration and total nitrogen in the leachate.

  15. [Effect of aeration intensity on the nitrogen and phosphorus removal performance of AOA membrane bioreactors].

    Science.gov (United States)

    Chen, Xiao-Yang; Xue, Zhi-Yong; Xiao, Jing-Ni; Zhang, Han-Min; Yang, Feng-Lin; Wang, Wei-Ping; Hong, Chun-Lai; Zhu, Feng-Xiang

    2011-10-01

    The ability of simultaneous phosphorus and nitrogen removal of sequencing batch membrane bioreactor run in anaerobic/oxic/ anoxic mode (AOA MBR) was examined under three aeration intensities [2.5, 3.75 and 5.0 m3 x (m2 x h)(-10]. The results showed that the averaged removals of COD were over 90% at different aeration intensities. And the higher aeration intensity was, the more ammonia nitrogen removal rate achieved. The removal rates of NH4(+) under the three aeration intensities were 84.7%, 90.6% and 93.8%, respectively. Total nitrogen removal rate increased with the increasing aeration intensity. But excessive aeration intensity reduced TN removal. The removal rates of TN under the three aeration intensities were 83.4%, 87.4% and 80.6%, respectively. Aeration intensity affected the denitrifying phosphorus ability of the AOA MBR. The ratio of denitrification phosphorus removal under the three aeration intensities were 20%, 30.2% and 26.7%, respectively.

  16. Solar-energy mobile water aerators are efficient for restoring eutrophic water

    Science.gov (United States)

    Wang, Y. Y.; Xu, Z. X.

    2017-01-01

    Surface water eutrophication has become a worldwide social issue. large amounts of secondhand energy, high capital investment are required, and most ecosystem disturbances will arise in the conventional eutrophication restoration measures. However, mobile solar-energy water aerator has the better oxygen transfer rate, hydrodynamic condition and can be used in the large waterbody for its cruising character. Second, the device is low carbon and sustainable for the solar photovoltaic system applications. So the device can be widely used in the eutrophication restoration.

  17. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  18. Aeration of large-scale municipal wastewater treatment plants: state of the art.

    Science.gov (United States)

    Rosso, Diego; Stenstrom, Michael K; Larson, Lory E

    2008-01-01

    Aeration is the most energy-intensive operation in wastewater treatment, amounting to 45-75% of plant energy costs. Fine-pore diffusers are today almost ubiquitous in municipal wastewater aeration, due to their advantageous aeration efficiency (mass of oxygen transferred per unit energy required). Nevertheless, older municipal treatment facilities and many industrial treatment plants are still equipped with coarse-bubble or surface aerators. Fine-pore diffusers are subject to two major disadvantages: a) fouling, if not cleaned periodically; b) decrease in oxygen transfer efficiency caused by dissolved surfactants. Coarse-bubble and surface aerators are typically not subject to the traditional problems affecting fine-pore diffusers. Nonetheless, they achieve oxygen transfer at the expense of increased energy intensity. The increased biomass concentration associated with high mean cell retention time (MCRT) operations has a beneficial effect on aeration. Nutrient-removing selectors are able to further increase aeration efficiency, as they sorb and utilize the readily available substrate which otherwise would accumulate at bubble surfaces and dramatically decrease aeration efficiency. We summarise here our 30-year long experience in aeration research, and results obtained with clean- and process-water tests are used to show the beneficial effects of high MCRT operations, the beneficial effect of selectors, and the decline of aeration efficiency due to dissolved surfactants. Copyright IWA Publishing 2008.

  19. CAVITATION CONTROL BY AERATION AND ITS COMPRESSIBLE CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; SU Pei-lan

    2006-01-01

    This paper presents an experimental investigation and a theoretical analysis of cavitation control by aeration and its compressible characteristics at the flow velocity V=20m/s-50m/s. Pressure waveforms with and without aeration in cavitation region were measured. The variation of compression ratio with air concentration was described, and the relation between the least air concentration to prevent cavitation erosion and flow velocity proposed based on our experimental study. The experimental results show that aeration remarkably increases the pressure in cavitation region, and the corresponding pressure wave exhibits a compression wave/shock wave. The pressure increase in cavitation region of high-velocity flow with aeration is due to the fact that the compression waves/shock wave after the flow is aerated. The compression ratio increases with air concentration rising. The relation between flow velocity and least air concentration to prevent cavitation erosion follows a semi-cubical parabola. Also, the speed of sound and Mach number of high-velocity aerated flow were analyzed.

  20. Cavity filling water control below aerator devices

    Institute of Scientific and Technical Information of China (English)

    钱尚拓; 吴建华; 马飞; 徐建荣; 彭育; 汪振

    2014-01-01

    With the rapid development of high dam projects within China, the dragon-drop-tail spillway tunnel is introduced and widely used. In view of the high water head and the large flow velocity on the dragon-drop-tail section, aerator devices are usually placed for the cavitation damage control. For the device placed in its initial position, it is a serious concern to design a suitable flow regime of the cavity and to control the cavity filling water due to the large flow depth and the low Froude number through this aera-tor. In this study, the relationships between the geometries of the aerator device and the jet impact angle of the lower trajectory of the flow are theoretically analyzed with/without a local slope. Nine test cases with different geometries are designed, the effectiveness of the filling water control is experimentally investigated under different operation conditions, and two criteria of the local slope design are proposed. It is concluded that the cavity flow regime and the filling water can be improved if a small impact angle and some sui-table geometries of the local slope are designed.

  1. Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge.

    Science.gov (United States)

    Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; McCarthy, Graham W; Gocke, Thomas E; Olson, Betty H; Park, Hee-Deung; Al-Omari, Ahmed; Murthy, Sudhir; Bott, Charles B; Wett, Bernhard; Smeraldi, Joshua D; Shaw, Andrew R; Rosso, Diego

    2016-03-01

    Aeration is commonly identified as the largest contributor to process energy needs in the treatment of wastewater and therefore garners significant focus in reducing energy use. Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. These diffusers are subject to fouling and scaling, resulting in loss in transfer efficiency as biofilms form and change material properties producing larger bubbles, hindering mass transfer and contributing to increased plant energy costs. This research establishes a direct correlation and apparent mechanistic link between biofilm DNA concentration and reduced aeration efficiency caused by biofilm fouling. Although the connection between biofilm growth and fouling has been implicit in discussions of diffuser fouling for many years, this research provides measured quantitative connection between the extent of biofouling and reduced diffuser efficiency. This was clearly established by studying systematically the deterioration of aeration diffusers efficiency during a 1.5 year period, concurrently with the microbiological study of the biofilm fouling in order to understand the major factors contributing to diffuser fouling. The six different diffuser technologies analyzed in this paper included four different materials which were ethylene-propylene-diene monomer (EPDM), polyurethane, silicone and ceramic. While all diffusers foul eventually, some novel materials exhibited fouling resistance. The material type played a major role in determining the biofilm characteristics (i.e., growth rate, composition, and microbial density) which directly affected the rate and intensity at what the diffusers were fouled, whereas diffuser geometry exerted little influence. Overall, a high correlation between the increase in biofilm DNA and the decrease in αF was evident (CV aeration efficiency, the research was able to show quantitatively the causal connection between bacterial fouling and energy wastage during

  2. Modelling the link amongst fine-pore diffuser fouling, oxygen transfer efficiency, and aeration energy intensity.

    Science.gov (United States)

    Garrido-Baserba, Manel; Sobhani, Reza; Asvapathanagul, Pitiporn; McCarthy, Graham W; Olson, Betty H; Odize, Victory; Al-Omari, Ahmed; Murthy, Sudhir; Nifong, Andrea; Godwin, Johnnie; Bott, Charles B; Stenstrom, Michael K; Shaw, Andrew R; Rosso, Diego

    2017-03-15

    This research systematically studied the behavior of aeration diffuser efficiency over time, and its relation to the energy usage per diffuser. Twelve diffusers were selected for a one year fouling study. Comprehensive aeration efficiency projections were carried out in two WRRFs with different influent rates, and the influence of operating conditions on aeration diffusers' performance was demonstrated. This study showed that the initial energy use, during the first year of operation, of those aeration diffusers located in high rate systems (with solids retention time - SRT-less than 2 days) increased more than 20% in comparison to the conventional systems (2 > SRT). Diffusers operating for three years in conventional systems presented the same fouling characteristics as those deployed in high rate processes for less than 15 months. A new procedure was developed to accurately project energy consumption on aeration diffusers; including the impacts of operation conditions, such SRT and organic loading rate, on specific aeration diffusers materials (i.e. silicone, polyurethane, EPDM, ceramic). Furthermore, it considers the microbial colonization dynamics, which successfully correlated with the increase of energy consumption (r(2):0.82 ± 7). The presented energy model projected the energy costs and the potential savings for the diffusers after three years in operation in different operating conditions. Whereas the most efficient diffusers provided potential costs spanning from 4900 USD/Month for a small plant (20 MGD, or 74,500 m(3)/d) up to 24,500 USD/Month for a large plant (100 MGD, or 375,000 m(3)/d), other diffusers presenting less efficiency provided spans from 18,000USD/Month for a small plant to 90,000 USD/Month for large plants. The aim of this methodology is to help utilities gain more insight into process mechanisms and design better energy efficiency strategies at existing facilities to reduce energy consumption. Copyright © 2016 Elsevier Ltd. All

  3. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    Science.gov (United States)

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  4. Microbial nar-GFP cell sensors reveal oxygen limitations in highly agitated and aerated laboratory-scale fermentors

    Directory of Open Access Journals (Sweden)

    Rao Govind

    2009-01-01

    Full Text Available Abstract Background Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L, fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers. Results In both cases, bioreactors were maintained identically at greater than 80% dissolved oxygen (DO during batch phase and at approximately 20% DO during fed-batch phase. Trends for glucose consumption, biomass and DO showed nearly identical behavior. However, fermentations with only one impeller showed significantly higher GFPuv expression than those with four, indicating a higher degree of fluid segregation sufficient for cellular oxygen deprivation. As the characteristic time for GFPuv expression (approx 90 min. is much larger than that for mixing (approx 10 s, increased specific fluorescence represents an averaged effect of oxygen limitation over time and by natural extension, over space. Conclusion Thus, the pNar-GFPuv plasmid enabled bioreactor-wide oxygen sensing in that bacterial cells served as individual recirculating sensors integrating their responses over space and time. We envision cell-based oxygen sensors may find utility in a wide variety of bioprocessing applications.

  5. Pulverizing aeration as a method of lakes restoration

    Science.gov (United States)

    Kaczorowska, E.; Podsiadłowski, S.

    2012-04-01

    The principal threat to lakes of the temperate zone is posed by factors accelerating their eutrophication and causing marked deoxygenation of the deeper layers of water, mainly the hypo- and metalimnion. Among their effects are frequent phytoplankton blooms, including those of blue-green algae, and general deterioration of water quality also affecting the abundance and health status of fish. The chief concern is a disturbed proportion between the amount of complex chemical compounds, especially organic, and the oxygen content of lake waters. Natural processes of water oxygenation are not too intensive, because they are practically limited to the epilimnion layer, connected as they are with the activity of aquatic plants of the littoral and sublittoral zone (which tends to disappear in contaminated lakes) and wind energy (the effect of waving). In summer conditions, with a relatively great chemical activity of bottom deposits, the intensity of those processes is usually inadequate. Hence, in 1995 a research was launched in the Institute of Agricultural Engineering of the Agricultural University in Poznań on an integrated lake restoration technology whose core was a self-powered aerator capable of oxygenating also the bottom layers of water (the hypolimnion) of deep lakes. The aerator uses energy obtained from a Savonius rotor mainly to diffuse gases: to release hydrogen sulphide, which usually saturates the hypolimnion water completely, and then to saturate this water with oxygen. Even early studies showed the constructed device to be highly efficient in improving oxygen conditions in the bottom zone. They also made it clear that it should be equipped with an autonomous system designed to inactivate phosphorus, one of the principal factors determining the rate of lake degradation. In 2003 the first wind-driven pulverising aerator equipped with such a system was installed in Town Lake in Chodzież. The aim of this work is to present the principles of operation of a

  6. Comparative Research to Surface Aeration and Blasting Aeration System Based on LCC Theory

    Science.gov (United States)

    Liai, CHEN; Hongxun, HOU; Weibiao, FEI; Eryan, ZHAO

    2017-05-01

    It is difficult to select the suitable aeration system for the designers of wastewater treatment plant (WWTP). In this paper, taking two WWTPs with surface aeration systems and blasting aeration respectively for an example, LCC theory was adapted to analysis the cost of consumption and the environmental impact, which caused by the different aeration system. Research results showed that: (1) In the 20-year life cycle, the LCC mainly depended on the cost of energy consumption whatever blasting aeration system or surface aeration, while the LCC of blasting aeration system affected by the equipment maintenance cost, maintenance cost, economic losses caused by wastewater loss and environmental load in maintenance period. (2) The LCC of blasting aeration system was lower than the surface aeration in general, on the premise of the standard discharge; (3) the blasting aeration system estimated a saving of 60,0000RMB annually in costs compared with the surface aeration.

  7. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  8. Cavity length below chute aerators

    Institute of Scientific and Technical Information of China (English)

    WU JianHua; RUAN ShiPing

    2008-01-01

    It is proved that air entrainment is one of the efficient measures dealing with cavitation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator, which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emergence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects, of both model and prototype, on the basis of error theory. A method to calculate the cavity length below aerators was suggested, which considers overall effects of the above mentioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.

  9. Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge.

    Science.gov (United States)

    Lochmatter, Samuel; Gonzalez-Gil, Graciela; Holliger, Christof

    2013-10-15

    Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification-denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L(-1) d(-1), 0.2 gN L(-1) d(-1), and 0.08 gP L(-1) d(-1), and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L(-1) d(-1). Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = -0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7-9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.

  10. Experience of drilling wells using pump-compressor unit to inject aerated fluid

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, S.P.; Beley, I.V.; Lopatin, Yu.S.; Pytel, S.P.; Vasilak, I.I.; Yushkevich, V.I.

    1979-01-01

    Results are described from drilling wells with flushing by highly aerated clay fluid with the help of a UNGA unit which includes pumps and compressors of the drilling unit UBSh-1 which permits injection of an aerated mixture under pressures considerably exceeding the pressure of its formation. Qualitative and technical-economic advantages of drilling with flushing by aerated solutions with the use of a unit for injecting gas-liquid agents are presented.

  11. Effect of aeration regime on N₂O emission from partial nitritation-anammox in a full-scale granular sludge reactor.

    Science.gov (United States)

    Castro-Barros, C M; Daelman, M R J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2015-01-01

    N₂O emission from wastewater treatment plants is high of concern due to the strong environmental impact of this greenhouse gas. Good understanding of the factors affecting the emission and formation of this gas is crucial to minimize its impact. This study addressed the investigation of the N₂O emission dynamics in a full-scale one-stage granular sludge reactor performing partial nitritation-anammox (PNA) operated at a N-loading of 1.75 kg NH₄⁺-N m⁻³ d⁻¹. A monitoring campaign was conducted, gathering on-line data of the N₂O concentration in the off-gas of the reactor as well as of the ammonium and nitrite concentrations in the liquid phase. The N₂O formation rate and the liquid N₂O concentration profile were calculated from the gas phase measurements. The mean (gaseous) N₂O-N emission obtained was 2.0% of the total incoming nitrogen during normal reactor operation. During normal operation of the reactor under variable aeration rate, intense aeration resulted in higher N₂O emission and formation than during low aeration periods (mean N₂O formation rate of 0.050 kg N m⁻³ d⁻¹ for high aeration and 0.029 kg N m⁻³ d⁻¹ for low aeration). Accumulation of N₂O in the liquid phase was detected during low aeration periods and was accompanied by a relatively lower ammonium conversion rate, while N₂O stripping was observed once the aeration was increased. During a dedicated experiment, gas recirculation without fresh air addition into the reactor led to the consumption of N₂O, while accumulation of N₂O was not detected. The transition from a prolonged period without fresh air addition and with little recirculation to enhanced aeration with fresh air addition resulted in the highest N₂O formation (0.064 kg N m⁻³ d⁻¹). The results indicate that adequate aeration control may be used to minimize N₂O emissions from PNA reactors.

  12. Aeration Strategies To Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors

    DEFF Research Database (Denmark)

    Domingo Felez, Carlos; Mutlu, A. Gizem; Jensen, Marlene Mark;

    2014-01-01

    -stage nitritation/anammox were operated under different aeration strategies, gradually adjusted over six months. At constant but limiting oxygen loading, synthetic reject water was fed (0.75g-N/L.d) and high nitrogen removal efficiencies (83 +/- 5 and 88 +/- 2%) obtained. Dynamics of liquid phase nitrous (N2O......) and nitric oxide (NO) concentrations were monitored and N2O emissions calculated. Significant decreases in N2O emissions were obtained when the frequency of aeration was increased while maintaining a constant air flow rate (from >6 to 1.7% Delta N2O/Delta TN). However, no significant effect on the emissions...... was noted when the duration of aeration was increased while decreasing air flow rate (10.9 +/- 3.2% Delta N2O/Delta TN). The extant ammonium oxidation activity (mgNH(4)(+)-N/gVSS.min) positively correlated with the specific N2O production rate (mgN(2)O-N/gVSS.min) of the systems. Operating under conditions...

  13. Effects of Aeration Treatment on γ-Aminobutyric Acid Accumulation in Germinated Tartary Buckwheat (Fagopyrum tataricum

    Directory of Open Access Journals (Sweden)

    Yuanxin Guo

    2016-01-01

    Full Text Available To explore the optimum condition of γ-aminobutyric acid (GABA accumulation in germinated tartary buckwheat, effects of some factors including aeration treatment, physiological indexes, air flow rate, culture temperature, and pH value of cultivating solution under hypoxia on GABA in germinated tartary buckwheat were investigated. The results showed that the dark cultures with distilled water at 30°C, 2 days, and aeration stress with 1.0 L/min air flow rate at 30°C were optimal for GABA accumulation. Under these conditions, the predicted content of GABA was up to 371.98 μg/g DW. The analysis of correlation indicated that there was a significant correlation (P<0.01 between GABA accumulation and physiological indexes. Box-Behnken experimental analysis revealed that optimal conditions with aeration treatment for GABA accumulation in germinated tartary buckwheat were air flow rate of 1.04 L/min, culture temperature of 31.25°C, and a pH value of 4.21. Under these conditions, the GABA content was predicted as high as 386.20 μg/g DW, which was close to the measured value (379.00±9.30 μg/g DW. The variance analysis and validation test suggested that this established regression model could predict GABA accumulation in tartary buckwheat during germination.

  14. Landfill aeration in the framework of a reclamation project in Northern Italy.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello

    2014-03-01

    In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions. The main outcomes of the 1-year aeration project are presented in the paper. The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers. During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied. The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.

  15. Violent breaking wave impacts. Part 3. Effects of scale and aeration

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Bullock, G. N.; Hogg, A. J.

    2015-01-01

    . The Bagnold-Mitsuyasu scaling law for the compression of an air pocket by a piston of incompressible water is rederived and generalised to 3D air pockets of arbitrary shape. Numerical results for wall pressure, force and impulse are then presented for a flip-through impact, a low-aeration impact and a high......-aeration impact, for nine scales and five levels of initial aeration. Two of these impact types trap a pocket of air at the wall. Among the findings of the paper is that for fixed initial aeration, impact pressures from the flip-through impact broadly follow Froude scaling. This is also the case for the two...

  16. [Influencing factors for operational performance of a biofilm reactor with microbubble aeration using SPG membrane].

    Science.gov (United States)

    Zhang, Lei; Zhang, Ming; Liu, Chun; Zhang, Jing; Liu, Jun-Liang

    2014-08-01

    The microbubble-aerated biofilm reactor provides a feasibility to apply microbubble aeration in aerobic wastewater treatment processes. In this study, Shirasu porous glass (SPG) membranes were used for microbubble aeration in a fixed bed biofilm reactor treating synthetic municipal wastewater. The influencing factors for operational performance of the bioreactor were investigated, including operating parameters, SPG membrane fouling and its structural changes. The results indicated that there was no significant influences of air flux, organic loading rate and packed bed on COD removal and an average COD removal efficiency of 80% -90% could be achieved under different operating conditions. On the other hand, the dissolved oxygen (DO) concentrations decreased significantly along with reducing air flux or increasing organic loading rate. As a result, the ammonia removal deteriorated gradually and the average ammonia removal efficiency decreased from 80% -90% to 20% -30% At the same time, the total nitrogen (TN) removal achieved in the simultaneous nitrification and denitrification process was also reduced from 30% -40% to about 20% , due to nitrification inhibition. Higher available porosity could be obtained when ring packing was used in the fixed bed, resulting in improvement of contaminant removal performance. An oxygen utilization efficiency of close to 100% could be achieved at low air fluxes or high organic loading rates during microbubble aeration. Both biofilm growth and organic foulant accumulation on SPC, membrane surface contributed to membrane fouling after long-term operation. The average pore size and porosity of SPG membrane increased significantly due to the chemical corrosion caused by alkali NaClO solution used for online cleaning. Then the air permeation of SPG membrane was affected by membrane fouling and destroyed pore structure.

  17. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  18. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.

    Science.gov (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming

    2016-08-01

    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future.

  19. Nutrient solution aeration and growing cycles affect quality and yield of fresh-cut baby leaf red lettuce

    Directory of Open Access Journals (Sweden)

    Encarnación Conesa

    2015-12-01

    Full Text Available The objective of this research was to study the effects of nutrient solution aeration [no aeration (NA, low aeration (LA or high aeration (HA] and growing cycle (autumn, winter and summer on the yield, quality, and shelf life of red lettuce as a fresh-cut product grown in a floating system. The specific leaf area, yield and root diameter were affected by the growing cycle. The percentage of dry matter and the nitrate content were affected by growing cycle and aeration, total phenolics and mesophilic microorganism by aeration and storage time, hue angle and chromacity by growing cycle and storage time, and antioxidant capacity, vitamin C, lightness and psychrophilic microorganisms were affected by all three factors. NA conditions increased the antioxidant capacity in summer and vitamin C content in winter. The lowest mesophilic and psychrophilic count was observed in autumn. The effect of aeration on most of the quality parameters measured was influenced by the growing cycle.

  20. Fault detection and isolation of sensors in aeration control systems.

    Science.gov (United States)

    Carlsson, Bengt; Zambrano, Jesús

    2016-01-01

    In this paper, we consider the problem of fault detection (FD) and isolation in the aeration system of an activated sludge process. For this study, the dissolved oxygen in each aerated zone is assumed to be controlled automatically. As the basis for an FD method we use the ratio of air flow rates into different zones. The method is evaluated in two scenarios: using the Benchmark Simulation Model no. 1 (BSM1) by Monte Carlo simulations and using data from a wastewater treatment plant. The FD method shows good results for a correct and early FD and isolation.

  1. Hydrodynamic behaviour of the lateral flow biological aerated filter

    Institute of Scientific and Technical Information of China (English)

    HE Qiang; WANG Yin; FANG Jun-hua; ZHANG Hong-jing; XU Jing

    2006-01-01

    Pulsed signal experiment was carried out to determine the hydrodynamic behaviours of lateral flow biological aerated filter(LBAF). With the analysis of experimental results, LBAF is viewed as an approximate plug flow reactor, and hydraulic retention time distribution function was derived based on LBAF. The results show that flow rate and aeration strength are two critical factors which influence flow patterns in LBAF reactor. The hydrodynamic behaviour analysis of LBAF is the theoretical basis of future research on improving capacity factor and developing kinetic model for the reactor.

  2. Pure and aerated water entry of a flat plate

    Science.gov (United States)

    Ma, Z. H.; Causon, D. M.; Qian, L.; Mingham, C. G.; Mai, T.; Greaves, D.; Raby, A.

    2016-01-01

    This paper presents an experimental and numerical investigation of the entry of a rigid square flat plate into pure and aerated water. Attention is focused on the measurement and calculation of the slamming loads on the plate. The experimental study was carried out in the ocean basin at Plymouth University's COAST laboratory. The present numerical approach extends a two-dimensional hydro-code to compute three-dimensional hydrodynamic impact problems. The impact loads on the structure computed by the numerical model compare well with laboratory measurements. It is revealed that the impact loading consists of distinctive features including (1) shock loading with a high pressure peak, (2) fluid expansion loading associated with very low sub-atmospheric pressure close to the saturated vapour pressure, and (3) less severe secondary reloading with super-atmospheric pressure. It is also disclosed that aeration introduced into water can effectively reduce local pressures and total forces on the flat plate. The peak impact loading on the plate can be reduced by half or even more with 1.6% aeration in water. At the same time, the lifespan of shock loading is prolonged by aeration, and the variation of impulse is less sensitive to the change of aeration than the peak loading.

  3. INVESTIGATION ON THE SPLASH LENGTH OF THE AERATED JET

    Institute of Scientific and Technical Information of China (English)

    Liu Shi-he; Qu Bo

    2003-01-01

    Atomized flow forms as an aerated jet from high dams impacts against the downstream water surface at high speed. Of all the regions of atomized flow the splash region is in the center of storm rainfall, which might cause certain damage to the hydropower stations and thence more attention should be paid. In this paper the impact of the water drop at the outer edge of the aerated jet against the downstream water surface was analyzed, and the motion of the splash water drop was investigated. Furthermore, a new formula for the calculation of the splash length was suggested, which is in good agreement with the data of model tests and prototype observation.

  4. Passively Aerated Composting of Straw-Rich Pig Manure : Effect of Compost Bed Porosity

    NARCIS (Netherlands)

    Veeken, A.H.M.; Wilde, de V.; Hamelers, H.V.M.

    2002-01-01

    Straw-rich manure from organic pig farming systems can be composted in passively aerated systems as the high application of straw results in a compost bed with good structure and porosity. The passively aerated composting process was simulated in one-dimensional reactors of 2 m3 for straw-rich

  5. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio

    2015-10-01

    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h.

  6. Effectiveness of surface aeration and oxygen injection system in the Athabasca River

    Energy Technology Data Exchange (ETDEWEB)

    Lima-Neto, I.E.; Zhu, D.Z.; Rajaratnam, N.; Yu, T. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Spafford, M. [Alberta-Pacific Forest Industries Ltd. Boyle, AB (Canada); McEachern, P. [Alberta Environment, AB (Canada)

    2005-07-01

    The effectiveness of a pilot oxygen injection program and surface aeration at the open-water lead downstream of the Al-Pac's effluent diffuser was evaluated in this abstract. Dissolved oxygen (DO) is regarded as a proxy for the overall health of a river from the perspectives of organic and nutrient loading. When organic loading is high and DO concentrations become a concern, a mitigation option may be necessary. In this experiment, a modified Streeter-Phelps model described the spatial variation of DO downstream of the diffuser. Reaeration from the open water lead, formed as a result of effluent temperature, was significant. This suggested the importance of accurate prediction of the water lead's size in managing effluent effects. The amount of DO added to the river due to artificial aeration at rates of 3500 and 5000 lbs per day was approximately 55 and 27 per cent of that due to surface reaeration of a 4 and 5 km long open water lead, respectively. The artificial aeration technique evaluated appeared to have higher absorption efficiencies than those for conventional air injection systems. It was concluded that the results of this study will be valuable for future development of accurate DO models for ice-covered rivers as well as in developing and evaluating oxygen injection systems. tabs, figs.

  7. Surfactant effects on alpha factors in full-scale wastewater aeration systems.

    Science.gov (United States)

    Rosso, D; Larson, L E; Stenstrom, M K

    2006-01-01

    Aeration is an essential process in the majority of wastewater treatment processes, and accounts for the largest fraction of plant energy costs. Aeration systems can achieve wastewater oxygenation by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactants accumulate on gas-liquid interfaces and reduce mass transfer rates. This reduction in general is larger for fine-bubble aerators. This study was conducted to evaluate mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes were analysed, showing higher gas transfer depression for lower turbulence regimes. Higher turbulence regimes can offset contamination effects, at the expense of operating efficiency. This phenomenon is characteristic of surface aerators and coarse bubble diffusers and is here discussed. The results explain the variability of alpha factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations that describe mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.

  8. Autism's 'Worryingly' High Suicide Rates Spur Conference

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_165946.html Autism's 'Worryingly' High Suicide Rates Spur Conference Signs of ... News) -- High rates of suicide among people with autism are drawing specialists to a conference this week ...

  9. Autotrophic Nitrogen Removal in a Membrane-Aerated Biofilm Reactor Under Continuous Aeration: A Demonstration

    DEFF Research Database (Denmark)

    Gilmore, Kevin R.; Terada, Akihiko; Smets, Barth F.

    2013-01-01

    This work describes the successful coupling of partial nitrification (nitritation) and anaerobic ammonium oxidation in a membrane-aerated biofilm reactor (MABR) with continuous aeration. Controlling the relative surface loadings of oxygen versus ammonium prevented complete nitrite oxidation and a...

  10. EFFECT OF HYDRAULIC AND GEOMETRICAL PROPERTIES ON STEPPED CASCADE AERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    VEDHACHALAM RATHINAKUMAR

    2017-03-01

    Full Text Available Stepped cascade aeration system is commonly used to aerate the water and wastewater to increase the dissolved oxygen during pre and post treatment process. In the present research, experiments were conducted to evaluate the performance of a rectangular Cascade Aeration System with varying flow rates, risers and tread by maintaining constant width of the channel using water collected from reverse osmosis plant. The experiments were carried out with four different risers such as 0.15 m, 0.18 m, 0.225 m and 0.30 m. Each rise was investigated with five different tread of 0.60 m, 0.55 m, 0.50 m, 0.45 m and 0.40 m. Comprehensive experimental investigations were carried out for different hydraulic loading rates of 0.005 to 0.035 m3/s/m2. Results obtained from the experiments reveals that increasing dimensionless discharges promotes more aeration, attains a maximum up to dimensionless discharge= 2.22 and beyond this there was a significant decrease in aeration. In addition, the increased in number of steps significantly enhances air entertainment and surface fall rate in the Stepped Cascade Aeration System. A regression equation was derived by keeping aeration efficiency as response with dimensionless discharge and oxygen saturation concentration as influencing parameters. The dimension less discharge is a function of critical depth of the rectangular channel and step height, whereas oxygen saturation concentration represents the ratio of oxygen deficit and oxygen saturation concentration. Based on the experimental results, the optimum design and/or results such as number of steps (12 numbers and hydraulic loading rate (0.025 m3/s/m2 with fixed tread width of 0.6 m were identified to achieve maximum aeration rate (0.5-0.60 in Aeration system.

  11. Aeration effect on Spirulina platensis growth and γ-linolenic acid production

    OpenAIRE

    Srinivasa Reddy Ronda; Chandra Sekhar Bokka; Chandrika Ketineni; Binod Rijal; Prasada Rao Allu

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2– 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vv...

  12. Intermittent Aeration in Biological Treatment of Wastewater

    Directory of Open Access Journals (Sweden)

    H. Doan

    2009-01-01

    Full Text Available Problem statement: E-coating process is widely used to provide a protective coating layer on metal parts in the automotive and metal finishing industry. The wastewater from the coating process contains organic compounds that are used in the cleaning, pretreatment and coating steps. Organic pollutants can be removed biologically. In the aerobic biological treatment, water aeration accounts for a significant portion of the total operating cost of the treatment process. Intermittent aeration is thus of benefit since it would reduce the energy consumption in the wastewater treatment. In the present study, wastewater from an electro-coating process was treated biologically using a packed column as an aerator where the wastewater was aerated by a countercurrent air flow. The objective was to obtain an optimum aeration cycle. Approach: Intermittent aeration time was varied at different preset cycles. An operational optimum of the aeration time (or air-water contacting time in the column was determined from the BOD5 removal after a certain treatment period. For continuous aeration of the wastewater, the air-liquid contacting time in the column was 52 min for 24 h of treatment. A unit energy consumption for pumping liquid and air, which was defined as the energy consumption per percent BOD5 removed, was used as a criterion to determine the optimum contacting time. Results: Optimum air-liquid contacting times were found to be about 38, 26 and 22 min for the treatment times of 24, 48 and 72 h, consecutively. This indicates that 27-58% saving on the unit energy consumption can be achieved using intermittent aeration of the wastewater. On the basis of the overall BOD5 removal, 17% and 23% savings in energy were observed with the intermittent aeration as compared to the continuous aeration of the wastewater for 48 and 72 h. Conclusion: The results obtained indicate that an appropriate intermittent aeration cycle can bring about a substantial energy saving

  13. Purging dissolved oxygen by nitrogen bubble aeration

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2016-11-01

    We apply aeration with nitrogen microbubbles to water in order to see whether oxygen gas originally dissolved in the water at one atmosphere is purged by the aeration. The concentration of dissolved oxygen (DO) is detected by a commercial DO meter. To detect the dissolved nitrogen (DN) level, we observe the growth of millimetre-sized bubbles nucleated at glass surfaces in contact with the aerated water and compare it with the Epstein-Plesset theory that accounts for DO/DN diffusions and the presence of the glass surfaces. Comparisons between the experiment and the theory suggest that the DO in the water are effectively purged by the aeration.

  14. Methane biofiltration using Autoclaved Aerated Concrete as the carrier material

    NARCIS (Netherlands)

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, P.; Ho, Adrian; Boon, N.

    2015-01-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was

  15. [Effects of substrate-aeration cultivation pattern on tomato growth].

    Science.gov (United States)

    Zhao, Xu; Li, Tian-Lai; Sun, Zhou-Ping

    2010-01-01

    Aeroponics can increase the fruit yield of tomato plant, but its cost is very high. In this paper, tomato seedlings were planted with three cultures, i. e., whole perlite culture (CK), perlite-aeration culture (T1), and aeroponics (T2), and a comparative study was made on the seedlings growth. Compared with CK, T1 improved the gas environment in root zone significantly, with the CO2 and O2 concentrations in root zone being 0.2 and 1.17 times higher, and increased the plant height and stem diameter after 60 days of transplanting by 5.1% and 8.4%, respectively. The plant net photosynthetic rate of T1 was significantly higher than that of CK, with the maximum value after transplanting 45 days increased by 13%. T1 also increased the root activity and ion absorbing ability significantly, with the root activity after transplanting 45 days being 1.23 times of CK, and the root K, Ca, and Mg contents after transplanting 60 days increased by 31%, 37%, and 27%, respectively. The fruit yield of T1 was 1.16 times of CK. No significant differences in these indices were observed between T1 and T2, and less difference in the fruit soluble sugar and organic acid contents as well as the sugar-acid ratio was found among CK, T1, and T2. It was suggested that perlite-aeration cultivation pattern was an easy and feasible way to markedly improve the fruit yield of tomato plant.

  16. Oxygen air enrichment through composite membrane: application to an aerated biofilm reactor

    Directory of Open Access Journals (Sweden)

    A. C. Cerqueira

    2013-12-01

    Full Text Available A highly permeable composite hollow-fibre membrane developed for air separation was used in a membrane aerated biofilm reactor (MABR. The composite membrane consisted of a porous support layer covered with a thin dense film, which was responsible for oxygen enrichment of the permeate stream. Besides oxygen enrichment capability, dense membranes overcome major operational problems that occur when using porous membranes for oxygen transfer to biofilms. Air flow rate and oxygen partial pressure inside the fibres were the variables used to adjust the oxygen transfer rate. The membrane aerated biofilm reactor was operated with hydraulic retention times (HRT ranging from 1 to 4 hours. High organic load removal rates, like 6.5 kg.m-3.d-1, were achieved due to oxygen transfer rates as high as 107 kg.m-3.d-1. High COD removals, with improved oxygen transfer efficiency, indicate that a MABR is a compact alternative to the conventional activated sludge process and that the selected membrane is suitable for further applications.

  17. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production

    Science.gov (United States)

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2– 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6–9.5 mg· g-1 dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model. PMID:24031799

  18. Aeration effect on Spirulina platensis growth and γ-linolenic acid production

    Directory of Open Access Journals (Sweden)

    Srinivasa Reddy Ronda

    2012-03-01

    Full Text Available The influence of aeration on algal growth and gamma-linolenic acid (GLA production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2-2.5 vvm. Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g-1 dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g-1 dry cell weight. In addition, the total fatty acid (TFA content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  19. Aeration effect on Spirulina platensis growth and γ-Linolenic acid production.

    Science.gov (United States)

    Ronda, Srinivasa Reddy; Bokka, Chandra Sekhar; Ketineni, Chandrika; Rijal, Binod; Allu, Prasada Rao

    2012-01-01

    The influence of aeration on algal growth and gamma-linolenic acid (GLA) production in a bubble column photobioreactor was investigated. Studies were performed in a 20-L reactor at different aeration rates (0.2- 2.5 vvm). Static, continuous, and periodic operation of air resulted in 41.9%, 88.4%, and 108% air saturation of dissolved oxygen, for which the corresponding values of GLA were 2.3, 6.5, and 7.5 mg·g(-1) dry cell weight, respectively. An increase in the aeration rate from 0.2 to 2.5 vvm enhanced both the specific growth rate and GLA content under periodic sparging in the bicarbonate medium. With a 6-fold increase in the aeration rate, the GLA content of the alga increased by 69.64% (5.6-9.5 mg· g(-1) dry cell weight). In addition, the total fatty acid (TFA) content in dry biomass increased from 2.22% to 4.41%, whereas the algae maintained a constant GLA to TFA ratio within the aeration rate tested. The dependence of GLA production on the aeration rate was explained by interrelating the GLA production rate with the specific growth rate using the Luedeking and Piret mixed growth model.

  20. Influence of aeration intensity on mature aerobic granules in sequencing batch reactor.

    Science.gov (United States)

    Gao, Da-Wen; Liu, Lin; Liang, Hong

    2013-05-01

    Aeration intensity is well known as an important factor in the formation of aerobic granules. In this research, two identical lab-scale sequencing batch reactors with aeration intensity of 0.8 (R1) and 0.2 m(3)/h (R2) were operated to investigate the characteristics and kinetics of matured aerobic granules. Results showed that both aeration intensity conditions induced granulation, but they showed different effects on the characteristics of aerobic granules. Compared with the low aeration intensity (R2), the aerobic granules under the higher aeration intensity (R1) had better physical characteristics and settling ability. However, the observed biomass yield (Y obs) in R1 [0.673 kg mixed liquor volatile suspended solids (MLVSS)/kg chemical oxygen demand (COD)] was lower than R2 (0.749 kg MLVSS/kg COD). In addition, the maximum specific COD removal rates (q max) and apparent half rate constant (K) of mature aerobic granular sludge under the two aeration intensities were at a similar level. Therefore, the matured aerobic granule system does not require to be operated in a higher aeration intensity, which will reduce the energy consumption.

  1. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch].

    Science.gov (United States)

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan

    2012-03-01

    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  2. Biological Nutrient Removal in an Intermittently Aerated Bioreactor

    Directory of Open Access Journals (Sweden)

    J. Derco

    2017-07-01

    Full Text Available The extension of biological processes from carbonaceous impurities removal to nitrogen and phosphorus removal had an impact on the biological system configuration. The system must be well designed, optimized, and operated at its optimum in order to meet the ever more stringent effluent standards. An intermittently aerated completely mixed lab-scale activated sludge bioreactor (IACMB has been used for modelling biological processes of nutrients removal. Concerning the nitrogen removal, the operating cycles 15–30 (15 minutes of aeration, 30 minutes of only mixing without aeration and 30–30 were tested. For the experiments with luxury uptake processes, the operating cycles 15–45, 15–90, 30–60 and 15–75 were used. The cycle 15–75 was the most satisfactory with convenient lengths of aerobic, anoxic, and anaerobic period, high efficiency of the nitrification and denitrification processes, and significant decrease in phosphorus concentration. The results have shown that the intermittently aerated bioreactors are suitable for nitrogen removal as well as luxury uptake of phosphorus. The main advantage is high flexibility in maintenance and control of biochemical environments in the bioreactor.

  3. Understanding High Rate Behavior Through Low Rate Analog

    Science.gov (United States)

    2014-04-28

    Dioh, N.N., et al., The High-Strain Rate Behavior of Polymers. Journal De Physique Iv, 1994. 4(C8): p. 119-124. 21. Dioh, N.N., P.S. Leevers, and J.G...constitutive response of polymeric materials as a function of temperature and strain rate. Journal De Physique Iv, 2003. 110: p. 27-32. 23. Brown, E.N...properties of polycarbonate under dynamic loading. Journal De Physique Iv, 2003. 110: p. 159-164. 56. Li, Z.H. and J. Lambros, Strain rate effects on the

  4. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi.

    Science.gov (United States)

    López, M J; Elorrieta, M A; Vargas-García, M C; Suárez-Estrella, F; Moreno, J

    2002-01-01

    The mineralisation and the humification of organic matter (OM) in sterile horticultural plant wastes inoculated with Coriolus versicolor or Phanerochaete flavido-alba was investigated under different aeration rates in order to determine their efficacy as potential inoculants for composting. The change in elemental composition, lignin content and OM fractions was analysed during a 90-day incubation. Both fungi degraded 30% of lignin at low aeration rates. Different aeration rates led to significant changes in OM mineralisation induced by C. versicolor, but did not have noticeable effect on P. flavido-alba activity. The mineralisation was more effectively carried out by P. flavido-alba than by C. versicolor. Lignin degradation and the linked humification process were equally achieved by the two fungi and were enhanced in aerated conditions. The fungi analysed may facilitate the composting of lignocellulosic wastes by means of an increase in substrate bioavailability and OM humification.

  5. AN INVESTIGATION OF FLOW CHARACTERISTIC OF AERATED DRAG REDUCTION IN TUBE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under the aerated conditions of wall and top intube, the turbulent flow in the tube was measured by usingLDA. The turbulent structure of the flow field and the mech-anism of aerating drag reduction in the tube were discussed. It is shown that the energy dissipations of turbulence flow andmean flow will reduce and the flow velocity (or flow rate) willincrease by injecting mini-bubbles to the wall or top of tube,namely the effect of aerating drag reduction is attained.

  6. Micro-aeration for hydrogen sulfide removal from biogas

    Science.gov (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  7. Aeration of the teuftal landfill: Field scale concept and lab scale simulation.

    Science.gov (United States)

    Ritzkowski, Marco; Walker, Beat; Kuchta, Kerstin; Raga, Roberto; Stegmann, Rainer

    2016-09-01

    rates whereby ammonium nitrogen load efficiently decrease later and only under higher aeration rates.

  8. Landfill aeration for emission control before and during landfill mining.

    Science.gov (United States)

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area.

  9. Seasonal effects of pre-aeration on microbial processes for nitrogen removal in constructed wetlands.

    Science.gov (United States)

    Wang, Ling; Li, Tian

    2017-02-01

    Seasonal effects of pre-aeration on microbial nitrogen performance in constructed wetlands (CWs) involved with anaerobic ammonium oxidation (anammox) process were investigated in this study. Slow natural re-aeration rate was the inhibiting factor for total nitrogen removal in CW without pre-aeration, and partial nitrification was the main way for nitrite generation. Besides partial nitrification, pre-aeration provided nitrite generation in CWs with an alternative way: nitrate reduction. Advantage of pre-aeration of influent was much different under various temperature ranges. Mean temperature of 15 °C seemed to be the turning point. With a mean temperature of or higher than 15 °C, nitrate in the influent effectively improved nitrogen removal in CWs. With a mean temperature lower than 15 °C, the nitrate reduction process in CWs was greatly inhibited. The benefit of pre-aeration was weak under this temperature range. Seasonal aeration pattern for the pre-treatment of HSSF CWs might be a more energy-saving alternative in in-suit domestic sewage treatment.

  10. Composting of tobacco plant waste by manual turning and forced aeration system

    Directory of Open Access Journals (Sweden)

    Nonglak Saithep

    2009-05-01

    Full Text Available The efficiency of tobacco plant waste composting, by the manual turning and the forced aeration system, was compared. Tobacco plant waste, cow manure, urea fertiliser, and a compost inoculum mixture at a 100:10:0.2:0.01 ratio respectively, with 60% (w/v moisture content, were set up in piling forms. The piles of the manual turning system were provided with turning aeration by hand at intervals of 7 days during the composting process. For the forced aeration system, each pile was aerated by a 3-HP air pump with a flow rate of 19 litres min-1 for 15 minutes every morning and evening. The completely randomised design of turned and force-aerated piles was performed in triplicate. The composting activity of both systems during the composting period was measured by several parameters: temperature, pH, moisture content, C/N ratio, growth of microorganisms, cellulase activity, and nicotine degradation in the set-up piles. Both systems had similar temperature, pH, and moisture content conditions in the piles during the composting process. However, the forced aeration system was more advantageous for the growth of mesophilic and thermophilic microorganisms, for cellulase activity from cellulase-producing microorganisms, and for nicotine degradation, when compared to the manual turning system. In conclusion, the forced aeration system was more efficient than the manual turning system in composting and is a viable alternative method for the composting process.

  11. Effects of Aerated Irrigation on Leaf Senescence at Late Growth Stage and Grain Yield of Rice

    Institute of Scientific and Technical Information of China (English)

    ZHU Lian-feng; Yu Sheng-miao; JIN Qian-yu

    2012-01-01

    With the japonica inbred cultivar Xiushui 09,indica hybrid combinations Guodao 6 and Liangyoupeijiu as materials,field experiments were conducted in 2007 and 2008 to study the effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice.The dissolved oxygen concentration of aerated water evidently increased and decreased at a slow rate.The soil oxidation-reduction potential under aerated irrigation treatment was significantly higher than that of the CK,contributing to significant increases in effective panicles,seed setting rate and grain yield.In addition,the aerated irrigation improved root function,increased superoxide dismutase activity and decreased malondialdehyde content in flag leaves at post-flowering,which delayed leaf senescence process,prolonged leaf functional activity and led to enhanced grain filling.

  12. Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment

    National Research Council Canada - National Science Library

    Butterworth, Eleanor; Richards, Andrew; Jones, Mark; Mansi, Gabriella; Ranieri, Ezio; Dotro, Gabriela; Jefferson, Bruce

    2016-01-01

      A comparison of the performance of four full-scale aerated horizontal flow constructed wetlands was conducted to determine the efficacy of the technology on sites receiving high and variable ammonia...

  13. NUMERICAL SIMULATION OF 3-D AERATED JET BEHIND FLIP BUCKET OF OVERFLOW DAM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Aerated jet,such as the jet flow behind the flip bucket of an overflow dam, widely exists in hydraulic engineering. Up to now the model test and prototype observation have been two main methods of studying the aerated jet for a special hydraulic project. In this paper, a three-dimensional mathematical model for the aerated jet was established. It seems that the suggested model has high predictive power by comparison with the results of model tests and prototype observations, which is very useful in the study of energy dissipation and jet flow atomization.

  14. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    Science.gov (United States)

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  15. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  16. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  17. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2015-12-01

    Chlorella vulgaris encapsulated in alginate beads were added into a bioreactor treating synthetic wastewater using Pseudomonas putida. A symbiotic CO2/O2 gas exchange was established between the two microorganisms for photosynthetic aeration of wastewater. During batch operation, glucose removal efficiency in the bioreactor improved from 50% in 12 h without aeration to 100% in 6 h, when the bioreactor was aerated photosynthetically. During continuous operation, the bioreactor was operated at a low hydraulic retention time of 3.3 h at feed concentrations of 250 and 500 mg/L glucose. The removal efficiency at 500 mg/L increased from 73% without aeration to 100% in the presence of immobilized microalgae. The initial microalgae concentration was critical to achieve adequate aeration, and the removal rate increased with increasing microalgae concentration. The highest removal rate of 142 mg/L-h glucose was achieved at an initial microalgae concentration of 190 mg/L. Quantification of microalgae growth in the alginate beads indicated an exponential growth during symbiosis, indicating that the bioreactor performance was limited by oxygen production rates. Under symbiotic conditions, the chlorophyll content of the immobilized microalgae increased by more than 30%. These results indicate that immobilized microalgae in symbiosis with heterotrophic bacteria are promising in wastewater aeration.

  18. Evaluation of aerated steam treatment of alfalfa and mung bean seeds to eliminate high levels of Escherichia coli O157:H7 and O178:H12, Salmonella enterica, and Listeria monocytogenes.

    Science.gov (United States)

    Studer, Patrick; Heller, Werner E; Hummerjohann, Jörg; Drissner, David

    2013-08-01

    Sprouts contaminated with human pathogens are able to cause food-borne diseases due to the favorable growth conditions for bacteria during germination and because of minimal processing steps prior to consumption. We have investigated the potential of hot humid air, i.e., aerated steam, to treat alfalfa and mung bean seeds which have been artificially contaminated with Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Weltevreden, and Listeria monocytogenes Scott A. In addition, a recently collected E. coli O178:H12 isolate, characterized by a reduced heat sensitivity, was exposed to the treatment described. Populations of E. coli O157:H7 and S. enterica on alfalfa and mung bean seeds could be completely eliminated by a 300-s treatment with steam at 70 ± 1°C as revealed by enrichment studies. L. monocytogenes and E. coli O178:H12 could not be completely eliminated from artificially inoculated seeds. However, bacterial populations were reduced by more than 5 log CFU/g on alfalfa and by more than 4 log CFU/g on mung bean seeds. The germination rate of mung beans was not affected by the 300-s treatment compared to the germination rate of untreated seeds whereas that of alfalfa seeds was significantly lower by 11.9%. This chemical-free method is an effective alternative to the 20,000-ppm hypochlorite treatment presently recommended by the U.S. Food and Drug Administration (FDA).

  19. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...

  20. High-Rate Receiver Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an initial architectural and preliminary hardware design study for a high-rate receiver capable of decoding modulation suites specified by CCSDS 413.0-G-1...

  1. Detailed off-gas measurements for improved modelling of the aeration performance at the WWTP of Eindhoven.

    Science.gov (United States)

    Amerlinck, Y; Bellandi, G; Amaral, A; Weijers, S; Nopens, I

    2016-01-01

    At wastewater treatment plants (WWTPs), the aerobic conversion processes in the bioreactor are driven by the presence of dissolved oxygen (DO). Within these conversion processes, the oxygen transfer is a rate limiting step as well as being the largest energy consumer. Despite this high importance, WWTP models often lack detail on the aeration part. An extensive measurement campaign with off-gas tests was performed at the WWTP of Eindhoven to provide more information on the performance and behaviour of the aeration system. A high spatial and temporal variability in the oxygen transfer efficiency was observed. Applying this gathered system knowledge in the aeration model resulted in an improved prediction of the DO concentrations. Moreover, an important consequence of this was that ammonium predictions could be improved by resetting the ammonium half-saturation index for autotrophs to its default value. This again proves the importance of balancing sub-models with respect to the need for model calibration as well as model predictive power.

  2. Growth and final product formation by Bifidobacterium infantis in aerated fermentations.

    Science.gov (United States)

    González, R; Blancas, A; Santillana, R; Azaola, A; Wacher, C

    2004-10-01

    Fermentation conditions were developed to allow Bifidobacterium infantis to grow in the presence of air. Batch fermentations in TPYG medium, starting from anoxic conditions followed by the application of low airflow rates [0.02-0.1 air volume, per liquid media volume, per minute (vvm)], were analyzed for growth, oxygen uptake, and product formation by the bacterium. Under all aerated fermentations, B. infantis showed high aerotolerance, with a maximum oxygen-specific consumption rate of 0.34 mmol oxygen per gram dry cell weight per hour in the presence of 0.06 vvm. Similar growth yields were obtained under oxic and anoxic conditions (0.11-0.13 and 0.11 g dry cell weight per mmol glucose, respectively). Oxygen also influenced metabolite formation since lactate production and its molar relation to acetate increased and formate decreased with aeration rate. Under anoxic conditions, a maximum concentration of 8.1 mM lactate and an acetate/lactate ratio of 3.5:1 were obtained, while under oxic conditions the lactate concentration increased more than two-fold and the acetate/lactate molar ratio decreased to 1.5:1. The possibility of balancing acetate/lactate molar ratios for organoleptic purposes as well as for obtaining good growth under microaerated conditions was demonstrated.

  3. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    Science.gov (United States)

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  4. 高海拔城市污水处理厂表曝机供气量计算%Calculation on Air Supply Quantity of Surface Aerator for Sewage Treatment Plant of High-altitude City

    Institute of Scientific and Technical Information of China (English)

    刘奕

    2015-01-01

    高海拔地区气温和气压较低、水中饱和溶解氧浓度低、空气中氧含量低,在污水处理厂供气量计算上存在一定的特殊性。本文结合国外某高海拔城市污水处理厂氧化沟工艺的设计实践,对高海拔地区表曝机供气量的计算方法进行了总结,提出了计算要点和需要注意的问题。%Due to low air temperature and air pressure, low concentration of saturated dissolved oxygen in water and low oxygen content in air, calculation on air supply quantity of sewage treatment plant has a certain particularity in high-altitude area. In combination with design practice of oxidation ditch process in sewage treatment plant of a high-altitude city, the paper summarizes calculation method of air supply quantity of surface aerator in high-altitude area and puts forward calculation points and some problems needs to be paid.

  5. BIOVENTING - Groundwater Aeration by Discontinuous Oxygen Gas Pulse Injections

    Science.gov (United States)

    Schirmer, M.

    2003-12-01

    Groundwater aeration by discontinuous oxygen gas pulse injections appears to be a promising concept for enhanced natural attenuation of dissolved contaminants that are susceptible for oxygenase enzyme attacks. Oxygen amendments facilitate indigenous microbiota to catabolize groundwater pollutants, such as aromatics, that are considered to be recalcitrant in absence of dissolved oxygen. As a rule, natural attenuation of many pollutants under aerobic conditions is considerably faster than under anaerobic conditions. Thus, enhancing the dissolved oxygen level appears to be worthwhile. In situ aeration of groundwater has been accomplished by air sparging, H2O2-supply, or by utilization of oxygen release compounds. However, continuous aeration of previously anaerobic groundwater is not desirable for several reasons: (a) economic efforts too high, (b) pollutant dislocation towards surface (desired only in air sparging), (c) risk of aquifer clogging (gas clogging, oxidation of ferrous iron, formation of bioslimes). In contrast, discontinuous oxygen gas sparging provides only for periodical groundwater aeration which is followed by microaerobic and suboxic conditions. Microaerobic conditions can prevail spatially (e.g., at plume fringes or within biofilms) or temporarily (e.g., at discontinuous bioventing). They still allow adapted bacteria to transform environmental pollutants to less toxic compounds, e.g., aromatic ring cleavage after dioxygenasis attack. Ring cleavage products, on the other hand, may be degraded more easily by anaerobic consortia than the initial aromatic compounds, making oxygen depletion periods highly intriguing in regard to an initiation of natural attenuation processes at plume fringes. In our work we outline the effect of oxygen depletion conditions on biodegradation of monchlorobenzene (MCB) as they occur subsequently to temporary aeration periods. For microaerobic conditions, relative to the oxygen supply, a stoichiometric transformation of MCB

  6. Decentralized domestic wastewater treatment using intermittently aerated vertical flow constructed wetlands: impact of influent strengths.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Hu, Zhen; Liang, Shuang

    2015-01-01

    In this study, the removal performances of organic pollutants and nitrogen in vertical flow constructed wetlands (VFCWs) with and without intermittent aeration fed with different strengths of influent were evaluated as a possible treatment for decentralized domestic wastewater in northern China. The intermittent aeration strategy not only significantly increased removal efficiencies of organic pollutants and ammonium nitrogen (NH4(+)-N), but also successfully created alternate aerobic and anaerobic conditions resulting in high total nitrogen (TN) removal. Moreover, increasing influent strength did not affect the removal efficiencies of organic matters and nitrogen in aerated VFCWs. Compared with non-aerated VFCWs, much higher removal of organic pollutants (96%), NH4(+)-N (98%), and TN (85%) was obtained simultaneously in intermittent aeration VFCWs, especially at high influent strengths. The results suggest that the intermittent aeration could be an appropriate strategy for achieving the high removal performance in VFCWs, especially for in-situ treatment of high strength decentralized domestic wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic-anaerobic landfill method.

    Science.gov (United States)

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Chai, Xiaoli; Hao, Yongxia

    2014-01-01

    As far as the optimal design, operation, and field application of the Aerobic-Anaerobic Landfill Method (AALM) are concerned, it is very important to understand how aeration modes (different combinations of aeration depth and air injection rate) affect the biodegradation of organic carbon and the transformation of nitrogen in landfill solid waste. Pilot-scale lysimeter experiments were carried out under different aeration modes to obtain detailed information regarding the influence of aeration modes on leachate characteristics. Results from these lysimeter experiments revealed that aeration at the bottom layer was the most effective for decomposition of organic carbon when compared with aeration at the surface or middle layers. Moreover, the air injection rate led to different nitrogen transformation patterns, unlike the lesser influence it has on organic carbon decomposition. Effective simultaneous nitrification and denitrification were observed for the aeration mode with a higher air injection rate (=1.0 L/min). On the other hand, the phenomenon of sequenced nitrification and denitrification could be observed when a low air injection rate (=0.5L/min.) was employed. Finally, it is concluded that, for AALM, air injection with a higher air injection rate at the deepest layer near the leachate collection pipe tends to accelerate the stabilization of landfill waste as defined in terms of the enhancement of denitrification as well as organic carbon decomposition.

  8. Oxygen transfer in circular surface aeration tanks.

    Science.gov (United States)

    Rao, Achanta Ramakrishna; Patel, Ajey Kumar; Kumar, Bimlesh

    2009-06-01

    Surface aeration systems employed in activated sludge plants are the most energy-intensive units of the plants and typically account for a higher percentage of the treatment facility's total energy use. The geometry of the aeration tank imparts a major effect on the system efficiency. It is said that at optimal geometric conditions, systems exhibits the maximum efficiency. Thus the quantification of the optimal geometric conditions in surface aeration tanks is needed. Optimal geometric conditions are also needed to scale up the laboratory result to the field installation. In the present work, experimental studies have been carried out on baffled and unbaffled circular surface aeration tanks to ascertain the optimal geometric conditions. It is found that no optimal geometric conditions exist for the liquid/water depth in circular surface aeration tanks; however, for design purposes, a standard value has been assumed. Based on the optimal geometric conditions, a scale-up equation has been developed for the baffled circular surface aeration tanks.

  9. Pollutants removal in subsurface infiltration systems by shunt distributing wastewater with/without intermittent aeration under different shunt ratios.

    Science.gov (United States)

    Pan, Jing; Yuan, Fang; Zhang, Yang; Huang, Linli; Yu, Long; Zheng, Fanping; Cheng, Fan; Zhang, Jiadi

    2016-10-01

    Matrix dissolved oxygen (DO), removal of COD, TP and nitrogen in subsurface infiltration systems (SISs), named SIS A (without intermittent aeration and shunt distributing wastewater), SIS B (with shunt distributing wastewater) and SIS C (with intermittent aeration and shunt distributing wastewater) were investigated. Aerobic conditions were developed in 50cm depth and anoxic or anaerobic conditions were not changed in 80 and 110cm depth by intermittent aeration. Under appropriate shunt ratios, shunt distributing wastewater improved denitrification and had little influence on COD, TP and NH3-N removal. Under the optimal shunt ratio of 1:2 for SIS C, high average removal rates of COD (90.06%), TP (93.17%), NH3-N (88.20%) and TN (85.79%) were obtained, which were higher than those in SIS A (COD: 82.56%, TP: 92.76%, NH3-N: 71.08%, TN: 49.24%) and SIS B (COD: 81.12%, TP: 92.58%, NH3-N: 69.14%, TN: 58.73%) under the optimal shunt ratio of 1:3.

  10. Proteomic analysis of sulfur-nitrogen-carbon removal by Pseudomonas sp. C27 under micro-aeration condition.

    Science.gov (United States)

    Guo, Hongliang; Chen, Chuan; Lee, Duu-Jong; Wang, Aijie; Ren, Nanqi

    2014-03-05

    Pseudomonas sp. C27 is a facultative autotrophic bacterium (FAB) that can effectively conduct mixotrophic and heterotrophic denitrifying sulfide removal (DSR) reactions under anaerobic condition using organic matters and sulfide as electron donors. Micro-aeration was proposed to enhance DSR reaction by FAB; however, there is no experimental proof on the effects of micro-aeration on capacity of denitrifying sulfide removal of FAB on proteomic levels. The proteome in total C27 cell extracts was observed by two-dimensional gel electrophoresis. Differentially expressed protein spots and specifically expressed protein spots were identified by MALDI TOF/TOF MS. We identified 55 microaerobic-responsive protein spots, representing 55 unique proteins. Hierarchical clustering analysis revealed that 75% of the proteins were up-regulated, and 5% of the proteins were specifically expressed under micro-aerobic conditions. These enzymes were mainly involved in membrane transport, protein folding and metabolism. The noted expression changes of the microaerobic-responsive proteins suggests that C27 strain has a highly efficient enzyme system to conduct DSR reactions under micro-aerobic condition. Additionally, micro-aeration can increase the rates of protein synthesis and cell growth, and enhance cell defensive system of the strain. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Understanding High Saving Rate in China

    Institute of Scientific and Technical Information of China (English)

    Xinhua He; Yongfu Cao

    2007-01-01

    This paper presents a detailed analysis of the Chinese saving rate based on the flow of funds data. It finds that the most widely adopted view of precautionary saving, which is regarded as the top reason for maintaining a high saving rate in China, is misleading because this conclusion is drawn from the household survey data. In fact, the household saving rate has declined dramatically since the mid-1990s, as is observed from the flow of funds framework.The high national saving rate is attributed to the increasing shares of both government and corporation disposable incomes. Insufficient consumption demand is caused by the persistent decrease in percentage share of household to national disposable income. Governmentdirected income redistribution urgently needs to be improved to accelerate consumption,which in turn would make the Chinese economy less investment-led and help to reduce the current account surplus.

  12. A high-strain-rate superplastic ceramic.

    Science.gov (United States)

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials.

  13. Electrorheological Effects at High Shear Rate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Much attention has been given to electrorheological (ER) fluids because of the ER effect, which has been described by a large number of researchers as a notable increase in the apparent viscosity of a fluid upon the application of an electric field. The description of ER effects is, however, not accurate at high shear rates. To clarify the discrepancy, we analyze and compute the apparent viscosity as a function of shear rate for ER fluid flow between rotating coaxial cylinders in the presence of an electric field. The theoretical predictions show that the increase of electric intensity contributes little to the apparent viscosity enhancement at high shear rates, while ER effects for ER fluids with a higher polarization rate still exist and ER devices possess controllability in this regime. Description of the ER effect by the apparent viscosity leads to an unrealistic conclusion that ER effects disappear at high shear rates, because the apparent viscosity of ER fluids approaches the value for Newtonian fluids. Therefore, it is concluded that the proper description of ER effects, i.e., one that holds uniformly for any strain rate when ER effects exist, is manifested by a remarkable increase in the extra stress rather than in the apparent viscosity of ER fluids.

  14. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  15. High Strain Rate Characterisation of Composite Materials

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken

    The high strain rate characterisation of FRP materials present the experimenter with a new set of challenges in obtaining valid experimental data. These challenges were addressed in this work with basis in classic wave theory. The stress equilibrium process for linear elastic materials, as fibre...... a linear elastic specimen to reach a state of constant strain rate before fracture. This was in contrast to ductile materials, which are widely tested with for the High-speed servohydraulic test machine. The development of the analysis and the interpretation of the results, were based on the experience...

  16. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].

    Science.gov (United States)

    Wang, Jian; Li, Huai-zheng; Zhen, Bao-chong; Liu, Zhen-dong

    2016-03-15

    One-stage vertical subsurface flow constructed wetlands (CWs) were used to treat effluent from grit chamber in municipal wastewater treatment plant. The CW was divided into aerobic zone and anoxic zone by means of raising the effluent level and installing a perforated pipe. Two parameters (the ratio of aeration time and nonaeration time, aeration cycle) were optimized in the experiment to enhance nitrogen removal efficiency. The results suggested that the removal rates of COD and NH₄⁺-N increased while TN showed a trend of first increasing and then decreasing with the increasing ratio. When the ratio was 3:1, the C/N value in the anoxic zone was 4. 8. And the TN effluent concentration was 15.8 mg · L⁻¹ with the highest removal rate (62.1%), which was increased by 12.7% compared with continuous aeration. As the extension of the aeration cycle, the DO effluent concentration as well as the removal rates of COD and NH: -N declined gradually. The TN removal rate reached the maximum (65.5%) when the aeration cycle was 6h. However, the TN removal rate dropped rapidly when the cycle exceeded the hydraulic retention time in the anoxic zone.

  17. High Resolution Measurement of the Glycolytic Rate

    Science.gov (United States)

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  18. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  19. High rate, high reliability Li/SO2 cells

    Science.gov (United States)

    Chireau, R.

    1982-03-01

    The use of the lithium/sulfur dioxide system for aerospace applications is discussed. The high rate density in the system is compared to some primary systems: mercury zinc, silver zinc, and magnesium oxide. Estimates are provided of the storage life and shelf life of typical lithium sulfur batteries. The design of lithium cells is presented and criteria are given for improving the output of cells in order to achieve high rate and high reliability.

  20. Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003

    Directory of Open Access Journals (Sweden)

    Fenice Massimiliano

    2012-01-01

    Full Text Available Abstract Background The Antarctic fungus Lecanicillium muscarium CCFEE 5003 is one of the most powerful chitinolytic organisms. It can produce high level of chitinolytic enzymes in a wide range of temperatures (5-30°C. Chitinolytic enzymes have lot of applications but their industrial production is still rather limited and no cold-active enzymes are produced. In view of massive production of L. muscarium chitinolytic enzymes, its cultivation in bioreactors is mandatory. Microbial cultivation and/or their metabolite production in bioreactors are sometime not possible and must be verified and optimized for possible exploitation. Agitation and aeration are the most important parameters in order to allow process up-scaling to the industrial level. Results In this study, submerged cultures of L. muscarium CCFEE 5003 were carried out in a 2-L bench-top CSTR bioreactor in order to optimise the production of chitinolytic enzymes. The effect of stirrer speed (range 200-500 rpm and aeration rate (range 0.5-1.5 vvm combination was studied, by Response Surface Methodology (RSM, in a medium containing 1.0% yeast nitrogen base and 1% colloidal chitin. Optimization was carried out, within a "quadratic D-optimal" model, using quantitative and quantitative-multilevel factors for aeration and agitation, respectively. The model showed very good correlation parameters (R2, 0.931; Q2, 0.869 and the maximum of activity (373.0 U/L was predicted at ca. 327 rpm and 1.1 vvm. However, the experimental data showed that highest activity (383.7 ± 7.8 U/L was recorded at 1 vvm and 300 rpm. Evident shear effect caused by stirrer speed and, partially, by high aeration rates were observed. Under optimized conditions in bioreactor the fungus was able to produce a higher number of chitinolytic enzymes than those released in shaken flasks. In addition, production was 23% higher. Conclusions This work demonstrated the attitude of L. muscarium CCFEE 5003 to grow in bench

  1. Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simultaneously from one reactor. The results showed that CMABR has a high chemical oxygen demand (COD) and nitrogen removal efficiency, as it is operated with a hydraulic retention time (HRT) of 20 h, and it also showed a perfect performance, even if the HRT was shortened to 12 h. In this period, the removal efficiencies of COD, ammonia nitrogen (NH4+-N), and total nitrogen (TN) reached 86%, 94%, and 84%, respectively. However,the removal efficiencies of NH4+-N and TN declined rapidly as the HRT was shortened to 8 h. This is because of the excessive growth of biomass on the nonwoven fiber and very high organic loading rate. The fluorescence in situ hybridization (FISH) analysis indicated that the ammonia oxidizing bacteria (AOB) were mainly distributed in the inner layer of the biofilm. The coexistence of AOB and eubacteria in one biofilm can enhance the simultaneous removal of COD and nitrogen.

  2. High Rate Performing Li-ion Battery

    Science.gov (United States)

    2015-02-09

    permeable to lithium ions and efficient in transferring the electrons into/from the LVP surface to the corresponding current collector. a) b) c) d) e...PO4)3/C for High Rate Lithium-ion Battery Applications”, Lee Hwang Sheng, Nail Suleimanov, Vishwanathan Ramar, Mangayarkarasi Murugan, Kuppan

  3. [Hopes of high dose-rate radiotherapy].

    Science.gov (United States)

    Fouillade, Charles; Favaudon, Vincent; Vozenin, Marie-Catherine; Romeo, Paul-Henri; Bourhis, Jean; Verrelle, Pierre; Devauchelle, Patrick; Patriarca, Annalisa; Heinrich, Sophie; Mazal, Alejandro; Dutreix, Marie

    2017-04-01

    In this review, we present the synthesis of the newly acquired knowledge concerning high dose-rate irradiations and the hopes that these new radiotherapy modalities give rise to. The results were presented at a recent symposium on the subject. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Understanding High School Graduation Rates in Arizona

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  5. Understanding High School Graduation Rates in Delaware

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  6. Understanding High School Graduation Rates in Idaho

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  7. Understanding High School Graduation Rates in Illinois

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  8. Understanding High School Graduation Rates in Massachusetts

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  9. Understanding High School Graduation Rates in Pennsylvania

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in Minnesota

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in Kentucky

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in Maryland

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in Wisconsin

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in Wyoming

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Understanding High School Graduation Rates in Alaska

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  16. Understanding High School Graduation Rates in Oklahoma

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  17. Understanding High School Graduation Rates in Tennessee

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  18. Understanding High School Graduation Rates in Georgia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  19. Understanding High School Graduation Rates in Iowa

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  20. Understanding High School Graduation Rates in Nevada

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  1. Understanding High School Graduation Rates in Texas

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  2. Understanding High School Graduation Rates in Florida

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  3. Understanding High School Graduation Rates in Nebraska

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  4. Understanding High School Graduation Rates in Oregon

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  5. Understanding High School Graduation Rates in Kansas

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  6. Understanding High School Graduation Rates in Virginia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  7. Understanding High School Graduation Rates in Connecticut

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  8. Understanding High School Graduation Rates in Hawaii

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  9. Understanding High School Graduation Rates in Vermont

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in Mississippi

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in California

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in Ohio

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in Montana

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in Maine

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Understanding High School Graduation Rates in Washington

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  16. Understanding High School Graduation Rates in Louisiana

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  17. Understanding High School Graduation Rates in Colorado

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  18. Understanding High School Graduation Rates in Michigan

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  19. Understanding High School Graduation Rates in Indiana

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  20. Understanding High School Graduation Rates in Utah

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  1. Understanding High School Graduation Rates in Alabama

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  2. Understanding High School Graduation Rates in Arkansas

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  3. Understanding High School Graduation Rates in Missouri

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  4. Pathways of nitrobenzene degradation in horizontal subsurface flow constructed wetlands: Effect of intermittent aeration and glucose addition.

    Science.gov (United States)

    Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie

    2016-01-15

    Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation.

  5. AERATION OF THE ICE-COVERED WATER POOLS USING THE WAVE FLOW AERATOR

    Directory of Open Access Journals (Sweden)

    Solomin E.E

    2013-12-01

    Full Text Available This article describes the technical advantages and economic benefits of the ice-covered pool aeration plants consuming power from renewable energy sources. We made a comparative evaluation of the wave flow-aeration method and other methods of pool aeration. We showed the indexes and the characteristics of the wave flow-maker for aeration of ice-covered pools on the territory of Russia. We also made calculations of the economic benefits of aeration plants using the devices converting renewable energy. The project can be scaled and extended to the territory of the CIS, Europe, USA and Canada in the changing climate conditions and the variety of feed reservoirs around the world.

  6. Modelisation of the contribution of sediments in the treatment process case of aerated lagoons.

    Science.gov (United States)

    Jupsin, H; Vasel, J L

    2007-01-01

    In aerated lagoons and even more in stabilization ponds the specific power (W/m3) is not high enough to maintain all the suspended solids in suspension. Some part of the suspended solids (including biomass) settles directly into the reactor and not in the final settling pond. The gradual accumulation of those sediments on the pond bottom affects performance by reducing the pond volume and shortening the Hydraulic Residence Time. However, the role played by these deposits is not restricted to such a physical effect. Far from being inert sediments they are also an important oxygen sink that must be taken into account when designing aerator power and oxygen supply, for example. On the other hand, under aerobic conditions, the upper layer of sediments may contribute to the treatment as a biofilm compartment in the reactor. In aerated lagoon systems another process contributes to the interaction of deposits and the liquid phase: the operating (often sequencing) of aerators may induce a drastic resuspension of deposits. In a 3,000 m3 aerated lagoon we evaluated that 3 tons of deposits were resuspended when aerators were started. Due to those processes we consider that a mathematical model of an aerated lagoon or of a stabilization pond has to take into account the contribution (positive and negative aspects) of deposits in the process. In this paper we propose a model for sediments including production but also biological processes. Simulations of the aerated lagoon with or without the "sediment compartment" demonstrate the effect and the importance of this compartment on the process. Of course a similar approach could be used for facultative or even maturation ponds. The next step would be to include anaerobic activities in the bottom layer.

  7. A miniature high repetition rate shock tube.

    Science.gov (United States)

    Tranter, R S; Lynch, P T

    2013-09-01

    A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.

  8. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    Science.gov (United States)

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  9. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  10. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  11. Winery Wastewater Treatment Applying Aerated Submerged

    Directory of Open Access Journals (Sweden)

    Alessandra Pellizzaro Bento

    2010-06-01

    Full Text Available The winery wastewater usually shows conditions of low pH, high organic loads and concentrations of carbon, nitrogen and phosphorus that are inappropriate for biologic treatment. The purpose of this research was to apply the technology of aerated submerged biofilter (ASB for the winery effluent treatment during the harvest (ASB 1 and non harvest (ASB 2 at lab scale. Therefore, two up flow biofilter built on glass (5 liters volume were installed. The nutrient balance of the winery wastewater was adjusted and the correction of the pH was done by oyster shell used as filter material. The efficiency removal (COD for the harvest reactor was 90% while for the non harvest was 82%. The oyster shells contributed to an increase on average of 180 mg/L of alkalinity to the BAS 1 and 318 mg/L for the BAS 2. As regards the metals, the average values in the treated effluent to meet iron and zinc is permitted by the environmental standards of Santa Catarina. Under the experimental conditions applied in this research, this kind of reactor has presented potential for the treatment of winery wastewater. However, operational improvements would be required in the reactors to adequate them to the specific management into the wineries.

  12. Corrosion behavior of electrodeposited Co-Fe alloys in aerated solutions

    Science.gov (United States)

    Chansena, A.; Sutthiruangwong, S.

    2017-05-01

    Co-Fe alloy is an important component for reader-writer in hard disk drive. The surface of the alloy is exposed to the environment both in gas phase and in liquid phase during manufacturing process. The study of corrosion behavior of Co-Fe alloys can provide useful fundamental data for reader-writer production planning especially when corrosion becomes a major problem. The corrosion study of electrodeposited Co-Fe alloys from cyclic galvanodynamic polarization was performed using potentiodynamic polarization technique. The composition of electrodeposited Co-Fe alloys was determined by X-ray fluorescence spectrometry. The patterns from X-ray diffractometer showed that the crystal structure of electrodeposited Co-Fe alloys was body-centered cubic. A vibrating sample magnetometer was used for magnetic measurements. The saturation magnetization (Ms) was increased and the intrinsic coercivity (Hci) was decreased with increasing Fe content. The corrosion rate study was performed in aerated deionized water and aerated acidic solutions at pH 3, 4 and 5. The corrosion rate diagram for Co-Fe alloys was constructed. It was found that the corrosion rate of Co-Fe alloys was increased with increasing Fe content in both aerated deionized water and aerated acidic solutions. In aerated pH 3 solution, the Co-Fe alloy containing 78.8% Fe showed the highest corrosion rate of 7.7 mm yr-1 with the highest Ms of 32.0 A m2 kg-1. The corrosion rate of the alloy with 23.8% Fe was at 1.1 mm yr-1 with Ms of 1.2 A m2 kg-1. In aerated deionized water, the alloy with the highest Fe content of 78.5% still showed the highest corrosion rate of 0.0059 mm yr-1 while the alloy with the lowest Fe content of 20.4% gave the lowest corrosion rate of 0.0045 mm yr-1.

  13. High strain rate characterization of polymers

    Science.gov (United States)

    Siviour, Clive R.

    2017-01-01

    This paper reviews the literature on the response of polymers to high strain rate deformation. The main focus is on the experimental techniques used to characterize this response. The paper includes a small number of examples as well as references to experimental data over a wide range of rates, which illustrate the key features of rate dependence in these materials; however this is by no means an exhaustive list. The aim of the paper is to give the reader unfamiliar with the subject an overview of the techniques available with sufficient references from which further information can be obtained. In addition to the `well established' techniques of the Hopkinson bar, Taylor Impact and Transverse impact, a discussion of the use of time-temperature superposition in interpreting and experimentally replicating high rate response is given, as is a description of new techniques in which mechanical parameters are derived by directly measuring wave propagation in specimens; these are particularly appropriate for polymers with low wave speeds. The vast topic of constitutive modelling is deliberately excluded from this review.

  14. Hydrolytic anaerobic reactor and aerated constructed wetland systems for municipal wastewater treatment - HIGHWET project.

    Science.gov (United States)

    Pascual, A; de la Varga, D; Arias, C A; Van Oirschot, D; Kilian, R; Álvarez, J A; Soto, M

    2017-01-01

    The HIGHWET project combines the hydrolytic up-flow sludge bed (HUSB) anaerobic digester and constructed wetlands (CWs) with forced aeration for decreasing the footprint and improving effluent quality. The HIGHWET plant in A Coruña (NW of Spain) treating municipal wastewater consists of a HUSB and four parallel subsurface horizontal flow (HF) CWs. HF1, HF2 and HF3 units are fitted with forced aeration, while the control HF4 is not aerated. All the HF units are provided with effluent recirculation, but different heights of gravel bed (0.8 m in HF1 and HF2, and 0.5 m in HF3 and HF4) are implemented. Besides, a tobermorite-enriched material was added in the HF2 unit in order to improve phosphorus removal. The HUSB 76-89% of total suspended solids (TSS) and about 40% of chemical oxygen demand (COD) and biological oxygen demand (BOD). Aerated HF units reached above 96% of TSS, COD and BOD at a surface loading rate of 29-47 g BOD5/m(2)·d. An aeration regime ranging from 5 h on/3 h off to 3 h on/5 h off was found to be adequate to optimize nitrogen removal, which ranged from 53% to 81%. Average removal rates of 3.4 ± 0.4 g total nitrogen (TN)/m(2)·d and 12.8 ± 3.7 g TN/m(3)·d were found in the aerated units, being 5.5 and 4.1 times higher than those of the non-aerated system. The tobermorite-enriched HF2 unit showed a distinct higher phosphate (60-67%) and total phosphorus (54%) removal.

  15. Effect of agitation and aeration on the citric acid production by Yarrowia lipolytica grown on glycerol.

    Science.gov (United States)

    Rywińska, Anita; Musiał, Izabela; Rymowicz, Waldemar; Zarowska, Barbara; Boruczkowski, Tomasz

    2012-01-01

    The effects of agitation rates from 400 to 900 rpm and aeration rates ranging from 0.18 to 0.6 vvm on biomass and citric acid production on glycerol media by acetate-negative mutants of Yarrowia lipolytica, Wratislavia 1.31 and Wratislavia AWG7, in batch culture were studied. The agitation rates of 800 and 900 rpm (at a constant aeration rate of 0.36 vvm) and aeration rates within the range of 0.24-0.48 vvm (at a constant agitation rate of 800 rpm), which generated dissolved oxygen concentration (DO) higher than 40%, were found the best for citric acid biosynthesis from glycerol. An increase in agitation rate (higher than 800 rpm) and aeration rate (higher than 0.36 vvm) had no impact on DO and citric acid production. The highest citric acid concentration (92.8 g/L) and yield (0.63 g/g) were obtained with Wratislavia 1.31 strain at 0.24 vvm. The highest volumetric citric acid production rate (1.15 g/Lh) and specific citric acid production rate (0.071 g/gh) were reached at 0.48 vvm.

  16. A prototype of a high rating MRPC

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; WANG Jing-Bo; YAN Qiang; LI Yuan-Jing; CHENG Jian-Ping; YUE Qian; LI Jin

    2009-01-01

    Six-gap resistive plate chamber (MRPC) prototypes with semiconductive glass electrodes (bulk resistivity~1010.cm) were studied for suitability in time-of-flight (TOF) applications at high rates. These studies were performed using a continuous electron beam of 800 MeV at IHEP and an X-ray machine. Time resolutions of about 100 ps and efficiencies larger than 90% were obtained for flux densities up to 28 kHz/cm2.

  17. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  18. 浅论掺气设施的消能作用%Study on the Energy Dissipation of Aerator

    Institute of Scientific and Technical Information of China (English)

    栗帅; 张建民; 陈剑刚; 胡小禹

    2011-01-01

    掺气减蚀设施不仅能有效地减缓空蚀和磨蚀的发生,而且具有一定的消能作用.结合某水电站溢洪道的模型试验研究,分析了溢洪道掺气减蚀工程措施的消能效果,并首次定量地计算了消能率.试验和计算结果表明,在高水头、大单宽流量溢洪道中每道掺气挑坎的消能水头为2~5 m,随着级数的增加消能水头逐渐增加.试验还表明,在满足掺气要求和水流流态平稳的条件下,尽可能多设置掺气设施不仅不会增加工程量,还可以降低泄槽因高速水流冲刷破坏的风险,而且有利于下游消能防冲设计的优化.%Air entrainment facilities can not only effectively reduce the occurrence of cavitation and abrasion, but also has a certain role on energy dissipation. Combining with the experimental research of a spillway model, the energy dissipation of the aerator in the spillway is analyzed and the energy dissipation rate is firstly quantified. The results show that the head will decrease about 2-5 m after flowing through an aerator in a spillway with high water head and large unit discharge, and the head decrease will be increased with the increase of the number of aerators. The experimental study also shows that, under the conditions of meeting the requirements of aeration and keeping flow stable, setting the aerators as much as possible will not increase the construction quantity, but it can reduce the risk of chute damage due to high-speed flow and is beneficial to the optimization of downstream energy dissipation and erosion control designs.

  19. FLOW REGIMES BELOW AERATORS FOR DISCHARGE TUNNELS

    Institute of Scientific and Technical Information of China (English)

    MA Fei; WU Jian-hua

    2012-01-01

    The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control.Based on the theoretical considerations,the experiments of the aerator for a discharge tunnel were conducted,and the relationships between the flow regime and hydraulic and geometric parameters were investigated.The results showed that,there are two kinds of threshold values for the flow regime conversions.One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity,and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity.Two empirical expressions were obtained for the conversions of the flow regimes,which can be used in the designs of the aerators.

  20. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste.

    Science.gov (United States)

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang

    2016-12-01

    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH3) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin)(-1), respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin)(-1) may be applied to control VSCs and NH3 emissions during kitchen waste composting.

  1. PRESSURE CHARACTERISTICS OF CAVITATION CONTROL BY AERATION

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LU Yang-quan; JU Wen-jie; CAI Xin-ming; DING Chun-sheng

    2005-01-01

    This experimental investigation was systematically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Technology in China.The test velocity is between 20m/s and 40m/s.The least air concentration to prevent cavitation erosion lies between 1.7% and 4.5%.Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured.Time-averaged pressure profiles with and without aeration were compared.Pressure characteristics corresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.

  2. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  3. High strain rate deformation of layered nanocomposites

    Science.gov (United States)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  4. High frame-rate digital radiographic videography

    Energy Technology Data Exchange (ETDEWEB)

    King, N.S.P.; Cverna, F.H.; Albright, K.L.; Jaramillo, S.A.; Yates, G.J.; McDonald, T.E. [Los Alamos National Lab., NM (United States); Flynn, M.J.; Tashman, S. [Henry Ford Health System, Detroit, MI (United States)

    1994-09-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100-microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  5. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands.

    Science.gov (United States)

    Maltais-Landry, Gabriel; Maranger, Roxane; Brisson, Jacques; Chazarenc, Florent

    2009-02-01

    Nitrogen (N) processing in constructed wetlands (CWs) is often variable, and the contribution to N loss and retention by various pathways (nitrification/denitrification, plant uptake and sediment storage) remains unclear. We studied the seasonal variation of the effects of artificial aeration and three different macrophyte species (Phragmites australis, Typha angustifolia and Phalaris arundinacea) on N processing (removal rates, transformations and export) using experimental CW mesocosms. Removal of total nitrogen (TN) was higher in summer and in planted and aerated units, with the highest mean removal in units planted with T. angustifolia. Export of ammonium (NH(4)(+)), a proxy for nitrification limitation, was higher in winter, and in unplanted and non-aerated units. Planted and aerated units had the highest export of oxidized nitrogen (NO(y)), a proxy for reduced denitrification. Redox potential, evapotranspiration (ETP) rates and hydraulic retention times (HRT) were all predictors of TN, NH(4)(+) and NO(y) export, and significantly affected by plants. Denitrification was the main N sink in most treatments accounting for 47-62% of TN removal, while sediment storage was dominant in unplanted non-aerated units and units planted with P. arundinacea. Plant uptake accounted for less than 20% of the removal. Uncertainties about the long-term fate of the N stored in sediments suggest that the fraction attributed to denitrification losses could be underestimated in this study.

  6. Novel High Rate Lithium Intercalation Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Application of amorphous V2O5/carbon/neodymium oxide (Nd2O3) composite is one of ways to surmount the lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3.and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.

  7. Experimental recombination rates for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold Schuch [Dept. of Atomic Physics, Stockholm Univ., Frescativ., Stockholm (Sweden)

    2000-01-01

    Recent studies of recombination between free electrons and highly charged ions using electron coolers of heavy-ion storage rings have produced accurate rate coefficients of interest for plasma modeling and diagnostics. Some surprises were discovered which can lead to revisions of recombination models. With bare ions one finds at low energy a strong and puzzling deviation from radiative recombination theory. Dielectronic recombination with C3+, N4+ show that jj coupling gives essential contributions to the cross section also for light ions. (author)

  8. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control.

    Science.gov (United States)

    Ujang, Z; Ng, S S; Nagaoka, H

    2005-01-01

    Biofouling control is important for effective process of membrane bioreactor (MBR). In this study, phenomena of biofouling for immersed type extended aeration MBR with two different anti-fouling aeration intensities were studied through a laboratory set up. The objectives of this study were (a) to observe biofouling phenomena of MBR that operates under different anti-fouling bubbling intensity, and simultaneously monitors performance of the MBR in organic carbon and nutrients removal; (b) to compare effectiveness of detergent and detergent-enzyme cleaning solutions in recovering biofouled membranes that operated in the extended aeration MBR. For MBR, which operated under continuous anti-fouling aeration, deposition and accumulation of suspended biomass on membrane surface were prohibited. However, flux loss was inescapable that biofilm layer was the main problem. Membrane cleaning was successfully carried out with detergent-enzyme mixture solutions and its effectiveness was compared with result from cleaning with just detergent solution.

  9. Recrystallization of High Carbon Steel during High Strain Rate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The recrystallization of high carbon steel during high temperature and high speed rolling has been studied by analyzing the stress-strain curves and the austenite grain size.Isothermal multi-pass hot compression at high strain rate was carried out by Gleeble-2000. The austenite grain size was measured by IBAS image analysis system. The results show that static recrystallization occurred at interpass time under pre-finish rolling, and at the finish rolling stage, due to the brief interpass time, static recrystallization can not be found.

  10. High counting rate resistive-plate chamber

    Science.gov (United States)

    Peskov, V.; Anderson, D. F.; Kwan, S.

    1993-05-01

    Parallel-plate avalanche chambers (PPAC) are widely used in physics experiments because they are fast (less than 1 ns) and have very simple construction: just two parallel metallic plates or mesh electrodes. Depending on the applied voltage they may work either in spark mode or avalanche mode. The advantage of the spark mode of operation is a large signal amplitude from the chamber, the disadvantage is that there is a large dead time (msec) for the entire chamber after an event. The main advantage of the avalanche mode is high rate capability 10(exp 5) counts/mm(sup 2). A resistive-plate chamber (RPC) is similar to the PPAC in construction except that one or both of the electrodes are made from high resistivity (greater than 10(exp 10) Omega(cm) materials. In practice RPC's are usually used in the spark mode. Resistive electrodes are charged by sparks, locally reducing the actual electric field in the gap. The size of the charged surface is about 10 mm(sup 2), leaving the rest of the detector unaffected. Therefore, the rate capability of such detectors in the spark mode is considerably higher than conventional spark counters. Among the different glasses tested the best results were obtained with electron type conductive glasses, which obey Ohm's law. Most of the work with such glasses was done with high pressure parallel-plate chambers (10 atm) for time-of-flight measurements. Resistive glasses have been expensive and produced only in small quantities. Now resistive glasses are commercially available, although they are still expensive in small scale production. From the positive experience of different groups working with the resistive glasses, it was decided to review the old idea to use this glass for the RPC. This work has investigated the possibility of using the RPC at 1 atm and in the avalanche mode. This has several advantages: simplicity of construction, high rate capability, low voltage operation, and the ability to work with non-flammable gases.

  11. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant.

    Science.gov (United States)

    Zhou, Xiaohong; Wu, Yuanyuan; Shi, Hanchang; Song, Yanqing

    2013-02-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in-situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP ha d significantly different oxygen transferperformance; furthermore, the aerators in the samecorridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount aeration amount reached 0.96 Nm3/hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  12. Evaluation of oxygen transfer parameters of fine-bubble aeration system in plug flow aeration tank of wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhou; Yuanyuan Wu; Hanchang Shi; Yanqing Song

    2013-01-01

    Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP,however,scarce to best of our knowledge.Through analyzing a plug flow aeration tank in the Lucun WWTP,in Wuxi,China,the oxygenation capacity of fine-bubble aerators under process conditions have been measured insitu using the off-gas method and the non-steady-state method.The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore,the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day.Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water.The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount < 0.67 Nm3/hr).However,as the aeration amount reached 0.96 Nm3/hr,the discrepancy of oxygen transfer between the process condition and clean water was negligible.The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.

  13. Fibrous Support Stabilizes Nitrification Performance of a Membrane-Aerated Biofilm: The Effect of Liquid Flow Perturbation

    DEFF Research Database (Denmark)

    Terada, Akihiko; Ito, J; Matsumoto, S

    2009-01-01

    Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming no bound......Nitrification stability and biofilm robustness were examined by comparing a fibrous support membrane-aerated biofilm reactor (FS-MABR), where a woven fibrous support was surrounded on a silicone tube, with an MABR. The overall mass transfer coefficient of oxygen for the FS-MABR, assuming...... liquid flow rate condition was 49% and 75% in the FS-MABR and MABR, exhibiting robust biofilms grown on the fibrous support. The FS-MABR provided more stable nitrification performance than the MABR irrespective of a high liquid flow rate. Both reactors have deteriorated ammonium (NH4+-N) removal without...... a high liquid flow rate condition to eliminate excessive biomass, indicating that regular maintenance is essential to eliminate excessive biofilm from a MABR for nitrification, which potentially acts as a NH4+ diffusion barrier....

  14. Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration.

    Science.gov (United States)

    Zhang, Song; Liu, Min; Chen, Ying; Pan, Yu-Ting

    2017-01-01

    To investigate the effects of aeration on hydrogen-producing granular system, experiments were performed in two laboratory-scale anaerobic internal circulation hydrogen production (AICHP) reactors. The preliminary experiment of Reactor 1 showed that direct aeration was beneficial to enhancing hydrogen production. After the direct aeration was implied in Reactor 2, hydrogen production rate (HPR) and hydrogen content were increased by 100% and 60%, respectively. In addition, mixed-acid fermentation was transformed into typical ethanol-type fermentation (ETF). Illumina MiSeq sequencing shows that the direct aeration did not change the species of hydrogen-producing bacteria but altered their abundance. Hydrogen-producing bacteria and ethanol-type fermentative bacteria were increased by 24.5% and 146.3%, respectively. Ethanoligenens sp. sharply increased by 162.2% and turned into predominant bacteria in the system. These findings indicated that appropriate direct aeration might be a novel and promising way to obtain ETF and enhance hydrogen production in practical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Raising and controlling study of dissolved oxygen concentration in closed-type aeration tank.

    Science.gov (United States)

    Chen, C K; Lo, S L

    2005-07-01

    This study investigated the promotion and control of dissolved oxygen (DO) concentration of the closed-type aeration tank via practical experiments in the wastewater treatment system of a 5-star hotel in Taipei. As with limited and treasured space in Taiwan, before the completion of the sewer system construction in cities, to utilize the mat foundation under large buildings as the space of sewage treatment plant still has been one of the alternatives of those sewage treatments. However, aeration tanks constructed in the mat foundation of buildings have smaller effective water depth, which will cause a lower total transfer amount of DO. Controlling the total exhaust gas flow rate can increase the pressure on such closed-type aeration tanks. The DO concentration thus may increase according to Henry's Law. Furthermore, it may enable operators to adjust the DO concentration of the aeration tank more precisely and thus sustain optimal operating conditions in these treatment facilities. Practical experiments indicated that the DO concentration of aeration tank maintains an average of 3.8 mg l(-1), obtaining the optimum operating conditions. The efficiency of the biological treatment facilities in the mat foundation could be markedly improved.

  16. Investigation of pure- and aerated-liquid jets using ultra-fast X-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kuo-Cheng, E-mail: Kuo-Cheng.Lin@wpafb.af.mil [Taitech, Inc., Beavercreek, OH 45430 (United States); Rajnicek, Christopher; McCall, Jonathan; Carter, Campbell [Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 (United States); Fezzaa, Kamel [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2011-09-01

    Pure- and aerated-liquid jets were observed using the ultra-fast X-ray phase contrast imaging technique. Highly convoluted wrinkle structures were seen on the column surface of a turbulent pure-liquid jet, gas bubbles were discovered inside droplets and ligaments of aerated-liquid sprays, and apparently homogenous two-phase mixtures were observed inside the aerated-liquid injector. The major limitation of this X-ray technique lies in its line-of-sight nature, which can create overlapped objects/interfaces on the X-ray images.

  17. Influence of temperature on carbon and nitrogen dynamics during in situ aeration of aged waste in simulated landfill bioreactors.

    Science.gov (United States)

    Tong, Huanhuan; Yin, Ke; Giannis, Apostolos; Ge, Liya; Wang, Jing-Yuan

    2015-09-01

    The effect of temperature on carbon and nitrogen compounds during in situ aeration of aged waste was investigated in lab-scale simulated landfill bioreactors at 35, 45 and 55 °C, respectively. The bioreactor operated at 55 °C presented the highest carbon mineralization rate in the initial stage, suggesting accelerated biodegradation rates under thermophilic conditions. The nitrogen speciation study indicated that organic nitrogen was the dominant species of total N in aerobic bioreactors due to ammonia removal. Leachate organic nitrogen was further fractionated to elucidate the fate of individual constituent. Detailed investigation revealed the higher bioconversion rates of N-humic and N-fulvic compounds compared to hydrophilic compounds in thermophilic conditions. At the end, waste material in 55 °C bioreactor was richer in highly matured humic substances (HS) verifying the high bioconversion rates.

  18. Intensified organics and nitrogen removal in the intermittent-aerated constructed wetland using a novel sludge-ceramsite as substrate.

    Science.gov (United States)

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Lv, Jialong; Lu, Shaoyong; Wu, Weizhong; Wu, Suqing

    2016-06-01

    In this study, a novel sludge-ceramsite was applied as main substrate in intermittent-aerated subsurface flow constructed wetlands (SSF CWs) for treating decentralized domestic wastewater, and intensified organics and nitrogen removal in different SSF CWs (with and without intermittent aeration, with and without sludge-ceramsite substrate) were evaluated. High removal of 97.2% COD, 98.9% NH4(+)-N and 85.8% TN were obtained simultaneously in the intermittent-aerated CW system using sludge-ceramsite substrate compared with non-aerated CWs. Moreover, results from fluorescence in situ hybridization (FISH) analysis revealed that the growth of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the intermittent-aerated CW system with sludge-ceramsite substrate was enhanced, thus indicating that the application of intermittent aeration and sludge-ceramsite plays an important role in nitrogen transformations. These results suggest that a combination of intermittent aeration and sludge-ceramsite substrate is reliable to enhance the treatment performance in SSF CWs.

  19. High-energy, high-rate materials processing

    Science.gov (United States)

    Marcus, H. L.; Bourell, D. L.; Eliezer, Z.; Persad, C.; Weldon, W.

    1987-12-01

    The increasingly available range of pulsed-power, high energy kinetic storage devices, such as low-inductance pulse-forming networks, compulsators, and homopolar generators, is presently considered as a basis for industrial high energy/high rate (HEHR) processing to accomplish shock hardening, drilling, rapid surface alloying and melting, welding and cutting, transformation hardening, and cladding and surface melting in metallic materials. Time-temperature-transformation concepts furnish the basis for a fundamental understanding of the potential advantages of this direct pulsed power processing. Attention is given to the HEHR processing of a refractory molybdenum alloy, a nickel-base metallic glass, tungsten, titanium aluminides, and metal-matrix composites.

  20. An aerator for brain slice experiments in individual cell culture plate wells.

    Science.gov (United States)

    Dorris, David M; Hauser, Caitlin A; Minnehan, Caitlin E; Meitzen, John

    2014-12-30

    Ex vivo acute living brain slices are a broadly employed and powerful experimental preparation. Most new technology regarding this tissue has involved the chamber used when performing electrophysiological experiments. Alternatively we instead focus on the creation of a simple, versatile aerator designed to allow maintenance and manipulation of acute brain slices and potentially other tissue in a multi-well cell culture plate. Here we present an easily manufactured aerator designed to fit into a 24-well cell culture plate. It features a nylon mesh and a single microhole to enable gas delivery without compromising tissue stability. The aerator is designed to be individually controlled, allowing both high throughput and single well experiments. The aerator was validated by testing material leach, dissolved oxygen delivery, brain slice viability and neuronal electrophysiology. Example experiments are also presented, including a test of whether β1-adrenergic receptor activation regulates gene expression in ex vivo dorsal striatum using qPCR. Key differences include enhanced control over gas delivery to individual wells containing brain slices, decreased necessary volume, a sample restraint to reduce movement artifacts, the potential to be sterilized, the avoidance of materials that absorb water and small biological molecules, minimal production costs, and increased experimental throughput. This new aerator is of high utility and will be useful for experiments involving brain slices and other potentially tissue samples in 24-well cell culture plates. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. High-Frame-Rate Oil Film Interferometry

    CERN Document Server

    White, Jonathan C; Chen, John

    2010-01-01

    The fluid dynamics video to which this abstract relates contains visualization of the response of a laminar boundary layer to a sudden puff from a small hole. The boundary layer develops on a flat plate in a wind tunnel; the hole is located at a streamwise Reynolds number of 100,000. The visualization of the boundary layer response is accomplished using interferometry of a transparent, thin film of oil placed on the surface immediately downstream of the hole and with its leading edge perpendicular to the direction of flow. Through lubrication theory, it is understood that the rate of change of the spacing of the interference fringes is proportional to the skin friction at any instant. For reference, a small disk-shaped protrusion of the type often used to trip the boundary layer in wind model tunnel testing is also shown. Three cases with different puff strengths are included. Using a high-speed commercial camera, frame rates in excess of 1000/sec have been recorded; the video shown here was taken at 24 frame...

  2. High spin rate magnetic controller for nanosatellites

    Science.gov (United States)

    Slavinskis, A.; Kvell, U.; Kulu, E.; Sünter, I.; Kuuste, H.; Lätt, S.; Voormansik, K.; Noorma, M.

    2014-02-01

    This paper presents a study of a high rate closed-loop spin controller that uses only electromagnetic coils as actuators. The controller is able to perform spin rate control and simultaneously align the spin axis with the Earth's inertial reference frame. It is implemented, optimised and simulated for a 1-unit CubeSat ESTCube-1 to fulfil its mission requirements: spin the satellite up to 360 deg s-1 around the z-axis and align its spin axis with the Earth's polar axis with a pointing error of less than 3°. The attitude of the satellite is determined using a magnetic field vector, a Sun vector and angular velocity. It is estimated using an Unscented Kalman Filter and controlled using three electromagnetic coils. The algorithm is tested in a simulation environment that includes models of space environment and environmental disturbances, sensor and actuator emulation, attitude estimation, and a model to simulate the time delay caused by on-board calculations. In addition to the normal operation mode, analyses of reduced satellite functionality are performed: significant errors of attitude estimation due to non-operational Sun sensors; and limited actuator functionality due to two non-operational coils. A hardware-in-the-loop test is also performed to verify on-board software.

  3. High readmission rate after heart valve surgery

    DEFF Research Database (Denmark)

    Sibilitz, K L; Berg, S K; Thygesen, Lau Caspar;

    2015-01-01

    of anxiety and depression were present in 13.6% and 13.8%, respectively (Hospital Anxiety and Depression Scale score ≥ 8). Twelve months following discharge, 483 persons (56%) were readmitted. Readmission was associated with lower self-reported health (SF-36 PCS: 46.5 vs. 43.9, and MCS 52.2 vs. 50.7). Higher...... after surgery (3.2 (1.2-8.9)) predicted mortality. CONCLUSIONS: 6-12 months after heart valve surgery the readmission rate is high and the self-reported health status is low. Readmission is associated with low self-reported health. Therefore, targeted follow-up strategies post-surgery are needed....

  4. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  5. Expired CO2 levels indicate degree of lung aeration at birth.

    Directory of Open Access Journals (Sweden)

    Stuart B Hooper

    Full Text Available As neonatal resuscitation critically depends upon lung aeration at birth, knowledge of the progression of this process is required to guide ongoing care. We investigated whether expired CO2 (ECO2 levels indicate the degree of lung aeration immediately after birth in two animal models and in preterm infants. Lambs were delivered by caesarean section and ventilated from birth. In lambs, ECO2 levels were significantly (p10 mmHg 28 (median (21-36 seconds before the heart rate increased above 100 beats per minute. These data demonstrate that ECO2 levels can indicate the relative degree of lung aeration after birth and can be used to clinically assess ventilation in the immediate newborn period.

  6. [Biological phosphorus removal in intermittent aerated biological filter].

    Science.gov (United States)

    Zeng, Long-Yun; Yang, Chun-Ping; Guo, Jun-Yuan; Luo, Sheng-Lian

    2012-01-01

    Under intermittent aerated and continuous fed operation where the biofilm system was subjected to alternated anaerobic/aerobic condition, the effect of influent volatile fatty acids (VFAs) concentrations, operation cycle and backwash on the biological phosphorus removal performance of the biofilter was studied. In the experiment, synthetic domestic wastewater was used, and the influent velocity was 5 L x h(-1) with gas versus liquid ratio of 8:1 and hydraulic retention time (HRT) of 1.3 h, resulting in average COD, ammonium and phosphorus load of 4.7, 0.41 and 0.095 g x (L x d) (-1) respectively. Results show that, (1) effective release and uptake of phosphorus was achieved in a operation cycle; (2) when influent VFAs was 100 mg x L(-1) (calculated by COD value) and operation cycle was 6 h the filter performed best in phosphorus removal, the phosphorus loading removal rate can be as much as 0.059 g x (L x d)(-1) at the aerated phase with those of COD and ammonium being 3.8 g x (L x d)(-1) and 0.28 g x (L x d)(-1) respectively, and with average effluent phosphorus, COD and ammonium concentrations being 1.8, 43.6 and 8.7 mg x L(-1), which shows nitrogen loss also happened; (3) the pause of backwash decreased the phosphorus removal performance rapidly with the removal efficiency lower than 40% in two days, but the consequent daily backwash operation gave a short improvement on the phosphorus removal, which disappeared in another two days. Thus, it is shown that biological phosphorus removal achieved with better phosphorus loading removal performance in the biofilter under intermittent aerated and continuous fed operation, and that sufficient and stable influent VFAs concentration, proper operation cycle, and more frequent backwash favored the performance.

  7. Nitrogen removal in wood chip combined substrate baffled subsurface-flow constructed wetlands: impact of matrix arrangement and intermittent aeration.

    Science.gov (United States)

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng

    2017-02-01

    In this study, two lab-scale baffled subsurface-flow constructed wetlands (BSFCWs), including gravel-wood chips-slag and gravel-slag-wood chips, were operated at different intermittent aeration to evaluate the effect of artificial aeration and slow-released carbon source on the treatment efficiency of high-strength nitrogen wastewater. Results indicated that gravel-slag-wood chips extended aerobic/anaerobic alternating environment to gravel and slag zones and maintained anaerobic condition in the subsequent wood chip section. The order of gravel-slag-wood chip was more beneficial to pollutant removal. Sufficient carbon source supply resulted from wood-chip-framework substrate simultaneously obtained high removals of COD (97%), NH4(+)-N (95%), and TN (94%) in BSFCWs at 2 h aeration per day. The results suggest that intermittent aeration combined with wood chips could achieve high nitrogen removal in BSFCWs.

  8. Modelling and test of aeration tank settling (ATS)

    DEFF Research Database (Denmark)

    Nielsen, M. K.; Bechmann, H.; Henze, Mogens

    2000-01-01

    that a qualitatively correct model can be established. The simplicity of the model allows for on-line identification of the necessary parameters, so that no maintenance is needed to use of the on-line model for control. The practical implementation on three plants indicates that implementation of STAR with ATS control......The use of aeration tank settling during high hydraulic loads on large wastewater treatment plants has previously been demonstrated as a reliable technique and proven valuable. The paper proposes a simplified deterministic model to predict the efficiency of the method. It is shown...

  9. Upgrade Strategy for ALICE at High Rate

    CERN Document Server

    Musa, L

    2012-01-01

    The longterm goal of the ALICE experiment is to provide a precise characterization of the Quark-Gluon Plasma (QGP) state. Such a determination of its properties including initial temperature, degrees of freedom, speed of sound, and in general, transport coefficients would be a major achievement. This would go a long way towards a better understanding of QCD as a genuine multi-particle theory. To achieve this goal, high statistics measurements are required, which will give access also to the very rare physics channels needed to understand the dynamics of this condensed phase of QCD. The general upgrade strategy for the ALICE central barrel is conceived to deal with this challenge with expected Pb-Pb interaction rates of up to 50 kHz, that would provide an accumulated sample of the order of 10 nb^-1 in the period 2019-2023. In this document we sketch the modifications/replacements needed in all ALICE central barrel detectors and online systems (Trigger, DAQ and HLT) for high luminosity running. As the ALICE for...

  10. Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste.

    Science.gov (United States)

    Xu, Suyun; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-02-01

    Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35°C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21-27% and 38-64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH4/g VS(added) in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.

  11. On Deep Processing of Active Dye Wastewater by Ozone Jet Aeration Technology%臭氧射流曝气工艺深度处理活性染料废水的研究

    Institute of Scientific and Technical Information of China (English)

    翟树达; 甘宝鹏; 张东曙

    2014-01-01

    We use ozone to conduct deep biochemical effluent-bleaching treatment of active dyes. By comparison we examine the both effects of ozone j et-aeration technology and traditional micro-porous aeration ozone-oxidation processing technology.Results indicate that by ozone j et aeration technology,removal rates of wastewater COD,color,ammonia and nitrogen are respectively 5 1%, 97% and 71%,by contrast with conventional micro-porous aeration ozone oxidation process,ozone j et aeration processing has advantages of a short residence time,low energy consumption with a high ozone utilization rate which is considered as a very practical deep dye wastewater processing.%采用臭氧对活性染料废水生化处理出水进行脱色深度处理,对比考察了臭氧射流曝气工艺和传统微孔曝气臭氧氧化工艺的处理效果。结果表明,臭氧射流曝气工艺对废水 COD、色度、氨氮的去除率分别为51%、97%和71%,相对使用传统微孔曝气臭氧氧化工艺,臭氧射流曝气工艺具有停留时间短,能耗低,臭氧利用率高等优势,是一种非常适合染料废水深度处理的工艺。

  12. RBF methods for solving laterally averaged Saint Venant equations: application to eutrophication prevention through aeration

    Science.gov (United States)

    Halassi, A.; Ouazar, D.; Taik, A.

    2015-10-01

    A vertical 2Dxz laterally averaged hydrodynamic model is presented in this paper to study the aeration process in lakes. The system exhibits highly nonlinear behaviour due to the phenomena involved such as stratification, air concentration, and convective terms. The suggested model is used to simulate mechanical aeration to overcome and prevent the eutrophication in lakes. The multiquadric radial basis functions are used to solve numerically the governing partial differential equations. Because of the difficulty and the complexity when choosing a suitable shape parameter in radial basis functions, an alternative way is introduced in this work to overcome these difficulties. A validation study is carried out using several test examples, including Poisson, Navier-Stokes and transport equations. Finally, the proposed model is first applied to simulate a squared domain aeration problem and then a real test case has been considered. The obtained results are in good agreement with the results reported in the literature.

  13. Galvanic corrosion of nitinol under deaerated and aerated conditions.

    Science.gov (United States)

    Pound, Bruce G

    2016-10-01

    Various studies have examined the corrosion rate of nitinol generally under deaerated conditions. Likewise, galvanic corrosion studies have typically involved deaerated solutions. This work addressed the effect of galvanic coupling on the corrosion current of electropolished nitinol in phosphate buffered saline and 0.9% sodium chloride under dearated and aerated conditions for times up to 24 h. Tests were performed on nitinol alone and coupled with MP35N in both the mechanically polished and passivated conditions. Aeration and galvanic coupling were found to have relatively little effect, indicating that the corrosion current is controlled by the anodic reaction. The current can be attributed entirely to Ni(2+) dissolution, which appears to be governed by solid-state mass transport of Ni(2+) through the passive oxide film. Because corrosion of EP nitinol is controlled by the anodic reaction, contact between EP nitinol and MP35N or other biomedical Co-Cr alloys is unlikely to result in significant galvanic effects in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1322-1327, 2016. © 2015 Wiley Periodicals, Inc.

  14. The use of bottle caps as submerged aerated filter medium.

    Science.gov (United States)

    Damasceno de Oliveira, Laurence; Motlagh, Amir Mohaghegh; Goel, Ramesh; de Souza Missagia, Beatriz; Alves de Abreu Filho, Benício; Lautenschlager, Sandro Rogério

    2014-01-01

    In this study, a submerged aerated filter (SAF) using bottle caps as a support medium was evaluated. The system was fed with effluent from an upflow anaerobic sludge blanket system at ETE 2-South wastewater treatment plant, under different volumetric organic load rates (VOLRs). The population of a particular nitrifying microbial community was assessed by fluorescent in situ hybridization with specific oligonucleotide probes. The system showed an average removal of chemical oxygen demand (COD) equal to 76% for VOLRs between 2.6 and 13.6 kg COD m(-3)_media.day(-1). The process of nitrification in conjunction with the removal of organic matter was observed from applying VOLRs lower than 5.5 kg COD m(-3)_media.day(-1) resulting in 78% conversion of NH4(+)-N. As the applied organic load was reduced, an increase in the nitrifying bacteria population was observed compared with total 4'-6-diamidino-2-phenylindole (DAPI) stained cells. Generally, SAF using bottle caps as a biological aerated filter medium treating wastewater from an anaerobic system showed promising removal of chemical oxygen demand (COD) and conversion of NH4(+)-N.

  15. High voltage high repetition rate pulse using Marx topology

    Science.gov (United States)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  16. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions.

    Science.gov (United States)

    Mantzouridou, Fani Th; Naziri, Eleni

    2017-03-01

    This study deals with the scale up of Blakeslea trispora culture from the successful surface-aerated shake flasks to dispersed-bubble aerated column reactor for lycopene production in the presence of lycopene cyclase inhibitor 2-methyl imidazole. Controlling the initial volumetric oxygen mass transfer coefficient (kLa) via airflow rate contributes to increasing cell mass and lycopene accumulation. Inhibitor effectiveness seems to decrease in conditions of high cell mass. Optimization of crude soybean oil (CSO), airflow rate, and 2-methyl imidazole was arranged according to central composite statistical design. The optimized levels of factors were 110.5 g/L, 2.3 vvm, and 29.5 mg/L, respectively. At this optimum setting, maximum lycopene yield (256 mg/L) was comparable or even higher to those reported in shake flasks and stirred tank reactor. 2-Methyl imidazole use at levels significantly lower than those reported for other inhibitors in the literature was successful in terms of process selectivity. CSO provides economic benefits to the process through its ability to stimulate lycopene synthesis, as an inexpensive carbon source and oxygen vector at the same time.

  17. HIgh Rate X-ray Fluorescence Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grudberg, Peter Matthew [XIA LLC

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  18. Effects of the combination of aeration and biofilm technology on transformation of nitrogen in black-odor river.

    Science.gov (United States)

    Pan, Mei; Zhao, Jun; Zhen, Shucong; Heng, Sheng; Wu, Jie

    2016-01-01

    Excess nitrogen in urban river networks leading to eutrophication has become one of the most urgent environmental problems. Combinations of different aeration and biofilm techniques was designed to remove nitrogen from rivers. In laboratory water tank simulation experiments, we assessed the removal efficiency of nitrogen in both the overlying water and sediments by using the combination of the aeration and biofilm techniques, and then analyzed the transformation of nitrogen during the experiments. Aeration (especially sediment aeration) combined with the biofilms techniques was proved efficient in removing nitrogen from polluted rivers. Results indicated that the combination of sediment aeration and biofilms, with the highest nitrogen removal rate from the overlying water and sediments, was the most effective combined process, which especially inhibited the potential release of nitrogen from sediments by reducing the enzyme activity. It was found that the content of dissolved oxygen in water could be restored on the basis of the application of aeration techniques ahead, and the biofilm technique would be effective in purifying water in black-odor rivers.

  19. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds.

    Science.gov (United States)

    Ben-shalom, Miriam; Shandalov, Semion; Brenner, Asher; Oron, Gideon

    2014-01-01

    Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.

  20. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  1. Effects of Impellor Speed and Aeration Rate on Mycelial Biomass and Extracellular Polysaccharide Production,Reducing Sugar Consumption and Dissolved Oxygen Levels in Fermentor-grown Cultures of Phellinus baumii%不同搅拌转速和通气量对桑黄深层发酵培养的影响

    Institute of Scientific and Technical Information of China (English)

    雷萍; 吴亚召; 张文隽; 陈旭; 吕德平; 安军民

    2014-01-01

    The effects of impellor speed and aeration rate on mycelial biomass and extracellular polysaccharide production,reducing sugar consumption and dissolved oxygen levels during growth of Phellinus baumii in a 20-L fermentor were determined.Highest biomass (12.65 g/L)and extracellular polysaccharide(2.99 g/L) yields,and the most rapid decrease in dissolved oxygen levels,were recorded when the impellor speed was set at 150 r/min.Mycelial pellets were globose and compact,and the proportion of hyphal filaments was low. Highest yields of mycelial biomass (12.69 g/L)and extracellular polysaccharide(3.0 g/L),and the most rapid decrease in dissolved oxygen levels,were recorded when the aeration rate was set at 1∶0.65 vvm (air volume/culture volume/min).At this setting,the fungal mycelium grew well and formed compact pellets of uniform size.%探讨在20 L搅拌式发酵罐中,转速和通气量对桑黄菌丝生物量、胞外多糖产率、溶氧以及菌丝形态的影响。结果表明,实验范围内,转速为150 r/min时,桑黄菌丝体生物量最大(12.65 g/L),胞外多糖得率最高(2.99 g/L),相对溶氧下降最快,菌球小球状、较紧密、丝状体比例小;通气量为1∶0.65 vvm,桑黄菌丝体生物量最大(12.69 g/L),胞外多糖得率最高(3.00 g/L),相对溶氧下降最快,菌球大小均匀、紧密、生长良好。

  2. Inverse problem of bottom slope design for aerator devices

    Institute of Scientific and Technical Information of China (English)

    吴建华; 樊博; 许唯临

    2013-01-01

    Air entrainment is an effective approach to protect release works from cavitation damage. The traditional method of aera-tor device designs is that, for given flow conditions, the geometries of the aerator device are designed and then the effects are experi-mentally tested for cavitation damage control. The present paper proposes an inverse problem method of determining the bottom slopes in front of and behind an aerator if the requirements of air entrainment, flow conditions and some of aerator geometric para-meters are given. An RBF neural network model is developed and the relevant bottom slopes are calculated in different conditions of flow and geometry on the basis of the data of 19 aerator devices from different discharge tunnels with safe operation. The case study shows that the methodology provides an effective way to design aerator devices under given target conditions.

  3. High rate CNP removal from a milk processing wastewater in a single ultrasound augmented up-flow anaerobic/aerobic/anoxic bioreactor.

    Science.gov (United States)

    Rezaee, S; Zinatizadeh, A A L; Asadi, A

    2015-03-01

    Simultaneous removal of carbon, nitrogen and phosphorus (CNP) in a single bioreactor is of high significance in terms of reactor volume and energy consumption. Therefore, in this study, an innovative up-flow anaerobic/aerobic/anoxic bioreactor (UAAASB) augmented by ultrasound was developed as a high rate single bioreactor for the simultaneous removal of nutrients from a milk processing wastewater. The ultrasonic irradiation used in this work was in the range of high frequency (1.7 MHz). The central composite design (CCD) and response surface methodology (RSM) were applied to design the experimental conditions, model obtained data, and optimize the process. The effects of three independent variables, i.e. hydraulic retention time (HRT), aeration mode and mixed liquor suspended solid (MLSS) concentration on 10 process responses were investigated. The results prove that the ultrasonic irradiation has a positive effect on the sludge settling velocity and effluent turbidity. The optimum conditions were determined as 12-15 h, 4000-5000 mg/l and 1.5-2 for HRT, MLSS concentration and aeration mode, respectively, based on removal efficiency of sCOD ⩾ 90%, TN and TP ⩾ 50%.

  4. Factors Affecting the Oxygenation Capacity of Disc Aerators in an Oxidation Ditch System

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2011-01-01

    Full Text Available Problem statement: The use of aerobic biological methods for the treatment of livestock wastes has resulted in a proliferation of mechanical aeration devices to accomplish the desired treatment. The oxidation ditch system with disc aerators is among the aerobic systems that have been used to treat livestock waste. The main objectives of this study were to investigate the effects of various disc design parameters and system operational parameters on the oxygen transfer coefficient and to study the physical phenomenon of oxygen transfer using high speed movie techniques. Approach: A bench-scale oxidation ditch with a disc aerator was used to conduct a series of experiments to determine the effects of immersion depth (2.5-7.5 cm, disc speed (50-250 rpm, disc thickness (0.32-2.55 cm, hole diameter (0.00-1.92 cm and number of rotating discs (1-2 on the oxygen transfer coefficient. The unsteady state method with sodium sulfite oxidation was used to deoxygenate the water and the dissolved oxygen concentration was measured with time. Results: The disc speed had the most significant effect on KLa with the immersion depth and hole diameter both showing strong effects and the disc thickness showing less effect. The effect of adding a second disc was comparable to using a single disc of double the thickness at lower speeds while at speeds higher than 200 rpm doubling the thickness of a single disc had less effect than a second disc. Conclusion: The highest oxygen transfer (1.526 min-1 was achieved using two coaxial discs with a disc speed of 250 rpm, a disc thickness of 0.64 cm, a hole diameter of 1.92 cm and an immersion depth of 7.5 cm. Bubble aeration and eddy aeration were the most prevalent mechanisms of oxygen transfer in the oxidation ditch while surface aeration played a relatively small role in oxygen transfer.

  5. 曝气生物滤池处理高氨氮含铍废水研究%Treatment of Beryllium Containing Wastewater with High Ammonia Concentration by Biological Aerated Filters

    Institute of Scientific and Technical Information of China (English)

    孙芳; 孙卫玲

    2012-01-01

    含铍废水具有较高的毒性,目前关于其处理方法的研究较少.文章针对铍冶炼废水中铍超标以及高氨氮浓度的问题,选取接种有微生物的曝气生物滤池(BAF)工艺同时去除氨氮和铍,并分析其去除铍的机理.反应器系统的长期运行结果表明,BAF对高氨氮含铍废水具有较好的处理效果.在进水氨氮浓度200 mg/L,铍浓度50~100μg/L,停留时间24h条件下,处理出水氨氮浓度稳定在1.8~10.0 mg/L,铍浓度小于5μg/L.BAF主要通过系统中的微生物去除铍,载体对铍的吸附量较小,用Langmuir模型对吸附数据进行拟合,得到微生物对铍的吸附容量为684.9 μg/g.形态提取实验表明,被微生物去除的铍主要以有机结合态存在,且微生物细胞表面对铍的吸附量有限,大量的铍富集于微生物细胞内,为此,BAF对铍有长期稳定的处理效果.%Beryllium-containing waste water is of high toxicity, but there are limited researches concerning its treatment. Beryllium smelting wastewater contains high concentrations of beryllium and ammonia. Biological aerated filters (BAF), which was inoculated with microorganisms, was used to treat beryllium smelting wastewater, and the mechanisms involved were investigated. Results show that BAF could remove beryllium and ammonia simultaneously. When influent concentrations of ammonia nitrogen and beryllium were 200 mg/L and 50-100 μg/L respectively, HRT was 24 h, the concentration ammonia was in the range of 1.8~10.0 mg/L, and beryllium concentration was less than 5 μg/L in the effluent. The removal of beryllium was mainly attributed to the microorganisms in BAF, and the maximum uptake of beryllium by microorganisms calculated by Langmuir equation was 684.9 μg/g. The beryllium removed by BAF was mainly combined to organic fraction. Moreover, large amount of beryllium accumulated inside the cell with limited biosorption by the external surface of microorganisms. Therefore, high removal

  6. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25-95 °C

    Science.gov (United States)

    Xiao, Qian; Lu, Zhanpeng; Chen, Junjie; Yao, Meiyi; Chen, Zhen; Ejaz, Ahsan

    2016-11-01

    The effects of temperature, solution composition and dissolved oxygen on the corrosion rate and electrochemical behavior of an A508III low alloy steel in boric acid solution with lithium hydroxide at 25-95 °C are investigated. In aerated solutions, increasing the boric acid concentration increases the corrosion rate and the anodic current density. The corrosion rate in deaerated solutions increases with increasing temperature. A corrosion rate peak value is found at approximately 75 °C in aerated solutions. Increasing temperature increases the oxygen diffusion coefficient, decreases the dissolved oxygen concentration, accelerates the hydrogen evolution reaction, and accelerates both the active dissolution and the film forming reactions. Increasing dissolved oxygen concentration does not significantly affect the corrosion rate at 50 and 60 °C, increases the corrosion rate at 70 and 80 °C, and decreases the corrosion rate at 87.5 and 95 °C in a high concentration boric acid solution with lithium hydroxide.

  7. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    Science.gov (United States)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  8. Effect of intermittent aeration strategies on treatment performance and microbial community of an IFAS reactor treating municipal waste water.

    Science.gov (United States)

    Singh, Nitin Kumar; Bhatia, Akansha; Kazmi, Absar Ahmad

    2017-01-31

    This study investigated the effect of various intermittent aeration (IA) cycles on organics and nutrient removal, and microbial communities in an integrated fixed-film activated sludge (IFAS) reactor treating municipal waste water. Average effluent biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids, total nitrogen (TN) and total phosphorus (TP) values were noted as 20, 50, 30, 12 and 1.5 mgL(-1), respectively, in continuous aeration mode. A total of four operational conditions (run 1, continuous aeration; run 2, 150/30 min aeration on/off time; run 3, 120/60 min aeration on/off time and run 4, 90/60 min aeration on/off time) were investigated in IFAS reactor assessment. Among the all examined IA cycles, IA phase 2 gave the maximum COD and BOD removals with values recorded as 97% and 93.8%, respectively. With respect to nutrient removal (TN and TP), IA phase 1 was found to be optimum. Pathogen removal efficiency of present system was recorded as 90-95% during the three phases. With regard to settling characteristics, pilot showed poor settling during IA schedules, which was also evidenced by high sludge volume index values. Overall, IA could be used as a feasible way to improve the overall performance of IFAS system.

  9. The Myth of a High Savings Rate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In an attempt to entice consumers to save less and spend more, China has focused on perfecting its social security system, reforming taxation and dividend-sharing proportion between the government and state-owned enterprises. Liu Yuhui, Director of the China Economy Appraisal and Rating Center at the Institute of Finance and Banking, the Chinese Academy of Social Sciences, offered his insights in an Economic Observer article. Edited excerpts follow

  10. The Combustion of HMX. [burning rate at high pressures

    Science.gov (United States)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  11. Design characteristics of Curved Blade Aerator w.r.t. aeration ...

    African Journals Online (AJOL)

    user

    energy requirements of a secondary waste-water treatment plan (Wasner et al, 1977). Dissolved oxygen ... aquaculture industry, however, are different than those of the waste-water treatment industry. ...... European Water Management Online, EWA 2002. ... Process design of aeration system for biological waste treatment.

  12. LIQUID ARGON CALORIMETER PERFORMANCE AT HIGH RATES

    CERN Document Server

    Kukhtin, V; The ATLAS collaboration

    2011-01-01

    The performance of the ATLAS liquid argon endcap and forward calorimeters has been projected at the planned high luminosity LHC option HL-LHC by exposing small calorimeter modules of the electromagnetic, hadronic, and forward calorimeters to high intensity proton beams at IHEP/Protvino accelerator. The results of HV current and of pulse shape analysis, and also the dependence of signal amplitude on beam intensity are presented.

  13. High Reproduction Rate versus Sexual Fidelity

    OpenAIRE

    Sousa, A. O.; de Oliveira, S. Moss

    2000-01-01

    We introduce fidelity into the bit-string Penna model for biological ageing and study the advantage of this fidelity when it produces a higher survival probability of the offspring due to paternal care. We attribute a lower reproduction rate to the faithful males but a higher death probability to the offspring of non-faithful males that abandon the pups to mate other females. The fidelity is considered as a genetic trait which is transmitted to the male offspring (with or without error). We s...

  14. Smoking Rates Still High in Some Racial Groups, CDC Reports

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160256.html Smoking Rates Still High in Some Racial Groups, CDC ... lot of progress in getting Americans to stop smoking, some groups still have high smoking rates, a ...

  15. Epstein-Plesset theory based measurements of concentration of nitrogen gases dissolved in aerated water

    Science.gov (United States)

    Sasaki, Masashi; Yamashita, Tatsuya; Ando, Keita

    2016-11-01

    Microbubble aeration is used to dissolved gases into water and is an important technique in agriculture and industry. We can measure concentration of dissolved oxygen (DO) in aerated water by commercial DO meters. However, there do not exist commercially available techniques to measure concentration to dissolved nitrogen (DN). In the present study, we propose the method to measure DN in aerated water with the aid of Epstein-Plesset-type analysis. Gas-supersaturated tap water is produced by applying aeration with micro-sized air bubbles and is then stored in a glass container open to the atmosphere. Diffusion-driven growth of bubbles nucleated at the container surface is recorded with a video camera. The bubble growth rate is compare to the extended Epstein-Plesset theory that models mass transfer of both DO and DN into the surface-attached bubbles base on the diffusion equation. Given the DO measurements, we can obtain the DN level by fitting in the comparison.

  16. High frame rate imaging based photometry

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Jørgensen, U. G.; Andersen, M. I.;

    2012-01-01

    in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from...... an EMCCD is not normally distributed. Also, the readout process generates spurious charges in any CCD, but in EMCCD data, these charges are visible as opposed to the conventional CCD. Furthermore we aim to eliminate the photon waste associated with lucky imaging by combining this method with shift......-and-add. A simple probabilistic model for the dark output of an EMCCD is developed. Fitting this model with the expectation-maximization algorithm allows us to estimate the bias, readout noise, amplification, and spurious charge rate per pixel and thus correct for these phenomena. To investigate the stability...

  17. High Count Rate Electron Probe Microanalysis

    Science.gov (United States)

    Geller, Joseph D.; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller. PMID:27446749

  18. High pressure, high strain rate material strength studies

    Science.gov (United States)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  19. High-Rate Capable Floating Strip Micromegas

    CERN Document Server

    Bortfeldt, Jonathan; Biebel, Otmar; Danger, Helge; Flierl, Bernhard; Hertenberger, Ralf; Lösel, Philipp; Moll, Samuel; Parodi, Katia; Rinaldi, Ilaria; Ruschke, Alexander; Zibell, André

    2015-01-01

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60MHz/cm$^2$. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48cm$\\times$50cm with 1920 copper anode strips exhibits in 120GeV pion beams a spatial resolution of 50$\\mu$m at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below $5^\\circ$ are observed. Systematic deviations of this $\\mu$TPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4cm$\\time...

  20. High dose rate brachytherapy source measurement intercomparison.

    Science.gov (United States)

    Poder, Joel; Smith, Ryan L; Shelton, Nikki; Whitaker, May; Butler, Duncan; Haworth, Annette

    2017-06-01

    This work presents a comparison of air kerma rate (AKR) measurements performed by multiple radiotherapy centres for a single HDR (192)Ir source. Two separate groups (consisting of 15 centres) performed AKR measurements at one of two host centres in Australia. Each group travelled to one of the host centres and measured the AKR of a single (192)Ir source using their own equipment and local protocols. Results were compared to the (192)Ir source calibration certificate provided by the manufacturer by means of a ratio of measured to certified AKR. The comparisons showed remarkably consistent results with the maximum deviation in measurement from the decay-corrected source certificate value being 1.1%. The maximum percentage difference between any two measurements was less than 2%. The comparisons demonstrated the consistency of well-chambers used for (192)Ir AKR measurements in Australia, despite the lack of a local calibration service, and served as a valuable focal point for the exchange of ideas and dosimetry methods.

  1. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone ETO...

  2. OXIDATION OF AS(III) BY AERATION AND STORAGE

    Science.gov (United States)

    A study of the effects of aeration and storage on the oxidation of arsenic(III) was undertaken at three utilities in the US to establish the engineering significance of aeration as a potential pre-treatment method for arsenic removal. The results of this study clearly establish t...

  3. Liquid argon calorimeter performance at high rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2012-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $10^{12}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  4. Liquid Argon Calorimeter performance at High Rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2013-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  5. High-deposition-rate ceramics synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Osterheld, T.H.; Outka, D.A. [Sandia National Laboratories, Livermore, CA (United States)] [and others

    1995-05-01

    Parallel experimental and computational investigations are conducted in this project to develop validated numerical models of ceramic synthesis processes. Experiments are conducted in the High-Temperature Materials Synthesis Laboratory in Sandia`s Combustion Research Facility. A high-temperature flow reactor that can accommodate small preforms (1-3 cm diameter) generates conditions under which deposition can be observed, with flexibility to vary both deposition temperature (up to 1500 K) and pressure (as low as 10 torr). Both mass spectrometric and laser diagnostic probes are available to provide measurements of gas-phase compositions. Experiments using surface analytical techniques are also applied to characterize important processes occuring on the deposit surface. Computational tools developed through extensive research in the combustion field are employed to simulate the chemically reacting flows present in typical industrial reactors. These include the CHEMKIN and Surface-CHEMKIN suites of codes, which permit facile development of complex reaction mechanisms and vastly simplify the implementation of multi-component transport and thermodynamics. Quantum chemistry codes are also used to estimate thermodynamic and kinetic data for species and reactions for which this information is unavailable.

  6. High rate fabrication of compression molded components

    Energy Technology Data Exchange (ETDEWEB)

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.; Smith, Glen L.; Miller, Robert J.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; and applying molding pressure to the pre-form to form the composite component.

  7. The modern high rate digital cassette recorder

    Science.gov (United States)

    Clemow, Martin

    1993-01-01

    The magnetic tape recorder has played an essential role in the capture and storage of instrumentation data for more than thirty years. During this time, data recording technology has steadily progressed to meet user demands for more channels, wider bandwidths, and longer recording durations. When acquisition and processing moved from analog to digital techniques, so recorder design followed suit. Milestones marking the evolution of the data recorder through these various stages - multi-track analog, high density longitudinal digital, and more recently rotary digital - have often represented important breakthroughs in the handling of ever-greater quantities of data. Throughout this period there has been a very clear line of demarcation between data storage methods in the 'instrumentation world' on the one hand and the 'computer peripheral world' on the other. This is despite the fact that instrumentation data, whether analog or digital at the point of acquisition, is now likely to be processed on a digital computer at some stage. Regardless of whether the processing device is a small personal computer, a workstation, or the largest supercomputer, system integrators have traditionally been faced with the same basic problem - how to interface what is essentially a manually controlled, continuously running device (the tape recorder) into the fast start/stop computer environment without resorting to an excessive amount of complex custom interfacing and performance compromise. The increasing availability of affordable high power processing equipment throughout the scientific world is forcing recorder manufacturers to make their latest and perhaps most important breakthrough - the computer-friendly data recorder. The operating characteristics of such recorders are discussed and the resultant impact on both data acquisition and data analysis elements of system configuration are considered.

  8. Two-phase flow simulation of aeration on stepped spillway

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran

    2004-01-01

    Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.

  9. EFFECT OF AERATOR ON HYDRAULIC DRAG ACTING ON A CHUTE

    Institute of Scientific and Technical Information of China (English)

    NI Han-gen; LI Xin; ZHOU Jing; JIN Qiao

    2005-01-01

    The formulae used to calculate the friction in the non-uniform flow chute were examined with the experimental data, and the results show that the accuracy of the formula is enough for engineering applications. A comparison between the results of friction respectively from the uniform flow assumption and the non-uniform flow approximation indicates that the former is an order of magnitude larger than the latter in the case of steep chute. The hydraulic drag on a steep chute with aerators was measured on the hydraulic model directly and the coefficient of the aerator effect on the drag was obtained. The variation patterns of the wall shear just downstream of the aerators were investigated and the mechanism of the increase in the drag by aerator were analyzed qualitatively with the measured water-depths just downstream the aerators.

  10. High data rate optical transceiver terminal

    Science.gov (United States)

    Clarke, E. S.

    1973-01-01

    The objectives of this study were: (1) to design a 400 Mbps optical transceiver terminal to operate from a high-altitude balloon-borne platform in order to permit the quantitative evaluation of a space-qualifiable optical communications system design, (2) to design an atmospheric propagation experiment to operate in conjunction with the terminal to measure the degrading effects of the atmosphere on the links, and (3) to design typical optical communications experiments for space-borne laboratories in the 1980-1990 time frame. As a result of the study, a transceiver package has been configured for demonstration flights during late 1974. The transceiver contains a 400 Mbps transmitter, a 400 Mbps receiver, and acquisition and tracking receivers. The transmitter is a Nd:YAG, 200 Mhz, mode-locked, CW, diode-pumped laser operating at 1.06 um requiring 50 mW for 6 db margin. It will be designed to implement Pulse Quaternary Modulation (PQM). The 400 Mbps receiver utilizes a Dynamic Crossed-Field Photomultiplier (DCFP) detector. The acquisition receiver is a Quadrant Photomultiplier Tube (QPMT) and receives a 400 Mbps signal chopped at 0.1 Mhz.

  11. [Effect of Aeration Strategies on Emissions of Nitrogenous Gases and Methane During Sludge Bio-Drying].

    Science.gov (United States)

    Qi, Lu; Wei, Yuan-song; Zhang, Jun-ya; Zhao, Chen-yang; Cai, Xing; Zhang, Yuan-li; Shao, Chun-yan; Li, Hong-mei

    2016-01-15

    The data on nitrogen gas (NH3, N2O, NO) emissions during sludge bio-drying process in China is scarce, especially NO due to its unstable chemical property. In this study, effect of two aeration modes on emissions of methane and nitrogenous gas was compared during the continuous aerated turning pile sludge bio-drying process at full scale. In these two aeration strategies, the one currently used in the plant was set as the control, and the other was set as the test in which the aeration was used for oxygen supply, pile temperature control, and moisture removal in the start-up, middle and final stages, respectively. The results showed that the aeration strategy used in the test could not only obviously accelerate the rate of sludge drying (the moisture contents of the test and the control were 36.6% and 42% on day 11) , but also had a better drying performance (the final moisture contents of the test and the control were 33.6% and 37.6%, respectively) and decreased the ammonia cumulative emission by 5%, (ammonia cumulative emission of the test and the control were 208 mg x m(-3) and 219.8 mg x m(-3), respectively). Though a lower accumulated emission (eCO2) of greenhouse gas in the test at 3.61 kg x t(-1) was observed than that of the control (3.73 kg x t(-1) dry weight) , the cumulative emission of NO in the test at 1.9 g x m(-2) was 15. 9% higher than that of the control (1.6 g x m(-2)).

  12. DOMESTIC WASTEWATER PURIFICATION IN UPFLOW BIOFILM SYSTEM WITH DIFFUSED AERATION

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1984-08-01

    Full Text Available The objective of this research was to conduct a bench scale study of fixed activated sludge treating domestic sewage. Two different units employing diffused aeration with plastic and aluminum media were studied in four separate phases. Data indicated that the system could produce a high quality effluent without any requirements for sludge recycling through the system. Suspended solids concentrations of 3-6 mg/1, BOD5 concentrations of 4-12 mg/1 and COD concentrations of 35-45 mg/1 were found in the effluent with wastewater retentions ranging from 3-15 hours, whereas an indication of nitrification was observed in higher detention periods. As far as the type of media was concerned, the plastic and aluminum media did not differ significantly once the microbes had grown on the media.

  13. Vagal denervation inhibits the increase in pulmonary blood flow during partial lung aeration at birth.

    Science.gov (United States)

    Lang, Justin A R; Pearson, James T; Binder-Heschl, Corinna; Wallace, Megan J; Siew, Melissa L; Kitchen, Marcus J; Te Pas, Arjan B; Lewis, Robert A; Polglase, Graeme R; Shirai, Mikiyasu; Hooper, Stuart B

    2017-03-01

    Lung aeration at birth significantly increases pulmonary blood flow, which is unrelated to increased oxygenation or other spatial relationships that match ventilation to perfusion. Using simultaneous X-ray imaging and angiography in near-term rabbits, we investigated the relative contributions of the vagus nerve and oxygenation to the increase in pulmonary blood flow at birth. Vagal denervation inhibited the global increase in pulmonary blood flow induced by partial lung aeration, although high inspired oxygen concentrations can partially mitigate this effect. The results of the present study indicate that a vagal reflex may mediate a rapid global increase in pulmonary blood flow in response to partial lung aeration. Air entry into the lungs at birth triggers major cardiovascular changes, including a large increase in pulmonary blood flow (PBF) that is not spatially related to regional lung aeration. To investigate the possible underlying role of a vagally-mediated stimulus, we used simultaneous phase-contrast X-ray imaging and angiography in near-term (30 days of gestation) vagotomized (n = 15) or sham-operated (n = 15) rabbit kittens. Rabbits were imaged before ventilation, when one lung was ventilated (unilateral) with 100% nitrogen (N2 ), air or 100% oxygen (O2 ), and after all kittens were switched to unilateral ventilation in air and then ventilation of both lungs using air. Compared to control kittens, vagotomized kittens had little or no increase in PBF in both lungs following unilateral ventilation when ventilation occurred with 100% N2 or with air. However, relative PBF did increase in vagotomized animals ventilated with 100% O2 , indicating the independent stimulatory effects of local oxygen concentration and autonomic innervation on the changes in PBF at birth. These findings demonstrate that vagal denervation inhibits the previously observed increase in PBF with partial lung aeration, although high inspired oxygen concentrations can partially

  14. The Effect of Minimum Wage Rates on High School Completion

    Science.gov (United States)

    Warren, John Robert; Hamrock, Caitlin

    2010-01-01

    Does increasing the minimum wage reduce the high school completion rate? Previous research has suffered from (1. narrow time horizons, (2. potentially inadequate measures of states' high school completion rates, and (3. potentially inadequate measures of minimum wage rates. Overcoming each of these limitations, we analyze the impact of changes in…

  15. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery.

    Science.gov (United States)

    Oon, Yoong-Ling; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Dahalan, Farrah Aini; Oon, Yoong-Sin; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-01-01

    This study investigates the role of plant (Elodea nuttallii) and effect of supplementary aeration on wastewater treatment and bioelectricity generation in an up-flow constructed wetland-microbial fuel cell (UFCW-MFC). Aeration rates were varied from 1900 to 0mL/min and a control reactor was operated without supplementary aeration. 600mL/min was the optimum aeration flow rate to achieve highest energy recovery as the oxygen was sufficient to use as terminal electron acceptor for electrical current generation. The maximum voltage output, power density, normalized energy recovery and Coulombic efficiency were 545.77±25mV, 184.75±7.50mW/m(3), 204.49W/kg COD, 1.29W/m(3) and 10.28%, respectively. The variation of aeration flow rates influenced the NO3(-) and NH4(+) removal differently as nitrification and denitrification involved conflicting requirement. In terms of wastewater treatment performance, at 60mL/min aeration rate, UFCW-MFC achieved 50 and 81% of NO3(-) and NH4(+) removal, respectively. E. nuttallii enhanced nitrification by 17% and significantly contributed to bioelectricity generation.

  16. Performance of Four Full-Scale Artificially Aerated Horizontal Flow Constructed Wetlands for Domestic Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Eleanor Butterworth

    2016-08-01

    Full Text Available A comparison of the performance of four full-scale aerated horizontal flow constructed wetlands was conducted to determine the efficacy of the technology on sites receiving high and variable ammonia loading rates not yet reported in the literature. Performance was assessed in terms of ammonia and solids removal, hydraulic conductivity and mixing patterns. The capability of systems to produce ammonium effluent concentrations <3 mgNH4+-N/L was observed across all sites in systems receiving variable loadings between 0.1 and 13.0 gNH4+-N/m2/d. Potential resilience issues were observed in relation to response to spike loadings posited to be due to an insufficient nitrifying population within the beds. Hydraulic conductivity and flow mixing patterns observed suggested deterioration of the reactor effective volume over time. Overall, the study demonstrates the efficacy of the technology where ammonium removal is required on small sites receiving high and variable flow rates, with adequate removal of organics and solids, but no significant benefit to the long term hydraulics of the system.

  17. High regression rate, high density hybrid fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  18. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat.

    Science.gov (United States)

    Liu, Samuel S; Arthur, Frank H; VanGundy, Douglas; Phillips, Thomas W

    2016-06-17

    A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner), the Indian meal moth Tribolium castaneum (Herbst), the red flour beetle, Cryptolestes ferrugineus (Stephens), the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel), the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L.), the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  19. Combination of Methoprene and Controlled Aeration to Manage Insects in Stored Wheat

    Directory of Open Access Journals (Sweden)

    Samuel S. Liu

    2016-06-01

    Full Text Available A commercial formulation of the insect growth regulator methoprene was applied to wheat stored in small bins either alone or in combination with controlled aeration of the bins, to lower grain temperature for insect pest management of stored wheat. Grain temperatures were monitored and modified by a computer-controlled thermocouple system that also activated the aeration system at programmed set-points to move cool ambient air through the grain mass to lower grain temperature. Results from sampling insect populations in experimental storage bins along with laboratory mortality bioassays of insects placed on wheat taken from the bins over the course of the storage period showed that methoprene was very effective in controlling infestation by the externally-feeding stored grain insects Plodia interpunctella (Hübner, the Indian meal moth Tribolium castaneum (Herbst, the red flour beetle, Cryptolestes ferrugineus (Stephens, the rusty grain beetle, and also for the internal-feeding pest Rhyzopertha dominica( Fauvel, the lesser grain borer. Methoprene did not give good control of the internal-feeding pest Sitophilus oryzae (L., the rice weevil. Aeration alone was somewhat effective in suppressing insect population development, while methoprene alone or when combined with aeration greatly enhanced insect control. Commercial grain grading for industry quality standards at the end of the storage period confirmed the impact of insect suppression on maintaining high quality of the stored wheat. This field experiment shows that methoprene combined with aeration to cool grain can be effective for pest management of stored wheat in the southern plains of the United States of America.

  20. The effect of aeration and recirculation on a sand-based hybrid constructed wetland treating low-strength domestic wastewater.

    Science.gov (United States)

    Zapater-Pereyra, M; Kyomukama, E; Namakula, V; van Bruggen, J J A; Lens, P N L

    2016-08-01

    The Duplex-constructed wetland (CW) is a hybrid system composed of a vertical flow (VF) CW on top of a horizontal flow filter (HFF). Each compartment is designed to play a different role: aerobic treatment in the VF CW due to intermittent feeding and anoxic treatment in the HFF due to saturated conditions. Three Duplex-CWs were used in this study: Control, Aerated and Recirculating. The role of each compartment was tested for pollutant removal and micro-invertebrate abundance. In all systems, the VF CW removed mainly organic matter, solids and NH4(+)-N. Pathogens were removed in both compartments. Likewise, total nitrogen removal occurred in both compartments, only the Recirculating HFF was not able to denitrify the nitrogen due to the slightly more oxic conditions as compared to the other systems. All systems met discharge guidelines for organic matter, but only the Control and Aerated systems met those for total nitrogen. At the applied loading rates, the pollutant removal was not significantly enhanced by the use of aeration and recirculation. Therefore, operation as in the Control system, without aeration or recirculation, is recommended for the tested Duplex-CWs. If artificial aeration will be used in CWs, the support material should be carefully selected to allow a proper air distribution.

  1. 曝气间隔对普通小球藻生物质积累的影响%Effects of different aeration intervals on biomass accumulation of Chlorella vulgaris

    Institute of Scientific and Technical Information of China (English)

    石磊; 杨俊红; 康利改; 罗梦圆; 左鹏鹏; 巩启涛

    2014-01-01

    High-density cell culture could reduce the cost of large-scale cultivation of microalgae for biodiesel. Aeration is one of the important factors in high-density culture of microalgae. Chlorella vulgaris was cultured for 15 days in a novel concentric-tube photobioreactor with BG11 medium. The effect of different aeration intervals on cell density of Chlorella vulgaris,pH and dissolved oxygen changes of medium was studied. Air was passed into the concentric-tube photobioreactor at aeration flow rate 10L/min for 0.5h each aeration. The aeration manner of the novel concentric-tube photobioreactor could exclude dissolved oxygen timely. When biomass accumulation was stable,the pH of culture medium was substantially constant;the cell density was 7.22×106 cells/mL at aeration interval 0.5h. Compared to the cell concentration at aeration interval 1h , 1.5h , 2h , the cell concentrations at aeration interval 0.5h increased by 9.56%,41.02%,122.1%,respectively. Therefore, with the decrease of aeration interval time,concentration of Chlorella vulgaris increased.%细胞高密度培养有利于降低微藻规模化培养成本及其生物柴油制造的成本,曝气是影响微藻规模化高密度培养的重要因素之一。以普通小球藻(Chlorella vulgaris,FACHB-1227)为研究对象,采用BG11培养基,于新型套管式沿程曝气光生物反应系统中,以细胞密度为检测指标,实验研究了曝气间隔时间对藻液中细胞密度、藻液pH值、溶氧量变化的影响。控制每次曝气时气体流量为10L/min、持续时间为0.5h,培养周期为15天。结果表明,藻液中积累的溶解氧能够及时排除,进入生物质积累稳定期时,藻液的pH值基本恒定;微藻生长稳定期时(培养12天),曝气间隔0.5h时细胞密度为7.22×106个/mL,相比于1h、1.5h、2h分别提高了9.56%、41.02%和122.1%。可见,适当减少曝气间隔时间,可显著提高藻细胞密度。

  2. Interaction between afternoon aeration and tilapia stocking density

    Directory of Open Access Journals (Sweden)

    Francisco Roberto dos Santos Lima

    2016-01-01

    Full Text Available The present study aimed at determining the effects of the interaction between afternoon aeration and stocking density of Nile tilapia on variables of water and soil quality, growth performance and effluent quality. The experiment was a 3 x 2 factorial randomized block design, with three stocking densities (8, 12 and 16 fish per tank or 43.5, 65.3, and 87.0 g m-3 under two mechanical aeration regimes, absence (control; three replicates and afternoon aeration (four replicates. The afternoon aeration was carried out from 12.00 a.m. up to 18.00 p.m. from the 3rd week until the end of the experiment. Except for the 16-fish tanks, the lowest concentrations of total ammonia nitrogen were found in the tanks with higher density of fish provided with afternoon aeration. Nitrite concentrations were lower in the 8-fish aerated tanks. In intensive system, the afternoon aeration of the fish culture water is an efficient management of water quality to remove gaseous ammonia and nitrite from water, but it is not appropriate to remove hydrogen sulfide from water.

  3. Strain rate effect in high-speed wire drawing process

    Science.gov (United States)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  4. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  5. 低含量污染物下悬浮填料移动床耐冲击负荷试验研究%INFLUENCE OF AERATION RATE ON REMOVAL EFFICIENCY IN BIO-CERAMIC MOVING BED BIOFILM REACTOR

    Institute of Scientific and Technical Information of China (English)

    周艾文; 金腊华; 魏臻

    2011-01-01

    Using bio-ceramic as a filler in MBBR reactor to purify southen town's low-concentration domestic sewage, the effects of the influential factors by different hydraulic load and organic load on a MBBR reactor had been studied, and further explored the boundary conditions of system operation.The results revealed that: the bio-ceramic MBBR could affordable 0.9 m3·m-2·h-1 of the hydraulic loading, the removal rate of COD, NH4+-N, TN reached to 64.71%, 58.12%, 37.54%; HRT was 6 h,the system could withstand less than 1.0 kg·m-3·d-1 of organic loading shock, the effluent of COD,NH4+-N, TN could meet l-class criteria of urban wastewater treatment plant emission standards (GB 18918-2002).%利用生物陶粒作为悬浮填料移动床(MBBR)的填料处理南方城镇低含量污染物生活污水,考察了水力负荷、有机负荷对反应器运行性能的影响,进一步探究系统运行边界条件.结果表明,生物陶粒MBBR最高可承受0.9m3·m-2·h-1的水力负荷,COD、NH4+-N、TN去除率分别为64.71%、58.12%、37.54%;HRT为6 h条件下,系统可承受低于1.0kg·m-3·d-1的有机负荷冲击,出水COD和NN4+-N、TN的质量浓度均可达到GB 18918-2002一级标准.

  6. Simultaneous nutrients and carbon removal from low-strength domestic wastewater with an immobilised-microorganism biological aerated filter.

    Science.gov (United States)

    Chen, Q; Qu, L; Tong, G; Ni, J

    2011-01-01

    To improve the efficiency of low-strength domestic wastewater treatment, an immobilised-microorganism biological aerated filter (I-BAF) was established for simultaneous carbon, nitrogen and phosphorus removal. The I-BAF performance was systematically evaluated under continuous and intermittent aeration modes. At the optimal condition with an intermittent aeration control schedule of 2 h on/1 h off, the maximum removal rates of COD, NH(4)(+)-N, TN and P were 82.54%, 94.83%, 51.85% and 61.49%, respectively, and the corresponding averaged effluents could meet the first class standards of China. Further analysis of PCR-DGGE profile revealed that members of the gamma and alpha proteobacterium bacterial groups were probably responsible for the nitrogen and phosphorus removal. The I-BAF system showed excellent performance in carbon and nutrients removal, which provided a cost-effective solution for the treatment of low-strength domestic wastewater.

  7. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas.

    Science.gov (United States)

    Haubrichs, R; Widmann, R

    2006-01-01

    In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume.

  8. Induction of microcin B17 formation in Escherichia coli ZK650 by limitation of oxygen and glucose is independent of glucose consumption rate.

    Science.gov (United States)

    Gao, Q; Fang, A; Demain, A L

    2001-06-01

    We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.

  9. Research on Aeration Systems Efficiency in Small Wastewater Treatment Plants

    OpenAIRE

    Ala Sokolova

    2011-01-01

    Large amount of small wastewater treatment plants does not work properly. One of the reasons could be wrong design of the aeration system. Therefore, the aim of this research is to analyse the performance of two aeration systems used in Lithuanian small wastewater treatment plants. Both aeration systems are designed for the following parameters: 4 PE and 0,8 m3/d wastewater flow. These data correspond to the oxygen requirement of 40,9 g O2/h. Summarizing the results of the research, it was fo...

  10. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA).

    Science.gov (United States)

    Martinez, Denise; Anderson, Michael A

    2013-06-01

    Methane is an important component of the gases released from lakes. Understanding the factors influencing the release is important for mitigating this greenhouse gas. The volume of methane (CH4) and other gases in sediments, and the rate of CH4 ebullition, were determined for an artificially aerated, shallow, eutrophic freshwater lake in Southern California. Gas volume was measured at 28 sites in July 2010, followed by monthly sampling at 7 sites through December 2011. Gas volumes measured in July 2010 at the 28 sites exhibited a complex dependence on sediment properties; the volume of CH4 and other gases was negligible in very coarse-textured sediment with low water and organic carbon contents. Gas volumes increased strongly with increased silt content, and were highest in sediments with intermediate water contents (60 to 70%), organic carbon contents (2 to 3%) and depths (approximately 4m). Methane was the dominant gas collected from sediment (80 to 90%), while carbon dioxide comprised roughly 2 to 3% of sediment gas in the lake. Gas sampling during cool winter months revealed very low or undetectable volumes of gas present, while sediment gas volumes increased markedly during the spring and early summer months, and then declined in late summer and fall. The rate of CH4 ebullition, quantified with an echosounder, also varied markedly across the lake and seasonally. High rates of ebullition were measured at all 7 sites in July 2011 (up to 96mmolCH4m(-2)d(-1)), while the rates were >50% lower in September and negligible in December 2010. Ebullition rates were inversely correlated with depth and most other sediment properties, but strongly positively correlated with sand content. No simple relationship between ebullition rate and sediment gas volume across the set of sites was found, although ebullition rates at individual sites were strongly related to gas volume.

  11. High Blood Pressure Rates Have Doubled Worldwide Since 1975

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162069.html High Blood Pressure Rates Have Doubled Worldwide Since 1975 Most of ... News) -- The number of people worldwide with high blood pressure has nearly doubled over the past 40 years, ...

  12. P2M2: Physical and physiological properties of membrane-aerated and membrane-supported biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles

    the conversion of ammonium to nitrogen gas via nitrite in a single reactor. Recent work on membrane-aerated biofilm reactors (MABRs) has shown that this concept can be taken even further by growing these biocatalysts on aeration membranes, hereby significantly lowering aeration costs and greenhouse gas emissions...... without compromising performance. Preliminary experimental work manifested the difficulty of reducing the activity of Nitrite Oxidizing Bacteria (NOB), which lowered the removal efficiency of the system. Advanced molecular biology tools were used to confirm that periodic aeration of MABRs can serve...... investigations under undisturbed reactor operation. It could be concluded that conventional methods to characterize oxygen transfer rates in clean water underestimated those observed when a biofilm was present considerably. Higher degrees of bacterial activity at the biofilm base catalysed oxygen transfer...

  13. High-shear-rate capillary viscometer for inkjet inks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xi [FUJIFILM Dimatix, Inc., Lebanon, New Hampshire 03766 (United States); Carr, Wallace W.; Bucknall, David G. [School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Morris, Jeffrey F. [Department of Chemical Engineering and Benjamin Levich Institute for Physico-Chemical Hydrodynamics, City College of New York, New York, New York 10031 (United States)

    2010-06-15

    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  14. Circuit and interconnect design for high bit-rate applications

    NARCIS (Netherlands)

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate applicati

  15. High Graduate Unemployment Rate and Taiwanese Undergraduate Education

    Science.gov (United States)

    Wu, Chih-Chun

    2011-01-01

    An expansion in higher education in combination with the recent global economic recession has resulted in a high college graduate unemployment rate in Taiwan. This study investigates how the high unemployment rate and financial constraints caused by economic cutbacks have shaped undergraduates' class choices, job needs, and future income…

  16. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    Science.gov (United States)

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  17. Development and on-site field testing of the power-tube airlift aerator and chances for commercialization

    Science.gov (United States)

    Aeration of ponds when dissolved oxygen (DO) concentrations are low is the principal management tool that allows for higher feeding rates, increased production, and decreased cost per unit fish produced. Recent research conducted at the USDA-ARS Warmwater Aquaculture Research Unit has shown that fee...

  18. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure

    NARCIS (Netherlands)

    Szanto, G.L.; Hamelers, H.V.M.; Rulkens, W.H.; Veeken, A.H.M.

    2007-01-01

    Straw-rich manure from organic pig farming systems was composted in passively aerated static piles to estimate the effect of monthly turning on organic matter degradation and NH3, N2O and CH4 emissions. Turning enhanced the rate of drying and degradation. The four-month treatment degraded 57 ± 3% of

  19. A flexible well-mixed milliliter-scale reactor with high oxygen transfer rate for microbial cultivations

    DEFF Research Database (Denmark)

    Bolic, Andrijana; Larsson, Hilde Kristina; Hugelier, Siewert;

    2016-01-01

    In order to choose the best strain and subsequently develop an optimal bioprocess many experiments need to be performed. Usually this process is expensive and labor intensive with a limited amount of data available. Small-scale bioreactors and high-throughput platforms are becoming an attractive...... solution and replacement for existing microtiter plates, shaken flasks and bench scale bioreactors. In this work, a new design of a milliliter-scale bioreactor system is presented and characterized. The entire system consists of a platform with gas connections, heater, temperature sensor and optical fibers...... on the one side and a bioreactor with special designed magnetic stirrer and non-invasive optical sensors for measurement of pH, dissolved oxygen and optical density on the other side. The system has a high level of flexibility in terms of volume (0.5–2 mL), aeration (sparging and surface aeration) and mixing...

  20. Comparison of Energy Dissipation with and without Aerators

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Experimental results showed that aerators increase the energy dissipation of the flow in the channel by reducing the velocity coefficient φ in the deflector bucket and the jet-trajectory length, by increasing energy dissipation of the jet flow in the air and the diffusion length of the jet falling into the pool and by reducing the energy intensity of the jet falling into the pool. The energy dissipation prevents wash out downstream.When air is not entrained in the water flow, the aerators act as artificial irregularities in the channel. The energy dissipation due to the aerators in the channel without entrained air is greater than when air is entrained in the water flow.Correlations of the experimental data can be used to estimate the energy dissipation effect of the aerators on the outlet structure for the three test cases.

  1. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    Science.gov (United States)

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  2. The impact of aeration on potato (Solanum tuberosum L.) minituber ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-03-18

    Mar 18, 2015 ... for minituber production encounters challenges worldwide .... Dissolved oxygen in the media; comparison of different aeration levels (Control = 0, Low = 12.5,. Moderate = 25 ...... Relations between specific gravity, dry matter.

  3. Influence of free air space on microbial kinetics in passively aerated compost.

    Science.gov (United States)

    Yu, Shouhai; Clark, O Grant; Leonard, Jerry J

    2009-01-01

    The influence of free air space (FAS) on passively aerated composting has been reported, but the quantitative relationship between FAS and the microbial kinetics in passively aerated compost has not been investigated. This relationship was studied by composting dairy manure and straw in an enclosed, passively aerated, cylindrical vessel. Based on this experimental system, conceptual and numerical models were developed in which the compost bed was considered to consist of layered elements, each being physically and chemically homogeneous. The microbial activity in each layer was represented in order to predict oxygen and substrate consumption and the release of water and heat. Convective transport of air, moisture, and heat through the layers was represented. Microbial growth and substrate consumption rates were described using modified first-order kinetics for each of the mesophilic and thermophilic temperature regimes. The values of the microbial kinetic parameters were adjusted for each layer based on an innovative, non-linear, statistical analysis of temperature histories recorded at different layers in the compost bed during three treatments (i.e., FAS values of 0.45, 0.52, and 0.65). Microbial kinetic rate constants were found to follow a sigmoid relationship with FAS, with correlation coefficients (R(2)) of 0.97 for the mesophilic stage and 0.96 for the thermophilic stage. Temperature histories and airflow measurements from a fourth treatment (FAS value of 0.57) were used as an independent check of the model's performance. Simulation results indicate that the model could predict the general trend of temperature development. A plot of the residuals shows that the model is biased, however, possibly because many parameters in the model were not measured directly but instead were estimated from literature. The result from this study demonstrates a new method for describing the relationship between microbial kinetics (k(max)) and substrate FAS, which could be used

  4. Miniature High Stability High Temperature Space Rated Blackbody Radiance Source

    Science.gov (United States)

    Jones, J. A.; Beswick, A. G.

    1987-09-01

    This paper presents the design and test performance of a conical cavity type blackbody radiance source that will meet the requirements of the Halogen Occultation Experiment (HALOE) on the NASA Upper Atmospheric Research Satellite program (UARS). Since a radiance source meeting the requirements of this experiment was unavailable in the commercial market, a development effort was undertaken by the HALOE Project. The blackbody radiance source operates in vacuum at 1300 K + 0.5 K over any 15-minute interval, uses less than 7.5 watts of power, maintains a 49°C outer case temperature, and fits within the 2.5 x 2.5 x 3.0 inch envelope allocated inside the HALOE instrument. Also, the unit operates in air, during ground testing of the HALOE instrument, where it uses 17 watts of power with an outer case temperature of 66°C. The thrust of this design effort was to minimize the heat losses, in order to keep the power usage under 7.5 watts, and to minimize the amount of silica in the materials. Silica in the presence of the platinum heater winding used in this design would cause the platinum to erode, changing the operating temperature set-point. The design required the development of fabrication techniques which would provide very small, close tolerance parts from extremely difficult-to-machine materials. Also, a space rated ceramic core and unique, low thermal conductance, ceramic-to-metal joint was developed, tested and incorporated in this design. The completed flight qualification hardware has undergone performance, environmental and life testing. The design configuration and test results are discussed in detail in this paper.

  5. 池塘微孔曝气和叶轮式增氧机的增氧性能比较%Comparison of oxygen-enriched performances of micropore and impeller aerators in pond

    Institute of Scientific and Technical Information of China (English)

    谷坚; 徐皓; 丁建乐; 车轩; 顾兆俊

    2013-01-01

    In high stocking density closed pond aquaculture, the farmed fish will suffer death from suffocation if no additional oxygen is supplied. Currently, there are various kinds of aeration methods in China, mainly including the types of impeller, water wheel, jet, propeller, and micropore aerator. The micropore aeration as the main form of bottom aeration method has been becoming one of the main aeration methods applied and expanded in China pond aquaculture in recent years. This study aimed at a systematic comparative analysis on the aeration effect and practical usage between a micropore aerator and an impeller aerator that has the best comprehensive performance and currently holds the dominant position in mechanical aeration in China, through a clean water test and a fishpond experiment. In order to study the oxygen-enriched performance of a micropore aerator and an impeller aerator in pond fish culture, we conducted the clean water oxygen-enriched performance test with the same power (2.2 kW) micropore aerator and an impeller aerator in the standard tank with a diameter of 10 meters according to the requirements described in the fisheries industry standard-“SC/T 6009-1999, the test method of oxygen-enriched capacity for aerator.”According to the experiment requirements, the tap water which was kept for a period was deoxidized using sodium sulfite (Na2SO3), and then was aerated again, while the time-variable data of dissolved oxygen (DO) concentration were measured and recorded. The oxygen-enriched capacity (Qs) and power efficiency (Es) were calculated for the impeller aerator and the micropore aerator with the obtained experiment data. The comparative experiments of actual oxygen-enriched performance and pond dissolved oxygen values variation for both aerators were conducted in a fishpond. One micropore aerator (combined with a 2.2 kW blower, 8 35-metre-long pipes were arranged in parallel with 10-meter intervals at the bottom of fish pond, the total pipe

  6. Are high real interest rates bad for world economic growth?

    OpenAIRE

    1991-01-01

    There is a conventional perception that high real interest rates are bad for economic growth. However, the authors show that close examination of the experience over the last 40 years undermines the existence of such a relationship. For much of the 1950-79 period, expost real interest rates were less than the growth rate of income in the major economies, whereas the 1980s were a period of rapid growth in the world economy that coincided withunprecedentedly high real interest rates. The author...

  7. Generating CO(2)-credits through landfill in situ aeration.

    Science.gov (United States)

    Ritzkowski, M; Stegmann, R

    2010-04-01

    Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO(2-eq). can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the "Avoidance of landfill gas emissions by in situ aeration of landfills" (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Effect of aeration on fast gas pressure tests

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-jia; JIANG Cheng-lin; LI Xiao-wei; TANG Jun; WANG Chen; YANG Fei-long; WANG Fa-kai; ZHANG Chao-jie; DENG Shu-hua

    2009-01-01

    Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emission from boreholes to be tested, we built a theoretical model for calculating parameters during the process of increasing natural pressure and aeration. Using this model, we investigated the effect of different aeration conditions on velocity of pressure tests. The result shows that: 1) aerating air into boreholes can speed up gas pressure tests and 2) the more similar the pressure of the aerated air to the original gas pressure, the smaller the gas volume absorbed by coal and the shorter the time needed in pressure test. A case study in the Lu'an mining area shows that the time needed for gas pressure test is only 4 h using our method of aeration and 29 h under conditions of increasing natural pressure, saving time by 86.2%. This case study also indicates that, by using the aeration method, only one hour is needed for gas pressure to reach a stable state, which breaks the record of the shortest time needed for gas pressure tests in China.

  9. An investigation into the roles of photosynthesis and respiration in h efflux from aerated suspensions of asparagus mesophyll cells.

    Science.gov (United States)

    Bown, A W

    1982-09-01

    Aerated and stirred suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used to investigate the roles of respiration and photosynthesis in net H(+) efflux. Rates varied between 0.12 and 1.99 nanomoles H(+) per 10(6) cells per minute or 3 and 40 nanomoles H(+) per milligram chlorophyll per minute. The mean rate of H(+) efflux was 10% greater in the dark. 3-(3,4-Dichlorophenyl)-l,l-dimethylurea, an inhibitor of noncyclic photophosphorylation, did not inhibit H(+) efflux from illuminated cells. Bubbling with N(2) or addition of oligomycin, an inhibitor of mitochondrial ATP production, resulted in rapid and virtually complete inhibition of H(+) efflux in light or dark. In the absence of aeration, H(+) efflux came to a halt but resumed with aeration or illumination. When aeration was switched to CO(2)-free air, rates of H(+) efflux were reduced 43% in the dark and 57% in the light. Oligomycin eliminated dark CO(2) fixation but not photosynthetic CO(2) fixation. It is suggested that H(+) efflux is dependent on respiration and dark CO(2) fixation, but independent of photosynthesis.

  10. High Strain Rate Compressive Tests on Woven Graphite Epoxy Composites

    Science.gov (United States)

    Allazadeh, Mohammad Reza; Wosu, Sylvanus N.

    2011-08-01

    The behavior of composite materials may be different when they are subjected to high strain rate load. Penetrating split Hopkinson pressure bar (P-SHPB) is a method to impose high strain rate on specimen in the laboratory experiments. This research work studied the response of the thin circular shape specimens, made out of woven graphite epoxy composites, to high strain rate impact load. The stress-strain relationships and behavior of the specimens were investigated during the compressive dynamic tests for strain rates as high as 3200 s-1. One dimensional analysis was deployed for analytical calculations since the experiments fulfilled the ratio of diameter to length of bars condition in impact load experiments. The mechanics of dynamic failure was studied and the results showed the factors which govern the failure mode in high strain deformation via absorbed energy by the specimen. In this paper, the relation of particle velocity with perforation depth was discussed for woven graphite epoxy specimens.

  11. Quantum data locking for high-rate private communication

    Science.gov (United States)

    Lupo, Cosmo; Lloyd, Seth

    2015-03-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it.

  12. Influence of inoculum density and aeration volume on biomass and bioactive compound production in bulb-type bubble bioreactor cultures of Eleutherococcus koreanum Nakai.

    Science.gov (United States)

    Lee, Eun-Jung; Moh, Sang-Hyun; Paek, Kee-Yoeup

    2011-07-01

    This study deals with the effects of initial inoculum density and aeration volume on biomass and bioactive compound production in adventitious roots of Eleutherococcus koreanum Nakai in bulb-type bubble bioreactors (3-L capacity). While the fresh and dry weights of the roots increased with increasing inoculum density, the highest percentage dry weight and accumulation of total target compounds (eleutheroside B and E, chlorogenic acid, total phenolics, and flavonoids) were noted at an inoculum density of 5.0 g L(-1). Poor aeration volume (0.05 vvm) stunted root growth, and high aeration volume (0.4 vvm) caused physiological disorders. Moreover, an inoculum density of 5.0 g L(-1) and an aeration volume of 0.1 vvm resulted in the highest concentration of total target compounds and least root death. Such optimization of culture conditions will be beneficial for the large-scale production of E. koreanum biomass and bioactive compounds.

  13. Effectiveness of high interest rate policy on exchange rates: A reexamination of the Asian financial crisis

    Directory of Open Access Journals (Sweden)

    Chin Diew Lai

    2006-09-01

    Full Text Available One of the most controversial issues in the aftermath of the Asian financial crisis has been the appropriate response of monetary policy to a sharp decline in the value of some currencies. In this paper, we empirically examine the effects on Asian exchange rates of sharply higher interest rates during the Asian financial crisis. Taking account of the currency contagion effect, our results indicate that sharply higher interest rates helped to support the exchange rates of South Korea, the Philippines, and Thailand. For Malaysia, no significant causal relation is found from the rate of interest to exchange rates, as the authorities in Malaysia did not actively adopt a high interest rate policy to defend the currency.

  14. The Effect of HLRs on Nitrogen Removal by Using a Pilot-scale Aerated Steel Slag System

    Directory of Open Access Journals (Sweden)

    Hamdan R.

    2017-01-01

    Full Text Available Discharge from domestic wastewater treatment plant amongst the main sources of nitrogen pollution in the environment. However, to remove nitrogen conventionally in domestic wastewater require high cost and complex chemical treatment method. Vertical flow aerated rock filter emerged as one of attractive alternative wastewater treatment method due to simplicity and compactness of the system. However, the application is yet to be developed in warm climate countries in particular Malaysia. Therefore, this study was conducted to investigate the effect of hydraulic loading rate (HLR to the performance of a pilot-scale Vertical Flow Aerated Rock Filter (VFARF in removing nitrogen from domestic wastewater using pilot-scale VFARF systems with steel slag as the filter media. Furthermore, this study has been designed to focus on the effects of two HLRs; 2.72 and 1.04 m3/m3.day. Influent and effluent of the filter systems were monitored biweekly basis for 11 weeks and analyzed for selected parameters. Results from this study shows that the VFARF with HLR 1.04 m3/m3.day has performed better in terms of removal ammonium-nitrogen and TKN as the system able to remove 90.4 ± 6.9%, 86.2 ± 10.7%, whilst the VFARF with 2.72 m3/m3.day remove 87.4 ± 9.9%, 80 ± 11.7%, respectively. From the observation, it can be concluded that nitrogen removal does affect by HLR as the removal in lower HLR system was higher due to high DO level in the VFARF system with 1.04 m3/m3.day which range from 4.5 to 5.1 mg/L whilst the DO level was slightly lower in the VFARF system with 2.72 m3/m3.day in the range of 3.7 to 4.5 mg/L.

  15. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    Science.gov (United States)

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  16. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    Science.gov (United States)

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.

  17. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    Science.gov (United States)

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal.

  18. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Maltais-Landry, Gabriel [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: gabriel.maltais-landry@umontreal.ca; Maranger, Roxane [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada)], E-mail: r.maranger@umontreal.ca; Brisson, Jacques [Departement des sciences biologiques, Universite de Montreal 90, rue Vincent-D' Indy, Montreal (Ciheam), H2V 2S9 (Canada); Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)], E-mail: jacques.brisson@umontreal.ca; Chazarenc, Florent [Institut de recherche en biologie vegetale, Universite de Montreal 4101, rue Sherbrooke Est, Montreal (Ciheam), H1X 2B2 (Canada)

    2009-03-15

    Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH{sub 4} was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH{sub 4} fluxes. Plant presence also decreased CH{sub 4} fluxes but favoured CO{sub 2} production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties. - Methane is the main greenhouse gas produced in constructed wetlands and oxygen availability is the main factor controlling fluxes.

  19. Modeling of mixing in stirred bioreactors 4. mixing time for aerated bacteria, yeasts and fungus broths

    Directory of Open Access Journals (Sweden)

    Cascaval Dan

    2004-01-01

    Full Text Available The mixing time for bioreactors depends mainly on the rheoiogicai properties of the broths, the biomass concentration and morphology, mixing system characteristics and fermentation conditions. For quantifying the influence of these factors on the mixing efficiency for stirred bioreactors, aerated broths of bacteria (P. shermanii, yeasts (S. cerevisiae and fungi (P. chrysogenum, free mycelia and mycelial aggregates of different concentrations have been investigated using a laboratory bioreactor with a double turbine impeller. The experimental data indicated that the influence of the rotation speed, aeration rate and stirrer positions on the mixing intensity strongly differ from one system to another and must be correlated with the microorganism characteristics, namely: the biomass concentration and morphology. Moreover, compared with non-aerated broths, variations of the mixing time with the considered parameters are very different, due to the complex flow mechanism of gas-liquid dispersions. By means of the experimental data and using a multiregression analysis method some mathematical correlations for the mixing time of the general form: tm = a1*Cx2+a2*Cx+a3*IgVa+a4-N2+a5-N+a6/a7*L2+a8*L+a9 were established. The proposed equations offer good agreement with the experiments, the average deviation being ±6.7% - ±9.4 and are adequate for the flow regime Re < 25,000.

  20. High Burn Rate Hybrid Fuel for Improved Grain Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel type of fuel providing high burning rate for hybrid rocket applications is proposed. This fuel maintains a hydrodynamically rough surface to...

  1. High Count Rate Single Photon Counting Detector Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An optical communications receiver requires efficient and high-rate photon-counting capability so that the information from every photon, received at the aperture,...

  2. Biogas purification using membrane micro-aeration: A mass transfer analysis

    Directory of Open Access Journals (Sweden)

    Wathsala Perera, Deshai Botheju, Rune Bakke

    2014-01-01

    Full Text Available When sulfur containing organic feedstocks undergo anaerobic digestion, sulfides are formed due to the biological activities of sulfur reducing bacteria. Presence of hydrogen sulfide (H2S negatively affects the usage of biogas and needs to be reduced to levels that depend on the intended biogas application. Conversion of sulfide to its oxidized forms can be carried out by aerobic chemolithotrophic bacteria consuming oxygen as the electron acceptor. Membrane micro-aeration is a recently developed reliable method of safely supplying oxygen into anaerobic digesters. In this study, mass transfer models are developed to represent diffusion and back diffusion of gases through tubular polydimethylsiloxane (PDMS membranes. The models are utilized to determine the required membrane area and length in order to supply the stoichiometric amount of oxygen for biologically oxidizing a given amount of sulfide feed into elemental sulfur. Penetration of oxygen and nitrogen into the digester and transfer of methane, carbon dioxide and hydrogen sulfide back into the membrane tube are analyzed using these mass transfer models. Circulating air or aerated water inside the membrane tube is considered as two alternatives for supplying micro-aeration to the digester. Literature digester performance and sulfide data are used for example calculations. The required membrane length depends on circulating water flow rates and dissolved oxygen concentrations when water is used inside the membrane. A considerable fraction of CO2 can also be removed from the biogas in this case. Circulating air inside the membrane is, however, more promising solution as it requires much less membrane area and thereby also causes insignificant methane loss. The proposed membrane micro-aeration technique cuts N2 biogas dilution in half compared to direct air purging for in-situ sulfide oxidation.

  3. Quantum Communication with a High-Rate Entangled Photon Source

    Science.gov (United States)

    Wilson, Nathaniel C.; Chaffee, Dalton W.; Lekki, John D.; Wilson, Jeffrey D.

    2016-01-01

    A high generation rate photon-pair source using a dual element periodically-poled potassium titanyl phosphate (PP KTP) waveguide is described. The photon-pair source features a high pair generation rate, a compact power-efficient package, and continuous wave (CW) or pulsed operation. Characterization and test results are presented. Details and preliminary results of a laboratory free-space QKD experiment with the B92 protocol are also presented.

  4. High rate resistive plate chamber for LHC detector upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Y., E-mail: haddad@llr.in2p3.fr [Laboratoire Leprince-Ringuet (LLR), École Polytechnique, 91120 Palaiseau (France); Laktineh, I.; Grenier, G.; Lumb, N. [IPNL, Villeurbanne 69622 Lyon (France); Cauwenbergh, S. [Ghent University, Ghent (Belgium)

    2013-08-01

    The limitation of the detection rate of standard bakelite resistive plate chambers (RPCs) used as muon detectors in the LHC experiments has prevented the use of such detectors in the high rate regions in both CMS and ATLAS detectors. One alternative to these detectors is RPCs made with low resistivity glass plates (10{sup 10}Ωcm), a beam test at DESY has shown that such detectors can operate at few thousand Hz/cm{sup 2} with high efficiency (>90%)

  5. [Research of controlling condition for aeration stabilization pond dealing with sanitary waste of countryside].

    Science.gov (United States)

    Li, Huai-Zheng; Yao, Shu-Jun; Xu, Zu-Xin; Chen, Wei-Bing

    2012-10-01

    According to research of some problems, such as the hydraulic detention time that aeration stabilization pond deals with sanitary waste of countryside, dissolved oxygen in pond during the process of aeration, the concentration distribution of sludge and different aeration periods affecting on the treatment efficiency, we can acquire good treatment efficiency and energy consumption of economy. The results indicate that under the aeration stabilization pond of this experiment, 4 d is the best hydraulic detention time with this aeration stabilization pond. Time of the discontinuous running aeration should be greater than 15 min. The concentration distribution of sludge can reach equilibrium at each point of aeration stabilization pond between 2 min and 10 min. The best aeration period of dislodging the pollutant is 0.5 h aeration/1.0 h cut-off.

  6. High strain rate loading of polymeric foams and solid plastics

    Science.gov (United States)

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.

    2000-04-01

    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  7. Seasonal variations and aeration effects on water quality improvements and physiological responses of Nymphaea tetragona Georgi.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Huang, Min-Sheng; Dai, Ling-Peng

    2013-01-01

    Seasonal variations and aeration effects on water quality improvements and the physiological responses of Nymphaea tetragona Georgi were investigated with mesocosm experiments. Plants were hydroponically cultivated in six purifying tanks (aerated, non-aerated) and the characteristics of the plants were measured. Water quality improvements in purifying tanks were evaluated by comparing to the control tanks. The results showed that continuous aeration affected the plant morphology and physiology. The lengths of the roots, petioles and leaf limbs in aeration conditions were shorter than in non-aeration conditions. Chlorophyll and soluble protein contents of the leaf limbs in aerated tanks decreased, while peroxidase and catalase activities of roots tissues increased. In spring and summer, effects of aeration on the plants were less than in autumn. Total nitrogen (TN) and ammonia nitrogen (NH4(+)-N) in aerated tanks were lower than in non-aerated tanks, while total phosphorus (TP) and dissolved phosphorus (DP) increased in spring and summer. In autumn, effects of aeration on the plants became more significant. TN, NH4(+)-N, TP and DP became higher in aerated tanks than in non-aerated tanks in autumn. This work provided evidences for regulating aeration techniques based on seasonal variations of the plant physiology in restoring polluted stagnant water.

  8. HIGH HEATING RATES AFFECTS GREATLY THE INACTIVATION RATE OF ESCHERICHIA COLI

    Directory of Open Access Journals (Sweden)

    Juan Pablo Huertas

    2016-08-01

    Full Text Available Heat resistance of microorganisms can be affected by different influencing factors. Although the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20ºC/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50ºC/min were achieved in the heat exchanger, which were much slower than those around 20ºC/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimates about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than ten times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7ºC/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing.

  9. High Heating Rates Affect Greatly the Inactivation Rate of Escherichia coli

    Science.gov (United States)

    Huertas, Juan-Pablo; Aznar, Arantxa; Esnoz, Arturo; Fernández, Pablo S.; Iguaz, Asunción; Periago, Paula M.; Palop, Alfredo

    2016-01-01

    Heat resistance of microorganisms can be affected by different influencing factors. Although, the effect of heating rates has been scarcely explored by the scientific community, recent researches have unraveled its important effect on the thermal resistance of different species of vegetative bacteria. Typically heating rates described in the literature ranged from 1 to 20°C/min but the impact of much higher heating rates is unclear. The aim of this research was to explore the effect of different heating rates, such as those currently achieved in the heat exchangers used in the food industry, on the heat resistance of Escherichia coli. A pilot plant tubular heat exchanger and a thermoresistometer Mastia were used for this purpose. Results showed that fast heating rates had a deep impact on the thermal resistance of E. coli. Heating rates between 20 and 50°C/min were achieved in the heat exchanger, which were much slower than those around 20°C/s achieved in the thermoresistometer. In all cases, these high heating rates led to higher inactivation than expected: in the heat exchanger, for all the experiments performed, when the observed inactivation had reached about seven log cycles, the predictions estimated about 1 log cycle of inactivation; in the thermoresistometer these differences between observed and predicted values were even more than 10 times higher, from 4.07 log cycles observed to 0.34 predicted at a flow rate of 70 mL/min and a maximum heating rate of 14.7°C/s. A quantification of the impact of the heating rates on the level of inactivation achieved was established. These results point out the important effect that the heating rate has on the thermal resistance of E. coli, with high heating rates resulting in an additional sensitization to heat and therefore an effective food safety strategy in terms of food processing. PMID:27563300

  10. Radio Interface for High Data Rate Wireless Sensor Networks

    CERN Document Server

    Henaut, Julien; Dragomirescu, Daniela; Plana, Robert

    2010-01-01

    This paper gives an overview of radio interfaces devoted for high data rate Wireless Sensor Networks. Four aerospace applications of WSN are presented to underline the importance of achieving high data rate. Then, two modulation schemes by which High Data Rate can be achieved are compared : Multi carrier approaches, represented by the popular Orthogonal Frequency Division Multiplexing (OFDM) and Single carrier methods, represented by Single Carrier Frequency division Equalization and its application for multiple access Single Carrier Frequency division multiple Access (SC-FDMA). SC-FDMA, with a very low Peak Average Power Ratio (PAPR), is as strong alternative to the OFDM scheme for highly power constraint application. The Chosen radio interface will be, finally, tested by a model based design approach based on Simulink and FPGA realization. SC-FDMA, with a very low Peak Average Power Ratio (PAPR), is as strong alternative to the OFDM scheme for highly power constraint application. The Chosen radio interface ...

  11. Impact of artificial aeration on nitrogen removal from aquaculture wastewater treated by vertical-flow constructed wetland%曝气对垂直流湿地处理水产养殖废水脱氮的影响

    Institute of Scientific and Technical Information of China (English)

    张世羊; 常军军; 高毛林; 李谷

    2015-01-01

    the oxidation conditions, which is beneficial for organic matter degradation and nutrient removal. Nevertheless, more detailed studies on the impact of aeration intensity on treatment performance and the associated relationships with influencing factors are still lacking. In the present study, 7 pilot-scale vertical-flow CWs with different combinations of substrates and plants were configured and then systematically investigated in field for treating low-strength aquaculture wastewater with or without artificial aeration. An attempt to explore the impact of the aeration on nitrogen (N) removal or transformation within wetland bed was made. After a thorough comparison between aerated and non-aerated states investigated simultaneously or by stages, the results were depicted as follows: under the operating conditions characterized by high hydraulic loading(HLR) (mean value 1.85 m/d), short hydraulic retention time(HRT) (mean 4.6 h), strong aeration intensity (air flow rate 30 m3/(m2·d), air-water ratio 16.2:1) and low inflow dissolved oxygen (DO) (mean 2.34 mg/L), nitrification occurred obviously within all the systems no matter with or without aeration. DO replenished from atmospheric reoxygenation and plant roots appeared enough to cover the quantity consumed by nitrification and organic matter degradation. Artificial aeration enhanced the intensity of internal mineralization and nitrification. In virtue of no lack of available carbon source (for instance in the present case, the influent ratio of chemical oxygen demand to nitrogen (COD/N) ranged from 28.4 to 30.6), the probability for denitrification under the aerated state increased compared to the non-aerated state, which finally led to the elevation of purification performance on total N (TN). Nevertheless, if too much DO was presented under the aerated state, denitrification would further be restrained, which would conversely lead to the reduction of removal efficiency on TN. Therefore, for complete

  12. Stretching Behavior of Red Blood Cells at High Strain Rates

    Science.gov (United States)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  13. Solidification at the High and Low Rate Extreme

    Energy Technology Data Exchange (ETDEWEB)

    Meco, Halim [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt

  14. High deposition rate nanocrystalline silicon with enhanced homogeneity

    NARCIS (Netherlands)

    Verkerk, A.; Rath, J.K.; Schropp, R.E.I.

    2010-01-01

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inacti

  15. Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping; Zhou, Yuexi; Wang, Juling; Fang, Shuping

    2015-10-30

    In order to further compare the degradation capacity of Fe(0) and Fe/Cu bimetallic system under different aeration conditions, the mineralization of PNP under different aeration conditions has been investigated thoroughly. The results show that the removal of PNP by Fe(0) or Fe/Cu system followed the pseudo-first-order reaction kinetics. Under the optimal conditions, the COD removal efficiencies obtained through Fe(0) or Fe/Cu system under different aeration conditions followed the trend that Fe/Cu (air)>Fe/Cu (N2: 0-30 min, air: 30-120 min)>control-Fe (air)>Fe/Cu (without aeration)>Fe/Cu (N2)>control-Fe (N2). It revealed that dissolved oxygen (DO) could improve the mineralization of PNP, and Cu could enhance the reactivity of Fe(0). In addition, the degradation of PNP was further analyzed by using UV-vis, FTIR and GC/MS, and the results suggest that Fe/Cu bimetallic system with air aeration could completely break the benzene ring and NO2 structure of PNP and could generate the nontoxic and biodegradable intermediate products. Meanwhile, most of these intermediate products were further mineralized into CO2 and H2O, which brought about a high COD removal efficiency (83.8%). Therefore, Fe/Cu bimetallic system with air aeration would be a promising process for toxic refractory industry wastewater.

  16. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy.

    Science.gov (United States)

    Fan, Jinlin; Liang, Shuang; Zhang, Bo; Zhang, Jian

    2013-04-01

    Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.

  17. Role of aeration intensity on performance and microbial community profiles in a sequencing batch reaction kettle (SBRK) for wastewater nutrients rapid removal.

    Science.gov (United States)

    Xin, Xiaodong; He, Junguo; Wang, Yuefei; Feng, Jinghan; Qiu, Wei

    2016-02-01

    A lab-scale SBRK was operated to investigate the effects of aeration intensity on the system performance and microbial community dynamics within it. Results showed that the sewage nutrients was removed rapidly (just about 3-6h) with the aeration intensity increasing from 0 to 0.6MPa. Average effluent parameters were: COD below 50mg/L, NH4(+)-N less than 1mg/L, 1.5-4.5mg/L for nitrate and TP below 0.5mg/L. The highest community similarity and diversity emerged simultaneously with the aeration pressure rising from 0.2 to 0.4MPa, which was regarded as the optimal aeration intensity range. Microbial community shifted obviously and the function species of Comamonadaceae, Dechloromonas, Flavobacterium and Nitrospira dominated in the corresponding communities. RDA indicated that aeration intensity was the main factor for regulating system communities to optimize the system performance. It inferred that high aeration pressure played a key role on sewage nutrients rapid removal.

  18. High-rate squeezing process of bulk metallic glasses

    Science.gov (United States)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  19. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    Science.gov (United States)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  20. Multiple electron transfer systems in oxygen reducing biocathodes revealed by different conditions of aeration/agitation.

    Science.gov (United States)

    Rimboud, Mickaël; Bergel, Alain; Erable, Benjamin

    2016-08-01

    Oxygen reducing biocathodes were formed at -0.2V/SCE (+0.04V/SHE) from compost leachate. Depending on whether aeration was implemented or not, two different redox systems responsible for the electrocatalysis of oxygen reduction were evidenced. System I was observed at low potential (-0.03V/SHE) on cyclic voltammetries (CVs). It appeared during the early formation of the biocathode (few hours) and resisted the hydrodynamic conditions induced by the aeration. System II was observed at higher potential on CV (+0.46V/SHE); it required a longer lag time (up to 10days) and quiescent conditions to produce an electrochemical signal. The hydrodynamic effects produced by the forced aeration led to its extinction. From their different behaviors and examples in the literature, system I was identified as being a membrane-bound cytochrome-related molecule, while system II was identified as a soluble redox mediator excreted by the biofilm. This study highlighted the importance of controlling the local hydrodynamics to design efficient oxygen reducing biocathodes able to operate at high potential.

  1. Thermophilic aeration of cattle slurry with whey and/or jam wastes.

    Science.gov (United States)

    Heinonen-Tanski, Helvi; Kiuru, Tapio; Ruuskanen, Juhani; Korhonen, Kari; Koivunen, Jari; Ruokojärvi, Arja

    2005-01-01

    Thermophilic aeration of cattle slurry and food industrial by-products was studied with the aim to improve hygienic qualities of the slurry so that it could be used as a safe fertiliser for berries to be eaten raw. We also wanted to study if the process would be energetically favourable in an arctic climate. Cattle slurry alone or with whey and/or jam waste was treated. The tests were done in a well heat-insulated reactor with a 10 m(3) volume. Temperature increases up to over 70 degrees C could be recorded in 19 days even though some processes were carried out in winter time when the ambient air temperature was less than 0 degrees C. The heat energy formed was higher than the electrical energy needed to carry out the aeration. The hygienic qualities of the aerated product were good with only minor nitrogen losses. The end product could be useful as a fertiliser and soil improving compound to increase the organic matter content of agricultural soil. Cattle slurry alone was well suited as the raw material if attaining a high temperature was the main goal. A part of slurry could be replaced with food-industrial side products. Whey waste suited better for co-composting than jam waste but the mixture of whey, jam waste, and slurry was optimal for composting.

  2. Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hirofumi, E-mail: jm-tsutsuih@kochi-u.ac.jp [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Fujiwara, Taku [Research and Education Faculty, Natural Sciences Cluster, Agriculture Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Inoue, Daisuke [Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa (Japan); Japan Science and Technology Agency, CREST (Japan); Ito, Ryusei [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan); Matsukawa, Kazutsugu [Research and Education Faculty, Multidisciplinary Science Cluster, Life and Environmental Medicine Science Unit, Kochi University, B200 Monobe, Nankoku, Kochi (Japan); Japan Science and Technology Agency, CREST (Japan); Funamizu, Naoyuki [Department of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido (Japan); Japan Science and Technology Agency, CREST (Japan)

    2015-08-15

    Highlights: • RQ can be an indicator of N{sub 2}O emission in forced aerated composting process. • Emission of N{sub 2}O with nitrification was observed with RQ decrease. • Mass balances demonstrated the RQ decrease was caused by nitrification. • Conversion ratio of oxidized ammonia and total N to N{sub 2}O were ∼2.7%. - Abstract: We assessed the relationship between respiratory quotient (RQ) and nitrification and nitrous oxide (N{sub 2}O) emission in forced aerated composting using lab-scale reactors. Relatively high RQ values from degradation of readily degradable organics initially occurred. RQ then stabilized at slightly lower values, then decreased. Continuous emission of N{sub 2}O was observed during the RQ decrease. Correlation between nitrification and N{sub 2}O emission shows that the latter was triggered by nitrification. Mass balances demonstrated that the O{sub 2} consumption of nitrification (∼24.8 mmol) was slightly higher than that of CO{sub 2} emission (∼20.0 mmol), indicating that the RQ decrease was caused by the occurrence of nitrification. Results indicate that RQ is a useful index, which not only reflects the bioavailability of organics but also predicts the occurrence of nitrification and N{sub 2}O emission in forced aerated composting.

  3. Evolution of high tooth replacement rates in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Michael D D'Emic

    Full Text Available BACKGROUND: Tooth replacement rate can be calculated in extinct animals by counting incremental lines of deposition in tooth dentin. Calculating this rate in several taxa allows for the study of the evolution of tooth replacement rate. Sauropod dinosaurs, the largest terrestrial animals that ever evolved, exhibited a diversity of tooth sizes and shapes, but little is known about their tooth replacement rates. METHODOLOGY/PRINCIPAL FINDINGS: We present tooth replacement rate, formation time, crown volume, total dentition volume, and enamel thickness for two coexisting but distantly related and morphologically disparate sauropod dinosaurs Camarasaurus and Diplodocus. Individual tooth formation time was determined by counting daily incremental lines in dentin. Tooth replacement rate is calculated as the difference between the number of days recorded in successive replacement teeth. Each tooth family in Camarasaurus has a maximum of three replacement teeth, whereas each Diplodocus tooth family has up to five. Tooth formation times are about 1.7 times longer in Camarasaurus than in Diplodocus (315 vs. 185 days. Average tooth replacement rate in Camarasaurus is about one tooth every 62 days versus about one tooth every 35 days in Diplodocus. Despite slower tooth replacement rates in Camarasaurus, the volumetric rate of Camarasaurus tooth replacement is 10 times faster than in Diplodocus because of its substantially greater tooth volumes. A novel method to estimate replacement rate was developed and applied to several other sauropodomorphs that we were not able to thin section. CONCLUSIONS/SIGNIFICANCE: Differences in tooth replacement rate among sauropodomorphs likely reflect disparate feeding strategies and/or food choices, which would have facilitated the coexistence of these gigantic herbivores in one ecosystem. Early neosauropods are characterized by high tooth replacement rates (despite their large tooth size, and derived titanosaurs and

  4. Numerical simulation of landfill aeration using computational fluid dynamics.

    Science.gov (United States)

    Fytanidis, Dimitrios K; Voudrias, Evangelos A

    2014-04-01

    The present study is an application of Computational Fluid Dynamics (CFD) to the numerical simulation of landfill aeration systems. Specifically, the CFD algorithms provided by the commercial solver ANSYS Fluent 14.0, combined with an in-house source code developed to modify the main solver, were used. The unsaturated multiphase flow of air and liquid phases and the biochemical processes for aerobic biodegradation of the organic fraction of municipal solid waste were simulated taking into consideration their temporal and spatial evolution, as well as complex effects, such as oxygen mass transfer across phases, unsaturated flow effects (capillary suction and unsaturated hydraulic conductivity), temperature variations due to biochemical processes and environmental correction factors for the applied kinetics (Monod and 1st order kinetics). The developed model results were compared with literature experimental data. Also, pilot scale simulations and sensitivity analysis were implemented. Moreover, simulation results of a hypothetical single aeration well were shown, while its zone of influence was estimated using both the pressure and oxygen distribution. Finally, a case study was simulated for a hypothetical landfill aeration system. Both a static (steadily positive or negative relative pressure with time) and a hybrid (following a square wave pattern of positive and negative values of relative pressure with time) scenarios for the aeration wells were examined. The results showed that the present model is capable of simulating landfill aeration and the obtained results were in good agreement with corresponding previous experimental and numerical investigations.

  5. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions

    Science.gov (United States)

    van der Grift, B.; Behrends, T.; Osté, L. A.; Schot, P. P.; Wassen, M. J.; Griffioen, J.

    2016-08-01

    Exfiltration of anoxic Fe-rich groundwater into surface water and the concomitant oxidative precipitation of Fe are important processes controlling the transport of phosphate (PO4) from agricultural areas to aquatic systems. Here, we explored the relationship between solution composition, reaction kinetics, and the characteristics of the produced Fe hydroxyphosphate precipitates in a series of aeration experiments with anoxic synthetic water and natural groundwater. A pH stat device was used to maintain constant pH and to record the H+ production during Fe(II) oxidation in the aeration experiments in which the initial aqueous P/Fe ratios ((P/Fe)ini), oxygen concentration and pH were varied. In general, Fe(II) oxidation proceeded slower in the presence of PO4 but the decrease of the PO4 concentration during Fe(II) oxidation due to the formation of Fe hydroxyphosphates caused additional deceleration of the reaction rate. The progress of the reaction could be described using a pseudo-second-order rate law with first-order dependencies on PO4 and Fe(II) concentrations. After PO4 depletion, the Fe(II) oxidation rates increased again and the kinetics followed a pseudo-first-order rate law. The first-order rate constants after PO4 depletion, however, were lower compared to the Fe(II) oxidation in a PO4-free solution. Hence, the initially formed Fe hydroxyphosphates also affect the kinetics of continuing Fe(II) oxidation after PO4 depletion. Presence of aqueous PO4 during oxidation of Fe(II) led to the formation of Fe hydroxyphosphates. The P/Fe ratios of the precipitates ((P/Fe)ppt) and the recorded ratio of H+ production over decrease in dissolved Fe(II) did not change detectably throughout the reaction despite a changing P/Fe ratio in the solution. When (P/Fe)ini was 0.9, precipitates with a (P/Fe)ppt ratio of about 0.6 were formed. In experiments with (P/Fe)ini ratios below 0.6, the (P/Fe)ppt decreased with decreasing (P/Fe)ini and pH value. Aeration experiments with

  6. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (

  7. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  8. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA)

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Denise; Anderson, Michael A., E-mail: michael.anderson@ucr.edu

    2013-06-01

    Methane is an important component of the gases released from lakes. Understanding the factors influencing the release is important for mitigating this greenhouse gas. The volume of methane (CH{sub 4}) and other gases in sediments, and the rate of CH{sub 4} ebullition, were determined for an artificially aerated, shallow, eutrophic freshwater lake in Southern California. Gas volume was measured at 28 sites in July 2010, followed by monthly sampling at 7 sites through December 2011. Gas volumes measured in July 2010 at the 28 sites exhibited a complex dependence on sediment properties; the volume of CH{sub 4} and other gases was negligible in very coarse-textured sediment with low water and organic carbon contents. Gas volumes increased strongly with increased silt content, and were highest in sediments with intermediate water contents (60 to 70%), organic carbon contents (2 to 3%) and depths (approximately 4 m). Methane was the dominant gas collected from sediment (80 to 90%), while carbon dioxide comprised roughly 2 to 3% of sediment gas in the lake. Gas sampling during cool winter months revealed very low or undetectable volumes of gas present, while sediment gas volumes increased markedly during the spring and early summer months, and then declined in late summer and fall. The rate of CH{sub 4} ebullition, quantified with an echosounder, also varied markedly across the lake and seasonally. High rates of ebullition were measured at all 7 sites in July 2011 (up to 96 mmol CH{sub 4} m{sup −2} d{sup −1}), while the rates were > 50% lower in September and negligible in December 2010. Ebullition rates were inversely correlated with depth and most other sediment properties, but strongly positively correlated with sand content. No simple relationship between ebullition rate and sediment gas volume across the set of sites was found, although ebullition rates at individual sites were strongly related to gas volume. - Highlights: • Volume of gas in sediments and rate

  9. Study of High Strain Rate Response of Composites

    Science.gov (United States)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  10. STIR: Tailored Interfaces for High Strength Composites Across Strain Rates

    Science.gov (United States)

    2013-09-02

    was requested during our kickoff meeting at ARL APG. High performance fabrics including Kevlar, Twaron, Zylon , and Dyneema are used in developing...Kevlar, and Zylon for various pullout rates. Force– displacement data was recorded, and both warp and fill yarns were pulled from the fabric. Their...results presented that the effect of pullout rate is negligible for Kevlar, whereas the effect is bigger on Spectra, and significant for Zylon

  11. Evaluation of sequential aerated treatment of wastewater from hardboard mill

    Directory of Open Access Journals (Sweden)

    S. Videla

    1998-01-01

    Full Text Available Wastewater from a hardboard mill characterized by a high organic content (15-30 g/L COD was studied in a bench scale sequential aerated system in order to define a start up strategy. Inlet COD concentration varied from 0.5 to 25 g/L and the hydraulic retention time was maintained at 5 days. The sequential system proposed could reduce BOD, COD, TSS and phenol over 90% except when the inlet COD concentration was lower than 25 g/L.Água residual proveniente de uma indústria de tabuleiro de fibra dura caracterizada por ter um elevado conteúdo orgânico (15-30 g/L DQO foi estudada utilizando um sistema arejado seqüêncial de forma a definir uma estratégia de start up. A concentração de DQO na entrada do sistema variou na faixa de 0,5-25 g/L e o tempo de residência hidráulico foi mantido em 5 dias. O sistema seqüêncial proposto reduziu DBO, DQO, SST e fenol sobre 90% quando a concentração de DQO na entrada foi menor a 25 g/L.

  12. Removal of pharmaceuticals in aerated biofilters with manganese feeding.

    Science.gov (United States)

    Zhang, Yongjun; Zhu, Hong; Szewzyk, Ulrich; Geissen, Sven Uwe

    2015-04-01

    A tertiary treatment step is required in current wastewater treatment plants to remove trace pollutants and thus to prevent their extensive occurrence in the aquatic environment. In this study, natural MnOx ore and natural zeolite were separately used to pack two lab-scale aerated biofilters, which were operated in approximately 1.5 years for the removal of frequently occurring pharmaceuticals, including carbamazepine (CBZ), diclofenac (DFC), and sulfamethoxazole (SMX), out of synthetic and real secondary effluents. Mn(2+) was added in the feeds to promote the growth of iron/manganese oxidizing bacteria which were recently found to be capable of degrading recalcitrant pollutants. An effective removal (80-90%) of DFC and SMX was observed in both biofilters after adaptation while a significant removal of CBZ was not found. Both biofilters also achieved an effective removal of spiked Mn(2+), but a limited removal of carbon and nitrogen contents. Additionally, MnOx biofilter removed 50% of UV254 from real secondary effluent, indicating a high potential on the removal of aromatic compounds.

  13. Atrazine Removal from Aqueous Solutions using Submerged Biological Aerated Filter

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2013-06-01

    Full Text Available Atrazine is widely used in the agriculture as an herbicide. Due to its high mobility, Atrazine leaks into the groundwaters, surface waters, and drinking water wells. Many physical and chemical methods have been suggested for removing Atrazine from aquatic environments. However, these methods are very costly, have many performance problems, produce a lot of toxic intermediates which are very harmful and dangerous, and cannot completely mineralize Atrazine. In this study, biodegradation of Atrazine by microbial consortium was evaluated in the aquatic environment. In order to assess the Atrazine removal from the aquatic environment, submerged biological aerated filter (SBAF was fed with synthetic wastewater based on sucrose and Atrazine at different hydraulic retention times (HRTs. The maximum efficiencies for Atrazine and Soluble Chemical Oxygen Demand (SCOD removal were 97.9% and 98.9%, respectively. The study findings showed that Stover-Kincannon model had very good fitness (R2 > 99% in loading Atrazine in the biofilter and by increasing the initial concentration of Atrazine, the removal efficiency increased. Aerobic mixed biofilm culture was observed to be suitable for the treatment of Atrazine from aquatic environment. There was no significant inhibition effect on mixed aerobic microbial consortia. Atrazine degradation depended on the strength of wastewater and the amount of Atrazine in the influent

  14. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?

    Science.gov (United States)

    Wu, Chuan; Ye, Zhihong; Li, Hui; Wu, Shengchun; Deng, Dan; Zhu, Yongguan; Wong, Minghung

    2012-05-01

    Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation.

  15. INFLUENCE OF SODIUM GLUTAMATE, BUBBLING N2- GAS AND SUPERFICIAL AERATION ON TETANUS TOXIN PRODUCTION IN Clostridium tetani CULTURES

    Directory of Open Access Journals (Sweden)

    I. Gutiérrez

    2005-12-01

    Full Text Available The influence of sodium glutamate as a supplement to Latham Mueller medium, while using bubbling nitrogen flow as an anaerobic agent and superficial aeration as an inducer of cell lysis and as a mechanism for the haulage of gases in the fermentation processes was evaluated. Using the Clostridium tetani Massachusetts’s strain, several five (5 liter batch fermentations were carried out for tetanus toxin production under the following conditions: Latham Mueller medium, with or without sodium glutamate, nitrogen flow and superficial aeration. The results demonstrated that the addition of sodium glutamate (2.5 g/l, combined with a bubbling nitrogen flow (0.33 l/min and superficial aeration (0.33 l/min, produced a significant increase in cell concentrations, repressing the tetanus toxin formation; while the gas flow (nitrogen and superficial aeration without sodium glutamate improved the toxin production by approximately 49%, providing conditions for the following outcomes: a maximum toxin level of 73 Lf/ml; a toxin formation rate of 1844.0 Lf/l.h; and, an over-all productivity of 833.5 Lf/l.h.

  16. High rate tests of the LHCb RICH Upgrade system

    CERN Multimedia

    Blago, Michele Piero

    2016-01-01

    One of the biggest challenges for the upgrade of the LHCb RICH detectors from 2020 is to readout the photon detectors at the full 40 MHz rate of the LHC proton-proton collisions. A test facility has been setup at CERN with the purpose to investigate the behaviour of the Multi Anode PMTs, which have been proposed for the upgrade, and their readout electronics at high trigger rates. The MaPMTs are illuminated with a monochromatic laser that can be triggered independently of the readout electronics. A first series of tests, including threshold scans, is performed at low trigger rates (20 kHz) for both the readout and the laser with the purpose to characterise the behaviour of the system under test. Then the trigger rate is increased in two separate steps. First the MaPMTs are exposed to high illumination by triggering the pulsed laser at a high (20 MHz) repetition rate while the DAQ is readout at the same low rate as before. In this way the performance of the MaPMTs and the attached electronics can be evaluated ...

  17. Nanoengineering Titania for High Rate Lithium Storage: A Review

    Institute of Scientific and Technical Information of China (English)

    Chunhai Jiang; Jinsong Zhang

    2013-01-01

    Nanostructured titania have been intensively investigated as anode materials of Li-ion batteries for their excellent high rate performance.The size effects of TiO2 polymorphs (mainly rutile,anatase and TiO2-B) on their electrochemical performance and the latest efforts in nanoengineering titania anodes through enhancing their ionic or electronic transportation or both are reviewed in this work.We suppose that micron-or submicronsized porous structures assembled by TiO2 nanoparticles,nanowires/nanotubes or nanosheets with a high percentage of exposing high reactive facets together with a conductive percolating network are ideal anodes not only for high rate lithium storage but also for high packing densities of the active materials.

  18. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-07-05

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  19. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  20. High strain rate compression testing of glass fibre reinforced polypropylene

    Directory of Open Access Journals (Sweden)

    Cloete T.J.

    2012-08-01

    Full Text Available This paper details an investigation of the high strain rate compression testing of GFPP with the Split Hopkinson Pressure Bar (SHPB in the through-thickness and in-plane directions. GFPP posed challenges to SHPB testing as it fails at relatively high stresses, while having relatively low moduli and hence mechanical impedance. The modifications to specimen geometry and incident pulse shaping in order to gather valid test results, where specimen equilibrium was achieved for SHPB tests on GFPP are presented. In addition to conventional SHPB tests to failure, SHPB experiments were designed to achieve specimen equilibration at small strains, which permitted the capture of high strain rate elastic modulus data. The strain rate dependency of GFPP’s failure strengths in the in-plane and through-thickness direction is modelled using a logarithmic law.

  1. Particulates, not plants, dominate nitrogen processing in a septage-treating aerated pond system.

    Science.gov (United States)

    Hamersley, M Robert; Howes, Brian L; White, David S

    2003-01-01

    In pond and wetland systems for wastewater treatment, plants are often thought to enhance the removal of ammonium and nitrogen through the activities of root-associated bacteria. In this study, we examined the role of plant roots in an aerated pond system with floating plants designed to treat high-strength septage wastewater. We performed both laboratory and full-scale experiments to test the effect of different plant root to septage ratios on nitrification and denitrification, and measured the abundances of nitrifying bacteria associated with roots and septage particulates. Root-associated nitrifying bacteria did not play a significant role in ammonium and total nitrogen removal. Investigations of nitrifier populations showed that only 10% were associated with water hyacinth [Eichhornia crassipes (Mart.) Solms] roots (at standard facility plant densities equivalent to 2.2 wet g roots L(-1) septage); instead, nitrifiers were found almost entirely (90%) associated with suspended septage particulates. The role of root-associated nitrifiers in nitrification was examined in laboratory batch experiments where high plant root concentrations (7.4 wet g L(-1), representing a 38% net increase in total nitrifier populations over plant-free controls) yielded a corresponding increase (55%) in the non-substrate-limited nitrification rate (V(max)). However, within the full-scale septage-treating pond system, nitrification and denitrification rates remained unchanged when plant root concentrations were increased to 7.1 g roots L(-1) (achieved by increasing the surface area available for plants while maintaining the same tank volume). Under normal facility operating conditions, nitrification was limited by ammonium concentration, not nitrifier availability. Maximizing plant root concentrations was found to be an inefficient mechanism for increasing nitrification in organic particulate-rich wastewaters such as septage.

  2. High-Strain Rate Mechanical Response of Cured Epoxy Networks

    Science.gov (United States)

    Sirk, Timothy; Khare, Ketan; Karim, Mir; Lenhart, Joseph; Khare, Rajesh; Andzelm, Jan

    2013-03-01

    Chemically cross-linked polymer networks are increasingly common in high performance composites, adhesives and other applications involving high-impact loading conditions or ballistic collisions. The mechanical behavior of epoxy and other polymer networks exhibit a strong dependence on strain rate near the glass transition temperature (Tg); however, the elastic modulus at strain rates greater than 105 1/s is difficult to capture with experimental techniques. We present computational results of Di-Glycidyl Ether of Bisphenol A (DGEBA) and Jeffamine diamines (D230) from molecular dynamics simulation, which is intrinsically well-suited to model material deformation at high strain rates. Our results show that the experimental Tg can be reproduced from molecular dynamics, and the Williams-Landel-Ferry equation is useful in rationalizing the shift of Tg due to fast annealing and high strain rates. Temperature sweeps of elastic modulus show the glass-rubber transition to occur over a significantly wider temperature range compared with experimental measurements at low strain rates.

  3. High removal rate laser-based coating removal system

    Science.gov (United States)

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  4. Strategies for adapting to high rates of employee turnover.

    Science.gov (United States)

    Mowday, R T

    1984-01-01

    For many organizations facing high rates of employee turnover, strategies for increasing employee retention may not be practical because employees leave for reasons beyond the control of management or the costs of reducing turnover exceed the benefits to be derived. In this situation managers need to consider strategies that can minimize or buffer the organization from the negative consequences that often follow from turnover. Strategies organizations can use to adapt to uncontrollably high employee turnover rates are presented in this article. In addition, suggestions are made for how managers should make choices among the alternative strategies.

  5. Experimental Analysis of Pressure Fluctuations behind a Bottom Aerator

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Experimental observations show that the random process of two-phase flow beh ind an aerator is an ergodic process and its amplitude distribution is similar t o a normal distribution. The maximum pressure fluctuation is at the re-attachme n t point where the jet-trajectory flow over the aerator re-attaches to bottom o f the channel, and its amplitude is 2-3 times larger than when there is no aerato r. There is a dominant frequency of 1.24 Hz in the model, but the coherence in th e frequency domain is not obvious for other frequencies beside the dominant frequ ency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.

  6. RE-AERATION LAW OF WATER FLOW OVER SPILLWAYS

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiang-ju; LUO Lin; CHEN Yong-can; ZHAO Wen-qian

    2006-01-01

    In order to explore the re-aeration law of water flow over spillway, the transfer process of oxygen in water flow over spillway was studied. The interfacial mass transfer coefficients were obtained by experiments. The flow fields and the turbulence characteristics are simulated by numerical methods. The fractional volume of fluid model (VOF) of the air-water two phase flows was introduced to track the interface. Consequently, the quantitative expression of the interfacial mass transfer coefficients related with velocity and kinetic energy at the free surface was derived and the re-aeration model for the water flow over spillway was established. The examination with the experimental data of different conditions shows the validity of the re-aeration model for the water flow over spillways. This study will be important to evaluate the dissolved oxygen concentration and self-purification ability of rivers.

  7. 通气对复合生物滤池处理晚年期渗滤液污染物效果影响及微生物群落结构分析%Effect of aeration on the treatment of aged landfill leachate by a composite biofilter and its microbial community structure

    Institute of Scientific and Technical Information of China (English)

    戴淑萍; 谢冰; 李斐斐; 吕宝一; 唐媛

    2011-01-01

    以上海老港垃圾填埋场填埋多年的陈垃圾和废弃多孔滤料为填料构建复合生物滤池处理晚年期垃圾渗滤液.研究了不同运行条件下复合生物滤池对晚年期渗滤液的处理效果,并对不同通气状况下功能微生物的数量、组成和群落结构,以及与处理效果之间的关系进行了分析结果表明:通气对污染物的去除率有较明显的提高,在复合生物滤池中部通气条件下(气固比0.3)较未通气复合生物滤池对COD、NH4+-N和TN的去除率分别高出10、30和10个百分点,而继续增大通气(气固比0.4)对污染物质的去除增加不明显.微生物计数结果表明,复合生物滤池上部微生物数量明显多于下部,上部的异样细菌和硝化细菌数量明显增多,亚硝化细菌数量明显减少,反硝化细菌变化不显著.PCR-DGGE结果表明通气较未通气条带数量和亮度有明显的改变,说明通气改变了反应器中的微生物群落结构.测序结果表明滤池中主要的优势微生物与Pseudomonas sp.HPC1354、Alcanivorax sp.521-1、unculturedβ-proteobacterium 、Dechlororomonas aromatica RCB、Proteobacteria.等具有很高的相似性.%Two different media, aged refuse and waste porous filter material, were used to construct composite biofilters. Their treatment efficiencies on mature landfill leachate pollutants under different operating conditions were investigated. The microbial number, composition and structure of functional micro-organism under different aeration conditions, and their relationship with the treatment effects were analyzed. The results showed that the aeration could enhance the pollutant removal significantly. COD, NH/ -N and the TN removal rates with aeration were respectively 10% , 30% and 10% higher than without aeration. Additional aeration had no further influence on pollutant removal. Micro-organism counting showed that the number of bacteria at the top of both aerated and non-aerated

  8. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge

    Energy Technology Data Exchange (ETDEWEB)

    Blazy, V., E-mail: vincent.blazy@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Benoist, J.C; Daumoin, M. [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Lemasle, M.; Wolbert, D. [Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR, Avenue du Général Leclerc, 35700 Rennes (France); Barrington, S., E-mail: suzellebarrington@sympatico.ca [Irstea, UR GERE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes (France); Concordia University, Department of Building, Civil and Environmental Engineering, 1455 de Maisonneuve, Montréal, QC H3G 1M8 (Canada)

    2014-07-15

    Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and

  9. High frame rate CCD camera with fast optical shutter

    Energy Technology Data Exchange (ETDEWEB)

    Yates, G.J.; McDonald, T.E. Jr. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley National Lab., CA (United States)

    1998-09-01

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  10. AERATION EFFECT OF SUBMERGED JET ON HYDRAULIC CHARACTERISTICS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A water-air two-phase turbulence mathematical model was proposed, The mass-weighted average was adoptedfor velocity, air mass fraction and turbulent parameters. Thealgebraic stress equation was used to calculate the Reynoldsstress. The pulsating flux of air mass fraction was simulatedby employing the concept of the eddy viscosity. The numericalsimulation of aerated flow in plunge pool shows that, for the same depth, aeration may decrease the time-averaged pressureon pool floor and increase slightly the turbulent intensity. Thecomputed concentration and pressure distributions coincidewith the experimental data.

  11. User microprogrammable processors for high data rate telemetry preprocessing

    Science.gov (United States)

    Pugsley, J. H.; Ogrady, E. P.

    1973-01-01

    The use of microprogrammable processors for the preprocessing of high data rate satellite telemetry is investigated. The following topics are discussed along with supporting studies: (1) evaluation of commercial microprogrammable minicomputers for telemetry preprocessing tasks; (2) microinstruction sets for telemetry preprocessing; and (3) the use of multiple minicomputers to achieve high data processing. The simulation of small microprogrammed processors is discussed along with examples of microprogrammed processors.

  12. Pedalling rate affects endurance performance during high-intensity cycling

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    , such as muscle fibre type composition and power reserve, relate to endurance time. Twenty males underwent testing to determine their maximal oxygen uptake (VO(2max)), power output corresponding to 90% of VO(2max) at 80 rpm (W90), FCPR at W90, percentage of slow twitch muscle fibres (% MHC I), maximal leg power...... time was negatively related to VO(2max), W90 and % MHC I, while positively related to power reserve. In conclusion, at group level, endurance time was longer at FCPR and at a pedalling rate 25% lower compared to a pedalling rate 25% higher than FCPR. Further, inter-individual physiological variables......The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables...

  13. Evaluation of dissolution rate on high plutonium content MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shinichi; Kurita, Ichiro; Endo, Hideo; Higuchi, Hidetoshi; Kihara, Yoshiyuki [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Ogasawara, Masahiro; Shinada, Masanori; Kowata, Masato [Inspection Development Company Ltd., Tokai, Ibaraki (Japan)

    2002-06-01

    The dissolution rate of high Pu content MOX fuel into nitric acid was measured as a function of Pu content. MOX fuel samples, pressed and sintered, were dissolved in 7 M of boiling nitric acid, and the dissolution rate was measured by analyzing the Pu and U concentration in the solution. The dissolution rate of MOX fuel tended to decrease with the increase in the Pu content and was reduced after 6 hours of dissolution. These results agreed well with previous ones, but the dissolution rate was 3-6 times faster than those. It is estimated that the cause of this difference was due to underestimation of the surface area of MOX fuel powder and the difference of the MOX O/M ratio. (author)

  14. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan

    Science.gov (United States)

    Lin, J. L.; Tu, Y. T.; Chiang, P. C.; Chen, S. H.; Kao, C. M.

    2015-06-01

    The Ju-Liao Stream is one of the most contaminated streams in Kaohsiung City, Taiwan. A constructed wetland (CW) system was built in 2010 for polluted stream water purification and ecosystem improvement. An aerated gravel-packed contact bed (CB) system was built in 2011 and part of the stream water was treated by the CB before discharging to the CW. The influent rates of the CW and CB were approximately 5570 and 900 m3/d, respectively. The CW contained one free-water surface basin planted with emergent wetland plants, followed by the plug-flow channel-shaped free-water surface basin planted with emergent and floating wetland plants. The mean measured hydraulic loading rate (HLR), hydraulic retention time (HRT), water depth, and total volume of wetland system were 1.7 m/d, 0.68 d, 0.7 m, and 4400 m3, respectively. The aeration zone of the CB system had a dimension of 24 m (L) × 8 m (W) × 3 m (H), which was filled with gravels (average diameter = 5 cm) with a porosity of 0.4, and the aeration rate was 7.8 m3/min. Results show that the CB system was able to remove 69% of suspended solid (SS), 86% of biochemical oxygen demand (BOD), and 58% of total nitrogen (TN). Up to 82% of BOD and 27% of TN could be removed in the CW system. Removal efficiency of SS was affected by the growth of chlorophyll a in the CW system due to the growth of algae. The observed first-order decay rates (k) for BOD and TN in CB were 9.3 and 4.2 1/d, and the k values for BOD and TN removal in CW were 2.5 and 0.45 1/d. The high pollutant removal efficiencies in the CB system indicate that the system could enhance the organic and nutrient removal through the biological processes effectively. Sediments contained high total organic matter (1.9-4.5%), sediment total nitrogen (6.4-10.1 g/kg), sediment total phosphorus (0.59-0.94 g/kg), and sediment oxygen demand (0.9-4.1 g O2/m2 d). The organic and nutrient-abundant sediments resulted in reduced conditions (oxidation-reduction potential measurements

  15. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens

  16. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    OCONNOR,P.; GRATCHEV,V.; KANDASAMY,A.; POLYCHRONAKOS,V.; TCHERNIATINE,V.; PARSONS,J.; SIPPACH,W.

    1999-09-25

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm{sup 2}/s.

  17. Childhood Onset Schizophrenia: High Rate of Visual Hallucinations

    Science.gov (United States)

    David, Christopher N.; Greenstein, Deanna; Clasen, Liv; Gochman, Pete; Miller, Rachel; Tossell, Julia W.; Mattai, Anand A.; Gogtay, Nitin; Rapoport, Judith L.

    2011-01-01

    Objective: To document high rates and clinical correlates of nonauditory hallucinations in childhood onset schizophrenia (COS). Method: Within a sample of 117 pediatric patients (mean age 13.6 years), diagnosed with COS, the presence of auditory, visual, somatic/tactile, and olfactory hallucinations was examined using the Scale for the Assessment…

  18. High Reported Spontaneous Stuttering Recovery Rates: Fact or Fiction?

    Science.gov (United States)

    Ramig, Peter R.

    1993-01-01

    Contact after 6 to 8 years with families of 21 children who were diagnosed as stuttering but did not receive fluency intervention services found that almost all subjects still had a stuttering problem. Results dispute the high spontaneous recovery rates reported in the literature and support the value of early intervention. (Author/DB)

  19. High deposition rate nanocrystalline silicon with enhanced homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, Arjan; Rath, Jatindra K.; Schropp, Ruud [Section Nanophotonics-Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2010-03-15

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inactive region into the plasma zone. It was calculated that back diffusion plays a role in the regime for high deposition rate (4.5 nm/s) via the residence time for particles in the plasma and the corresponding diffusion length for silane from outside the plasma. The stabilization time for back diffusion was derived and found to be on the order of tens of seconds. Experiment showed that the incubation layer for nc-Si:H is very thick in films deposited at a high rate compared to films deposited in a regime of lower deposition rate. The use of a hydrogen plasma start greatly reduced this incubation layer. Further control of the crystalline fraction could be achieved via slight reduction of the degree of depletion via the silane flow. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Advances in high rate anaerobic treatment: staging of reactor systems.

    NARCIS (Netherlands)

    Lier, van J.B.; Zee, van der F.P.; Tan, N.C.G.; Rebac, S.; Kleerebezem, R.

    2001-01-01

    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptan

  1. Adapting high-rate anaerobic treatment to Middle East conditions

    NARCIS (Netherlands)

    Mahmoud, N.A.; Zeeman, G.; Lier, van J.B.

    2008-01-01

    High-rate anaerobic technologies offer cost-effective solutions for sewage treatment in the Middle East and Palestine in particular. The sewage characteristics in Palestine are quite different from the values elsewhere and show solids contents of more than 1000 mg chemical oxygen demand (COD)ss/L

  2. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  3. Understanding High School Graduation Rates in the District of Columbia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  4. Understanding High School Graduation Rates in New Mexico

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  5. Understanding High School Graduation Rates in Rhode Island

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  6. Understanding High School Graduation Rates in South Dakota

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  7. Understanding High School Graduation Rates in West Virginia

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  8. Understanding High School Graduation Rates in North Carolina

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  9. Understanding High School Graduation Rates in South Carolina

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  10. Understanding High School Graduation Rates in North Dakota

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  11. Understanding High School Graduation Rates in New York

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  12. Understanding High School Graduation Rates in the United States

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  13. Understanding High School Graduation Rates in New Hampshire

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  14. Understanding High School Graduation Rates in New Jersey

    Science.gov (United States)

    Alliance for Excellent Education, 2009

    2009-01-01

    Graduation rates are a fundamental indicator of whether or not the nation's public school system is doing what it is intended to do: enroll, engage, and educate youth to be productive members of society. Since almost 90 percent of the fastest-growing and highest-paying jobs require some postsecondary education, having a high school diploma and the…

  15. Vinyl acetate degradation by Brevibacillus agri isolated from a slightly aerated methanogenic reactor.

    Science.gov (United States)

    Lara-Mayorga, I; Durán-Hinojosa, U; Arana-Cuenca, A; Monroy-Hermosillo, O; Ramírez-Vives, F

    2010-01-01

    In a previous paper, the authors showed that a slight aeration of a methanogenic reactor treating wastewater from the manufacture of polymeric resins could improve its performance, by increasing or allowing the removal of some of its contaminants, including vinyl acetate (VA). This paper reports the isolation under aerobic conditions of a VA-biodegrading axenic culture (strain C1) retrieved from the sludge of a slightly aerated methanogenic reactor at 1 mg L(-1) d(-1) of dissolved oxygen (DO). The axenic culture obtained was phenotypically (morphology, biochemical properties, VA consumption kinetics) and phylogenetically characterized. It formed white colonies with a branched and flat morphology on solid medium. The cell morphology of the isolate was bacillus with round endings and flagellate. The cells could form chains and were stained Gram-negative. The isolate required simple nutritional elements and had a growth rate of 0.024 h(-1). The phylogenetical analysis showed that the aerobic bacterium was identified as Brevibacillus agri, with 99.3% similarity. The VA consumption kinetics in the methanogenic sludge were: volumetric consumption rate (rVA) of 1.74 +/- 0.2 mg L(-1) h(-1), maximum specific consumption rate (qVAmax) of 3.98 mg g(-1) volatile suspended solids (VSS) h(-1) and affinity constant (Ks) of 457.1 mg L(-1). The same parameters in the axenic culture were 1.69 +/- 0.04 mg L(-1) (h-1), 4.09 mg g(-1) dry weight h(-1) and 421.9 mg L(-1), respectively. These results show evidence that the aerobic isolated bacterium, identified as Brevibacillus agri, carried out the VA hydrolysis in the slightly aerated methanogenic sludge, which is the limiting step in the degradation of this compound.

  16. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen.

    Science.gov (United States)

    Zhu, Jingwen; Liang, Jing; Xu, Zhihui; Fan, Xiaorong; Zhou, Quansuo; Shen, Qirong; Xu, Guohua

    2015-11-16

    In wetland soils, changes in oxygen (O2) level in the rhizosphere are believed to influence the behaviour of nutrients and their usage by plants. However, the effect of aeration on nitrogen (N) acquisition under different N supply conditions remains largely unknown. In this study, the rice cultivars Yangdao 6 (YD6, with higher root aerenchyma abundance) and Nongken 57 (NK57, with lower root aerenchyma abundance) were used to evaluate the effects of aeration on rice growth and N accumulation. Our results showed that the number of adventitious roots and the root surface area increased significantly, and ethylene production and aerenchyma formation decreased in both cultivars after external aeration (EA). Five N treatments, including no N (-N), 0.125 mM NH4NO3 (LN), 1.25 mM Ca(NO3)2 (NO3-N), 1.25 mM (NH4)2SO4 (NH4-N) and 1.25 mM NH4NO3 (N/N), were applied to YD6 and NK57 for 2 days under internal aeration or EA conditions. External aeration increased the root biomass in both cultivars and the shoot biomass in NK57 by 18-50 %. The total N concentrations in roots of YD6 grown under -N and LN and of NK57 grown under NO3-N were increased by EA. Expression of OsPAD4, one of four putative genes regulating aerenchyma formation, showed a similar pattern alongside changes in the ethylene level in the EA-treated rice irrespective of the N treatments. Furthermore, expression of the high-affinity nitrate transporter gene OsNRT2.1 was increased by EA under -N, LN and NO3-N conditions. Our data provide evidence of an interaction between O2 and the supply of N in ethylene production, aerenchyma formation and N nutrition through modification of the expression of OsPAD4 and OsNRT2.1.

  17. Degradation of Triclosan in aerated sludge

    DEFF Research Database (Denmark)

    Bester, Kai; Chen, Xijuan; Furgal, Karolina

    Triclosan is a bactericide used in increasing shelflife of cosmetics, improving hygenics in sportswear as well as in toothpaste and in mouth wash. More than 350 tons Triclosan is annually produced in Europe, and most of it finally is emitted into wastewater at the end of its life cycle. Therefore......, the fate of this compound in wastewater treatment is of high interest, especially as triclosan has detrimental effects on, e.g., micro-algae at very low concentrations.  It has been demonstrated, that the elimination of triclosan is very effective in wastewater treatment with eliminination rates > 90......%. However, a persistent transformation product (triclosan-methyl) is beeing formed in the activated sludge treatment process. In contrast to other studies, mass balances on wastewater treatment plants show that the fate of more than 50% of the incoming triclosan remains unknown. In this study we...

  18. Degradation of Triclosan in aerated sludge

    DEFF Research Database (Denmark)

    Bester, Kai; Chen, Xijuan; Furgal, Karolina;

    Triclosan is a bactericide used in increasing shelflife of cosmetics, improving hygenics in sportswear as well as in toothpaste and in mouth wash. More than 350 tons Triclosan is annually produced in Europe, and most of it finally is emitted into wastewater at the end of its life cycle. Therefore......, the fate of this compound in wastewater treatment is of high interest, especially as triclosan has detrimental effects on, e.g., micro-algae at very low concentrations.  It has been demonstrated, that the elimination of triclosan is very effective in wastewater treatment with eliminination rates > 90......%. However, a persistent transformation product (triclosan-methyl) is beeing formed in the activated sludge treatment process. In contrast to other studies, mass balances on wastewater treatment plants show that the fate of more than 50% of the incoming triclosan remains unknown. In this study we...

  19. Sludge reduction by direct addition of chlorine dioxide into a sequencing batch reactor under operational mode of repeatedly alternating aeration/non-aeration.

    Science.gov (United States)

    Peng, Hong; Liu, Weiyi; Li, Yuanmei; Xiao, Hong

    2015-01-01

    The effect of direct addition of chlorine dioxide (ClO2) into a repeatedly alternating aeration/non-aeration sequencing batch reactor (SBR) on its sludge reduction and process performance was investigated. The experimental results showed that the sludge reduction efficiency was 32.9% and the observed growth yield (Yobs) of SBR was 0.11 kg VSS (volatile suspended solids) /kg COD (chemical oxygen demand) for 80 days' operation at the optimum ClO2 dosage of 2.0 mg/g TSS (total suspended solids). It was speculated that cell lysis and cryptic growth, uncoupled metabolism and endogenous metabolism were jointly responsible for the sludge reduction in this study. COD, NH3-N, total nitrogen (TN) and total phosphorus (TP) in the effluent increased on average 29.47, 4.44, 1.97 and 0.05 mg/L, respectively. However, the effluent quality still satisfied the first-class B discharge standards for municipal wastewater treatment plants in China. In that case, the sludge maintained fine viability with the specific oxygen uptake rate (SOUR) being 14.47 mg O2/(g VSS·h) and demonstrated good settleability with the sludge volume index (SVI) being 116 mL/g. The extra cost of sludge reduction at the optimum ClO2 dosage was estimated to be 2.24 CNY (or 0.36 dollar)/kg dry sludge.

  20. Evaluation of design factors for a cascade aerator to enhance the efficiency of an oxidation pond for ferruginous mine drainage.

    Science.gov (United States)

    Oh, Chamteut; Ji, Sangwoo; Cheong, Youngwook; Yim, Giljae; Hong, Ji-Hye

    2016-10-01

    This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0-4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe(2+) oxidation.

  1. Mechanisms of high heart rate variability: a fresh look

    Directory of Open Access Journals (Sweden)

    Vladimir A. Lukyanchenko

    2016-05-01

    Full Text Available Consideration is being given herein to some mechanisms of high heart rate variability (high HRV, which cannot be attributed to sports exercise loading. The mechanism responsible for high HRV is explained as that resulted from the continuous performance (opening and closure of arteriovenous anastomoses in different organs and systems in a human organism. An assessment of this phenomenon is given herein from the point of view of a practicing physician who treats regularly patients with already established clinical diagnoses and those without an established nosological profile according to International Statistical Classification of Diseases and Related Health Problems 10th Revision.

  2. OFDM-based Low-voltage Powerline High Rate Communication

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-bing(张有兵); CHENG Shi-jie(程时杰); Joseph Nguimbis; XIONG Lan(熊兰)

    2004-01-01

    Based on the experimental results, a simplified model for low-voltage powerline used as a high frequency communication channel is presented. With this model, the Orthogonal Frequency Division Multiplexing (OFDM) based high rate digital communication over low-voltage powerline is analyzed and simulated. The capability of thc signal transmission system in overcoming multi-path interference and selection of the system parameters are discussed. And time-domain simulation is carried out to investigate the transmission capability of the OFDM cammunication system for different mapping schemes and transmission power levels. Simulation results show that it is possible to realize high rate digital communication over iow-voltage powerliue using OFDM when the transmitted power is large enough.

  3. High strain rate behavior of pure metals at elevated temperature

    Science.gov (United States)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  4. A High Rate Tension Device for Characterizing Brain Tissue

    CERN Document Server

    Rashid, Badar; Gilchrist, Michael; 10.1177/1754337112436900

    2013-01-01

    The mechanical characterization of brain tissue at high loading velocities is vital for understanding and modeling Traumatic Brain Injury (TBI). The most severe form of TBI is diffuse axonal injury (DAI) which involves damage to individual nerve cells (neurons). DAI in animals and humans occurs at strains > 10% and strain rates > 10/s. The mechanical properties of brain tissues at these strains and strain rates are of particular significance, as they can be used in finite element human head models to accurately predict brain injuries under different impact conditions. Existing conventional tensile testing machines can only achieve maximum loading velocities of 500 mm/min, whereas the Kolsky bar apparatus is more suitable for strain rates > 100/s. In this study, a custom-designed high rate tension device is developed and calibrated to estimate the mechanical properties of brain tissue in tension at strain rates < 90/s, while maintaining a uniform velocity. The range of strain can also be extended to 100% de...

  5. Systematic Uncertainties in High-Rate Germanium Data

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.; Pitts, William K.; VanDevender, Brent A.; Wood, Lynn S.

    2016-10-06

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning with a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.

  6. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.

  7. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  8. 7 CFR 201.55a - Moisture and aeration of substratum.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Moisture and aeration of substratum. 201.55a Section... and aeration of substratum. (a) The substratum must be moist enough to supply the needed moisture to the seeds at all times. Excessive moisture which will restrict aeration of the seeds should be...

  9. Temperature stratification and insect pest populations in stored wheat with suction versus pressure aeration

    Science.gov (United States)

    A three-year study was conducted to compare temperature profiles in the headspace and in the bulk mass of wheat aerated through pressure aeration and suction aeration. Insect pitfall traps were used to measure naturally-occurring populations of stored product insects. Results show uniform distributi...

  10. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  11. Physical characteristics of the Selectron high dose rate intracavitary afterloader

    Energy Technology Data Exchange (ETDEWEB)

    Chenery, S.G.A.; Pla, M.; Podgorsak, E.B. (Royal Victoria Hospital, Montreal, Quebec (Canada); McGill Univ., Montreal, Quebec (Canada))

    1985-08-01

    The physics measurements on a Selectron high dose-rate afterloading cobalt-60 unit are reported. The installation was found to be acceptable from the standpoint of radiation safety and cost effectiveness; hospital bed space was saved as treatment could be on an outpatient basis. A source calibration 4% higher than the value stated by the manufacturer was obtained. Measurement of the ratio of exposure rate in water to that in air confirmed the calibration and the applicability of correction factors for routine clinical dosimetry recommended in the literature.

  12. Nanocrystalline silicon prepared at high growth rate using helium dilution

    Indian Academy of Sciences (India)

    Koyel Bhattacharya; Debajyoti Das

    2008-06-01

    Growth and optimization of the nanocrystalline silicon (nc-Si : H) films have been studied by varying the electrical power applied to the helium diluted silane plasma in RF glow discharge. Wide optical gap and conducting intrinsic nanocrystalline silicon network of controlled crystalline volume fraction and oriented crystallographic lattice planes have been obtained at a reasonably high growth rate from helium diluted silane plasma, without using hydrogen. Improving crystallinity in the network comprising ∼ 10 nm Si-nanocrystallites and contributing optical gap widening, conductivity ascending and that obtained during simultaneous escalation of the deposition rate, promises significant technological impact.

  13. 外墙内保温高层住宅加气混凝土内隔墙周期性裂缝原因分析%Analysis of Periodic Cracks in Aerated Concrete Block Interior Walls of High-Rise Residential Building with Internal Thermal Insulation System

    Institute of Scientific and Technical Information of China (English)

    周建康

    2013-01-01

    The shear wall structure system is adopted by a high-rise residential building, and internal thermal insulation composite system is applied for the exterior walls. After completion of interior walls built with aerated concrete blocks, a large number of cracks appeared in them near the building envelopes. The cracks occurred periodically in next spring or summer after being repaired. Field investigation and theoretical calculation are carried out, and the main causes of cracking are analyzed. Treatment methods are also submitted from the aspects of design and construction, which are available for other similar residential projects.%上海某高层住宅为剪力墙结构,周围墙体采用复合石膏板外墙内保温系统,住宅内隔墙采用加气混凝土砌块.墙体砌筑后在邻近外围结构的部位产生了大量斜裂缝,而且经修补后又会在第二年春夏周期性出现.通过现场调查和理论计算,分析了裂缝产生的主要原因,并从设计和施工两方面提出了预防措施,对类似的住宅工程具有一定的借鉴意义.

  14. Determination of Tensile Properties of Polymers at High Strain Rates

    Directory of Open Access Journals (Sweden)

    Major Z.

    2010-06-01

    Full Text Available In the field of high rate testing of polymers the measured properties are highly dependent on the applied methodology. Hence, the test setup as whole but in particular also the geometrical type of specimen plays a decisive role. The widely used standard for the determination of tensile properties of polymers (ISO527-2 was extended by a novel standard (ISO18872:2007, which is targeted on the determination of tensile properties at high strain rates. In this standard also a novel specimen shape is proposed. Hand in hand with the introduction of new specimen geometry the question of comparability arises. To point out the differences in stress-strain response of the ISO18872 specimen and the ISO527-2 multipurpose specimen tensile tests over a wide loading rate range were conducted in this paper. A digital image correlation system in combination with a high speed camera was used to characterize the local material behaviour. Different parameters like nominal stress, true stress, nominal strain, true strain as well as volumetric strain were determined and used to compare the two specimen geometries.

  15. Enhanced Nutrient Removal with Upflow Biological Aerated Filter for Reclaimed Water

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-dong; PENG Yong-zhen; WANG Shu-ying; ZHANG Yan-ping

    2007-01-01

    A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2mg/L, and total phosphorus of 0.3mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrification.

  16. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn

  17. Multiplexed CV quantum teleportation for high rates in quantum communication

    CERN Document Server

    Christ, Andreas; Silberhorn, Christine

    2012-01-01

    A major challenge of today's quantum communication systems lies in the transmission of quantum information with high rates over long distances in the presence of unavoidable losses. Thereby the achievable quantum communication rate is fundamentally limited by the amount of energy that can be transmitted per use of the channel. It is hence vital to develop quantum communication protocols which encode quantum information as energy efficiently as possible. To this aim we investigate continuous-variable quantum teleportation as a method of distributing quantum information. We explore the possibility to encode information on multiple optical modes and derive upper and lower bounds on the achievable quantum channel capacities. This analysis enables us to benchmark single-mode vs. multi-mode entanglement resources. Our research reveals that multiplexing does not only feature an enhanced energy efficiency, significantly increasing the achievable quantum communication rates in comparison to single-mode coding, but als...

  18. High data rate recording: Moving to 2 Gbit/s

    Science.gov (United States)

    Taratorin, A.; Yuan, S.; Nikitin, V.

    2003-05-01

    High data rate recording can be achieved using fast write drivers and fast heads. Advanced short-yoke write heads and write drivers with 450 ps rise time and programmable current overshoot were used to study recording at data rates up to 2 Gbit/s. The head flux rise time causes shifts of recorded transitions. It is well known that current overshoot helps to overcome bandwidth limitations in the write driver, interconnects, and write head. However, excessive overshoot may cause pattern-dependent transition shifts and significant distortions of recorded transitions. We present the data rate performance of short-yoke recording heads, analysis of nonlinear pattern-dependent distortions, and optimization of the write current wave form in the 1-2 Gbit/s range. Simple dibit and tribit patterns were recorded at 2 Gbit/s. Low-distortion recording for arbitrary data patterns was demonstrated at 1.6 Gbit/s after optimization of write current overshoot.

  19. Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge.

    Science.gov (United States)

    Blazy, V; de Guardia, A; Benoist, J C; Daumoin, M; Lemasle, M; Wolbert, D; Barrington, S

    2014-07-01

    Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aerationin 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5-10, when the required threshold dilution factor ranged from 10(5) to 10(6), to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.

  20. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  1. Aeration of bread dough influenced by different way processing

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Fallah, E.; Hamer, R.J.; Goot, van der A.J.

    2010-01-01

    The effect of steady shearing versus z-blade mixing on mechanical aeration and gas retaining ability of the dough during processing and subsequent proofing and bread baking stages was investigated. Reduction in moisture content led to reduction in both static and dynamic densities of z-blade mixed

  2. Nutrients removal using moving beds with aeration cycles

    Energy Technology Data Exchange (ETDEWEB)

    Martin Martin, A.; Foresti, E.; Garcia-Encina, P. A.

    2009-07-01

    Moving Bed Biofilm Reactors (MBBR) are based on the biomass growth over a media that moves into the reactor due to aeration, mechanical agitation or recirculation. These reactors have been gaining popularity and they are employed in hundreds of plants everywhere with different treatment purposes (organic matter removal, nitrification/denitrification), both for urban and industrial wastewater. (Author)

  3. Fin characteristics of aerator devices with lateral deflectors

    Institute of Scientific and Technical Information of China (English)

    WU Jian-hua; LI Dan; MA Fei; QIAN Shang-tuo

    2013-01-01

    The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed,and the flow regime downstream of the aerator device will be worsened.In this paper,the height and the length of the fins induced by the lateral deflectors are theoretically analyzed along with their influencing factors,and the fin characteristics are experimentally investigated on the basis of the theoretical analysis.It is shown that the intensities of the fins are strongly dependent on the ratio of the lateral cavity length to the bottom cavity length,and other factors,like the working head,the height and the angle of the lateral deflector,the flow Froude number around the aerator device,affect the fins indirectly through the changes of the lateral cavity length.When an aerator device with lateral deflectors is designed,it is crucial to match the above mentioned ratio,and to make the ratio of the two cavity lengths less than 1.0 in order to avoid the generation of the fins.

  4. Internal aeration development and the zonation of plants in wetlands

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith

    support many species which have root aeration adaptations but are otherwise unspecialised for aquatic life. Permanent standing water is a much greater challenge for plants, and survival here is restricted to species with special adaptations to their oxygen transport physiology such as the development...

  5. PROJECT OF COAGULANT DISPENSER IN PULVERIZATION AERATOR WITH WIND DRIVE

    Directory of Open Access Journals (Sweden)

    Ewa Osuch

    2017-09-01

    Full Text Available Lakes are one of most important freshwater ecosystems, playing significant role in functioning of nature and human economy. Swarzędzkie Lake is good example of ecosystem, which in last half-century was exposed to the influence of strong anthropopressure. Direct inflow of sewage with large number of biogens coming to the lake with water of inflows caused distinct disturbance of its functioning. In autumn 2011 restoration begined on Swarzędzkie Lake for reduction of lake trophy and improvement of water quality. For achieving better and quicker effect, simultaneously combination of some methods was applied, among others method of oxygenation of over-bottom water with help of pulverization aerator and method of precise inactivation of phosphorus in water depths. Characterization and analysis of improved coagulant dispenser applying active substance only during work of pulverization aerator is the aim of this thesis. Principle of dispenser work, its structure and location in pulverization aerator were explained. It was stated, that introduction to water a factor initiating process of phosphorus inactivation causes significant reduction of mineral phosphorus in water and size of coagulant dose correlates with intensity of work of pulverization aerator with wind drive.

  6. Aeration of bread dough influenced by different way processing

    NARCIS (Netherlands)

    Peighambardoust, S.H.; Fallah, E.; Hamer, R.J.; Goot, van der A.J.

    2010-01-01

    The effect of steady shearing versus z-blade mixing on mechanical aeration and gas retaining ability of the dough during processing and subsequent proofing and bread baking stages was investigated. Reduction in moisture content led to reduction in both static and dynamic densities of z-blade mixed d

  7. Towards advanced aeration modelling: from blower to bubbles to bulk.

    Science.gov (United States)

    Amaral, Andreia; Schraa, Oliver; Rieger, Leiv; Gillot, Sylvie; Fayolle, Yannick; Bellandi, Giacomo; Amerlinck, Youri; Mortier, Séverine T F C; Gori, Riccardo; Neves, Ramiro; Nopens, Ingmar

    2017-02-01

    Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.

  8. HYDRAULIC CHARACTERISTICS OF CHUTE AERATORS FOR RELEASE WORKS

    Institute of Scientific and Technical Information of China (English)

    RUAN Shi-ping

    2008-01-01

    On the basis of model tests and theoretical analysis, hydraulic characteristics, air demand, air concentration distribution and their relationships between prototype and model of an aerator were studied. Some computational examples show that the present methods have higher accuracy, and can meet the need of engineering design.

  9. Investigation of high-rate lithium-thionyl chloride cells

    Science.gov (United States)

    Hayes, Catherine A.; Gust, Steven; Farrington, Michael D.; Lockwood, Judith A.; Donaldson, George J.

    Chemical analysis of a commercially produced high-rate D-size lithium-thionyl cell was carried out, as a function of rate of discharge (1 ohm and 5 ohms), depth of discharge, and temperature (25 C and -40 C), using specially developed methods for identifying suspected minor cell products or impurities which may effect cell performance. These methods include a product-retrieval system which involves solvent extraction to enhance the recovery of suspected semivolatile minor chemicals, and methods of quantitative GC analysis of volatile and semivolatile products. The nonvolatile products were analyzed by wet chemical methods. The results of the analyses indicate that the predominant discharge reaction in this cell is 4Li + 2SOCl2 going to 4LiCl + S + SO2, with SO2 formation decreasing towards the end of cell life (7 to 12 Ah). The rate of discharge had no effect on the product distribution. Upon discharge of the high-rate cell at -40 C, one cell exploded, and all others exhibited overheating and rapid internal pressure rise when allowed to warm up to room temperature.

  10. HIGH RATES OF EVOLUTION PRECEDED THE ORIGIN OF BIRDS

    Science.gov (United States)

    Puttick, Mark N; Thomas, Gavin H; Benton, Michael J; Polly, P David

    2014-01-01

    The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous. PMID:24471891

  11. High frame rate measurements of semiconductor pixel detector readout IC

    Science.gov (United States)

    Szczygiel, R.; Grybos, P.; Maj, P.

    2012-07-01

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm×4 mm. Its main part is a matrix of 40×32 pixels with 100 μm×100 μm pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  12. High frame rate measurements of semiconductor pixel detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Szczygiel, R., E-mail: robert.szczygiel@agh.edu.pl [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland); Grybos, P.; Maj, P. [AGH University of Science and Technology, Department of Measurement and Instrumentation, Al. Mickiewicza 30, 30-059 Cracow (Poland)

    2012-07-11

    We report on high count rate and high frame rate measurements of a prototype IC named FPDR90, designed for readouts of hybrid pixel semiconductor detectors used for X-ray imaging applications. The FPDR90 is constructed in 90 nm CMOS technology and has dimensions of 4 mm Multiplication-Sign 4 mm. Its main part is a matrix of 40 Multiplication-Sign 32 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. The chip works in the single photon counting mode with two discriminators and two 16-bit ripple counters per pixel. The count rate per pixel depends on the effective CSA feedback resistance and can be set up to 6 Mcps. The FPDR90 can operate in the continuous readout mode, with zero dead time. Due to the architecture of digital blocks in pixel, one can select the number of bits read out from each counter from 1 to 16. Because in the FPDR90 prototype only one data output is available, the frame rate is 9 kfps and 72 kfps for 16 bits and 1 bit readout, respectively (with nominal clock frequency of 200 MHz).

  13. Small cryptopredators contribute to high predation rates on coral reefs

    Science.gov (United States)

    Goatley, Christopher H. R.; González-Cabello, Alonso; Bellwood, David R.

    2017-03-01

    Small fishes suffer high mortality rates on coral reefs, primarily due to predation. Although studies have identified the predators of early post-settlement fishes, the predators of small cryptobenthic fishes remain largely unknown. We therefore used a series of mesocosm experiments with natural habitat and cryptobenthic fish communities to identify the impacts of a range of small potential predators, including several invertebrates, on prey fish populations. While there was high variability in predation rates, many members of the cryptobenthic fish community act as facultative cryptopredators, being prey when small and piscivores when larger. Surprisingly, we also found that smashing mantis shrimps may be important fish predators. Our results highlight the diversity of the predatory community on coral reefs and identify previously unknown trophic links in these complex ecosystems.

  14. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    High frame rate ultrasound imaging can be achieved by simultaneous transmission of multiple focused beams along different directions. However, image quality degrades by the interference among beams. An alternative approach is to transmit spherical waves of a basic short pulse with frequency coding...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d......B. With the proposed imaging strategy of pulse train excitation, a whole image can be formed with only two emissions, making it possible to obtain high quality images at a frame rate of 20 to 25 times higher than that of conventional phased array imaging...

  15. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2007-10-15

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm{sup 2} at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.

  16. Distribution of streaming rates into high-redshift galaxies

    CERN Document Server

    Goerdt, Tobias; Dekel, Avishai; Teyssier, Romain

    2015-01-01

    We study the accretion along streams from the cosmic web into high-redshift massive galaxies using three sets of AMR hydro-cosmological simulations. We find that the streams keep a roughly constant accretion rate as they penetrate into the halo centre. The mean accretion rate follows the mass and redshift dependence predicted for haloes by the EPS approximation, dM / dt is proportional to Mvir^{1.25} (1 + z)^{2.5}. The distribution of the accretion rates can well be described by a sum of two Gaussians, the primary corresponding to "smooth inflow" and the secondary to "mergers". The same functional form was already found for the distributions of specific star formation rates in observations. The mass fraction in the smooth component is 60 - 90 %, insensitive to redshift or halo mass. The simulations with strong feedback show clear signs of re-accretion due to recycling of galactic winds. The mean accretion rate for the mergers is a factor 2 - 3 larger than that of the smooth component. The standard deviation o...

  17. High-rate diamond deposition by microwave plasma CVD

    Science.gov (United States)

    Li, Xianglin

    In this dissertation, the growth of CVD (Chemical Vapor Deposition) diamond thin films is studied both theoretically and experimentally. The goal of this research is to deposit high quality HOD (Highly Oriented Diamond) films with a growth rate greater than 1 mum/hr. For the (100)-oriented HOD films, the growth rate achieved by the traditional process is only 0.3 mum/hr while the theoretical limit is ˜0.45 mum/hr. This research increases the growth rate up to 5.3 mum/hr (with a theoretical limit of ˜7 mum/hr) while preserving the crystal quality. This work builds a connection between the theoretical study of the CVD process and the experimental research. The study is extended from the growth of regular polycrystalline diamond to highly oriented diamond (HOD) films. For the increase of the growth rate of regular polycrystalline diamond thin films, a scaling growth model developed by Goodwin is introduced in details to assist in the understanding of the MPCVD (Microwave Plasma CVD) process. Within the Goodwin's scaling model, there are only four important sub-processes for the growth of diamond: surface modification, adsorption, desorption, and incorporation. The factors determining the diamond growth rate and film quality are discussed following the description of the experimental setup and process parameters. Growth rate and crystal quality models are reviewed to predict and understand the experimental results. It is shown that the growth rate of diamond can be increased with methane input concentration and the amount of atomic hydrogen (by changing the total pressure). It is crucial to provide enough atomic hydrogen to conserve crystal quality of the deposited diamond film. The experimental results demonstrate that for a fixed methane concentration, there is a minimum pressure for growth of good diamond. Similarly, for a fixed total pressure, there is a maximum methane concentration for growth of good diamond, and this maximum methane concentration increases

  18. High Strain Rate Experiments of Energetic Material Binder

    OpenAIRE

    Rangel Mendoza, Roberto; Harr, Michael; Chen, Weinong

    2016-01-01

    Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A bett...

  19. Fast demographic traits promote high diversification rates of Amazonian trees

    OpenAIRE

    Baker, Timothy R.; Pennington, R. Toby; Magallon, Susana; Gloor, Emanuel; Laurance, William F.; Alexiades, Miguel; Alvarez, Esteban; Araujo, Alejandro; Arets, Eric J. M. M.; Aymard, Gerardo; de Oliveira, Atila Alves; Amaral, Iêda; Arroyo, Luzmila; Bonal, Damien; Roel J.W. Brienen

    2014-01-01

    The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits - short turnover times - are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rat...

  20. Data Feature Extraction for High-Rate 3-Phase Data

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-18

    This algorithm processes high-rate 3-phase signals to identify the start time of each signal and estimate its envelope as data features. The start time and magnitude of each signal during the steady state is also extracted. The features can be used to detect abnormal signals. This algorithm is developed to analyze Exxeno's 3-phase voltage and current data recorded from refrigeration systems to detect device failure or degradation.

  1. High rate multiplicity detector for relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, D. [Brookhaven National Lab., Upton, NY (United States); Bennett, M.J. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, CT 06511 (United States); Carroll, J.B. [University of California at Los Angeles, Los Angeles, CA (United States); Chiba, J. [KEK National High Energy Physics, Tsukuba (Japan); Chikanian, A. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, CT 06511 (United States); Crawford, H.J. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Cronqvist, M. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Dardenne, Y. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Debbe, R. [Brookhaven National Lab., Upton, NY (United States); Doke, T. [Waseda University, Science and Engineering Research Institute, Waseda (Japan); Engelage, J. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Flores, I. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Greiner, L. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Hayano, R.S. [University of Tokyo, Tokyo (Japan); Hallman, T.J. [University of California at Los Angeles, Los Angeles, CA (United States); Heckman, H.H. [Lawrence Berkeley Lab., CA (United States); Kashiwagi, T. [Waseda University, Science and Engineering Research Institute, Waseda (Japan); Kikuchi, J. [Waseda University, Science and Engineering Research Institute, Waseda (Japan); Kumar, B.S. [Yale University, A.W. Wright Nuclear Structure Laboratory, New Haven, CT 06511 (United States); Kuo, C. [University of California Space Sciences Laboratory, Berkeley, CA (United States); Lindstrom, P.J. [Lawrence Berkeley Lab., CA (United States); Mitchell, J.W. [Universities Space Research Association/Goddard Space Flight Center, Greenbelt, MD (United States); Nagamiya, S.; E878 Collaboration

    1995-04-21

    We have constructed and operated a detector to measure the multiplicity of secondary particles produced in nucleus-nucleus collisions in the E878 experiment at the Brookhaven National Laboratory AGS facility. We describe the operation and performance of the detector in a high rate Au beam environment, and interpret the multiplicity data in terms of the impact parameters of the nucleus-nucleus collisions. ((orig.)).

  2. High-rate measurement-device-independent quantum cryptography

    DEFF Research Database (Denmark)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana

    2015-01-01

    Quantum cryptography achieves a formidable task - the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction...... than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers....

  3. Twinning in copper deformed at high strain rates

    Indian Academy of Sciences (India)

    S Cronje; R E Kroon; W D Roos; J H Neethling

    2013-02-01

    Copper samples having varying microstructures were deformed at high strain rates using a split-Hopkinson pressure bar. Transmission electron microscopy results show deformation twins present in samples that were both annealed and strained, whereas samples that were annealed and left unstrained, as well as samples that were unannealed and strained, are devoid of these twins. These deformation twins occurred at deformation conditions less extreme than previously predicted.

  4. MDT Performance in a High Rate Background Environment

    CERN Document Server

    Aleksa, Martin; Hessey, N P; Riegler, W

    1998-01-01

    A Cs137 gamma source with different lead filters in the SPS beam-line X5 has been used to simulate the ATLAS background radiation. This note shows the impact of high background rates on the MDT efficiency and resolution for three kinds of pulse shaping and compares the results with GARFIELD simulations. Furthermore it explains how the performance can be improved by time slewing corrections and double track separation.

  5. Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and hospital wastewaters in the freshwater mussel Elliptio complanata

    Institute of Scientific and Technical Information of China (English)

    Francois Gagné; Chantale André; Marlène Fortier; Michel Fournier

    2012-01-01

    Municipal wastewaters are major sources of pollution for the aquatic biota.The purpose of this study was to determine the levels of some pharmaceutical products and the immunotoxic potential of a municipal wastewater aeration lagoon for the treatment of the domestic wastewaters of a small town with wastewater inputs from a 400-bed hospital complex.Endemic mussels were collected,caged and placed in the final aeration lagoon and at sites 1 km upstream and 1 km downstream of the effluent outfall in the receiving river for a period of 14 days.The results showed that the final aeration lagoon contained high levels of total coliforms,conductivity and low dissolved oxygen (2.9 mg/L) as well as detectable amounts of trimethoprim,carbamazepine,gemfibrozil,and norfloxacin at concentrations exceeding 50 ng/L.The lagoon effluent was indeed toxic to the mussel specimens,as evidenced by the appearance of mortality after 14 days (10% mortality),decreased mussel weight-to-shell-length ratio and loss of hemocyte viability.The number of adhering hemocytes,phagocytic activity,total nitrite levels and arachidonic cyclooxygenase activity were significantly higher in mussels placed in the final aeration lagoon.A multivariate analysis also revealed that water pH,conductivity,total coliforms and dissolved oxygen were the endpoints most closely linked with phagocytic activity,the amount of adhering hemocytes and loss of hemocyte viability.In conclusion,exposure of mussels to treated aerated lagoon wastewater is deleterious to freshwater mussels where the immune system is compromised.

  6. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  7. Mechanical properties of transgenic silkworm silk at high rate impact

    Science.gov (United States)

    Chu, Jou-Mei

    Transgenic silkworm silk was created to obtain the quality of spider silk while being mass-producible. Due to the variability in sequencing between the silkworm and spider DNA, the resulting transgenic silkworm silk may have different properties compared to spider silk. Furthermore, the high strain rate mechanical response of this new natural fiber is still unknown and needs to be characterized. In this experimental research, a quasi-static load frame (MTS) and a Kolsky tension bar are used to characterize the tensile stress-strain response of transgenic silkworm silk over a range of strain-rates between 10-3/s to 103/s. The results show that transgenic silkworm silk tends to have high overall elongation and initial stiffness at high strain rates compared to those of spider silk. Furthermore, specimen gage length sensitivity is studied with gage lengths of 3.97 mm (5/32 in), 4.76 mm (3/16 in), and 6.35 mm (1/4 in). Fracture surfaces are examined via Scanning Electron Microscopy (SEM) and reveal that the fracture mode is similar to that of spider silk. Therefore, it may be possible for the tensile properties of transgenic silkworm silk be comparable to that of spider silk.

  8. Semi-solid electrodes having high rate capability

    Science.gov (United States)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-06-07

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  9. Atomistic simulations of high strain rate loading of nanocrystals

    Science.gov (United States)

    Bringa, E. M.; Tramontina, D.; Ruestes, C. J.; Tang, Y.; Meyers, M. A.; Gunkelmann, N.; Urbassek, H. M.

    2013-03-01

    Materials loaded at high strain rates can reach extreme temperature and pressure conditions. Most experiments on loading of simple materials use poly crystals, while most atomistic simulations of shock wave loading deal with single crystals, due to the higher computational cost of running polycrystal samples. Of course, atomistic simulations of polycrystals with micron-sized grains are beyond the capabilities of current supercomputers. On the other hand, nanocrystals (nc) with grain sizes below 50 nm can be obtained experimentally and modeled reasonably well at high strain rates, opening the possibility of nearly direct comparison between atomistic molecular dynamics (MD) simulations and experiments using high power lasers. We will discuss MD simulations and links to experiments for nc Cu and Ni, as model f.c.c. solids, and nc Ta and Fe, as model b.c.c. solids. In all cases, the microstructure resulting from loading depends strongly on grain size, strain rate and peak applied pressure. We will also discuss effects related to target porosity in nc's. E.M.B. thanks funding from PICT2008-1325.

  10. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.

    Science.gov (United States)

    Augustyn, Veronica; Come, Jérémy; Lowe, Michael A; Kim, Jong Woung; Taberna, Pierre-Louis; Tolbert, Sarah H; Abruña, Héctor D; Simon, Patrice; Dunn, Bruce

    2013-06-01

    Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 μm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.

  11. Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.

    Science.gov (United States)

    Kazantseva, Olga; Bingham, Marcus; Simard, Suzanne W; Berch, Shannon M

    2009-11-01

    Commercial nursery practices usually fail to promote mycorrhization of interior Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco] seedlings in British Columbia, which may account for their poor performance following planting in the field. We tested the effects of four nursery cultivation factors (nitrogen fertilization, phosphorus fertilization, watering, and soil aeration) and field soil addition on mycorrhization, survival, growth, and biomass allocation of interior Douglas-fir seedlings in a series of greenhouse experiments. Where field soil was added to the growing medium, mycorrhization and root/shoot ratios were maximized at lower levels of mineral nutrient application and aeration. Where field soil was not added, mycorrhization was negligible across all fertilization and aeration treatments, but root/shoot ratio was maximized at lower levels of mineral nutrients and the highest level of aeration. Regardless of whether field soil was added, intermediate levels of soil water resulted in the best mycorrhizal colonization and root/shoot ratios. However, field soil addition reduced seedling mortality at the two lowest water levels. A cluster analysis placed ectomycorrhizal morphotypes into three groups (Mycelium radicis-atrovirens Melin, Wilcoxina, and mixed) based on their treatment response, with all but two morphotypes in the mixed group whose abundance was maximized under conditions common to advanced seedling establishment. For maximal mycorrhization and root development of interior Douglas-fir seedlings, nurseries should minimize addition of nitrogen and phosphorus nutrients, maximize aeration, provide water at moderate rates, and, where possible, add small amounts of field soil to the growing medium.

  12. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland.

    Science.gov (United States)

    Ding, Yi; Wang, Wei; Song, Xin-Shan; Wang, Gang; Wang, Yu-Hui

    2014-12-01

    The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.

  13. Intermittent Aeration Suppresses Nitrite-Oxidizing Bacteria in Membrane-Aerated Biofilms: A Model-Based Explanation

    DEFF Research Database (Denmark)

    Ma, Yunjie; Domingo Felez, Carlos; Plósz, Benedek G.

    2017-01-01

    Autotrophic ammonium oxidation in membrane-aerated biofilm reactors (MABRs) can make treatment of ammonium-rich wastewaters more energy-efficient, especially within the context of short-cut ammonium removal. The challenge is to exclusively enrich ammonium-oxidizing bacteria (AOB). To achieve...

  14. High Strain Rate Compression Testing of Ceramics and Ceramic Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, W. R. (William R.)

    2005-01-01

    The compressive deformation and failure behavior of ceramics and ceramic-metal composites for armor applications has been studied as a function of strain rate at Los Alamos National Laboratory since the late 1980s. High strain rate ({approx}10{sup 3} s{sup -1}) uniaxial compression loading can be achieved using the Kolsky-split-Hopkinson pressure bar (SHPB) technique, but special methods must be used to obtain valid strength results. This paper reviews these methods and the limitations of the Kolsky-SHPB technique for this class of materials. The Kolsky-split-Hopkinson pressure bar (Kolsky-SHPB) technique was originally developed to characterize the mechanical behavior of ductile materials such as metals and polymers where the results can be used to develop strain-rate and temperature-dependent constitutive behavior models that empirically describe macroscopic plastic flow. The flow behavior of metals and polymers is generally controlled by thermally-activated and rate-dependent dislocation motion or polymer chain motion in response to shear stresses. Conversely, the macroscopic mechanical behavior of dense, brittle, ceramic-based materials is dominated by elastic deformation terminated by rapid failure associated with the propagation of defects in the material in response to resolved tensile stresses. This behavior is usually characterized by a distribution of macroscopically measured failure strengths and strains. The basis for any strain-rate dependence observed in the failure strength must originate from rate-dependence in the damage and fracture process, since uniform, uniaxial elastic behavior is rate-independent (e.g. inertial effects on crack growth). The study of microscopic damage and fracture processes and their rate-dependence under dynamic loading conditions is a difficult experimental challenge that is not addressed in this paper. The purpose of this paper is to review the methods that have been developed at the Los Alamos National Laboratory to

  15. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion.

    Science.gov (United States)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-01

    Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21days (GP21) and respiration activity over 4days (RA4), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due

  16. Scale dependence of rock friction at high work rate.

    Science.gov (United States)

    Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori

    2015-12-10

    Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its

  17. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Toyonaka Municipal Hospital, Osaka (Japan); Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Graduate School of Medicine; Furukawa, Souhei; Kakimoto, Naoya [Osaka Univ., Suita (Japan). Graduate School of Dentistry

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  18. Brachytherapy for early oral tongue cancer: low dose rate to high dose rate.

    Science.gov (United States)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Furukawa, Souhei; Kakimoto, Naoya; Shimizutani, Kimishige; Inoue, Toshihiko

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n = 341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer.

  19. A spark-protected high-rate detector

    CERN Document Server

    Fonte, Paulo J R; Costa, L; Ferreira-Marques, R; Mendiratta, S; Peskov, Vladimir; Policarpo, Armando

    1999-01-01

    We developed a very low resistivity RPC-type detector, the anode of which was a plate made from materials with resistivity up to 5x10 sup 7 OMEGA cm, the cathode being a metallic mesh preceded by a drift region. In such a detector it was actually possible to combine the versatility and high counting-rate capability of metallic PPACs with the extreme robustness and 'protectiveness' of Resistive Plate Chambers. Occasional discharges triggered by large deposits of primary ionisation or by extreme counting rates are quenched by the resistive anode and are constrained to the streamer phase of the sparking process. The study shows that this discharge affects the detector only locally and that the charge released is limited to a few tens of nC. Proportional counting rates up to 10 sup 5 Hz/mm sup 2 were achieved at gains above 10 sup 4. The energy resolution at 6 keV was 20% FWHM. The observed gain-rate trade-off is well described by an analytic model and further improvements may be expected by lowering the resistiv...

  20. A spark-protected high-rate detector

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, P. E-mail: paulo.fonte@cern.chfonte@lipc.fis.uc.pt; Carolino, N.; Costa, L.; Ferreira-Marques, Rui; Mendiratta, S.; Peskov, V.; Policarpo, A

    1999-07-11

    We developed a very low resistivity RPC-type detector, the anode of which was a plate made from materials with resistivity up to 5x10{sup 7} {omega} cm, the cathode being a metallic mesh preceded by a drift region. In such a detector it was actually possible to combine the versatility and high counting-rate capability of metallic PPACs with the extreme robustness and 'protectiveness' of Resistive Plate Chambers. Occasional discharges triggered by large deposits of primary ionisation or by extreme counting rates are quenched by the resistive anode and are constrained to the streamer phase of the sparking process. The study shows that this discharge affects the detector only locally and that the charge released is limited to a few tens of nC. Proportional counting rates up to 10{sup 5} Hz/mm{sup 2} were achieved at gains above 10{sup 4}. The energy resolution at 6 keV was 20% FWHM. The observed gain-rate trade-off is well described by an analytic model and further improvements may be expected by lowering the resistivity of the anode material. The properties of several custom-made, controllable resistivity, anode materials are described and prospects of improvement in the performance of the detector are discussed. (author)