WorldWideScience

Sample records for high adsorption ability

  1. Study on uranium adsorption ability of tannix resin from solution

    International Nuclear Information System (INIS)

    Le Thi Kim Dung; Le Quang Thai; Nguyen Lanh; Le Ngoc Thuy

    2004-01-01

    During past years, generated liquid waste from uranium ore processing has been treated by co-precipitation method in ITRRE. In this liquid waste treatment process, mixing liquid waste and lime, decantation, filtration of precipitate were implemented. The treated fluid has underlimited toxic concentration and ensures for moving into environment. Residue was dried and packed into drums as low level radioactive waste. Next to the advantages of this method such as simplest technology, cheapest cost, easy operation. Some amount of secondary radioactive waste as noncombustible materials must be stored with complicated technologies a highly cost. We have been researching a new liquid waste treatment system replaceable precipitation system. In the new process, insoluble tannin is utilized as adsorbent of uranium liquid waste. Advantage of insoluble tannin is expected to be possible to reduce its volume incineration as well as its adsorption ability. Those are the reasons why tannix resin is used this research subject. In this subject, we have studied adsorption capacity of uranium in Tannix, relation of adsorption rate and pH, the change of adsorption ability of column system, the pyrolysis curve of dried Tannix (author)

  2. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  3. Adsorption factor effect on dispersive ability of polymethylmethylmethacrylate

    International Nuclear Information System (INIS)

    Gorokhovskij, G.A.; Samsonov, G.V.; Gorshunov, V.P.

    1977-01-01

    A relationhsip between the rate of polymer macromolecules absorption on some refractory compounds and the dispersion ability of polymer-abrasive compositions was investigated at various contents of the polymethacrylate polymer in an abrasive composition. The solid phase used was powders of Al 2 O 3 , WC, W 2 B 5 , TiB 2 . It was established that the dispersion ability of the polymer-abrasive compositions was a function not only of the cutting properties of the abrasives and the dispersion ability of the polymers, but also of the adsorption properties of the solid phase and of its capacity to transport macromolecules to the surface being worked

  4. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  5. High ability: Giftedness and talent

    Directory of Open Access Journals (Sweden)

    María Dolores Prieto Sánchez

    2010-04-01

    Full Text Available This special issue of the journal aims at putting together national and international research on high abilities, and is divided into three sections: 1 Roles and cognitive, emotional and professional competences of high ability students’ teachers, 2 Identification and assessment of high ability students, 3 Analysis of practices, programs and mentoring of high ability students’ attention to diversity.The articles are authored by scholars from nine different countries (Spain, Argentina, UK, USA, Russia, Brazil, Saudi Arabia, Portugal and Poland, from sixteen different Spanish and international universities: Alicante (Spain, Autónoma de Barcelona (Spain, Málaga (Spain, Murcia (Spain, Navarra (Spain, Oviedo (Spain, Tufts University (USA, Yale University (USA, Moscow State University (Russia, Nacional de La Plata (Argentina, University of Connecticut (USA, Universidade do Minho (Portugal, Universidade da Beira Interior (Portugal, Universidade do Estado do Rio de Janeiro (Brazil, King Faisal University (Saudi Arabia and Universidad de Szczecin (Poland.

  6. The adsorption ability of Cr(VI) on sawdust–polyaniline nanocomposite

    International Nuclear Information System (INIS)

    Binh Phan, Thi; Que Do, Ngoc; Thanh Thuy Mai, Thi

    2010-01-01

    The results of this study of sawdust–polyaniline nanocomposite synthesized by a chemical method for Cr(VI) treatment in the environment are presented. Cr(VI) adsorption on a composite was determined by colorimetry. The results showed that sawdust–polyaniline composite synthesized with an aniline:sawdust ratio equal to 0.5 had an adsorption degree of 21.4 mg g −1 and adsorbed nearly 99% of the Cr(VI) after 2 h. The composite could be used for the adsorption of Cr(VI) from waste water. The Cr(VI) adsorption ability of the composite slightly depends on the pH value of the medium. The adsorption is fast during the first half hour and then the rate decreases

  7. Teachers of high ability pupils

    Directory of Open Access Journals (Sweden)

    Cándido Genovard

    2010-04-01

    Full Text Available In this article we analyze the characteristics of gifted and talented students’ expert teachers. The subject background and the specific proprieties of the instructional process to meet gifted students’ educational needs are analyzed. The value of teacher-student interactions and of teaching and learning styles are highlighted. Also, we include different action guidelines and instructional resources to use in the classroom to teach these students. There is not an ideal teacher for high ability students. However, teachers must know what the teaching-learning processes are and how these work, and the diverse psychological, content and contextual variables involved in such processes.

  8. High Ability and Learner Characteristics

    Directory of Open Access Journals (Sweden)

    Huda Hindal

    2013-01-01

    Full Text Available The outstandingly able learner has been conceptualised, in terms of test and examination performance, as the learner showing superior academic performance which is markedly better than that of peers and in ways regarded as of value by wider society. In Kuwait, such superior examination performance leads to a classification regarded as being ‘gifted’. This study looks at the inter-correlations between performance in various subjects in examinations and then considers how examination performance correlates with measures of working memory capacity, extent of field dependency, extent of divergency and visual-spatial abilities. A very large sample of grade 7 Kuwaiti students (aged ~13 was involved, the sample being selected in such a way that it contained a high proportion of those regarded as ‘gifted’ under the procedures used in Kuwait. While specific learner characteristics have been related to examination performance, this study brings four different characteristics together to gain a picture of the way these characteristics may be seen in those who perform extremely well in examinations. Principal components analysis using varimax rotation, was used to look at the examination data and one factor accounted for 87% of the variance. A consideration of the examination papers led to the conclusion that the national examinations tested only recall-recognition. It was also found that those who performed best in all six subjects tended to be those who are highly divergent and strongly visual-spatial as well as those tending to have higher working memory capacities and being more field independent. The inter-correlations between the various learner characteristics are explained in terms of the way the brain is known to process information. The implications of the findings for assessment and for the way high ability is considered are discussed.

  9. Specific Abilities May Increment Psychometric g for High Ability Populations

    Science.gov (United States)

    2016-04-14

    tend to sort themselves into jobs that are commensurate with their ability level ( McCormick , DeNisi, & Staw, 1979; McCormick , Jeanneret, & Mecham...of Genetic Psychology, 153, 229-230. Specific abilities, g, & high ability populations 14 McCormick , E. J., DeNisi, A. S., & Shaw, J. B... McCormick , E. J., Jeanneret, P. R., & Mecham, R. C. (1972). A study of job characteristics and job dimensions as based on the Position Analysis Questionnaire

  10. Structural studies of some activated carbons with different radon adsorption ability by X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Wang Qingbo; Qu Jingyuan; Zhu Wenkai; Cheng Jinxing; Zhou Baichang

    2010-01-01

    Four different activated carbons with different radon adsorption ability were analyzed by X-ray diffraction techniques. Micro crystal parameters were calculated by Scherrer and Hirsch equations. The results show that the activated carbon with micro crystal parameters at =1.7 nm, =1.9 nm, average layers =4 has the stronger adsorption ability in the for carbon samples, which can be referred when developing activated carbons for radon adsorption. (authors)

  11. Adsorption Ability of Caragana Korshinskii Kom Biochar to Diuron in Soil

    Directory of Open Access Journals (Sweden)

    XING Ze-bing

    2017-10-01

    Full Text Available Caragana Korshinskii Kom were charred to yield the biochar in the temperature of 200℃, 300℃, 400℃ and 600℃. The components of Caragana Korshinskii Kom biochar were analyzed, the structure was surveyed through SEM and the adsorption isotherm curve was plotted with the specific surface area analyzer. The pore volume, size, and specific surface area were calculated. Biochar were mixed into soil column to detect the adsorption ability to diuron herbicide. The results showed that the adsorption isotherm curves of Caragana Korshinskii Kom biochar were the traditional I adsorption curves, the productivity of biochar decreased with the raising of charring temperature. Biochar, charred at the temperature of 600℃, had achieved 44.71% of yield rate of carbonization, 187.56 m2·g-1 specific surface area and mean 4.83 nm pore size. The microspore volume account for 53% in total pore volume. 1% of biochar had the significant effect on adsorption of diuron in soil, 3% of biochar in soil reached an optimal application amount balancing between its properties and cost.

  12. Cesium adsorption ability and stability of metal hexacyanoferrate irradiated with gamma-rays

    International Nuclear Information System (INIS)

    Arisaka, Makoto; Watanabe, Masayuki; Ishizaki, Manabu; Kurihara, Masato; Chen, Rongzhi; Tanaka, Hisashi

    2013-01-01

    The influence of irradiation with gamma-rays to metal hexacyanoferrate (MHCF: M = Fe, Cu or Ni), which is known as an adsorbent for selective adsorption of cesium (Cs) ion in solution, on Cs adsorption ability and stability was investigated in HNO 3 solutions. Under the adsorbed dose conditions (50 - 300 kGy), it was found that the MHCF is fully stable although the radiolytic decomposition of MHCF was slightly observed with an increase of the total adsorbed dose, which was confirmed by an increment of Fe, Cu or Ni concentration in HNO 3 solution after the irradiation. The weight percent of the metal in the solution to initial weight of MHCF was less than unity. Moreover, no change in composition of carbon, hydrogen and nitrogen in MHCF was observed. On the other hand, the distribution coefficients of Cs to the irradiated MHCF were independent of the total adsorbed dose. This indicates that the Cs adsorption ability was maintained under gamma-ray irradiation. (author)

  13. [Bidens maximowicziana's adsorption ability and remediation potential to lead in soils].

    Science.gov (United States)

    Wang, Hong-qi; Li, Hua; Lu, Si-jin

    2005-11-01

    Bidens maximowicziana's adsorption ability and remediation potential to lead were studied. The results show: (1) The Bidens maximowicziana has a strong adsorption to lead, the concentration of lead in plants increased linearly with the increase of lead concentration in soil. Then maximum concentration was 1509.3 mg x kg(-1) in roots and 2164.7 mg x kg(-1) in shoots when lead concentration in soil was 2000 mg x L(-1); (2) The lead concentration distribution order in the Bidens maximorwicziana is: leaf>stem>root>seed, which indicate that Bidens maximowicziana has a strong ability to transfer lead; (3) Uptaking ability differes in different vegetal periods. Maximum lead uptaking rate occured in the period of blooming for 40-60 days, in which daily uptake capacity was 15.81 mg x (kg x d)(-1) in roots and 19.83 mg x (kg x d)(-1) in shoots respectively. It can be concluded that Bidens maximowicziana appeares to be a moderate Pb accumulator making it suitable for phytoremediation of Pb contaminated soil.

  14. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  15. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria.

    Science.gov (United States)

    Yue, Zheng-Bo; Li, Qing; Li, Chuan-chuan; Chen, Tian-hu; Wang, Jin

    2015-10-01

    Extracellular polymeric substances (EPS) play an important role in the treatment of acid mine drainage (AMD) by sulfate-reducing bacteria (SRB). In this paper, Desulfovibrio desulfuricans was used as the test strain to explore the effect of heavy metals on the components and adsorption ability of EPS. Fourier-transform infrared (FTIR) spectroscopy analysis results showed that heavy metals did not influence the type of functional groups of EPS. Potentiometric titration results indicated that the acidic constants (pKa) of the EPS fell into three ranges of 3.5-4.0, 5.9-6.7, and 8.9-9.8. The adsorption site concentrations of the surface functional groups also increased. Adsorption results suggested that EPS had a specific binding affinity for the dosed heavy metal, and that EPS extracted from the Zn(2+)-dosed system had a higher binding affinity for all heavy metals. Additionally, Zn(2+) decreased the inhibitory effects of Cd(2+) and Cu(2+) on the SRB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    Science.gov (United States)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  17. Solvothermal synthesis and enhanced CO2 adsorption ability of mesoporous graphene oxide-ZnO nanocomposite

    International Nuclear Information System (INIS)

    Li, Weidong; Jiang, Xia; Yang, Huayun; Liu, Qi

    2015-01-01

    Highlights: • GO–ZnO nanocomposite was prepared by solvothermal method. • Several technologies have been used to ensure and analyze the composite. • GO–ZnO has CO 2 adsorption capacity of up to 44.8 cm 3 /g at 298 K and 1 bar. • The composite has excellent adsorption/desorption recycling ability. - Abstract: Mesoporous graphene oxide–ZnO (GO–ZnO) nanocomposite has been synthesized by GO and ZnO which was prepared by solvothermal method. Power X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to characterize the structure and morphology of the porous GO–ZnO hybrid. With visible porosity of ZnO and GO–ZnO, N 2 adsorption–desorption measurements and pore size analysis have been investigated and compared. Comparing to ZnO, GO–ZnO showed larger Brunauer–Emmett–Teller (BET) surface area and enhanced ability on capturing CO 2 at different temperatures. Several cycles of adsorption–desorption experiments on CO 2 have been tested and it proved GO–ZnO to be potential adsorbent material with excellent cycling stability.

  18. High Ability Students' Voice on Learning Motivation

    Science.gov (United States)

    Garn, Alex C.; Jolly, Jennifer L.

    2014-01-01

    This study used a self-determination theory lens to investigate high ability learners' motivational experiences. Participants were 15 high ability youth involved in a summer learning camp for gifted students. Two major themes emerged from qualitative data analysis: (a) "The Fun Factor of Learning" and (b) "The Rewards and Pressures…

  19. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.

    Science.gov (United States)

    Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing

    2018-01-12

    To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl]  > MIP [C4mim][C4F7O2]  ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3]  > MIP [C4mim][C4F9SO3]  > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability.

    Science.gov (United States)

    Huang, Yuanbiao; Lin, Zujin; Fu, Hongru; Wang, Fei; Shen, Min; Wang, Xusheng; Cao, Rong

    2014-09-01

    A three-dimensional microporous anionic metal-organic framework (MOF) (Et4N)3[In3(TATB)4] (FJI-C1, H3TATB=4,4',4''-s-triazine-2,4,6-triyltribenzoic acid) with large unit cell volume has been synthesized. Assisted by the organic cation group Et4N in the pores of the compound, FJI-C1 not only shows high adsorption uptakes of C2 and C3 hydrocarbons, but also exhibits highly selective separation of propane, acetylene, ethane, and ethylene from methane at room temperature. Furthermore, it also exhibits high separation selectivity for propane over C2 hydrocarbons and acetylene can be readily separated from their C2 hydrocarbons mixtures at low pressure due to the high selectivity for C2H2 in comparison to C2H4 and C2H6. In addition, FJI-C1 with hydrophilic internal pores surfaces shows highly efficient adsorption separation of polar molecules from nonpolar molecules. Notably, it exhibits high separation selectivity for benzene over cyclohexane due to the π-π interactions between benzene molecules and s-triazine rings of the porous MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Creativity, synthetic intelligence and high ability

    Directory of Open Access Journals (Sweden)

    Marta Sainz

    2010-04-01

    Full Text Available The objective of this study is to analyze the construct of creativity and its relationship with high ability, presenting different definitions, assessment tools and strategies to encourage their development in the school context. The paper is structured into five sections: firstly, we define the concept of creativity. Secondly, we present the most relevant instruments used in the analysis of high ability students’ creativity. Thirdly, we look into several studies on creativity and high abilitiy, highlighting the main limitations of the research carried out. Fourthly, we present principles and strategies in order to foster creativity in the school context. Finally, some conclusions are drawn on the relationship between creativity and high ability.

  2. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8570 (Japan)

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO){sub 20}(PO){sub 70}(EO){sub 20}) or F127 ((EO){sub 106}(PO){sub 70}(EO){sub 106}), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films.

  3. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    International Nuclear Information System (INIS)

    Kato, Katsuya; Nakamura, Hitomi; Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro

    2014-01-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO) 20 (PO) 70 (EO) 20 ) or F127 ((EO) 106 (PO) 70 (EO) 106 ), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films

  4. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  5. Preparation and Adsorption Ability of Polysulfone Microcapsules Containing Modified Chitosan Gel

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; LUO Guangsheng; YANG Weiwei; WANG Yujun

    2005-01-01

    Chemically modified chitosan beads containing polyethyleneimine (PEI) were prepared to improve the metal ion adsorption capacity of the chitosan beads and their mechanical stability and to limit their biodegradability. The modified beads were encapsulated with the polymer material polysulfone by a novel surface coating method named the emulsion phase inversion method. The adsorption properties of the modified beads and the microstructures of the polysulfone coating layer were then analyzed. The experimental results showed that the PEI was successfully linked onto the chitosan beads. The density of the -NH2 groups in the modified beads was significantly increased, while the water content was reduced. The coating layer thickness was about 200 (m. The modified chitosan gel beads had excellent Cu(II) adsorption capacity, with a maximum Cu(II) adsorption capacity 1.34 times higher than that of the unmodified beads. The results show that even with the polysulfone coating the adsorption kinetics of the modified beads is still better than those of the unmodified beads. The modifications improve the mass transfer performance of the chitosan beads as well as the bead stability.

  6. Graphene oxide foams and their excellent adsorption ability for acetone gas

    International Nuclear Information System (INIS)

    He, Yongqiang; Zhang, Nana; Wu, Fei; Xu, Fangqiang; Liu, Yu; Gao, Jianping

    2013-01-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed that the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials

  7. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation.

    Science.gov (United States)

    Sostaric, Joe Z; Miyoshi, Norio; Cheng, Jason Y; Riesz, Peter

    2008-10-09

    Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.

  8. Construction of iron-polymer-graphene nanocomposites with low nonspecific adsorption and strong quenching ability for competitive immunofluorescent detection of biomarkers in GM crops.

    Science.gov (United States)

    Yin, Kaifei; Liu, Anran; Shangguan, Li; Mi, Li; Liu, Xu; Liu, Yuanjian; Zhao, Yuewu; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-04-15

    We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Adsorption Device Based on a Langatate Crystal Microbalance for High Temperature High Pressure Gas Adsorption in Zeolite H-ZSM-5.

    Science.gov (United States)

    Ding, Wenjin; Baracchini, Giulia; Klumpp, Michael; Schwieger, Wilhelm; Dittmeyer, Roland

    2016-08-25

    We present a high-temperature and high-pressure gas adsorption measurement device based on a high-frequency oscillating microbalance (5 MHz langatate crystal microbalance, LCM) and its use for gas adsorption measurements in zeolite H-ZSM-5. Prior to the adsorption measurements, zeolite H-ZSM-5 crystals were synthesized on the gold electrode in the center of the LCM, without covering the connection points of the gold electrodes to the oscillator, by the steam-assisted crystallization (SAC) method, so that the zeolite crystals remain attached to the oscillating microbalance while keeping good electroconductivity of the LCM during the adsorption measurements. Compared to a conventional quartz crystal microbalance (QCM) which is limited to temperatures below 80 °C, the LCM can realize the adsorption measurements in principle at temperatures as high as 200-300 °C (i.e., at or close to the reaction temperature of the target application of one-stage DME synthesis from the synthesis gas), owing to the absence of crystalline-phase transitions up to its melting point (1,470 °C). The system was applied to investigate the adsorption of CO2, H2O, methanol and dimethyl ether (DME), each in the gas phase, on zeolite H-ZSM-5 in the temperature and pressure range of 50-150 °C and 0-18 bar, respectively. The results showed that the adsorption isotherms of these gases in H-ZSM-5 can be well fitted by Langmuir-type adsorption isotherms. Furthermore, the determined adsorption parameters, i.e., adsorption capacities, adsorption enthalpies, and adsorption entropies, compare well to literature data. In this work, the results for CO2 are shown as an example.

  10. Shared-Environmental Contributions to High Cognitive Ability

    OpenAIRE

    Kirkpatrick, Robert M.; McGue, Matt; Iacono, William G.

    2009-01-01

    Using a combined sample of adolescent twins, biological siblings, and adoptive siblings, we estimated and compared the differential shared-environmentality for high cognitive ability and the shared-environmental variance for the full range of ability during adolescence. Estimates obtained via multiple methods were in the neighborhood of 0.20, and suggest a modest effect of the shared environment on both high and full-range ability. We then examined the association of ability with three measur...

  11. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  12. The Effect of Pretreatment on the Cesium Adsorption Ability of IONSIV(C)IE-911

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    1999-01-01

    The recovery of plutonium from reactor fuel elements at the Savannah River Site generated nearly 34 million gallons of high level waste. The Site stores the waste as a mixture of precipitated metal hydroxides and associated supernatant liquid with elevated concentrations of free hydroxide. The liquid fraction contains the majority of the radioactive cesium

  13. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@aut.ac.ir [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Khorramfar, Shooka [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Amini, Farrokhlegha [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Arami, Mokhtar [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. Black-Right-Pointing-Pointer Kinetics data followed pseudo-second order kinetic model. Black-Right-Pointing-Pointer Isotherm data followed Langmuir isotherm. Black-Right-Pointing-Pointer Q{sub 0} for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. Black-Right-Pointing-Pointer PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q{sub 0}) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  14. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood; Khorramfar, Shooka; Amini, Farrokhlegha; Arami, Mokhtar

    2011-01-01

    Highlights: ► Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. ► Kinetics data followed pseudo-second order kinetic model. ► Isotherm data followed Langmuir isotherm. ► Q 0 for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. ► PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q 0 ) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  15. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  16. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  17. Shared-environmental contributions to high cognitive ability.

    Science.gov (United States)

    Kirkpatrick, Robert M; McGue, Matt; Iacono, William G

    2009-07-01

    Using a combined sample of adolescent twins, biological siblings, and adoptive siblings, we estimated and compared the differential shared-environmentality for high cognitive ability and the shared-environmental variance for the full range of ability during adolescence. Estimates obtained via multiple methods were in the neighborhood of 0.20, and suggest a modest effect of the shared environment on both high and full-range ability. We then examined the association of ability with three measures of the family environment in a subsample of adoptive siblings: parental occupational status, parental education, and disruptive life events. Only parental education showed significant (albeit modest) association with ability in both the biological and adoptive samples. We discuss these results in terms of the need for cognitive-development research to combine genetically sensitive designs and modern statistical methods with broad, thorough environmental measurement.

  18. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  19. Human face recognition ability is specific and highly heritable.

    Science.gov (United States)

    Wilmer, Jeremy B; Germine, Laura; Chabris, Christopher F; Chatterjee, Garga; Williams, Mark; Loken, Eric; Nakayama, Ken; Duchaine, Bradley

    2010-03-16

    Compared with notable successes in the genetics of basic sensory transduction, progress on the genetics of higher level perception and cognition has been limited. We propose that investigating specific cognitive abilities with well-defined neural substrates, such as face recognition, may yield additional insights. In a twin study of face recognition, we found that the correlation of scores between monozygotic twins (0.70) was more than double the dizygotic twin correlation (0.29), evidence for a high genetic contribution to face recognition ability. Low correlations between face recognition scores and visual and verbal recognition scores indicate that both face recognition ability itself and its genetic basis are largely attributable to face-specific mechanisms. The present results therefore identify an unusual phenomenon: a highly specific cognitive ability that is highly heritable. Our results establish a clear genetic basis for face recognition, opening this intensively studied and socially advantageous cognitive trait to genetic investigation.

  20. Desirable characteristics for teachers of High Ability/Gifted students

    Directory of Open Access Journals (Sweden)

    Alexandra da Costa Souza Martins

    2011-06-01

    Full Text Available This study investigated the desirable educational background for a teacher to work with high ability/gifted students, desirable characteristics these teachers should present and conceptions on high ability/giftedness. The participants were 20 public school teachers from a city surrounding Brasilia. Of this group, ten were elementary school teachers working with initial grades and ten were undergraduate Pedagogy teachers. A qualitative approach was used and data were collected by means of a semi-structured interview. A content analysis was then conducted. In relation to the desirable educational background for a teach of high ability/gifted students, participants indicated the need of continuous training, under graduation curriculum adapted to the theme and graduation courses in the area. The desirable features for teachers of high ability/gifted students were related to personological attributes (personality traits and intellectual ability, as well as professional characteristics. The conceptions on high ability/giftedness presented by the participants were, in general, close to those found in the literature and used as reference for this study. However, there was lack of information on how to apply the theory into real practice, as well as several wrong ideas on the topic.

  1. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    Science.gov (United States)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  2. Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal

    Science.gov (United States)

    Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan

    2018-05-01

    Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.

  3. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-01-01

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q 0 of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q 0 of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q 0 ) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  4. Synthesis of Iron Doped Zeolite Imidazolate Framework-8 and Its Remazol Deep Black RGB Dye Adsorption Ability

    Directory of Open Access Journals (Sweden)

    Mai Thi Thanh

    2017-01-01

    Full Text Available Zeolite imidazole framework-8 (ZIF-8 and the iron doped ZIF-8 (Fe-ZIF-8 were synthesized by the hydrothermal process. The obtained materials were characteristic of X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, scanning electron microscope (SEM, nitrogen adsorption/desorption isotherms, and atomic absorption spectroscopy (AAS. The results showed that the obtained Fe-ZIF-8 possessed the ZIF-8 structure with a large specific area. ZIF-8 and Fe-ZIF-8 were used for the removal of Remazol Deep Black (RDB RGB dye from aqueous solutions. The various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. The results showed that the introduction of iron into ZIF-8 provided a much larger adsorption capacity and faster adsorption kinetics than ZIF-8 without iron. The electrostatic interaction and π-π interaction between the aromatic rings of the RDB dye and the aromatic imidazolate rings of the adsorbent were responsible for the RDB adsorption. Moreover, the coordination of the nitrogen atoms and oxygen in carboxyl group in RDB molecules with the Fe2+ ions in the ZIF-8 framework played a vital role for the effective removal of RDB from aqueous solution.

  5. Novel hydrophobic PDVB/R-SiO2 for adsorption of volatile organic compounds from highly humid gas stream.

    Science.gov (United States)

    Lu, Han-feng; Cao, Jie-jing; Zhou, Ying; Zhan, De-li; Chen, Yin-fei

    2013-11-15

    A novel organic-inorganic hydrophobic polydivinylbenzene-silica adsorbent (PDVB/R-SiO2) was successfully prepared by introducing a specific amount of divinylbenzene and solvent (i.e., tetrahydrofuran) to SiO2pores and initiating polymerization under solvothermal conditions. New smaller structures and surface areas were formed in the SiO2 pores. The PDVB/R-SiO2-0.5 samples exhibited a bimodal pore size distribution with both SiO2 micropores/mesopores (0.5-2.0 nm) and mesopores (2.0-5.0 nm). The surface areas increased from 116 m(2)/g (SiO2) to 246 m(2)/g. The breakthrough curves of toluene adsorption indicated that the amount adsorbed on PDVB/R-SiO2-0.5 was 12 times higher than that on SiO2. The highly humid environment exhibited no effect on adsorption because the surface of PDVB was functionalized. The adsorbed toluene was easily desorbed in hot N2 stream at 100 °C. After 10 adsorption-desorption cycles, PDVB/R-SiO2-0.5 continued exhibiting excellent adsorption, indicating superior structural and regeneration abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  7. Teaching High-Ability Pupils in Early Primary School

    NARCIS (Netherlands)

    Dijkstra, Elma

    2015-01-01

    This thesis describes the design and implementation of the intervention 'Excel Kwadraat' in primary schools. This intervention aims to improve teachers’ differentiation practices in order to better anticipate pupil differences, including excellent or high-ability pupils. In the end, the intervention

  8. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    Science.gov (United States)

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  9. Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent.

    Science.gov (United States)

    Liu, Shou-Heng; Lin, Yuan-Chung; Chien, Yi-Chi; Hyu, Han-Ren

    2011-02-01

    Three ordered mesoporous silicas (OMSs) with different pore sizes and pore architectures were prepared and modified with amine functional groups by a postgrafting method. The carbon dioxide (CO2) adsorption on these amine-modified OMSs was measured by using microbalances at 348 K, and their adsorption capacities were found to be 0.2-1.4 mmol g(-1) under ambient pressure using dry 15% CO2. It was found experimentally that the CO2 adsorption capacity and adsorption rate were attributed to the density of amine groups and pore volume, respectively. A simple method is described for the production of densely anchored amine groups on a solid adsorbent invoking direct incorporation of tetraethylenepentamine onto the as-synthesized OMSs. Unlike conventional amine-modified OMSs, which typically show CO2 adsorption capacity less than 2 mmol g(-1), such organic template occluded amine-OMS composites possessed remarkably high CO2 uptake of approximately 4.6 mmol g(-1) at 348 K and 1 atm for a dry 15% CO2/nitrogen feed mixture. The enhancement of 8% in CO2 adsorption capacity was also observed in the presence of 10.6% water vapor. Durability tests done by cyclic adsorption-desorption revealed that these adsorbents also possess excellent stability.

  10. Water-Stable Metal-Organic Framework with Three Hydrogen-Bond Acceptors: Versatile Theoretical and Experimental Insights into Adsorption Ability and Thermo-Hydrolytic Stability.

    Science.gov (United States)

    Roztocki, Kornel; Lupa, Magdalena; Sławek, Andrzej; Makowski, Wacław; Senkovska, Irena; Kaskel, Stefan; Matoga, Dariusz

    2018-03-19

    A new microporous cadmium metal-organic framework was synthesized both mechanochemically and in solution by using a sulfonyl-functionalized dicarboxylate linker and an acylhydrazone colinker. The three-dimensional framework is highly stable upon heating to 300 °C as well as in aqueous solutions at elevated temperatures or acidic conditions. The thermally activated material exhibits steep water vapor uptake at low relative pressures at 298 K and excellent recyclability up to 260 °C as confirmed by both quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) method as well as adsorption isotherm measurements. Reversible isotherms and hysteretic isobars recorded for the desorption-adsorption cycles indicate the maximum uptake of 0.19 g/g (at 298 K, up to p/p 0 = 1) or 0.18 g/g (at 1 bar, within 295-375 K range), respectively. The experimental isosteric heat of adsorption (48.9 kJ/mol) indicates noncoordinative interactions of water molecules with the framework. Exchange of the solvent molecules in the as-made material with water, performed in the single-crystal to single-crystal manner, allows direct comparison of both X-ray crystal structures. The single-crystal X-ray diffraction for the water-loaded framework demonstrates the orientation of water clusters in the framework cavities and reveals their strong hydrogen bonding with sulfonyl, acyl, and carboxylate groups of the two linkers. The grand canonical Monte Carlo (GCMC) simulations of H 2 O adsorption corroborate the experimental findings and reveal preferable locations of guest molecules in the framework voids at various pressures. Additionally, both experimental and GCMC simulation insights into the adsorption of CO 2 (at 195 K) on the activated framework are presented.

  11. Adsorption of Sr on kaolinite, illite and montmorillonite at high ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.J.; Langmuir, D. (Colorado School of Mines, Golden (USA). Dept. of Chemistry and Geochemistry)

    1991-01-01

    Experimental measurements of Sr adsorption onto kaolinite, illite and montmorillonite in up to 4.0 mol/kg NaCl solutions, were modelled with the surface ionization and complexation triple-layer (SIC) model (Davis et al.) to determine if model adjustments were required for high ionic strengths. Improved model fits to the adsorption data were obtained at high ionic strengths, reflecting a lowered sensitivity of the model. A general reduction in Sr adsorption with increasing ionic strength was caused by an increase in the outer layer surface charge, rather than by a drop in the number of available adsorption sites. Sensitivity analysis showed that the range of values of model constants yielding acceptable fits was as large as variations reported in the literature for these constants. The study demonstrates that adsorption will not retard Sr migration in brines, and that it is unnecessary to introduce a Pitzer ion interaction subroutine in the SIC model when considering adsorption at high ionic strengths. (orig.).

  12. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    Science.gov (United States)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  13. Neptunium(V) adsorption to bacteria at low and high ionic strength

    International Nuclear Information System (INIS)

    Ams, David A.; Swanson, Juliet S.; Reed, Donald T.; Fein, Jeremy B.

    2010-01-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO 2 + aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO 2 + ) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than differences in bacteria

  14. Neptunium(V) adsorption to bacteria at low and high ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory; Swanson, Juliet S [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Fein, Jeremy B [UNIV OF NOTRE DAME

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  15. Study of high-pressure adsorption from supercritical fluids by the potential theory

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander

    2009-01-01

    The multicomponent potential theory of adsorption (MPTA), which has been previously used to study low-pressure adsorption of subcritical fluids, is extended to adsorption equilibria from supercritical fluids up to high pressures. The MPTA describes an adsorbed phase as an inhomogeneous fluid...... the adsorbed and the gas phases. We have also evaluated the performance of the classical Soave-Redlich-Kwong (SRK) EoS. The fluid-solid interactions are described by simple Dubinin-Radushkevich-Astakhov (DRA) potentials. In addition, we test the performance of the 10-4-3 Steele potential. It is shown...... that application of sPC-SAFT slightly improves the performance of the MPTA and that in spite of its simplicity, the DRA model can be considered as an accurate potential, especially, for mixture adsorption. We show that, for the sets of experimental data considered in this work, the MPTA is capable of predicting...

  16. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    Science.gov (United States)

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  18. Identifying high ability students: a contribution from neuropsychological indicators

    Directory of Open Access Journals (Sweden)

    Dora Cortat Simonetti

    2010-06-01

    Full Text Available This paper presents some data on the convergence between psychometric intelligence measurements (IQ tests and physiological signs of mental activity found in high ability adolescents. The research study focus on a small group of 15 subjects submitted to electric encephalograms, previously chosen from a larger group of 77 classmates on the basis of scores on the WISC-III IQ Test. The results suggest continuous predominance of Alpha waves for the gifted group (higher frequency percentile and higher amplitude what was not observed in the group without any superior intellectual ability. Even taking into account methodological limitations, this study may contribute to the understanding of a relationship between the intellectual quotient (IQ and alpha waves frequency and amplitude, as observed during performance on cognitive tasks. Such results may suggest a possibility to complement psychometric measures with encephalic registers in giftedness research studies.

  19. Ability Group Configuration for the High School Physics Classroom

    Science.gov (United States)

    Zitnik, Scott

    This research project looks to investigate the effectiveness of different ability grouping arrangements for the high school physics classroom. Students were first organized based on their academic aptitude in physics into three general groups of high, medium, and low achieving students. They were then divided into both groups of four and dyads that were constructed in one of four arrangements, namely: random, homogeneous, heterogeneous, or student choice. Data was collected based on their academic performance as well as survey responses regarding the group and dyad performance. Students worked in a rotation of these groups and dyads for a unit to measure student preference and introduce collaborative work formally to the classes. At this point it was evident that students preferred the student choice arrangement based on survey responses, yet the student choice survey responses also resulted in the lowest level of reliability when compared to all other grouping methods. For the next unit students were kept in either the random, homogeneous, or heterogeneous grouping arrangement for the entirety of the unit. At the conclusion of the second unit student achievement as well as survey responses were analyzed. As a result of this research there appears to be a slight student preference as well as academic benefit to homogeneous group and dyad arrangements for each of the three ability groups of students in the high school physics classroom when compared to random and heterogeneous grouping methods of academic group arrangement.

  20. Hierarchically structured nanoporous carbon tubes for high pressure carbon dioxide adsorption

    Directory of Open Access Journals (Sweden)

    Julia Patzsch

    2017-05-01

    Full Text Available Mesoscopic, nanoporous carbon tubes were synthesized by a combination of the Stoeber process and the use of electrospun macrosized polystyrene fibres as structure directing templates. The obtained carbon tubes have a macroporous nature characterized by a thick wall structure and a high specific surface area of approximately 500 m²/g resulting from their micro- and mesopores. The micropore regime of the carbon tubes is composed of turbostratic graphitic areas observed in the microstructure. The employed templating process was also used for the synthesis of silicon carbide tubes. The characterization of all porous materials was performed by nitrogen adsorption at 77 K, Raman spectroscopy, infrared spectroscopy, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM as well as transmission electron microscopy (TEM. The adsorption of carbon dioxide on the carbon tubes at 25 °C at pressures of up to 30 bar was studied using a volumetric method. At 26 bar, an adsorption capacity of 4.9 mmol/g was observed. This is comparable to the adsorption capacity of molecular sieves and vertically aligned carbon nanotubes. The high pressure adsorption process of CO2 was found to irreversibly change the microporous structure of the carbon tubes.

  1. Highly enhanced adsorption of Congo red by functionalized finger-citron-leaf-based porous carbon.

    Science.gov (United States)

    Zhao, Gui-Hua; Fang, Yao-Yao; Dai, Wei; Ma, Na

    2018-01-01

    A novel high-performance porous carbon material, lanthanum(III)-doped finger-citron-leaf-based porous carbon (La/FPC), has been synthesized and used as an adsorbent for anion dye Congo red (CR). The La/FPC was characterized by nitrogen adsorption and desorption isotherms, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The adsorption performance of CR by the FPC and La/FPC composites with different contents of lanthanum(III) were evaluated in fixed-bed breakthrough experiments and batch tests at room temperature (298 K). The La/FPC had a high CR uptake capacity, which was superior to those previously reported for other adsorbents. The La/FPC sorbents can be easily regenerated using an ethanol elution technique, and after five cycles the reused La/FPC maintained about 98% of its original CR adsorption capacity. The adsorption kinetics of CR onto the lanthanum(III)-doped FPCs followed a pseudo-second-order kinetic model and fitted well with a Langmuir adsorption isotherm. La/FPC is a promising adsorbent for the removal of the anionic dyes from wastewater.

  2. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption.

    Science.gov (United States)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei; Zhou, Bingjie; Lv, Liping; Ren, Jingzheng; Dong, Lichun; Li, Jing; Liu, Zhenfa

    2017-07-05

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn 2 O 3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced via a template-free route. The attained dual-porosity Mn 2 O 3 materials have 24nm of large-pore mesopores and 700nm of macropores. Besides, the achieved materials own cubic morphologies with particle sizes as large as 6.0μm, making them separable in the solution by a facile natural sedimentation. Dye adsorption measurements reveal that the dual-porosity materials possess a very high maximum adsorption capacity of 125.6mg/g, much larger than many reported materials. Particularly, the adsorbents can be recycled and the dye removal efficiency can be well maintained at 98% after four cycles. Adsorption isotherm and kinetics show that the Langmuir model and the pseudo-second-order kinetics model can well describe the adsorption process of Congo Red on the dual-porosity Mn 2 O 3 cube materials. In brief, the reported dual-porosity Mn 2 O 3 demonstrates a good example for controlled preparation of dual-porosity materials with large-pore mesopores, and the macropore-mesopore dual-porosity distribution is good for mass transfer in dye adsorption application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preparation and Adsorption Performances of Phragmites australis Activated Carbon with High Acidity

    Directory of Open Access Journals (Sweden)

    FU Cheng-kai

    2017-03-01

    Full Text Available For removal of heavy metals from wastewater and recycling the wetland plants, the present study investigated the viability of using silage of Phragmites australis (PA to prepare activated carbons (ACs with high acidity. BET surface area, porous texture and surface functional characteristics of ACs were analyzed by N2 adsorption/desorption, elemental analysis and Boehm titration method. ACs presented well-developed micro-porosity and favorable surface acidity. The sorption equilibrium data for Ni (Ⅱ and Cd (Ⅱ sorption onto ACs were analyzed by the Langmuir and Freundlich models. The Langmuir model was fitted well to the adsorption behavior. The properties of high surface acidity promoted the adsorption of heavy metals by the silage-treated ACs and the chemical sorption played the key role in the sorption process.

  4. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite

    International Nuclear Information System (INIS)

    Zhao, Shou; Feng, Chenghong; Huang, Xiangning; Li, Baohua; Niu, Junfeng; Shen, Zhenyao

    2012-01-01

    Highlights: ► Al 13 modification changes As(V) sorption mechanism of montmorillonites. ► Intercalated ion charges mainly affects As(V) adsorption kinetics. ► Uniform pore structure exhibit more excellent As(V) adsorption performance. - Abstract: Four modified montmorillonite adsorbents with varied Al 13 contents (i.e., Na-Mont, AC-Mont, PAC 20 -Mont, and Al 13 -Mont) were synthesized and characterized by N 2 adsorption/desorption, X-ray diffraction, and Fourier-transform infrared analyses. The arsenate adsorption performance of the four adsorbents were also investigated to determine the role of intercalated Al 13 , especially its high purity, high positive charge (+7), and special Keggin structure. With increased Al 13 content, the physicochemical properties (e.g., surface area, structural uniformity, basal spacing, and pore volume) and adsorption performance of the modified montmorillonites were significantly but disproportionately improved. The adsorption data well fitted the Freundlich and Redlich–Peterson isotherm model, whereas the kinetic data better correlated with the pseudo-second-order kinetic model. The arsenate sorption mechanism of the montmorillonites changed from physical to chemisorption after intercalation with Al 13 . Increasing charges of the intercalated ions enhanced the arsenate adsorption kinetics, but had minimal effect on the structural changes of the montmorillonites. The uniform pore structure formed by intercalation with high-purity Al 13 greatly enhanced the pore diffusion and adsorption rate of arsenate, resulting in the high adsorption performance of Al 13 -Mont.

  5. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    Science.gov (United States)

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    Science.gov (United States)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  7. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yongji Zhang; HuiJuan Chi; WenHui Zhang; Youyi Sun; Qing Liang; Yu Gu; Riya Jing

    2014-01-01

    Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.

  8. Myth 15: High-Ability Students Don't Face Problems and Challenges

    Science.gov (United States)

    Moon, Sidney M.

    2009-01-01

    One rationale for failure to address the needs of high-ability students in schools is that high-ability students do not need special services because they do not face any special problems or challenges. A more extreme corollary of this attitude is the notion that high ability is so protective that students with high ability do not face problems or…

  9. Application of a high density adsorbent in expanded bed adsorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... bent, the EBA process can be performed at high flow velocity or high particulate ... were done by (Gao et al., 2007) for understanding the interaction ..... used was not strong enough to dissociate hydrophobic bond presence or ...

  10. The preparation of high-adsorption, spherical, hexagonal boron nitride by template method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2014-11-15

    Highlights: • The high-adsorption, spherical, hexagonal boron nitride powders were prepared. • The influence mechanism of template content on the micro-morphology and adsorption was explored. • At appropriate synthesis temperature, higher adsorption mesoporous spheres h-BN began to form. - Abstract: This research used low-cost boric acid and borax as a source of boron, urea as a nitrogen source, dodecyl-trimethyl ammonium chloride (DTAC) as a template, and thus prepared different micro-morphology hexagonal boron nitride powders under a flowing ammonia atmosphere at different nitriding temperatures. The effects of the template content and nitriding temperature on the micro-morphology of hexagonal boron nitride were studied and the formation mechanism analysed. The influences of the template content and nitriding temperature on adsorption performance were also explored. The results showed that at a nitriding temperature of 675 °C, the micro-morphologies of h-BN powder were orderly, inhomogeneous spherical, uniform spherical, beam, and pie-like with increasing template content. The micro-morphology was inhomogeneous spherical at a DTAC dose of 7.5%. The micro-morphology was uniform spherical at a DTAC dose of 10%. At a DTAC dose of 12%, the micro-morphology was a mixture of beam and pie-like shapes. At a certain template content (DTAC at 10%) and at lower nitriding temperatures (625 °C and 650 °C), spherical shell structures with surface subsidence began to form. The porous spheres would appear at a nitriding temperature of 675 °C, and the ball diameter thus formed was approximately 500–600 nm. The ball diameter was about 600–700 nm when the nitriding temperature was 700 °C. At a nitriding temperature of 725 °C, the ball diameter was between 800 and 1000 nm and sintering necking started to form. When the relative pressure was higher, previously closed pores opened and connected with the outside world: the adsorption then increased significantly. The

  11. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhifang [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Wenbo [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China); Wang, Aiqin, E-mail: aqwang@licp.cas.cn [Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); R& D Center of Xuyi Attapulgite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700 (China)

    2015-02-28

    Graphical abstract: - Highlights: • Palygorskite was modified by a homogenization associated hydrothermal process. • The crystal bundles of PAL were disaggregated efficiently after modification. • The adsorption of palygorskite for Methylene blue was greatly enhanced. • MB-loaded palygorskite exhibits excellent resistance to acid and alkali solution. - Abstract: Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic–inorganic hybrid pigment.

  12. High-throughput screening of small-molecule adsorption in MOF-74

    Science.gov (United States)

    Thonhauser, T.; Canepa, P.

    2014-03-01

    Using high-throughput screening coupled with state-of-the-art van der Waals density functional theory, we investigate the adsorption properties of four important molecules, H2, CO2, CH4, and H2O in MOF-74-  with  = Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Nb, Ru, Rh, Pd, La, W, Os, Ir, and Pt. We show that high-throughput techniques can aid in speeding up the development and refinement of effective materials for hydrogen storage, carbon capture, and gas separation. The exploration of the configurational adsorption space allows us to extract crucial information concerning, for example, the competition of water with CO2 for the adsorption binding sites. We find that only a few noble metals--Rh, Pd, Os, Ir, and Pt--favor the adsorption of CO2 and hence are potential candidates for effective carbon-capture materials. Our findings further reveal significant differences in the binding characteristics of H2, CO2, CH4, and H2O within the MOF structure, indicating that molecular blends can be successfully separated by these nano-porous materials. Supported by DOE DE-FG02-08ER46491.

  13. Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Hyung Ju; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30-35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration (Ci) of 0.01-10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants (k2) decreased by increasing Ci, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

  14. Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity

    International Nuclear Information System (INIS)

    Janus, M.; Choina, J.; Morawski, A.W.

    2009-01-01

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO 2 (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 o C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm -1 attributed to the bending vibrations of NH 4 + and at 1535 cm -1 associated with NH 2 groups or NO 2 and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO 2 surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO 2 was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO 2 /N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO 2 and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO 2 by Langmuir model. The presence of nitrogen at the surface of TiO 2 significantly increased adsorption capacity of TiO 2 as well as OH· radicals formation under visible radiation.

  15. Synthesis of alumina nano-sheets via supercritical fluid technology with high uranyl adsorptive capacity

    International Nuclear Information System (INIS)

    Jing Yu; Jun Wang; Zhanshuang Li; Qi Liu; Milin Zhang; Hongbin Bai; Caishan Jiao; Jun Wang; Lianhe Liu

    2012-01-01

    Supercritical carbon dioxide is beneficial to the synthesis of superior ultrafine and uniform materials due to its high chemical stability, low viscosity, high diffusivity, and 'zero' surface tension. γ-Alumina nano-sheets were obtained by a simple hydrothermal route in the presence of supercritical carbon dioxide. XRD, FTIR, SEM, TEM and nitrogen sorption isotherm were employed to characterize the samples. Alumina as-prepared has a high specific surface area of up to 200 ± 6 m 2 g -1 , which presents a high adsorption capacity (4.66 ± 0.02 mg g -1 ) for uranyl ions from aqueous solution. Furthermore, the adsorption process was found to be endothermic and spontaneous in nature. (authors)

  16. High Pressure Adsorption Isotherm of CO2 on Activated Carbon using Volumetric Method

    Directory of Open Access Journals (Sweden)

    Awaludin Martin

    2011-05-01

    Full Text Available Adsorption system is ones of the most effective methods for CO2 separating with other substances that produced from the burning of fossil fuels. In the design for that application, beside of characteristics of porous material (adsorbent data, CO2 adsorption data on the adsorbent (kinetic and thermodynamic are also needed. The aim of this research is resulting isothermal adsorption data at pressures up to 3.5 MPa by indirect methods (volumetric method at isothermal temperature of 300, 308, 318 and 338 K. Adsorbent that used in this research is activated carbon made from East of Kalimantan coals by physical activation method (CO2 which is the surface area of activated carbon is 668 m2/g and pore volume is 0.47 mL/g. Carbon dioxide (CO2 that used in this research is high purity carbon dioxide with a purity of 99.9%. Data from the experiment results then correlated using the Langmuir and Toth equations model. The results showed that the maximum adsorption capacity is 0.314 kg/kg at 300 K and 3384.69 kPa. The results of regression of experiment data using Langmuir and Toth models were 3.4% and 1.7%.

  17. Investigation of the Behavior of Ethylene Molecular Films Using High Resolution Adsorption Isotherms and Neutron Scattering

    International Nuclear Information System (INIS)

    Barbour, Andi M.; Telling, Mark T.; Larese, John Z.

    2010-01-01

    The wetting behavior of ethylene adsorbed on MgO(100) was investigated from 83-135 K using high resolution volumetric adsorption isotherms. The results are compared to ethylene adsorption on graphite, a prototype adsorption system, in an effort to gain further insight into the forces that drive the observed film growth. Layering transitions for ethylene on MgO(100) are observed below the bulk triple point of ethylene (T = 104.0 K). The formation of three discrete adlayers is observed on the MgO(100) surface; onset of the second and third layers occurs at 79.2 ± 1.3 K and 98.3 ± 0.9 K, respectively. Thermodynamic quantities such as differential enthalpy and entropy, heat of adsorption, and isosteric heat of adsorption are determined and compared to the previously published values for ethylene on graphite. The average area occupied by a ethylene molecule on MgO(100) is 22.6 ± 1.1 (angstrom) 2 molecule -1 . The locations of two phase transitions are identified (i.e., layer critical temperatures at T c2 (n=1) at 108.6 ± 1.7 K and T c2 (n=2) at 116.5 ± 1.2 K) and a phase diagram is proposed. Preliminary neutron diffraction measurements reveal evidence of a monolayer solid with a lattice constant of ∼4.2 (angstrom). High resolution INS measurements show that the onset to dynamical motion and monolayer melting take place at 35 K and 65 K, respectively. The data reported here exhibit a striking similarity to ethylene on graphite which suggests that molecule-molecule interactions play an important role in determining the physical properties and growth of molecularly thin ethylene films.

  18. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units.

    Science.gov (United States)

    Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2014-08-14

    Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.

  19. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison

    DEFF Research Database (Denmark)

    Hubbuch, Jürgen; Matthiesen, D.B.; Hobley, Timothy John

    2001-01-01

    A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non...

  20. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions

    International Nuclear Information System (INIS)

    Zhao Yafei; Zhang Bing; Zhang Xiang; Wang Jinhua; Liu Jindun; Chen Rongfeng

    2010-01-01

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH 4 + ) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH 4 + concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g -1 of NH 4 + was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH 4 + removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (ΔG 0 ), enthalpy (ΔH 0 ) and entropy (ΔS 0 ) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH 4 + pollutants from wastewaters.

  1. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yafei [School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang Bing, E-mail: zhangb@zzu.edu.cn [School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001 (China); Henan Academy of Sciences, Zhengzhou 450002 (China); Zhang Xiang; Wang Jinhua; Liu Jindun [School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001 (China); Chen Rongfeng [Henan Academy of Sciences, Zhengzhou 450002 (China)

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH{sub 4}{sup +}) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH{sub 4}{sup +} concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g{sup -1} of NH{sub 4}{sup +} was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH{sub 4}{sup +} removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy ({Delta}G{sup 0}), enthalpy ({Delta}H{sup 0}) and entropy ({Delta}S{sup 0}) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH{sub 4}{sup +} pollutants from wastewaters.

  2. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions.

    Science.gov (United States)

    Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.

  3. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    Science.gov (United States)

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  4. Porous carbon with small mesoporesas an ultra-high capacity adsorption medium

    Science.gov (United States)

    Gao, Biaofeng; Zhou, Haitao; Chen, De; Yang, Jianhong

    2017-10-01

    Resins (732-type), abundant and inexpensive resources were used to prepare porous carbon with small mesopores (CSM) by carbonization and post-chemical-activation with potassium hydroxide (KOH). The N2 adsorption measurements revealed that CSM had high surface areas (1776.5 m2 g-1), large pore volumes (1.10 cm3 g-1), and nearly optimal narrow small mesopore sizes ranging from 2 to 7 nm. CSM was used as adsorbent to investigate the adsorption behavior for Rhodamine B (RhB). Due to the optimal pore size distributions (PSD), intensive-stacking interaction, S-doped, and electrostatic attraction, the CSM exhibited an ultra-high-capacity of 1590 mg g-1 for RhB in aqueous solutions.

  5. Parenting Style, Perfectionism, and Creativity in High-Ability and High-Achieving Young Adults

    Science.gov (United States)

    Miller, Angie L.; Lambert, Amber D.; Speirs Neumeister, Kristie L.

    2012-01-01

    The current study explores the potential relationships among perceived parenting style, perfectionism, and creativity in a high-ability and high-achieving young adult population. Using data from 323 honors college students at a Midwestern university, bivariate correlations suggested positive relationships between (a) permissive parenting style and…

  6. Human face recognition ability is specific and highly heritable

    OpenAIRE

    Wilmer, Jeremy B.; Germine, Laura; Chabris, Christopher F.; Chatterjee, Garga; Williams, Mark; Loken, Eric; Nakayama, Ken; Duchaine, Bradley

    2010-01-01

    Compared with notable successes in the genetics of basic sensory transduction, progress on the genetics of higher level perception and cognition has been limited. We propose that investigating specific cognitive abilities with well-defined neural substrates, such as face recognition, may yield additional insights. In a twin study of face recognition, we found that the correlation of scores between monozygotic twins (0.70) was more than double the dizygotic twin correlation (0.29), evidence fo...

  7. Scientific Creativity and High Ability: Gender and academic level differences

    Directory of Open Access Journals (Sweden)

    Fernando Javier ESPARZA MOLINA

    2015-10-01

    Full Text Available  The purpose of this study was to investigate the influence of gender and educational level on scientific creativity among gifted/talented students. A cohort of creatividad científica y alta habilidad: diferencias de género y nivel educativo 78 secondary school students from 12 to 16 years old participated in this research. The scientific creativity was measured using the Creative Scientific Ability Test (Sak & Ayas, 2011 designed for secondary school students from 11 to 14 years old. Its theoretical framework sets up the measurement of a three dimensional structure: general creative abilities (fluency, flexibility and creativity, scientific creative abilities (hypothesis generation, hypothesis testing and evidence evaluation and scientific knowledge. This test has the right adequate psychometric properties with a Cronbach’s alpha coefficient of 0.848 (Sak & Ayas, 2013. Results indicated that male students scored significantly higher in a task named Interaction Graph which measures hypothesis generation in interdisciplinary science. The analysis also showed that students involved in upper education levels scores significantly higher in general fluency and in the task called The Food Chain which measures evidence evaluation in the area of ecology.

  8. The effect of food and ice cream on the adsorption capacity of paracetamol to high surface activated charcoal

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle Riis; Christophersen, Anne Bolette

    2003-01-01

    , the reductions compared to control (Hoegberg et al. 2002) varied between 11% and 26%. Even though a reduction in drug adsorption to activated charcoal was observed when food mixture or ice cream was added, the remaining adsorption capacity of both types of activated charcoal theoretically was still able......The effect of added food mixture (as if food was present in the stomach of an intoxicated patient) or 4 different types of ice cream (added as a flavouring and lubricating agent) on the adsorption of paracetamol (acetaminophen) to 2 formulations of activated charcoal was determined in vitro......, and paracetamol were mixed with either food mixture or ice cream followed by one hr incubation. The maximum adsorption capacity of paracetamol to activated charcoal was calculated using Langmuirs adsorption isotherm. Paracetamol concentration was analyzed using high pressure liquid chromatography. In the presence...

  9. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    Science.gov (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Adsorption and manipulation of carbon onions on highly oriented pyrolytic graphite studied with atomic force microscopy

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Shen Ziyong; Hou Shimin; Zhao Xingyu; Xue Zengquan; Shi Zujin; Gu Zhennan

    2007-01-01

    Carbon onions produced by DC arc discharge method were deposited on highly oriented pyrolytic graphite (HOPG) surface and their adsorption and manipulation was studied using an atomic force microscopy (AFM). Well-dispersed adsorption of carbon onions on HOPG surface was obtained and aggregations of onions were not observed. The van der Waals interaction between the onion and HOPG surface and that between two onions, were calculated and discussed using Hamaker's theory. The manipulation of adsorbed onions on HOPG surface was realized using the AFM in both the raster mode and the vector mode. The controllability and precision of two manipulation modes were compared and the vector mode manipulation was found superior, and is a useful technique for the construction of nano-scale devices based on carbon onions

  11. Carbon dioxide selective adsorption within a highly stable mixed-ligand Zeolitic Imidazolate Framework

    KAUST Repository

    Huang, Lin

    2014-08-01

    A new mixed-ligand Zeolitic Imidazolate Framework Zn4(2-mbIm) 3(bIm)5·4H2O (named JUC-160, 2-mbIm = 2-methylbenzimidazole, bIm = benzimidazole and JUC = Jilin University China) was synthesized with a solvothermal reaction of Zn(NO3) 2·6H2O, bIm and 2-mbIm in DMF solution at 180 °C. Topological analysis indicated that JUC-160 has a zeolite GIS (gismondine) topology. Study of the gas adsorption and thermal and chemical stability of JUC-160 demonstrated its selective adsorption property for carbon dioxide, high thermal stability, and remarkable chemical resistance to boiling alkaline water and organic solvent for up to one week. © 2014 Elsevier B.V.

  12. Adsorption removal of Sr by Barium impregnated 4A Zeolite(BaA) from high radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This study investigated the removal of Sr, which was one of the high radioactive nuclides, by adsorption with Barium (Ba) impregnated 4A zeolite (BaA) from high-radioactive seawater waste (HSW). Adsorption of Sr by BaA (BaA-Sr), in the impregnated Ba concentration of above 20.2wt%, was decreased by increasing the impregnated Ba concentration, and the impregnated Ba concentration was suitable at 20.2wt%. The BaA-Sr adsorption was added to the co-precipitation of Sr with BaSO4 precipitation in the adsorption of Sr by 4A (4A-Sr) within BaA. Thus, it was possible to remove Sr more than 99% at m/V (adsorbent weight/solution volume)=5 g/L for BaA and m/V >20 g/L for 4A, respectively, in the Sr concentration of less than 0.2 mg/L (actual concentration level of Sr in HSW). It shows that BaA-Sr adsorption is better than 4A-Sr adsorption in for the removal capacity of Sr per unit gram of adsorbent, and the reduction of the secondary solid waste generation (spent adsorbent etc.). Also, BaA-Sr adsorption was more excellent removal capacity of Sr in the seawater waste than distilled water. Therefore, it seems to be effective for the direct removal of Sr from HSW. On the other hand, the adsorption of Cs by BaA (BaA-Cs) was mainly performed by 4A within BaA. Accordingly, it seems to be little effect of impregnated Ba into BaA. Meanwhile, BaA-Sr adsorption kinetics could be expressed the pseudosecond order rate equation. By increasing the initial Sr concentrations and the ratios of V/m, the adsorption rate constants (k2) were decreased, but the equilibrium adsorption capacities (qe) were increasing. However, with increasing the temperature of solution, k2 was conversely increased, and qe was decreased. The activation energy of BaA-Sr adsorption was 38 kJ/mol. Thus, the chemical adsorption seems to be dominant rather than physical adsorption, although it is not a chemisorption with strong bonding form.

  13. High-pressure homogenization associated hydrothermal process of palygorskite for enhanced adsorption of Methylene blue

    Science.gov (United States)

    Zhang, Zhifang; Wang, Wenbo; Wang, Aiqin

    2015-02-01

    Palygorskite (PAL) was modified by a high-pressure homogenization assisted hydrothermal process. The effects of modification on the morphology, structure and physicochemical properties of PAL were systematically investigated by Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FTIR), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD) and Zeta potential analysis techniques, and the adsorption properties were systematically evaluated using Methylene blue (MB) as the model dye. The results revealed that the crystal bundles were disaggregated and the PAL nanorods became more even after treated via associated high-pressure homogenization and hydrothermal process, and the crystal bundles were dispersed as nanorods. The intrinsic crystal structure of PAL was remained after hydrothermal treatment, and the pore size calculated by the BET method was increased. The adsorption properties of PAL for MB were evidently improved (from 119 mg/g to 171 mg/g) after modification, and the dispersion of PAL before hydrothermal reaction is favorable to the adsorption. The desorption evaluation confirms that the modified PAL has stronger affinity with MB, which is benefit to fabricate a stable organic-inorganic hybrid pigment.

  14. Strong adsorption of chlorotetracycline on magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Di; Niu, Hongyun; Zhang, Xiaole; Meng, Zhaofu; Cai, Yaqi

    2011-01-01

    Highlights: → Fe 3 O 4 MNPs selectively adsorb CTC through chelation between CTC and Fe atoms. → Fe 3 O 4 MNPs remain high adsorption ability to CTC in environmental water samples. → Fe 3 O 4 MNPs sorbed with CTC are easily collected from water under a magnetic field. → The collected Fe 3 O 4 MNPs are regenerated by treatment with H 2 O 2 or calcination. - Abstract: In this work, environmentally friendly magnetite nanoparticles (Fe 3 O 4 MNPs) were used to adsorb chlorotetracycline (CTC) from aqueous media. Fe 3 O 4 MNPs exhibit ultrahigh adsorption ability to this widely used antibiotic. The adsorption behavior of CTC on Fe 3 O 4 MNPs fitted the pseudo-second-order kinetics model, and the adsorption equilibrium was achieved within 10 h. The maximum Langmuir adsorption capacity of CTC on Fe 3 O 4 (476 mg g -1 ) was obtained at pH 6.5. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was endothermic and spontaneous. Low concentration of NaCl and foreign divalent cations hardly affected the adsorption. Negative effect of coexisting humic acid (HA) on CTC adsorption was also observed when the concentration of HA was lower than 20 mg L -1 . But high concentration of HA (>20 mg L -1 ) increased the CTC adsorption on Fe 3 O 4 MNPs. The matrix effect of several environmental water samples on CTC adsorption was not evident. Fe 3 O 4 MNPs were regenerated by treatment with H 2 O 2 or calcination at 400 o C in N 2 atmosphere after separation from water solution by an external magnet. This research provided a high efficient and reusable adsorbent to remove CTC selectively from aqueous media.

  15. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.

    Science.gov (United States)

    Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae

    2015-09-22

    In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

  16. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    Science.gov (United States)

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  17. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  18. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Use of carbon dioxide as a reaction medium in the thermo-chemical process for the enhanced generation of syngas and tuning adsorption ability of biochar

    International Nuclear Information System (INIS)

    Cho, Dong-Wan; Kwon, Eilhann E.; Song, Hocheol

    2016-01-01

    Highlights: • Utilizing CO_2 as a reaction medium in thermo-chemical conversion of aquatic biomass. • Enhanced generation of syngas in the presence of CO_2. • Considerable reduction of pyrolytic oil in CO_2-assisted pyrolysis. • Generation of biochar with high surface area and more porous structure by CO_2. - Abstract: This study mechanistically investigated the influences of CO_2 on syngas (H_2 and CO) production during thermo-chemical conversion of red seaweed, and further explored the possible utility of the produced biochar as a medium for adsorption of inorganic/organic contaminants in aqueous phase. In order to elucidate the key roles of CO_2 in the thermo-chemical process, the composition analysis of syngas and the qualitative analysis of pyrolytic oil were conducted and compared with those in pyrolysis in N_2 condition. Pyrolysis of red seaweed in the presence of CO_2 led to the enhanced generation of syngas at the entire experimental temperatures. For example, the ratio of CO to H_2 in the presence of CO_2 at 620 °C was enhanced by ∼400%, as compared to the case in N_2. This enhanced generation of syngas resulted in significant pyrolytic oil reduction by ∼70% at 620 °C via the unknown reactions between VOCs and CO_2. In addition, biochar generated in the CO_2 environment exhibited comparatively higher surface area (61 m"2 g"−"1) and more porous structure. The morphological modification induced by CO_2 provided the favorable condition for removal of methylene blue from the aqueous phase. Thus, this study experimentally demonstrated that exploiting CO_2 as a reaction medium would provide an attractive option for the enhanced generation of syngas and the tuned adsorption capability of biochar.

  20. Sociocultural Concept of High Ability and Heart-Mind Epistemology in Confucian Societies

    Science.gov (United States)

    Park, Jae

    2016-01-01

    This theoretical paper begins with a reflection on the dominant conceptions of "high ability", based on psychometrics, and examines claims that the ethos of a particular cultural heritage is essential to what "high ability" signifies. The article semantically distinguishes "giftedness" from "ability", using…

  1. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    Science.gov (United States)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  2. Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water

    Directory of Open Access Journals (Sweden)

    Ke-Deng Zhang

    2017-02-01

    Full Text Available Zirconium based metal organic frameworks (Zr-MOFs have become popular in engineering studies due to their high mechanical stability, thermostability and chemical stability. In our work, by using a theoretical kinetic adsorption isotherm, we can exert MOFs to an acid dye adsorption process, experimentally exploring the adsorption of MOFs, their external behavior and internal mechanism. The results indicate their spontaneous and endothermic nature, and the maximum adsorption capacity of this material for acid orange 7 (AO7 could be up to 358 mg·g−1 at 318 K, estimated by the Langmuir isotherm model. This is ascribed to the presence of an open active metal site that significantly intensified the adsorption, by majorly increasing the interaction strength with the adsorbates. Additionally, the enhanced π delocalization and suitable pore size of UiO-66 gave rise to the highest host–guest interaction, which further improves both the adsorption capacity and separation selectivity at low concentrations. Furthermore, the stability of UiO-66 was actually verified for the first time, through comparing the structure of the samples before and after adsorption mainly by Powder X-ray diffraction and thermal gravimetric analysis.

  3. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms.

    Science.gov (United States)

    Metivier-Pignon, Hélène; Faur, Catherine; Le Cloirec, Pierre

    2007-01-01

    The present study aimed to investigate the adsorption of dyes onto activated carbon cloths. Kinetics and isotherms were studied based on results of batch reactors to constitute databases for the adsorption rates and capacities of 22 commercial dyes. Added to a qualitative analysis of experimental results, quantitative structure property relationships (QSPRs) were used to determine the structural features that influence most adsorption processes. QSPRs consisted of multiple linear regressions correlating adsorption parameters with molecular connectivity indices (MCIs) as molecular descriptors. Results related to adsorption kinetics showed that the size of molecules was the significant feature, the high order MCIs involved in QSPRs indicating the influence of a critical size on adsorption rate. Improved statistical fits were obtained when the database was divided according to the chemical classes of dyes. As regards to adsorption isotherms, their particular form led to the use of saturation capacity as the adsorption parameter. By contrast with adsorption kinetics, molecular overcrowding seemed to be of less influence on adsorption equilibrium. In this case, MCIs included in the QSPR were more related to details of the molecular structure. The robustness of the QSPR assessed for azo dyes was studied for the other dyes. Although the small size of the database limited predictive ability, features relevant to the influence of the database composition on QSPRs have been highlighted.

  4. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Adsorption removal of carbon dioxide from the helium coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Varezhin, A.V.; Fedoseenkov, A.N.; Khrulev, A.A.; Metlik, I.V.; Zel venskii, Y.D.

    1986-01-01

    This paper conducts experiments on the removal of CO 2 from helium by means of a Soviet-made adsorbent under the conditions characteristic of high-temperature gas-cooled reactor cleaning systems. The adsorption of CO 2 from helium was studied under dynamic conditions with a fixed layer of adsorbent in a flow-through apparatus with an adsorber 16 mm in diameter. The analysis of the helium was carried out by means of a TVT chromatograph. In order to compare the adsorption of CO 2 on CaA zeolite under dynamic conditions from the helium stream under pressure with the equilibrium adsorption on the basis of pure CO 2 , the authors determined the adsorption isotherm at 293 K by the volumetric method over a range of CO 2 equilibrium pressures from 260 to 11,970 Pa. Reducing the adsorption temperature to 273 K leads to a considerable reduction in the energy costs for regeneration, owing to the increase in adsorption and the decrease in the number of regeneration cycles; the amount of the heating gas used is reduced to less than half

  6. Synthesis of multi-walled carbon nanotubes/{beta}-FeOOH nanocomposites with high adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Haojie, E-mail: shj6922@163.com [School of Materials Science and Engineering, Jiangsu University (China); Liu Lei [Pharmaceutic College of Henan University (China); Jia Xiaohua; Min Chunying [School of Materials Science and Engineering, Jiangsu University (China)

    2012-12-15

    A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and {beta}-ferric oxyhydroxide ({beta}-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous {beta}-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring {beta}-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of {beta}-FeOOH nanoparticles. The values of remanent magnetization (M{sub r}) and coercivity (H{sub c}) of the as-synthesized CNTs/{beta}-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/{beta}-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.

  7. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Shen [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Xiao, Lifen [College of Chemistry, Central China Normal University, Wuhan 430079 China; Pacific Northwest National Laboratory, Richland WA 99352 USA; Sushko, Maria L. [Pacific Northwest National Laboratory, Richland WA 99352 USA; Han, Kee Sung [Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Pacific Northwest National Laboratory, Richland WA 99352 USA; Yan, Mengyu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Liang, Xinmiao [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Mai, Liqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 China; Feng, Jiwen [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, Wuhan 430071 China; Cao, Yuliang [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Ai, Xinping [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Yang, Hanxi [College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072 China; Liu, Jun [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-12

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.

  8. Simulation of a high efficiency multi-bed adsorption heat pump

    International Nuclear Information System (INIS)

    TeGrotenhuis, W.E.; Humble, P.H.; Sweeney, J.B.

    2012-01-01

    Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here enables high efficiency by effectively transferring heat from beds being cooled to beds being heated. A simplified lumped-parameter model and detailed finite element analysis are used to simulate a sorption compressor, which is used to project the overall heat pump coefficient of performance. Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent specifically modified for the application. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system. - Highlights: ► A multi-bed concept for adsorption heat pumps is capable of high efficiency. ► Modeling is used to simulate sorption compressor and overall heat pump performance. ► Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent. ► The majority of the efficiency benefit is obtained with four beds. ► Predicted COP as high as 1.24 for cooling is comparable to SEER 13 or 14 for electric heat pumps.

  9. Memory and Cognitive Strategies of High Ability Students in a Rural Secondary School

    Science.gov (United States)

    Ali, Fuziana; Yunus, Melor Md

    2013-01-01

    This study was conducted to examine language learning strategies employed by the high ability students in a rural secondary school. Memory and cognitive strategies employed by the high ability students were the main focus in this study. A survey design was used and data was collected using Oxford's questionnaires. Findings reveal that the high…

  10. Social understanding of high-ability children in middle and late childhood

    NARCIS (Netherlands)

    Boor-Klip, H.J.; Cillessen, A.H.N.; Hell, J.G. van

    2014-01-01

    Despite its importance in social development, social understanding has hardly been studied in high-ability children. This study explores differences in social understanding between children in high-ability and regular classrooms, specifically theory of mind (ToM) and perception accuracy, as well as

  11. Locus of Control, Academic Self-Concept, and Academic Dishonesty among High Ability College Students

    Science.gov (United States)

    Rinn, Anne N.; Boazman, Janette

    2014-01-01

    The purposes of the current study were to evaluate a measure of academic dishonesty and examine high ability college students' loci of control and its effect on behaviors of academic dishonesty, as moderated by academic self-concept. A total of 357 high ability college students enrolled at two universities in the southwestern United States took…

  12. ASD Screening Measures for High-Ability Youth with ASD: Examining the ASSQ and SRS

    Science.gov (United States)

    Cederberg, Charles D.; Gann, Lianne C.; Foley-Nicpon, Megan; Sussman, Zachary

    2018-01-01

    High-ability youth diagnosed with autism spectrum disorder (ASD) historically have been neglected within samples validating ASD screening measures, and consensus for what constitutes high ability has not been established. The Autism Spectrum Screening Questionnaire (ASSQ) and Social Responsiveness Scale (SRS) are two common screening tools for ASD…

  13. Social Understanding of High-Ability Children in Middle and Late Childhood

    Science.gov (United States)

    Boor-Klip, Henrike J.; Cillessen, Antonius H. N.; van Hell, Janet G.

    2014-01-01

    Despite its importance in social development, social understanding has hardly been studied in high-ability children. This study explores differences in social understanding between children in high-ability and regular classrooms, specifically theory of mind (ToM) and perception accuracy, as well as associations between individual characteristics…

  14. Selecting the Right Educational Setting for High-Ability TCKS: A Mother's Perspective

    Science.gov (United States)

    Yamada, Sylvia

    2015-01-01

    Meeting the needs of gifted students is challenging even in traditional contexts and settings. Well-known issues include a limited choice of schools, underrepresentation of certain populations, and, often, the lack of facilities and support for high-ability students. Imagine, then, the further complexities of high-ability Third Culture Kids (TCKs)…

  15. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue.

    Science.gov (United States)

    Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng

    2015-05-01

    Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar

    International Nuclear Information System (INIS)

    Yang, Kun; Yang, Jingjing; Jiang, Yuan; Wu, Wenhao; Lin, Daohui

    2016-01-01

    Adsorption of aromatic compounds, including polycyclic aromatic hydrocarbons, nitrobenzenes, phenols, and anilines, on a bamboo biochar produced at 700 °C (Ba700) was investigated with the mechanism discussion by isotherm fitting using the Polanyi-theory based Dubinin–Ashtakhov (DA) model. Correlations of adsorption capacity (Q 0 ) of organic compounds with their molecular sizes and melting points, as well as correlations of adsorption affinity (E) with their solvatochromic parameters (i.e., π* and α m ), on the biochar, were developed and indicating that adsorption is captured by the pore filling mechanism and derived from the hydrophobic effects of organic compounds and the forming of π-π electron donor-acceptor (EDA) interactions and hydrogen bonding interactions of organic molecules with surface sites of the biochar. The effects of organic molecular sizes and melting points on adsorption capacity are ascribed to the molecular sieving effect and the packing efficiency of the organic molecules in the biochar pores, respectively. These correlations can be used to quantitatively estimate the adsorption of organic compounds on biochars from their commonly physicochemical properties including solvatochromic parameters, melting points and molecular cross-sectional area. The prediction using these correlations is important for assessing the unknown adsorption behaviors of new organic compounds and also helpful to guide the surface modification of biochars and make targeted selection in the environmental applications of biochars as adsorbents. - Highlights: • Adsorption of organic chemicals on biochars are captured by pore filling mechanism. • Adsorption is derived from Van der Waals force, π-π EDA and H-bonding interactions. • Adsorption capacity is negatively correlated with organic molecular sizes/melting points. • Adsorption capacity is restricted by molecular sieving effect and packing efficiency. • Adsorption affinity has a LSER with chemical

  17. Carbon dioxide and water adsorption on highly epitaxial Delafossite CuFeO2 thin film

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Sarabia, M.; Lederman, D.; Cabrera, A. L.

    2015-03-01

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 Delafossite surface was performed in a standard UHV chamber, The CuFeO2 thin film grown using Pulsed Laser Deposition (PLD) over an Al2O3 (0001) substrate with controlled O2 atmosphere resulted with highly epitaxial crystal structure. The adsorption/desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide interacts with CuFeO2 forming Fe carbonates compounds on its surface. Hydroxides were also formed on the surface due to water presence. Using TPD data, Arrhenius plots for CO2 and water desorption were done and activation energy for desorption was obtained. Funds FONDECyT 1130372; Thanks to P. Ferrari.

  18. Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Takashi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Koyama, Shin-ichi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)

    2013-07-01

    Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

  19. Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils.

    Science.gov (United States)

    Chen, Kuen-Lin; Liu, Li-Chun; Chen, Wan-Ru

    2017-12-01

    Many antibiotics, including sulfonamides, are being frequently detected in soil and groundwater. Livestock waste is an important source of antibiotic pollution, and sulfonamides may be present along with organic-rich substances. This study aims to investigate the sorption reaction of two sulfonamides, sulfamethoxazole (SMZ) and sulfapyridine (SPY) in two organic-rich sorbents: a commercial peat soil (38.41% carbon content) and a composted manure (24.33% carbon content). Batch reactions were conducted to evaluate the impacts of pH (4.5-9.5) and background ions (0.001 M-0.1 M CaCl 2 ) on their sorption. Both linear partitioning and Freundlich sorption isotherms fit the reaction well. The n values of Freundlich isotherm were close to 1 in most conditions suggesting that the hydrophobic partition is the major adsorption mechanism. In terms of SMZ, K d declined with increases in the pH. SPY has a pyridine group that is responsible for adsorption at high pH values, and thus, no significant trend between K d and pH was observed. At high pH ranges, SPY sorption deviated significantly from linear partitioning. The results suggested the sorption mechanism of these two sulfonamide antibiotics tended to be hydrophobic partitioning under most of the experimental conditions, especially at pH values lower than their corresponding pK a2. The fluorescence excitation emission matrix and dissolved organic carbon leaching test suggested composted manure has higher fulvic acid organics and that peat soil has higher humus-like organics. Small organic molecules showed stronger affinity toward sulfonamide antibiotics and cause the composted manure to exhibit higher sorption capacity. Overall, this study suggests that the chemical structure and properties of sulfonamides antibiotics and the type of organic matter in soils will greatly influence the fate and transport of these contaminants into the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Oxygen adsorption on Pt(110)-(1x2): new high-coverage structures

    DEFF Research Database (Denmark)

    Helveg, Stig; Lorensen, Henrik Qvist; Horch, Sebastian

    1999-01-01

    From an interplay between scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations, a comprehensive picture is obtained for oxygen adsorption on the Pt(110)-(1 x 2) surface, from single isolated oxygen atoms chemisorbed in FCC sites along the platinum ridges...... adsorption and platinum lattice distortions. (C) 1999 Elsevier Science B.V. All rights reserved....

  1. Formation, decomposition and cesium adsorption mechanisms of highly alkali-tolerant nickel ferrocyanide prepared by interfacial synthesis

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki; Yamada, Kazuo; Osako, Masahiro; Haga, Kazuko

    2017-01-01

    Highly alkali-tolerant nickel ferrocyanide was prepared as an adsorbent for preventing the leaching of radioactive cesium from municipal solid waste incinerator fly ash containing large amounts of calcium hydroxide and potassium chloride, which act as an alkaline source and the suppressor for cesium adsorption, respectively. Nickel ferrocyanide prepared by contacting concentrated nickel and ferrocyanide solutions without mixing adsorbed cesium ions in alkaline conditions even the concentration of coexisting potassium ions was more than ten thousand times higher than that of the cesium ions. Large particles of nickel ferrocyanide slowly grew at the interface between the two solutions, which reduced the surface energy of the particles and therefore increased the alkali tolerance. The interfacially-synthesized nickel ferrocyanide was possible to prevent the leaching of radioactive cesium from cement-solidified fly ash for a long period. The mechanisms of the formation, selective cesium adsorption, and alkali-induced decomposition of the nickel ferrocyanide were elucidated. Comparison of the cesium adsorption mechanism with that of the other adsorbents revealed that an adsorbent can selectively adsorb cesium ions without much interference from potassium ions, if the following conditions are fulfilled. 1) The adsorption site is small enough for supplying sufficient electrostatic energy for the dehydration of ions adsorbed. 2) Both the cesium and potassium ions are adsorbed as dehydrated ions. 3) The adsorption site is flexible enough for permitting the penetration of dehydrated ions with the size comparable to that of the site. (author)

  2. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method

    Science.gov (United States)

    Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  3. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  4. Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry

    International Nuclear Information System (INIS)

    Freeman, Neville J; Peel, Louise L; Swann, Marcus J; Cross, Graham H; Reeves, Andrew; Brand, Stuart; Lu, Jian R

    2004-01-01

    A novel method for the analysis of thin biological films, called dual polarization interferometry (DPI), is described. This high resolution (<1 A), laboratory-based technique allows the thickness and refractive index (density) of biological molecules adsorbing or reacting at the solid-liquid interface to be measured in real time (up to 10 measurements per second). Results from the adsorption of bovine serum albumin (BSA) on to a silicon oxynitride chip surface are presented to demonstrate how time dependent molecular behaviour can be examined using DPI. Mechanistic and structural information relating to the adsorption process is obtained as a function of the solution pH

  5. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption

    International Nuclear Information System (INIS)

    Li, Jia; Ng, Dickon H.L.; Song, Peng; Kong, Chao; Song, Yi; Yang, Ping

    2015-01-01

    Herein, we report the preparation of activated carbon fibers from silkworm cocoon waste via the combination of (NH 4 ) 2 HPO 4 -pretreatment and KOH activation. The morphology, phase structure and surface chemistry constitute of the obtained ACFs were characterized by X-ray diffraction, IR spectroscopy, Micro Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, thermal analysis and N 2 adsorption–desorption isotherm. The effects of various factors such as the concentration of (NH 4 ) 2 HPO 4 and the activation time of KOH were also evaluated. These results demonstrated that the synthesized ACFs retained the fibrous morphology of silkworm cocoon waste, and exhibited highly defective graphite layer structure. A large amount of surface oxygen-containing functional groups were found on the ACFs surface. The obtained samples exhibited high BET surface areas ranging from 1153 to 2797 m 2  g −1 , total pore volumes of 0.64–1.74 cm 3  g −1 with micropore volume fractions between 75.2 and 93.6%. In addition, we also evaluated the congo red (CR) adsorption performance of the obtained ACFs. The CR adsorption fitted well to the pseudo-second-order kinetic model. Adsorption isotherm data indicated that the adsorption of CR onto ACFs was monolayer adsorption which followed well the Langmuir isotherm model. The maximum adsorption capacity of CR was 512 g kg −1 . The mechanism of the adsorption process was also described from the intraparticle diffusion model. - Highlights: • A new biomass fibroin precursor for activated carbon fibers (ACFs) was proposed. • High specific surface area (2797 m 2  g −1 ) and total pore volume (1.74 cm 3  g −1 ) were obtained. • The original fibrous structure of raw silkworm cocoons was retained in the ACF product. • Congo red maximum monolayer adsorption capacity of our ACF product was up to 1100 g kg −1

  6. Ability, Parental Valuation of Education and the High School Dropout Decision

    DEFF Research Database (Denmark)

    Foley, Kelly; Gallipoli, Giovanni; Green, David

    of the factor model set out in Carneiro, Hansen, and Heckman (2003). Specically, we consider the impact of cognitive and non-cognitive ability and the value that parents place on education. Our results support three main conclusions. First, cognitive ability at age 15 has a substantial impact on dropping out....... Second, parental valuation of education has an impact of approximately the same size as cognitive ability e ects for medium and low ability teenagers. A low ability teenager has a probability of dropping out of approximately .03 if his parents place a high value on education but .36 if their education......We use a large, rich Canadian micro-level dataset to examine the channels through which family socio-economic status and unobservable characteristics a ect children's decisions to drop out of high school. First, we document the strength of observable socio-economic factors: our data suggest...

  7. One-pot synthetic method to prepare highly N-doped nanoporous carbons for CO2 adsorption

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Park, Soo-Jin

    2014-01-01

    A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO 2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO 2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m 2 g −1 ) and high pore volumes (0.394–1.591 cm 3 g −1 ). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K and 1 bar. The CO 2 adsorption capacity was found to be dependent on the microporosity and N contents. - Highlights: • A one-pot synthetic method was used for the preparation of N-doped nanoporous carbons. • Polypyrrole (PPY) were activated with NaOH under set conditions (NaOH/PPY = 2 and 4). • N-doped activated carbon exhibited high specific surface areas (2169 m 2 g −1 ). • The carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K

  8. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes.

    Science.gov (United States)

    Shao, Zi-Jian; Huang, Xue-Lian; Yang, Fan; Zhao, Wei-Feng; Zhou, Xin-Zhi; Zhao, Chang-Sheng

    2018-05-01

    Sodium alginate (SA) beads with ultrahigh adsorption capacity were prepared via hydrogen bonds between SA and 2-acrylamido-2-methylpropa-1-propanesulfonic acid (AMPS), and the AMPS was then post-cross-linked to manufacture SA/PAMPS beads. The equilibrium adsorption capacities of methylene blue (MB) and Pb 2+ for the SA/PAMPS10 beads were 2977 and 2042 mg/g, respectively. Although the SA beads exhibited higher equilibrium adsorption capacities of MB and Pb 2+ than those of the SA/PAMPS10 beads, the SA/PAMPS10 beads had better mechanical property and higher stability. The pseudo-second-order kinetic model and the Langmuir isotherm described the adsorption processes of the SA/PAMPS10 beads for MB well. In addition, the SA/PAMPS10 beads could be reused with stable adsorption capacity for at least three cycles. The beads also had excellent performances on absorbing methylene violet and other heavy metal ions (Cu 2+ , Cd 2+ and Ni 2+ ). Therefore, the SA-based beads with high adsorption capacity might be good candidates for industrial pollutant treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Graphene oxide papers with high water adsorption capacity for air dehumidification.

    Science.gov (United States)

    Liu, Renlong; Gong, Tao; Zhang, Kan; Lee, Changgu

    2017-08-29

    Graphene oxide (GO) has shown a high potential to adsorb and store water molecules due to the oxygen-containing functional groups on its hydrophilic surface. In this study, we characterized the water absorbing properties of graphene oxide in the form of papers. We fabricated three kinds of graphene oxide papers, two with rich oxygen functional groups and one with partial chemical reduction, to vary the oxygen/carbon ratio and found that the paper with high oxygen content has higher moisture adsorption capability. For the GO paper with reduction, the overall moisture absorbance was reduced. However, the absorbance at high humidity was significantly improved due to direct formation of multilayer water vapor in the system, which derived from the weak interaction between the adsorbent and the adsorbate. To demonstrate one application of GO papers as a desiccant, we tested grape fruits with and without GO paper. The fruits with a GO paper exhibited longer-term preservation with delayed mold gathering because of desiccation effect from the paper. Our results suggest that GO will find numerous practical applications as a desiccant and is a promising material for moisture desiccation and food preservation.

  10. Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability

    Science.gov (United States)

    Muntazhimah; Miatun, A.

    2018-01-01

    The main purpose of this quasi-experimental study was to determine the enhancement of spatial ability of junior high school students who learned through Cabri-3D assisted collaborative learning. The methodology of this study was the nonequivalent group that was conducted to students of the eighth grade in a junior high school as a population. Samples consisted one class of the experimental group who studied with Cabri-3D assisted collaborative learning and one class as a control group who got regular learning activity. The instrument used in this study was a spatial ability test. Analyzing normalized gain of students’ spatial ability based on mathemathical prior knowledge (MPK) and its interactions was tested by two-way ANOVA at a significance level of 5% then continued with using Post Hoc Scheffe test. The research results showed that there was significant difference in enhancement of the spatial ability between students who learnt with Cabri 3D assisted collaborative learning and students who got regular learning, there was significant difference in enhancement of the spatial ability between students who learnt with cabri 3D assisted collaborative learning and students who got regular learning in terms of MPK and there is no significant interaction between learning (Cabri-3D assisted collaborative learning and regular learning) with students’ MPK (high, medium, and low) toward the enhancement of students’ spatial abilities. From the above findings, it can be seen that cabri-3D assisted collaborative learning could enhance spatial ability of junior high school students.

  11. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane

    KAUST Repository

    Li, Baiyan

    2014-06-18

    In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO 3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C 2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane. © 2014 American Chemical Society.

  12. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane

    KAUST Repository

    Li, Baiyan; Zhang, Yiming; Krishna, Rajamani; Yao, Kexin; Han, Yu; Wu, Zili; Ma, Dingxuan; Shi, Zhan; Pham, Tony T.; Space, Brian; Liu, Jian; Thallapally, Praveen K.; Liu, Jun; Chrzanowski, Matthew; Ma, Shengqian

    2014-01-01

    In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO 3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C 2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane. © 2014 American Chemical Society.

  13. Logical Reasoning Abilities of Junior High School Students in the Province of Cotabato, Philippines

    Directory of Open Access Journals (Sweden)

    Paul John B. Ongcoy

    2016-11-01

    Full Text Available Reasoning abilities of the learners and its development was well-discussed in the world of education. The higher the ability of the person to reason abstractly, the higher the probability that a person will effectively function in the society. Thus, it is the main goal of the K-12 Curriculum of the Department of Education to improve the reasoning abilities and formal reasoning among students in the country. The higher the reasoning ability of a person, the more productive he is. The ability of logical reasoning has an essential function in the academic performance of students and their construction of the concepts. This study aimed to determine the logical reasoning abilities of 150 randomly selected junior high school students. Specifically, this study aimed to determine the logical reasoning abilities namely combinatorial reasoning, controlling variables, correlation reasoning, probabilistic reasoning and proportional reasoning among the grade 10 junior high school students and determine whether there is a significant difference in students’ logical reasoning abilities according to their gender. The respondents answered the Test of Logical Thinking (TOLT. Thirty respondents were interviewed to verify their answers. The findings of the study led to the following conclusions: most students correctly answered problems in probabilistic reasoning and least number of students correctly answered problems in proportional reasoning and combinatorial reasoning and, male and female respondents have equal performances in problems pertaining to combinatorial reasoning, controlling variables, correlational reasoning and probabilistic reasoning but female respondents are better in proportional reasoning than the male respondents.

  14. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  15. Utilization of Illustrations during Learning of Science Textbook Passages among Low- and High-Ability Children.

    Science.gov (United States)

    Hannus; Hyönä

    1999-04-01

    Effects of illustrations on learning authentic textbook materials were studied among 10-year-old elementary school children of high and low intellectual ability. Experiment 1 showed that the presence of illustrations improved learning of illustrated text content, but not that of nonillustrated text content. Comprehension scores were improved by the presence of illustrations for high-ability children, but not for low-ability children. In Experiment 2, children's eye movements were measured during learning of illustrated textbook passages to study how children divide their attention between text and illustrations. The results suggest that learning is heavily driven by the text and that children inspect illustrations only minimally. High-ability students were more strategic in processing in the sense that they spent relatively more time on pertinent segments of text and illustrations. It is concluded that the learning of illustrated science textbook materials involves requirements that may be more readily met by more intellectually capable students. Copyright 1999 Academic Press.

  16. On Strategies of Improving Junior High School Students' Oral English Ability

    Institute of Scientific and Technical Information of China (English)

    罗茜

    2015-01-01

    With the increasingly frequent international exchanges,English,as an international language,has been attached greater importance.The oral English ability of junior high school students plays an indispensable role in their everyday study and social interaction,and it is the present junior school study that can lay a solid foundation for their future study and life. Therefore,to comprehensively improve their oral English ability is in urgent need and of paramount significance.This paper focuses on analyzing the external and internal factors influencing the cultivation of junior high school students' oral English ability,and put forwards the corresponding cultivating strategies of the oral English ability of junior high school students.

  17. On Strategies of Improving Junior High School Students’ Oral English Ability

    Institute of Scientific and Technical Information of China (English)

    罗茜

    2015-01-01

    With the increasingly frequent international exchanges,English,as an international language,has been attached greater importance.The oral English ability of junior high school students plays an indispensable role in their everyday study and social interaction,and it is the present junior school study that can lay a solid foundation for their future study and life.Therefore,to comprehensively improve their oral English ability is in urgent need and of paramount significance.This paper focuses on analyzing the external and internal factors influencing the cultivation of junior high school students’oral English ability,and put forwards the corresponding cultivating strategies of the oral English ability of junior high school students.

  18. Experimental screening of porous materials for high pressure gas adsorption and evaluation in gas separations: application to MOFs (MIL-100 and CAU-10).

    Science.gov (United States)

    Wiersum, Andrew D; Giovannangeli, Christophe; Vincent, Dominique; Bloch, Emily; Reinsch, Helge; Stock, Norbert; Lee, Ji Sun; Chang, Jong-San; Llewellyn, Philip L

    2013-02-11

    A high-throughput gas adsorption apparatus is presented for the evaluation of adsorbents of interest in gas storage and separation applications. This instrument is capable of measuring complete adsorption isotherms up to 40 bar on six samples in parallel using as little as 60 mg of material. Multiple adsorption cycles can be carried out and four gases can be used sequentially, giving as many as 24 adsorption isotherms in 24 h. The apparatus has been used to investigate the effect of metal center (MIL-100) and functional groups (CAU-10) on the adsorption of N(2), CO(2), and light hydrocarbons on MOFs. This demonstrates how it can serve to evaluate sample quality and adsorption reversibility, to determine optimum activation conditions and to estimate separation properties. As such it is a useful tool for the screening of novel adsorbents for different applications in gas separation, providing significant time savings in identifying potentially interesting materials.

  19. Study on the adsorption of H2O and CO2 from the carrier gas of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Liao Cuiping; Zheng Zhenhong; Shi Fuen; Zhou Dasen

    1998-01-01

    The author is focused on the experimental studies of the adsorption of moisture and carbon dioxide from the carrier gas of high-temperature gas-cooled reactor (HTGR). A suitable adsorbent--5A type molecular sieve spherical particles with an average diameter of 3 mm is chosen to purify the carrier gas with impurities of moisture and carbon dioxide. Experimental data at different concentration, flow rate, adsorptive temperature, pressure and bed depth are obtained from isothermal adsorption tests in order to examine the effects of these parameters on adsorption dynamic and for the optimal parameters selection of adsorption process. Experimental breakthrough curves, dynamic single component and multicomponent adsorption curves are obtained. The outlet concentration of H 2 O and CO 2 can reach below 1.0 x 10 -5 , so this purification system can meet the demands of HTGR

  20. High-temperature adsorption layers based on fluoridated polyimide and diatomite carrier

    Science.gov (United States)

    Yakovleva, E. Yu.; Shundrina, I. K.; Gerasimov, E. Yu.

    2017-09-01

    A way of preparing separation layers by the pyrolysis of fluorinated polyimide obtained from 2,4,6-trimethyl- m-phenylenediamine (2,4,6-TM mPDA) and 2,2-bis(3',4'-dicarboxyphenyl)hexafluoropropane (6FDA) applied onto a diatomite carrier is described. Thermogravimetry, elemental analysis, low-temperature nitrogen adsorption, high-resolution electron microscopy, and gas chromatography are used to study changes in the texture and chromatographic characteristics of these layers. It is found that changes in the structure and the effectivity of separation characteristic of the layers depend on the temperature of pyrolysis, which ranges from 250 to 1100°C. It is established that a layer of separation is formed at 250-350°C, and the order of elution of hydrocarbons is similar to their chromatographic behavior on such stationary phases as OV-101. Layers of amorphous carbon formed on the surfaces of individual particles on a diatomite surface at 500-700°C. These layers ensure highly stable and selective separation of permanent gases and hydrocarbons when they are present together.

  1. Developing Student-Centered Learning Model to Improve High Order Mathematical Thinking Ability

    Science.gov (United States)

    Saragih, Sahat; Napitupulu, Elvis

    2015-01-01

    The purpose of this research was to develop student-centered learning model aiming to improve high order mathematical thinking ability of junior high school students of based on curriculum 2013 in North Sumatera, Indonesia. The special purpose of this research was to analyze and to formulate the purpose of mathematics lesson in high order…

  2. A high surface area Zr(IV)-based metal–organic framework showing stepwise gas adsorption and selective dye uptake

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiu-Liang [Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 (China); Tong, Minman; Huang, Hongliang [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Bin; Gan, Lei [Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 (China); Yang, Qingyuan [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhong, Chongli [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Jian-Rong, E-mail: jrli@bjut.edu.cn [Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124 (China); State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-03-15

    Exploitation of new metal–organic framework (MOF) materials with high surface areas has been attracting great attention in related research communities due to their broad potential applications. In this work, a new Zr(IV)-based MOF, [Zr{sub 6}O{sub 4}(OH){sub 4}(eddb){sub 6}] (BUT-30, H{sub 2}eddb=4,4′-(ethyne-1,2-diyl)dibenzoic acid) has been solvothermally synthesized, characterized, and explored for gases and dyes adsorptions. Single-crystal X-ray diffraction analysis demonstrates a three-dimensional cubic framework structure of this MOF, in which each Zr{sub 6}O{sub 4}(OH){sub 4} building unit is linked by 12 linear eddb ligands. BUT-30 has been found stable up to 400 °C and has a Brunauer–Emmett–Teller (BET) surface area as high as 3940.6 m{sup 2} g{sup −1} (based on the N{sub 2} adsorption at 77 K) and total pore volume of 1.55 cm{sup 3} g{sup −1}. It is more interesting that this MOF exhibits stepwise adsorption behaviors for Ar, N{sub 2}, and CO{sub 2} at low temperatures, and selective uptakes towards different ionic dyes. - Graphical abstract: A new Zr(IV)-based MOF with high surface area has been synthesized and structurally characterized, which shows stepwise gas adsorption at low temperature and selective dye uptake from solution. - Highlights: • A new Zr-based MOF was synthesized and structurally characterized. • This MOF shows a higher surface area compared with its analogous UiO-67 and 68. • This MOF shows a rare stepwise adsorption towards light gases at low temperature. • This MOF performs selective uptakes towards cationic dyes over anionic ones. • Using triple-bond spacer is confirmed feasible in enhancing MOF surface areas.

  3. The Relationship Between Utilization of Computer Games and Spatial Abilities Among High School Students

    Directory of Open Access Journals (Sweden)

    Vahid Motamedi

    2015-07-01

    Full Text Available This study aimed at investigating the relationship between computer game use and spatial abilities among high school students. The sample consisted of 300 high school male students selected through multi-stage cluster sampling. Data gathering tools consisted of a researcher made questionnaire (to collect information on computer game usage and the Newton and Bristol spatial ability questionnaire with reliability value of .85. Data were analyzed using Pearson’s correlation coefficient. Results showed that there was a meaningful relationship between the use of computer games and spatial ability (r = .59 and p = 00.00, there was a meaningful relationship between the use of computer games and the spatial perceived ability (r = .60 and p = .00, there was a meaningful relationship between the use of computer games and mental rotation ability (r = .48 and p = .00 and there was a meaningful relationship between computer game use and spatial visualization ability (r = .48 and p = .00. In general, the findings showed there was a positive and a significant relationship between the use of computer games and spatial abilities in students.

  4. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  5. Organic Removal Efficiency of the Nanofiltration and Adsorption Hybrid System in High Strength Wastewater

    Directory of Open Access Journals (Sweden)

    Amir Hessam Hassani

    2011-03-01

    Full Text Available Surface and groundwater resources are increasingly jeopardized by discharges from pharmaceutical, chemical, and detergent plants. The high pollutant load of the effluents from these industries requires specific treatments. The objective of this research was to study and compare the nanofiltration and adsorption hybrid system with the plain nanofiltration system in wastewater treatment.For this purpose, a pilot nanofiltration system with a capacity of 7.6 m3/d using 1 and 5 micron filters and a FILMTEC NF90-4040 membrane was used in the first phase of the study. In the second phase, granular activated carbon cartridges were used. Inluent and effluent discharges as well as the COD removal were measured in both systems under variable times and organic load conditions. The results showed that COD removal efficiency was higher in the hybrid system than in the plain naonofiltration one. In the hybrid system, the Maximum in the hybrid system, the COD removal efficiencies achieved for organic loads of 1000, 2000, and 3000 mg/L were 99%, 95.86%, and 92.93%, respectively. The same values for the plain nanofiltration system were 87.34%, 50%, and 29.41%, respectively. It was found that polarization and membrane fouling decreased both the effluent flow and the COD removal efficiency with time. Fouling of the membrane was, however, lower in the hybrid system compared to the plain nanofiltration; thus, the hybrid system was associated with higher values of COD removal and delayed membrane fouling.

  6. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    Science.gov (United States)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  7. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  8. Use of 15N dilution method for screening soybean lines with high yield and high nitrogen fixation ability

    International Nuclear Information System (INIS)

    Li Haixian; Li Xinmin; Danso, S.K.A.

    1998-01-01

    15 N dilution method was used for screening soybean lines with high nitrogen fixation ability. Screened lines 1005, 8502, 2096, 943, 1454 and Dongnong-42 have high nitrogen fixation ability with their % Ndfa of about 70%. 1454 and 1555 are both high yield and high nitrogen fixation lines. The ability of nitrogen fixation was not related to the yield, but related to maturing time. The cultivars with different maturing time have different levels of nitrogen fixation ability. The longer the maturing period is, the greater the ability of nitrogen fixation it has. There were ten cultivars or lines used in the test of 1992 and 1994. Although the weather condition were greatly different between the two years the results of seven cultivars or lines were the same, indicating that nitrogen fixation ability of the soybean is stable with years. Using 15 N dilution method to estimate nitrogen fixation ability of soybean is reliable, however, the % Ndfa of lines 8502 and 2096 increased by 19% in 1994, a rainy year, indicating that a change in % Ndfa with a few varieties maybe caused by weather

  9. The Influence of Personality, Parenting Styles, and Perfectionism on Performance Goal Orientation in High Ability Students

    Science.gov (United States)

    Miller, Angie L.; Speirs Neumeister, Kristie L.

    2017-01-01

    The current study explores relationships among gender, perceived parenting style, the personality traits of conscientiousness and neuroticism, perfectionism, and achievement goal orientation in a high ability and high achieving young adult population. Using data from Honors College students at a Midwestern university, a path model suggests that…

  10. Improving Junior High School Students' Mathematical Analogical Ability Using Discovery Learning Method

    Science.gov (United States)

    Maarif, Samsul

    2016-01-01

    The aim of this study was to identify the influence of discovery learning method towards the mathematical analogical ability of junior high school's students. This is a research using factorial design 2x2 with ANOVA-Two ways. The population of this research included the entire students of SMPN 13 Jakarta (State Junior High School 13 of Jakarta)…

  11. The Relationship between Utilization of Computer Games and Spatial Abilities among High School Students

    Science.gov (United States)

    Motamedi, Vahid; Yaghoubi, Razeyah Mohagheghyan

    2015-01-01

    This study aimed at investigating the relationship between computer game use and spatial abilities among high school students. The sample consisted of 300 high school male students selected through multi-stage cluster sampling. Data gathering tools consisted of a researcher made questionnaire (to collect information on computer game usage) and the…

  12. Improving Mathematical Communication Ability and Self Regulation Learning of Junior High Students by Using Reciprocal Teaching

    Science.gov (United States)

    Qohar, Abdul; Sumarmo, Utari

    2013-01-01

    This paper presents the findings from a posttest experiment control group design by using reciprocal teaching, conducted in Indonesia University of Education to investigate students' ability in mathematical communication and self regulated learning. Subject of the study were 254 of 9th grade students from three junior high schools of high, medium,…

  13. Adsorption of uranium on halloysite

    International Nuclear Information System (INIS)

    Kilislioglu, A.; Bilgin, B.

    2002-01-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  14. Adsorption of uranium on halloysite

    Energy Technology Data Exchange (ETDEWEB)

    Kilislioglu, A.; Bilgin, B. [Istanbul Univ. (Turkey). Faculty of Engineering

    2002-07-01

    Adsorption of uranium (U(VI)) from aqueous solutions on halloysite type clay was studied as a function of amount of adsorbent, initial concentration and pH. The values of adsorption data were fitted to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The mean energy of adsorption was calculated as 5.91 kJ/mol from D-R adsorption isotherm. Lagergren and Bangham equation has been used for dynamic modelling of process and the rate constants of adsorption of uranium on halloysite type clay were calculated at 293, 313 and 333 K. In order to explain the mechanism of adsorption reaction, the rate constants were calculated at high and low uranium concentrations. Adsorption reaction was studied at 293, 303, 313, 323 and 333 K for halloysite type clay and also thermodynamic constants have been calculated. The results show that the adsorption reaction was endothermic and more spontaneous at high temperature. (orig.)

  15. Adsorptive behavior and solid-phase microextraction of bare stainless steel sample loop in high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Wenpeng; Zhang, Zixin; Meng, Jiawei; Zhou, Wei; Chen, Zilin

    2014-10-24

    In this work, we interestingly happened to observe the adsorption of stainless steel sample loop of HPLC. The adsorptive behaviors of the stainless steel loop toward different kinds of compounds were studied, including polycyclic aromatic hydrocarbons (PAHs), halogeno benzenes, aniline derivatives, benzoic acid derivatives, phenols, benzoic acid ethyl ester, benzaldehyde, 1-phenyl-ethanone and phenethyl alcohol. The adsorptive mechanism was probably related to hydrophobic interaction, electron-rich element-metal interaction and hydrogen bond. Universal adsorption of stainless steels was also testified. Inspired by its strong adsorptive capability, bare stainless steel loop was developed as a modification-free in-tube device for solid-phase microextraction (SPME), which served as both the substrate and sorbent and possessed ultra-high strength and stability. Great extraction efficiency toward PAHs was obtained by stainless steel loop without any modification, with enrichment factors of 651-834. By connecting the stainless steel loop onto a six-port valve, an online SPME-HPLC system was set up and an SPME-HPLC method has been validated for determination of PAHs. The method has exceptionally low limits of detection of 0.2-2pg/mL, which is significantly lower than that of reported methods with different kinds of sorbents. Wide linear range (0.5-500 and 2-1000pg/mL), good linearity (R(2)≥0.9987) and good reproducibility (RSD≤2.9%) were also obtained. The proposed method has been applied to determine PAHs in environmental samples. Good recoveries were obtained, ranging from 88.5% to 93.8%. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The influence of mathematics learning using SAVI approach on junior high school students’ mathematical modelling ability

    Science.gov (United States)

    Khusna, H.; Heryaningsih, N. Y.

    2018-01-01

    The aim of this research was to examine mathematical modeling ability who learn mathematics by using SAVI approach. This research was a quasi-experimental research with non-equivalent control group designed by using purposive sampling technique. The population of this research was the state junior high school students in Lembang while the sample consisted of two class at 8th grade. The instrument used in this research was mathematical modeling ability. Data analysis of this research was conducted by using SPSS 20 by Windows. The result showed that students’ ability of mathematical modeling who learn mathematics by using SAVI approach was better than students’ ability of mathematical modeling who learn mathematics using conventional learning.

  17. Looking at the high ability/giftedness through the lens of curriculum studies

    Directory of Open Access Journals (Sweden)

    Soraia Napoleão Freitas

    2011-12-01

    Full Text Available From diving in the educational field, either in teaching or research in Special Education, this article postulates bring visibility to a curricular discussion strongly marked by the educational practice of learners with high ability/giftedness and having the "lighthouse flag” the inclusion policy school principles, not just theorizing about the elements of the theme. Curriculum is understood as a territory of knowledge and power, so the manufacturing process of the curriculum in the wake of the inclusive hillside – a journey which aims to solidify egalitarian social link - can put up as an potentiating agent of different actions for the education of students with high ability/giftedness, protecting them from moments of discrimination, segregation and personal, family, school and social exclusion. Therefore, this article takes up an invitation to educators to look at the prerogatives of education that hosts students with high ability/giftedness with the lens of curriculum studies.

  18. Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Lewicka Katarzyna

    2017-06-01

    Full Text Available Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN, walnut shells (WN and peanut shells (PN. Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g and WN900 at 25°C (4.34 mmol/g. All of the samples had a well-developed microporous structure.

  19. Adsorption purification of helium coolant of high-temperature gas-cooled reactors of carbon dioxide

    International Nuclear Information System (INIS)

    Varezhkin, A.V.; Zel'venskij, Ya.D.; Metlik, I.V.; Khrulev, A.A.; Fedoseenkin, A.N.

    1986-01-01

    A series experiments on adsorption purification of helium of CO 2 using national adsorbent under the conditions characteristic of HTGR type reactors cleanup system is performed. The experimnts have been conducted under the dynamic mode with immobile adsorbent layer (CaA zeolite) at gas flow rates from 0,02 to 0,055 m/s in the pressure range from 0,8 to 5 MPa at the temperature of 273 and 293 K. It is shown that the adsorption grows with the decrease of gas rate, i.e. with increase of contact time with adsorbent. The helium pressure, growth noticeably whereas the temperature decrease from 293 to 273 K results in adsorption 2,6 times increase. The conclusion is drawn that it is advisable drying and purification of helium of CO 2 to perform separately using different zeolites: NaA - for water. CaA - for CO 2 . Estimations of purification unit parameters are realized

  20. High surface area TiO2/SBA-15 nanocomposites: Synthesis, microstructure and adsorption-enhanced photocatalysis

    Science.gov (United States)

    Wei, J. Q.; Chen, X. J.; Wang, P. F.; Han, Y. B.; Xu, J. C.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, X. Q.

    2018-06-01

    Mesoporous SBA-15 was used to anchor TiO2 nanoparticles into the mesopores to form high surface area TiO2/SBA-15 nanocomposites, and then the influence of mesoporous-structure on the photocatalytic performance was investigated. TiO2/SBA-15 nanocomposites possessed the high specific surface area and appropriate pore size, indicating the excellent adsorption performance. TiO2/SBA-15 nanocomposites exhibited the higher photocatalytic activity to degrade dyes (methylene blue: MB) than TiO2 (removing SBA-15), which should attributed to the excellent adsorption performance of the nanocomposites. MB was absorbed to form the higher concentration near TiO2/SBA-15 photocatalysts, and the photocatalytic degradation for MB was improved.

  1. Reprocessing ability of high density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Gay, A.; Belieres, M.

    1997-01-01

    The development of a new high density fuel is becoming a key issue for Research Reactors operators. Such a new fuel should be a Low Enrichment Uranium (LEU) fuel with a high density, to improve present in core performances. It must be compatible with the reprocessing in an industrial plant to provide a steady back-end solution. Within the framework of a work group CEA/CERCA/COGEMA on new fuel development for Research Reactors, COGEMA has performed an evaluation of the reprocessing ability of some fuel dispersants selected as good candidates. The results will allow US to classify these fuel dispersants from a reprocessing ability point of view. (author)

  2. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  3. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    OpenAIRE

    Hu Xueting; Zhang Dongyun; Zhao Siqin; Asuha Sin

    2016-01-01

    Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase) with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange) with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that th...

  4. A comprehensive test of evolutionarily increased competitive ability in a highly invasive plant species

    Science.gov (United States)

    Joshi, Srijana; Gruntman, Michal; Bilton, Mark; Seifan, Merav; Tielbörger, Katja

    2014-01-01

    Background and Aims A common hypothesis to explain plants' invasive success is that release from natural enemies in the introduced range selects for reduced allocation to resistance traits and a subsequent increase in resources available for growth and competitive ability (evolution of increased competitive ability, EICA). However, studies that have investigated this hypothesis have been incomplete as they either did not test for all aspects of competitive ability or did not select appropriate competitors. Methods Here, the prediction of increased competitive ability was examined with the invasive plant Lythrum salicaria (purple loosestrife) in a set of common-garden experiments that addressed these aspects by carefully distinguishing between competitive effect and response of invasive and native plants, and by using both intraspecific and interspecific competition settings with a highly vigorous neighbour, Urtica dioica (stinging nettle), which occurs in both ranges. Key Results While the intraspecific competition results showed no differences in competitive effect or response between native and invasive plants, the interspecific competition experiment revealed greater competitive response and effect of invasive plants in both biomass and seed production. Conclusions The use of both intra- and interspecific competition experiments in this study revealed opposing results. While the first experiment refutes the EICA hypothesis, the second shows strong support for it, suggesting evolutionarily increased competitive ability in invasive populations of L. salicaria. It is suggested that the use of naturally co-occurring heterospecifics, rather than conspecifics, may provide a better evaluation of the possible evolutionary shift towards greater competitive ability. PMID:25301818

  5. Factors associated with poor balance ability in older adults of nine high-altitude communities.

    Science.gov (United States)

    Urrunaga-Pastor, Diego; Moncada-Mapelli, Enrique; Runzer-Colmenares, Fernando M; Bailon-Valdez, Zaira; Samper-Ternent, Rafael; Rodriguez-Mañas, Leocadio; Parodi, Jose F

    2018-05-01

    Poor balance ability in older adults result in multiple complications. Poor balance ability has not been studied among older adults living at high altitudes. In this study, we analysed factors associated with poor balance ability by using the Functional Reach (FR) among older adults living in nine high-altitude communities. Analytical cross-sectional study, carried out in inhabitants aged 60 or over from nine high-altitude Andean communities of Peru during 2013-2016. FR was divided according to the cut-off point of 8 inches (20.32 cm) and two groups were generated: poor balance ability (FR less or equal than 20.32 cm) and good balance ability (greater than 20.32 cm). Additionally, we collected socio-demographic, medical, functional and cognitive assessment information. Poisson regression models were constructed to identify factors associated with poor balance ability. Prevalence ratio (PR) with 95% confidence intervals (95CI%) are presented. A total of 365 older adults were studied. The average age was 73.0 ± 6.9 years (range: 60-91 years), and 180 (49.3%) participants had poor balance ability. In the adjusted Poisson regression analysis, the factors associated with poor balance ability were: alcohol consumption (PR = 1.35; 95%CI: 1.05-1.73), exhaustion (PR = 2.22; 95%CI: 1.49-3.31), gait speed (PR = 0.67; 95%CI: 0.50-0.90), having had at least one fall in the last year (PR = 2.03; 95%CI: 1.19-3.46), having at least one comorbidity (PR = 1.60; 95%CI: 1.10-2.35) and having two or more comorbidities (PR = 1.61; 95%CI: 1.07-2.42) compared to none. Approximately a half of the older adults from these high-altitude communities had poor balance ability. Interventions need to be designed to target these balance issues and prevent adverse events from concurring to these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Improving Mathematical Communication Ability and Self Regulation Learning Of Yunior High Students by Using Reciprocal Teaching

    Directory of Open Access Journals (Sweden)

    Abdul Qohar

    2013-01-01

    Full Text Available This paper presents the findings from a posttest experiment control group design  by  using reciprocal teaching, conducted  in Indonesia University of Education to investigate students’ ability in mathematical communication and self regulated learning.  Subject of the study were 254 of 9th grade students from three junior high schools of high, medium, and low level in Bojonegoro, East Java.  The instruments of the study were an essay mathematical communication test, and a self regulated learning scale. The study found that reciprocal teaching took the best role among school  cluster  and students’ prior mathematics ability on students’ mathematical communication ability and self regulated learning as well.  The other finding were there was interaction between school cluster and teaching approaches, but was no interaction between students’ prior mathematics ability and teaching approaches on mathematical communication ability and  self regulated learning. Moreover, there was association between mathematical communication and self regulated learningKeywords: Reciprocal Teaching, Mathematical Communication, Self Regulated Learning DOI: http://dx.doi.org/10.22342/jme.4.1.562.59-74

  7. High-resolution adsorption analysis of pillared zeolites IPC-3PI and MCM-36

    Czech Academy of Sciences Publication Activity Database

    Zukal, Arnošt; Kubů, Martin

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10558-10565 ISSN 1477-9226 R&D Projects: GA ČR GP13-17593P Institutional support: RVO:61388955 Keywords : zeolites * adsorption * microporosity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  8. Electron stimulated carbon adsorption in ultra high vacuum monitored by Auger Electron Spectroscopy (AES)

    CERN Document Server

    Scheuerlein, C

    2001-01-01

    Electron stimulated carbon adsorption at room temperature (RT) has been studied in the context of radiation induced surface modifications in the vacuum system of particle accelerators. The stimulated carbon adsorption was monitored by AES during continuous irradiation by 2.5 keV electrons and simultaneous exposure of the sample surface to CO, CO2 or CH4. The amount of adsorbed carbon was estimated by measuring the carbon Auger peak intensity as a function of the electron irradiation time. Investigated substrate materials are technical OFE copper and TiZrV non-evaporable getter (NEG) thin film coatings, which are saturated either in air or by CO exposure inside the Auger electron spectrometer. On the copper substrate electron induced carbon adsorption from gas phase CO and CO2 is below the detection limit of AES. During electron irradiation of the non-activated TiZrV getter thin films, electron stimulated carbon adsorption from gas phase molecules is detected when either CO or CO2 is injected, whereas the CH4 ...

  9. Perfectionism in High-Ability Students: Relational Precursors and Influences on Achievement Motivation

    Science.gov (United States)

    Speirs Neumeister, Kristie L.; Finch, Holmes

    2006-01-01

    The purpose of the present study was to create and test a model that (a) illustrated variables influencing the development of perfectionism, and (b) demonstrated how different types of perfectionism may influence the achievement goals of high-ability students. Using a multiple groups path analysis, the researchers found that parenting style was…

  10. The Impact of Active Visualisation of High School Students on the Ability to Memorise Verbal Definitions

    Science.gov (United States)

    Šmajdek, Anamarija; Selan, Jurij

    2016-01-01

    The era of visual communication influences the cognitive strategies of the individual. Education, too, must adjust to these changes, which raises questions regarding the use of visualisation in teaching. In the present study, we examine the impact of visualisation on the ability of high school students to memorise text. In the theoretical part of…

  11. Profile of Secondary School Students with High Mathematics Ability in Solving Shape and Space Problem

    Science.gov (United States)

    Putra, Mulia; Novita, Rita

    2015-01-01

    This study aimed to describe the profile of secondary school students with high mathematics ability in solving shape and space problem in PISA (Program for International Student Assessment). It is a descriptive research with a qualitative approach, in which the subjects in this study were students of class VIII SMP N 1 Banda Aceh. The results show…

  12. The Relationship between Critical Thinking Abilities and Classroom Management Skills of High School Teachers

    Science.gov (United States)

    Demirdag, Seyithan

    2015-01-01

    High school teachers experience difficulties while providing effective teaching approaches in their classrooms. Some of the difficulties are associated with the lack of classroom management skills and critical thinking abilities. This quantitative study includes non-random selection of the participants and aims to examine critical thinking…

  13. Pragmatic Inference Abilities in Individuals with Asperger Syndrome or High-Functioning Autism. A Review

    Science.gov (United States)

    Loukusa, Soile; Moilanen, Irma

    2009-01-01

    This review summarizes studies involving pragmatic language comprehension and inference abilities in individuals with Asperger syndrome or high-functioning autism. Systematic searches of three electronic databases, selected journals, and reference lists identified 20 studies meeting the inclusion criteria. These studies were evaluated in terms of:…

  14. The Relationship between Ethical Sensitivity, High Ability and Gender in Higher Education Students

    Science.gov (United States)

    Schutte, Ingrid; Wolfensberger, Marca; Tirri, Kirsi

    2014-01-01

    This study examined the ethical sensitivity of high-ability undergraduate students (n=731) in the Netherlands who completed the 28-item Ethical Sensitivity Scale Questionnaire (ESSQ) developed by Tirri & Nokelainen (2007; 2011). The ESSQ is based on Narvaez' (2001) operationalization of ethical sensitivity in seven dimensions. The following…

  15. Development of an Instrument to Evaluate High School Students' Chemical Symbol Representation Abilities

    Science.gov (United States)

    Wang, Zuhao; Chi, Shaohui; Luo, Ma; Yang, Yuqin; Huang, Min

    2017-01-01

    Chemical symbol representation is a medium for transformations between the actual phenomena of the macroscopic world and those of the sub-microscopic world. The aim of this study is to develop an instrument to evaluate high school students' chemical symbol representation abilities (CSRA). Based on the current literature, we defined CSRA and…

  16. Long term high flow heated oxygen treatment in COPD – lung function and physical ability

    DEFF Research Database (Denmark)

    Weinreich, Ulla; Storgaard, Line; Hockey, Hans

    2017-01-01

    Introduction: Long term oxygen therapy (LTOT) improves survival in patients with COPD with resting hypoxemia. Despite this, a progressive loss of lung function and physical ability is expected in COPD. The AIRVO device delivers nasal high flow (NHF) warmed and humidified oxygen-enriched air, 20...

  17. Hydrothermal Synthesis of Highly Water-dispersible Anatase Nanoparticles with Large Specific Surface Area and Their Adsorptive Properties

    Directory of Open Access Journals (Sweden)

    Hu Xueting

    2016-01-01

    Full Text Available Highly water-dispersible and very small TiO2 nanoparticles (~3 nm anatase with large specific surface area have been synthesized by hydrolysis and hydrothermal reactions of titanium butoxide and used for the removal of three azo dyes (Congo red, orange II, and methyl orange with different molecular structure from simulated wastewaters. The synthesized TiO2 nanoparticles are well dispersed in water with large specific surface area up to 417 m2 g−1. Adsorption experiments demonstrated that the water-dispersible TiO2 nanoparticles possess excellent adsorption capacities for Congo red, orange II, and methyl orange, which could be attributed to their good water-dispersibility and large specific surface area.

  18. Application of high resolution X-ray emission spectroscopy on the study of Cr ion adsorption by activated carbon

    International Nuclear Information System (INIS)

    Espinoza-Quinones, Fernando R.; Modenes, Aparecido N.; Camera, Adriana S.; Stutz, Guillermo; Tirao, German; Palacio, Soraya M.; Kroumov, Alexander D.; Oliveira, Ana P.; Alflen, Vanessa L.

    2010-01-01

    In this work granular activated carbon has been chosen as an absorbent in order to investigate the Cr(VI) reduced by adsorption experiments. Several batch chromium-sorption experiments were carried out using 0.25 g of granular activated carbon in 50 mL aqueous solution containing approximately 70 and 140 mg L -1 of Cr(VI) and Cr(III), respectively. Cr-Kβ fluorescence spectra of Cr adsorbed in a carbon matrix and Cr reference materials were measured using a high-resolution Johann-type spectrometer. Based on evidence from the Cr-Kb satellite lines, the Cr(VI) reduction process has actually happened during metal adsorption by the activated carbon.

  19. Development of a facility for the recovery of high-purity hydrogen from coke oven gas by pressure swing adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Saida, K; Uenoyama, K; Sugishita, M; Imokawa, K

    1985-01-01

    This paper reports 1) a pressure swing adsorption (PSA) system comprising three towers, each packed with three different adsorbents; and 2) studies of the application of this system to the recovery of high-purity hydrogen from coke oven gas. Running the adsorption plant at 35 C and 9.5 kg/cm/sup 2/ gives optimum operating stability and economy. In addition, an optimum time cycle for the three-tower system has been developed. Gas from the PSA equipment proper still contains traces of oxygen. This is removed in a further tower packed with Pd catalyst. The ultimate recovery of hydrogen is closely related to its concentration in the raw coke oven gas and to the degree of purity attained. 3 references.

  20. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.

    Science.gov (United States)

    Niu, Xiaopeng; Ruan, Renman; Xia, Liuyin; Li, Li; Sun, Heyun; Jia, Yan; Tan, Qiaoyi

    2018-02-27

    When it comes to Pb-Zn ores with high amounts of pyrite, the major problem encountered is the low separation efficiency between galena and pyrite. By virtue of high dosage of lime and collector sodium diethyl dithiocarbamate (DDTC), pyrite and zinc minerals are depressed, allowing the galena to be floated. However, there have been significant conflicting reports on the flotation behavior of galena at high pH. In this context, correlation of the surface adsorption and oxidation with the floatability difference of galena and pyrite in high-alkaline lime systems would be a key issue for process optimization. Captive bubble contact angle measurements were performed on freshly polished mineral surfaces in situ exposed to lime solutions of varying pH as a function of immersion time. Furthermore, single mineral microflotation tests were conducted. Both tests indicated that the degree of hydrophobicity on the surfaces of galena and pyrite increased in the presence of DDTC at natural or mild pulp pH. While in a saturated lime solution, at pH 12.5, DDTC only worked for galena, but not for pyrite. Surface chemistry analysis by time-of-flight secondary ion mass spectrometry (Tof-SIMS) confirmed the preference of DDTC on the galena surface at pH 12.5, which contributed to a merit recovery. Further important evidence through measurements of Tof-SIMS, ion chromatography, and high-performance liquid chromatography indicated that in high-alkaline lime systems, the merit floatability of galena could exclude the insignificant contribution of elemental sulfur (S 8 ) and was dominantly attributed by the strong adsorption of DDTC. In contrast, the poor flotation response of pyrite at high pH was due to the prevailing adsorption of CaOH + species. This study provides an important surface chemistry evidence for a better understanding of the mechanism on the better selectivity in the galena-pyrite separation adopting high-alkaline lime systems.

  1. Azo dyes decomposition on new nitrogen-modified anatase TiO{sub 2} with high adsorptivity

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M., E-mail: mjanus@ps.pl [Szczecin University of Technology, Department of Sanitary Engineering, al. Piastow 50, 70-310 Szczecin (Poland); Szczecin University of Technology, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin (Poland); Choina, J.; Morawski, A.W. [Szczecin University of Technology, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin (Poland)

    2009-07-15

    New vis active photocatalyst was obtained by the modification of commercial anatase TiO{sub 2} (Police, Poland) in pressure reactor in an ammonia water atmosphere at 100 {sup o}C for 4 h. The photocatalytic activity of new material was tested during three azo dyes decomposition: monoazo (Reactive Read), diazo (Reactive Black) and poliazodye (Direct Green). Obtained photocatalyst had new bands at 1430-1440 cm{sup -1} attributed to the bending vibrations of NH{sub 4}{sup +} and at 1535 cm{sup -1} associated with NH{sub 2} groups or NO{sub 2} and NO. UV-vis/DR spectra of photocatalyst had also insignificant decrease in visible region. Fluorescence technique was used for studying the amount of hydroxyl radicals produced on TiO{sub 2} surface during visible light irradiation. The hydroxyl radicals produced react with coumarin present in the solution to form 7-hydroxycoumarin which has fluorescent capacity. Photocatalytic activity of modified TiO{sub 2} was compared with commercial titanium dioxide P25 (Degussa, Germany). The photocatalytic activity of TiO{sub 2}/N was higher than that of unmodified material and P25 under visible light irradiation. The ability for dye adsorption (Reactive Red) on photocatalyst surface was also tested. Unmodified TiO{sub 2} and P25 has isotherm of adsorption by Freundlich model, and nitrogen-modified TiO{sub 2} by Langmuir model. The presence of nitrogen at the surface of TiO{sub 2} significantly increased adsorption capacity of TiO{sub 2} as well as OH{center_dot} radicals formation under visible radiation.

  2. Visualisation Ability of Senior High School Students with Using GeoGebra and Transparent Mica

    International Nuclear Information System (INIS)

    Thohirudin, M; Maryati, TK; Dwirahayu, G

    2017-01-01

    Visualisation ability is an ability to process, inform, and transform object which suitable for geometry topic in math. This research aims to describe the influence of using software GeoGebra and transparent mica for student’s visualisation ability. GeoGebra is shortness of geometry and algebra. GeoGebra is an open source program that is created for math. Transparent mica is a tool that is created by the author to transform a geometry object. This research is a quantitative experiment model. The subject of this research were students in grade XII of science program in Annajah Senior High School Rumpin with two classes which one as an experiment class (science one) and another one as a control class (science two). Experiment class use GeoGebra and transparent mica in the study, and control class use powerpoint in the study. Data of student’s visualisation ability is collected from posttest with visual questions which are gifted at the end of the research to both classes with topic “transformation geometry”. This research resulted that studying with GeoGebra and transparent mica had a better influence than studying with powerpoint to student’s visualisation ability. The time of study in class and the habit of the students to use software and tool affected the result of research. Although, GeoGebra and transparent mica can give help to students in transformation geometry topic. (paper)

  3. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Graphite oxide-mediated synthesis of porous CeO2 quadrangular prisms and their high-efficiency adsorptive performance

    International Nuclear Information System (INIS)

    Chang, Ling; Wang, Fengxian; Xie, Dong; Zhang, Jun; Du, Gaohui

    2013-01-01

    Graphical abstract: - Highlights: • Porous CeO 2 quadrangular prisms have been prepared via graphite oxide-mediated synthesis. • Dual-pore hierarchical systems are formed with the pore distributions around 4 nm and 30 nm. • Porous CeO 2 exhibits a rapid adsorption to Rhodamine B with a removal efficiency of ∼99%. • Porous CeO 2 retains the same performances in different pH solutions. - Abstract: We report a graphite oxide-mediated approach for synthesizing porous CeO 2 through a facile hydrothermal process followed by thermal annealing in air. The phase structure, morphology, microstructure and porosity of the products have been revealed by a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N 2 adsorption. The as-prepared CeO 2 products show well-defined quadrangular prism morphology, and they are composed of interconnected nanoparticles with diameters around 30–100 nm. In particular, the dual-pore hierarchical systems are created in the CeO 2 quadrangular prisms with the pore distributions around 4 nm and 30 nm. The dye sorption capacity of the porous CeO 2 is investigated, which exhibits a rapid adsorption to rhodamine B with a high removal efficiency of ∼99%. Moreover, the CeO 2 absorbent retains the same performances in different pH solutions

  5. Adsorption of Insecticidal Crystal Protein Cry11Aa onto Nano-Mg(OH)2: Effects on Bioactivity and Anti-Ultraviolet Ability.

    Science.gov (United States)

    Pan, Xiaohong; Xu, Zhangyan; Li, Lan; Shao, Enshi; Chen, Saili; Huang, Tengzhou; Chen, Zhi; Rao, Wenhua; Huang, Tianpei; Zhang, Lingling; Wu, Songqing; Guan, Xiong

    2017-11-01

    The traditional Bacillus thuringiensis (Bt) formulations for field applications are not resistant to harsh environmental conditions. Hence, the active ingredients of the Bt bioinsecticides could degrade quickly and has low anti-ultraviolet ability in the field, which significantly limits its practical application. In the present study, we developed an efficient and stable delivery system for Bt Cry11Aa toxins. We coated Cry11Aa proteins with Mg(OH) 2 nanoparticles (MHNPs), and then assessed the effects of MHNPs on bioactivity and anti-ultraviolet ability of the Cry11Aa proteins. Our results indicated that MHNPs, like "coating clothes", could effectively protect the Cry protein and enhance the insecticidal bioactivity after UV radiation (the degradation rate was decreased from 64.29% to 16.67%). In addtion, MHNPs could improve the proteolysis of Cry11Aa in the midgut and aggravate the damage of the Cry protein to the gut epithelial cells, leading to increased insecticidal activity against Culex quinquefasciatus. Our results revealed that MHNPs, as an excellent nanocarrier, could substantially improve the insecticidal bioactivity and anti-ultraviolet ability of Cry11Aa.

  6. Application of wastewater with high organic load for saline-sodic soil reclamation focusing on soil purification ability

    Directory of Open Access Journals (Sweden)

    M.A. Kameli

    2017-04-01

    Full Text Available Fresh water source scarcity in arid and semiarid area is limitation factor for saline-sodic soil reclamation. The reusing of agricultural drainage and industrial wastewater are preferred strategies for combating with this concern. The objective of current study was evaluation in application of industrial sugar manufacture wastewater due to high soluble organic compounds in saline-sodic and sodic soil. Also soil ability in wastewater organic compounds removal was second aim of present study. Saline-sodic and sodic soil sample was leached in soil column by diluted wastewater of amirkabir sugar manufacture in Khuzestan Province of Iran at constant water head. Sodium, electric conductivity and chemical oxygen demand of soil column leachate were measured per each pore volume. The experimental kinetics of wastewater organic compounds on two saline-sodic and sodic soil were also investigated by three pseudo second order, intra particle diffusion and elovich model. The results of current study showed that electric conductivity of saline-sodic soil was decreased to 90% during 3 initial pore volumes, from other side exchangeable sodium percent of saline-sodic and sodic soil decreased 30 and 71 percent, respectively. There were no significant different between wastewater chemical oxygen demand removal by saline-sodic and sodic soil in both batch and column studies. Wastewater chemical oxygen demand was decreased to 35% during pass through soil column. The results showed that the adsorption kinetics of wastewater organic compounds were best fitted by the pseudo-second order model with 99 percent correlation coefficient (r2=0.99%.

  7. Zinc adsorption in highly weathered soils Adsorção de zinco em solos altamente intemperizados

    Directory of Open Access Journals (Sweden)

    José Carlos Casagrande

    2008-01-01

    Full Text Available The objective of this work was to assess the effects of pH and ionic strength upon zinc adsorption, in three highly weathered variable charge soils. Adsorption isotherms were elaborated from batch adsorption experiments, with increasing Zn concentrations (0-80 mg L-1, and adsorption envelopes were constructed through soil samples reactions with 0.01, 0.1 and 1 mol L-1 Ca(NO32 solutions containing 5 mg L-1 of Zn, with an increasing pH value from 3 to 8. Driving force of reaction was quantified by Gibbs free energy and separation factor. Isotherms were C-, H- and L-type and experimental results were fitted to nonlinear Langmuir model. Maximum adsorption ranged from 59-810 mg kg-1, and Zn affinity was greater in subsoil (0.13-0.81 L kg-1 than in the topsoil samples (0.01-0.34 L kg-1. Zinc adsorption was favorable and spontaneous, and showed sharply increase (20-90% in the 4-6 pH range. No effect of ionic strength was observed at pH values below 5, because specific adsorption mechanisms predominated in the 3-5 pH range. Above pH 5, and in subsoil samples, Zn was adsorbed by electrostatic mechanisms, since ionic strength effect was observed. Despite depth and ionic strength effects, Zn adsorption depends mainly on the pH.O objetivo deste trabalho foi avaliar o efeito do pH e da força iônica sobre a adsorção de zinco, em três solos altamente intemperizados, com predomínio de cargas variáveis. A partir de experimentos tipo " batch" , foram elaboradas isotermas de adsorção, com quantidades crescentes de Zn (0-80 mg L-1, e envelopes de adsorção foram feitos pela reação de amostras de terra com soluções de Ca(NO32 0,01, 0,1 e 1 mol L-1 e 5 mg L-1 de Zn, submetidas a variações de pH (3-8. A força direcional da reação de adsorção de Zn foi estimada pela energia livre de Gibbs e pelo fator de separação. As isotermas foram do tipo C, H e L, e os resultados experimentais ajustaram-se ao modelo de Langmuir. A adsorção máxima variou de

  8. A comprehensive test of evolutionarily increased competitive ability in a highly invasive plant species.

    Science.gov (United States)

    Joshi, Srijana; Gruntman, Michal; Bilton, Mark; Seifan, Merav; Tielbörger, Katja

    2014-12-01

    A common hypothesis to explain plants' invasive success is that release from natural enemies in the introduced range selects for reduced allocation to resistance traits and a subsequent increase in resources available for growth and competitive ability (evolution of increased competitive ability, EICA). However, studies that have investigated this hypothesis have been incomplete as they either did not test for all aspects of competitive ability or did not select appropriate competitors. Here, the prediction of increased competitive ability was examined with the invasive plant Lythrum salicaria (purple loosestrife) in a set of common-garden experiments that addressed these aspects by carefully distinguishing between competitive effect and response of invasive and native plants, and by using both intraspecific and interspecific competition settings with a highly vigorous neighbour, Urtica dioica (stinging nettle), which occurs in both ranges. While the intraspecific competition results showed no differences in competitive effect or response between native and invasive plants, the interspecific competition experiment revealed greater competitive response and effect of invasive plants in both biomass and seed production. The use of both intra- and interspecific competition experiments in this study revealed opposing results. While the first experiment refutes the EICA hypothesis, the second shows strong support for it, suggesting evolutionarily increased competitive ability in invasive populations of L. salicaria. It is suggested that the use of naturally co-occurring heterospecifics, rather than conspecifics, may provide a better evaluation of the possible evolutionary shift towards greater competitive ability. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Highly Efficient Method for the Synthesis of Activated Mesoporous Biocarbons with Extremely High Surface Area for High-Pressure CO2 Adsorption.

    Science.gov (United States)

    Singh, Gurwinder; Lakhi, Kripal S; Kim, In Young; Kim, Sungho; Srivastava, Prashant; Naidu, Ravi; Vinu, Ajayan

    2017-09-06

    A simple and efficient way to synthesize activated mesoporous biocarbons (AMBs) with extremely high BET surface area and large pore volume has been achieved for the first time through a simple solid state activation of freely available biomass, Arundo donax, with zinc chloride. The textural parameters of the AMB can easily be controlled by varying the activation temperature. It is demonstrated that the mesoporosity of AMB can be finely tuned with a simple adjustment of the amount of activating agent. AMB with almost 100% mesoporosity can be achieved using the activating agent and the biomass ratio of 5 and carbonization at 500 °C. Under the optimized conditions, AMB with a BET surface area of 3298 m 2 g -1 and a pore volume of 1.9 cm 3 g -1 can be prepared. While being used as an adsorbent for CO 2 capture, AMB registers an impressively high pressure CO 2 adsorption capacity of 30.2 mmol g -1 at 30 bar which is much higher than that of activated carbon (AC), multiwalled carbon nanotubes (MWCNTs), highly ordered mesoporous carbons, and mesoporous carbon nitrides. AMB also shows high stability with excellent regeneration properties under vacuum and temperatures of up to 250 °C. These impressive textural parameters and high CO 2 adsorption capacity of AMB clearly reveal its potential as a promising adsorbent for high-pressure CO 2 capture and storage application. Also, the simple one-step synthesis strategy outlined in this work would provide a pathway to generate a series of novel mesoporous activated biocarbons from different biomasses.

  10. The theory of multiple intelligences in the identification of high-ability students

    Directory of Open Access Journals (Sweden)

    Daniel Hernández-Torrano

    2014-01-01

    Full Text Available This study provides a framework to implement the theory of multiple intelligences (MI in the identification of high-ability students in secondary education. The internal structure of three scales to assess students' MI (students, parents and teachers' ratings was analyzed in a sample of 566 students nominated as gifted by their teachers. Participants aged 11 to 16 years (M = 14.85, SD = 1.08. The results indicated differentiated intellectual profiles depending on the informant estimating students' MI. This study provided evidence for two components that allow us to analyze the cognitive competence of high-ability students beyond the areas commonly assessed at school: an academic component composed by the linguistic, logical-mathematical, naturalistic, and visual-spatial intelligences; and a non-academic component statistically loaded by the bodily-kinesthetic, musical and social intelligences. Convergence of the two components in the three scales was evidenced; and correlations between these components and students' objective performance on a psychometric intelligence test were found to be low. Finally, the utility of the MI scales to identify high-ability students in secondary education is discussed.

  11. Acid-base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus.

    Science.gov (United States)

    Yuan, Xiaoli; Bai, Chenguang; Xia, Wentang; An, Juan

    2014-08-15

    The adsorption phenomena and specific reaction processes of phosphate onto wasted low grade iron ore with high phosphorus (WLGIOWHP) were studied in this work. Zeta potential and Fourier transform infrared spectroscopy (FTIR) analyses were used to elucidate the interaction mechanism between WLGIOWHP and aqueous solution. The results implied that the main adsorption mechanism was the replacement of surface hydroxyl groups by phosphate via the formation of inner-sphere complex. The adsorption process was characterized by chemical adsorption onto WLGIOWHP. The non-electrostatic model (NEM) was used to simulate the surface adsorption of phosphate onto WLGIOWHP. The total surface site density and protonation constants for NEM (N(T)=1.6×10(-4) mol/g, K(a1)=2.2×10(-4), K(a2)=6.82×10(-9)) were obtained by non-linear data fitting of acid-base titrations. In addition, the NEM was used to establish the surface adsorption complexation modeling of phosphate onto WLGIOWHP. The model successfully predicted the adsorption of phosphate onto WLGIOWHP from municipal wastewater. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. [Adsorption behavior and influence factors of p-nitroaniline on high surface area activated carbons prepared from plant stems].

    Science.gov (United States)

    Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang

    2010-08-01

    Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.

  13. Improving Mathematical Communication Ability and Self Regulation Learning of Yunior High Students by Using Reciprocal Teaching

    OpenAIRE

    Qohar, Abdul; Sumarmo, Utari

    2013-01-01

    This paper presents the findings from a posttest experiment control group design  by  using reciprocal teaching, conducted  in Indonesia University of Education to investigate students’ ability in mathematical communication and self regulated learning.  Subject of the study were 254 of 9th grade students from three junior high schools of high, medium, and low level in Bojonegoro, East Java.  The instruments of the study were an essay mathematical communication test, and a self regulated learn...

  14. Gas adsorption properties of highly porous metal-organic frameworks containing functionalized naphthalene dicarboxylate linkers.

    Science.gov (United States)

    Sim, Jaeung; Yim, Haneul; Ko, Nakeun; Choi, Sang Beom; Oh, Youjin; Park, Hye Jeong; Park, SangYoun; Kim, Jaheon

    2014-12-28

    Three functionalized metal-organic frameworks (MOFs), MOF-205-NH2, MOF-205-NO2, and MOF-205-OBn, formulated as Zn4O(BTB)4/3(L), where BTB is benzene-1,3,5-tribenzoate and L is 1-aminonaphthalene-3,7-dicarboxylate (NDC-NH2), 1-nitronaphthalene-3,7-dicarboxylate (NDC-NO2) or 1,5-dibenzyloxy-2,6-naphthalenedicarboxylate (NDC-(OBn)2), were synthesized and their gas (H2, CO2, or CH4) adsorption properties were compared to those of the un-functionalized, parent MOF-205. Ordered structural models for MOF-205 and its derivatives were built based on the crystal structures and were subsequently used for predicting porosity properties. Although the Brunauer-Emmett-Teller (BET) surface areas of the three MOF-205 derivatives were reduced (MOF-205, 4460; MOF-205-NH2, 4330; MOF-205-NO2, 3980; MOF-205-OBn, 3470 m(2) g(-1)), all three derivatives were shown to have enhanced H2 adsorption capacities at 77 K and CO2 uptakes at 253, 273, and 298 K respectively at 1 bar in comparison with MOF-205. The results indicate the following trend in H2 adsorption: MOF-205 < MOF-205-NO2 < MOF-205-NH2 < MOF-205-OBn. MOF-205-OBn showed good ideal adsorbed solution theory (IAST) selectivity values of 6.5 for CO2/N2 (15/85 in v/v) and 2.7 for CO2/CH4 (50/50 in v/v) at 298 K. Despite the large reduction (-22%) in the surface area, MOF-205-OBn displayed comparable total volumetric CO2 (at 48 bar) and CH4 (at 35 bar) storage capacities with those of MOF-205 at 298 K: MOF-205-OBn, 305 (CO2) and 112 (CH4) cm(3) cm(-3), and for MOF-205, 307 (CO2) and 120 (CH4) cm(3) cm(-3), respectively.

  15. Improving of Junior High School Visual Thinking Representation Ability in Mathematical Problem Solving by CTL

    Directory of Open Access Journals (Sweden)

    Edy Surya

    2013-01-01

    Full Text Available The students’  difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal  mathematical understanding, and  mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was the experimental classroom design with a pretest-posttest control in order to increase the representation of visual thinking ability on mathematical problem solving approach  with  contextual learning. The research instrument was a test, observation and interviews. Contextual approach increases of mathematical representations ability increases in students with high initial category, medium, and low compared to conventional approaches. Keywords: Visual Thinking Representation, Mathematical  Problem Solving, Contextual Teaching Learning Approach DOI: http://dx.doi.org/10.22342/jme.4.1.568.113-126

  16. [Work ability among workers from a condominiun of high technology companies].

    Science.gov (United States)

    Fernandes, Angela Cristina Puzzi; Monteiro, Maria Inês

    2006-01-01

    Remarkable transformation occurred in the last two decades on the industrial sector, such as the use of trainees and outsourced labor. In a epidemiological cross-sectional study 190 workers, aimed at assessing work ability and building up a socio-demographic life styles of workers, outsourced workers and trainees, who work at a corporate condominium comprising high technology companies. The Work Ability Index was employed with a questionnaire concerning lifestyle and demographic data. Gender balance was noticed, with a prevalence of youngsters and single people (63.2%). Few were tobacco smokers (13.2%), 62.6% performed physical exercise. In addition, 44.2% were medically diagnosed with some illness. This study is very important due to their interchangeability and to the general lack of a worker's health service.

  17. Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution.

    Science.gov (United States)

    Ling, Li-Li; Liu, Wu-Jun; Zhang, Shun; Jiang, Hong

    2017-09-05

    Lead (Pb) pollution in natural water bodies is an environmental concern due to toxic effects on aquatic ecosystems and human health, while adsorption is an effective approach to remove Pb from the water. Surface interactions between adsorbents and adsorbates play a dominant role in the adsorption process, and properly engineering a material's surface property is critical to the improvement of adsorption performance. In this study, the magnesium oxide (MgO) nanoparticles stabilized on the N-doped biochar (MgO@N-biochar) were synthesized by one-pot fast pyrolysis of an MgCl 2 -loaded N-enriched hydrophyte biomass as a way to increase the exchangeable ions and N-containing functional groups and facilitate the adsorption of Pb 2+ . The as-synthesized MgO@N-biochar has a high performance with Pb in an aqueous solution with a large adsorption capacity (893 mg/g), a very short equilibrium time (adsorption performance can be maintained with various environmentally relevant interferences including pH, natural organic matter, and other metal ions, suggesting that the material may be suitable for the treatment of wastewater, natural bodies of water, and even drinking water. In addition, MgO@N-biochar quickly and efficiently removed Cd 2+ and tetracycline. Multiple characterizations and comparative tests have been performed to demonstrate the surface adsorption and ion exchange contributed to partial Pb adsorption, and it can be inferred from these results that the high performance of MgO@N-biochar is mainly due to the surface coordination of Pb 2+ and C═O or O═C-O, pyridinic, pyridonic, and pyrrolic N. This work suggests that engineering surface functional groups of biochar may be crucial for the development of high performance heavy metal adsorbents.

  18. The geometry ability of junior high school students in Karanganyar based on the Hoffer’s theory

    Science.gov (United States)

    Nurwijayanti, A.; Budiyono; Fitriana, L.

    2018-03-01

    Geometry ability is the aspect which underlay students to solve the geometry problems. However, some studies suggests the difficulty students when learning geometry. This leads to the ability of the geometri students difficult to develop. There are five the geometry ability based the Hoffer’s theory, namely visual, verbal, drawing, logical, and applied. These five aspects are basic geometry ability to be mastered by Junior High School students level. This study aimed to describe the students’ geometry ability according to the Hoffer’s theory. The participants of this study are six students from 9th grade in State Junior High School 1 Jaten at Karanganyar that consisted of three categories, namely higher ability, moderate ability, and lower ability students. The data collection methods used are geometry test and in-depth interview and than analyzed using triangulation. The result of the study showed that the ability of those three categories is different. Each of the students' geometry ability can be described as follows. (1) On visual skill, higher ability and moderate ability students could mention the elements of the geometrical shapes correctly based on its shapes obtained. However, lower ability students were unable to mention it specifically; (2) On verbal skill, moderate ability students were able to link the relationship among shapes based on the characteristics correctly, despite that the higher ability and lower ability seemed to have difficulty; (3) On drawing skill, higher ability students could construct the shapes based on the relationship among shapes well, but moderate ability and lower ability students continually faced difficulty; (4) On logical skill, both higher ability, and moderate ability students were able to determine the formula of a particular geometrical shape based on the relationship among the elements of the shape well, while the lower ability students were unable to; (5) On applied skill, higher ability, and moderate ability

  19. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  20. Highly selective adsorption of organic dyes containing sulphonic groups using Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jincan; Wang, Honghong; Niu, Helin, E-mail: niuhelin@ahu.edu.cn; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi [Anhui University, College of Chemistry and Chemical Engineering (China); Gao, Yuanhao [Xuchang University, Institute of Surface Micro and Nano Materials (China); Chen, Changle [University of Science and Technology of China, CAS Key Laboratory of Soft Matter Chemistry (China)

    2016-09-15

    In this study, we report a facile approach to synthesize Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets via simply sonochemical method, which showed high efficiency and selectivity towards the adsorption of organic dyes containing sulphonic groups. The structure and morphology of the nanosheets were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, particle size and zeta potential analysis. The adsorption results indicated that the equilibrium data coincide very well with Langmuir isotherm, and the maximum adsorption capacities for Congo red, methyl blue and methyl orange were 1864, 1270 and 959 mg g{sup −1}, respectively. The kinetic data can be explained by pseudo-second-order model. The Cu{sub 2}(OH){sub 3}NO{sub 3} nanosheets also demonstrated high selectivity towards the adsorption of dyes containing sulphonic groups from mixed dye solutions. The rational mechanism of adsorption was attributed to hydrogen bonding, electrostatic attractions and ion exchanges between the dye molecules and Cu{sub 2}(OH){sub 3}NO{sub 3} in the adsorption process.

  1. Executive Functions and Prosodic Abilities in Children With High-Functioning Autism

    Directory of Open Access Journals (Sweden)

    Marisa G. Filipe

    2018-03-01

    Full Text Available Little is known about the relationship between prosodic abilities and executive function skills. As deficits in executive functions (EFs and prosodic impairments are characteristics of autism, we examined how EFs are related to prosodic performance in children with high-functioning autism (HFA. Fifteen children with HFA (M = 7.4 years; SD = 1.12, matched to 15 typically developing peers on age, gender, and non-verbal intelligence participated in the study. The Profiling Elements of Prosody in Speech-Communication (PEPS-C was used to assess prosodic performance. The Children’s Color Trails Test (CCTT-1, CCTT-2, and CCTT Interference Index was used as an indicator of executive control abilities. Our findings suggest no relation between prosodic abilities and visual search and processing speed (assessed by CCTT-1, but a significant link between prosodic skills and divided attention, working memory/sequencing, set-switching, and inhibition (assessed by CCTT-2 and CCTT Interference Index. These findings may be of clinical relevance since difficulties in EFs and prosodic deficits are characteristic of many neurodevelopmental disorders. Future studies are needed to further investigate the nature of the relationship between impaired prosody and executive (dysfunction.

  2. Malachite Green Adsorption by Spent Coffee Grounds

    Science.gov (United States)

    Syamimie Atirah Mat, Siti; Zati Hanani Syed Zuber, Sharifah; Rahim, Siti Kartini Enche Ab; Sohaimi, Khairunissa Syairah Ahmad; Halim, Noor Amirah Abdul; Fauziah Zainudin, Nor; Aida Yusoff, Nor; Munirah Rohaizad, Nor; Hidayah Ishak, Noor; Anuar, Adilah; Sarip, Mohd Sharizan Md

    2018-03-01

    In this work, the ability of spent coffee grounds (SCG) as a low-cost adsorbent to remove malachite green (MG) from aqueous solutions was studied. Batch adsorption tests were carried out to observe the effect of various experimental parameters such as contact time, initial concentration of malachite green and adsorbent dosage on the removal of dye. The results obtained show that the percentage of dye removal will decreased with the increased of initial concentration of dye in the range of 50 mg/L to 250 mg/L. Besides, percentage removal of dye was also found to be increased as the contact time increased until it reached equilibrium condition. The results also showed that the adsorbent dosage in range of 0.2 g to 1.0 g is proportional to the percentage removal of malachite green dye. Study on the kinetic adsorption and isotherm adsorption has also been investigated. The adsorption isotherm data were described by Langmuir isotherm with high-correlation coefficients while the experimental data showed the pseudo-second-order kinetics model was the best model for the adsorption of MG by SCG with the coefficients of correlation R2 > 0.9978.

  3. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    Science.gov (United States)

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  4. The identification and inclusion of students with characteristics of high abilities/giftedness: relevant discussions

    Directory of Open Access Journals (Sweden)

    Tatiane Negrini

    2008-12-01

    Full Text Available Thinking about education in general and about the advances that have been coming up, brings us to reflect on the proposal of the inclusive school. The Brazilian educational policies point in this direction and new propositions appear to the school in order to understand how to make significant changes in the daily education. Accordingly, this article is to hold a discussion regarding the identification of students with high abilities/giftedness, articulating with some ideas proposed by the inclusive education. It is with that highlight the importance of identifying these students for a more genuine inclusion of these students in the educational context. In this sense, is used as input theoretical Gardner (1995, Renzulli (2004, Perez (2004, Virgolim (2007, Vieira (2005, among other authors who assist in the discussion of this issue. The considerations made about the high abilities and their process of identification highlight the importance of a great attention facing the process of identification and relevance of this to the actual inclusion of students with high skills in the educational context. Since they are not identified, these students may not be receiving the necessary guidance to learn and develop their potential, often distancing themselves from colleagues and friends. Thus, it is a debate about the appropriate identification of these students and how it can contribute to the inclusion of them.

  5. Increasing Senior High School Students’ Ability In Speaking English Through Contextual Storytelling Method

    Directory of Open Access Journals (Sweden)

    Meyke Machrita Mamahit

    2017-12-01

    Full Text Available This research aimed (1 to increase the ability of students XII Grade Science 6 Senior High School state 7 Manado in speaking English through contextual storytelling method, (2 to increase the motivation and interest of students XII Grade Science 6 Senior High School state 7 Manado in speaking English through contextual storytelling method. This research is Classroom Action Research. The population was 325 students and the sample was 30 students. The research data was collected using performance test of cycle 1, 2, 3 and questionnaire. The research results indicated that the use of contextual storytelling method in learning English significantly increased the ability, interest and motivation of students XII Grade Science 6 Senior High School state 7 Manado in speaking English. The percentage of students who achieved the minimum score increased from 60 % in the first cycle became 70 % in the second cycle, and it increased 90 % in the third cycle. The students’ interest and motivation in speaking English increased from 70 % in first cycle became 80 % in the second cycle and it became 90 % in the third cycle.

  6. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics.

    Science.gov (United States)

    Ahmed, M J; Islam, Md Azharul; Asif, M; Hameed, B H

    2017-11-01

    In this work, a human hair-derived high surface area porous carbon material (HHC) was prepared using potassium hydroxide activation. The morphology and textural properties of the HHC structure, along with its adsorption performance for tetracycline (TC) antibiotics, were evaluated. HHC showed a high surface area of 1505.11m 2 /g and 68.34% microporosity. The effects of most important variables, such as initial concentration (25-355mg/L), solution pH (3-13), and temperatures (30-50°C), on the HHC adsorption performance were investigated. Isotherm data analysis revealed the favorable application of the Langmuir model, with maximum TC uptakes of 128.52, 162.62, and 210.18mg/g at 30, 40, and 50°C, respectively. The experimental data of TC uptakes versus time were analyzed efficiently using a pseudo-first order model. Porous HHC could be an efficient adsorbent for eliminating antibiotic pollutants in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process.

    Science.gov (United States)

    Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing

    2014-05-01

    Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.

  8. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    International Nuclear Information System (INIS)

    Takacs, E.; Wojnarovits, L.; Borsa, J.

    2011-01-01

    Complete text of publication follows. Sustainable development needs renewable raw materials applied wherever possible. Cellulose is the most abundant biopolymer on earth; various modifications of its properties for special uses are important issues of the research. Some contaminations in wastewaters, e.g. pesticides, are hydrophobic materials; their adsorption on hydrophilic cellulose substrates is very limited. Cotton cellulose was grafted by glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. As the figure shows on untreated sample even negative 2,4-D adsorption occurred, due to the selective adsorption of water from the solution; the adsorption did not approach its saturation value even in a 30 hours time period investigated. Saturation of phenol adsorption was achieved after 5-6 hours; adsorption equilibrium data of phenol fitted the Langmuir isotherm.

  9. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  10. Interfacial Adsorption and Redox Coupling of Li4Ti5O12 with Nanographene for High-Rate Lithium Storage.

    Science.gov (United States)

    Bae, Seongjun; Nam, Inho; Park, Soomin; Yoo, Young Geun; Yu, Sungju; Lee, Jong Min; Han, Jeong Woo; Yi, Jongheop

    2015-08-05

    Despite the many efforts to solve the problem associated with lithium storage at high rates, it is rarely achieved up until now. The design with experimental proof is reported here for the high rate of lithium storage via a core-shell structure composite comprised of a Li4Ti5O12 (LTO) core and a nanographene (NG) shell. The LTO-NG core-shell was synthesized via a first-principles understanding of the adsorption properties between LTO and NG. Interfacial reactions are considered between the two materials by a redox coupling effect. The large interfacial area between the LTO core and the NG shell resulted in a high electron-conducting path. It allowed rapid kinetics to be achieved for lithium storage and also resulted in a stable contact between LTO and NG, affording cyclic performance stability.

  11. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    Science.gov (United States)

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based

  12. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    . The adsorption capacities of these active carbon samples were almost three times that of zeolite. However, the un-modified active carbon had the highest adsorption capacity for butanol vapor (259.6 mg g-1), compared to 222.4 mg g-1 after 10% H2O2 hydrothermal treatment. Both modified and un-modified active carbon can be easily regenerated for repeatable adsorption by heating to 150 °C. Therefore, surface oxygen groups significantly reduced the adsorption capacity of active carbons for butanol vapor. In addition, original active carbon and AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb butanol vapor. The specific surface area and oxygen-containing functional groups of AC were tested before and after modification. The adsorption capacity of unmodified AC samples were the highest. Hydrothermal oxidation of AC with HNO3 increased the surface oxygen content, Brunauer-Emmett-Teller (BET) surface area, micropore, mesopore and total pore volume of AC. Although the pore structure and specific surface area were greatly improved after hydrothermal oxidization with 4 M HNO3, the increased oxygen on the surface of AC decreased the dynamic adsorption capacity. In order to get high adsorption capacity adsorbents, we used corn stalk as precursor to fabricate porous carbon. ACs were prepared through chemical activation of biochar from whole corn stalk (WCS) and corn stalk pith (CSP) at varying temperatures using potassium hydroxide as the activating agent. ACs were characterized via pore structural analysis and scanning electron microscopy (SEM). These adsorbents were then assessed for their adsorption capacity for butanol vapor. It was found that WCS activated at 900 °C for 1 h (WCS-900) had optimal butanol adsorption characteristics. The BET surface area and total pore volume of the WCS-900 were 2330 m2 g-1 and 1.29 cm3 g-1, respectively. The dynamic adsorption capacity of butanol vapor was 410.0 mg g-1, a 185.1 % increase

  13. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

    Science.gov (United States)

    Zhong, Lexuan; Lee, Chang-Seo; Haghighat, Fariborz

    2012-12-01

    The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Selection of the Mutants with High Hydroquinone Degradation Ability of Serratia Marcesscen by Plasma Mutation

    International Nuclear Information System (INIS)

    Yao Risheng; You Qidong; He Weijing; Zhu Huixia

    2009-01-01

    In this study, an efficient way by plasma induced mutation was applied to improve the hydroquinone degradation capacity of Serratia marcescens AB 90027 (SM27). The results showed that combined with the selection of hydroquinone tolerance, the mutant with high hydroquinone degradation ability induced by plasma could be achieved. The best dose for plasma mutation was 15 s, which showed a 47.0% higher positive mutation ratio. Besides, the aimed mutant was markedly different from the parent strain (SM27) in colonial traits while cultivated on Kings media. Finally, the hydroquinone degradation ratio reached 70.5% using the induced mutant strain with 1500 mg/L hydroquinone (HQ) after 15 days of cultivation as the selective conditions; however, it was only 46.7% for SM27. The improvement of the degradation capacity by the induced mutant with a high concentration of HQ selection was attributed to its faster growth and higher hydroquinone tolerance compared with that of the parent strain.

  15. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength

    International Nuclear Information System (INIS)

    Long-Chao, Zhuo; Shu-Jie, Pang; Hui, Wang; Tao, Zhang

    2009-01-01

    Based on a new approach for designing glassy alloy compositions, bulk Al-based alloys with good glass-forming ability (GFA) are synthesized. The cast Al 86 Si 0.5 Ni 4.06 Co 2.94 Y 6 Sc 0.5 rod with a diameter of 1 mm shows almost fully amorphous structure besides about 5% fcc-Al nucleated in the center of the rod. The bulk alloy with high Al concentration exhibits an ultrahigh yield strength of 1.18 GPa and maximum strength of 1.27 GPa as well as an obvious plastic strain of about 2.4% during compressive deformation. This light Al-based alloy with good GFA and mechanical properties is promising as a new high specific strength material with good deformability. (condensed matter: structure, mechanical and thermal properties)

  16. Adsorption of the Inflammatory Mediator High-Mobility Group Box 1 by Polymers with Different Charge and Porosity

    Directory of Open Access Journals (Sweden)

    Carla Tripisciano

    2014-01-01

    Full Text Available High-mobility group box 1 protein (HMGB1 is a conserved protein with a variety of biological functions inside as well as outside the cell. When released by activated immune cells, it acts as a proinflammatory cytokine. Its delayed release has sparked the interest in HMGB1 as a potential therapeutic target. Here, we studied the adsorption of HMGB1 to anionic methacrylate-based polymers as well as to neutral polystyrene-divinylbenzene copolymers. Both groups of adsorbents exhibited efficient binding of recombinant HMGB1 and of HMGB1 derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The adsorption characteristics depended on particle size, porosity, accessibility of the pores, and charge of the polymers. In addition to these physicochemical parameters of the adsorbents, modifications of the molecule itself (e.g., acetylation, phosphorylation, and oxidation, interaction with other plasma proteins or anticoagulants (e.g., heparin, or association with extracellular microvesicles may influence the binding of HMGB1 to adsorbents and lead to preferential depletion of HMGB1 subsets with different biological activity.

  17. Effects of full-time and part-time high-ability programs on developments in students’ achievement emotions

    NARCIS (Netherlands)

    Hornstra, L.; van der Veen, I.; Peetsma, T.

    2017-01-01

    This study focused on effects of high-ability programs on students’ achievement emotions, i.e. emotions that students experience that are associated with achievement activities. Participants were students in grade 4–6 of primary education: 218 students attended full-time high-ability programs, 245

  18. Some effects of gas adsorption on the high temperature volatile release behavior of a terrestrial basalt, tektite and lunar soil

    Science.gov (United States)

    Graham, D. G.; Muenow, D. W.; Gibson, E. K., Jr.

    1979-01-01

    Mass pyrograms obtained from high-temperature, mass psectrometric pyrolysis of a glassy theoleiitic submarine basalt and a tektite, ground in air to less than 64 microns, have shown N2 and SO release patterns very similar to those from the pyrolysis of mature lunar soil fines. The N2 and CO release behavior from the terrestrial samples reproduces the biomodal, high-temperature (approximately 700 and 1050 C) features from the lunar samples. Unground portions of the basalt and tektite show no release of N2 and CO during pyrolysis. Grinding also alters the release behavior and absolute amounts of H2O and CO2. It is suggested that adsorption of atmospheric gases in addition to solar wind implantation of ions may account for the wide range of values in previously reported concentrations of carbon and nitrogen from lunar fines.

  19. The Impact of Active Visualisation of High School Students on the Ability to Memorise Verbal Definitions

    Directory of Open Access Journals (Sweden)

    Anamarija Šmajdek

    2016-12-01

    Full Text Available The era of visual communication influences the cognitive strategies of the individual. Education, too, must adjust to these changes, which raises questions regarding the use of visualisation in teaching. In the present study, we examine the impact of visualisation on the ability of high school students to memorise text. In the theoretical part of the research, we first clarify the concept of visualisation. We define the concept of active visualisation and visualisation as a means of acquiring and conveying knowledge, and we describe the different kinds of visualisation (appearance-based analogies and form-based analogies, specifically defining appearance-based schemata visualisations (where imagery is articulated in a typical culturally trained manner. In the empirical part of the research, we perform an experiment in which we evaluate the effects of visualisation on students’ ability to memorise a difficult written definition. According to the theoretical findings, we establish two hypotheses. In the first, we assume that the majority of the visualisations that students form will be appearance-based schemata visualisations. This hypothesis is based on the assumption that, in visualisation, people spontaneously use analogies based on imagery and schemas that are typical of their society. In the second hypothesis, we assume that active visualisation will contribute to the students’ ability to memorise text in a statistically significant way. This hypothesis is based on the assumption that the combination of verbal and visual experiences enhances cognitive learning. Both hypotheses were confirmed in the research. As our study only dealt with the impact of the most spontaneous type of appearance based schemata visualisations, we see further possibilities in researching the influence of visualisations that are more complex formally.

  20. The Impact of Problem-Based Learning Approach to Senior High School Students’ Mathematics Critical Thinking Ability

    Directory of Open Access Journals (Sweden)

    Reviandari Widyatiningtyas

    2015-07-01

    Full Text Available The study was report the findings of an only post-test control group research design and aims to analyze the influence of problem-based learning approach, school level, and students’ prior mathematical ability to student’s mathematics critical thinking ability. The research subjects were 140 grade ten senior high school students coming from excellent and moderate school level. The research instruments a set of mathematical critical thinking ability test, and the data were analyzed by using two ways ANOVA and t-test. The research found that the problem based learning approach has significant impact to the ability of students’ mathematics critical thinking in terms of school level and students’ prior mathematical abilities. Furthermore. This research also found that there is no interaction between learning approach and school level, and learning approach and students’ prior mathematics ability to students’ mathematics critical thinking ability.

  1. Imitated prosodic fluency predicts reading comprehension ability in good and poor high school readers

    Directory of Open Access Journals (Sweden)

    Mara Breen

    2016-07-01

    Full Text Available Researchers have established a relationship between beginning readers’ silent comprehension ability and their prosodic fluency, such that readers who read aloud with appropriate prosody tend to have higher scores on silent reading comprehension assessments. The current study was designed to investigate this relationship in two groups of high school readers: Specifically Poor Comprehenders (SPCs, who have adequate word level and phonological skills but poor reading comprehension ability, and a group of age- and decoding skill-matched controls. We compared the prosodic fluency of the two groups by determining how effectively they produced prosodic cues to syntactic and semantic structure in imitations of a model speaker’s production of syntactically and semantically varied sentences. Analyses of pitch and duration patterns revealed that speakers in both groups produced the expected prosodic patterns; however, controls provided stronger durational cues to syntactic structure. These results demonstrate that the relationship between prosodic fluency and reading comprehension continues past the stage of early reading instruction. Moreover, they suggest that prosodically fluent speakers may also generate more fluent implicit prosodic representations during silent reading, leading to more effective comprehension.

  2. Logical Reasoning Abilities of Junior High School Students in the Province of Cotabato, Philippines

    OpenAIRE

    Paul John B. Ongcoy

    2016-01-01

    Reasoning abilities of the learners and its development was well-discussed in the world of education. The higher the ability of the person to reason abstractly, the higher the probability that a person will effectively function in the society. Thus, it is the main goal of the K-12 Curriculum of the Department of Education to improve the reasoning abilities and formal reasoning among students in the country. The higher the reasoning ability of a person, the more productive he is. T...

  3. Academic Reading ability of first-year students: what's high school ...

    African Journals Online (AJOL)

    Both groups were administered a pre-test and post-test of academic reading ability. The dependent variable was academic reading ability and the independent variables were matric grade and prior exposure. Two measures of reading ability were used, namely a reading comprehension and a cloze passage. An analysis of ...

  4. The Enhancement of Mathematical Reasoning Ability of Junior High School Students by Applying Mind Mapping Strategy

    Science.gov (United States)

    Ayal, Carolina S.; Kusuma, Yaya S.; Sabandar, Jozua; Dahlan, Jarnawi Afgan

    2016-01-01

    Mathematical reasoning ability, are component that must be governable by the student. Mathematical reasoning plays an important role, both in solving problems and in conveying ideas when learning mathematics. In fact there ability are not still developed well, even in middle school. The importance of mathematical reasoning ability (KPM are…

  5. Mechanisms associated with the high adsorption of dibenzo-p-dioxin from water by smectite clays.

    Science.gov (United States)

    Liu, Cun; Li, Hui; Teppen, Brian J; Johnston, Cliff T; Boyd, Stephen A

    2009-04-15

    Clay minerals may be an important unrecognized sorptive phase for dioxins in soils and clay deposits. Smectites, especially Cs-saponite, effectively adsorbed dibenzo-p-dioxin (DD) from water, reaching 0.8% (wt/wt). Adsorption was promoted by exchangeable cations with low hydration energies, and negative charge in the smectite arising from the tetrahedral siloxane sheets. X-ray diffraction measurements revealed that as DD loading increased to > or =8000 mg/kg the clay basal spacing increased abruptly from 12.3 to 15.2 A demonstrating DD intercalation. The 12.3 A spacing provides an interlayer distance that closely matches the molecular thickness of DD. In this configuration DD is essentially dehydrated as it interacts with the opposing hydrophobic siloxane sheets and with coplanar Cs+ via one of the dioxin ring oxygens. Ab initio calculations suggest that geometrical structures form at higher loadings in which intercalated DD molecules adopt a butterfly geometry sandwiched between dehydrated interlayer Cs+ and the siloxane surface, consistent with the 15.2 A spacing, wherein Cs+ interacts with dioxin ring oxygens and benzene ring pi-electrons. Fourier transformation infrared measurements confirm that adsorbed DD is present in orientations that are not parallel with the interlayer planar siloxane surfaces of smectite.

  6. Study of cesium and strontium adsorption on slovak bentonite

    International Nuclear Information System (INIS)

    Galambos, M.

    2010-01-01

    Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level radioactive waste and spent nuclear fuel. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by adsorption. Slovak Republic avails of many significant deposits of bentonite. Adsorption of Cs and Sr on five Slovak bentonite of deposits (Jelsovy potok, Kopernica, Lieskovec, Lastovce and Dolna Ves) and montmorillonite K10 (Sigma-Aldrich) has been studied with the using batch of radiometric techniques. Natural, irradiated and natrified samples, in three different kinds of grain size: 15, 45 and 250 μm have been used in the experiments. The adsorptions of Cs and Sr on bentonite under various experimental conditions, such as contact time, adsorbent and adsorbate concentrations, pH after adsorption and effect of pH change, chemical modification, competitive ions and organic agents on the adsorption have been studied. The K d have been determined for adsorbent-Cs/Sr solution system as a function of contact time and adsorbate and adsorbent concentration. The data have been interpreted in terms of Langmuir isotherm. The adsorption of Cs and Sr has increased with increasing metal concentrations. Adsorption of Cs and Sr has been suppressed by presence of organic agents; and of bivalent cations more than univalent cations. By adsorption on natrified samples colloidal particles and pH value increase have been formed. Adsorption experiments carried out show that the most suitable materials intended for use as barriers surrounding a canister of spent nuclear fuel are bentonite of the Jelsovy potok and Kopernica deposits. (author)

  7. Critical Thinking Skills of an Eighth Grade Male Student with High Mathematical Ability in Solving Problem

    Science.gov (United States)

    Ismail

    2018-01-01

    This study aims to describe student’s critical thinking skill of grade VIII in solving mathematical problem. A qualitative research was conducted to a male student with high mathematical ability. Student’s critical thinking skill was obtained from a depth task-based interview. The result show that male student’s critical thinking skill of the student as follows. In understanding the problem, the student did categorization, significance decoding, and meaning clarification. In devising a plan he examined his ideas, detected his argument, analyzed his argument and evaluated his argument. During the implementation phase, the skill that appeared were analyzing of the argument and inference skill such as drawing conclusion, deliver alternative thinking, and problem solving skills. At last, in rechecking all the measures, they did self-correcting and self-examination.

  8. Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins

    NARCIS (Netherlands)

    Golemanov, K.; Tcholakova, S.; Denkov, N.; Pelan, E.; Stoyanov, S.D.

    2013-01-01

    Saponins are natural surfactants, with molecules composed of a hydrophobic steroid or triterpenoid group, and one or several hydrophilic oligosaccharide chains attached to this group. Saponins are used in cosmetic, food and pharmaceutical products, due to their excellent ability to stabilize

  9. Removal of Cr{sup 6+} from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junting; Zhang, Zhengping; Ji, Jing; Dou, Meiling, E-mail: douml@mail.buct.edu.cn; Wang, Feng, E-mail: wangf@mail.buct.edu.cn

    2017-05-31

    Highlights: • The nitrogen-doped hierarchical porous carbon was prepared from silkworm cocoon. • The NHPC possesses a unique porous structure and a high specific surface area. • The NHPC presents superior adsorption performance for Cr (VI). • The NHPC exhibits an excellent recyclability for the removal of Cr (VI). - Abstract: The development of highly efficient adsorbents is an effective way to remove Cr{sup 6+} from wastewater for environment protection. Herein, a high-specific-surface-area nitrogen-doped hierarchical porous carbon (NHPC) derived from silkworm cocoon was synthesized and applied as an efficient adsorbent for the removal of Cr{sup 6+} from wastewater. The resultant NHPC possesses a specific surface area as high as 3134 m{sup 2} g{sup −1} and a unique hierarchical porous structure with a large number of small mesopores (2–4 nm) and micropores (0.8–2 nm) embedded in the sidewall of bowl-like macropores (200–300 nm), in which sufficient exposure of adsorption sites and high-flow transfer of Cr{sup 6+} ions can be achieved. As a result, the NHPC exhibits a remarkable adsorption performance with a larger adsorption capacity (366.3 mg g{sup −1}), a higher adsorption rate (4 × 10{sup −2} g mg{sup −1} min{sup −1}) and a superior recyclability in comparison with the commercial adsorbent (Norit CGP). Thermodynamic and kinetic analyses indicate that the adsorption process is spontaneous and endothermic, which fits well with the pseudo-second-order kinetic model and Langmuir isotherm model. This biomass-based porous carbon with well-defined hierarchical porous structure can be applied as a promising adsorbent for the removal of Cr{sup 6+} from wastewater.

  10. Design and synthesis of core-shell Fe3O4@PTMT composite magnetic microspheres for adsorption of heavy metals from high salinity wastewater.

    Science.gov (United States)

    Huang, Xin; Yang, Jinyue; Wang, Jingkang; Bi, Jingtao; Xie, Chuang; Hao, Hongxun

    2018-05-10

    In this study, a novel magnetic nanoparticles (MNP) modified by an organodisulfide polymer (PTMT) was designed for adsorption of heavy metals (Hg(II), Pb(II) and Cd(II)) from simulated coal chemical high salinity wastewater. The MNP-PTMT nano-composite was synthesize and characterized by SEM, TEM, FTIR, BET, VSM, TGA and XRD. The results indicate that the wanted MNP-PTMT magnetic nanoparticles were successfully obtained by modification. Adsorption experiments were systematically carried out to evaluate the performance of the obtained nanoparticles and to build up the adsorption models. The results demonstrate that the adsorption kinetic and isotherms thermodynamic followed the pseudo-second-order model and the Freundlich equation, respectively. In the presence of the inorganic salt in high salinity wastewater, the adsorption efficiency of MNP-PTMT for heavy metals was still excellent. The magnetic adsorbent could be recovered from aqueous solution by an external magnetic field in 20s and the subsequent regeneration of Hg(II)/Pb(II) loaded MNP-PTMT can be efficiently achieved by using EDTA-2Na solution as desorbent. The novel MNP-PTMT nanoparticles could be used reproductively for five times without apparent decrease in sorption capacity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    Science.gov (United States)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  12. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    Science.gov (United States)

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  13. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaohong [Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China)

    2015-02-28

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  14. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    International Nuclear Information System (INIS)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang; Chen, Xiaohong; Chen, Xiaoqing

    2015-01-01

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater

  15. The Impact of Problem-Based Learning Approach to Senior High School Students' Mathematics Critical Thinking Ability

    Science.gov (United States)

    Widyatiningtyas, Reviandari; Kusumah, Yaya S.; Sumarmo, Utari; Sabandar, Jozua

    2015-01-01

    The study reported the findings of an only post-test control group research design and aims to analyze the influence of problem-based learning approach, school level, and students' prior mathematical ability to student's mathematics critical thinking ability. The research subjects were 140 grade ten senior high school students coming from…

  16. Fabrication of bio-inspired nitinol alloy surface with tunable anisotropic wetting and high adhesive ability.

    Science.gov (United States)

    Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B

    2018-10-01

    In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. [Reading ability of junior high school students in relation to self-evaluation and depression].

    Science.gov (United States)

    Yamashita, Toshiya; Hayashi, Takashi

    2012-01-01

    Guidelines for the diagnosis of reading disorders in elementary school students were published recently in Japan. On the basis of these guidelines, we administrated reading test batteries to 43 Japanese junior high-school students from grade two. The reading test consisted of single sounds, single words, and single sentences. We evaluated the reading speed and the number of reading errors made by the test takers; their performance was compared with the normal value for elementary school students in grade six, as stated in the guidelines. The reading ability of the junior high-school students was not higher than that of the elementary school students. Seven students (16.3%) were found to have reading difficulties (RD group) and they met the criterion for diagnosis of reading disorder as per the guidelines. Three students had difficulties in reading single sounds and single words, but they faced no problems when reading single sentences. It was supposed that the strategies used by the students for reading sentences may have differed from those used for reading single sounds or single words. No significant differences were found between the RD and non-RD group students on scores of scholastic self-evaluation, self-esteem, and depressive symptoms. Therefore, reading difficulty did not directly influence the level of self-evaluation or depression.

  18. DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: A search for highly sensitive molecular sensor

    Science.gov (United States)

    Mehdi Aghaei, Sadegh; Monshi, M. M.; Torres, I.; Zeidi, S. M. J.; Calizo, I.

    2018-01-01

    The adsorption behaviors of toxic gas molecules (NO, CO, NO2, and NH3) on the graphene-like boron carbide (BC3) are investigated using first-principle density functional theory. The graphene-like BC3 monolayer is a semiconductor with a band gap of 0.733 eV. It is discovered that all the above gas molecules are chemisorbed on the BC3 sheet while they retain their molecular forms. It is also revealed that the NO2 gas molecule could be dissociated into NO and O species through the adsorption process. The amounts of charge transfer upon adsorption of CO and NH3 gas molecules on the BC3 are found to be small. The band gap changes in BC3 as a result of interactions with CO and NH3 are only 4.63% and 16.7%, indicating that the BC3-based sensor has a low and moderate sensitivity to CO and NH3, respectively. Contrariwise, upon adsorption of NO or NO2 on the BC3, significant charges are transferred from the molecules to the BC3 sheet, causing a semiconductor-metal and semiconductor-p type semiconductor transition. Our study suggests that the BC3-based sensor has a high potential for NO and NO2 detection due to the significant conductance changes, moderate adsorption energy, and short recovery time. More excitingly, the BC3 is a likely catalyst for dissociation of the NO2 gas molecule.

  19. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin; Kim, Sungjee

    2010-01-01

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  20. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin [System on Chip Chemical Process Research, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Kim, Sungjee, E-mail: jeons@postech.ac.kr [Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)

    2010-08-13

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  1. High Prevalence, Genetic Diversity and Intracellular Growth Ability of Legionella in Hot Spring Environments

    Science.gov (United States)

    Zhou, Haijian; Wang, Huanxin; Xu, Ying; Zhao, Mingqiang; Guan, Hong; Li, Machao; Shao, Zhujun

    2013-01-01

    Background Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. Methods Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. Results Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (pLegionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (pLegionella pneumophila was the most frequently isolated species (98.9%), and the isolated serogroups included serogroups 3 (25.3%), 6 (23.4%), 5 (19.2%), 1 (18.5%), 2 (10.2%), 8 (0.4%), 10 (0.8%), 9 (1.9%) and 12 (0.4%). Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. Conclusions Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control and prevention strategies are

  2. High prevalence, genetic diversity and intracellular growth ability of Legionella in hot spring environments.

    Directory of Open Access Journals (Sweden)

    Tian Qin

    Full Text Available BACKGROUND: Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. METHODS: Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE and sequence-based typing (SBT were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. RESULTS: Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (p<0.01. The Legionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (p<0.01. Legionella pneumophila was the most frequently isolated species (98.9%, and the isolated serogroups included serogroups 3 (25.3%, 6 (23.4%, 5 (19.2%, 1 (18.5%, 2 (10.2%, 8 (0.4%, 10 (0.8%, 9 (1.9% and 12 (0.4%. Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. CONCLUSIONS: Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control

  3. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas.

    Science.gov (United States)

    Li, Huan; Qu, Jiapeng; Li, Tongtong; Wirth, Stephan; Zhang, Yanming; Zhao, Xinquan; Li, Xiangzhen

    2018-06-03

    The gut microbiota in mammals plays a key role in host metabolism and adaptation. However, relatively little is known regarding to how the animals adapts to extreme environments through regulating gut microbial diversity and function. Here, we investigated the diet, gut microbiota, short-chain fatty acid (SCFA) profiles, and cellulolytic activity from two common pika (Ochotona spp.) species in China, including Plateau pika (Ochotona curzoniae) from the Qinghai-Tibet Plateau and Daurian pika (Ochotona daurica) from the Inner Mongolia Grassland. Despite a partial diet overlap, Plateau pikas harbored lower diet diversity than Daurian pikas. Some bacteria (e.g., Prevotella and Ruminococcus) associated with fiber degradation were enriched in Plateau pikas. They harbored higher gut microbial diversity, total SCFA concentration, and cellulolytic activity than Daurian pikas. Interestingly, cellulolytic activity was positively correlated with the gut microbial diversity and SCFAs. Gut microbial communities and SCFA profiles were segregated structurally between host species. PICRUSt metagenome predictions demonstrated that microbial genes involved in carbohydrate metabolism and energy metabolism were overrepresented in the gut microbiota of Plateau pikas. Our results demonstrate that Plateau pikas harbor a stronger fermenting ability for the plant-based diet than Daurian pikas via gut microbial fermentation. The enhanced ability for utilization of plant-based diets in Plateau pikas may be partly a kind of microbiota adaptation for more energy requirements in cold and hypoxic high-altitude environments.

  4. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    Science.gov (United States)

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  5. The Ability of American Football Helmets to Manage Linear Acceleration With Repeated High-Energy Impacts.

    Science.gov (United States)

    Cournoyer, Janie; Post, Andrew; Rousseau, Philippe; Hoshizaki, Blaine

    2016-03-01

    Football players can receive up to 1400 head impacts per season, averaging 6.3 impacts per practice and 14.3 impacts per game. A decrease in the capacity of a helmet to manage linear acceleration with multiple impacts could increase the risk of traumatic brain injury. To investigate the ability of football helmets to manage linear acceleration with multiple high-energy impacts. Descriptive laboratory study. Laboratory. We collected linear-acceleration data for 100 impacts at 6 locations on 4 helmets of different models currently used in football. Impacts 11 to 20 were compared with impacts 91 to 100 for each of the 6 locations. Linear acceleration was greater after multiple impacts (91-100) than after the first few impacts (11-20) for the front, front-boss, rear, and top locations. However, these differences are not clinically relevant as they do not affect the risk for head injury. American football helmet performance deteriorated with multiple impacts, but this is unlikely to be a factor in head-injury causation during a game or over a season.

  6. A New Look on the Development and Learning of Children with High Abilities

    Directory of Open Access Journals (Sweden)

    Giovana Mattei

    2007-09-01

    Full Text Available When we approach the subject development and learning soon in them it comes the mind the process of education and specific learning of the pertaining to school environment. However we must have clearly that the development as well as learning is complex processes that involves the pertaining not only the school environment but the development of the physical, mental and social of the human being. The human being is not only intellect, is a complex being with strong cognitive and ambient support, of interactions, learnings and consequently development and evolution. This capacity to learn during all the life, exactly without being present in a pertaining school environment, is what in them it becomes only beings capable to be able to interpret, to reveal knowledge, to develop itself socially intellectual and, that is learning in potential. With regard to the children superendowed or carrying of high innumerable abilities doubts and contradictions thus permeat the relative aspects to its development and learning, different visions and perspectives are analyzed in order to contribute and to clarify aspects related to these children special, so that school and educators can assist in significant way these children potentializing his capacities.

  7. High seed dispersal ability of Pinus canariensis in stands of contrasting density inferred from genotypic data

    Directory of Open Access Journals (Sweden)

    Unai López de Heredia

    2015-04-01

    Full Text Available Aim of the study: Models that combine parentage analysis from molecular data with spatial information of seeds and seedlings provide a framework to describe and identify the factors involved in seed dispersal and recruitment of forest species. In the present study we used a spatially explicit method (the gene shadow model in order to assess primary and effective dispersal in Pinus canariensis. Area of study: Pinus canariensis is endemic to the Canary Islands (Spain. Sampling sites were a high density forest in southern slopes of Tenerife and a low density stand in South Gran Canaria. Materials and methods: We fitted models based on parentage analysis from seeds and seedlings collected in two sites with contrasting stand density, and then compared the resulting dispersal distributions. Main results: The results showed that: 1 P. canariensis has a remarkable dispersal ability compared to other pine species; 2 there is no discordance between primary and effective dispersals, suggesting limited secondary dispersal by animals and lack of Janzen-Connell effect; and 3 low stand densities enhance the extent of seed dispersal, which was higher in the low density stand. Research highlights: The efficient dispersal mechanism of P. canariensis by wind inferred by the gene shadow model is congruent with indirect measures of gene flow, and has utility in reconstructing past demographic events and in predicting future distribution ranges for the species.

  8. The ability of fungus Mucor racemosus Fresenius to degrade high concentration of detergent

    Directory of Open Access Journals (Sweden)

    Jakovljević Violeta D.

    2014-01-01

    Full Text Available The ability of fungus Mucor racemosus Fresenius to decompose high concentration of commercial detergent (MERIX, Henkel, Serbia was investigated in this study. Fungus was cultivated in liquid growth medium by Czapek with addition of detergent at concentration 0.5% during 16 days. The biochemical changes of pH, redox potential, amount of free and total organic acids, and activity of alkaline phosphatase were evaluated by analysis of fermentation broth. Simultaneously, biodegradation percentage of anionic surfactant of tested detergent was confirmed by MBAS assay. At the same time, the influence of detergent on fungal growth and total dry weight biomass was determined. Detergent at concentration 0.5% influenced on decreasing of pH value and increasing of redox potential as well as increasing of free and total organic acids. Enzyme activity of alkaline phosphatase was reduced by detergent at concentration 0.5%. The fungus was decomposed about 62% of anionic surfactant during 16 day. Due to fungus was produced higher dry weight biomass (53% in relation to control. [Projekat Ministarstva nauke Republike Srbije, br. III 43004

  9. High coverage hydrogen adsorption on the Fe{sub 3}O{sub 4}(1 1 0) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohu, E-mail: yuxiaohu950203@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Zhang, Xuemei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Wang, Shengguang [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Synfuels China Co., Ltd., Huairou, Beijing 101407 (China)

    2015-10-30

    Graphical abstract: - Highlights: • Hydrogen adsorption on the A and B termination layers of the Fe{sub 3}O{sub 4}(1 1 0) surface at different coverage has been studied by DFT + U method. • The adsorption of hydrogen prefers surface oxygen atoms on both Fe{sub 3}O{sub 4}(1 1 0) surface layers. • The more stable A layer has stronger adsorption energy than the less stable B layer. • The saturation coverage has two dissociatively adsorbed H{sub 2} on the A layer, and one dissociatively adsorbed H{sub 2} on the B layer. - Abstract: Hydrogen adsorption on the A and B termination layers of the Fe{sub 3}O{sub 4}(1 1 0) surface at different coverage has been systematically studied by density functional theory calculations including an on-site Hubbard term (GGA + U). The adsorption of hydrogen prefers surface oxygen atoms on both layers. The more stable A layer has stronger adsorption energy than the less stable B layer. The saturation coverage has two dissociatively adsorbed H{sub 2} on the A layer, and one dissociatively adsorbed H{sub 2} on the B layer. The adsorption mechanism has been analyzed on the basis of projected density of states (PDOS).

  10. Cognitive abilities and motivational processes in high school students' science achievement and engagement

    Science.gov (United States)

    Lau, Shun

    The dissertation presents two analytic approaches, a variable-centered and person-centered approach, to investigating holistic patterns of the cognitive, motivational, and affective correlates of science achievement and engagement in a sample of 491 10th and 11th grade high-school students. Building on Snow's (1989) idea of two pathways to achievement outcomes, Study 1 adopted a variable-centered approach to examining how cognitive and motivational factors associated with the performance and commitment pathways, respectively, contributed to the prediction of achievement outcomes in science. Results of hierarchical regression analyses showed that (a) students' cognitive abilities were the strongest predictors of their performance in science as measured by standardized test scores; (b) motivational processes enhanced the predictive validity for science test scores and grades beyond the variance accounted for by ability and demography; (c) motivational processes were the strongest predictors of students' commitment to science in the form of situational engagement and anticipated choices of science-related college majors and careers; and (d) competence beliefs served as a point of contact between the performance and commitment pathways. These results are consistent with Snow's (1989) conjecture that both performance and commitment pathway-related factors are necessary for understanding the full range of person-level inputs to achievement outcomes. Study 2 adopted a person-centered approach to examining holistic organizations of psychological factors within individuals and their relations to science achievement and engagement. Four types of students characterized by unique configurations of cognitive, motivational, and affective attributes were identified in both the male and female subsamples using inverse factor analysis. Type membership was found to distinguish students in various indicators of science achievement and engagement. Two of the four types were also found

  11. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    Directory of Open Access Journals (Sweden)

    Khan M

    2016-03-01

    Full Text Available Merajuddin Khan,1 Mujeeb Khan,1 Abdulhadi H Al-Marri,1 Abdulrahman Al-Warthan,1 Hamad Z Alkhathlan,1 Mohammed Rafiq H Siddiqui,1 Vadithe Lakshma Nayak,2 Ahmed Kamal,2 Syed F Adil1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Medicinal Chemistry and Pharmacology, CSIR – Indian Institute of Chemical Technology, Hyderabad, India Abstract: Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano­composites (PGE-HRG-Ag were synthesized by using Pulicaria glutinosa extract (PGE as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. Keywords: plant extract, graphene/silver nanocomposites, anticancer, apoptosis

  12. Preparation of highly stable zeolite-alginate foam composite for strontium(90Sr) removal from seawater and evaluation of Sr adsorption performance.

    Science.gov (United States)

    Hong, Hye-Jin; Kim, Byoung-Gyu; Ryu, Jungho; Park, In-Su; Chung, Kang-Sup; Lee, Sang Moon; Lee, Jin-Bae; Jeong, Hyeon Su; Kim, Hyunchul; Ryu, Taegong

    2018-01-01

    Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log K d of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)

    International Nuclear Information System (INIS)

    Schröfl, Ch.; Gruber, M.; Plank, J.

    2012-01-01

    UHPC is fluidized particularly well when a blend of MPEG- and APEG-type PCEs is applied. Here, the mechanism for this behavior was investigated. Testing individual cement and micro silica pastes revealed that the MPEG-PCE disperses cement better than silica whereas the APEG-PCE fluidizes silica particularly well. This behavior is explained by preferential adsorption of APEG-PCE on silica while MPEG-PCEs exhibit a more balanced affinity to both cement and silica. Adsorption data obtained from individual cement and micro silica pastes were compared with those found for the fully formulated UHPC containing a cement/silica blend. In the UHPC formulation, both PCEs still exhibit preferential and selective adsorption similar as was observed for individual cement and silica pastes. Preferential adsorption of PCEs is explained by their different stereochemistry whereby the carboxylate groups have to match with the steric position of calcium ions/atoms situated at the surfaces of cement hydrates or silica.

  14. Bentonite surface modification and characterization for high selective phosphate adsorption from aqueous media and its application for wastewater treatments

    Directory of Open Access Journals (Sweden)

    S. Yaghoobi-Rahni

    2017-06-01

    Full Text Available Raw and modified bentonite has been used to develop effective sorbents to remove phosphate from aqueous solution. Acid thermoactivation, Rewoquate, Irasoft, calcium, Fe and Al were employed to treat the bentonite. Results show that samples adsorption capacity for phosphate is in the order of, unmodified bentonite = acid thermoactivation < Rewoquate < calcium ≅ Irasoft < Fe < Al ≅ Fe-Al. The phosphate adsorption with Fe-Al-bentonite (FAB modification was more than 99% and the phosphate removal reached the peak value in the initial 30 min. The phosphate adsorption of FAB was pH independent in the range of 2–10. The common coexisting ions in wastewater have no effect on the phosphate adsorption. The phosphate adsorption results were very well fitted in the Freundlich and Langmuir isotherm model and the maximum adsorption capacity was 8.33 mg P/g at pH 6.5 for 1 hour, which was better than similar modified bentonite with low time and Fe-Al consumption. FAB was characterized by scanning electron microscopy, X-ray diffraction, X-ray fluorescence and Fourier transform infrared. Therefore, the results confirm that FAB is a selective phosphate sorbent and environmentally friendly for its potential application for phosphate removal from wastewater.

  15. Photocatalytic performance of highly amorphous titania–silica aerogels with mesopores: The adverse effect of the in situ adsorption of some organic substrates during photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Lázár, István [Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1 H-4032 (Hungary); Kalmár, József, E-mail: kalmar.jozsef@science.unideb.hu [MTA-DE Homogeneous Catalysis and Reaction Mechanisms Research Group, Egyetem tér 1 H-4032 (Hungary); Peter, Anca [Department of Chemistry and Biology, Technical University of Cluj Napoca, North University Center of Baia Mare, Baia Mare, Victoriei 76, 430122 (Romania); Szilágyi, Anett; Győri, Enikő; Ditrói, Tamás; Fábián, István [Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1 H-4032 (Hungary)

    2015-11-30

    Graphical abstract: - Highlights: • Details on the preparation of titania–silica aerogels with no crystalline anatase phase. • Investigation of the structure and the photocatalytic activity of highly amorphous titania–silica aerogels with mesopores. • The fast adsorption of methylene blue and salicylic acid reduces the rates of their photocatalytic degradations. • An elaborate kinetic model which incorporates both adsorption and photocatalysis. - Abstract: Titania–silica composite aerogels with 16–29% Ti-content by the mass were synthesized by the sol–gel method from different Ti-precursors, and calcined at 500 °C. These aerogels are highly amorphous as no crystalline TiO{sub 2} phase can be detected in them by X-ray diffraction methods, and show the dominating presence of either mesopores or macropores. The incorporation of Ti into the silica structure is shown by the appearance of characteristic IR transitions of Si−O−Ti vibrations. The characteristic band-gap energies of the different aerogels are estimated to be between 3.6 and 3.9 eV from UV reflection spectra. Band-gap energy decreases with decreasing pore-size. When suspended in solution, even these highly amorphous aerogels accelerate the photodegradation of salicylic acid and methylene blue compared to simple photolysis. Kinetic experiments were conducted under illumination, and also in the dark to study the adsorption of the substrates onto the suspended aerogels. We assume that the fast in situ adsorption of the organic substrates mask the suspended aerogel particles from UV photons, which reduces the rate of photocatalysis. We managed to mathematically separate the parallel processes of photocatalysis and adsorption, and develop a simple kinetic model to describe the reaction system.

  16. [Relationship between occupational stress and working ability of workers in a petroleum processing enterprise in high altitude area].

    Science.gov (United States)

    Ma, X M; Kang, H L; Shi, C B; Li, Y; Wu, Y F; Liu, Z H; Wang, G; Lei, H Y

    2017-12-20

    Objective: To investigate the relationship between occupational stress and working ability of workers in a petroleum processing enterprise in a high altitude area. Methods: A total of 728 workers in a petroleum processing enterprise at an altitude of 2850 m were subjected to a survey using Occupational Stress Inventory (OSI) , Work Ability Index (WAI) Scale, Occupational Role Questionnaire (ORQ) , Personal Strain Questionnaire (PSQ) , and Personal Resource Questionnaire (PRQ) from May 2014 to August 2016. Results: Of the 728 workers, 55 (7.6%) had a poor working ability, moderate in 262 (35.9%) , and good in 411 (56.5%). There were significant differences in WAI between the workers with different types of work, sexes, ages, and working years ( P occupational stress groups ( P Occupational stress is an influencing factor for the working ability of workers in the petroleum processing enterprise in the high altitude area. Hypoxia in high altitude area may further reduce the working ability. In order to reduce occupational stress and improve work ability, it should be considered to strengthen skills training, improve the working environment, and pay attention to mental health.

  17. Characterization of a Highly Thermostable and Organic Solvent-Tolerant Copper-Containing Polyphenol Oxidase with Dye-Decolorizing Ability from Kurthia huakuii LAM0618T.

    Directory of Open Access Journals (Sweden)

    Xiang Guo

    Full Text Available Laccases are green biocatalysts that possess attractive advantages for the treatment of resistant environmental pollutants and dye effluents. A putative laccase-like gene, laclK, encoding a protein of 29.3 kDa and belonging to the Cu-oxidase_4 superfamily, was cloned and overexpressed in Escherichia coli. The purified recombinant protein LaclK (LaclK was able to oxidize typical laccase substrates such as 2,6-dimethoxyphenol and l-dopamine. The characteristic adsorption maximums of typical laccases at 330 nm and 610 nm were not detected for LaclK. Cu2+ was essential for substrate oxidation, but the ratio of copper atoms/molecule of LaclK was determined to only be 1:1. Notably, the optimal temperature of LaclK was 85°C with 2,6-dimethoxyphenol as substrates, and the half-life approximately 3 days at 80°C. Furthermore, 10% (v/v organic solvents (methanol, ethanol, isopropyl alcohol, butyl alcohol, Triton x-100 or dimethyl sulfoxide could promote enzymatic activity. LaclK exhibited wide-spectrum decolorization ability towards triphenylmethane dyes, azo dyes and aromatic dyes, decolorizing 92% and 94% of Victoria Blue B (25 μM and Ethyl Violet (25 μM, respectively, at a concentration of 60 U/L after 1 h of incubation at 60°C. Overall, we characterized a novel thermostable and organic solvent-tolerant copper-containing polyphenol oxidase possessing dye-decolorizing ability. These unusual properties make LaclK an alternative for industrial applications, particularly processes that require high-temperature conditions.

  18. Aim High or Go Low? Pricing Strategies and Enrollment Effects when the Net Price Elasticity Varies with Need and Ability

    Science.gov (United States)

    Curs, Bradley R.; Singell, Larry D., Jr.

    2010-01-01

    Detailed data on individual applicants to a large public university are used to demonstrate that net price responsiveness decreases with need and ability. Enrollment effects are simulated and show a movement towards a high tuition/high aid (low tuition/low aid) policy significantly lowers (raises) tuition revenue with a modest increase (decrease)…

  19. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    Science.gov (United States)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  20. The Importance of Intrinsic Motivation for High and Low Ability Readers' Reading Comprehension Performance

    Science.gov (United States)

    Logan, Sarah; Medford, Emma; Hughes, Naomi

    2011-01-01

    The study examined how cognitive and motivational factors predicted reading skill and whether intrinsic reading motivation would explain significantly more variance in low ability readers' reading performance. One hundred and eleven children (aged 9-11) completed assessments of reading comprehension skill, verbal IQ, decoding skill and intrinsic…

  1. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    Science.gov (United States)

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-19

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L -1 (98%) NH 4 , 311 mg L -1 (99%) NO 2 , and 633 mg L -1 (97%) total nitrogen (8 mg L -1 averaged NO 3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L -1 (98%) and 350 mg L -1 (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  2. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  3. Assessment of adsorption behavior of dibutyltin (DBT) to clay-rich sediments in comparison to the highly toxic tributyltin (TBT)

    International Nuclear Information System (INIS)

    Hoch, Marion; Alonso-Azcarate, Jacinto; Lischick, Martin

    2003-01-01

    Adsorption of dibutyltin to marine sediments is influenced by the type of predominating clay material. - The sorption behavior of dibutyltin (DBT) to four types of natural clay-rich sediments as a function of pH and salinity was studied. The strongest affinity of DBT was found to the montmorillonite-rich sediment, which is characterized by the highest specific surface area and cation exchange capacity of the four used sediments. K d values range between 12 and 40 (l/kg) on simulated marine conditions (pH 8, salinity 32%o). A maximum of DBT adsorption was found at a salinity of 0%o and pH 6. Desorption occurred over the entire studied pH range (4-8) when contaminated sediments interact with butyltin-free water. The maximum of desorption coincided with the minimum of adsorption, and vice versa. The results of DBT adsorption are compared with tributyltin (TBT), and the mechanism of the adsorption process is discussed

  4. Preferential adsorption of volatile hydrocarbons on high surface area chalcogels KMBiTe 3 (M = Cr, Zn, Fe)

    KAUST Repository

    Edhaim, Fatimah

    2017-12-21

    Three chalcogels KCrBiTe3, KZnBiTe3, and KFeBiTe3 were synthesized by the sol–gel metathesis route. K+ and the transition metal cations Cr2+, Zn2+ or Fe2+ connect [BiTe3]3− anions to form amorphous black compounds. Supercritical drying of the black gels produced porous materials with BET surface areas of 230 m2/g (KCrBiTe3), 450 m2/g (KZnBiTe3) and 514 m2/g (KFeBiTe3). The adsorption properties of the resulting chalcogenide aerogels or chalcogels have been studied using volatile organic hydrocarbons (VOCs) and gases as adsorptives. The results show preferential adsorption of toluene vapor over cyclohexane vapor. The adsorption capacity toward toluene is 5.02 mmol/g for KCrBiTe3, 5.58 mmol/g for KZnBiTe3 and 7.89 mmol/g for KFeBiTe3. Preferential adsorption of CO2 over CH4 or H2 was observed for the chalcogels: KCrBiTe3 (CO2/H2: 175, CO2/CH4: 50), KZnBiTe3 (CO2/H2: 180 and CO2/CH4: 60) and KFeBiTe3 (CO2/H2: 225 and CO2/CH4: 65).

  5. Supercritical CO2 Assisted Synthesis of EDTA-Fe3O4 Nanocomposite with High Adsorption Capacity for Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Gunjan Bisht

    2016-01-01

    Full Text Available Efficiency of EDTA functionalized nanoparticles in adsorption of chromium (VI from water was investigated in this study. Magnetic iron oxide nanoparticles (IONPs were synthesized by a simple chemical coprecipitation route and EDTA coating onto IONPs was attained via supercritical carbon dioxide (Sc CO2, a technology with green sustainable properties. The obtained nanoparticles were then characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and vibrating magnetometric analysis (VSM. The synthesized nanoparticle and its modified variant were evaluated as adsorbent for chromium (VI removal from water through batch adsorption technique and the effect of analytic concentration; contact time and adsorbent concentration were studied at pH 2. The results showed higher removal efficiency for modified magnetic iron oxide nanoparticles (MIONPs (i.e., 99.9% than their nonmodified variant IONPs, that is, 34.06% for the same concentration after 18 hours of incubation. Also maximum adsorption capacity (qe = 452.26 mg/g of MIONPs attained can be related to their preparation in Sc CO2 as qe calculated from IONPs, that is, 170.33 mg/g, is lower than that of MIONPs. The adsorption data fit well with Freundlich isotherm equation while kinetic adsorption studies of chromium (VI were modeled by pseudo-second-order model.

  6. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    Science.gov (United States)

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  7. Improvement of The Ability of Junior High School Students Thinking Through Visual Learning Assisted Geo gbra Tutorial

    Science.gov (United States)

    Elvi, M.; Nurjanah

    2017-02-01

    This research is distributed on the issue of the lack of visual thinking ability is a must-have basic ability of students in learning geometry. The purpose of this research is to investigate and elucide: 1) the enhancement of visual thinking ability of students to acquire learning assisted with geogebra tutorial learning: 2) the increase in visual thinking ability of students who obtained a model of learning assisted with geogebra and students who obtained a regular study of KAM (high, medium, and low). This research population is grade VII in Bandung Junior High School. The instruments used to collect data in this study consisted of instruments of the test and the observation sheet. The data obtained were analyzed using the test average difference i.e. Test-t and ANOVA Test one line to two lines. The results showed that: 1) the attainment and enhancement of visual thinking ability of students to acquire learning assisted geogebra tutorial better than students who acquire learning; 2) there may be differences of visual upgrade thinking students who acquire the learning model assisted with geogebra tutorial earn regular learning of KAM (high, medium and low).

  8. Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony.

    Science.gov (United States)

    Qi, Zenglu; Joshi, Tista Prasai; Liu, Ruiping; Li, Yiran; Liu, Huijuan; Qu, Jiuhui

    2018-02-05

    Manganese iron oxide (MnFe 2 O 4 ), an excellent arsenic(As)/antimony(Sb) removal adsorbent, is greatly restricted for the solid-liquid separation. Through the application of superconducting high gradient magnetic separation (HGMS) technique, we herein constructed a facility for the in situ solid-liquid separation of micro-sized MnFe 2 O 4 adsorbent in As/Sb removal process. To the relative low initial concentration 50.0μgL -1 , MnFe 2 O 4 material sorbent can still decrease As or Sb below US EPA's drinking water standard limit. The separation of MnFe 2 O 4 was mainly relied on the flow rate and the amount of steel wools in the HGMS system. At a flow rate 1Lmin -1 and 5% steel wools filling rate, the removal efficacies of As and Sb in natural water with the system were achieved to be 94.6% and 76.8%, respectively. At the meantime, nearly 100% micro-sized MnFe 2 O 4 solid in the continuous field was readily to be separated via HGMS system. In a combination with the experiment results and finite element simulation, the separation was seemed to be independent on the magnetic field intensity, and the maximum separation capacities in various conditions were well predicted using the Thomas model (R 2 =0.87-0.99). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Utilization of household organic compost in zinc adsorption system

    Science.gov (United States)

    Cundari, Lia; Isvaringga, Nyiayu Dita; Arinda, Yesica Maharani

    2017-11-01

    Zinc (Zn) is one of the heavy metals which is polluted to the environment in an amount greater than 15 mg/L [1]. Zinc contamination caused by the disposal of industrial waste such as batteries, electroplating, paint and other industries. One of the Zinc recovery technique that is relatively inexpensive, simple, high effectiveness and efficiency, and can be regenerated is adsorption using compost. This study has been carried out the preparation of compost from organic household waste and cow manure and its application to Zinc recovery. In this research, the raw material of compost is varied. There is an organic household waste (A1) and a mixture of organic household waste and cow manure with ratio 7:6 (A2). Decomposition of A1 and A2 with addition Effective Microorganism (EM4) requires 21 days, with 3 times inversion. Zinc adsorption is done by using a compost variation of 0.5 g, 1 g, and 2 g in every 100 and 200 mg/L Zn concentration solution. The batch process is applied to analyze the capacity of adsorption. Determination of capacity of adsorption based on the Langmuir, Freundlich, and Temkin isotherm model. Direct observation and spectrophotometry are applied in research methodology. The results show that compost A1 and A2 have fulfilled Indonesian Standart of compost and have the ability to reduce Zinc concentration to 94-96%. It indicates highly recommended biosorbent that can be applied to Zinc adsorption.

  10. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  11. Metacognitive Ability Relationship with Test Result of Senior High School of Biology Teacher Competence in Sijunjung District

    Science.gov (United States)

    Ardi, A.; Fadilah, M.; Ichsani, W.

    2018-04-01

    This research aimed to reveal how the relationship between metacognitive ability and the test result of biology teacher competence in Sijunjung District. The population of this descriptive research were all high school biology teachers in Sijunjung District, and sample is all teachers who are members of the population, which is 23 biology teachers. The instrument used in this research are a questionnaire of research on teacher's metacognitive ability and document about teacher competence test result. The questionnaire was validated first by two lecturers of biology and one lecturer of English. Data analysis using Pearson Product Moment's. Based on the results of research and discussion that have been described, it can generally be concluded that there is a low relationship between metacognitive ability with competence test results of high school biology teachers in Sijunjung District. Partially, the relationship of metacognitive ability with the test result of professional competence of biology teacher showed significant result, with correlation coefficient 0,46 and t table 1,72 while titung 2,37. The contribution of metacognitive ability to the competence test result of the teacher is 21.6%, while the other 78.4% have not been revealed in this research.

  12. Effects of Full-Time and Part-Time High-Ability Programs on Developments in Students' Achievement Emotions

    Science.gov (United States)

    Hornstra, Lisette; van der Veen, Ineke; Peetsma, Thea

    2017-01-01

    This study focused on effects of high-ability programs on students' achievement emotions, i.e. emotions that students experience that are associated with achievement activities. Participants were students in grade 4-6 of primary education: 218 students attended full-time high-ability programs, 245 attended part-time high-ability programs (i.e.…

  13. Mobile Learning Based Worked Example in Electric Circuit (WEIEC) Application to Improve the High School Students' Electric Circuits Interpretation Ability

    Science.gov (United States)

    Yadiannur, Mitra; Supahar

    2017-01-01

    This research aims to determine the feasibility and effectivity of mobile learning based Worked Example in Electric Circuits (WEIEC) application in improving the high school students' electric circuits interpretation ability on Direct Current Circuits materials. The research method used was a combination of Four-D Models and ADDIE model. The…

  14. The Effects of a Social and Talent Development Intervention for High Ability Youth with Social Skill Difficulties

    Science.gov (United States)

    Foley-Nicpon, Megan; Assouline, Susan G.; Kivlighan, D. Martin; Fosenburg, Staci; Cederberg, Charles; Nanji, Michelle

    2017-01-01

    Contemporary models highlight the need to cultivate cognitive and psychosocial factors in developing domain-specific talent. This model was the basis for the current study where high ability youth with self-reported social difficulties (n = 28, 12 with a coexisting disability) participated in a social skills and talent development intervention…

  15. Linguistic and Cognitive Abilities in Children with Specific Language Impairment as Compared to Children with High-Functioning Autism

    Science.gov (United States)

    Schaeffer, Jeannette

    2018-01-01

    This study investigates the question as to whether and how the linguistic and other cognitive abilities of children with Specific Language Impairment (SLI) differ from those of children with High-Functioning Autism (HFA). To this end, 27 Dutch-speaking elementary-school-age children with SLI, 27 age-matched children with HFA, and a control group…

  16. Linguistic and other cognitive abilities in children with Specific Language Impairment as compared to children with High-Functioning Autism

    NARCIS (Netherlands)

    Schaeffer, J.

    2018-01-01

    This study investigates the question as to whether and how the linguistic and other cognitive abilities of children with Specific Language Impairment (SLI) differ from those of children with High-Functioning Autism (HFA). To this end, 27 Dutch-speaking elementary-school-age children with SLI, 27

  17. Differences and similarities in double special educational needs: high abilities/giftedness x Asperger’s Syndrome

    Directory of Open Access Journals (Sweden)

    Nara Joyce Wellausen Vieira

    2012-08-01

    Full Text Available The study was developed from a literature search in books, articles and theses that have been published since the year 2000 on the theme High Abilities / Giftedness and Asperger’s Syndrome. The objectives of this research were to conduct a search on publications from 2000 to 2011, about the common and different features to the person with Asperger syndrome and high ability gifted, and also relate the number of publications found in Education and Special Education. At theoretical we present the conception of High Abilities / Giftedness of Renzulli (2004 and Gardner (2000 and in the conception of Asperger Syndrome, Mello (2007 and Klin (2006. When analyzing the data, were perceived similarities and differences between the behavioral characteristics of individuals with High Abilities / Giftedness and those with Asperger’s Syndrome. It’s possible point out that there is much evidence that separate these two special educational needs and few similarities between them. But do not neglect that there may be a dual disability between these two particular special educational needs, because there are still few studies that verify theoretically the differences and similarities of these subjects, much less those that investigate these similarities and distinctions in the subjects themselves.

  18. A Study of High School Music Participants' Stylistic Preferences and Identification Abilities in Music and the Visual Arts.

    Science.gov (United States)

    Haack, Paul

    1982-01-01

    Research investigated how high school students conceptualize the basic Classical-Romantic values dichotomy as exemplified by various aesthetic eras, styles, and objects, and how students operate within such aesthetic-conceptual frameworks in terms of their preferences and identification-categorization abilities. (Author/AM)

  19. Identifying High Ability Children with DSM-5 Autism Spectrum or Social Communication Disorder: Performance on Autism Diagnostic Instruments

    Science.gov (United States)

    Foley-Nicpon, Megan; Fosenburg, Staci L.; Wurster, Kristin G.; Assouline, Susan G.

    2017-01-01

    This study was a replication of Mazefsky et al.'s ("Journal of Autism and Developmental Disabilities" 43:1236-1242, 2013) investigation among a sample of 45 high ability children and adolescents diagnosed with ASD under DSM-IV-TR. Items from the ADOS and ADI-R were mapped onto DSM-5 diagnostic criteria for ASD and SCD to determine…

  20. High work ability in the scientific activity of older and experienced academics.

    Science.gov (United States)

    Kristjuhan, Ulo; Taidre, Erika

    2012-01-01

    At present the health of people in theirs 60s is the same as in theirs 50s around fifty years ago. Using older academics is a topical problem for universities in remaining efficient. Data regarding academics' scientific productivity at universities were collected and questionnaires compiled in the Faculty of Economics and Business Administration of Tallinn University of Technology in Estonia. Studies showed that the productivity of academics at university increases as they grow older (into their 60s). These academics are valuable to the university. The choice of academics should be made according to the candidates' knowledge and ability to work.

  1. Synthesis and devitrification of high glass-forming ability bulk metallic glasses.

    OpenAIRE

    Huang, Hong.

    2007-01-01

    In this thesis, literature on the production, microstructures and properties of bulk metallic glasses (BMG) has been reviewed with particular reference to glass forming ability (GFA) and alloys of the Fe-Zr-B and Zr-based BMG systems. The experimental procedures used in the research are presented and the results for the amorphous Fe80Zr12B8 ribbon and the Zr57Ti5Al10Cu20Ni8, Zr57Nb5Al10Cu20Ni8, Zr53Nb2Al8Cu30Ni7 BMGs are given and discussed. Wedge-shaped ingots of the Zr-based BMGs were produ...

  2. An efficient one-step condensation and activation strategy to synthesize porous carbons with optimal micropore sizes for highly selective CO₂ adsorption.

    Science.gov (United States)

    Wang, Jiacheng; Liu, Qian

    2014-04-21

    A series of microporous carbons (MPCs) were successfully prepared by an efficient one-step condensation and activation strategy using commercially available dialdehyde and diamine as carbon sources. The resulting MPCs have large surface areas (up to 1881 m(2) g(-1)), micropore volumes (up to 0.78 cm(3) g(-1)), and narrow micropore size distributions (0.7-1.1 nm). The CO₂ uptakes of the MPCs prepared at high temperatures (700-750 °C) are higher than those prepared under mild conditions (600-650 °C), because the former samples possess optimal micropore sizes (0.7-0.8 nm) that are highly suitable for CO₂ capture due to enhanced adsorbate-adsorbent interactions. At 1 bar, MPC-750 prepared at 750 °C demonstrates the best CO₂ capture performance and can efficiently adsorb CO₂ molecules at 2.86 mmol g(-1) and 4.92 mmol g(-1) at 25 and 0 °C, respectively. In particular, the MPCs with optimal micropore sizes (0.7-0.8 nm) have extremely high CO₂/N₂ adsorption ratios (47 and 52 at 25 and 0 °C, respectively) at 1 bar, and initial CO₂/N₂ adsorption selectivities of up to 81 and 119 at 25 °C and 0 °C, respectively, which are far superior to previously reported values for various porous solids. These excellent results, combined with good adsorption capacities and efficient regeneration/recyclability, make these carbons amongst the most promising sorbents reported so far for selective CO₂ adsorption in practical applications.

  3. CONNECTION OF TURN AHEAD AND TURN BACK WITH MOTORIC ABILITIES OF THE FOURTH GRADE OF HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2008-08-01

    Full Text Available The research is done for the purpose of determination and defining of the level of connection between some motoric abilities with success in realization of programmed contents from the area of gymnastics (turn ahead and turn back. The research is done on the sample of fifty students from the fourth grade of High School, on ten motoric tests and on two specific motoric assignments – turn ahead and turn back. The results of this research clearly point that there exist the multitude of statistically important coefficients of correlation between treated motoric abilities and applied motoric assignments.

  4. Computational and FTIR spectroscopic studies on carbon monoxide and dinitrogen adsorption on a high-silica H-FER zeolite

    Czech Academy of Sciences Publication Activity Database

    Nachtigall, Petr; Bludský, Ota; Grajciar, Lukáš; Nachtigallová, Dana; Delgado, M. R.; Areán, C. O.

    2009-01-01

    Roč. 11, č. 5 (2009), s. 791-802 ISSN 1463-9076 R&D Projects: GA ČR GA203/06/0324; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : zeolite * adsorption * vibrational dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.116, year: 2009

  5. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures

    International Nuclear Information System (INIS)

    Bastos-Neto, M.; Canabrava, D.V.; Torres, A.E.B.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Azevedo, D.C.S.; Cavalcante, C.L.

    2007-01-01

    The objective of this study is to relate textural and surface characteristics of selected microporous activated carbons to their methane storage capacity. In this work, a magnetic suspension balance (Rubotherm, Germany) was used to measure methane adsorption isotherms of several activated carbon samples. Textural characteristics were assessed by nitrogen adsorption on a regular surface area analyzer (Autosorb-MP, by Quantachrome, USA). N 2 adsorption was analysed by conventional models (BET, DR, HK) and by Monte Carlo molecular simulations. Elemental and surface analyses were performed by X-ray photoelectronic spectroscopy (XPS) for the selected samples. A comparative analysis was then carried out with the purpose of defining some correlation among the variables under study. For the system under study, pore size distribution and micropore volume seem to be a determining factor as long as the solid surface is perfectly hydrophobic. It was concluded that the textural parameters per se do not unequivocally determine natural gas storage capacities. Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage

  6. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  7. The Enhancement of Junior High School Students' Abilities in Mathematical Problem Solving Using Soft Skill-based Metacognitive Learning

    OpenAIRE

    Murni, Atma; Sabandar, Jozua; S. Kusumah, Yaya; Kartasamita, Bana Goerbana

    2013-01-01

    The aim of this study is to know the differences of enhancement in mathematical problem solving ability (MPSA) between the students who received soft skill- based metacognitive learning (SSML) with the students who got conventional learning (CL). This research is a quasi experimental design with pretest-postest control group. The population in this study is the students of Junior High School in Pekanbaru city. The sample consist of 135 students, 68 of them are from the high-level...

  8. Adsorption of aqueous silicate on hematite

    International Nuclear Information System (INIS)

    Taylor, P.; Ticknor, K.V.

    1997-08-01

    During radioisotope sorption studies, adsorption of silicate from synthetic groundwaters by synthetic hematite was observed. To further investigate this observation, the adsorption of silicate onto hematite (α-Fe 2 O 3 ) powder from a neutral, aqueous NaC1 solution (0.1 mol/dm 3 ), containing 2.56 x 10 -4 mol/dm 3 of Si added as Na 2 SiO 3 ·9H 2 O, was measured at ∼21 deg C. Equilibrium adsorption of silicate amounted to ∼1.93 μmol/m 2 (one Si(O,OH) 4 moiety per 86 A 2 ). It is important to take this adsorption into account when evaluating the ability of iron oxides to adsorb other species, especially anions, from groundwaters. Silicate adsorption is known to diminish the ability of iron oxides to adsorb other anions. (author)

  9. Developing geogebra-assisted reciprocal teaching strategy to improve junior high school students’ abstraction ability, lateral thinking and mathematical persistence

    Science.gov (United States)

    Priatna, N.; Martadiputra, B. A. P.; Wibisono, Y.

    2018-05-01

    The development of science and technology requires reform in the utilization of various resources for mathematics teaching and learning process. One of the efforts that can be made is the implementation of GeoGebra-assisted Reciprocal Teaching strategy in mathematics instruction as an effective strategy in improving students’ cognitive, affective, and psychomotor abilities. This research is intended to implement GeoGebra-assisted Reciprocal Teaching strategy in improving abstraction ability, lateral thinking, and mathematical persistence of junior high school students. It employed quasi-experimental method with non-random pre-test and post-test control design. More specifically, it used the 2x3 factorial design, namely the learning factors that included GeoGebra-assisted Reciprocal Teaching and conventional teaching learning, and levels of early mathematical ability (high, middle, and low). The subjects in this research were the eighth grade students of junior high school, taken with purposive sampling. The results of this research show: Abstraction and lateral abilities of students who were taught with GeoGebra-assisted Reciprocal Teaching strategy were significantly higher than those of students who received conventional learning. Mathematical persistence of students taught with GeoGebra-assisted Reciprocal Teaching strategy was also significantly higher than of those taught with conventional learning.

  10. Effect of ethanol and pH on the adsorption of acetaminophen (paracetamol) to high surface activated charcoal, in vitro studies

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle R; Christophersen, A Bolette

    2002-01-01

    BACKGROUND: Paracetamol (acetaminophen) intoxication often in combination with ethanol, is seen commonly in overdose cases. Doses of several grams might be close to the maximum adsorption capacity of the standard treatment dose (50g) of activated charcoal. The aim of this study was to determine...... the maximum adsorption capacity for paracetamol for two types of high surface-activated charcoal [Carbomix and Norit Ready-To-Use (not yet registered trademark in Denmark) both from Norit Cosmara, Amersfoort, The Netherlands] in simulated in vivo environments: At pH 1.2 (gastric environment), at pH 7.......2 (intestinal environment), and with and without 10% ethanol. METHODS: Activated charcoal, at both gastric or intestinal pHs, and paracetamol were mixed, resulting in activated charcoal-paracetamol ratios from 10:] to 1:1. In trials with ethanol, some of the gastric or intestinal fluid was replaced...

  11. Sulfate adsorption on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Rietra, R P.J.J.; Hiemstra, T; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  12. Technical ability of new MTR high-density fuel alloys regarding the whole fuel cycle

    International Nuclear Information System (INIS)

    Durand, J.P.; Maugard, B.; Gay, A.

    1998-01-01

    The development of new fuel alloys could provide a good opportunity to improve drastically the fuel cycle on the neutronic performances and the reprocessing point of view. Nevertheless, those parameters can only be considered if the fuel manufacture feasibility has been previously demonstrated. As a matter of fact, a MTR work group involving French partners (CEA, CERCA, COGEMA) has been set up in order to evaluate the technical ability of new fuels considering the whole fuel cycle. In this paper CERCA is presenting the preliminary results of UMo and UNbZr fuel plate manufacture, CEA is comparing to U 3 Si 2 the neutronic performances of fuels such as UMo, UN, UNbZr, while COGEMA is dealing with the reprocessing feasibility. (author)

  13. Environmentally benign working pairs for adsorption refrigeration

    International Nuclear Information System (INIS)

    Cui Qun; Tao Gang; Chen Haijun; Guo Xinyue; Yao Huqing

    2005-01-01

    This paper begins from adsorption working pairs: water and ethanol were selected as refrigerants; 13x molecular sieve, silica gel, activated carbon, adsorbent NA and NB, proposed by authors, were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration cycle was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high-vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance of adsorption refrigeration was studied on simulation device of adsorption refrigeration cycle. After presentation of adsorption isotherms, the thermodynamic performance for their use in adsorption refrigeration system was calculated. The results show: (1) the maximum adsorption capacity of water on adsorbent NA reaches 0.7 kg/kg, and the maximum adsorption capacity of ethanol on adsorbent NB is 0.68 kg/kg, which is three times that of ethanol on activated carbon, (2) the refrigeration capacity of NA-water working pair is 922 kJ/kg, the refrigeration capacity of NB-ethanol is 2.4 times that of activated carbon-methanol, (3) as environmental friendly and no public hazard adsorption working pair, NA-H 2 O and NB-ethanol can substitute activated carbon-methanol in adsorption refrigeration system using low-grade heat source

  14. Highly Productive Synthesis, Characterization, and Fluorescence and Heavy Metal Ion Adsorption Properties of Poly(2,5-dimercapto-1,3,4-thiadiazole Nanosheets

    Directory of Open Access Journals (Sweden)

    Chao Li

    2017-12-01

    Full Text Available Poly(2,5-dimercapto-1,3,4-thiadiazole (PBT nanosheets were synthesized by chemical oxidative synthesis under mild conditions. The media, oxidant species, monomer concentrations, oxidant/monomer molar ratio, and temperature were optimized to achieve higher yields and better performance. The molecular structure, morphology, and properties of the nanosheets were analyzed by Fourier transform infrared (FT-IR, ultraviolet-visible (UV-Vis, and fluorescence spectroscopies, wide-angle X-ray diffraction (WAXD, matrix-assisted laser desorption/ionization/time-of-flight (MALDI-TOF mass spectrometry, X-ray photoelectron spectroscopy (XPS, scanning electronic microscopy (SEM, transmission electron microscopy (TEM, and simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC. It was found that the polymerization of 2,5-dimercapto-1,3,4-thiadiazole occurs via dehydrogenation coupling between two mercapto groups to form the –S–S– bond. PBTs show the highest polymerization yield of up to 98.47% and form uniform nanosheets with a thickness of 89~367 nm. poly(2,5-dimercapto-1,3,4-thiadiazole polymers (PBTs exhibit good chemical resistance, high thermostability, interesting blue-light emitting fluorescence, and wonderful heavy metal ion adsorption properties. Particularly, the PBT nanosheets having a unique synergic combination of three kinds of active –S–, –SH, and =N– groups with a moderate specific area of 15.85 m2 g−1 exhibit an ultra-rapid initial adsorption rate of 10,653 mg g−1 h−1 and an ultrahigh adsorption capacity of up to 680.01 mg g−1 for mercury ion, becoming ultrafast chelate nanosorbents with a high adsorption capacity. With these impressive properties, PBT nanosheets are very promising materials in the fields of water treatment, sensors, and electrodes.

  15. A study of perceptual analysis in a high-level autistic subject with exceptional graphic abilities.

    Science.gov (United States)

    Mottron, L; Belleville, S

    1993-11-01

    We report here the case study of a patient (E.C.) with an Asperger syndrome, or autism with quasinormal intelligence, who shows an outstanding ability for three-dimensional drawing of inanimate objects (savant syndrome). An assessment of the subsystems proposed in recent models of object recognition evidenced intact perceptual analysis and identification. The initial (or primal sketch), viewer-centered (or 2-1/2-D), or object-centered (3-D) representations and the recognition and name levels were functional. In contrast, E.C.'s pattern of performance in three different types of tasks converge to suggest an anomaly in the hierarchical organization of the local and global parts of a figure: a local interference effect in incongruent hierarchical visual stimuli, a deficit in relating local parts to global form information in impossible figures, and an absence of feature-grouping in graphic recall. The results are discussed in relation to normal visual perception and to current accounts of the savant syndrome in autism.

  16. A Comparison of Perceptions of Barriers to Academic Success among High-Ability Students from High- and Low-Income Groups: Exposing Poverty of a Different Kind

    Science.gov (United States)

    Cross, Jennifer Riedl; Frazier, Andrea Dawn; Kim, Mihyeon; Cross, Tracy L.

    2018-01-01

    In 14 focus group interviews, sixth- to eighth-grade high-ability students from high- (n = 36) and low-income (n = 45) families were asked to describe the barriers they perceived to their academic success. Three themes were identified through the qualitative analysis: "Constraining Environments, Integration versus Isolation," and…

  17. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.

    Science.gov (United States)

    Walia, Gurleen Kaur; Randhawa, Deep Kamal Kaur

    2018-03-16

    The adsorption behavior of sulfur-based toxic gases (H 2 S and SO 2 ) on armchair silicene nanoribbons (ASiNRs) was investigated using first-principles density functional theory (DFT). Being a zero band gap material, application of bulk silicene is limited in nanoelectronics, despite its high carrier mobility. By restricting its dimensions into one dimension, construction of nanoribbons, and by introduction of a defect, its band gap can be tuned. Pristine armchair silicene nanoribbons (P-ASiNRs) have a very low sensitivity to gas molecules. Therefore, a defect was introduced by removal of one Si atom, leading to increased sensitivity. To deeply understand the impact of the aforementioned gases on silicene nanoribbons, electronic band structures, density of states, charge transfers, adsorption energies, electron densities, current-voltage characteristics and most stable adsorption configurations were calculated. H 2 S is dissociated completely into HS and H species when adsorbed onto defective armchair silicene nanoribbons (D-ASiNRs). Thus, D-ASiNR is a likely catalyst for dissociation of the H 2 S gas molecule. Conversely, upon SO 2 adsorption, P-ASiNR acts as a suitable sensor, whereas D-ASiNR provides enhanced sensitivity compared with P-ASiNR. On the basis of these results, D-ASiNR can be expected to be a disposable sensor for SO 2 detection as well as a catalyst for H 2 S reduction. Graphical abstract Comparison of I-V characteristics of pristine and defective armchair silicene nanoribbons with H 2 S and SO 2 adsorbed on them.

  18. The adsorption of NO on an oxygen pre-covered Pt(1 1 1) surface: in situ high-resolution XPS combined with molecular beam studies

    Science.gov (United States)

    Zhu, J. F.; Kinne, M.; Fuhrmann, T.; Tränkenschuh, B.; Denecke, R.; Steinrück, H.-P.

    2003-12-01

    Adsorption of NO on a Pt(1 1 1) surface pre-covered with a p(2 × 2) atomic oxygen layer has been studied in situ by high-resolution X-ray photoelectron spectroscopy and temperature-programmed XPS using third-generation synchrotron radiation at BESSY II, Berlin, combined with molecular beam techniques and ex situ by low energy electron diffraction and temperature-programmed desorption. O 1s XP spectra reveal that an ordered p(2 × 2)-O layer dramatically changes the adsorption behavior of NO as compared to the clean surface. The atomic oxygen occupies fcc hollow sites, and therefore blocks NO adsorption on these sites, which are energetically preferred on clean Pt(1 1 1). As a consequence, NO populates on-top sites at low coverage. At 110 K for higher coverages, NO can additionally adsorb on hcp hollow sites, thereby inducing a shift of the O 1s binding energy of atomic oxygen towards lower energies by about 0.25 eV. The bond strength of the hcp hollow NO species to the substrate is weakened by the presence of atomic oxygen. A sharp p(2 × 2) LEED pattern is observed for NO adsorption on the oxygen pre-covered surface, up to saturation coverage. The total saturation coverage of NO on Pt(1 1 1) pre-covered with varying amounts of oxygen (below 0.25 ML) decreases linearly with the coverage of oxygen. The initial sticking coefficient of NO is reduced from 0.96 on clean Pt(1 1 1) to 0.88 on a p(2 × 2) oxygen pre-covered surface.

  19. The adsorption of argon on ZnO at 77K

    Science.gov (United States)

    Marinelli, Francis; Grillet, Yves; Pellenq, Roland J.-M.

    We have studied the adsorption of argon onto ZnO surfaces at 77K by means of quasiequilibrium adsorption volumetry coupled with high resolution microcalorimetry and Grand Canonical Monte-Carlo (GCMC) simulations. The adsorbate/surface adsorption potential function (PN type) used in the simulations, was determined on the basis of ab initio calculations (corrected for dispersion interactions). The first aspect of this work was to test the ability of a standard solid-state Hartree-Fock technique coupled with a perturbative semiempirical approach in deriving a reliable adsorption potential function. The dispersion part of the adsorbate/surface interatomic potential was derived by using perturbation theory-based equations while the repulsive and induction interactions were derived from periodic HartreeFock (CRYSTAL92) calculations. GCMC simulations based on this adsorption potential allow one to calculate adsorption isotherms and isosteric heat versus loading curves as well as singlet distribution functions at 77K for each type of ZnO (neutral and polar) faces. The combined analysis of the simulation data for all surfaces gives a good insight of the adsorption mechanism of argon onto ZnO surfaces at 77K in agreement with experiment. As far as neutral surfaces are concerned, it is shown that adsorption first takes place within the 'troughs' which cover ZnO neutral surfaces. At low chemical potentials, these semi-channels are preferential adsorption sites in which we could detect a nearly one-dimensional adsorbate freezing in a commensurate phase at 77K. The polar O faces are the most favourable surfaces for adsorption at higher chemical potentials.

  20. Adsorption of ethanol on V2O5 (010) surface for gas-sensing applications: Ab initio investigation

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Cui, Mengyang; Ye, Zhenhua

    2016-01-01

    Highlights: • Ethanol adsorbed on V 2 O 5 (010) surface was investigated by ab initio calculations. • Ethanol prefers to adsorb on “Hill”-like surface, rather than“Valley”-like region. • Surface O 1(H) site plays a key role to dominate the ethanol adsorption process. • Sensing mechanism is related with electronic structure and electron redistribution. • Gas sensitivity is reflected by quantitative electron population analysis. - Abstract: The adsorption of ethanol on V 2 O 5 (010) surface was investigated by means of density functional theory (DFT) with a combined generalized gradient approximation (GGA) plus Hubbard U approach to exploit the potential sensing applications. The adsorption configurations were first constructed by considering different orientations of ethanol molecule to V and O sites on the “Hill”- and “Valley”-like regions of corrugated (010) surface. It is found that ethanol molecule can adsorb on whole surface in multiple stable configurations. Nevertheless the molecular adsorption on the “Hill”-like surface is calculated to occur preferentially, and the single coordinated oxygen on “Hill”-like surface (O 1(H) ) acting as the most energetically favorable adsorption site shows the strongest adsorption ability to ethanol molecule. Surface adsorption of ethanol tunes the electronic structure of V 2 O 5 and cause an n-doping effect. As a consequence, the Fermi levels shift toward the conductive bond increasing the charge carrier concentration of electrons in adsorbed V 2 O 5 . The sensitive electronic structure and the multiple stable configurations to ethanol adsorption highlight the high adsorption activity and then the potential of V 2 O 5 (010) surface applied to high sensitive sensor for ethanol vapor detection. Further Mulliken population and Natural bond orbital (NBO) calculations quantify the electron transfer from the adsorbed ethanol to the surface, and correlates the adsorption ability of surface sites

  1. K4Nb6O17·4.5H2O: A novel dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III)

    International Nuclear Information System (INIS)

    Ma, Yuli; Liu, Xiaoqing; Li, Yang; Su, Yiguo; Chai, Zhanli; Wang, Xiaojing

    2014-01-01

    Graphical abstract: A well crystalline K 4 Nb 6 O 17 ·4.5H 2 O with a wide layer spacing possesses an excellent disposal performance for chromium species of Cr(VI) and Cr(III) as well as the superior recyclability due to its high stability and convenient regeneration process. - Highlights: • A nano-sheet K 4 Nb 6 O 17 ·4.5H 2 O with a large layer spacing was synthesized. • K 4 Nb 6 O 17 ·4.5H 2 O showed a superior photoreduction of Cr(VI) in an acidic solution. • The sample showed a high adsorption capacity of Cr(III) in a near neutral solution. • K 4 Nb 6 O 17 ·4.5H 2 O regenerated conveniently by immersing in a KOH solution. • A complete removal of chromium species was retained after recycling five times. - Abstract: A series of orthorhombic phase K 4 Nb 6 O 17 ·4.5H 2 O was synthesized via a hydrothermal approach. When presented in an acidic pH range, K 4 Nb 6 O 17 ·4.5H 2 O showed a strong ability in quick reduction from Cr(VI) to Cr(III). The resulted Cr(III) ions were removed by an effective adsorption through simply adjusting the solution pH from strong acidity to near neutrality, owing to the sample's unique nano-sheet structure with a wide layer spacing. The Cr(III) ions adsorbed onto samples were released again for reusing by eluting with 1 mol L −1 HCl solution, and K 4 Nb 6 O 17 ·4.5H 2 O regenerated by immersing in a KOH solution. The reduction efficiency of Cr(VI) was still up to 98% after irradiation for 60 min, and the removal efficiency of Cr(III) ions was as high as 83% even after five cycles. Therefore, K 4 Nb 6 O 17 ·4.5H 2 O is clearly demonstrated to be an excellent dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III). The relevant materials reported herein might be found various environment-related applications

  2. Syntactic and Story Structure Complexity in the Narratives of High- and Low-Language Ability Children with Autism Spectrum Disorder

    Science.gov (United States)

    Peristeri, Eleni; Andreou, Maria; Tsimpli, Ianthi M.

    2017-01-01

    Although language impairment is commonly associated with the autism spectrum disorder (ASD), the Diagnostic Statistical Manual no longer includes language impairment as a necessary component of an ASD diagnosis (American Psychiatric Association, 2013). However, children with ASD and no comorbid intellectual disability struggle with some aspects of language whose precise nature is still outstanding. Narratives have been extensively used as a tool to examine lexical and syntactic abilities, as well as pragmatic skills in children with ASD. This study contributes to this literature by investigating the narrative skills of 30 Greek-speaking children with ASD and normal non-verbal IQ, 16 with language skills in the upper end of the normal range (ASD-HL), and 14 in the lower end of the normal range (ASD-LL). The control group consisted of 15 age-matched typically-developing (TD) children. Narrative performance was measured in terms of both microstructural and macrostructural properties. Microstructural properties included lexical and syntactic measures of complexity such as subordinate vs. coordinate clauses and types of subordinate clauses. Macrostructure was measured in terms of the diversity in the use of internal state terms (ISTs) and story structure complexity, i.e., children's ability to produce important units of information that involve the setting, characters, events, and outcomes of the story, as well as the characters' thoughts and feelings. The findings demonstrate that high language ability and syntactic complexity pattern together in ASD children's narrative performance and that language ability compensates for autistic children's pragmatic deficit associated with the production of Theory of Mind-related ISTs. Nevertheless, both groups of children with ASD (high and low language ability) scored lower than the TD controls in the production of Theory of Mind-unrelated ISTs, modifier clauses and story structure complexity. PMID:29209258

  3. Syntactic and Story Structure Complexity in the Narratives of High- and Low-Language Ability Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Peristeri, Eleni; Andreou, Maria; Tsimpli, Ianthi M

    2017-01-01

    Although language impairment is commonly associated with the autism spectrum disorder (ASD), the Diagnostic Statistical Manual no longer includes language impairment as a necessary component of an ASD diagnosis (American Psychiatric Association, 2013). However, children with ASD and no comorbid intellectual disability struggle with some aspects of language whose precise nature is still outstanding. Narratives have been extensively used as a tool to examine lexical and syntactic abilities, as well as pragmatic skills in children with ASD. This study contributes to this literature by investigating the narrative skills of 30 Greek-speaking children with ASD and normal non-verbal IQ, 16 with language skills in the upper end of the normal range (ASD-HL), and 14 in the lower end of the normal range (ASD-LL). The control group consisted of 15 age-matched typically-developing (TD) children. Narrative performance was measured in terms of both microstructural and macrostructural properties. Microstructural properties included lexical and syntactic measures of complexity such as subordinate vs. coordinate clauses and types of subordinate clauses. Macrostructure was measured in terms of the diversity in the use of internal state terms (ISTs) and story structure complexity, i.e., children's ability to produce important units of information that involve the setting, characters, events, and outcomes of the story, as well as the characters' thoughts and feelings. The findings demonstrate that high language ability and syntactic complexity pattern together in ASD children's narrative performance and that language ability compensates for autistic children's pragmatic deficit associated with the production of Theory of Mind-related ISTs. Nevertheless, both groups of children with ASD (high and low language ability) scored lower than the TD controls in the production of Theory of Mind-unrelated ISTs, modifier clauses and story structure complexity.

  4. Syntactic and Story Structure Complexity in the Narratives of High- and Low-Language Ability Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Eleni Peristeri

    2017-11-01

    Full Text Available Although language impairment is commonly associated with the autism spectrum disorder (ASD, the Diagnostic Statistical Manual no longer includes language impairment as a necessary component of an ASD diagnosis (American Psychiatric Association, 2013. However, children with ASD and no comorbid intellectual disability struggle with some aspects of language whose precise nature is still outstanding. Narratives have been extensively used as a tool to examine lexical and syntactic abilities, as well as pragmatic skills in children with ASD. This study contributes to this literature by investigating the narrative skills of 30 Greek-speaking children with ASD and normal non-verbal IQ, 16 with language skills in the upper end of the normal range (ASD-HL, and 14 in the lower end of the normal range (ASD-LL. The control group consisted of 15 age-matched typically-developing (TD children. Narrative performance was measured in terms of both microstructural and macrostructural properties. Microstructural properties included lexical and syntactic measures of complexity such as subordinate vs. coordinate clauses and types of subordinate clauses. Macrostructure was measured in terms of the diversity in the use of internal state terms (ISTs and story structure complexity, i.e., children's ability to produce important units of information that involve the setting, characters, events, and outcomes of the story, as well as the characters' thoughts and feelings. The findings demonstrate that high language ability and syntactic complexity pattern together in ASD children's narrative performance and that language ability compensates for autistic children's pragmatic deficit associated with the production of Theory of Mind-related ISTs. Nevertheless, both groups of children with ASD (high and low language ability scored lower than the TD controls in the production of Theory of Mind-unrelated ISTs, modifier clauses and story structure complexity.

  5. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  6. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tan, I.A.W.; Ahmad, A.L. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Hameed, B.H. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)], E-mail: chbassim@eng.usm.my

    2008-06-15

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 {sup o}C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy ({delta}H{sup o}), standard entropy ({delta}S{sup o}) and standard free energy ({delta}G{sup o}) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.

  7. Striped, honeycomb, and twisted moiré patterns in surface adsorption systems with highly degenerate commensurate ground states

    Science.gov (United States)

    Elder, K. R.; Achim, C. V.; Granato, E.; Ying, S. C.; Ala-Nissila, T.

    2017-11-01

    Atomistically thin adsorbate layers on surfaces with a lattice mismatch display complex spatial patterns and ordering due to strain-driven self-organization. In this work, a general formalism to model such ultrathin adsorption layers that properly takes into account the competition between strain and adhesion energy of the layers is presented. The model is based on the amplitude expansion of the two-dimensional phase field crystal (PFC) model, which retains atomistic length scales but allows relaxation of the layers at diffusive time scales. The specific systems considered here include cases where both the film and the adsorption potential can have either honeycomb (H) or triangular (T) symmetry. These systems include the so-called (1 ×1 ) , (√{3 }×√{3 }) R 30∘ , (2 ×2 ) , (√{7 }×√{7 }) R 19 .1∘ , and other higher order states that can contain a multitude of degenerate commensurate ground states. The relevant phase diagrams for many combinations of the H and T systems are mapped out as a function of adhesion strength and misfit strain. The coarsening patterns in some of these systems is also examined. The predictions are in good agreement with existing experimental data for selected strained ultrathin adsorption layers.

  8. The role of picture of process (pp) on senior high school students’ collision concept learning activities and multirepresentation ability

    Science.gov (United States)

    Sutarto; Indrawati; Wicaksono, I.

    2018-04-01

    The objectives of the study are to describe the effect of PP collision concepts to high school students’ learning activities and multirepresentation abilities. This study was a quasi experimental with non- equivalent post-test only control group design. The population of this study were students who will learn the concept of collision in three state Senior High Schools in Indonesia, with a sample of each school 70 students, 35 students as an experimental group and 35 students as a control group. Technique of data collection were observation and test. The data were analized by descriptive and inferensial statistic. Student learning activities were: group discussions, describing vectors of collision events, and formulating problem-related issues of impact. Multirepresentation capabilities were student ability on image representation, verbal, mathematics, and graph. The results showed that the learning activities in the three aspects for the three high school average categorized good. The impact of using PP on students’ ability on image and graph representation were a significant impact, but for verbal and mathematical skills there are differences but not significant.

  9. Predictors of Music Sight-Reading Ability in High School Wind Players

    Science.gov (United States)

    Gromko, Joyce Eastlund

    2004-01-01

    The purpose of this study, grounded in near-transfer theory, was to investigate relationships among music sight-reading and tonal and rhythmic audiation, visual field articulation, spatial orientation and visualization, and achievement in math concepts and reading comprehension. A regression analysis with data from four high schools (N = 98) in…

  10. High-demand jobs: age-related diversity in work ability?

    NARCIS (Netherlands)

    Sluiter, Judith K.

    2006-01-01

    High-demand jobs include 'specific' job demands that are not preventable with state of the art ergonomics knowledge and may overburden the bodily capacities, safety or health of workers. An interesting question is whether the age of the worker is an important factor in explanations of diversity in

  11. A class-A GPCR solubilized under high hydrostatic pressure retains its ligand binding ability

    Science.gov (United States)

    The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The mem...

  12. Evaluation of Protective Ability of High Solid Novolac Clear Coatings Through Electrochemical Techniques

    International Nuclear Information System (INIS)

    Ramesh, D.; Shakkthivel, P.; Manickam, A. Susai; Kalpana, A.; Vasudevan, T.

    2006-01-01

    Solvent free high solid coatings are increasingly used as they posses number of advantages such as, lower cost per unit film thickness, better performance and eco-friendliness. In the present study polymeric film-forming materials such as aniline-novolac (ANS), cresol-novolac (CNS) and acrylic copolymer blended cresol-novolac (ACNS) coating materials have been prepared. The corrosion resistance properties of the prepared high solid coating materials have been evaluated through potential-time, potentiodynamic polarization and electrochemical impedance studies (EIS). Among the three coating systems, cresol-novolac polymer coated substrates offer better corrosion resistance property and the order of the performance was found as CNS > ACNS > ANS. We can recommend these systems for use in automobile applications

  13. Ability of Different Measures of Adiposity to Identify High Metabolic Risk in Adolescents

    Directory of Open Access Journals (Sweden)

    Carla Moreira

    2011-01-01

    Full Text Available Introduction. This study aimed to evaluate the screening performance of different measures of adiposity: body mass index (BMI, waist circumference (WC, and waist-to-height ratio (WHtR for high metabolic risk in a sample of adolescents. Methods. A cross-sectional school-based study was conducted on 517 adolescents aged 15–18, from the Azorean Islands, Portugal. We measured fasting glucose, insulin, total cholesterol (TC, HDL-cholesterol, triglycerides, and systolic blood pressure. HOMA and TC/HDL-C ratio were calculated. For each of these variables, a Z-score was computed by age and sex. A metabolic risk score (MRS was constructed by summing the Z-scores of all individual risk factors. High risk was considered when the individual had ≥1SD of this score. Receiver-operating characteristics (ROC were used. Results. Linear regression analyses showed that, after adjusting for age and pubertal stage, all different measures of adiposity are positively and significantly associated with MRS in both sexes, with exception of WHtR for boys. BMI, WC, and WHtR performed well in detecting high MRS, indicated by areas under the curve (AUC, with slightly greater AUC for BMI than for WC and WHtR in both sexes. Conclusion. All measures of adiposity were significantly associated with metabolic risk factors in a sample of Portuguese adolescents.

  14. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    Science.gov (United States)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  15. Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cortés-Arriagada, Diego, E-mail: dcarriagada@gmail.com; Toro-Labbé, Alejandro

    2016-11-15

    Graphical abstract: Quantum chemistry calculations show the ability of aluminum and iron doped graphene for the removal of methylated arsenicals in their trivalent and pentavalent states, with adsorption energies on the range of 1.5–4.2 eV, and high stability in a water environment. Display Omitted - Highlights: • Al and Fe-doped graphene serve as superior materials for adsorption of methylated arsenicals, including thioarsenicals. • Pentavalent arsenicals are adsorbed with higher adsorption energies (up to 4.2 eV) than trivalent arsenicals (up to 1.7 eV). • The adsorption strength is determined by the weakening of the interacting σAs−O bond in the pollutant. • The adsorption stability was studied in a water environment and molecular dynamics calculations were performed at 300 K. • Trivalent and petavalent forms are mainly adsorbed at neutral pH in their neutral and anionic forms, respectively. - Abstract: The ability of Al and Fe-doped graphene for the adsorption of trivalent and pentavalent methylated arsenic compounds was studied by quantum chemistry computations. The adsorption of trivalent methylarsenicals is reached with adsorption energies of 1.5–1.7 eV at neutral conditions; while, adsorption of pentavalent methylarsenicals reaches adsorption energies of 3.3–4.2 eV and 1.2–2.4 eV from neutral to low pH conditions, respectively. Moreover, the weakening of the interacting σAs−O bond in the pollutant structure played an important role in the stability of the adsorbent–adsorbate systems, determining the adsorption strength. In addition, the pollutant adsorption appears to be efficient in aqueous environments, with even high stability at ambient temperature; in this regard, it was determined that the trivalent and petavalent forms are mainly adsorbed in their neutral and anionic forms at neutral pH, respectively. Therefore, Al and Fe-doped graphene are considered as potential future materials for the removal of methylated arsenic

  16. Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants

    International Nuclear Information System (INIS)

    Cortés-Arriagada, Diego; Toro-Labbé, Alejandro

    2016-01-01

    Graphical abstract: Quantum chemistry calculations show the ability of aluminum and iron doped graphene for the removal of methylated arsenicals in their trivalent and pentavalent states, with adsorption energies on the range of 1.5–4.2 eV, and high stability in a water environment. Display Omitted - Highlights: • Al and Fe-doped graphene serve as superior materials for adsorption of methylated arsenicals, including thioarsenicals. • Pentavalent arsenicals are adsorbed with higher adsorption energies (up to 4.2 eV) than trivalent arsenicals (up to 1.7 eV). • The adsorption strength is determined by the weakening of the interacting σAs−O bond in the pollutant. • The adsorption stability was studied in a water environment and molecular dynamics calculations were performed at 300 K. • Trivalent and petavalent forms are mainly adsorbed at neutral pH in their neutral and anionic forms, respectively. - Abstract: The ability of Al and Fe-doped graphene for the adsorption of trivalent and pentavalent methylated arsenic compounds was studied by quantum chemistry computations. The adsorption of trivalent methylarsenicals is reached with adsorption energies of 1.5–1.7 eV at neutral conditions; while, adsorption of pentavalent methylarsenicals reaches adsorption energies of 3.3–4.2 eV and 1.2–2.4 eV from neutral to low pH conditions, respectively. Moreover, the weakening of the interacting σAs−O bond in the pollutant structure played an important role in the stability of the adsorbent–adsorbate systems, determining the adsorption strength. In addition, the pollutant adsorption appears to be efficient in aqueous environments, with even high stability at ambient temperature; in this regard, it was determined that the trivalent and petavalent forms are mainly adsorbed in their neutral and anionic forms at neutral pH, respectively. Therefore, Al and Fe-doped graphene are considered as potential future materials for the removal of methylated arsenic

  17. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  18. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.

    Science.gov (United States)

    Wu, Hui; Chua, Yong Shen; Krungleviciute, Vaiva; Tyagi, Madhusudan; Chen, Ping; Yildirim, Taner; Zhou, Wei

    2013-07-17

    UiO-66 is a highly important prototypical zirconium metal-organic framework (MOF) compound because of its excellent stabilities not typically found in common porous MOFs. In its perfect crystal structure, each Zr metal center is fully coordinated by 12 organic linkers to form a highly connected framework. Using high-resolution neutron power diffraction technique, we found the first direct structural evidence showing that real UiO-66 material contains significant amount of missing-linker defects, an unusual phenomenon for MOFs. The concentration of the missing-linker defects is surprisingly high, ∼10% in our sample, effectively reducing the framework connection from 12 to ∼11. We show that by varying the concentration of the acetic acid modulator and the synthesis time, the linker vacancies can be tuned systematically, leading to dramatically enhanced porosity. We obtained samples with pore volumes ranging from 0.44 to 1.0 cm(3)/g and Brunauer-Emmett-Teller surface areas ranging from 1000 to 1600 m(2)/g, the largest values of which are ∼150% and ∼60% higher than the theoretical values of defect-free UiO-66 crystal, respectively. The linker vacancies also have profound effects on the gas adsorption behaviors of UiO-66, in particular CO2. Finally, comparing the gas adsorption of hydroxylated and dehydroxylated UiO-66, we found that the former performs systematically better than the latter (particularly for CO2) suggesting the beneficial effect of the -OH groups. This finding is of great importance because hydroxylated UiO-66 is the practically more relevant, non-air-sensitive form of this MOF. The preferred gas adsorption on the metal center was confirmed by neutron diffraction measurements, and the gas binding strength enhancement by the -OH group was further supported by our first-principles calculations.

  19. Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries.

    Science.gov (United States)

    Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan

    2016-02-19

    Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.

  20. Short Circuits or Superconductors? Examining Factors That Encourage or Undermine Group Learning and Collaboration among High-Ability Students. CSE Technical Report.

    Science.gov (United States)

    Webb, Noreen M.; Welner, Mari; Zuniga, Stephen

    This study investigated the effects of group ability composition (homogeneous versus heterogeneous) on group processes and outcomes for high ability students completing science performance assessments. Participants were 99 seventh and eighth graders from 9 classes in 2 schools. The results show that group ability composition does not have…

  1. Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values

    International Nuclear Information System (INIS)

    Li, Huihui; Zhu, Shuqiang; Cheng, Ting; Wang, Shuxia; Zhu, Bin; Liu, Xiaoyan; Zhang, Haixia

    2016-01-01

    Boronate affinity materials have been widely used for selective capture of cis-diols such as nucleosides. Adsorbents with features of low binding pH and high adsorption capacity are highly desired. However, most reported materials only possess one of the two features. We have synthesized a 1,3,5-triazine-containing binary boronic acid by reacting cyanuric chloride with 3-amino phenylboronic acid, and the product was then grafted onto attapulgite (a fibrous aluminum-magnesium silicate). The resulting functionalized attapulgite exhibit low binding pH (5.0) and display high adsorption capacity (19.5 ± 1.1 mg⋅g"−"1 for adenosine). The material exhibits high selectivity for cis-diols even in the presence of a 1000-fold excess of interferences. It was applied to the selective extraction of nucleosides from human urine. Typical features of the method include (a) limits of detection in the range from 4 to 17 ng⋅mL"−"1, (b) limits of quantification between 13 and 57 ng⋅mL"−"1, (c) relative standard deviations of ≤9.1 %, and (d) recoveries of nucleosides from spiked human urine between 85.0 and 112.9 %. In our perception, the material and method offer a promising strategy for selective capture of cis-diols in the areas of proteomics, metabolomics and glycomics. (author)

  2. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process.

    Science.gov (United States)

    Zhou, Guiyin; Liu, Chengbin; Chu, Lin; Tang, Yanhong; Luo, Shenglian

    2016-11-01

    In this study, a new type of double-network hydrogel sorbent was developed to remove heavy metals in wastewater. The amino-functionalized Starch/PAA hydrogel (NH2-Starch/PAA) could be conducted in a wide pH and the adsorption process could rapidly achieve the equilibrium. The adsorption capacity got to 256.4mg/g for Cd(II). Resultantly, even though Cd(II) concentration was as high as 180mg/L, the Cd(II) could be entirely removed using 1g/L sorbent. Furthermore, the desirable mechanical durability of the adsorbent allowed easy separation and reusability. In the fixed-bed column experiments, the treatment volume of the effluent with a high Cd(II) concentration of 200mg/L reached 2400BV (27.1L) after eight times cycle. The NH2-Starch/PAA overcame the deficiency of conventional sorbents that could not effectively treat the wastewater with relatively high metal concentrations. This work provides a new insight into omnidirectional enhancement of sorbents for removing high-concentration heavy metals in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. In Situ Synthesis of γ-AlOOH and Synchronous Adsorption Separation of V(V) from Highly Concentrated Cr(VI) Multiplex Complex solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hailin [National; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District,; Li, Ping [National; Wang, Zheming [Physcial; Zhang, Xin [Physcial; Zheng, Shili [National; Zhang, Yi [National

    2017-07-13

    Boehmite (γ-AlOOH) was synthesized to selectively adsorb V(V) from K2CrO4-KVO3-H2O solutions with highly concentrated Cr(VI) and low concentration V(V). The synthesized γ-AlOOH has a BET surface area of 433.2 m2/g and an average pore size of 3.5 nm. It possesses a maximum adsorption capacity of V(V) of 1.53 mmol/g from K2CrO4-KVO3-H2O solutions. The adsorption of V(V) onto γ-AlOOH follows the Langmuir isotherm model and pseudo-second-order kinetics equation by forming innersphere complexes while the Cr(VI) adsorption forms both inner-sphere and outer-sphere chromate complexes depending on solution pH. The γ-AlOOH was further synthesized in situ by adding HNO3 into the K2CrO4-KAlO2- KVO3-H2O solutions and then used for synchronous adsorption of V(V) and Cr(VI), resulting in increased adsorption capacity of V(V) of 2.88 mmol/g and decreased adsorption capacity of Cr(VI) to 0.073 mmol/g, respectively. In the latter process, adsorption pH values were adjustable, and adsorption reached equilibrium instantaneously, supporting a novel in situ synthesis and adsorption integration strategy with adjustable surface charge of adsorbent and disappearance of diffusion effect.

  4. Preparation of graphene oxide-manganese dioxide for highly efficient adsorption and separation of Th(IV)/U(VI).

    Science.gov (United States)

    Pan, Ning; Li, Long; Ding, Jie; Li, Shengke; Wang, Ruibing; Jin, Yongdong; Wang, Xiangke; Xia, Chuanqin

    2016-05-15

    Manganese dioxide decorated graphene oxide (GOM) was prepared via fixation of crystallographic MnO2 (α, γ) on the surface of graphene oxide (GO) and was explored as an adsorbent material for simultaneous removal of thorium/uranium ions from aqueous solutions. In single component systems (Th(IV) or U(VI)), the α-GOM2 (the weight ratio of GO/α-MnO2 of 2) exhibited higher maximum adsorption capacities toward both Th(IV) (497.5mg/g) and U(VI) (185.2 mg/g) than those of GO. In the binary component system (Th(IV)/U(VI)), the saturated adsorption capacity of Th(IV) (408.8 mg/g)/U(VI) (66.8 mg/g) on α-GOM2 was also higher than those on GO. Based on the analysis of various data, it was proposed that the adsorption process may involve four types of molecular interactions including coordination, electrostatic interaction, cation-pi interaction, and Lewis acid-base interaction between Th(IV)/U(VI) and α-GOM2. Finally, the Th(IV)/U(VI) ions on α-GOM2 can be separated by a two-stage desorption process with Na2CO3/EDTA. Those results displayed that the α-GOM2 may be utilized as an potential adsorbent for removing and separating Th(IV)/U(VI) ions from aqueous solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Development of an installation for the production of high-purity hydrogen using the pressure-swing-adsorption process with coke-oven gas as feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Sugishita, M

    1986-04-01

    This paper describes how Nippon Steel developed a process for producing high-purity hydrogen using the PSA method with coke-oven gas as a feedstock. The process comprises a gas-compression and gas-cooling stage, a pre-treatment stage, an adsorption stage, a de-oxygenation stage and various control and maintenance devices, etc. The triple-tower plant constructed is the equivalent of a four-tower conventional installation, with a maximum capacity of around 10,000 Nm/sup 3//h. 1 tab., 14 figs., 3 refs.

  6. Fostering Creativity in the Classroom for High Ability Students: Context Does Matter

    Directory of Open Access Journals (Sweden)

    Liang See Tan

    2016-11-01

    Full Text Available Researchers have argued for the importance of the classroom context in developing students’ creative potential. However, the emphasis on a performative learning culture in the classroom does not favour creativity. Thus, how creative potential can be realised as one of the educational goals in the classrooms remains a key question. This study measured creativity across three secondary schools using the Wallach-Kogan Creative Thinking Test (WKCT. A total of 283 students enrolled in the Express programme and 290 students enrolled in the Integrated Programme (IP volunteered in the study. The same cohort of students took the 38-item WKCT twice; once at the beginning of Secondary One and then at the end of Secondary Three. Four aspects of creativity, namely fluency, flexibility, unusualness, and uniqueness, were investigated. Our analyses showed that (i IP students showed a greater increase in scores over time when compared to Express students; (ii when Programme and PSLE (Primary School Leaving Examination were used to predict creativity scores in a multiple regression, the predictive power of Programme increased from Secondary 1 to Secondary 3 while that of PSLE decreased; and (iii flexibility scores were more resistant to change than fluency scores. These findings suggest that the classroom context matters and that the removal of high-stakes examination can provide room for the development of creative potential.

  7. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach.

    Science.gov (United States)

    Taha, Zahari; Musa, Rabiu Muazu; P P Abdul Majeed, Anwar; Alim, Muhammad Muaz; Abdullah, Mohamad Razali

    2018-02-01

    Support Vector Machine (SVM) has been shown to be an effective learning algorithm for classification and prediction. However, the application of SVM for prediction and classification in specific sport has rarely been used to quantify/discriminate low and high-performance athletes. The present study classified and predicted high and low-potential archers from a set of fitness and motor ability variables trained on different SVMs kernel algorithms. 50 youth archers with the mean age and standard deviation of 17.0 ± 0.6 years drawn from various archery programmes completed a six arrows shooting score test. Standard fitness and ability measurements namely hand grip, vertical jump, standing broad jump, static balance, upper muscle strength and the core muscle strength were also recorded. Hierarchical agglomerative cluster analysis (HACA) was used to cluster the archers based on the performance variables tested. SVM models with linear, quadratic, cubic, fine RBF, medium RBF, as well as the coarse RBF kernel functions, were trained based on the measured performance variables. The HACA clustered the archers into high-potential archers (HPA) and low-potential archers (LPA), respectively. The linear, quadratic, cubic, as well as the medium RBF kernel functions models, demonstrated reasonably excellent classification accuracy of 97.5% and 2.5% error rate for the prediction of the HPA and the LPA. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from a combination of the selected few measured fitness and motor ability performance variables examined which would consequently save cost, time and effort during talent identification programme. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Abstraction Ability in Constructing Relation Within Triangles by The Seventh Grade Students of Junior High School

    Science.gov (United States)

    Annas, Suwardi; Djadir; Mutmainna Hasma, Sitti

    2018-01-01

    on is an activity to organize a mathematical concept that has been previously owned into a new mathematical structure. Activites in abstraction are recognizing, organizing and constructing. Recognizing is a process of identifying a mathematical structure that had existed before. Organizing is a process of using structural knowledge to be assembled into a solution of a problem and constructing is a process of organizing the characteristics of the object into a new structure that does not exist. In abstraction process, the students use attributes to address the object, including routine attribute, nonroutine attributes, and meaningless attributes. This research applied descriptive qualitative research which aimed to describe the abstraction ability of students from high, moderate, and low groups to construct a relation within triangle. In collecting the data, this research used students’ pre-ability math test, abstraction test, and guided interview. The sampling technique in this research was based on the students’ scores in pre-ability math test, which were divided into three groups. Two students from each group were opted as the subjects of this research. Questions of the test are based on the indicators of steps in abstraction activity. Thus, based on the data gained in this research, researcher determined the tendency of attributes used in each abstraction activity. The result of this research revealed that students from high, moderate and low groups were prone to use routine attributes in recognizing triangles. In organizing the characteristics within triangles, high group tended to organize the triangle correctly, while the moderate and low groups tended to organize the triangle incorrectly. In constructing relation within triangles, students in high, moderate and low groups construct it incompletely.

  9. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    initially-adsorbed protein. Interphase protein concentration CI increases as VI decreases, resulting in slow reduction in interfacial energetics. Steady-state is governed by a net partition coefficient P=(/CBCI). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This “adsorption-dehydration” step is the significant free-energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent-surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, protein adsorption monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ → 65°. Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔGadso is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends

  10. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  11. Mesoporous Alumina Microfibers In Situ Transformation from AACH Fibers and the Adsorption Performance

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shi

    2014-01-01

    Full Text Available Well-dispersed mesoporous γ-alumina microfibers with high surface were prepared by thermal decomposition of the ammonium aluminum carbonate hydroxide (AACH precursors. The as-synthesized alumina retained the morphology of its precursor and exhibited memory effect. The structural, morphological, porous, and adsorptive properties of the samples were investigated by XRD, FTIR, TGA-DSC, SEM, TEM, and UV-vis spectroscopy. The prepared γ-alumina microfibers exhibited excellent ability to remove organic pollutants from waste water because of their mesoporous structures. The γ-alumina in situ converted from AACH synthesized without surfactant exhibited adsorption ability for Congo red as good as that synthesized with PEG2000 and better than PEG20000 that provided a facile method without surfactant to synthesize γ-alumina with excellent adsorption performance.

  12. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    International Nuclear Information System (INIS)

    Wang, Junfeng; Lu, Cong; Li, Shiqi

    2016-01-01

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  13. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Lu, Cong; Li, Shiqi, E-mail: sqli@hust.edu.cn

    2016-11-15

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  14. The high tolerance to aluminium in crucian carp (Carassius carassius) is associated with its ability to avoid hypoxia.

    Science.gov (United States)

    Poléo, Antonio B S; Schjolden, Joachim; Sørensen, Jørgen; Nilsson, Göran E

    2017-01-01

    It is well known that aluminium is the principle toxicant killing fish in acidified freshwater systems, and it has been shown that crucian carp (Carassius carassius) can survive exposures to aqueous aluminium levels toxic to most other freshwater fish species. The crucian carp has a remarkable ability to survive anoxic conditions, and the aim of the present study was to reveal if the tolerance to aluminium can be associated with the ability to survive prolonged anoxia. Crucian carps were exposed to either acidic Al-rich water (pH 5.8; 960 μg Al/l), acidic Al-poor water (pH 5.8; 50 μg Al/l) or untreated control water (pH 6.5; 50 μg Al/l). Blood, muscle and gill samples were collected from exposed fish, and closed respirometry was performed to measure critical O2-tension an normoxic O2-consumption. The results show an increased gill surface area in Al-exposed fish, while the critical O2-tension did not change. The normoxic O2-consumption was lower in Al-exposed fish and might be due to a reduced metabolic rate. The results suggest that crucian carp exposed to aluminium do not become hypoxic, since haematocrit, plasma lactate and blood ethanol did not differ from that of control fish after 14 days of exposure. We also observed an initial loss of plasma chloride and sodium, followed by a stabilisation of these ions at a lower level than in control fish. The decrease in plasma ions caused a transient increase in haematocrit and water content in muscle tissue, returning to control levels when the ion concentrations stabilised, suggesting that the water balance was restored. We conclude that the high tolerance to aluminium in crucian carp is associated with its ability to avoid hypoxia as well as an ability to counteract a continuous loss of plasma ions.

  15. CNT-embedded hollow TiO{sub 2} nanofibers with high adsorption and photocatalytic activity under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jin-Young; Lee, Dayoung; Lee, Young-Seak, E-mail: youngslee@cnu.ac.kr

    2015-02-15

    Highlights: • CNT-embedded hollow TiO{sub 2} nanofibers were successfully fabricated via electrospinning, impregnation, and calcination. • The highest degradation ratio achieved using the CNT-embedded hollow TiO{sub 2} nanofibers. • Incorporation of embedded CNTs both increased the adsorption capability and enhanced the photodegradation activity. - Abstract: Hollow TiO{sub 2} nanofibers with embedded carbon nanotubes (CNTs) were prepared for use as photocatalysts through electrospinning, impregnation, and calcination using multiwalled CNTs (MWCNTs) with various ratios of titanium tetraisopropoxide (TTIP), and further characterized by SEM, TGA, BET and XRD. The results demonstrated the successful fabrication of hollow TiO{sub 2} nanofibers with embedded CNTs. The CNT-embedded hollow TiO{sub 2} nanofibers prepared in this study exhibited improved photocatalytic activity compared to plain hollow TiO{sub 2} nanofibers based on the conversion of methylene blue (MB) in aqueous solution under UV irradiation. The highest degradation ratio produced by the CNT-embedded hollow TiO{sub 2} nanofibers was approximately 62% after 70 min, which represented an increase of more than 80% over that of TiO{sub 2}. It was found that the enhanced efficiency of MB removal could be attributed not only to the adsorption capability of the CNTs but also to electron transfer between the CNTs and the TiO{sub 2}.

  16. Analysis of the ability of junior high school students’ performance in science in STEM project-based learning

    Science.gov (United States)

    Suryana, A.; Sinaga, P.; Suwarma, I. R.

    2018-05-01

    The challenges in 21st century demands the high competitiveness. The way of thinking ability, determine how it work ability and choose instrument be part of the skills will need in the 21st century. The competence it can be supported by learning involving the student performance skills. Based on the preliminary studies at one junior high school in Bandung found that the learning involving of performance skill is low.This is supported by data from respondent in received the opportunity to make devise a sketch in of learning especially based on practices or projects, the results are 75 % students said rarely and 18,75 % students said never. In addition seen also how the student activities in project based learning in class the results stated that 68,75 % of students said less, and 6.25 % of students said never. Therefore, we did a result to uncover profile performance on the design process and the performance process of junior high school student performances to the matter optical by using STEM project based learning. From this result. From the research obtained the average score classes in the activities of the design process is as much as 2,49 or dipersentasikan become 62,41 % are in the good category and the average score classes in the process of the performance of activities receive is 3,13 or 78,28 % are in the good category.

  17. Improving Junior High School Students' Spatial Reasoning Ability through Model Eliciting Activities with Cabri 3D

    Science.gov (United States)

    Hartatiana; Darhim; Nurlaelah, Elah

    2018-01-01

    One of students' abilities which can facilitate them to understand geometric concepts is spatial reasoning ability. Spatial reasoning ability can be defined as an ability involving someone's cognitive processing to present and manipulate spatial figures, relationship, and figure formations. This research aims to find out significant difference on…

  18. Adsorption mechanism of magnetically separable Fe_3O_4/graphene oxide hybrids

    International Nuclear Information System (INIS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-01-01

    Graphical abstract: A recyclable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe_3O_4/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe_3O_4/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe_3O_4/GO hybrids. - Abstract: A reclaimable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q_m) of the Fe_3O_4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe_3O_4/GO hybrid. Therefore, the Fe_3O_4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  19. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  20. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  1. Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.

    Science.gov (United States)

    Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan

    2015-10-07

    In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.

  2. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.

  3. Cadmium Adsorption on HDTMA Modified Montmorillionite

    Directory of Open Access Journals (Sweden)

    Mohd. Elmuntasir I. Ahmed

    2009-06-01

    Full Text Available In this paper the possibility of cadmium removal from aqueous solutions by adsorption onto modified montmorillonite clay is investigated. Batch adsorption experiments performed revealed an enhanced removal of cadmium using HDTMA modified montmorillonite to 100% of its exchange capacity. Modified montmorillonite adsorption capacity increases at higher pHs suggesting adsorption occurs as a result of surface precipitation and HDTMA complex formation due to the fact that the original negatively charged montmorillonite is now covered by a cationic layer of HDTMA. Adsorption isotherms generated followed a Langmuir isotherm equation possibly indicating a monolayer coverage. Adsorption capacities of up to 49 mg/g and removals greater than 90% were achieved. Anionic selectivity of the HDTMA modified monmorillonite is particularly advantageous in water treatment applications where high concentrations of less adsorbable species are present, and the lack of organoclay affinity for these species may allow the available capacity to be utilized selectively by the targeted species.

  4. Study of a new solar adsorption refrigerator powered by a parabolic trough collector

    International Nuclear Information System (INIS)

    El Fadar, A.; Mimet, A.; Azzabakh, A.; Perez-Garcia, M.; Castaing, J.

    2009-01-01

    This paper presents the study of solar adsorption cooling machine, where the reactor is heated by a parabolic trough collector (PTC) and is coupled with a heat pipe (HP). This reactor contains a porous medium constituted of activated carbon, reacting by adsorption with ammonia. We have developed a model, based on the equilibrium equations of the refrigerant, adsorption isotherms, heat and mass transfer within the adsorbent bed and energy balance in the hybrid system components. From real climatic data, the model computes the performances of the machine. In comparison with other systems powered by flat plate or evacuated tube collectors, the predicted results, have illustrated the ability of the proposed system to achieve a high performance due to high efficiency of PTC, and high flux density of heat pipe

  5. Improving ability mathematic literacy, self-efficacy and reducing mathematical anxiety with learning Treffinger model at senior high school students

    Directory of Open Access Journals (Sweden)

    Hafizh Nizham

    2017-12-01

    Full Text Available This study is a Quasi Experimental study with the design of The Pretest-Post-Test Non-Equivalent Group Design. Population in this research is all student of class X SHS in South Jakarta. Sampling is done by purposive sampling, to obtain an experimental class and control class. In the experimental class, students learn with Treffinger learning model and control, class learning with conventional learning. This study is also to examine the differences of self-efficacy improvement and students literacy skills, and decreased students' mathematical anxiety. Also, this study also examines the relevance of early mathematical abilities (high, medium, low with improving students' math literacy skills. The instrument used in this research is literacy skill test, self-efficacy scale, mathematical anxiety scale, observation sheet, and student interview. Data were analyzed by t-test, one-way ANOVA, and two lines. From the results of the data, it is found that: (1 The improvement of literacy ability of students who are learned with Treffinger model learning is not significantly higher than students who learn with conventional. (2 The self-efficacy of students who learning with the Treffinger model learning  is better than the student that is learning by conventional. (3 The mathematical anxiety of students learning with Treffinger model learning reduces better than students learning with conventional. (4 There is a difference in the improvement of students' mathematical literacy skills learning by learning the Treffinger model and students learning with conventional learning based on early mathematical abilities. (5 Student response to Treffinger model learning is better than students learning with conventional learning. Therefore, learning model Treffinger can be an alternative model of learning to improve students' mathematical literacy skills, and self-efficacy students, and able to reduce mathematical anxiety.

  6. Capability of defective graphene-supported Pd{sub 13} and Ag{sub 13} particles for mercury adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Meeprasert, Jittima; Junkaew, Anchalee; Rungnim, Chompoonut; Kunaseth, Manaschai [National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani 12120 Thailand (Thailand); Kungwan, Nawee [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Promarak, Vinich [School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210 (Thailand); Namuangruk, Supawadee, E-mail: supawadee@nanotec.or.th [National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani 12120 Thailand (Thailand)

    2016-02-28

    Graphical abstract: Defective graphene (DG) supported Ag{sub 13} and Pd{sub 13} nanoparticles acts as sorbents for elementary mercury (Hg{sup 0}) adsorption. Hg is inert to DG surface, but it moderately adsorbs on deposited Ag{sub 13}-DG and strongly adsorbs on deposited Pd{sub 13}-DG. - Highlights: • Pd{sub 13}-DG composite has highest stability. • Pd{sub 13}-DG composite is the most reactive sorbent for Hg{sup 0} adsorption. • Hg{sup 0} adsorption abilities of Pd-DG composites are relatively higher than those of Ag-DG composites. • The d-band center of deposited metal is an adsorption descriptor of composite models. - Abstract: Reactivity of single-vacancy defective graphene (DG) and DG-supported Pd{sub n} and Ag{sub n} (n = 1, 13) for mercury (Hg{sup 0}) adsorption has been studied using density functional theory calculation. The results show that Pd{sub n} binds defective site of DG much stronger than the Ag{sub n}, while metal nanocluster binds DG stronger than single metal atom. Metal clustering affects the adsorption ability of Pd composite while that of Ag is comparatively less. The binding strength of −8.49 eV was found for Pd{sub 13} binding on DG surface, indicating its high stability. Analyses of structure, energy, partial density of states, and d-band center (ε{sub d}) revealed that the adsorbed metal atom or cluster enhances the reactivity of DG toward Hg adsorption. In addition, the Hg adsorption ability of M{sub n}-DG composite is found to be related to the ε{sub d} of the deposited M{sub n}, in which the closer ε{sub d} of M{sub n} to the Fermi level correspond to the higher adsorption strength of Hg on M{sub n}-DG composite. The order of Hg adsorption strength on M{sub n}-DG composite are as follows: Pd{sub 13} (−1.68 eV) >> Ag{sub 13} (−0.67 eV) ∼ Ag{sub 1} (−0.69 eV) > Pd{sub 1} (−0.62 eV). Pd{sub 13}-DG composite is therefore more efficient sorbent for Hg{sup 0} removal in terms of high stability and high adsorption

  7. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    Science.gov (United States)

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. [Construction of a microbial consortium RXS with high degradation ability for cassava residues and studies on its fermentative characteristics].

    Science.gov (United States)

    He, Jiang; Mao, Zhong-Gui; Zhang, Qing-Hua; Zhang, Jian-Hua; Tang, Lei; Zhang, Hong-Jian

    2012-03-01

    A microbial consortium with high effective and stable cellulosic degradation ability was constructed by successive enrichment and incubation in a peptone cellulose medium using cassava residues and filter paper as carbon sources, where the inoculums were sampled from the environment filled with rotten lignocellulosic materials. The degradation ability to different cellulosic materials and change of main parameters during the degradation process of cassava residues by this consortium was investigated in this study. It was found that, this consortium can efficiently degrade filter paper, absorbent cotton, avicael, wheat-straw and cassava residues. During the degradation process of cassava residues, the key hydrolytic enzymes including cellulase, hemicellulase and pectinase showed a maximum enzyme activity of 34.4, 90.5 and 15.8 U on the second or third day, respectively. After 10 days' fermentation, the degradation ratio of cellulose, hemicellulose and lignin of cassava residues was 79.8%, 85.9% and 19.4% respectively, meanwhile the loss ratio of cassava residues reached 61.5%. Otherwise,it was found that the dominant metabolites are acetic acid, butyric acid, caproic acid and glycerol, and the highest hydrolysis ratio is obtained on the second day by monitoring SCOD, total volatile fatty acids and total sugars. The above results revealed that this consortium can effectively hydrolyze cassava residues (the waste produced during the cassava based bioethanol production) and has great potential to be utilized for the pretreatment of cassava residues for biogas fermentation.

  9. Adsorption and collective paramagnetism

    CERN Document Server

    Selwood, Pierce W

    1962-01-01

    Adsorption and Collective Paramagnetism describes a novel method for studying chemisorption. The method is based on the change in the number of unpaired electrons in the adsorbent as chemisorption occurs. The method is applicable to almost all adsorbates, but it is restricted to ferromagnetic adsorbents such as nickel, which may be obtained in the form of very small particles, that is to say, to ferromagnetic adsorbents with a high specific surface. While almost all the data used illustratively have been published elsewhere this is the first complete review of the subject. The book is addresse

  10. Simultaneous determination of trace amounts of metals by high-performance liquid chromatography after preconcentration with adsorption on chlorotrifluoroethylene polymer as their hexamethylenedithiocarbamate complexes

    International Nuclear Information System (INIS)

    Shijo, Yoshio; Yoshida, Hideaki; Uehara, Nobuo; Kitamura, Teruo; Yoshimoto, Eiji.

    1996-01-01

    A method for the simultaneous determination of Bi, Cd, Cu, In, Ni and Pb by high-performance liquid chromatography is presented. These metals are preconcentrated on poly(chlorotrifluoroethylene) resin particles as their hexamethylenedithiocarbamate (HMDC) complexes, and eluted with dimethyl sulfoxide, followed by HPLC separation and determination using an ODS column. The conditions for the adsorption of metal-HMDC complexes, such as the pH, HMDC concentration, amount of the resin particles and elution times with dimethyl sulfoxide, are discussed. The resulting solution is suitable for injection into reversed-phase HPLC. The detection limits for the metals were found to be at sub μgl -1 levels. The application of this principle to the trace analysis of Bi, Cd, Cu, In, Ni and Pb in high-purity aluminum is demonstrated. (author)

  11. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  12. Electrical swing adsorption gas storage and delivery system

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  13. TREATMENT OF LANDFILL LEACHATE BY COUPLING COAGULATION-FLOCCULATION OR OZONATION TO GRANULAR ACTIVATED CARBON ADSORPTION.

    Science.gov (United States)

    Oloibiri, Violet; Ufomba, Innocent; Chys, Michael; Audenaert, Wim; Demeestere, Kristof; Van Hulle, Stijn W H

    2015-01-01

    A major concern for landfilling facilities is the treatment of their leachate. To optimize organic matter removal from this leachate, the combination of two or more techniques is preferred in order to meet stringent effluent standards. In our study, coagulation-flocculation and ozonation are compared as pre- treatment steps for stabilized landfill leachate prior to granular activated carbon (GAC) adsorption. The efficiency of the pre treatment techniques is evaluated using COD and UVA254 measurements. For coagulation- flocculation, different chemicals are compared and optimal dosages are determined. After this, iron (III) chloride is selected for subsequent adsorption studies due to its high percentage of COD and UVA254 removal and good sludge settle-ability. Our finding show that ozonation as a single treatment is effective in reducing COD in landfill leachate by 66% compared to coagulation flocculation (33%). Meanwhile, coagulation performs better in UVA254 reduction than ozonation. Subsequent GAC adsorption of ozonated effluent, coagulated effluent and untreated leachate resulted in 77%, 53% and 8% total COD removal respectively (after 6 bed volumes). The effect of the pre-treatment techniques on GAC adsorption properties is evaluated experimentally and mathematically using Thomas and Yoon-Nelson models. Mathematical modelling of the experimental GAC adsorption data shows that ozonation increases the adsorption capacity and break through time with a factor of 2.5 compared to coagulation-flocculation.

  14. Identifying High Ability Children with DSM-5 Autism Spectrum or Social Communication Disorder: Performance on Autism Diagnostic Instruments.

    Science.gov (United States)

    Foley-Nicpon, Megan; L Fosenburg, Staci; G Wurster, Kristin; Assouline, Susan G

    2017-02-01

    This study was a replication of Mazefsky et al.'s (Journal of Autism and Developmental Disabilities 43:1236-1242, 2013) investigation among a sample of 45 high ability children and adolescents diagnosed with ASD under DSM-IV-TR. Items from the ADOS and ADI-R were mapped onto DSM-5 diagnostic criteria for ASD and SCD to determine whether participants would meet either diagnosis under DSM-5. If the ADOS were administered alone, 62% of individuals diagnosed with ASD would no longer meet criteria under DSM-5; however, when the ADI-R and ADOS scores were combined, 100% of individuals would continue to meet ASD diagnosis. The ADOS was determined to be an insufficient measure for SCD due to the small number of algorithm items measuring SCD diagnostic criteria, suggesting the development of SCD measures is required.

  15. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  16. Development of a new wheat germplasm with high anther culture ability by using a combination of gamma-ray irradiation and anther culture.

    Science.gov (United States)

    Zhao, Linshu; Liu, Luxiang; Wang, Jing; Guo, Huijun; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Xie, Yongdun

    2015-01-01

    Wheat with high anther culture ability would be beneficial for breeding. We aimed to screen a wheat germplasm to with high anther culture ability as well as good agronomic characteristics. The F1 young spikes of winter wheat cross combination Yanfu188/Jimai37 were irradiated with gamma rays at a dose of 1.5 Gy to develop a new germplasm H307 with high anther culture ability. The proportion of green plantlets per 100 anthers (GP/100A) of H307 was 14.50% which was higher than other H2 lines (P green plantlet regeneration ability of H307 remained high in all 3 years. Reciprocal crosses between H307 and Nongda3308 showed no significant differences in their values for calli per 100 anthers (CA/100A), green plantlets per 100 calli (GP/100C) and GP/100A (P > 0.05). Five main wheat varieties used in production, namely Yumai68, Yanzhan4110, Bainongaikang58, Zhoumai18 and Xinmai18, were selected to cross with the new H307. CA/100A, GP/100C and GP/100A were used to assess the anther culture ability of F1 hybrids, demonstrating that the anther culture ability of H307 was heritable. H307 possessed high anther culture ability that was heritable, which would be potential germplasm for improving wheat anther breeding ability. © 2014 Society of Chemical Industry.

  17. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

    Directory of Open Access Journals (Sweden)

    Dominik Schmitt

    2015-04-01

    Full Text Available The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1 was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions.

  18. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption.

    Science.gov (United States)

    Schmitt, Dominik; Regenbrecht, Carolin; Hartmer, Marius; Stecker, Florian; Waldvogel, Siegfried R

    2015-01-01

    The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions.

  19. Adsorption mechanism of radioactive cesium by Prussian blue

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Chan; Kim, Jun Yeong; Huh, Yun Suk [Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon (Korea, Republic of); Roh, Chang Hyun [Radiation Biotechnology and Applied Radioisotope Science, University of Science Technology (UST), Daejeon (Korea, Republic of)

    2015-08-15

    Since the accident at the Fukushima Daiichi power plant, Prussian blue (PB) has attracted increasing attention as a material for use in decontaminating the environment. We have focused the fundamental mechanism of specific Cs{sup +} adsorption into PB in order to develop high-performance PB-based Cs{sup +} adsorbents. The ability of PB to adsorb Cs varies considerably according to its origin such as what synthesis method was used, and under what conditions the PB was prepared. It has been commonly accepted that the exclusive abilities of PB to adsorb hydrated Cs{sup +} ions are caused by regular lattice spaces surrounded by cyanido-bridged metals. Cs{sup +} ions are trapped by simple physical adsorption in the regular lattice spaces of PB. Cs{sup +} ions are exclusively trapped by chemical adsorption via the hydrophilic lattice defect sites with proton-exchange from the coordination water. Prussian blue are believed to hold great promise for the clean-up of {sup 1}3{sup 7C}s contaminated water around nuclear facilities and/or after nuclear accidents.

  20. Acquisition of useful and high ability genes for acidophilic bacteria; Kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Energy Technology Data Exchange (ETDEWEB)

    Senda, T; Inoue, C; Shinbori, Y [Tohoku University, Sendai (Japan)

    1997-02-01

    This effort aims at the development of high-performance bacteria usable in bio-leaching in metal smelting by acquiring genes capable of realizing such. A method is used of choosing some isolated strains exhibiting high-performance traits and acquiring target genes therefrom by use of genetic engineering. Approximately 200 kinds in the aggregate of acidophilic bacteria are currently available for the study, including isolated iron-oxidizing and sulfur-oxidizing bacteria, standard species acquired for the study, and strains previously isolated by the laboratory. The bacteria are tested with respect to their Fe{sup 2+}-oxidizing rates, sulfur-oxidizing capabilities, and strength to withstand inhibiting substances (Ag{sup +}, Cl{sup -}, Mo{sup 6+}, etc.), which results in the nomination of 8 strains. The study planned to follow includes processes involving the extraction of chromosome DNAs from the 8 strains and their refinement, gene cloning by the Southern hybridization method, determination of their base sequences, determination of the difference between the strains in point of gene expression, and investigations of the relations that the results of these processes bear toward the said high-performance traits. Also under way is a study about the infuence-exerting factors revealed during the evaluation of the abilities of acidphlic bacteria. 2 refs., 2 tabs.

  1. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  2. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    Science.gov (United States)

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  3. Hydrogen adsorption in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Senkovska, Irena; Kaskel, Stefan [Department of Inorganic Chemistry, Technical University, Dresden (Germany)

    2008-07-01

    Metal-Organic Frameworks (MOFs) have recently received considerable attention because of their high specific micropore volume and the ability to store gas molecules exceeding the storage capacity of traditional adsorbents. A variety of differences in the MOFs structures makes it difficult to analyze the influence of different factors on hydrogen uptake capabilities in MOFs. We have investigated the influence of the minor structural changes of the MOFs on their hydrogen storage capacity. The influence of the incorporated metal was shown for following isostructural compounds: Cu{sub 3}(BTC){sub 2} (BTC=1,3,5-benzenetricarboxylate) and Mo{sub 3}(BTC){sub 2}; Zn{sub 2}(BDC){sub 2}DABCO and Co{sub 2}(BDC){sub 2}DABCO (BDC=1,4-benzenedicarboxylate, DABCO=1,4-diazabicyclo[2.2.2]octane). Our research interest is directed also towards the discovery of new MOFs, as well as adjusting the pore dimensions of MOFs, using different building blocks, solvent and solvent mixtures, in order to improve gas uptake and adsorption properties. Magnesium-based MOFs were found with the same network topology, very small pore size and selective adsorption behaviour. They show a guest-induced reversible structure transformation due to the flexibility of the Mg{sub 3}-cluster and the organic linkers. This effect could be used for fitting the pore sizes and for the increase of gas sorption capability in Mg contained MOFs after all. The hydrogen adsorption was also studied in several Al-based IRMOFs.

  4. Simultaneous reduction and adsorption for immobilization of uranium from aqueous solution by nano-flake Fe-SC

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingjun, E-mail: kongl_jun@163.com [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Zhu, Yuting; Wang, Min; Li, Zhixuan; Tan, Zhicong; Xu, Ruibin; Tang, Hongmei; Chang, Xiangyang [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China); Xiong, Ya [Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275 (China); Chen, Diyun, E-mail: cdy@gzhu.edu.cn [School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275 (China); Guangdong Provincial Key Laboratory of radioactive contamination control and resources, Guangzhou University, Guangzhou, 510275 (China)

    2016-12-15

    Uranium containing radioactive wastewater is seriously hazardous to the natural environment if it is being discharged directly. Herein, nano-flake like Fe loaded sludge carbon (Fe-SC) is synthesized by carbothermal process from Fe-rich sludge waste and applied in the immobilization of uranium in aqueous. Batch isotherm and kinetic adsorption experiments are adopted to investigate the adsorption behavior of Fe-SC to uranium in aqueous. XPS analyses were conducted to evaluate the immobilized mechanism. It was found that the carbonized temperature played significant role in the characteristics and immobilization ability of the resulted Fe-SC. The Fe-SC-800 carbonized at 800 °C takes more advantageous ability in immobilization of uranium from aqueous than the commercial available AC and powder zero valent iron. The adsorption behavior could be fitted well with the Langmuir isotherm adsorption model and pseudo-second order model. The equilibrium adsorption amount and rate for Fe-SC-800 is high to 148.99 mg g{sup -1} and 0.015 g mg{sup -1} min{sup -1}, respectively. Both reductive precipitation and physical adsorption are the main mechanisms of immobilization of uranium from aqueous by Fe-SC-800.

  5. Learning to Learn: An Analysis of Early Learning Behaviours Demonstrated by Young Deaf/Hard-of-Hearing Children with High/Low Mathematics Ability

    Science.gov (United States)

    Pagliaro, Claudia M.; Kritzer, Karen L.

    2010-01-01

    Using a multiple case-study design, this study compares the early learning behaviours of young deaf/hard-of-hearing (d/hh) children with high/low mathematics ability (as defined by test score on the Test of Early Mathematics Ability-3). Children's simultaneous use of multiple learning behaviours was also examined as were contributing adult…

  6. Formaldehyde Adsorption into Clinoptilolite Zeolite Modified with the Addition of Rich Materials and Desorption Performance Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Amin Kalantarifard

    2016-01-01

    Full Text Available Granite, bentonite, and starch were mixed with clinoptilolite zeolite to produce a modified zeolite. The modified zeolite was tested for its ability to absorb formaldehyde from air. The modified sample formaldehyde adsorption capacity was then compared with those of commercially available clinoptilolite, faujasite (Y, mordenite, and zeolite type A. Studies were focused on the relationships between the physical characteristics of the selected zeolites (crystal structure, surface porosity, pore volume, pore size and their formaldehyde adsorption capacity. The removal of starch at high temperature (1100°C and addition of bentonite during modified clinoptilolite zeolite (M-CLZ preparation generated large pores and a higher pore distribution on the sample surface, which resulted in higher adsorption capacity. The formaldehyde adsorption capacities of M-CLZ, clinoptilolite, faujasite (Y, zeolite type A, and mordenite were determined to be 300.5, 194.5, 123.7, 106.7, and 70 mg per gram of zeolite, respectively. The M-CLZ, clinoptilolite, and faujasite (Y crystals contained both mesoporous and microporous structures, which resulted in greater adsorption, while the zeolite type A crystal showed a layered structure and lower surface porosity, which was less advantageous for formaldehyde adsorption. Furthermore, zeolite regeneration using microwave heating was investigated focusing on formaldehyde removal by desorption from the zeolite samples. XRD, XRF, N2 adsorption/desorption, and FE-SEM experiments were performed to characterize the surface structure and textural properties the zeolites selected in this study.

  7. Evolution of an adenine-copper cluster to a highly porous cuboidal framework: solution-phase ripening and gas-adsorption properties.

    Science.gov (United States)

    Venkatesh, V; Pachfule, Pradip; Banerjee, Rahul; Verma, Sandeep

    2014-09-15

    The synthesis and directed evolution of a tetranuclear copper cluster, supported by 8-mercapto-N9-propyladenine ligand, to a highly porous three-dimensional cubic framework in the solid state is reported. The structure of this porous framework was unambiguously characterized by X-ray crystallography. The framework contains about 62 % solvent-accessible void; the presence of a free exocyclic amino group in the porous framework facilitates reversible adsorption of gas and solvent molecules. Oriented growth of framework in solution was also tracked by force and scanning electron microscopy studies, leading to identification of an intriguing ripening process, over a period of 30 days, which also revealed formation of cuboidal aggregates in solution. The elemental composition of these cuboidal aggregates was ascertained by EDAX analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  9. Potential Theory of Multicomponent Adsorption

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1998-01-01

    We developed a theory of multicomponent adsorption on the basis of the potential concept originally suggested by Polanyi. The mixture is considered as a heterogeneous substance segregated in the external field emitted by the adsorbent. The same standard equation of state, with no additional fitting...... and high degree of predictability of the theory developed....... the potential theory and the spreading pressure concept is established, and problems of the theory consistency are studied. Numerical algorithms are suggested for evaluation of the segregated state of the mixture in the potential field of adsorption forces. Comparison with experimental data shows good agreement...

  10. Adsorption studies on Pt(111)

    International Nuclear Information System (INIS)

    Hopster, H.

    1977-06-01

    The adsorption of O 2 , CO, and C 2 H 2 as well as the CO oxidation on Pt(111) were studied by high-resolution electron spectroscopy. Using a platinum monocrystal sample with a contonuous stage density, the adhesion coefficient for O 2 and the reaction probability for CO were determined as a function of stage density and oxygen cover by measuring the oxygen cover and its time behaviour. The study of vibrations of adsorbed CO showed that CO is bound in linear form on two different adsorption sites. The adsorption of acetylene was studied at 140 K and 300 K. The frequencies of the C-H stretching and flexural vibrations as well as the C-C-H bonding angle were determined. (orig./GSC) [de

  11. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Achinta; Kumar, T.; Ojha, Keka; Mandal, Ajay, E-mail: mandal_ajay@hotmail.com

    2013-11-01

    Adsorption of surfactants onto reservoir rock surface may result in the loss and reduction of their concentrations in surfactant flooding, which may render them less efficient or ineffective in practical applications of enhanced oil recovery (EOR) techniques. Surfactant flooding for EOR received attraction due to its ability to increase the displacement efficiency by lowering the interfacial tension between oil and water and mobilizing the residual oil. This article highlights the adsorption of surfactants onto sand surface with variation of different influencing factors. It has been experimentally found that adsorption of cationic surfactant on sand surface is more and less for anionic surfactant, while non-ionic surfactant shows intermediate behaviour. X-ray diffraction (XRD) study of clean sand particles has been made to determine the main component present in the sand particles. The interaction between sand particles and surfactant has been studied by Fourier Transform Infrared (FTIR) Spectroscopy of the sand particles before and after aging with surfactant. Salinity plays an important role in adsorption of anionic surfactant. Batch experiments were also performed to understand the effects of pH and adsorbent dose on the sorption efficiency. The sand particles exhibited high adsorption efficiency at low pH for anionic and nonionic surfactants. But opposite trend was found for cationic surfactant. Adsorption data were analyzed by fitting with Langmuir, Freundlich, Redlich-Peterson, and Sips isotherm models. Results show that the Langmuir isotherm and pseudo-second order kinetics models suit the equilibrium and kinetics of adsorption on sand surface. Thermodynamics feasibility of the adsorption process was also studied to verify the spontaneity of the process.

  12. Deficits in motor abilities and developmental fractionation of imitation performance in high-functioning autism spectrum disorders.

    Science.gov (United States)

    Biscaldi, Monica; Rauh, Reinhold; Irion, Lisa; Jung, Nikolai H; Mall, Volker; Fleischhaker, Christian; Klein, Christoph

    2014-07-01

    The co-occurrence of motor and imitation disabilities often characterises the spectrum of deficits seen in patients with autism spectrum disorders (ASD). Whether these seemingly separate deficits are inter-related and whether, in particular, motor deficits contribute to the expression of imitation deficits is the topic of the present study and was investigated by comparing these deficits' cross-sectional developmental trajectories. To that end, different components of motor performance assessed in the Zurich Neuromotor Assessment and imitation abilities for facial movements and non-meaningful gestures were tested in 70 subjects (aged 6-29 years), including 36 patients with high-functioning ASD and 34 age-matched typically developed (TD) participants. The results show robust deficits in probands with ASD in timed motor performance and in the quality of movement, which are all independent of age, with one exception. Only diadochokinesis improves moderately with increasing age in ASD probands. Imitation of facial movements and of non-meaningful hand, finger, hand finger gestures not related to social context or tool use is also impaired in ASD subjects, but in contrast to motor performance this deficit overall improves with age. A general imitation factor, extracted from the highly inter-correlated imitation tests, is differentially correlated with components of neuromotor performance in ASD and TD participants. By developmentally fractionating developmentally stable motor deficits from developmentally dynamic imitation deficits, we infer that imitation deficits are primarily cognitive in nature.

  13. Percent voluntary inactivation and peak force predictions with the interpolated twitch technique in individuals with high ability of voluntary activation

    International Nuclear Information System (INIS)

    Herda, Trent J; Walter, Ashley A; Hoge, Katherine M; Stout, Jeffrey R; Costa, Pablo B; Ryan, Eric D; Cramer, Joel T

    2011-01-01

    The purpose of this study was to examine the sensitivity and peak force prediction capability of the interpolated twitch technique (ITT) performed during submaximal and maximal voluntary contractions (MVCs) in subjects with the ability to maximally activate their plantar flexors. Twelve subjects performed two MVCs and nine submaximal contractions with the ITT method to calculate percent voluntary inactivation (%VI). Additionally, two MVCs were performed without the ITT. Polynomial models (linear, quadratic and cubic) were applied to the 10–90% VI and 40–90% VI versus force relationships to predict force. Peak force from the ITT MVC was 6.7% less than peak force from the MVC without the ITT. Fifty-eight percent of the 10–90% VI versus force relationships were best fit with nonlinear models; however, all 40–90% VI versus force relationships were best fit with linear models. Regardless of the polynomial model or the contraction intensities used to predict force, all models underestimated the actual force from 22% to 28%. There was low sensitivity of the ITT method at high contraction intensities and the predicted force from polynomial models significantly underestimated the actual force. Caution is warranted when interpreting the % VI at high contraction intensities and predicted peak force from submaximal contractions

  14. Mathematics Instructional Model Based on Realistic Mathematics Education to Promote Problem Solving Ability at Junior High School Padang

    Directory of Open Access Journals (Sweden)

    Edwin Musdi

    2016-02-01

    Full Text Available This research aims to develop a mathematics instructional model based realistic mathematics education (RME to promote students' problem-solving abilities. The design research used Plomp models, which consists of preliminary phase, development or proto-typing phase and assessment phase.  At this study, only the first two phases conducted. The first phase, a preliminary investigation, carried out with a literature study to examine the theory-based instructional learning RME model, characteristics of learners, learning management descriptions by junior high school mathematics teacher and relevant research. The development phase is done by developing a draft model (an early prototype model that consists of the syntax, the social system, the principle of reaction, support systems, and the impact and effects of instructional support. Early prototype model contain a draft model, lesson plans, worksheets, and assessments. Tesssmer formative evaluation model used to revise the model. In this study only phase of one to one evaluation conducted. In the ppreliminary phase has produced a theory-based learning RME model, a description of the characteristics of learners in grade VIII Junior High School Padang and the description of teacher teaching in the classroom. The result showed that most students were still not be able to solve the non-routine problem. Teachers did not optimally facilitate students to develop problem-solving skills of students. It was recommended that the model can be applied in the classroom.

  15. Adsorptive storage of natural gas

    International Nuclear Information System (INIS)

    Yan, Song; Lang, Liu; Licheng, Ling

    2001-01-01

    The Adsorbed Natural Gas (ANG) storage technology is reviewed. The present status, theoretical limits and operational problems are discussed. Natural gas (NG) has a considerable advantage over conventional fuels both from an environmental point of view and for its natural abundance. However, as well known, it has a two fold disadvantage compared with liquid fuels: it is relatively expensive to transport from the remote areas, and its energy density (heat of combustion/volume) is low. All these will restrict its use. Compressed natural gas (CNG) may be a solution, but high pressures are needed (up to 25 MPa) for use in natural-gas fueled vehicles, and the large cost of the cylinders for storage and the high-pressure facilities necessary limit the practical use of CNG. Alternatively, adsorbed natural gas (ANG) at 3 - 4 MPa offers a very high potential for exploitation in both transport and large-scale applications. At present, research about this technology mainly focuses on: to make adsorbents with high methane adsorption capacity; to make clear the effects of heat of adsorption and the effect of impurities in natural gas on adsorption and desorption capacity. This paper provides an overview of current technology and examines the relations between fundamentals of adsorption and ANG storage. (authors)

  16. 18/20 T high magnetic field scanning tunneling microscope with fully low voltage operability, high current resolution, and large scale searching ability.

    Science.gov (United States)

    Li, Quanfeng; Wang, Qi; Hou, Yubin; Lu, Qingyou

    2012-04-01

    We present a home-built 18/20 T high magnetic field scanning tunneling microscope (STM) featuring fully low voltage (lower than ±15 V) operability in low temperatures, large scale searching ability, and 20 fA high current resolution (measured by using a 100 GOhm dummy resistor to replace the tip-sample junction) with a bandwidth of 3.03 kHz. To accomplish low voltage operation which is important in achieving high precision, low noise, and low interference with the strong magnetic field, the coarse approach is implemented with an inertial slider driven by the lateral bending of a piezoelectric scanner tube (PST) whose inner electrode is axially split into two for enhanced bending per volt. The PST can also drive the same sliding piece to inertial slide in the other bending direction (along the sample surface) of the PST, which realizes the large area searching ability. The STM head is housed in a three segment tubular chamber, which is detachable near the STM head for the convenience of sample and tip changes. Atomic resolution images of a graphite sample taken under 17.6 T and 18.0001 T are presented to show its performance. © 2012 American Institute of Physics

  17. The Relationship between Chinese High School Students' Implicit Theories of Ability in Sports and Perceived Enjoyment in Physical Education

    Science.gov (United States)

    Zhao, Qi; Li, Weidong

    2016-01-01

    According to theory, students' implicit theories of ability can affect their motivation and engagement in physical education (PE). Limited research has been conducted to examine the relationships between implicit theories of ability and motivation and engagement among K-12 students in PE. Our study examined the relationship between implicit…

  18. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    Science.gov (United States)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  19. Molecular simulation of methane adsorption characteristics on coal macromolecule

    Science.gov (United States)

    Yang, Zhiyuan; He, Xiaoxiao; Meng, Zhuoyue; Xue, Wenying

    2018-02-01

    In this paper, the molecular model of anthracite named Wender2 was selected to study the adsorption behaviour of single component CH4 and the competitive adsorption of CH4/CO2, CH4/H2O and CH4/N2. The molecular model of anthracite was established by molecular simulation software (Materials Studio 8.0), and Grand Canonical Monte Carlo (GCMC) simulations were carried out to investigate the single and binary component adsorption. The effects of pressure and temperature on the adsorption position, adsorption energy and adsorption capacity were mainly discussed. The results show that for the single component adsorption, the adsorption capacity of CH4 increases rapidly with the pressure ascending, and then tends to be stable after the first step. The low temperature is favourable for the adsorption of CH4, and the high temperature promotes desorption quantity of CH4 from the coal. Adsorbent molecules are preferentially adsorbed on the edge of coal macromolecules. The order of adsorption capacity of CH4/CO2, CH4/H2O and CH4/N2 in the binary component is H2O>CO2>CH4>N2. The change of pressure has little effect on the adsorption capacity of the adsorbent in the competitive adsorption, but it has a great influence on the adsorption capacity of the adsorbent, and there is a positive correlation between them.

  20. High and low schizotypal female subjects do not differ in spatial memory abilities in a virtual reality task.

    Science.gov (United States)

    García-Montes, José Manuel; Noguera, Carmen; Alvarez, Dolores; Ruiz, Marina; Cimadevilla Redondo, José Manuel

    2014-01-01

    Schizotypy is a psychological construct related to schizophrenia. The exact relationship between both entities is not clear. In recent years, schizophrenia has been associated with hippocampal abnormalities and spatial memory problems. The aim of this study was to determine possible links between high schizotypy (HS) and low schizotypy (LS) and spatial abilities, using virtual reality tasks. We hypothesised that the HS group would exhibit a lower performance in spatial memory tasks than the LS group. Two groups of female students were formed according to their score on the ESQUIZO-Q-A questionnaire. HS and LS subjects were tested on two different tasks: the Boxes Room task, a spatial memory task sensitive to hippocampal alterations and a spatial recognition task. Data showed that both groups mastered both tasks. Groups differed in personality features but not in spatial performance. These results provide valuable information about the schizotypy-schizophrenia connections. Schizotypal subjects are not impaired on spatial cognition and, accordingly, the schizotypy-schizophrenia relationship is not straightforward.

  1. ANALYSIS OF MATHEMATIC REPRESENTATION ABILITY OF JUNIOR HIGH SCHOOL STUDENTS IN THE IMPLEMENTATION OF GUIDED INQUIRY LEARNING

    Directory of Open Access Journals (Sweden)

    Yumiati Yumiati

    2017-09-01

    Full Text Available The objective of this research is to analysing the different on upgrade the student’s math representation that obtained the guided inquiry learning and conventional learning. This research conducted by applying experiment method with nonequivalent control group design at one school. Which becoming research subject are students of Dharma Karya UT Middle School at 8th Grade. 8-2 class selected as control class (19 students and 8-3 class selected as experiment class (20 students. Before and after learning process, two classes given the test of math representation with reliability is 0.70 (high category. The magnitude of the increasing in students’ math representation student group of guided inquiry learning group is 0.41 included as medium category. Meanwhile, the increasing students’ math representation student group of conventional learning is 0.26 included as low category. In conclusion, the hypothesis of the ability of the mathematical representation of students who learning with guided inquiry is better than students with conventional learning is accepted.

  2. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  3. Adsorção de cádmio e chumbo em solos tropicais altamente intemperizados Cadmium and lead adsorption in highly weathered tropical soils

    Directory of Open Access Journals (Sweden)

    Lucília Alves Linhares

    2009-03-01

    Full Text Available O objetivo deste trabalho foi determinar a capacidade de adsorção de cádmio e de chumbo e avaliar a influência das propriedades dos solos sobre os parâmetros de adsorção desses elementos em solos tropicais altamente intemperizados. Foram utilizados quatro Latossolos e um Argissolo. Amostras de 1 g de solo foram agitadas por 16 horas, com soluções de CaCl2 0,01 mol L-1, às quais foram adicionadas 0, 10, 20, 30, 40, 60 e 80 µg mL-1 de cádmio e 0, 10, 20, 40, 60, 80, 100 e 120 µg mL-1 de chumbo na forma de nitrato. As quantidades adsorvidas foram determinadas mediante análise dos elementos no sobrenadante, e os dados foram ajustados às isotermas de Langmuir e de Freundlich. Os resultados experimentais ajustaram-se aos modelos estudados. A adsorção máxima de cádmio variou de 136 a 1.604 µg g-1 e a de chumbo, de 988 a 1.660 µg g-1. As energias de ligação variaram de 0,0036 a 0,0403 µg mL-1 e de 0,0282 a 1,0425 µg mL-1 para cádmio e chumbo, respectivamente. Os atributos dos solos correlacionados à adsorção de cádmio foram o pH e a capacidade de troca de cátions, e à adsorção de chumbo foram o pH e os níveis de óxidos de ferro e de alumínio.The aims of this work were to characterize the adsorption of cadmium and lead and to evaluate the influence of soil properties on adsorption parameters of these elements in highly weathered tropical soils. The experiment was performed in four Oxisols and one Ultisol. Soil samples (1 g were mixed by shaking for 16 hours with 0.01 mol L-1 CaCl2 solutions, to which the following doses were added: 0, 10, 20, 30, 40, 60, and 80 µg mL-1 cadmium, and 0, 10, 20, 40, 60, 80, 100, and 120 µg mL-1 lead in the form of nitrates. The elements in the supernatant were analyzed to determine the adsorbed amounts, and the data were fitted to the isotherms of Langmuir and Freundlich. The experimental results were fitted well to the studied model. Maximum adsorption capacity values were between 136

  4. Adsorption of xenon and krypton on shales

    Science.gov (United States)

    Podosek, F. A.; Bernatowicz, T. J.; Kramer, F. E.

    1981-01-01

    A method that uses a mass spectrometer as a manometer is employed in the measurement of Xe and Kr adsorption parameters on shales and related samples, where gas partial pressures were lower than 10 to the -11th atm, corresponding adsorption coverages are only small fractions of a monolayer, and Henry's Law behavior is expected and observed. Results show heats of adsorption in the 2-7 kcal/mol range, and Henry constants at 0-25 C of 1 cu cm STP/g per atmosphere are extrapolated. Although the adsorption properties obtained are variable by sample, the range obtained suggests that shales may be capable of an equilibrium adsorption with modern air high enough to account for a significant fraction of the atmospheric inventory of Xe, and perhaps even of Kr. This effect will nevertheless not account for the factor-of-25 defficiency of atmospheric Xe, in comparison with the planetary gas patterns observed in meteorites.

  5. Study on optimum conditions for Mo-99 adsorption by magnetite nanoparticles

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko; Damasceno, Marcos O.; Santos, Jacinete L.

    2013-01-01

    Radioisotopes play an important role in the peaceful uses of atomic energy. Technetium-99m is the most used radioisotope for diagnosis imaging in nuclear medicine and it is the decay product of Mo-99. One route to obtaining Mo-99 is in the form of fission product from Uranium targets irradiated in reactor. Uranium targets are dissolved by alkaline or acid process and the obtained solution is submitted to separation and purification steps of Mo-99 from the other fission products. Traditional separation techniques are inadequate for removing large volumes containing low concentrations metals due to the low operating efficiency and high costs processes. Therefore, alternative methods are being investigated as adsorption. Adsorption advantages over other techniques is low waste generation, easy metals recovery and reusability of adsorbents. Inorganic oxides are known for their ability to bind to metal ions in solution. At nanoscale range, this characteristic is highly potentialized. Thus, the use of nanoparticles has attracted attention for metal ions recovery by adsorption. Magnetite, Fe3O4, is an oxide formed by iron ions of valence 2+ and 3+. Due to the superparamagnetic behavior that arises in this material at nanoscale and crystal structure itself which favors surface adsorption, magnetite can be used as an adsorber agent to remove metal ions in solution. In this work, adsorption studies were performed to investigate best conditions for Mo-99 removal in solution. Influence of pH, stirring speed, contact time and initial concentration of Mo were studied. (author)

  6. Phosphoryl functionalized mesoporous silica for uranium adsorption

    International Nuclear Information System (INIS)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun; Hongyu, Gong; Yujun, Zhang

    2017-01-01

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N_2 adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG"0, ΔH"0 and ΔS"0) confirmed that the adsorption process was endothermic and spontaneous.

  7. Phosphoryl functionalized mesoporous silica for uranium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guo; Yurun, Feng; Li, Ma; Dezhi, Gao; Jie, Jing; Jincheng, Yu; Haibin, Sun [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Hongyu, Gong, E-mail: gong_hongyu@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Yujun, Zhang, E-mail: yujunzhangcn@163.com [Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials of Ministry of Education, Shandong University, Jinan 250061 (China); Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2017-04-30

    Highlights: • Phosphoryl functionalized mesoporous silica (TBP-SBA-15) is synthesized. • The amino and phosphoryl groups are successfully grafted on SBA-15. • TBP-SBA-15 has high and rapid uranium adsorption capacity in broad pH range. • The U(VI) adsorption of TBP-SBA-15 is spontaneous and belongs to chemical adsorption. - Abstract: Phosphoryl functionalized mesoporous silica (TBP-SBA-15) was synthesized by modified mesoporous silica with γ-amino propyl triethoxy silane and tributyl phosphate. The obtained samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), thermo-gravimetric/differential thermalanalyzer (TG/DTA), N{sub 2} adsorption–desorption (BET) and Fourier transform infrared spectroscopy (FT-IR) techniques. Results showed that TBP-SBA-15 had large surface areas with ordered channel structure. Moreover, the effects of adsorption time, sorbent dose, solution pH, initial uranium concentration and temperature on the uranium adsorption behaviors were investigated. TBP-SBA-15 showed a high uranium adsorption capacity in a broad range of pH values. The U(VI) adsorption rate of TBP-SBA-15 was fast and nearly achieved completion in 10 min with the sorbent dose of 1 g/L. The U(VI) adsorption of TBP-SBA-15 followed the pseudo-second-order kinetic model and Freundlich isotherm model, indicating that the process was belonged to chemical adsorption. Furthermore, the thermodynamic parameters (ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0}) confirmed that the adsorption process was endothermic and spontaneous.

  8. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    Science.gov (United States)

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst

    International Nuclear Information System (INIS)

    Chen Jiangyao; Li Guiying; He Zhigui; An Taicheng

    2011-01-01

    Highlights: → Adsorptive combined titania-montmorillonite-silica photocatalysts synthesized. → All catalysts had relatively high adsorption capacities of multinary VOCs. → All catalysts preferred to adsorb the VOCs with higher polarity. → CTMS80 can effectively photocatalytically remove VOCs of various components. - Abstract: A series of adsorptive photocatalysts, combined titania-montmorillonite-silica were synthesized. The resultant photocatalysts consisted of more and more spherically agglomerated TiO 2 particles with increasing of TiO 2 content, and anatase was the only crystalline phase with nano-scale TiO 2 particles. With increasing of the cation exchange capacity to TiO 2 molar ratio, specific surface area and pore volume increased very slightly. In a fluidized bed photocatalytic reactor by choosing toluene, ethyl acetate and ethanethiol as model pollutants, all catalysts had relatively high adsorption capacities and preferred to adsorb higher polarity pollutants. Langmuir isotherm model better described equilibrium data compared to Freundlich model. Competitive adsorptions were observed for the mixed pollutants on the catalysts, leading to decrease adsorption capacity for each pollutant. The combined titania-montmorillonite-silica photocatalyst exhibited excellent photocatalytic removal ability to model pollutants of various components. Almost 100% of degradation efficiency was achieved within 120 min for each pollutant with about 500 ppb initial concentration, though the efficiencies of multi-component compounds slightly decreased. All photocatalytic reactions followed the Langmuir-Hinshelwood model. Degradation rate constants of multi-component systems were lower than those for single systems, following the order of toluene < ethyl acetate < ethanethiol, and increased with the increase of adsorption capacities for different pollutants of various components.

  10. Adsorption of metals by immobilized tannins

    Energy Technology Data Exchange (ETDEWEB)

    Santana, J L; Olivares, S; De La Rosa, D; Martinez, F; Vargas, L M [Centro de Estudios Aplicados al Desarrollo Nuclear (CEADEN), La Habana (Cuba)

    1996-05-01

    Simultaneous adsorption of thorium, europium, cerium, and neodymium by immobilized tannic was studied at different ph values. Tannic materials have excellent ability to adsorb selectively thorium at pH 5. The rest of the elements could be isolated in group at pH 7.

  11. Adsorption of metals by immobilized tannins

    International Nuclear Information System (INIS)

    Santana, J.L.; Olivares, S.; De La Rosa, D.; Martinez, F.; Vargas, L.M.

    1996-01-01

    Simultaneous adsorption of thorium, europium, cerium, and neodymium by immobilized tannic was studied at different ph values. Tannic materials have excellent ability to adsorb selectively thorium at pH 5. The rest of the elements could be isolated in group at pH 7

  12. Adsorption. What else?

    OpenAIRE

    Rodrigues, Alirio E.

    2012-01-01

    [EN] Chemical Engineering today combines Molecular and Materials Engineerig and Process and Product Engineering (ChE=M2P2). Cyclic adsorptive processes (Simulated Moving Bed –SMB and Pressure Swing Adsorption-PSA) will be discussed for “old” and “new” applications making use of “old” and “new” (MOFs) adsorbent materials. After revisiting my memory as PhD student and the First Brazilian Adsorption meeting I will review the basic concepts involved in adsorption processes and then...

  13. Increased Internet use and poorer ability to manage emotions in youth at high-risk for psychosis

    Directory of Open Access Journals (Sweden)

    Andrea Pelletier-Baldelli

    2015-12-01

    Full Text Available The relationship between Internet use and social behavior remains unknown. However, research indicates that Internet use (IU may have some causal role in certain types of psychopathology and overall functioning. In contrast, other work suggests that IU may be protective and buffer against social isolation. Poorer emotional processing (EP is characteristic of schizophrenia, and these deficits are present prior to illness onset (the ultra high-risk period (UHR. UHR adolescents/young adults also fall within an age demographic characterized by extensive IU, which suggests that evaluating a link between IU and social behavior in this population may be especially informative. The present study examined the relationship between IU and emotional processing in 98 adolescents/young adults (52 UHR youth and 46 controls. UHR youth exhibited greater problematic IU (β = −6.49, F(1,95 = 8.79, p = 0.002 and social withdrawal/problems resulting from this use (β = −3.23, F(1,95 = 11.43, p < 0.001, as well deficits in emotional processing in comparison to healthy peers (β = 4.59, F(1,94 = 5.52, p = 0.011. Furthermore, the social problems resulting from IU were significantly related to the ability to process emotional information in the UHR group (β = −0.51, t(1,48 = −2.10, p = 0.021. UHR youth showed evidence of problematic IU relative to controls, and the social problems resulting from IU related to poorer EP. Findings replicate extant research involving other psychosis risk populations, while adding information regarding how social processes may relate to IU.

  14. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    Science.gov (United States)

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  15. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-01-01

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane

  16. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  17. Adsorption of cationic surfactants on silica surface: 1. Adsorption isotherms and surface charge

    NARCIS (Netherlands)

    Goloub, T.P.; Koopal, L.K.; Sidorova, M.P.

    2004-01-01

    Adsorption isotherms of cationic surfactant, dodecylpyridinium chloride, on an Aerosil OX50 and isotherms of surface charge against the background of 0.001- and 0.1-M KCl solutions at pH 7 and 9 were measured and analyzed. Different forms of adsorption isotherms of surfactants at low and high

  18. Induction Based Training leads to Highly Significant Improvements of Objective and Subjective Suturing Ability in Junior Doctors

    Directory of Open Access Journals (Sweden)

    Kevin Garry

    2018-03-01

    Full Text Available Background: Simulation based training has shown to be of benefit in the education of medical students. However, the impact of induction based clinical simulation on surgical ability of qualified doctors remains unclear.The aim of this study was to establish if a 60 minute teaching session integrated into an Emergency Medicine speciality induction program produces statistically significant improvements in objective and subjective suturing abilities of junior doctors commencing an Emergency Medicine rotation.Methods: The objective suturing abilities of 16 Foundation Year Two doctors were analysed using a validated OSATs scale prior to a novel teaching intervention. The doctors then undertook an intensive hour long workshop receiving one to one feedback before undergoing repeat OSATs assessment.Subjective ability was measured using a 5 point likert scale and self-assessed competency reporting interrupted suturing before and after the intervention. Photographs of wound closure before and after the intervention were recorded for further blinded assessment of impact of intervention. A survey regarding continued ability was repeated at four months following the intervention. The study took place on 7/12/16 during the Belfast Health and Social Care Trust Emergency Medicine induction in the Royal Victoria Hospital Belfast. The hospital is a regional level 1 trauma centre that has annual departmental attendances in excess of 200,000.All new junior doctors commencing the Emergency Medicine rotation were invited to partake in the study. All 16 agreed. The group consisted of a mixture of undergraduate and postgraduate medicaldoctors who all had 16 months experience working in a variety of medical or surgical jobs previously.Results: Following the teaching intervention objective and subjective abilities in interrupted suturing showed statistically significant improvement (P>0.005. Self-reporting of competency of independently suturingwounds improved from 50

  19. Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis.

    Science.gov (United States)

    Shiba, Tomonori; Mii, Masahiro

    2005-12-01

    Efficient plant regeneration system from cell suspension cultures was established in D. acicularis (2n=90) by monitoring ploidy level and visual selection of the cultures. The ploidy level of the cell cultures closely related to the shoot regeneration ability. The cell lines comprising original ploidy levels (2C+4C cells corresponding to DNA contents of G1 and G2 cells of diploid plant, respectively) showed high regeneration ability, whereas those containing the cells with 8C or higher DNA C-values showed low or no regeneration ability. The highly regenerable cell lines thus selected consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.

  20. Academic scientific-production in Brazil in the area of high abilities/giftedness on the period from 1987 to 2011

    Directory of Open Access Journals (Sweden)

    Miguel Claudio Moriel Chacon

    2014-06-01

    Full Text Available Among students with special educational needs, subjects of special education, are those with high ability/giftedness, a complex phenomenon that requires the participation of education professionals and researchers to foster the potential of development of these students. In this sense, we aimed to identify and analyze thesis and dissertations that they propose to investigate the theme high ability/giftedness, verifying participation of the area of education in these studies. The study was done through a literature review, guided by the following questions: Have the researches on high ability/giftedness been growing in recent years? What is the participation of education area in those researches? What are the issues related to high ability/giftedness addressed in Education? The results show that the institutions present an increasing trend and there is a predominance of education area in this scientific production. However, there is an imbalance between the institutions that aim to investigate the theme in Brazilian regions, as well as among the cases covered by these researches on high ability/giftedness.

  1. Hydrogen adsorption on bimetallic PdAu(111) surface alloys

    DEFF Research Database (Denmark)

    Takehiro, Naoki; Liu, Ping; Bergbreiter, Andreas

    2014-01-01

    The adsorption of hydrogen on structurally well defined PdAu-Pd(111) monolayer surface alloys was investigated in a combined experimental and theoretical study, aiming at a quantitative understanding of the adsorption and desorption properties of individual PdAu nanostructures. Combining...... the structural information obtained by high resolution scanning tunneling microscopy (STM), in particular on the abundance of specific adsorption ensembles at different Pd surface concentrations, with information on the adsorption properties derived from temperature programmed desorption (TPD) spectroscopy...... and high resolution electron energy loss spectroscopy (HREELS) provides conclusions on the minimum ensemble size for dissociative adsorption of hydrogen and on the adsorption energies on different sites active for adsorption. Density functional theory (DFT) based calculations give detailed insight...

  2. Expectancy-Value Models for the STEM Persistence Plans of Ninth-Grade, High-Ability Students: A Comparison between Black, Hispanic, and White Students

    Science.gov (United States)

    Andersen, Lori; Ward, Thomas J.

    2014-01-01

    Group differences in the effects of the expectancies and values that high-ability students have for science and mathematics on plans to persist in science, technology, engineering, and mathematics (STEM) were investigated. A nationally representative sample of ninth-grade students, the High School Longitudinal Study of 2009 (HSLS: 2009; n =…

  3. A Simple Adsorption Experiment

    Science.gov (United States)

    Guirado, Gonzalo; Ayllon, Jose A.

    2011-01-01

    The study of adsorption phenomenon is one of the most relevant and traditional physical chemistry experiments performed by chemistry undergraduate students in laboratory courses. In this article, we describe an easy, inexpensive, and straightforward way to experimentally determine adsorption isotherms using pieces of filter paper as the adsorbent…

  4. Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon

    Science.gov (United States)

    Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R.

    2014-03-01

    In this research, the adsorption rate of safranine O (SO) onto tin sulfide nanoparticle loaded on activated carbon (SnS-NPAC) was accelerated by the ultrasound. SnS-NP-AC was characterized by different techniques such as SEM, XRD and UV-Vis measurements. The present results confirm that the ultrasound assisted adsorption method has remarkable ability to improve the adsorption efficiency. The influence of parameters such as the sonication time, adsorbent dosage, pH and initial SO concentration was examined and evaluated by central composite design (CCD) combined with response surface methodology (RSM) and desirability function (DF). Conducting adsorption experiments at optimal conditions set as 4 min of sonication time, 0.024 g of adsorbent, pH 7 and 18 mg L-1 SO make admit to achieve high removal percentage (98%) and high adsorption capacity (50.25 mg g-1). A good agreement between experimental and predicted data in this study was observed. The experimental equilibrium data fitting to Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich models show that the Langmuir model is a good and suitable model for evaluation and the actual behavior of adsorption. Kinetic evaluation of experimental data showed that the adsorption processes followed well pseudo-second-order and intraparticle diffusion models.

  5. Radioactive nuclide adsorption

    International Nuclear Information System (INIS)

    Fukushima, Kimichika.

    1982-01-01

    Purpose: To improve the efficiency of a radioactive nuclide adsorption device by applying a nickel plating on a nickel plate to render the surface active. Constitution: A capturing device for radioactive nuclide such as manganese 54, cobalt 60, 58 and the like is disposed to the inside of a pipeway provided on the upper portion of fuel assemblies through which liquid sodium as the coolant for LMFBR type reactor is passed. The device comprises a cylindrical adsorption body and spacers. The adsorption body is made of nickel and applied with a nickel plating on the surface thereof. The surface of the adsorption body is unevened to result in disturbance in the coolant and thereby improve the adsorptive efficiency. (Kawakami, Y.)

  6. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  7. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  8. The Relationship between Self-Esteem and Academic Achievement in High Ability Students: Evidence from the Wollongong Youth Study

    Science.gov (United States)

    Vialle, Wilma; Heaven, Patrick C. L.; Ciarrochi, Joseph

    2015-01-01

    The relationship between self-esteem and academic achievement is one that is regarded by many educators as a well-established fact. This belief has been often invoked in order to argue against the provision of ability grouping for gifted students. Refuting that commonly-held belief, this research examined the relationship between self-esteem and…

  9. Biotechnologies as a Context for Enhancing Junior High-School Students' Ability to Ask Meaningful Questions about Abstract Biological Processes.

    Science.gov (United States)

    Olsher, G.; Dreyfus, A.

    1999-01-01

    Suggests a new approach to teaching about biochemical cellular processes by stimulating student interest in those biochemical processes that allowed for the outcomes of modern biotechnologies. Discusses the development of students' ability to ask meaningful questions about intra-cellular processes, and the resulting meaningful learning of relevant…

  10. The Influence of Friendships and Friendship-Making Ability in Physical Activity Participation in Chiang Mai, Thailand High School Students

    Science.gov (United States)

    Page, Randy M.; Taylor, Jerry; Suwanteerangkul, Jiraporn; Novilla, Lelinneth M.

    2005-01-01

    Unfortunately, the influence of friendships is a neglected area of investigation in studies of youth physical activity. This study investigated the degree to which three friendship variables (ability to make friends, level of involvement with friends, perceived friends' involvement in exercise/physical activity) was associated with physical…

  11. The "Life at the Poles" Study Unit: Developing Junior High School Students' Ability to Recognize the Relations between Earth Systems

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Orpaz, Idit

    2010-01-01

    Understanding of Earth's systems, including the crucial role of human beings within them, is an important part of citizens' ability to think intelligently and critically about the environment, pollution, sustainability and other socio-economic and scientific issues central to life in the modern world. Part of this understanding involves seeing the…

  12. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya

    Science.gov (United States)

    Aurah, Catherine Muhonja

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.

  13. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption

    DEFF Research Database (Denmark)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei

    2017-01-01

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn2O3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced...

  14. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    Science.gov (United States)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  15. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions

    International Nuclear Information System (INIS)

    Demirbas, E.; Kobya, M.; Konukman, A.E.S.

    2008-01-01

    In this study, the preparation of activated carbon from almond shell with H 2 SO 4 activation and its ability to remove toxic hexavalent chromium from aqueous solutions are reported. The influences of several operating parameters such as pH, particle size and temperature on the adsorption capacity were investigated. Adsorption of Cr(VI) is found to be highly pH, particle size and temperature dependent. Four adsorption isotherm models namely, Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich were used to analyze the equilibrium data. The Langmuir isotherm provided the best correlation for Cr(VI) onto the almond shell activated carbon (ASC). Adsorption capacity was calculated from the Langmuir isotherm as 190.3 mg/g at 323 K. Thermodynamic parameters were evaluated and the adsorption was endothermic showing monolayer adsorption of Cr(VI). Five error functions were used to treat the equilibrium data using non-linear optimization techniques for evaluating the fit of the isotherm equations. The highest correlation for the isotherm equations in this system was obtained for the Freundlich isotherm. ASC is found to be inexpensive and effective adsorbent for removal of Cr(VI) from aqueous solutions

  16. Chemical Adsorption and Physical Confinement of Polysulfides with the Janus-faced Interlayer for High-performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Chiochan, Poramane; Kaewruang, Siriroong; Phattharasupakun, Nutthaphon; Wutthiprom, Juthaporn; Maihom, Thana; Limtrakul, Jumras; Nagarkar, Sanjog; Horike, Satoshi; Sawangphruk, Montree

    2017-12-18

    We design the Janus-like interlayer with two different functional faces for suppressing the shuttle of soluble lithium polysulfides (LPSs) in lithium-sulfur batteries (LSBs). At the front face, the conductive functionalized carbon fiber paper (f-CFP) having oxygen-containing groups i.e., -OH and -COOH on its surface was placed face to face with the sulfur cathode serving as the first barrier accommodating the volume expansion during cycling process and the oxygen-containing groups can also adsorb the soluble LPSs via lithium bonds. At the back face, a crystalline coordination network of [Zn(H 2 PO 4 ) 2 (TzH) 2 ] n (ZnPTz) was coated on the back side of f-CFP serving as the second barrier retarding the left LPSs passing through the front face via both physical confinement and chemical adsorption (i.e. Li bonding). The LSB using the Janus-like interlayer exhibits a high reversible discharge capacity of 1,416 mAh g -1 at 0.1C with a low capacity fading of 0.05% per cycle, 92% capacity retention after 200 cycles and ca. 100% coulombic efficiency. The fully charged LSB cell can practically supply electricity to a spinning motor with a nominal voltage of 3.0 V for 28 min demonstrating many potential applications.

  17. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    Science.gov (United States)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  18. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    Energy Technology Data Exchange (ETDEWEB)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX (United Kingdom); Millange, Franck [Institut Lavoisier Versailles (CNRS UMR 8180), Université de Versailles, 78035 Versailles (France); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, CV4 7AL, Coventry (United Kingdom)

    2013-12-12

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  19. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    International Nuclear Information System (INIS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F.; Millange, Franck; Walton, Richard I.

    2013-01-01

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host

  20. FY1995 acquisition of useful and high ability genes for acidophilic bacteria; 1995 nendo kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this project is to obtain and to study useful and high ability genes which can use for gene engineering of acidophilic bacteria. 130 isolates of acidophilic bacteria (major species are iron-oxidizing bacteria) were isolated from various environment. 10 isolates of iron-oxidizing bacteria were selected in the point of high ferrous iron oxidizing ability and heavy metal tolerance. Mercury ion resistance genes of iron-oxidizing bacteria were identified and cloned in E.coli. Sequencing analysis and functional identification of gene products were performed. These genes are thought to be useful for selection marker of gen engineering of acidophilic bacteria. (NEDO)

  1. Hydrogen Adsorption on Nanoporous Biocarbon

    Science.gov (United States)

    Wood, M. B.; Burress, J. W.; Lapilli, C. M.; Pfeifer, P.; Shah, P. S.; Suppes, G. J.; Dillon, A. C.; Parilla, P. A.

    2007-03-01

    As a part of the Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) we study activated carbons made from corncob, optimized for storing methane and hydrogen (H2) by physisorption at low pressure. We report here: (a) storage capacities of 73-91 g H2/kg carbon at 77 K and 47 bar, validated in three different laboratories (the 2010 DOE target is 60 g H2/kg system); (b) binding energies from H2 adsorption isotherms (c) temperature-programmed desorption data; (d) degree of graphitization of the carbon surface from Raman spectra; (e) pore structure of carbon from nitrogen and methane adsorption isotherms, and small-angle x-ray scattering. The structural analysis shows that the carbon is highly microporous and that the pore space is highly correlated (micropores do not scatter independently).

  2. The effectiveness of web-programming module based on scientific approach to train logical thinking ability for students in vocational high school

    Science.gov (United States)

    Nashiroh, Putri Khoirin; Kamdi, Waras; Elmunsyah, Hakkun

    2017-09-01

    Web programming is a basic subject in Computer and Informatics Engineering, a program study in a vocational high school. It requires logical thinking ability in its learning activities. The purposes of this research were (1) to develop a web programming module that implement scientific approach that can improve logical thinking ability for students in vocational high school; and (2) to test the effectiveness of web programming module based on scientific approach to train students' logical thinking ability. The results of this research was a web-programming module that apply scientific approach for learning activities to improve logical thinking ability of students in the vocational high school. The results of the effectiveness test of web-programming module give conclusion that it was very effective to train logical thinking ability and to improve learning result, this conclusion was supported by: (1) the average of posttest result of students exceeds the minimum criterion value, it was 79.91; (2) the average percentage of students' logical thinking score is 82,98; and (3) the average percentage of students' responses to the web programming module was 81.86%.

  3. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  4. Mathematics Instructional Model Based on Realistic Mathematics Education to Promote Problem Solving Ability at Junior High School Padang

    OpenAIRE

    Edwin Musdi

    2016-01-01

    This research aims to develop a mathematics instructional model based realistic mathematics education (RME) to promote students' problem-solving abilities. The design research used Plomp models, which consists of preliminary phase, development or proto-typing phase and assessment phase.  At this study, only the first two phases conducted. The first phase, a preliminary investigation, carried out with a literature study to examine the theory-based instructional learning RME model, characterist...

  5. Study on high temperature desulphurization (Part 2). Hydrogen sulphide adsorption and decomposition in the presence of manganese nodules

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Motoo; Furimsky, E. (National Chemical Lab. for Industry, Tsukuba, (Japan))

    1989-06-29

    Manganese nodule, with its large surface area and inclusion of much Fe and Mn, was found to have a high potentiality as an H{sub 2}S desulphurizing agent. Its desulphurization characteristics and reaction with H{sub 2}S were studied to confirm its potentiality as an H{sub 2}S desulphurizing agent. Improvement of its desulphurizing capacity by adding Ca was also attempted. The first stage of the desulphurization is sulphurizing by the agent. After the complete sulphurization, the adsorbent had catalytic effects on H{sub 2}S decomposition. The amount of H{sub 2}S desulphurization of the manganese nodule did not depend on temperature, but the amount of H{sub 2}S decomposition strongly depended on temperature, with the first and a half order respectively. The addition of 10 wt% of CaO to the manganese nodule improved the amount of desulphurization by 30%. The potentiality of the manganese nodule as a desulphurizing agent was verified, and it is suggested that low cost and high performance desulphurizing agents can be developed by adding low cost compounds which have affinity for H{sub 2}S and large surface areas. 11 refs., 4 figs., 2 tabs.

  6. Adsorption behavior of Am(III) on granite

    International Nuclear Information System (INIS)

    Zhang Yingjie; Feng Xiaogui; Liang Junfu; Chen Jing; Su Rui; Wang Ju; Liu Chunli

    2009-01-01

    The adsorption behavior of Am(III) on granite (sampled from drilling well BS01 at Beishan (BS) area--a potential candidate site for China's high-level radioactive waste repository, the granite sample's depth about 300 m) was studied in BS03 well groundwater by a batch technique at (25±1) degree C. The influences of pH, sulphate ion, total carbonate ion, humic acid, and concentration of the Am(III) on the adsorption behavior were also studied, and the possible adsorption mechanism was discussed. Experimental results show that the adsorption distribution rate of Am(III) on granite increases with increasing pH of aqueous phase. The chemical composition of the groundwater is the main factor which influences the species of Am(III) and adsorption behavior. The adsorption mechanism of Am(III) on granite is surface complexation. The adsorption isotherm of Am(III) on granite can be described by Freundlich's equation. (authors)

  7. Girls underestimate maths ability

    Science.gov (United States)

    2017-05-01

    A study by psychologists in the US has found that high-school girls rate their competence in mathematics lower than boys, even for those with similar abilities (Front. Psychol. 10.3389/fpsyg.2017.00386).

  8. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    Science.gov (United States)

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  9. Supercritical CO2 Assisted Synthesis of EDTA-Fe3O4 Nano composite with High Adsorption Capacity for Hexavalent Chromium

    International Nuclear Information System (INIS)

    Bisht, G.; Neupane, S.; Makaju, R.

    2016-01-01

    Efficiency of EDTA functionalized nanoparticles in adsorption of chromium (Vi) from water was investigated in this study. Magnetic iron oxide nanoparticles (IONPs) were synthesized by a simple chemical coprecipitation route and EDTA coating onto IONPs was attained via supercritical carbon dioxide (Sc CO 2 ), a technology with green sustainable properties. The obtained nanoparticles were then characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and vibrating magnetometric analysis (VSM). The synthesized nanoparticle and its modified variant were evaluated as adsorbent for chromium (Vi) removal from water through batch adsorption technique and the effect of analytic concentration; contact time and adsorbent concentration were studied at ph 2. The results showed higher removal efficiency for modified magnetic iron oxide nanoparticles (MIONPs) (i.e., 99.9%) than their non modified variant IONPs, that is, 34.06% for the same concentration after 18 hours of incubation. Also maximum adsorption capacity (q e = 452.26 mg/g) of MIONPs attained can be related to their preparation in Sc CO 2 asq e calculated from IONPs, that is, 170.33 mg/g, is lower than that of MIONPs. The adsorption data fit well with Freundlich isotherm equation while kinetic adsorption studies of chromium (Vi) were modeled by pseudo-second-order model

  10. Adsorption of carbon dioxide (CO{sub 2}) at S functionalized boron nitride (BN) and aluminum nitride (AlN) nanotubes (9, 0): A quantum chemical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Meysam, E-mail: meysamnajafi2016@yahoo.com

    2016-10-30

    Highlights: • AlN-NT has higher potential to CO{sub 2} adsorption in comparison to BN-NT. • S functionalization of studied nanotubes improve the CO{sub 2} adsorption ability of them. • E{sub ad} is suitable scale to propose the novel toxic gas sensor based on nanostructured. • E{sub ad} and E{sub HLG} of studied nanotubes have linear dependences. - Abstract: We employed density functional theory to characterize CO{sub 2} adsorption on BNNT and AlNNT surfaces. The effects of S functionalization on the adsorption of CO{sub 2} gas on BNNT and AlNNT surfaces were investigated. Results reveal that adsorptions of CO{sub 2} on studied nanotubes were exothermic and experimentally possible from the energetic viewpoint. Results show that, E{sub ad} values of CO{sub 2} on AlNNT surface were more negative than corresponding values of BNNT. Results reveal that, S functionalization of studied nanotubes causes an increase in the absolute values of E{sub ad} of CO{sub 2} on surface of studied nanotubes. These results show that, there are good linearity dependencies between E{sub ad} and orbital energy values of studied nanotubes. Therefore we can conclude the E{sub ad} and orbital energy values are highly sensitive to the adsorption process which these may be used for the selection the suitable nanotubes with enhanced CO{sub 2} adsorption potential.

  11. adsorption, eosin, humic, peat

    OpenAIRE

    anshar, andi muhammad

    2015-01-01

    Eosin is one of the dyes commonly used in the industry and has the potential to cause pollution of the water environment. The Eosin pollution treatment methods used in this study was the adsorption method using humin fraction obtained from the peat land comes from Kalimantan. From the research data showed that the adsorption of eosin in humin result of washing with HCl / HF optimum at pH 4 and a contact time of 60 minutes with the adsorption-order rate was 8,4 x 10-3 min-1

  12. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    Science.gov (United States)

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  13. Selective high capacity adsorption of Congo red, luminescence and antibacterial assessment of two new cadmium(II) coordination polymers

    Science.gov (United States)

    Beheshti, Azizolla; Nozarian, Kimia; Ghamari, Narges; Mayer, Peter; Motamedi, Hossein

    2018-02-01

    Coordination polymers [CdCl(NCS)L]n (1) and {[Cd2I4(L)2]·H2O·DMF}n (2) (where L = 1, 1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione)) were synthesized and structurally characterized. Compounds 1 and 2 both possess a tetrahedral arrangement with CdS2NCl and CdS2I2 cores, respectively. In these structures, the flexible thione ligands adopt a μ- bridging coordination mode to form 1D chains along the b-axis. The 1D chains are join together by C-H--Cl hydrogen bonds (in 1) and water molecules (in 2) to create a 2D supramolecular framework with an ABAB…packing mode. Remarkably, compounds 1 and 2 in particular polymer 1 exhibit excellent capacity to adsorb Congo red (CR) with high selectivity. The experimental data demonstrate that the mechanism of sorption process can be described by the Elovich and pseudo second order kinetic models for 1 and 2, respectively. Furthermore, the possible mechanism of CR absorption was investigated by UV-Vis and solid state fluorescence spectra for the title polymers. In addition, the antibacterial assessment of these compounds have also been studied.

  14. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    Science.gov (United States)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. High-Yield and Sustainable Production of Phosphatidylserine in Purely Aqueous Solutions via Adsorption of Phosphatidylcholine on Triton-X-100-Modified Silica.

    Science.gov (United States)

    Zhang, Xiaoli; Li, Binglin; Wang, Jiao; Li, Huanyu; Zhao, Binxia

    2017-12-13

    Triton X-100 was covalently bound to a surface of silica and acted as an anchor molecule to facilitate the adsorption of phosphatidylcholine (PC) in a purely aqueous solution. The silica-adsorbed PC obtained was successfully used for phospholipase D (PLD)-mediated transphosphatidylation in the production of phosphatidylserine (PS). Organic solvents were completely avoided in the whole production process. The PC loading and PS yield reached 98.9 and 99.0%, respectively. Two adsorption models were studied, and the relevant parameters were calculated to help us understand the adsorption and reaction processes deeply. In addition, the silica-adsorbed PC provides a promising way to continuously biosynthesize PS. A packed-bed reactor was employed to demonstrate the process flow of the continuous production of PS. The recyclability and stability of the Triton-X-100-modified silica were excellent, as demonstrated by its use 30 times during continuous operation without any loss of the productivity.

  16. Adsorption and desorption of pertechnetate on activated carbon

    International Nuclear Information System (INIS)

    Dano, M.; Galambos, M.; Rajec, P.; Viglasova, E.; Krajnak, A.; Novak, I.

    2014-01-01

    High surface area, a microporous structure, and a high degree of surface reactivity make activated carbons versatile adsorbents, particularly effective in the adsorption of radionuclides from aqueous solutions. The most important property of activated carbon, the property that determines its usage, is the pore structure. The total number of pores, their shape and size determine the adsorption capacity and even the dynamic adsorption rate of the activated carbon. This report is dedicated to sorption properties of new activated carbon sorbents. (authors)

  17. Student Centered Homogeneous Ability Grouping: Using Bronfenbrenner's Theory of Human Development to Investigate the Ecological Factors Contributing to the Academic Achievement of High School Students in Mathematics

    Science.gov (United States)

    Webb, Karla Denise

    2011-01-01

    The purpose of this qualitative study was to explore the interconnectedness of the environment, human development, and the factors that influence students' academic performance in a homogeneous ability grouped mathematics classroom. The study consisted of four African American urban high school juniors, 2 male and 2 female. During the 12 week…

  18. Two Decades of Funded Research Goals and Achievements on Inquiry by the High Ability and Inquiry Research Group (HAIR) at McGill University

    Science.gov (United States)

    Gube, Maren; Shore, Bruce M.

    2018-01-01

    From the 1990s until 2017 the High Ability and Inquiry Research Group (HAIR) at McGill University in Montreal, received C$1.3M in research funds from Canadian, Quebec, and US agencies to support its research and graduate training in education and educational psychology. Their research encompassed two principal areas, Inquiry in Education and…

  19. Wastewater remediation by TiO2-impregnated chitosan nano-grafts exhibited dual functionality: High adsorptivity and solar-assisted self-cleaning.

    Science.gov (United States)

    Essawy, Amr A; Sayyah, S M; El-Nggar, A M

    2017-08-01

    This work provides a very infrequent and unique avenue of a novel bio-based nanografted polymeric composites achieving encouraging results in green management of dye contaminants in wastewater. A chitosan-grafted-polyN-Methylaniline (Ch-g-PNMANI) and chitosan-grafted-polyN-Methylaniline imprinted TiO 2 nanocomposites (Ch-g-PNMANI/TiO 2 ) were prepared and efficiently applied in wastewater remediation. The nanocomposites were characterized by FT-IR spectroscopy, X-ray diffraction, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and Brunauer-Emmett-Teller surface area (BET) measurements. The prepared composites exhibit higher adsorptivity in removing remazol red RB-133 (RR RB-133) dye compared to other adsorbents reported in literature. The effects of TiO 2 loadings, initial dye concentration, contact time, and pH on dye adsorption were investigated. The maximum adsorption of dye was found at low pH values. Furthermore, Ch-g-PNMANI/TiO 2 of the optimum TiO 2 loading has higher adsorption capacity (116.3mg/g) than the pristine Ch-g-PNMANI (108.7mg/g). Moreover, the prepared adsorbents are photoactive under sunlight-irradiation. The study addresses a nanocomposite of considerable adsorption and in the same time has the fastest self-cleaning photoactivity (t 1/2 =31.5min.) under sunlight irradiation where a plausible photodegradation mechanism was proposed. Interestingly, the presented photoactive adsorbents are still effective in removing dye after five adsorption/sunlight-assisted self-cleaning photoregeneration cycles and therefore, they can be potentially applied to the rapid, "green" and low-cost remediation of RR RB-133 enriched industrial printing and dyeing wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    Science.gov (United States)

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. First-principles investigation of methanethiol adsorption and dissociation mechanisms on the high-Miller-index vicinal surface Cu(4 1 0)

    International Nuclear Information System (INIS)

    Raouafi, Faycal; Lassoued, Karima; Seydou, Mahamadou; Taleb, Abdelhafed; Diawara, Boubakar

    2016-01-01

    In this work, we present detailed investigations of methanethiol adsorption on a Cu(4 1 0) surface within the framework of the self-consistent first-principles calculations as implemented in the Vienna ab initio simulation package (VASP). In particular, the adsorption sites, the surface coverage rate and electronic properties have been determined and compared to experimental values. The results indicate that the favorable adsorption site in the case of low coverage rate is a bridge on the step followed by the hollow site on the terrace. The adsorption significantly affects the outermost layer of the surface mainly for a higher coverage rate in a (2  ×  2) supercell. The nature of the chemisorption process on the surface is analyzed by means of the density of states which, combined with charge density difference and atomic charge calculations, confirms the ionic character of the S–Cu bond. The specific effect of the presence of steps is highlighted by comparing the adsorption on the (1 0 0) terrace to the adsorption on the extended Cu(1 0 0) surface. Compared to the flat Cu(1 0 0), it is found here that while the stability is almost the same at p(2  ×  2) coverage, the CH 3 S/Cu(4 1 0) becomes more stable than CH 3 S/Cu(1 0 0) at c(2  ×  2) coverage with 0.30 eV per molecule. The mechanism of methanethiol dissociation is explored by the nudged elastic band method and demonstrates that the most favorable path is dissociation followed by migration of hydrogen from the step to its most stable position (hollow on the terrace) with energy barriers less than 0.5 eV. (paper)

  2. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  3. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    Science.gov (United States)

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  4. Bilirubin adsorption on nanocrystalline titania films

    International Nuclear Information System (INIS)

    Yang Zhengpeng; Si Shihui; Fung Yingsing

    2007-01-01

    Bilirubin produced from hemoglobin metabolism and normally conjugated with albumin is a kind of lipophilic endotoxin, and can cause various diseases when its concentration is high. Bilirubin adsorption on the nanocrystalline TiO 2 films was investigated using quartz crystal microbalance, UV-vis and IR techniques, and factors affecting its adsorption such as pH, bilirubin concentration, solution ionic strength, temperature and thickness of TiO 2 films were discussed. The amount of adsorption and parameters for the adsorption kinetics were estimated from the frequency measurements of quartz crystal microbalance. A fresh surface of the nanocrystalline TiO 2 films could be photochemically regenerated because holes and hydroxyl radicals were generated by irradiating the nanocrystalline TiO 2 films with UV light, which could oxidize and decompose organic materials, and the nanocrystalline TiO 2 films can be easily regenerated when it is used as adsorbent for the removal of bilirubin

  5. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Co adsorption in kaolinite

    International Nuclear Information System (INIS)

    Souza, Eliel S.; Silva, Paulo S.C.

    2017-01-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  8. Co adsorption in kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Eliel S.; Silva, Paulo S.C., E-mail: eliel201019@hotmail.com, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Adsorption of metal ions in clay minerals has been used as an alternative to water and effluents treatment. Kaolinite is a clay mineral that presents low specific surface area and exchange ion capacity. Nevertheless, structural modifications can be achieved by means of acid or thermal activation. In this paper, it was studied the surface area of kaolinite/bentonite, kaolinite/activated carbon mixtures, thermal activated kaolinite and thermal activated kaolinite/activated carbon mixture. The mixture of kaolinite/activated carbon was tested for pH, contact time, interfering ions and initial concentration effects in the cobalt adsorption. Results showed that the optimized parameters are pH 6 and contact time of 30 min. Chromium acted as a competitive ion, zinc does not appear to have affected adsorption while iron seems to have favored it. Langmuir and Freundlich isotherms indicated that the adsorption of Co in the mixture of kaolinite/activated carbon is a spontaneous process. (author)

  9. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  10. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...... structure to the next. We propose a model to explain this behavior, and use it to discuss more generally the origin of structure sensitivity in heterogeneous catalysis....

  11. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixin; Men, Jiying; Gao, Baojiao [School of Chemical Engineering and Environment, North University of China, Taiyuan (China)

    2012-03-15

    In this paper, a novel composite material the silica grafted by poly(N-vinyl imidazole) (PVI), i.e., PVI/SiO{sub 2}, was prepared using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia through the ''grafting from'' method. The adsorption behavior of metal ions by PVI/SiO{sub 2} was researched by both static and dynamic methods. Experimental results showed that PVI/SiO{sub 2} possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO{sub 2} exhibited different adsorption abilities with the following order of adsorption capacity: Cu{sup 2+}> Cd{sup 2+}> Zn{sup 2+}. The adsorption material PVI/SiO{sub 2} was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO{sub 2} particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Modelling phosphate adsorption to the soil: Application of the non-ideal competitive adsorption model

    International Nuclear Information System (INIS)

    Abou Nohra, Joumana S.; Madramootoo, Chandra A.; Hendershot, William H.

    2007-01-01

    Phosphorus (P) transport in subsurface runoff has increased despite the limited mobility of P in soils. This study investigated the ability of the non-ideal competitive adsorption (NICA) model to describe phosphate (PO 4 ) adsorption for soils in southern Quebec (Canada). We measured the surface charge and PO 4 adsorption capacity for 11 agricultural soils. Using the experimental data and a nonlinear fitting function, we derived the NICA model parameters. We found that the NICA model described accurately the surface charge of these soils with a mean R 2 > 0.99, and described the adsorption data with a mean R 2 = 0.96. We also found that the variable surface charge was distributed over the two binding sites with the low pH sites demonstrating a stronger binding energy for hydroxyl and PO 4 ions. We established that the NICA model is able to describe P adsorption for the soils considered in this study. - The NICA model accurately described the adsorption of phosphate to some southern Quebec soils

  13. Enhancement of problem solving ability of high school students through learning with real engagement in active problem solving (REAPS) model on the concept of heat transfer

    Science.gov (United States)

    Yulindar, A.; Setiawan, A.; Liliawati, W.

    2018-05-01

    This study aims to influence the enhancement of problem solving ability before and after learning using Real Engagement in Active Problem Solving (REAPS) model on the concept of heat transfer. The research method used is quantitative method with 35 high school students in Pontianak as sample. The result of problem solving ability of students is obtained through the test in the form of 3 description questions. The instrument has tested the validity by the expert judgment and field testing that obtained the validity value of 0.84. Based on data analysis, the value of N-Gain is 0.43 and the enhancement of students’ problem solving ability is in medium category. This was caused of students who are less accurate in calculating the results of answers and they also have limited time in doing the questions given.

  14. High-Ability Grouping: Benefits for Gifted Students' Achievement Development Without Costs in Academic Self-Concept.

    Science.gov (United States)

    Preckel, Franzis; Schmidt, Isabelle; Stumpf, Eva; Motschenbacher, Monika; Vogl, Katharina; Scherrer, Vsevolod; Schneider, Wolfgang

    2017-11-23

    Effects of full-time ability grouping on students' academic self-concept (ASC) and mathematics achievement were investigated in the first 3 years of secondary school (four waves of measurement; students' average age at first wave: 10.5 years). Students were primarily from middle and upper class families living in southern Germany. The study sample comprised 148 (60% male) students from 14 gifted classes and 148 (57% male) students from 25 regular classes (matched by propensity score matching). Data analyses involved multilevel and latent growth curve analyses. Findings revealed no evidence for contrast effects of class-average achievement or assimilation effects of class type on students' ASC. ASC remained stable over time. Students in gifted classes showed higher achievement gains than students in regular classes. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  15. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  16. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  17. Polyethylene imine-grafted ACF@BiOI{sub 0.5}Cl{sub 0.5} as a recyclable photocatalyst for high-efficient dye removal by adsorption-combined degradation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyan [Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou, Jiangsu 215123 (China); Li, Najun, E-mail: linajun@suda.edu.cn [Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou, Jiangsu 215123 (China); State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou, Jiangsu 215123 (China); Chen, Dongyun; Xu, Qingfeng [Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou, Jiangsu 215123 (China); State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou, Jiangsu 215123 (China); Lu, Jianmei, E-mail: lujm@suda.edu.cn [Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry, Chemical Engineering and Materials Science, Suzhou University, Suzhou, Jiangsu 215123 (China); State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou, Jiangsu 215123 (China)

    2017-05-01

    Highlights: • A recyclable photocatalyst was facilely fabricated by immobilization and grafting. • Contribution from each component in the composite towards enhanced performance. • High removal efficiency was achieved under adsorption-combined degradation. • The composite photocatalyst can be easily separated from water for direct reuse. - Abstract: A recyclable photocatalyst with adsorption property was prepared for high-efficient complete removal of anionic dyes from water by synergetic adsorption and photocatalytic degradation. Firstly, binary bismuth oxyhalide composed as BiOI{sub 0.5}Cl{sub 0.5} was immobilized on activated carbon fibers (ACF) to get a recyclable photocatalyst (ACF@BiOI{sub 0.5}Cl{sub 0.5}) via one-step solvothermal method. Then it was modified with branched polyethylene imine (PEI) whose abundant amino groups can adsorb contaminants from water by electrostatic interaction. SEM images showed that the nanosheets-based flower-like photocatalytic microspheres uniformly distributed on the ACF surface after grafting of small amount of PEI. But from TGA results we can deduce that the percentage of PEI grafted onto ACF@BiOI{sub 0.5}Cl{sub 0.5} is about 18 wt%. During the synergistic process, the grafted PEI and immobilized BiOI{sub 0.5}Cl{sub 0.5} are worked as the adsorbent and the photocatalyst, respectively. In addition, ACF, as flexible, conductive and corrosion-resistant supports, are beneficial to the photocatalytic degradation process. So the obtained composite PEI-g-ACF@BiOI{sub 0.5}Cl{sub 0.5} has a high removal efficiency of contaminants under visible light irradiation with the synergistic effect of adsorption and photocatalytic degradation. And after facial separation without centrifuge, it can be reused without regeneration because of the real-time complete degradation of the adsorbed contaminants on the surface of the composite photocatalyst.

  18. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Li, Y.H. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Li, D.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Y.Z. [Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-01-15

    As one kind of environmentally friendly refrigeration, the adsorption refrigeration has attracted many attentions in resent decades. This paper introduces the researches of adsorption refrigeration systems with the commonly used working pairs, advanced adsorption cycles, heat and mass transfer enhancement and attempts of adsorption refrigeration applications. Poor heat and mass transfer problem is a bottleneck to prevent the improvements of the adsorption refrigeration technique. Two ways to enhance the heat and mass transfer are discussed in this paper. The adsorption deterioration of adsorbent, another obstacle to physical adsorption refrigeration applications, is also pointed out. And the possible reasons and the possible methods are analyzed. (author)

  19. Adsorption properties of thermally sputtered calcein film

    Science.gov (United States)

    Kruglenko, I.; Burlachenko, J.; Kravchenko, S.; Savchenko, A.; Slabkovska, M.; Shirshov, Yu.

    2014-05-01

    High humidity environments are often found in such areas as biotechnology, food chemistry, plant physiology etc. The controlling of parameters of such ambiences is vitally important. Thermally deposited calcein films have extremely high adsorptivity at exposure to water vapor of high concentration. This feature makes calcein a promising material for humidity sensing applications. The aim of this work is to explain high sensitivity and selectivity of calcein film to high humidity. Quartz crystal microbalance sensor, AFM and ellipsometry were used for calcein film characterization and adsorption properties investigation. The proposed model takes into account both the molecular properties of calcein (the presence of several functional groups capable of forming hydrogen bonds, and their arrangement) and the features of structure of thermally deposited calcein film (film restructuring due to the switching of bonds "calcein-calcein" to "calcein-water" in the course of water adsorption).

  20. Adsorption mechanism of magnetically separable Fe{sub 3}O{sub 4}/graphene oxide hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ke [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Zhu, Chuanhe [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Zhao, Ya; Wang, Leichao [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Xie, Shan, E-mail: wyuchemxs@126.com [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Qun, E-mail: qunwang@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States)

    2015-11-15

    Graphical abstract: A recyclable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe{sub 3}O{sub 4}/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe{sub 3}O{sub 4}/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe{sub 3}O{sub 4}/GO hybrids. - Abstract: A reclaimable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q{sub m}) of the Fe{sub 3}O{sub 4}/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe{sub 3}O{sub 4}/GO hybrid. Therefore, the Fe{sub 3}O{sub 4}/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  1. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    highest Qst is observed for the CMS sample having micropores sizes of about 5 Angstroms. The SWNT sample shows a lower Qst due to its relatively wide PSD, and the non-porous carbon black is characterized by the lowest Qst values. The Qst values calculated from H 2 adsorption isotherms measured at cryogenic temperatures below 1 atmosphere can be used to predict/estimate H 2 adsorption at ambient temperatures under high pressures. Fig 3 shows the H 2 adsorption isotherm on the SWNT sample calculated for 298 K from the low pressure and low temperature (77, 87 K) data using the Clausius-Clapeyron equation and assuming the temperature independence of the Qst values. A good agreement with high-pressure experimental data is observed. Predictions using DFT model will also be discussed during presentation. (authors)

  2. Core-shelled mesoporous CoFe2O4-SiO2 material with good adsorption and high-temperature magnetic recycling capabilities

    Science.gov (United States)

    Li, Zhi'ang; Wang, Jianlin; Liu, Min; Chen, Tong; Chen, Jifang; Ge, Wen; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2018-04-01

    Residues of organic dye in industrial effluents cause severe water system pollution. Although several methods, such as biodegradation and activated carbon adsorption, are available for treating these effluents before their discharge into waterbodies, secondary pollution by adsorbents and degrading products remains an issue. Therefore, new materials should be identified to solve this problem. In this work, CoFe2O4-SiO2 core-shell structures were synthesized using an improved Stöber method by coating mesoporous silica onto CoFe2O4 nanoparticles. The specific surface areas of the synthesized particles range from 30 m2/g to 150 m2/g and vary according to the dosage amount of tetraethoxysilane. Such core-shelled nanoparticles have the following advantages for treating industrial effluents mixed with dye: good adsorption capability, above-room-temperature magnetic recycling capability, and heat-enduring stability. Through adsorption of methylene blue, a typical dyeing material, the core-shell-structured particles show a good adsorption capability of approximately 33 mg/L. The particles are easily and completely collected by magnets, which is possible due to the magnetic property of core CoFe2O4. Heat treatment can burn out the adsorbed dyes and good adsorption performance is sustained even after several heat-treating loops. This property overcomes the common problem of particles with Fe3O4 as a core, by which Fe3O4 is oxidized to nonmagnetic α-Fe2O3 at the burning temperature. We also designed a miniature of effluent-treating pipeline, which demonstrates the potential of the application.

  3. Effects of brief mindful breathing and loving-kindness meditation on shame and social problem solving abilities among individuals with high borderline personality traits.

    Science.gov (United States)

    Keng, Shian-Ling; Tan, Jun Xian

    2017-10-01

    Borderline personality disorder (BPD) is a severe mental condition characterized by a range of cognitive and behavioral vulnerabilities, including chronic shame and deficits in social problem solving (SPS) abilities. Little research however, has examined strategies that may alleviate shame and SPS deficits among individuals with BPD traits. Using a laboratory experimental approach, the present study compared the effects of a brief mindfulness versus loving-kindness meditation (LKM) induction on shame and SPS abilities in a sample of adults with high BPD traits. Eighty-eight participants underwent a shame induction procedure involving recall of a negative autobiographical memory. They were then randomly assigned to 10 min of mindful breathing or LKM, or a no-instruction condition. Shame and SPS abilities were assessed via visual analogue scales and the Means-Ends Problem Solving task respectively. Results indicated that there were significant decreases in shame from pre-to post-regulation in the mindfulness group versus the LKM and no-instruction groups. Groups did not differ on changes in SPS abilities from pre-to post-regulation. Overall, the findings support the efficacy of mindfulness as a strategy to regulate shame among individuals with BPD traits, and raises questions with regard to the utility of LKM in modulating shame in the context of high emotional arousal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High heat generation ability in AC magnetic field for nano-sized magnetic Y3Fe5O12 powder prepared by bead milling

    International Nuclear Information System (INIS)

    Aono, Hiromichi; Ebara, Hiroki; Senba, Ryota; Naohara, Takashi; Maehara, Tsunehiro; Hirazawa, Hideyuki; Watanabe, Yuji

    2012-01-01

    Nano-sized magnetic Y 3 Fe 5 O 12 ferrite having a high heat generation ability in an AC magnetic field was prepared by bead milling. A commercial powder sample (non-milled sample) of ca. 2.9 μm in particle size did not show any temperature enhancement in the AC magnetic field. The heat generation ability in the AC magnetic field improved with a decrease in the average crystallite size for the bead-milled Y 3 Fe 5 O 12 ferrites. The highest heat ability in the AC magnetic field was for the fine Y 3 Fe 5 O 12 powder with a 15-nm crystallite size (the samples were milled for 4 h using 0.1 mmφ beads). The heat generation ability of the excessively milled Y 3 Fe 5 O 12 samples decreased. The main reason for the high heat generation property of the milled samples was ascribed to an increase in the Néel relaxation of the superparamagnetic material. The heat generation ability was not influenced by the concentration of the ferrite powder. For the samples milled for 4 h using 0.1 mmφ beads, the heat generation ability (W g −1 ) was estimated using a 3.58×10 −4 fH 2 frequency (f/kHz) and the magnetic field (H/kA m −1 ), which is the highest reported value of superparamagnetic materials. - Highlights: ► The nano-sized Y 3 Fe 5 O 12 powder prepared by bead-milling has the highest heat generation ability in an AC magnetic field. ► The heat generation properties are ascribed to an increase in the Néel relaxation of the superparamagnetic material. ► The heat ability (W g −1 ) can be estimated using 3.58×10 −4 fH 2 (f=kHz, H=kA m −1 ). ► This is an expectable material for use in a drug delivery system for the thermal coagulation therapy of cancer tumors.

  5. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  6. Relating the ability of mallards to ingest high levels of sediment to potential contaminant exposure in waterfowl

    Science.gov (United States)

    Heinz, Gary H.; Beyer, W. Nelson; Hoffman, David J.; Audet, Daniel J.

    2010-01-01

    When waterfowl feed from the bottom of bodies of water, they sometimes ingest sediments along with their food, and this sediment can be a major source of contaminants. Learning how much sediment waterfowl can consume in their diet and still maintain their health would be helpful in assessing potential threats from contaminants in sediment. In a controlled laboratory study the maximum tolerated percentage of sediment in the diet of mallards (Anas platyrhynchos) was measured. When fed a well-balanced commercial avian diet, 50, 60, or 70% sediment in the diet on a dry-weight basis did not cause weight loss over a two-week period. Ducks fed this same commercial diet, but containing 80 or 90% sediment, lost 8.6 and 15.6% of their body weight, respectively, in the first week on those diets. After factoring in the ability of the mallards to sieve out some of the sediment from their diet before swallowing it, we concluded that the mallards could maintain their health even when approximately half of what they swallowed, on a dry-weight basis, was sediment.

  7. Lithium Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons

    OpenAIRE

    Krepel, Dana; Hod, Oded

    2013-01-01

    The anchoring of benzene molecules on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects of adsorbate densities, specific adsorption locations, and spin states on the structural stability and electronic properties of the underlying graphene derivatives are revealed. At sufficiently high densities, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half-metallic due to charge transfer from th...

  8. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Po-Hsiang [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Geosciences, University of Wisconsin – Parkside, 900 Wood Road, Kenosha, WI 53144 (United States); Kuo, Chung-Yih [Department of Public Health, College of Health Care and Management, Chung Shan Medical University, No. 110, Sec. 1, Chien-kuo N Road, Taichung 40242, Taiwan (China); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chen, Wan-Ru [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Lv, Guocheng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-07-30

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d{sub 0} {sub 0} {sub 1} spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater.

  9. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    International Nuclear Information System (INIS)

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-01-01

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d 0 0 1 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater

  10. [Treatment of organic waste gas by adsorption rotor].

    Science.gov (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De

    2013-12-01

    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  11. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  12. White-rot fungus Ganoderma sp.En3 had a strong ability to decolorize and tolerate the anthraquinone, indigo and triphenylmethane dye with high concentrations.

    Science.gov (United States)

    Lu, Ruoying; Ma, Li; He, Feng; Yu, Dong; Fan, Ruozhi; Zhang, Yangming; Long, Zheping; Zhang, Xiaoyu; Yang, Yang

    2016-03-01

    The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.

  13. Measuring Creative Imagery Abilities

    Directory of Open Access Journals (Sweden)

    Dorota M. Jankowska

    2015-10-01

    Full Text Available Over the decades, creativity and imagination research developed in parallel, but they surprisingly rarely intersected. This paper introduces a new theoretical model of creative imagination, which bridges creativity and imagination research, as well as presents a new psychometric instrument, called the Test of Creative Imagery Abilities (TCIA, developed to measure creative imagery abilities understood in accordance with this model. Creative imagination is understood as constituted by three interrelated components: vividness (the ability to create images characterized by a high level of complexity and detail, originality (the ability to produce unique imagery, and transformativeness (the ability to control imagery. TCIA enables valid and reliable measurement of these three groups of abilities, yielding the general score of imagery abilities and at the same time making profile analysis possible. We present the results of eight studies on a total sample of more than 1,700 participants, showing the factor structure of TCIA using confirmatory factor analysis, as well as provide data confirming this instrument’s validity and reliability. The availability of TCIA for interested researchers may result in new insights and possibilities of integrating the fields of creativity and imagination science.

  14. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  15. Thermal activation of serpentine for adsorption of cadmium

    International Nuclear Information System (INIS)

    Cao, Chun-Yan; Liang, Cheng-Hua; Yin, Yan; Du, Li-Yu

    2017-01-01

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO_3 and Cd(OH)_2. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd"2"+ in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N_2 adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd"2"+. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO_3 and Cd(OH)_2 precipitation on the surface of serpentine.

  16. Decreased risk of alcohol dependence and/or misuse in women with high self-assertiveness and leadership abilities.

    Science.gov (United States)

    Hensing, G; Spak, F; Thundal, K L; Ostlund, A

    2003-01-01

    To analyse dimensions of gender identity and its association to psychiatric disorders and alcohol consumption. The study was performed in two stages: an initial screening (n = 8335) for alcohol consumption, followed by a structured psychiatric interview (n = 1054). The Masculinity/Femininity-Questionnaire was used as an indicator of gender identity. The final study group included 836 women. Leadership, caring, self-assertiveness and emotionality were dimensions of gender identity found in a factor analysis. Low self-assertiveness, high emotionality and to some extent low leadership were associated with increased odds for having bipolar disorders, severe anxiety disorders and alcohol dependence and misuse. Low self-assertiveness and high emotionality were not only associated with alcohol dependence and misuse, but also with high episodic drinking. There was an association between some of the dimensions of gender identity and psychiatric disorders and alcohol consumption. Further attention is needed in both clinical work and research.

  17. Identification of high school students' ability level of constructing free body diagrams to solve restricted and structured response items in force matter

    Science.gov (United States)

    Rahmaniar, Andinisa; Rusnayati, Heni; Sutiadi, Asep

    2017-05-01

    While solving physics problem particularly in force matter, it is needed to have the ability of constructing free body diagrams which can help students to analyse every force which acts on an object, the length of its vector and the naming of its force. Mix method was used to explain the result without any special treatment to participants. The participants were high school students in first grade totals 35 students. The purpose of this study is to identify students' ability level of constructing free body diagrams in solving restricted and structured response items. Considering of two types of test, every student would be classified into four levels ability of constructing free body diagrams which is every level has different characteristic and some students were interviewed while solving test in order to know how students solve the problem. The result showed students' ability of constructing free body diagrams on restricted response items about 34.86% included in no evidence of level, 24.11% inadequate level, 29.14% needs improvement level and 4.0% adequate level. On structured response items is about 16.59% included no evidence of level, 23.99% inadequate level, 36% needs improvement level, and 13.71% adequate level. Researcher found that students who constructed free body diagrams first and constructed free body diagrams correctly were more successful in solving restricted and structured response items.

  18. Adsorption of zinc(II) on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1992-01-01

    The adsorption of Zn 2+ ions on amorphous Fe(OH 3 ) and α-Fe 2 O 3 , as a function of pH, has been investigated. In the pH region corresponding to the formation of positively charged Zn-hydroxy complexes, an abrupt increase in adsorption was observed. The influence of EDTA and glycine on the adsorption of Zn 2+ by α-Fe 2 O 3 has also been investigated. Strong suppression of the adsorption of Zn 2+ was observed for high [EDTA or Gly]/[Zn 2+ ] concentration ratios. The results of the adsorption of Zn 2+ in the presence of an organic ligand were explained by the formation of Zn-EDTA or Zn-glycine complexes and also by the occupation of adsorption sites by the free organic ligand. (author) 26 refs.; 6 figs

  19. Adsorption of uranyl ions in nanoparticles of magnetite

    International Nuclear Information System (INIS)

    Holland, Helber; Yamaura, Mitiko

    2009-01-01

    This work studied the uranium (VI) adsorption, in the form of UO 2 2+ ions, of the nitride solution by the syntetic magnetite. This solution was prepared by precipitation adding a solution of NaOH to the solution containing the ions Fe 2+ . The time of contact and the isothermal of equilibrium of ions UO 2 2+ adsorption was verified. The isothermal of equilibrium presented more concordance with the Freundlich model, which characterized a heterogeneous adsorption surface of the magnetite. The great advantage of this technology is the combination of two separation techniques, by adsorption and magnetic, resulting in a highly efficient and reusable system

  20. Adsorption of palladium ions by modified carbons from rice husks

    International Nuclear Information System (INIS)

    Mostafa, M.R.

    1994-01-01

    Steam activated carbon of high surface area does not show palladium ions adsorption. Treatment of this carbon with HF acid increases to a great extent the gas adsorption capacity expressed as nitrogen surface area as well as the adsorption capacity of palladium ions from aqueous solution. HHB was loaded in different amounts on to these carbons. The acid sites represent the active fraction of the surface on which the adsorption palladium ions proceed. The uptake of palladium ions by HHB treated carbons is related to the total number of HHB molecules loaded on the carbon surface. (author)

  1. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    Science.gov (United States)

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° 0 and ΔG° < 0 demonstrated that the adsorption process was spontaneous and exothermic for dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye.

  2. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  3. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Amy, Gary; Chunggaze, Mohammed; Al-Ghasham, Tawfiq

    2013-01-01

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  4. Does magnesium compromise the high temperature process ability of novel biodegradable and bioresorbables PLLA/Mg composites?

    International Nuclear Information System (INIS)

    Cifuentes, S. C.; Benavemente, R.; Gonzalez-Carrasco, J. L.

    2014-01-01

    This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate. (Author)

  5. Does magnesium compromise the high temperature process ability of novel biodegradable and bioresorbables PLLA/Mg composites?

    Energy Technology Data Exchange (ETDEWEB)

    Cifuentes, S. C.; Benavemente, R.; Gonzalez-Carrasco, J. L.

    2014-10-01

    This paper addresses the influence of magnesium on melting behaviour and thermal stability of novel bioresorbable PLLA/Mg composites as a way to investigate their processability by conventional techniques, which likely will require a melt process at high temperature to mould the material by using a compression, extrusion or injection stage. For this purpose, and to avoid any high temperature step before analysis, films of PLLA loaded with magnesium particles of different sizes and volume fraction were prepared by solvent casting. DSC, modulated DSC and thermogravimetry analysis demonstrate that although thermal stability of PLLA is reduced, the temperature window for processing the PLLA/Mg composites by conventional thermoplastic routes is wide enough. Moreover, magnesium particles do not alter the crystallization behaviour of the polymer from the melt, which allows further annealing treatments to optimize the crystallinity in terms of the required combination of mechanical properties and degradation rate. (Author)

  6. Tracing genomic variations in two highly virulent Yersinia enterocolitica strains with unequal ability to compete for host colonization

    OpenAIRE

    Garzetti, Debora; Bouabe, Hicham; Heesemann, Juergen; Rakin, Alexander

    2012-01-01

    Abstract Background Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness pro...

  7. The plateau zokors' learning and memory ability is related to the high expression levels of foxP2 in the brain.

    Science.gov (United States)

    Ma, Ben-Yuan; Wei, Lian; Sun, Sheng-Zhen; Wang, Duo-Wei; Wei, Deng-Bang

    2014-04-25

    Plateau zokor (Myospalax baileyi) is a subterranean mammal. Plateau zokor has high learning and memory ability, and can determine the location of blocking obstacles in their tunnels. Forkhead box p2 (FOXP2) is a transcription factor implicated in the neural control of orofacial coordination and sensory-motor integration, particularly with respect to learning, memory and vocalization. To explore the association of foxP2 with the high learning and memory ability of plateau zokor, the cDNA of foxP2 of plateau zokor was sequenced; by using plateau pika as control, the expression levels of foxP2 mRNA and FOXP2 protein in brain of plateau zokor were determined by real-time PCR and Western blot, respectively; and the location of FOXP2 protein in the brain of plateau zokor was determined by immunohistochemistry. The result showed that the cDNA sequence of plateau zokor foxP2 was similar to that of other mammals and the amino acid sequences showed a relatively high degree of conservation, with the exception of two particular amino acid substitutions [a Gln (Q)-to-His (H) change at position 231 and a Ser (S)-to-Ile (I) change at position 235]. Higher expression levels of foxP2 mRNA (3-fold higher) and FOXP2 protein (>2-fold higher) were detected in plateau zokor brain relative to plateau pika brain. In plateau zokor brain, FOXP2 protein was highly expressed in the cerebral cortex, thalamus and the striatum (a basal ganglia brain region). The results suggest that the high learning and memory ability of plateau zokor is related to the high expression levels of foxP2 in the brain.

  8. Study on a waste heat-driven adsorption cooling cum desalination cycle

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Saha, Bidyut Baran; Chakraborty, Anutosh

    2012-01-01

    This article presents the performance analysis of a waste heat-driven adsorption cycle. With the implementation of adsorption-desorption phenomena, the cycle simultaneously produces cooling energy and high-grade potable water. A mathematical model

  9. Numerical simulation and performance investigation of an advanced adsorption desalination cycle

    KAUST Repository

    Thu, Kyaw; Chakraborty, Anutosh; Kim, Youngdeuk; Myat, Aung; Saha, Bidyut Baran; Ng, Kim Choon

    2013-01-01

    Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption

  10. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  11. Cancer-Associated Fibroblasts from lung tumors maintain their immuno-suppressive abilities after high-dose irradiation

    Directory of Open Access Journals (Sweden)

    Laia eGorchs

    2015-05-01

    Full Text Available Accumulating evidence supports the notion that high-dose (>5 Gy radiotherapy (RT regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study we have investigated the effects of high-dose irradiation (HD-RT on the immunomodulating functions of cancer-associated fibroblasts (CAFs. Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays and T-cell cytokine production. Additionally, CAF-secreted immuno-regulatory factors were studied by multiplex protein arrays, ELISAs and by LC-MS/MS proteomics. In all functional assays we observed a powerful immuno-suppressive effect exerted by CAF-conditioned medium on activated T-cells (p>0,001, and this effect was sustained after a single radiation dose of 18 Gy. Relevant immuno-suppressive molecules such as prostaglandin E2, interleukin-6 and -10, or transforming growth factor-β were found in CAF conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immuno-suppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.

  12. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bind...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  13. Physical adsorption and molecular dynamics

    International Nuclear Information System (INIS)

    Cohan, N.V.

    1981-01-01

    Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [p