WorldWideScience

Sample records for high activity tank

  1. [High Pressure Gas Tanks

    Science.gov (United States)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  2. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  3. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K

    2007-10-01

    High level radioactive waste (HLW) is stored in underground storage tanks at the Savannah River Site. The SRS is proceeding with closure of the 22 tanks located in F-Area. Closure consists of removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. A performance assessment is being performed in support of closure of the F-Tank Farm. Initially, the carbon steel construction materials of the high level waste tanks will provide a barrier to the leaching of radionuclides into the soil. However, the carbon steel liners will degrade over time, most likely due to corrosion, and no longer provide a barrier. The tank life estimation in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. The tank life estimation in support of the F-Tank Farm closure performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to the contamination zone, grouted, and soil conditions. The estimation was completed for Type I, Type III, and Type IV tanks in the F-Tank Farm. Consumption of the tank steel encased in grouted conditions was determined to occur either due to carbonation of the concrete leading to low pH conditions, or the chloride-induced de-passivation of the steel leading to accelerated corrosion. A deterministic approach was initially followed to estimate the life of the tank liner in grouted conditions or in soil conditions. The results of this life estimation are shown in Table 1 and Table 2 for grouted and soil conditions respectively. The tank life has been estimated under conservative assumptions of diffusion rates. However, the same process of

  4. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  5. CEMENTITIOUS GROUT FOR CLOSING SRS HIGH LEVEL WASTE TANKS - #12315

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.; Stefanko, D.

    2012-01-10

    In 1997, the first two United States Department of Energy (US DOE) high level waste tanks (Tanks 17-F and 20-F: Type IV, single shell tanks) were taken out of service (permanently closed) at the Savannah River Site (SRS). In 2012, the DOE plans to remove from service two additional Savannah River Site (SRS) Type IV high-level waste tanks, Tanks 18-F and 19-F. These tanks were constructed in the late 1950's and received low-heat waste and do not contain cooling coils. Operational closure of Tanks 18-F and 19-F is intended to be consistent with the applicable requirements of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and will be performed in accordance with South Carolina Department of Health and Environmental Control (SCDHEC). The closure will physically stabilize two 4.92E+04 cubic meter (1.3 E+06 gallon) carbon steel tanks and isolate and stabilize any residual contaminants left in the tanks. The closure will also fill, physically stabilize and isolate ancillary equipment abandoned in the tanks. A Performance Assessment (PA) has been developed to assess the long-term fate and transport of residual contamination in the environment resulting from the operational closure of the F-Area Tank Farm (FTF) waste tanks. Next generation flowable, zero-bleed cementitious grouts were designed, tested, and specified for closing Tanks 18-F and 19-F and for filling the abandoned equipment. Fill requirements were developed for both the tank and equipment grouts. All grout formulations were required to be alkaline with a pH of 12.4 and chemically reduction potential (Eh) of -200 to -400 to stabilize selected potential contaminants of concern. This was achieved by including Portland cement and Grade 100 slag in the mixes, respectively. Ingredients and proportions of cementitious reagents were selected and adjusted, respectively, to support the mass placement strategy developed by

  6. Tank Lay-Up Information Package and List of Questions for US Department of Energy High-Level Waste Tank Storage Sites

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, Monte R.; Henderson, Colin

    2002-06-21

    This document provides background information and a list of questions to be addressed during an information-gathering visit by Jacobs Engineering Group Inc personnel. Jacobs has been funded by the Tanks Focus Area to complete a task "Pre-closure Interim Tanks Maintenance." The overall objective of this task is to develop a central informaion center of site conditions, site requirements, alternative technical and other approaches, closure plans and activities, regulatory drivers and methodolgies for decision-making to assist site decisdion-makers in teh evaluation of alternative high-level waste (HLW) tank lay-up configureations. Lay-up is the term used for the period between intial decontamination and decommissioning of the tanks and final closure. Successful lay-up will place the tanks in a safe, stable, and minimum-maintenance mode until final closure.

  7. Development and Deployment of Advanced Corrosion Monitoring Systems for High-Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Terry, M. T.; Edgemon, G. L.; Mickalonis, J. I.; Mizia, R. E.

    2002-02-26

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest--in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and AEA Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  8. Development and deployment of advanced corrosion monitoring systems for high-level waste tanks.

    Energy Technology Data Exchange (ETDEWEB)

    Terry, M. T. (Michael T.); Edgemon, G. L. (Glenn L.); Mickalonis, J. I. (John I.); Mizia, R. E. (Ronald E.)

    2002-01-01

    This paper describes the results of a collaborative technology development program, sponsored by the Tanks Focus Area, to use electrochemical noise (EN) for corrosion monitoring in underground storage tanks. These tanks, made of carbon or stainless steels, contain high-level radioactive liquid waste (HLW) generated by weapons production or radioactive liquid waste from nuclear fuel reprocessing activities at several Department of Energy (DOE) sites. The term EN is used to describe low frequency fluctuations in current and voltage measurements associated with corrosion. In their most basic form, EN-based corrosion monitoring systems measure and record these fluctuations over time from electrodes immersed in the environment of interest - in this case, radioactive tank waste. The resulting EN signals have characteristic patterns for different corrosion mechanisms. In recent years, engineers and scientists from several DOE sites, in collaboration with several private companies, have conducted laboratory studies and field applications to correlate the EN signals with corrosion mechanisms active in the radioactive waste tanks. The participating DOE sites are Hanford, Savannah River, Oak Ridge Reservation and the Idaho National Engineering and Environmental Laboratory. The commercial vendors have included HiLine Engineering and Fabrication, Inc., EIC Laboratories, Inc., and M A Technologies. Successful deployment of the EN technology will yield improved information of waste tank corrosion conditions, better tank management, and lower overall cost.

  9. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Science.gov (United States)

    Lessing, Paul A [Idaho Falls, ID

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  10. High-performance gamma spectroscopy for equipment retrieval from Hanford high-level nuclear waste tanks

    Science.gov (United States)

    Troyer, Gary L.; Hillesand, K. E.; Goodwin, S. G.; Kessler, S. F.; Killian, E. W.; Legare, D.; Nelson, Joseph V., Jr.; Richard, R. F.; Nordquist, E. M.

    1999-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to ninety per cent saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  11. Corrosion and failure processes in high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L. [North Carolina State Univ., Raleigh, NC (United States)

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

  12. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Marzolf, A.; Folsom, M.

    2010-08-31

    time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  13. THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516

    Energy Technology Data Exchange (ETDEWEB)

    Fellinger, A.

    2009-12-08

    The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same

  14. Mixing Processes in High-Level Waste Tanks - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  15. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS, W.L.

    2000-06-15

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  16. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Thomas Russell

    2002-08-01

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP).

  17. Review of Analytes of Concern and Sample Methods for Closure of DOE High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T.R.

    2002-05-06

    Sampling residual waste after tank cleaning and analysis for analytes of concern to support closure and cleaning targets of large underground tanks used for storage of legacy high level radioactive waste (HLW) at Department of Energy (DOE) sites has been underway since about 1995. The DOE Tanks Focus Area (TFA) has been working with DOE tank sites to develop new sampling plans, and sampling methods for assessment of residual waste inventories. This paper discusses regulatory analytes of concern, sampling plans, and sampling methods that support closure and cleaning target activities for large storage tanks at the Hanford Site, the Savannah River Site (SRS), the Idaho National Engineering and Environmental Laboratory (INEEL), and the West Valley Demonstration Project (WVDP).

  18. LIFE ESTIMATION OF HIGH LEVEL WASTE TANK STEEL FOR F-TANK FARM CLOSURE PERFORMANCE ASSESSMENT - 9310

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K; Bruce Wiersma, B; Stephen Harris, S

    2009-01-12

    High level radioactive waste (HLW) is stored in underground carbon steel storage tanks at the Savannah River Site. The underground tanks will be closed by removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations, and severing/sealing external penetrations. The life of the carbon steel materials of construction in support of the performance assessment has been completed. The estimation considered general and localized corrosion mechanisms of the tank steel exposed to grouted conditions. A stochastic approach was followed to estimate the distributions of failures based upon mechanisms of corrosion accounting for variances in each of the independent variables. The methodology and results used for one-type of tank is presented.

  19. A Water Tank Cerenkov Detector for Very High Energy Astroparticles

    CERN Document Server

    Bauleo, P; Niello, J O F; Ferrero, A M J; Filevich, A; Guérard, C K; Hasenbalg, F; Mostafa, M A; Ravignani, D; Martino, J

    1998-01-01

    Extensive airshower detection is an important issue in current astrophysics endeavours. Surface arrays detectors are a common practice since they are easy to handle and have a 100% duty cycle. In this work we present an experimental study of the parameters relevant to the design of a water Cerenkov detector for high energy airshowers. This detector is conceived as part of the surface array of the Pierre Auger Project, which is expected to be sensitive to ultra high energy cosmic rays. In this paper we focus our attention in the geometry of the tank and its inner liner material, discussing pulse shapes and charge collections.

  20. Structural integrity and potential failure modes of hanford high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Han, F.C.

    1996-09-30

    Structural Integrity of the Hanford High-Level Waste Tanks were evaluated based on the existing Design and Analysis Documents. All tank structures were found adequate for the normal operating and seismic loads. Potential failure modes of the tanks were assessed by engineering interpretation and extrapolation of the existing engineering documents.

  1. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  2. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  3. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    Science.gov (United States)

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples.

  4. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River

  5. Highly Enriched Uranyl Nitrate in Annular Tanks with Concrete Reflection: 1 x 3 Line Array of Nested Pairs of Tanks

    Energy Technology Data Exchange (ETDEWEB)

    James Cleaver; John D. Bess; Nathan Devine; Fitz Trumble

    2009-09-01

    A series of seven experiments were performed at the Rocky Flats Critical Mass Laboratory beginning in August, 1980 (References 1 and 2). Highly enriched uranyl nitrate solution was introduced into a 1-3 linear array of nested stainless steel annular tanks. The tanks were inside a concrete enclosure, with various moderator and absorber materials placed inside and/or between the tanks. These moderators and absorbers included boron-free concrete, borated concrete, borated plaster, and cadmium. Two configurations included placing bottles of highly enriched uranyl nitrate between tanks externally. Another experiment involved nested hemispheres of highly enriched uranium placed between tanks externally. These three configurations are not evaluated in this report. The experiments evaluated here are part of a series of experiments, one set of which is evaluated in HEU-SOL-THERM-033. The experiments in this and HEU-SOL-THERM-033 were performed similarly. They took place in the same room and used the same tanks, some of the same moderators and absorbers, some of the same reflector panels, and uranyl nitrate solution from the same location. There are probably additional similarities that existed that are not identified here. Thus, many of the descriptions in this report are either the same or similar to those in the HEU-SOL-THERM-033 report. Seventeen configurations (sixteen of which were critical) were performed during seven experiments; six of those experiments are evaluated here with thirteen configurations. Two configurations were identical, except for solution height, and were conducted to test repeatability. The solution heights were averaged and the two were evaluated as one configuration, which gives a total of twelve evaluated configurations. One of the seventeen configurations was subcritical. Of the twelve critical configurations evaluated, nine were judged as acceptable as benchmarks.

  6. Small-Scale Metal Tanks for High Pressure Storage of Fluids

    Science.gov (United States)

    London, Adam (Inventor)

    2016-01-01

    Small scale metal tanks for high-pressure storage of fluids having tank factors of more than 5000 meters and volumes of ten cubic inches or less featuring arrays of interconnected internal chambers having at least inner walls thinner than gage limitations allow. The chambers may be arranged as multiple internal independent vessels. Walls of chambers that are also portions of external tank walls may be arcuate on the internal and/or external surfaces, including domed. The tanks may be shaped adaptively and/or conformally to an application, including, for example, having one or more flat outer walls and/or having an annular shape. The tanks may have dual-purpose inlet/outlet conduits of may have separate inlet and outlet conduits. The tanks are made by fusion bonding etched metal foil layers patterned from slices of a CAD model of the tank. The fusion bonded foil stack may be further machined.

  7. High-level waste tank farm set point document

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  8. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  9. Hanford tanks initiative plan

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  10. Stabilization of Parametric Roll Resonance with Active U-Tanks via Lyapunov Control Design

    DEFF Research Database (Denmark)

    Holden, Christian; Galeazzi, Roberto; Fossen, Thor Inge;

    2009-01-01

    design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via...

  11. Tank waste remediation system phase I high-level waste feed processability assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.; Stegen, G.E., Westinghouse Hanford

    1996-08-01

    This report evaluates the effects of feed composition on the Phase I high-level waste immobilization process and interim storage facility requirements for the high-level waste glass.Several different Phase I staging (retrieval, blending, and pretreatment) scenarios were used to generate example feed compositions for glass formulations, testing, and glass sensitivity analysis. Glass models and data form laboratory glass studies were used to estimate achievable waste loading and corresponding glass volumes for various Phase I feeds. Key issues related to feed process ability, feed composition, uncertainty, and immobilization process technology are identified for future consideration in other tank waste disposal program activities.

  12. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

  13. High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

  14. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  15. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  16. Think tank (3) - Present activities of other representative organizations

    Science.gov (United States)

    Obara, Michio

    There were some think tank businesses in Japan before the war. South Manchuria Railway Company established its Research Department for the purpose of getting power to control Manchuria as a colony, and got the good results. Think tank business was flourishing three times after the war. This business attracts much attention when the social and economic paradigm is going to change. Among the key large-scale think tanks in Japan, Nomura Research Institute, Ltd. (NRI) was the first to enhance the system functions by the merger, and posted think tank function up in the SI business. Mitsubishi Research Institute, Inc. (MRI) intends to be an orthodox think tank, and established an advanced research institute and the laboratory for R&D. Daiwa Institute of Research, Ltd. (DIR) focuses on economic forecast by using system. Fuji Research Institute, Corp. (FUJI RIC) focuses on survey and policy proposing in macro-economics, and analyzing technology. The Japan Research Institute, Ltd. (JRI) focuses on regional development, and R&D in advanced technology.

  17. Tank characterization reference guide

    Energy Technology Data Exchange (ETDEWEB)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

  18. Quantitative differences in think tank dissemination activities in Germany, Denmark and the UK

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    2017-01-01

    controlled for the number of full-time staff. The study indicates that factors beyond the policy process such as developments of funding and media environments should be analysed further as they are likely to be important for how and where think tank disseminate their policy advice....... research on think and the study of policy advice by arguing for a focus on the dissemination of policy advice by asking how the dissemination activities of think tanks vary across different policy advisory systems and what this implies for the study of policy advice. This question is explored...... in a quantitative design which compares publications, events and newspaper mentionings of samples of think tanks from a coordinated (Germany), liberal (UK) and mixed (Denmark) system in 2012. The analysis indicates that think tanks in the UK have the highest level of dissemination on all three activities when...

  19. Nitramine-Based High Energy Propellant Compositions for Tank Guns

    OpenAIRE

    R.S. Damse; Haridwar Singh

    2000-01-01

    Six different RDX-based gun propellant compositions have been formulated and studied to select the most suitable composition for tank gun ammunition in terms of higher force constant at relatively lower flame temperature (T). Ballistic'performance of the compositions was evaluated on the basis of closed vessel test. JIea(energy was determined using a bomb calorimeter. Sensitivity, thermal characteristics, stability and mechanical properties of the compositions were studied for assessing their...

  20. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...... performance and for the excellent utilization of the solar radiation is the high hot-water consumption and the good system design making use of external heat exchangers and stratification inlet pipes....

  1. Overview of Hanford Site High-Level Waste Tank Gas and Vapor Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, James L.; Mahoney, Lenna A.; Droppo, James G.; Meacham, Joseph E.

    2004-08-31

    Hanford Site processes associated with the chemical separation of plutonium from uranium and other fission products produced a variety of volatile, semivolatile, and nonvolatile organic and inorganic waste chemicals that were sent to high-level waste tanks. These chemicals have undergone and continue to undergo radiolytic and thermal reactions in the tanks to produce a wide variety of degradation reaction products. The origins of the organic wastes, the chemical reactions they undergo, and their reaction products have recently been examined by Stock (2004). Stock gives particular attention to explaining the presence of various types of volatile and semivolatile organic species identified in headspace air samples. This report complements the Stock report by examining the storage of volatile and semivolatile species in the waste, their transport through any overburden of waste to the tank headspaces, the physical phenomena affecting their concentrations in the headspaces, and their eventual release into the atmosphere above the tanks.

  2. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    Science.gov (United States)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  3. HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    THIEN MG; WELLS BE; ADAMSON DJ

    2010-01-14

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  4. Thermophysical properties of Hanford high-level tank wastes: A preliminary survey of recent data

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, C.E.

    1994-03-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving thermophysical properties of Hanford high-level tank wastes. PNL has gathered and summarized the available information on density, viscosity, thermal conductivity, heat capacity, particle size, shear strength, and heat generation. The information was compiled from documented characterization reports of Hanford single-shell and double-shell tanks. The report summarizes the thermophysical properties of the various waste materials, the anticipated range for the various waste forms, and estimates of the variability of the measured data. The thermophysical information compiled in this study is useful as input to sensitivity and parametric studies for the Multi-Function Waste Tank Facility Project. Information from only 33 of the 177 high-level waste storage tanks was compiled. Density data are well characterized for the tanks selected in this study. It was found that the reported viscosity of the wastes varies widely and that a single value should not be used to represent viscosity for all waste. Significant variations in reported shear strength and heat generation values were also found. Very few of the tank characterization reports described information on waste heat capacity. In addition, there was no supernatant vapor pressure information reported in the waste characterization reports examined in this study. Although thermal conductivity measurements were made for a number of tanks, most of the measurements were made in 1975. Finally, particle size distribution measurements of waste in 20 tanks were compiled. The analyst must be cognizant of differences between the number and volume distributions reported for particle size.

  5. Annual report, spring 2015. Alternative chemical cleaning methods for high level waste tanks-corrosion test results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-06

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel when interacted with the chemical cleaning solution composed of 0.18 M nitric acid and 0.5 wt. % oxalic acid. This solution has been proposed as a dissolution solution that would be used to remove the remaining hard heel portion of the sludge in the waste tanks. This solution was combined with the HM and PUREX simulated sludge with dilution ratios that represent the bulk oxalic cleaning process (20:1 ratio, acid solution to simulant) and the cumulative volume associated with multiple acid strikes (50:1 ratio). The testing was conducted over 28 days at 50°C and deployed two methods to invest the corrosion conditions; passive weight loss coupon and an active electrochemical probe were used to collect data on the corrosion rate and material performance. In addition to investigating the chemical cleaning solutions, electrochemical corrosion testing was performed on acidic and basic solutions containing sodium permanganate at room temperature to explore the corrosion impacts if these solutions were to be implemented to retrieve remaining actinides that are currently in the sludge of the tank.

  6. En-route mechanical activation of viscous oil and oil products transported in railroad tank cars

    Directory of Open Access Journals (Sweden)

    Yerlan MYRZAKHMETOV

    2012-01-01

    Full Text Available The authors of this document are aiming to substantiate the advantages of en-route mechanical activation technology as aids for railroad transportation of viscous oil and oil products in tank cars. The conceptual design implies the use of momentum generated by brake action. This document also contains preliminary data of laboratory research confirming the validity of the developed concept.

  7. Annual Summary of Immobilized Low Activity Tank Waste (ILAW) Performance Assessment for 2002

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F. M.

    2002-08-01

    As required by the Department of Energy ( DOE), an annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

  8. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  9. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D. [and others

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

  10. Experimental study on the storage performance of high-vacuum-multilayer-insulation tank after sudden, catastrophic loss of insulating vacuum

    Science.gov (United States)

    Xie, G. F.; Li, X. D.; Wang, R. S.

    2012-05-01

    High-vacuum-multilayer-insulation (HVMLI) cryogenic tank is one kind of dangerous pressure vessels. One of the worst accidents that may occur in a high-vacuum-multilayer-insulation (HVMLI) cryogenic tank is a sudden, catastrophic loss of insulating vacuum (SCLIV). The influence of SCLIV on storage performance for a HVMLI cryogenic tank is experimentally studied in this paper. A test rig was built up and experiments were conducted using LN2 as the test medium. The cryogenic tank was tested in the conditions of various combinations with different initial liquid level and number of insulation layers. Some important conclusions for storage performance with a vacuum-lost HVMLI cryogenic tank have been obtained. The experimental results show that the numbers of insulation layers and the initial liquid level have obvious effect on the storage performance after SCLIV for cryogenic tanks.

  11. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  12. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; Rooyen, D. van; Weeks, J.

    1997-01-01

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document.

  13. Annual Report, Fall 2016: Alternative Chemical Cleaning of Radioactive High Level Waste Tanks - Corrosion Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval of actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.

  14. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  15. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  16. Methanoculleus spp. as a biomarker of methanogenic activity in swine manure storage tanks.

    Science.gov (United States)

    Barret, Maialen; Gagnon, Nathalie; Morissette, Bruno; Topp, Edward; Kalmokoff, Martin; Brooks, Stephen P J; Matias, Fernando; Massé, Daniel I; Masse, Lucie; Talbot, Guylaine

    2012-05-01

    Greenhouse gas emissions represent a major problem associated with manure management in the livestock industry. A prerequisite to mitigate methane emissions occurring during manure storage is a clearer understanding of how the microbial consortia involved in methanogenesis function. Here, we have examined manure stored in outdoor tanks from two different farms, at different locations and depths. Physico-chemical and microbiological characterization of these samples indicated differences between each tank, as well as differences within each tank dependent on the depth of sampling. The dynamics of both the bacterial and archaeal communities within these samples were monitored over a 150-day period of anaerobic incubation to identify and track emerging microorganisms, which may be temporally important in the methanogenesis process. Analyses based on DNA fingerprinting of microbial communities identified trends common among all samples as well as trends specific to certain samples. All archaeal communities became enriched with Methanoculleus spp. over time, indicating that the hydrogenotrophic pathway of methanogenesis predominated. Although the emerging species differed in samples obtained from shallow depths compared to deep samples, the temporal enrichment of Methanoculleus suggests that this genus may represent a relevant indicator of methanogenic activity in swine manure storage tanks.

  17. ACTIVATED SLUDGE TECHNOLOGY COMBINED WITH HYDROPONIC LAGOON AS A TECHNOLOGY SUITABLE FOR TREATMENT OF WASTEWATER DELIVERED BY SLURRY TANKS

    Directory of Open Access Journals (Sweden)

    Aleksandra Bawiec

    2017-03-01

    Full Text Available The paper presents information related to the use of hydrophytic technology combined with traditional activated sludge solution for wastewater treatment in areas without central sewage system. The analyzed wastewater treatment plant (WWTP was operated in activated sludge technology with hybrid activated sludge reactor where biomass is kept in settled and suspended form. Treatment system was completed with hydroponic lagoon. Hydroponic lagoon has been used as tertiary treatment, in which the self-cleaning processes with the participation of the plant has come to an additional reduction of nutrients. Analyzed three stage treatment plant is located in the municipality of Nowa Sól. Only domestic wastewater delivered by slurry tanks are treated there in amount of 60 m3/d. During the observation high average concentrations of total nitrogen (201.0 mgN/dm3 was observed and organic matter expressed by COD reaching 1341.5 mgO2/dm3 and BOD5 on the level of 246.3 mgO2/dm3 were noted. A characteristic feature of an object designed for wastewater treatment delivered by slurry tanks is high irregularity of wastewater supply and high instantaneous loads of pollutants (the system does not provide expansion tank. The biggest inequality factor of the flow to the reactor was observed in December 2014 (Nd=3.9. During the observations also occurred days with no inflow of sewage. The study shows the dynamics of changes in the amount of delivered domestic wastewater and sewage flowing out of treatment plant including inequality factor. Information about quality of wastewater was used to determine the reduction of concentrations of pollutants like organic matter, suspended solids, nitrogen and phosphorus.

  18. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  19. ICPP tank farm closure study. Volume 2: Engineering design files

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  20. Domestic wells have high probability of pumping septic tank leachate

    Directory of Open Access Journals (Sweden)

    J. E. Bremer

    2012-08-01

    Full Text Available Onsite wastewater treatment systems are common in rural and semi-rural areas around the world; in the US, about 25–30% of households are served by a septic (onsite wastewater treatment system, and many property owners also operate their own domestic well nearby. Site-specific conditions and local groundwater flow are often ignored when installing septic systems and wells. In areas with small lots (thus high spatial septic system densities, shallow domestic wells are prone to contamination by septic system leachate. Mass balance approaches have been used to determine a maximum septic system density that would prevent contamination of groundwater resources. In this study, a source area model based on detailed groundwater flow and transport modeling is applied for a stochastic analysis of domestic well contamination by septic leachate. Specifically, we determine the probability that a source area overlaps with a septic system drainfield as a function of aquifer properties, septic system density and drainfield size. We show that high spatial septic system density poses a high probability of pumping septic system leachate. The hydraulic conductivity of the aquifer has a strong influence on the intersection probability. We find that mass balance calculations applied on a regional scale underestimate the contamination risk of individual drinking water wells by septic systems. This is particularly relevant for contaminants released at high concentrations, for substances that experience limited attenuation, and those that are harmful even at low concentrations (e.g., pathogens.

  1. STRESS CORROSION CRACKING SUSCEPTIBILITY OF HIGH LEVEL WASTE TANKS DURING SLUDGE MASS REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, K

    2007-10-18

    Aluminum is a principal element in alkaline nuclear sludge waste stored in high level waste (HLW) tanks at the Savannah River Site. The mass of sludge in a HLW tank can be reduced through the caustic leaching of aluminum, i.e. converting aluminum oxides (gibbsite) and oxide-hydroxides (boehmite) into soluble hydroxides through reaction with a hot caustic solution. The temperature limits outlined by the chemistry control program for HLW tanks to prevent caustic stress corrosion cracking (CSCC) in concentrated hydroxide solutions will potentially be exceeded during the sludge mass reduction (SMR) campaign. Corrosion testing was performed to determine the potential for CSCC under expected conditions. The experimental test program, developed based upon previous test results and expected conditions during the current SMR campaign, consisted of electrochemical and mechanical testing to determine the susceptibility of ASTM A516 carbon steel to CSCC in the relevant environment. Anodic polarization test results indicated that anodic inhibition at the temperatures and concentrations of interest for SMR is not a viable, consistent technical basis for preventing CSCC. However, the mechanical testing concluded that CSCC will not occur under conditions expected during SMR for a minimum of 35 days. In addition, the stress relief for the Type III/IIIA tanks adds a level of conservatism to the estimates. The envelope for corrosion control is recommended during the SMR campaign is shown in Table 1. The underlying assumption is that solution time-in-tank is limited to the SMR campaign. The envelope recommends nitrate/aluminate intervals for discrete intervals of hydroxide concentrations, although it is recognized that a continuous interval may be developed. The limits also sets temperature limits.

  2. FINAL REPORT - Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Donald [Hexagon Lincoln LLC, Lincoln, NE (United States)

    2017-08-04

    The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualification of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed

  3. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  4. A new activated primary tank developed for recovering carbon source and its application.

    Science.gov (United States)

    Jin, Pengkang; Wang, Xianbao; Zhang, Qionghua; Wang, Xiaochang; Ngo, Huu Hao; Yang, Lei

    2016-01-01

    A novel activated primary tank process (APT) was developed for recovering carbon source by fermentation and elutriation of primary sludge. The effects of solids retention time (SRT), elutriation intensity (G) and return sludge ratio (RSR) on this recovery were evaluated in a pilot scale reactor. Results indicated that SRT significantly influenced carbon source recovery, and mechanical elutriation could promote soluble COD (SCOD) and VFA yields. The optimal conditions of APT were SRT=5d, G=152s(-1) and RSR=10%, SCOD and VFA production were 57.0mg/L and 21.7mg/L. Particulate organic matter in sludge was converted into SCOD and VFAs as fermentative bacteria were significantly enriched in APT. Moreover, the APT process was applied in a wastewater treatment plant to solve the problem of insufficient carbon source. The outcomes demonstrated that influent SCOD of biological tank increased by 31.1%, which improved the efficiency of removing nitrogen and phosphorus.

  5. The Auto control System Based on InTouch Configuration software for High-gravity Oil Railway Tank Feeding

    Directory of Open Access Journals (Sweden)

    Xu De-Kai

    2015-01-01

    Full Text Available This paper provides automatic design for high-gravity oil railway tank feeding system of some refinery uses distributive control system. The system adopts the automatic system of Modicon TSX Quantum or PLC as monitor and control level and uses a PC-based plat form as principal computer running on the Microsoft Windows2000. An automatic control system is developed in the environment of InTouch configuration software. This system implements automatic high-gravity oil tank feeding with pump controlling function. And it combines automatic oil feeding controlling, pump controlling and tank monitoring function to implement the automation of oil feeding with rations and automatic control.

  6. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  7. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2011-06-23

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

  8. SLUDGE BATCH 7B QUALIFICATION ACTIVITIES WITH SRS TANK FARM SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-11-16

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  9. Parametric Study to Characterize Low Activity Waste Tank Heat Removal Alternatives for Phase 1 Specification Development

    Energy Technology Data Exchange (ETDEWEB)

    GRENARD, C.E.

    2000-09-11

    Alternative for removing heat from Phase 1, low-activity waste feed double-shell tanks using the ventilation systems have been analyzed for Phase 1 waste feed delivery. The analysis was a parametric study using a model that predicted the waste temperatures for a range of primary and annulus ventilation system flow rates. The analysis was performed to determine the ventilation flow required to prevent the waste temperature from exceeding the Limiting Conditions for Operation limits during normal operation and the Safety Limits during off-normal events.

  10. Think tanks in Denmark

    DEFF Research Database (Denmark)

    Ørsten, Mark; Nørgaard Kristensen, Nete

    2016-01-01

    outside the media. The study shows that the two largest and oldest think tanks in Denmark, the liberal think tank CEPOS and the social democratic think tank ECLM, are very active and observable in the media; that the media’s distribution of attention to these think tanks, to some extent, confirms a re......Though think tanks have a long history internationally, they have especially in recent years come to play an increasingly important role in both policy-formulation and public debate. In this article, we analyse the growing presence of think tanks in a Danish context during the 2000s and the first...... half of the 2010s, because in this national setting think tanks are still a relatively new phenomenon. Based on theories of mediatization and de-corporatization, we present 1) an analysis of the visibility of selected Danish think tanks in the media and 2) an analysis of their political networks...

  11. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  12. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  13. Annual Summary of Immobilized Low Activity Tank Waste (ILAW) Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F M

    2000-05-01

    As required by the Department of Energy (DOE) order on radioactive waste management (DOE 1999a) as implemented by the Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (Mann 2000a), an annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) must be submitted to DOE headquarters each year that a performance assessment is not submitted. Considering the results of data collection and analysis, the conclusions of the 1998 version of the ILAW PA (Mann 1998) as conditionally approved (DOE 1999b) remain valid, but new information indicates more conservatism in the results than previously estimated. A white paper (Mann 2000b) is attached as Appendix A to justify this statement. Recent ILAW performance estimates used on the waste form and geochemical data have resulted in increased confidence that the disposal of ILAW will meet performance objectives. The ILAW performance assessment program will continue to interact with science and technology activities, disposal facility design staff, and operations, as well as to continue to collect new waste form and disposal system data to further increase the understanding of the impacts of the disposal of ILAW. The next full performance assessment should be issued in the spring of 2001.

  14. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  15. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  16. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

  17. Collaboration, Automation, and Information Management at Hanford High Level Radioactive Waste (HLW) Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Aurah, Mirwaise Y.; Roberts, Mark A.

    2013-12-12

    Washington River Protection Solutions (WRPS), operator of High Level Radioactive Waste (HLW) Tank Farms at the Hanford Site, is taking an over 20-year leap in technology, replacing systems that were monitored with clipboards and obsolete computer systems, as well as solving major operations and maintenance hurdles in the area of process automation and information management. While WRPS is fully compliant with procedures and regulations, the current systems are not integrated and do not share data efficiently, hampering how information is obtained and managed.

  18. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

  19. Tanks and Tank Troops

    Science.gov (United States)

    1982-03-01

    operational in the Bundeswehr. These include the well-known U.S. M113 APC, the HS-30 APC, developed by the Swiss company Hispano- Suiza , as well as the...powered by the Leyland L-60 engine, and the French AMX-30, powered by the Hispano- Suiza HS-110 engine. The new Japanese STB-6 tank (ඒ") is...of all foreign series-produced tank engines. A complete tank engine replacement can be performed in four hours. The Hispano- Suiza HS-110 engine

  20. Trade study for the feed tank fill status issue for low-activity waste feed issue 19D

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J.

    1998-05-18

    This document identifies and evaluates alternatives that will provide DOE-RL sufficient information from which a decision can be negotiated regarding the Project Hanford Management Contractor team`s use of tanks 241-AP-106 and -108 versus the private contractors need to upgrade them for their purposes. The desired alternatives to be evaluated and the measures for comparison were selected in a separate meeting with the customer (RL). These are defined in the sections that follow. The following summarizes the results of this study. More detailed explanations of the results can be found later in Section 6.0 of the document. Relinquishing the use of tanks early increases the programmatic risk when compared to the baseline via the following areas: (1) Tank Space -- The amount of usable tank space decreases. This also impacts the amount of spare and contingency space available. (2) Waste Transfer Complexity -- The complexity of tankfarm transfers increases. As double-shell tank (DST) space becomes limited, the number and interdependency of waste transfers increases. (3) Float -- Float time for low-activity waste (LAW) feed staging operations decreases. (4) Waste Segregation -- The segregation of tank wastes may be violated.

  1. Radiotracer investigation in gold leaching tanks.

    Science.gov (United States)

    Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L

    2012-01-01

    Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process.

  2. An approximate-reasoning-based method for screening high-level waste tanks for flammable gas

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-07-01

    The in situ retention of flammable gas produced by radiolysis and thermal decomposition in high-level waste can pose a safety problem if the gases are released episodically into the dome space of a storage tank. Screening efforts at Hanford have been directed at identifying tanks in which this situation could exist. Problems encountered in screening motivated an effort to develop an improved screening methodology. Approximate reasoning (AR) is a formalism designed to emulate the kinds of complex judgments made by subject matter experts. It uses inductive logic structures to build a sequence of forward-chaining inferences about a subject. AR models incorporate natural language expressions known as linguistic variables to represent evidence. The use of fuzzy sets to represent these variables mathematically makes it practical to evaluate quantitative and qualitative information consistently. The authors performed a pilot study to investigate the utility of AR for flammable gas screening. They found that the effort to implement such a model was acceptable and that computational requirements were reasonable. The preliminary results showed that important judgments about the validity of observational data and the predictive power of models could be made. These results give new insights into the problems observed in previous screening efforts.

  3. A hypothesis on Microthrix parvicella proliferation in biological nutrient removal activated sludge systems with selector tanks.

    Science.gov (United States)

    Noutsopoulos, Constantinos; Mamais, Daniel; Andreadakis, Andreas; Stams, Alfons

    2012-05-01

    The objective of this study was to evaluate the ability of Microthrix parvicella for long-chain fatty acids uptake under anaerobic, anoxic, and aerobic conditions as well as its ability to utilize volatile fatty acids and long-chain fatty acids under anoxic and aerobic conditions. According to the results, a hypothesis on the competition between floc-forming microorganisms and M. parvicella for long-chain fatty acids uptake under aerobic, anoxic, and anaerobic conditions was formulated. According to this hypothesis, M. parvicella exhibits similar long-chain fatty acids uptake capacity with floc-forming microorganisms even at relatively high floc loading values that are very often imposed at selector tanks. Following this hypothesis, the failure of selector tanks to provide for an effective M. parvicella control is evidenced. Based on the experimental results, the ability of M. parvicella to utilize long-chain fatty acids with rates comparable to those of floc formers, even in anoxic conditions, in conjunction with its lower acetate utilization rates, provides a good explanation regarding its preference to slowly biodegradable organic carbon compounds.

  4. High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.

    Science.gov (United States)

    Knoll, Arnd; Bartsch, Stefan; Husemann, Bernward; Engel, Philip; Schroer, Kirsten; Ribeiro, Betina; Stöckmann, Christoph; Seletzky, Juri; Büchs, Jochen

    2007-10-31

    This study demonstrates the applicability of pressurized stirred tank bioreactors for oxygen transfer enhancement in aerobic cultivation processes. The specific power input and the reactor pressure was employed as process variable. As model organism Escherichia coli, Arxula adeninivorans, Saccharomyces cerevisiae and Corynebacterium glutamicum were cultivated to high cell densities. By applying specific power inputs of approx. 48kWm(-3) the oxygen transfer rate of a E. coli culture in the non-pressurized stirred tank bioreactor was lifted up to values of 0.51moll(-1)h(-1). When a reactor pressure up to 10bar was applied, the oxygen transfer rate of a pressurized stirred tank bioreactor was lifted up to values of 0.89moll(-1)h(-1). The non-pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities of more than 40gl(-1) cell dry weight (CDW) of E. coli, whereas the pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities up to 225gl(-1) CDW of A. adeninivorans, 89gl(-1) CDW of S. cerevisiae, 226gl(-1) CDW of C. glutamicum and 110gl(-1) CDW of E. coli. Compared to literature data, some of these cell densities are the highest values ever achieved in high cell density cultivation of microorganisms in stirred tank bioreactors. By comparing the specific power inputs as well as the k(L)a values of both systems, it is demonstrated that only the pressure is a scaleable tool for oxygen transfer enhancement in industrial stirred tank bioreactors. Furthermore, it was shown that increased carbon dioxide partial pressures did not remarkably inhibit the growth of the investigated model organisms.

  5. Finite Element Analysis of High Pressure Storage Tank%高压储气罐有限元分析

    Institute of Scientific and Technical Information of China (English)

    蔡毅; 田东兴; 马秋生

    2012-01-01

    本文以ANSYS软件为基础,对高压长圆柱形天然气储运罐进行变形分析、应力分析,得到了储气罐的应力分布状态,分析了在壁厚方向及沿着罐壁方向上的应力变化。所得结果和理论结果吻合。此基础上,完成了气罐模态分析,得到了气罐的各阶固有频率及振型。计算结果表明计算方法有效,为进一步设计高压气罐提供了理论依据。%In this paper, based on Ansys the deformation and stress for high pressure long cylindrical natural gas storage tank are anal- ysed. And obtain the stress distribution of the storage tank. The changes of stress are analysed in thickness direction and along the rigid wall. The results and theoretical results are accordance. On this basis, the modal analysis of tank is completed too. Obtained the tank various order natural frequency and vibration mode. The calculation results show that the method is effective and provide the theoreti- cal basis for high pressure tank design.

  6. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    Energy Technology Data Exchange (ETDEWEB)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90/sup 0/C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation.

  7. Aging mechanisms for concrete components of High-Level Waste storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kassir, M.; Bandyopadhyay, K.; Bush, S.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-05-01

    The age-related degradation mechanisms which affect the concrete and the reinforcing steel in the high-level waste (HLW) storage tanks art evaluated with respect to their potential significance to the continued performance of the concrete, and am classified into non-significant and potentially significant. The identified potentially significant degradation mechanisms include the effects of elevated temperature, freezing and thawing, leaching of calcium hydroxide, aggressive chemical attack, and corrosion of the reinforcing steel. To the extent that available knowledge permits, these mechanisms are generically evaluated and quantified so that site-specific plans may be developed to verify whether significant degradation has occurred in the concrete, and, if so, to formulate mitigating measures to avoid further deterioration and possibly repair the degradation or pursue other management options.

  8. Challenges and methodology for safety analysis of a high-level waste tank with large periodic releases of flammable gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.N.; Pasamehmetoglu, K.O.; White, J.R. [Los Alamos National Lab., NM (United States); Stewart, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-07-01

    Tank 241-SY-101, located at the Department of Energy Hanford Site, has periodically released up to 10,000 ft{sup 3} of flammable gas. This release has been one of the highest-priority DOE operational safety problems. The gases include hydrogen and ammonia (fuels) and nitrous oxide (oxidizer). There have been many opinions regarding the controlling mechanisms for these releases, but demonstrating an adequate understanding of the problem, selecting a mitigation methodology, and preparing the safety analysis have presented numerous new challenges. The mitigation method selected for the tank was to install a pump that would mix the tank contents and eliminate the sludge layer believed to be responsible for the gas retention and periodic releases. This report will describe the principal analysis methodologies used to prepare the safety assessment for the installation and operation of the pump, and because this activity has been completed, it will describe the results of pump operation.

  9. Six Sigma Evaluation of the High Level Waste Tank Farm Corrosion Control Program at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hill, P. J.

    2003-02-26

    Six Sigma is a disciplined approach to process improvement based on customer requirements and data. The goal is to develop or improve processes with defects that are measured at only a few parts per million. The process includes five phases: Identify, Measure, Analyze, Improve, and Control. This report describes the application of the Six Sigma process to improving the High Level Waste (HLW) Tank Farm Corrosion Control Program. The report documents the work performed and the tools utilized while applying the Six Sigma process from September 28, 2001 to April 1, 2002. During Fiscal Year 2001, the High Level Waste Division spent $5.9 million to analyze samples from the F and H Tank Farms. The largest portion of these analytical costs was $2.45 million that was spent to analyze samples taken to support the Corrosion Control Program. The objective of the Process Improvement Project (PIP) team was to reduce the number of analytical tasks required to support the Corrosion Control Program by 50 percent. Based on the data collected, the corrosion control decision process flowchart, and the use of the X-Y Matrix tool, the team determined that analyses in excess of the requirements of the corrosion control program were being performed. Only two of the seven analytical tasks currently performed are required for the 40 waste tanks governed by the Corrosion Control Program. Two additional analytical tasks are required for a small subset of the waste tanks resulting in an average of 2.7 tasks per sample compared to the current 7 tasks per sample. Forty HLW tanks are sampled periodically as part of the Corrosion Control Program. For each of these tanks, an analysis was performed to evaluate the stability of the chemistry in the tank and then to determine the statistical capability of the tank to meet minimum corrosion inhibitor limits. The analyses proved that most of the tanks were being sampled too frequently. Based on the results of these analyses and th e use of additional

  10. 78 FR 13712 - U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the...

    Science.gov (United States)

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the Savannah River Site, Revision 0 AGENCY: Nuclear Regulatory Commission. ACTION: Document issuance....

  11. Determination of ring correction factors for leaded gloves used in grab sampling activities at Hanford tank farms

    Energy Technology Data Exchange (ETDEWEB)

    RATHBONE, B.A.

    1999-06-24

    This study evaluates the effectiveness of lead lined gloves in reducing extremity dose from two sources specific to tank waste sampling activities: (1) sludge inside glass sample jars and (2) sludge as thin layer contamination on the exterior surface of sample jars. The response of past and present Hanford Extremity Dosimeters (ring) designs under these conditions is also evaluated.

  12. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems.

    Science.gov (United States)

    Patziger, M; Kainz, H; Hunze, M; Józsa, J

    2012-05-01

    Secondary settling is the final step of the activated sludge-based biological waste water treatment. Secondary settling tanks (SSTs) are therefore an essential unit of producing a clear effluent. A further important function of SSTs is the sufficient thickening to achieve highly concentrated return sludge and biomass within the biological reactor. In addition, the storage of activated sludge is also needed in case of peak flow events (Ekama et al., 1997). Due to the importance of a high SST performance the problem has long been investigated (Larsen, 1977; Krebs, 1991; Takács et al., 1991; Ekama et al., 1997; Freimann, 1999; Patziger et al., 2005; Bürger et al., 2011), however, a lot of questions are still to solve regarding e.g. the geometrical features (inflow, outflow) and operations (return sludge control, scraper mechanism, allowable maximum values of surface overflow rates). In our study we focused on SSTs under dynamic load considering both the overall unsteady behaviour and the features around the peaks, investigating the effect of various sludge return strategies as well as the inlet geometry on SST performance. The main research tool was a FLUENT-based novel mass transport model consisting of two modules, a 2D axisymmetric SST model and a mixed reactor model of the biological reactor (BR). The model was calibrated and verified against detailed measurements of flow and concentration patterns, sludge settling, accompanied with continuous on-line measurement of in- and outflow as well as returned flow rates of total suspended solids (TSS) and water. As to the inlet arrangement a reasonable modification of the geometry could result in the suppression of the large scale flow structures of the sludge-water interface thus providing a significant improvement in the SST performance. Furthermore, a critical value of the overflow rate (q(crit)) was found at which a pronounced large scale circulation pattern develops in the vertical plane, the density current in

  13. Study on the heat transfer of high-vacuum-multilayer-insulation tank after sudden, catastrophic loss of insulating vacuum

    Science.gov (United States)

    Xie, G. F.; Li, X. D.; Wang, R. S.

    2010-10-01

    One of the worst accidents that may occur in a high-vacuum-multilayer-insulation (HVMLI) cryogenic tank is a sudden, catastrophic loss of insulating vacuum (SCLIV). There is no doubt that the gases leaking into the insulation jacket have some influence on the heat transfer process of it. However, this issue has not been thoroughly studied so far. In this paper, a test rig was built up and experiments were conducted using a SCLIV cryogenic tank and with nitrogen, helium and air as the working medium, respectively. The venting rates of the tank and temperature in the insulation jacket were measured respectively after the three different gases leaking into the jacket. A heat transfer model describing the heat transfer process of a SCLIV tank was also presented. The calculated results using this model were compared against the experimental data. It is found that the heat transfer performance of the HVMLI cryogenic tank after SCLIV is strong relevant to the type of gas leaking into the insulation jacket.

  14. Crystal Structure and Mechanism of Activation of TANK-Binding Kinase 1

    Directory of Open Access Journals (Sweden)

    Amede Larabi

    2013-03-01

    Full Text Available Tank-binding kinase I (TBK1 plays a key role in the innate immune system by integrating signals from pattern-recognition receptors. Here, we report the X-ray crystal structures of inhibitor-bound inactive and active TBK1 determined to 2.6 Å and 4.0 Å resolution, respectively. The structures reveal a compact dimer made up of trimodular subunits containing an N-terminal kinase domain (KD, a ubiquitin-like domain (ULD, and an α-helical scaffold dimerization domain (SDD. Activation rearranges the KD into an active conformation while maintaining the overall dimer conformation. Low-resolution SAXS studies reveal that the missing C-terminal domain (CTD extends away from the main body of the kinase dimer. Mutants that interfere with TBK1 dimerization show significantly reduced trans-autophosphorylation but retain the ability to bind adaptor proteins through the CTD. Our results provide detailed insights into the architecture of TBK1 and the molecular mechanism of activation.

  15. Probability, consequences, and mitigation for lightning strikes of Hanford high level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Zach, J.J.

    1996-06-05

    The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of a lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike deposition sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

  16. Probability, consequences, and mitigation for lightning strikes to Hanford site high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Zach, J.J.

    1996-08-01

    The purpose of this report is to summarize selected lightning issues concerning the Hanford Waste Tanks. These issues include the probability of lightning discharge striking the area immediately adjacent to a tank including a riser, the consequences of significant energy deposition from a lightning strike in a tank, and mitigating actions that have been or are being taken. The major conclusion of this report is that the probability of a lightning strike depositing sufficient energy in a tank to cause an effect on employees or the public is unlikely;but there are insufficient, quantitative data on the tanks and waste to prove that. Protection, such as grounding of risers and air terminals on existing light poles, is recommended.

  17. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  18. Tank 241-AZ-101 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

  19. Tank 241-AZ-102 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

  20. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID)

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 3) presents the standards and requirements for the following sections: Safeguards and Security, Engineering Design, and Maintenance.

  1. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Document (S/RID) is contained in multiple volumes. This document (Volume 2) presents the standards and requirements for the following sections: Quality Assurance, Training and Qualification, Emergency Planning and Preparedness, and Construction.

  2. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 5) outlines the standards and requirements for the Fire Protection and Packaging and Transportation sections.

  3. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

  4. Analysis Method of Transient Temperature Field for Fuel Tank of High-Altitude Large UAV

    Institute of Scientific and Technical Information of China (English)

    Qing Ai; Liang Chen; Xiaojing Xu; Shiyu Liu; Zhenwen Hu; Xinlin Xia

    2016-01-01

    Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Thermal network method combined with hierarchical dynamic grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.

  5. Statement of Work (SOW) for FY 2001 to FY 2006 for the Hanford Low Activity Tank Waste Performance Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    PUIGH, R.J.

    2000-07-25

    This document describes the tasks included in the Hanford Low-Activity Tank Waste Performance Assessment activity though the close of the project in 2028. Near-term (2001-2006) tasks are described in detail, while tasks further in the future are simply grouped by year. The major tasks are displayed in the table provided. The major goals of the performance assessment activity are to provide the technical basis for the Department of Energy to continue to authorize the construction of disposal facilities, the onsite disposal of immobilized low-activity Hanford tank waste in those facilities, and the closure of the disposal facilities. Other significant goals are to provide the technical basis for the setting of the specifications of the immobilized waste and to support permitting of the disposal facilities.

  6. Scoring methods and results for qualitative evaluation of public health impacts from the Hanford high-level waste tanks. Integrated Risk Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Buck, J.W.; Gelston, G.M.; Farris, W.T.

    1995-09-01

    The objective of this analysis is to qualitatively rank the Hanford Site high-level waste (HLW) tanks according to their potential public health impacts through various (groundwater, surface water, and atmospheric) exposure pathways. Data from all 149 single-shell tanks (SSTs) and 23 of the 28 double-shell tanks (DSTs) in the Tank Waste Remediation System (TWRS) Program were analyzed for chemical and radiological carcinogenic as well as chemical noncarcinogenic health impacts. The preliminary aggregate score (PAS) ranking system was used to generate information from various release scenarios. Results based on the PAS ranking values should be considered relative health impacts rather than absolute risk values.

  7. Work plan for the identification of techniques for in-situ sensing of layering/interfaces of Hanford high level waste tank

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F. Jr.

    1995-06-16

    The purpose of this work scope is to identify a specific potential technology/device/instrument/ideas that would provide the tank waste data. A method is needed for identifying layering and physical state within the large waste tanks at the Hanford site in Washington State. These interfaces and state changes can adversely impact sampling and characterization activities.

  8. Structure and Ubiquitination-Dependent Activation of TANK-Binding Kinase 1

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    2013-03-01

    Full Text Available Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1 induces type I interferon expression and modulates nuclear factor κB (NF-κB signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ∊ (IKK∊ but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents.

  9. A High Fidelity Computational Tool for Modeling Thermal Vent Systems in Cryogenic Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Control and management of cryogenic propellant tank pressures in low gravity is an important technical challenge to overcome for future long duration space missions....

  10. High Level Waste Tank Closure Modeling with Geographic Information Systems (GIS)

    Energy Technology Data Exchange (ETDEWEB)

    BOLLINGER, JAMES

    2004-07-29

    Waste removal from 49 underground storage tanks located in two tank farms involves three steps: bulk waste removal, water washing to remove residual waste, and in some cases chemical cleaning to remove additional residual waste. Not all waste can be completely removed by these processes-resulting in some residual waste loading following cleaning. Completely removing this residual waste would be prohibitively expensive; therefore, it will be stabilized by filling the tanks with grout. Acceptable residual waste loading inventories were determined using one-dimensional groundwater transport modeling to predict future human exposure based on several scenarios. These modeling results have been incorporated into a geographic information systems (GIS) application for rapid evaluation of various tank closure options.

  11. Fuel reprocessing tank

    Energy Technology Data Exchange (ETDEWEB)

    Gonda, Sumitora

    1998-10-09

    A tank of the present invention for spent fuels comprises a stainless steel tank main body for storing a highly corrosive dissolving solution, a steam jet pump disposed to the inside of the tank main body for transferring the dissolving solution to the outside of the tank main body and pipelines connecting them. With such a constitution, abnormal abrasion and drag of mechanical parts are less caused. In addition, a cleaning nozzle and a cleaning liquid pipeline which eliminates clogging of a sucking port of the steam jet pump if clogging is caused by sludges are disposed thereby enabling to avoid possibility of clogging. (T.M.)

  12. Exposure Scenarios and Unit Dose Factors for the Hanford Immobilized Low Activity Tank Waste Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    RITTMANN, P.D.

    1999-12-29

    Exposure scenarios are defined to identify potential pathways and combinations of pathways that could lead to radiation exposure from immobilized tank waste. Appropriate data and models are selected to permit calculation of dose factors for each exposure

  13. Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Panos G. Datskos; Michael J. Sepaniak; Nickolay Lavrik; Pampa Dutta; Mustafa Culha

    2005-12-28

    The main objective of this research program is to develop robust and reliable micro-electro-mechanical sensing systems, based on microcantilevers (MCs), that can operate in liquid environments with high levels of sensitivity and selectivity. The chemical responses of MCs result from analyte-induced differential stress at the cantilever surfaces. We aim to employ various surface nanostructuring strategies that enhance these stresses and hence the degree of static bending of the cantilevers. Receptor phases as self assembled monolayers (SAMs) and thin films are being synthesized and tested to provide selectivity. Selectivity is chemically enhanced by using different phases on individual MCs in arrays and by adding a spectroscopic component, surface enhanced Raman spectrometry (SERS), in hybrid approaches to sensing. Significant progress was made in tasks that were listed in the work plan for DOE EMSP project ''Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste''. Several project areas are listed below and discussed and referenced to our literature on the topics.

  14. Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Panos G. Datskos; Michael J. Sepaniak; Nickolay Lavrik; Pampa Dutta; Mustafa Culha

    2005-12-28

    The main objective of this research program is to develop robust and reliable micro-electro-mechanical sensing systems, based on microcantilevers (MCs), that can operate in liquid environments with high levels of sensitivity and selectivity. The chemical responses of MCs result from analyte-induced differential stress at the cantilever surfaces. We aim to employ various surface nanostructuring strategies that enhance these stresses and hence the degree of static bending of the cantilevers. Receptor phases as self assembled monolayers (SAMs) and thin films are being synthesized and tested to provide selectivity. Selectivity is chemically enhanced by using different phases on individual MCs in arrays and by adding a spectroscopic component, surface enhanced Raman spectrometry (SERS), in hybrid approaches to sensing. Significant progress was made in tasks that were listed in the work plan for DOE EMSP project ''Hybrid Micro-Electro-Mechanical Systems for Highly Reliable and Selective Characterization of Tank Waste''. Several project areas are listed below and discussed and referenced to our literature on the topics.

  15. Hydrogen gas filling into an actual tank at high pressure and optimization of its thermal characteristics

    Science.gov (United States)

    Khan, Md. Tawhidul Islam; Monde, Masanori; Setoguchi, Toshiaki

    2009-09-01

    Gas with high pressure is widely used at present as fuel storage mode for different hydrogen vehicles. Different types of materials are used for constructing these hydrogen pressure vessels. An aluminum lined vessel and typically carbon fiber reinforced plastic (CFRP) materials are commercially used in hydrogen vessels. An aluminum lined vessel is easy to construct and posses high thermal conductivity compared to other commercially available vessels. However, compared to CFRP lined vessel, it has low strength capacity and safety factors. Therefore, nowadays, CFRP lined vessels are becoming more popular in hydrogen vehicles. Moreover, CFRP lined vessel has an advantage of light weight. CFRP, although, has many desirable properties in reducing the weight and in increasing the strength, it is also necessary to keep the material temperature below 85 °C for maintaining stringent safety requirements. While filling process occurs, the temperature can be exceeded due to the compression works of the gas flow. Therefore, it is very important to optimize the hydrogen filling system to avoid the crossing of the critical limit of the temperature rise. Computer-aided simulation has been conducted to characterize the hydrogen filling to optimize the technique. Three types of hydrogen vessels with different volumes have been analyzed for optimizing the charging characteristics of hydrogen to test vessels. Gas temperatures are measured inside representative vessels in the supply reservoirs (H2 storages) and at the inlet to the test tank during filling.

  16. Development of a hydrogen absorbing layer in the outer shell of high pressure hydrogen tanks

    Energy Technology Data Exchange (ETDEWEB)

    Janot, R. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France); Latroche, M. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France)]. E-mail: michel.latroche@iscsa.cnrs.fr; Percheron-Guegan, A. [Laboratoire de Chimie Metallurgique des Terres Rares, UPR 209 CNRS, Institut des Sciences Chimiques Seine-Amont, 2-8, rue Henri Dunant, 94320 Thiais (France)

    2005-11-25

    This study is focused on the development of a hydrogen absorbing Zr{sub 2}Fe layer in the outer shell of high pressure (70 MPa) hydrogen storage tanks. This layer aims to absorb hydrogen coming from micro-cracks, as those formed by hydrogen embrittlement of the aluminium liner. A multi-phased Zr{sub 2}Fe alloy prepared by induction melting presents a very fast absorption kinetic and a maximum absorption capacity of about 1.8 wt.%. The volume expansion upon hydrogen absorption reaches 19% and is very anisotropic. The good resistance to contamination of the Zr{sub 2}Fe alloy is also demonstrated, since the absorption kinetic remains very fast after heating in air at 150 deg. C with the carbon fiber-epoxy resin composite used for the reinforcement of the high pressure storage vessel. Moreover, Zr{sub 2}Fe ribbons can be prepared by melt-spinning. An annealing treatment above the recrystallization temperature of the amorphous phase (around 410 deg. C) is needed to obtain hydrogen absorption rate similar to that of induction-melted Zr{sub 2}Fe alloy. However, the annealing leads to the limitation of the hydrogen capacity to 1.2 wt.%, due to the occurrence of an absorption-disproportionation phenomenon.

  17. High Power Conditioning of the 202 MHz IH Tank 2 at the CERN LINAC3

    CERN Document Server

    Broere, J; Kugler, H; Ratzinger, U; Vretenar, Maurizio

    1998-01-01

    High accelerating gradients are very interesting for future machines, and, in particular, for high-current heavy-ion linac projects like the "Inertial Fusion Driver". In order to explore the maximum field achievable in an Interdigital-H type structure (IH), an experiment has been carried out at CERN with the Lead Ion Linac (Linac3). After the 1997 run, the RF amplifiers were rearranged in order to allow the feeding of the IH Tank number 2 (1.54 m long, 28 gaps, frequency of 202.56 MHz) with up to 2 MW pulsed RF power. After two weeks of conditioning at pulse lengths varying between 200 ms and 1 ms with a constant pulse repetition rate of 0.8 Hz, the maximum effective accelerating gradient achieved was 10.7 MV/m. This corresponds to a local field maximum of 75 MV/m, and to fields in excess of 50 MV/m (3.5 times the Kilpatrick limit) on large portions of the drift tube surfaces. This paper reports the conditioning procedure used, the measurements of field emission current at different voltages and pulse lengths...

  18. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  19. POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.; Stripling, C.; Fisher, D.; Elder, J.

    2010-04-26

    The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of immersion in a similar solution at 125 C except that the aluminate concentration was reduced to 0.3 M. Visual inspection of the plate revealed that stress corrosion cracking had not initiated from the machined crack tips in the weld or in the heat affected zone. NDE ultrasonic testing also confirmed subsurface cracking did not occur. Based on these results, it can be concluded that the environmental condition of these tests was unable to develop stress corrosion cracking within the test periods for the small welded U-bends and for the large plates, which were welded with an identical procedure as used in the construction of the actual nuclear waste tanks in the 1960s. The

  20. Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1995-10-01

    This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

  1. High-activity liquid packaging design criteria

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    In recent studies, it has been acknowledged that there is an emerging need for packaging to transport high-activity liquid off the Hanford Site to support characterization and process development activities of liquid waste stored in underground tanks. These studies have dealt with specimen testing needs primarily at the Hanford Site; however, similar needs appear to be developing at other US Department of Energy (DOE) sites. The need to ship single and multiple specimens to offsite laboratories is anticipated because it is predicted that onsite laboratories will be overwhelmed by an increasing number and size (volume) of samples. Potentially, the specimen size could range from 250 mL to greater than 50 L. Presently, no certified Type-B packagings are available for transport of high-activity liquid radioactive specimens in sizes to support Site missions.

  2. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

    Directory of Open Access Journals (Sweden)

    Karimi Ali

    2013-01-01

    Full Text Available Abstract The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  3. Biodegradation of High Concentrations of Benzene Vapors in a Two Phase Partition Stirred Tank Bioreactor

    Directory of Open Access Journals (Sweden)

    Ali Karimi

    2013-01-01

    Full Text Available The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil has been emphasized, so at the first stage the removal efficiency (RE and elimination capacity (EC of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580?mg/m3, a condition at which, the elimination capacity and removal efficiency were 181?g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene.

  4. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  5. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    Energy Technology Data Exchange (ETDEWEB)

    DI Kaplan; RJ Serne

    2000-02-24

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct

  6. Material selection for Multi-Function Waste Tank Facility tanks

    Energy Technology Data Exchange (ETDEWEB)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  7. A comparison of BNR activated sludge systems with membrane and settling tank solid-liquid separation.

    Science.gov (United States)

    Ramphao, M C; Wentzel, M C; Ekama, G A; Alexander, W V

    2006-01-01

    Installing membranes for solid-liquid separation into biological nutrient removal (BNR) activated sludge (AS) systems makes a profound difference not only to the design of the membrane bio-reactor (MBR) BNR system itself, but also to the design approach for the whole wastewater treatment plant (WWTP). In multi-zone BNR systems with membranes in the aerobic reactor and fixed volumes for the anaerobic, anoxic and aerobic zones (i.e. fixed volume fractions), the mass fractions can be controlled (within a range) with the inter-reactor recycle ratios. This zone mass fraction flexibility is a significant advantage of MBR BNR systems over BNR systems with secondary settling tanks (SSTs), because it allows changing the mass fractions to optimise biological N and P removal in conformity with influent wastewater characteristics and the effluent N and P concentrations required. For PWWF/ADWF ratios (fq) in the upper range (fq approximately 2.0), aerobic mass fractions in the lower range (f(maer) settling and long sludge age). However, the volume reduction compared with equivalent BNR systems with SSTs will not be large (40-60%), but the cost of the membranes can be offset against sludge thickening and stabilisation costs. Moving from a flow unbalanced raw wastewater system to a flow balanced (fq = 1) low (usually settled) wastewater strength system can double the ADWF capacity of the biological reactor, but the design approach of the WWTP changes away from extended aeration to include primary sludge stabilisation. The cost of primary sludge treatment then has to be offset against the savings of the increased WWTP capacity.

  8. High efficient heat pump system using storage tanks to increase COP by means of the ISEC concept - Part 1: Model validation

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    The purpose of the ISEC concept is to provide a high-efficient heat pump system for hot water production.The ISEC concept uses two storage tanks for the water, one discharged and one charged. Hot water for theindustrial process is tapped from the charged tank, while the other tank is charging....... Charging is done bycirculating the water in the tank through the condenser of a heat pump several times and thereby graduallyheating the water. The charging is done with a higher mass flow rate than the discharging to reach severalcirculations of the water during the time frame of one discharging....... This result in a lower condensingtemperature than if the water was heated in one step. Two test setups were built, one to test the performanceof the heat pump gradually heating the water and one to investigate the stratification in the storage tanks.Furthermore, a dynamic model of the system was implemented...

  9. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  10. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  11. Tank waste remediation system operational scenario

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  12. Think Tanks

    Science.gov (United States)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  13. High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates: A review

    Institute of Scientific and Technical Information of China (English)

    D.E.RAWLINGS

    2008-01-01

    The microbial consortium used in continuous-flow,stirred tank processes to treat gold-bearing arsenopyrite concentrates became adapted to high concentrations of arsenic over a number of years.The dominant microorganisms,Acidithiobacillus caldus and Leptospirillum ferriphilum,were found to contain two sets of arsenic resistance genes.One set of ars genes was present in all isolates of a species irrespective of whether they were highly arsenic resistant or not.A second set of ars genes was present on Tn21-like transposons and was found in all strains tested that had been adapted to high concentrations of arsenic.The arsenic resistance transposons present in At.caldus and L.ferriphilum were closely related,but sufficiently different for them to have been acquired independently rather than having been passed from one bacterium to the other.The transposons were transpositionally active in Escherchia coli and were shown to confer higher levels of arsenic resistance than the chromosomally-located ars genes where it was possible to test this.Transposons containing arsenic resistance genes that were identical or closely related to the transposon from L.ferriphilum,originally found in South Africa,were also found in both L.ferrooxidans and L.ferriphilum isolates from South America and Europe.An arsB gene knockout of At.caldus was produced by homologous recombination that demonstrated both the ability of the chromosomal ars genes to confer low levels of arsenic resistance in At.caldus and the development of a genetic system for the creation of knock-out mutants.

  14. ICPP Tank Farm systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, W.B.; Beer, M.J.; Cukars, M.; Law, J.P.; Millet, C.B.; Murphy, J.A.; Nenni, J.A.; Park, C.V.; Pruitt, J.I.; Thiel, E.C.; Ward, F.S.; Woodard, J.

    1994-01-01

    During the early years (1950--1965) of Idaho Chemical Processing Plant (ICPP) operations, eleven, 300,000-gallon waste storage tanks were constructed. A project was in progress to replace these aging tanks; however, since fuel reprocessing has been curtailed at ICPP, it is not clear that the new tanks are required. The Department of Energy (DOE) requested a systems engineering evaluation to determine the need for the new tanks. Over 100 alternatives were identified during a facilitated team meeting using Value Engineering techniques. After eliminating any ideas which clearly could not meet the requirements, the remaining ideas were combined into nine basic cases with five sub cases. These fourteen cases were then carefully defined using two methods. First, each case was drawn graphically to show waste processing equipment interfaces and time constraints where they existed or were imposed. Second, each case was analyzed using a time-dependent computer simulation of ICPP waste management activities to determine schedule interactions, liquid storage requirements, and solid waste quantities. Based on the evaluation data, the team developed the following recommendations: Install and operate the high-level liquid waste evaporator; minimize liquid waste generation as much as possible within the constraints of required ICPP operational, safety, and environmental commitments; bring a Waste Immobilization Facility on line by 2008 or earlier; operate NWCF as required to alleviate the need for new tank farm capacity; maximize the concentration of Na and K in the calcine to minimize the final amount of waste requiring immobilization; avoid using Bin Set 7 for calcine storage, if possible, to reduce future calcine retrieval and D&D costs; and use WM-190 for liquid waste storage and one of the pillar and panel vaulted tanks as the spare.

  15. Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2016-01-01

    Determination of slosh damping is a very challenging task as there is no analytical solution. The damping physics involve the vorticity dissipation which requires the full solution of the nonlinear Navier-Stokes equations. As a result, previous investigations and knowledge were mainly carried out by extensive experimental studies. A Volume-Of-Fluid (VOF) based CFD program developed at NASA MSFC was applied to extract slosh damping in a baffled tank from the first principle. First, experimental data using water with subscale smooth wall tank were used as the baseline validation. CFD simulation was demonstrated to be capable of accurately predicting natural frequency and very low damping value from the smooth wall tank at different fill levels. The damping due to a ring baffle at different liquid fill levels from barrel section and into the upper dome was then investigated to understand the slosh damping physics due to the presence of a ring baffle. Based on this study, the Root-Mean-Square error of our CFD simulation in estimating slosh damping was less than 4.8%, and the maximum error was less than 8.5%. Scalability of subscale baffled tank test using water was investigated using the validated CFD tool, and it was found that unlike the smooth wall case, slosh damping with baffle is almost independent of the working fluid and it is reasonable to apply water test data to the full scale LOX tank when the damping from baffle is dominant. On the other hand, for the smooth wall, the damping value must be scaled according to the Reynolds number. Comparison of experimental data, CFD, with the classical and modified Miles equations for upper dome was made, and the limitations of these semi-empirical equations were identified.

  16. Water Tank Experiments on Stratified Flow over Double Mountain-Shaped Obstacles at High-Reynolds Number

    Directory of Open Access Journals (Sweden)

    Ivana Stiperski

    2017-01-01

    Full Text Available In this article, we present an overview of the HyIV-CNRS-SecORo (Hydralab IV-CNRS-Secondary Orography and Rotors Experiments laboratory experiments carried out in the CNRM (Centre National de Recherches Météorologiques large stratified water flume. The experiments were designed to systematically study the influence of double obstacles on stably stratified flow. The experimental set-up consists of a two-layer flow in the water tank, with a lower neutral and an upper stable layer separated by a sharp density discontinuity. This type of layering over terrain is known to be conducive to a variety of possible responses in the atmosphere, from hydraulic jumps to lee waves and highly turbulent rotors. In each experiment, obstacles were towed through the tank at a constant speed. The towing speed and the size of the tank allowed high Reynolds-number flow similar to the atmosphere. Here, we present the experimental design, together with an overview of laboratory experiments conducted and their results. We develop a regime diagram for flow over single and double obstacles and examine the parameter space where the secondary obstacle has the largest influence on the flow. Trapped lee waves, rotors, hydraulic jumps, lee-wave interference and flushing of the valley atmosphere are successfully reproduced in the stratified water tank. Obstacle height and ridge separation distance are shown to control lee-wave interference. Results, however, differ partially from previous findings on the flow over double ridges reported in the literature due to the presence of nonlinearities and possible differences in the boundary layer structure. The secondary obstacle also influences the transition between different flow regimes and makes trapped lee waves possible for higher Froude numbers than expected for an isolated obstacle.

  17. Tank waste treatment R and D activities at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, R.T.; Lee, D.D.; Beahm, E.C.; Collins, J.L.; Davidson, D.J.; Egan, B.Z.; Mattus, A.J.; Walker, J.F. Jr. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-08-01

    Oak Ridge National Laboratory (ORNL) served as the pilot plant for the Hanford production facility during the 1940s. As a result, the waste contained in the ORNL storage tanks has similarities to waste found at other sites, but is typically 10 to 100 times less radioactive. It is estimated that nearly 4.9 million liters of legacy of waste is stored on the site of ORNL. Of this volume about one-fifth is transuranic sludges. The remainder of the waste volume is classified as low-level waste. The waste contains approximately 130,000 Ci, composed primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. The wastes were originally acidic in nature but were neutralized using Na{sub 2}CO{sub 3}, NaOH, or CaO to allow their storage in tanks constructed of carbon steel or concrete (Gunite). In addition to the legacy waste, about 57,000 L of concentrated waste is generated annually, which contains about 13,000 Ci, consisting primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. As part of the US department of Energy`s (DOE`s) Environmental Management Tanks Focus Area and Efficient Separations and Processing programs, a number of tasks are under way at ORNL to address the wastes currently stored in tanks across the DOE complex. This paper summarizes the efforts in three of these tasks: (1) the treatment of the tank supernatant to remove Cs, Tc, and Sr; (2) the leaching or washing of the sludges to reduce the volume of waste to be vitrified; and (3) the immobilization of the sludges.

  18. Tank waste characterization basis

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1996-08-09

    This document describes the issues requiring characterization information, the process of determining high priority tanks to obtain information, and the outcome of the prioritization process. In addition, this document provides the reasoning for establishing and revising priorities and plans.

  19. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D. (comp.)

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  20. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...... different heat storage types is compared. Design/methodology/approach - The thermal performance of Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems is calculated with the simulation program TRNSYS. Two different TRNSYS models based on measurements were developed and used....... Findings - Based on the calculations it is concluded that low flow solar combisystems based on bikini tanks are promising for low energy buildings, while solar combisystems based on tank-in-tank stores are attractive for the houses with medium heating demand and old houses with high heating demand...

  1. Validation of High-Resolution CFD Method for Slosh Damping Extraction of Baffled Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2016-01-01

    Propellant slosh is a potential source of disturbance critical to the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. A Volume-Of-Fluid (VOF) based Computational Fluid Dynamics (CFD) program developed at MSFC was applied to extract slosh damping in the baffled tank from the first principle. First the experimental data using water with sub-scale smooth wall tank were used as the baseline validation. It is demonstrated that CFD can indeed accurately predict low damping values from the smooth wall at different fill levels. The damping due to a ring baffles at different depths from the free surface was then simulated, and fairly good agreement with experimental measurement was observed. Comparison with an empirical correlation of Miles equation is also made.

  2. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1998-08-01

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  3. Caustic leaching of high-level radioactive tank sludge: A critical literature review

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, C.P.; Welch, T.D.; Hunt, R.D.

    1997-12-31

    The Department of Energy (DOE) must treat and safely dispose of its radioactive tank contents, which can be separated into high-level waste (HLW) and low-level waste (LLW) fractions. Since the unit costs of treatment and disposal are much higher for HLW than for LLW, technologies to reduce the amount of HLW are being developed. A key process currently being studied to reduce the volume of HLW sludges is called enhanced sludge washing (ESW). This process removes, by water washes, soluble constituents such as sodium salts, and the washed sludge is then leached with 2--3 M NaOH at 60--100 C to remove nonradioactive metals such as aluminum. The remaining solids are considered to be HLW while the solutions are LLW after radionuclides such as {sup 137}Cs have been removed. Results of bench-scale tests have shown that the ESW will probably remove the required amounts of inert constituents. While both experimental and theoretical results have shown that leaching efficiency increases as the time and temperature of the leach are increased, increases in the caustic concentration above 2--3 M will only marginally improve the leach factors. However, these tests were not designed to validate the assumption that the caustic used in the ESW process will generate only a small increase (10 Mkg) in the amount of LLW; instead, the test conditions were selected to maximize leaching in a short period and used more water and caustic than is planned during full-scale operations. Even though calculations indicate that the estimate for the amount of LLW generated by the ESW process appears to be reasonable, a detailed study of the amount of LLW from the ESW process is still required. If the LLW analysis indicates that sodium management is critical, then a more comprehensive evaluation of the clean salt process or caustic recycle would be needed. Finally, experimental and theoretical studies have clearly demonstrated the need for the control of solids formation during and after leaching.

  4. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  5. Calculation of Boil-Off Gas (BOG Generation of KC-1 Membrane LNG Tank with High Density Rigid Polyurethane Foam by Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Jeong Hyeonwon

    2017-03-01

    Full Text Available Recently, a new type of LNG tank named “KC-1 membrane LNG tank” has been developed by Korean Gas Corporation (KOGAS, and Samsung Heavy Industries (SHI is currently building KC-1 membrane type LNG carriers. Unlike other LNG tanks, the KC-1 membrane LNG tank has a single-insulation structure rather than a double-insulation structure. For a given tank’s boundary condition, heat transfer analysis is performed from the external to the internal environment of the LNG tank by numerical simulation for three tanks. In each tank, the main thermally resistant layer of insulation is assembled with a High density rigid Polyurethane Foam (H-PUF, which is blown with one of three different types of hydrofluorocarbons-namely-HFC-365mfc, 245fa, and 245fa-e (enhanced. Advantage of such blowing agents is that it has a lower Ozone Depletion Potential (ODP than HCFC-141b or carbon dioxide (CO2 that has been used in the past as well as having low thermal conductivity. A Reduced Order Model is utilized to a 3-dimensional section of the insulation to calculate equivalent thermal conductivity. The equivalent thermal conductivity of the insulation is then applied to the rest of LNG tank, reducing the size of tank simulation domain as well as computation time. Tank’s two external and internal boundary conditions used are those defined by the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC and the United States Coast Guard (USCG conditions. Boil-off Rate (BOR of the tank that has the insulation with H-PUF blown with HFC-245fa resulted in 0.0927 %/day and 0.0745 %/day for IGC and USCG conditions, respectively.

  6. Characterization Of Supernate Samples From High Level Waste Tanks 13H, 30H, 37H, 39H, 45F, 46F and 49H

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, M. E.; Barnes, M. J.; Peters, T. B.; Diprete, D. P.; Hobbs, D. T.; Fink, S. D.

    2005-06-15

    This document presents work conducted in support of technical needs expressed, in part, by the Engineering, Procurement, and Construction Contractor for the Salt Waste Processing Facility (SWPF). The Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) analyze and characterize supernate waste from seven selected High Level Waste (HLW) tanks to allow: classification of feed to be sent to the SWPF; verification that SWPF processes will be able to meet Saltstone Waste Acceptance Criteria (WAC); and updating of the Waste Characterization System (WCS) database. This document provides characterization data of samples obtained from Tanks 13H, 30H, 37H, 39H, 45F, 46F, and 49H and discusses results. Characterization of the waste tank samples involved several treatments and analysis at various stages of sample processing. These analytical stages included as-received liquid, post-dilution to 6.44 M sodium (target), post-acid digestion, post-filtration (at 3 filtration pore sizes), and after cesium removal using ammonium molybdophosphate (AMP). All tanks will require cesium removal as well as treatment with Monosodium Titanate (MST) for {sup 90}Sr (Strontium) decontamination. A small filtration effect for 90Sr was observed for six of the seven tank wastes. No filtration effects were observed for Pu (Plutonium), Np (Neptunium), U (Uranium), or Tc (Technetium); {sup 137}Cs (Cesium) concentration is ~E+09 pCi/mL for all the tank wastes. Tank 37H is significantly higher in {sup 90}Sr than the other six tanks. {sup 237}Np in the F-area tanks (45F and 46F) are at least 1 order of magnitude less than the H-Area tank wastes. The data indicate a constant ratio of {sup 99}Tc to Cs in the seven tank wastes. This indicates the Tc remains largely soluble in Savannah River Site (SRS) waste and partitions similarly with Cs. {sup 241}Am (Americium) concentration was low in the seven tank wastes. The majority of data were detection limit values, the largest being

  7. TANK 5 SAMPLING

    Energy Technology Data Exchange (ETDEWEB)

    Vrettos, N; William Cheng, W; Thomas Nance, T

    2007-11-26

    Tank 5 at the Savannah River Site has been used to store high level waste and is currently undergoing waste removal processes in preparation for tank closure. Samples were taken from two locations to determine the contents in support of Documented Safety Analysis (DSA) development for chemical cleaning. These samples were obtained through the use of the Drop Core Sampler and the Snowbank Sampler developed by the Engineered Equipment & Systems (EES) group of the Savannah River National Laboratory (SRNL).

  8. TANK 5 SAMPLING

    Energy Technology Data Exchange (ETDEWEB)

    Vrettos, N; William Cheng, W; Thomas Nance, T

    2007-11-26

    Tank 5 at the Savannah River Site has been used to store high level waste and is currently undergoing waste removal processes in preparation for tank closure. Samples were taken from two locations to determine the contents in support of Documented Safety Analysis (DSA) development for chemical cleaning. These samples were obtained through the use of the Drop Core Sampler and the Snowbank Sampler developed by the Engineered Equipment & Systems (EES) group of the Savannah River National Laboratory (SRNL).

  9. Safety analysis report for the gunite and associated tanks project remediation of the South Tank Farm, facility 3507, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Platfoot, J.H.

    1998-02-01

    The South Tank Farm (STF) is a series of six, 170,000-gal underground, domed storage tanks, which were placed into service in 1943. The tanks were constructed of a concrete mixture known as gunite. They were used as a portion of the Liquid Low-Level Waste System for the collection, neutralization, storage, and transfer of the aqueous portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at Oak Ridge National Laboratory (ORNL). The last of the tanks was taken out of service in 1986, but the tanks have been shown by structural analysis to continue to be structurally sound. An attempt was made in 1983 to empty the tanks; however, removal of all the sludge from the tanks was not possible with the equipment and schedule available. Since removal of the liquid waste in 1983, liquid continues to accumulate within the tanks. The in-leakage is believed to be the result of groundwater dripping into the tanks around penetrations in the domes. The tanks are currently being maintained under a Surveillance and Maintenance Program that includes activities such as level monitoring, vegetation control, High Efficiency Particulate Air (HEPA) filter leakage requirement testing/replacement, sign erection/repair, pump-out of excessive liquids, and instrument calibration/maintenance. These activities are addressed in ORNL/ER-275.

  10. Application of ''Confirm tank T is an appropriate feed source for Low-Activity waste feed batch X'' to specific feed batches

    Energy Technology Data Exchange (ETDEWEB)

    JO, J.

    1999-02-23

    This document addresses the characterization needs of tanks as set forth in the ''Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X'' Data Quality Objective (DQO) (Certa and Jo 1998). The primary purpose of this document is to collect existing data and identify the data needed to determine whether or not the feed source(s) are appropriate for a specific batch before transfer is made to the feed staging tanks. To answer these questions, the existing tank data must be collected and a detailed review performed. If the existing data are insufficient to complete a full comparison, additional data must be obtained from the feed source(s). Additional information requirements need to be identified and formally documented, then the source tank waste must be sampled or resampled and analyzed. Once the additional data are obtained, the data shall be incorporated into the existing database for the source tank and a reevaluation of the data against the DQO must be made.

  11. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  12. Nitrogen tank

    CERN Document Server

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  13. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Quality Assurance Functional Area Requirements Identification Document (RID), addresses the programmatic requirements that ensure risks and environmental impacts are minimized, ensure safety, reliability, and performance are maximized through the application of effective management systems commensurate with the risks posed by the Tank Farm Facility and its operation. This RID incorporates guidance intended to provide Tank Farms management with the necessary requirements information to develop, upgrade, or assess the effectiveness of a Quality Assurance Program in the performance of organizational and functional activities. Quality Assurance is defined as all those planned and systematic actions necessary to provide adequate confidence that a facility, structure, system, or component will perform satisfactorily and safely in service. This document will provide the specific requirements to meet DNFSB recommendations and the guidance provided in DOE Order 5700.6C, utilizing industry codes, standards, regulatory guidelines, and industry good practices that have proven to be essential elements for an effective and efficient Quality Assurance Program as the nuclear industry has matured over the last thirty years.

  14. Hydrodynamically induced loads on components submerged in high-level waste-storage tanks

    Science.gov (United States)

    Weiner, E. O.; Julyk, J. L.; Rezvani, M. A.

    1994-06-01

    This paper addresses the effects of added mass on components submerged in fluids. In particular, as new equipment is designed for installation in the double-shell waste-storage tanks at the Hanford Site near Richland, Washington, the equipment and the tank must be evaluated for the anticipated loads. Seismically induced loads combined with loadings from other sources must be considered during this evaluation. A literature review shows that, for components in fluids confined to a narrow annulus or without a free surface, drastic reductions in response to seismic excitation are predicted by two-dimensional analysis. This phenomenon has been supported by testing. The reductions are explained in terms of mass coupling and buoyancy effects. For equipment submerged in fluids having a free surface and large annulus, practice suggest that it is appropriate to lump the added-mass terms with the component to address the hydrodynamic effects adequately. As in the case of a narrow annulus, this practice will reduce the natural frequency of the submerged component, but generally will increase the loads. This paper presents the structural evaluations of submerged components using computer models that employ mock fluid elements that determine the appropriateness of considering fluid added-mass and buoyancy effects. The results indicate that if a free surface exists and the submerged component has a wide fluid annulus about it, then the added mass should be lumped with the model, and buoyancy effects are not significant. The component then may be considered to be in an air environment, and the stresses are calculated from the application of standard response spectrum procedures.

  15. Hanford Tank Farms Vadose Zone, Addendum to the BX Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, A.W.

    2000-07-01

    This addendum to the BX Tank Farm Report (GJO-98-40-TARA, GJO-HAN-19) published in August 1998 incorporates the results of high-rate and repeat logging activities along with shape factor analysis of the logging data. A high-rate logging system was developed and deployed in the BX Tank Farm to measure cesium-137 concentration levels in high gamma flux zones where the spectral gamma logging system was unable to collect usable data because of high dead times and detector saturation. This report presents additional data and revised visualizations of subsurface contaminant distribution in the BX Tank Farm at the DOE Hanford Site in the state of Washington.

  16. Tank 241-SY-101 push mode core sampling and analysis plan

    Energy Technology Data Exchange (ETDEWEB)

    CONNER, J.M.

    1998-10-09

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for push mode core samples from tank 241-SY-101 (SY-101). It is written in accordance with Data Quality Objective to Support Resolution of the Flammable Gas Safety Issue (Bauer 1998), Low Activity Waste Feed Data Quality Objectives (Wiemers and Miller 1997 and DOE 1998), Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Certa 1998), and the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues apply to tank SY-101 for this sampling event. Brown et al. also identifies high-level waste, regulatory, pretreatment and disposal issues as applicable issues for this tank. However, these issues will not be addressed via this sampling event.

  17. F-AREA PUMP TANK 1 MIXING ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2008-11-05

    The F-area pump tanks are used to transfer supernate, sludge, and other materials. In any transfer, the solution must stay well mixed without allowing particulate matter to settle out of the liquid and, thus, accumulate in the bottom of the pump tank. Recently, the pulse jet mixing in F-area Pump Tank 1 (FPT1) has been decommissioned. An analysis of the liquid transfer through FPT1 has been performed using computational fluid dynamics (CFD) methods to assess whether or not the velocities throughout the tank will remain high enough to keep all particulate suspended using only transfer and recirculation pumps. The following paragraph is an abbreviated synopsis of the transfer procedure for FPT1 [1, 2]. Prior to a transfer, FPT1 begins to be filled with inhibited water through the inlet transfer line (TI). When the tank liquid level reaches 52.5 inches above the absolute tank bottom, the recirculation pump (RI and RO) is activated. At a tank liquid level of 72.5 inches above the absolute tank bottom, the outlet transfer line (TO) is activated to reduce the liquid level in FPT1 and transfer inhibited water to H-area Pump Tank 7 (HPT7). The liquid level is reduced down to 39.5 inches, with an allowable range from 37.5 to 41.5 inches above the absolute tank bottom. HPT7 goes through a similar procedure as FPT1 until both have tank liquid levels of approximately 39.5 inches above the absolute tank bottom. The transfer of inhibited water continues until a steady-state has been reached in both pump tanks. At this point, the supernate/sludge transfer begins with a minimum flow rate of 70 gpm and an average flow rate of 150 gpm. After the transfer is complete, the pump tanks (both FPT1 and HPT7) are pumped down to between 20.5 and 22.5 inches (above absolute bottom) and then flushed with 25,000 gallons of inhibited water to remove any possible sludge heal. After the flushing, the pump tanks are emptied. Note that the tank liquid level is measured using diptubes. Figure 2

  18. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  19. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    Energy Technology Data Exchange (ETDEWEB)

    SHULTZ, M.V.

    1999-04-05

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  20. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  1. Septic tank additive impacts on microbial populations.

    Science.gov (United States)

    Pradhan, S; Hoover, M T; Clark, G H; Gumpertz, M; Wollum, A G; Cobb, C; Strock, J

    2008-01-01

    Environmental health specialists, other onsite wastewater professionals, scientists, and homeowners have questioned the effectiveness of septic tank additives. This paper describes an independent, third-party, field scale, research study of the effects of three liquid bacterial septic tank additives and a control (no additive) on septic tank microbial populations. Microbial populations were measured quarterly in a field study for 12 months in 48 full-size, functioning septic tanks. Bacterial populations in the 48 septic tanks were statistically analyzed with a mixed linear model. Additive effects were assessed for three septic tank maintenance levels (low, intermediate, and high). Dunnett's t-test for tank bacteria (alpha = .05) indicated that none of the treatments were significantly different, overall, from the control at the statistical level tested. In addition, the additives had no significant effects on septic tank bacterial populations at any of the septic tank maintenance levels. Additional controlled, field-based research iswarranted, however, to address additional additives and experimental conditions.

  2. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    D' Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  3. Tank 241-C-106 waste retrieval sluicing system process control plan

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  4. Ideological Think Tanks in the States: An Inventory of Their Prevalence, Networks, and Higher Education Policy Activity

    Science.gov (United States)

    Ness, Erik C.; Gándara, Denisa

    2014-01-01

    This study takes an inventory of a particular type of intermediary organization ascendant within the state-level higher education policy: ideological think tanks. Our inventory identifies 99 think tanks: 59 affiliated with the conservative State Policy Network and 40 with the Progressive States Network. The analysis shows that state-level…

  5. Ideological Think Tanks in the States: An Inventory of Their Prevalence, Networks, and Higher Education Policy Activity

    Science.gov (United States)

    Ness, Erik C.; Gándara, Denisa

    2014-01-01

    This study takes an inventory of a particular type of intermediary organization ascendant within the state-level higher education policy: ideological think tanks. Our inventory identifies 99 think tanks: 59 affiliated with the conservative State Policy Network and 40 with the Progressive States Network. The analysis shows that state-level…

  6. Waste Tank Corrosion Program at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-11-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives.

  7. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  8. Experimental study and numerical simulation of the sludge concentration in a sedimentation tank

    Institute of Scientific and Technical Information of China (English)

    SHENG Ming-jun; MA Lu-ming; ZHU Wei; WANG Hong-wu

    2007-01-01

    Sedimentation tanks and clarifiers play a significant role in an active sludge system, and the efficiency of the whole system is closely related with the design and operation of the sedimentation tanks. This paper focuses on the sludge concentration in each cross-section of the sedimentation tank. We measured the sludge concentration to explore its distribution inside the tank, carried in-situ tests to research the fluid pattern and real operational rules of the sedimentation tank. We also used the computational fluid dynamics (CFD) software, PHOENICS 3.5, to simulate the solid-liquid two-phase fluid inside the tank and describe the sludge concentration distribution. The numerical results indicate obviously a sludge-water interface and a compression interface inside the sedimentation tank, a stratified sedimentary region with uniform concentration and a compression region with high concentration at the bottom of the tank. Although the simulated concentrations deviated slightly from those of in-situ tests, they were still acceptable for identifying the sludge interfaces and fluid pattern inside a sedimentation tank, which are important parameters for optimizing the tank size and improving the settling efficiency.

  9. High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Burt, D.L.

    1994-04-01

    The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

  10. Comparative safety analysis of LNG storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  11. TFA Tank Focus Area - multiyear program plan FY98-FY00

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

  12. TFA Tanks Focus Area Multiyear Program Plan FY00-FY04

    Energy Technology Data Exchange (ETDEWEB)

    BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

    1999-10-12

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste

  13. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  14. Speciation, Dissolution, and Redox Reactions of Chromium Relevant to Pretreatment and Separation of High-Level Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Clark Sue B.; Dhanpat Rai; Linfeng Rao

    2005-04-20

    Chromium, one of the problematic elements in tank sludges, is considered the most important constituent in defining the total volume of high-level radioactive waste (HLW) glass. Current sludge washing processes (e.g. caustic leaching, 3 M NaOH) are not effective in removing Cr. This inefficient removal would result in production of an unacceptably large volume of HLW glass and thus a tremendous increase in the cost of waste disposal. This proposed research seeks to develop fundamental data for chromium (Cr) reactions that are not currently available but are essential for developing effective methodologies for removing Cr form high-level waste (HLW). Our objectives are to study (1) the dissolution of several solid phases (e.g., CrOOH, Cr2O3(c), Cr(OH)3, and Fe and Cr, binary hydroxides, identified to be important from sludge leaching studies) in highly alkaline solutions and in the presence of other electrolytes (e.g., carbonate, phosphate, sulfate, nitrite), and (2) the effect of the nature of Cr solid phases and aqueous species on their redox reactivity with a variety of potential oxidants (e.g., H2o2, persulfate, O2, and ferrate). This information will provide critical support for developing enhanced pretreatment strategies for removing Cr from HLW and will achieve a major cost reduction HLW disposal.

  15. Speciation, Dissolution, and Redox Reactions of Chromium Relevant to Pretreatment and Separation of High-Level Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dhapat Rai; Linfeng Rao

    2006-06-01

    Chromium, one of the problematic elements in tank sludges, is considered the most important constituent in defining the total volume of high-level radioactive waste (HLW) glass. Current sludge-washing processes (e.g. caustic leaching, 3 M NaOH) are not effective in removing Cr. Such inefficient removal would result in the production of an unacceptably large volume of HLW glass and thus a tremendous increase in the cost of waste disposal. This proposed research seeks to develop fundamental data for chromium (Cr) reactions that are not currently available but are essential for developing effective methodologies for removing Cr form high-level waste (HLW). Our objectives are to study (1) the dissolution of several solid phases (e.g., CrOOH, Cr2O3(c), Cr(OH)3, and Fe and Cr, binary hydroxides, identified to be important from sludge leaching studies) in highly alkaline solutions and in the presence of other electrolytes (e.g., carbonate, phosphate, sulfate, nitrite), and (2) the effect of the nature of Cr solid phases and aqueous species on their redox reactivity with a variety of potential oxidants (H2O2, persulfate, hypochlorite, etc.). This information will provide critical support for developing enhanced pretreatment strategies for removing Cr from HLW and will achieve a major cost reduction in HLW disposal.

  16. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  17. Think tank on school-aged children: nutrition and physical activity to prevent the rise in obesity.

    Science.gov (United States)

    Mendelson, Rena

    2007-06-01

    The rise in childhood obesity has generated concern across a range of sectors. Stakeholders and experts in the area of children's health met at a Think Tank in Toronto organized by the Canadian Council for Food and Nutrition and the Program in Food Safety, Nutrition, and Regulatory Affairs at the University of Toronto to discuss the current evidence in place to inform the development of school policies to reduce childhood obesity. Although there is some evidence to suggest that school interventions may reduce obesity in children, there are other examples of programs that have had very little impact. The role of parents in the development of healthy eating and physical activity patterns is critical from the earliest stages of life and warrants further attention. Delegates agreed that we need ongoing input of experts and leaders from all sectors and fields to help us to effectively promote healthy lifestyles at schools and within the home, while respecting each child's need for safety, security, and respect.

  18. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  19. TRAF Family Member-associated NF-κB Activator (TANK) Inhibits Genotoxic Nuclear Factor κB Activation by Facilitating Deubiquitinase USP10-dependent Deubiquitination of TRAF6 Ligase.

    Science.gov (United States)

    Wang, Wei; Huang, Xuan; Xin, Hong-Bo; Fu, Mingui; Xue, Aimin; Wu, Zhao-Hui

    2015-05-22

    DNA damage-induced NF-κB activation plays a critical role in regulating cellular response to genotoxic stress. However, the molecular mechanisms controlling the magnitude and duration of this genotoxic NF-κB signaling cascade are poorly understood. We recently demonstrated that genotoxic NF-κB activation is regulated by reversible ubiquitination of several essential mediators involved in this signaling pathway. Here we show that TRAF family member-associated NF-κB activator (TANK) negatively regulates NF-κB activation by DNA damage via inhibiting ubiquitination of TRAF6. Despite the lack of a deubiquitination enzyme domain, TANK has been shown to negatively regulate the ubiquitination of TRAF proteins. We found TANK formed a complex with MCPIP1 (also known as ZC3H12A) and a deubiquitinase, USP10, which was essential for the USP10-dependent deubiquitination of TRAF6 and the resolution of genotoxic NF-κB activation upon DNA damage. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of TANK in human cells significantly enhanced NF-κB activation by genotoxic treatment, resulting in enhanced cell survival and increased inflammatory cytokine production. Furthermore, we found that the TANK-MCPIP1-USP10 complex also decreased TRAF6 ubiquitination in cells treated with IL-1β or LPS. In accordance, depletion of USP10 enhanced NF-κB activation induced by IL-1β or LPS. Collectively, our data demonstrate that TANK serves as an important negative regulator of NF-κB signaling cascades induced by genotoxic stress and IL-1R/Toll-like receptor stimulation in a manner dependent on MCPIP1/USP10-mediated TRAF6 deubiquitination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf;

    2009-01-01

    Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...

  1. Supporting document for the historical tank content estimate for B Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  2. Supporting document for the historical tank content estimate for A Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  3. Supporting document for the historical tank content estimate for BY Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the BY Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices contain data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  4. Supporting document for the historical tank content estimate for S tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  5. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  6. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Safeguards and Security (S&S) Functional Area address the programmatic and technical requirements, controls, and standards which assure compliance with applicable S&S laws and regulations. Numerous S&S responsibilities are performed on behalf of the Tank Farm Facility by site level organizations. Certain other responsibilities are shared, and the remainder are the sole responsibility of the Tank Farm Facility. This Requirements Identification Document describes a complete functional Safeguards and Security Program that is presumed to be the responsibility of the Tank Farm Facility. The following list identifies the programmatic elements in the S&S Functional Area: Program Management, Protection Program Scope and Evaluation, Personnel Security, Physical Security Systems, Protection Program Operations, Material Control and Accountability, Information Security, and Key Program Interfaces.

  7. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

  8. Tank designs for combined high pressure gas and solid state hydrogen storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea

    for each storage solution investigated in this work. Attention is given to solutions that involve high-pressure solid-state and gas hydrogen storage with an integrated passive cooling system. A set of libraries is implemented in the modeling platform to select among different material compositions, kinetic......Many challenges have still to be overcome in order to establish a solid ground for significant market penetration of fuel cell hydrogen vehicles. The development of an effective solution for on-board hydrogen storage is one of the main technical tasks that need to be tackled. The present thesis...... deals with the development of a simulation tool to design and compare different vehicular storage options with respect to targets based upon storage and fueling efficiencies. The set targets represent performance improvements with regard to the state-of-the-art technology and are separately defined...

  9. Function and requirement for a waste disloging and conveyance system for the Idaho National Engineering Laboratory high level liquid waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, O.D.

    1996-09-10

    In 1990 the U.S. Department of Energy (DOE) Office of Technology Development initiated the Light Duty Utility Arm (LDUA) program to support the Consent Order between the State of Idaho, U.S. Department of Energy, and the Environmental Protection Agency that requires ceasing use of the 11 high-level liquid waste (HLLW) storage tanks at the Idaho Chemical Processing Plant (ICPP).

  10. Tank 241-BX-106: Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-BX-106. (Waste from this tank shall be transferred to a double-shell tank.)

  11. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  12. Heat recovery from the compressed air of activation tanks at Herdorf sewage plant. Final report; Waermerueckgewinnung aus der Druckluft von Belebungsanlagen am Beispiel der Verbandsklaeranlage Herdorf. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H.; Strunkheide, J.; Eckhardt, R.

    2001-01-01

    Heat is removed from the compressed air of the activation tanks via a separate air cooler installed in the compressed-air line leading to the activation tank. The heat recovered will heat up the sludge in the digestion tank or will be fed into the heating system of the plant. The following goals are defined: Savings of heating oil; Saving of digestion gas as completely as possible; Power generation from the saved gas in a cogeneration unit; Power supply to the public grid. [German] Zielsetzung des Pilotprojektes ist die Nutzung der Druckluftwaerme von Belebungsanlagen als eine Moeglichkeit der Energieeinsparung auf Klaeranlagen. Die Nutzung der Verlustwaerme soll durch Abgriff der Waerme ueber einen separaten Luftkuehler erfolgen, der direkt in der Druckluftleitung zum Belebungsbecken installiert ist. Die auf diese Weise zurueckgewonnene Waerme soll zur Rohschlammaufheizung im Faulungsprozess dienen bzw. in das Betriebsheizungssystem eingespeist werden. Somit koennen folgende Ziele der Waermerueckgewinnungsanlage ins Auge gefasst werden: - Einsparung von Heizoel zu Heizzwecken in den Betriebsanlagen der Klaeranlage - Moeglichst komplette Einsparung von Faulgas im Heizkessel daraus folgend: - Mehrverstromung der im Heizkessel weniger verbrauchten Gasmengen im Blockheizkraftwerk (BHKW) mit dem Ergebnis: - Wirtschaftlicher Ertrag durch Einspeisung dieser Mehrmengen an Strom in das oeffentliche Versorgungsnetz. (orig.)

  13. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  14. Light Duty Utility Arm deployment in Tank WM-188

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, M.W.

    1999-12-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of Non-Compliance (NON) Consent Order requirements and several other ongoing initiatives.

  15. Light Duty Utility Arm Deployment in Tank WM-188

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Michael W

    2000-01-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of NonCompliance (NON) Consent Order requirements and several other ongoing initiatives.

  16. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked...

  17. ICPP Tank Farm planning through 2012

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-04-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed.

  18. Numerical Simulation of Spray Cleaning Railway Tank Cars with High Pressure Water%铁路罐车高压水射流清洗数值模拟

    Institute of Scientific and Technical Information of China (English)

    贾敏

    2011-01-01

    The FLUENT of CFD software was applied to simulate the spray cleaning of railway tank cars with high pressure water, and the velocity and pressure field were calculated to get jet characteristics, and to improve nozzle structure design and cleaning efficiency of tank cars.%利用计算流体动力学(CFD)软件FLUENT对铁路罐车高压水射流清洗进行数值模拟,计算了速度场、压力场,为了解射流特性、改善喷嘴结构设计和提高罐车清洗效果起指导作用.

  19. Neutron shielding effects of spent fuel tank of high temperature reactor%高温堆乏燃料贮罐中子屏蔽性能计算

    Institute of Scientific and Technical Information of China (English)

    李文茜; 李红; 谢锋; 曹建主; 方晟

    2013-01-01

    High temperature gas cooled reactor-pebble bed module (HTR-PM) adopts the coated particle spherical fuel elements, during the reactor's running, the constantly discharged spent fuel spheres will be loaded into the spent fuel tank. The spent fuel tank should use proper materials and thicknesses to shield gammas and neutrons effectively, and guarantee the dose limit not to be exceeded outside the tanks. Both relaxation length method and Monte Carlo simulation method were employed to study the neutrons' shielding capabilities of the spent fuel tank. Iron and borated polyethylene were chosen to be the shielding materials. The shielding capabilities of iron and borated polyethylene with different B4C contents (mass fraction 0, 5%, 10% and 15%) were calculated. The effect of the spent fuel spheres' self-absorption to the dose rate outside the tank was also considered, when the tank was full of the spent fuel spheres. The calculation results of these two methods are in good agreement, and provide important guiding suggestions for the shielding design in the practical engineering.%球床模块式高温气冷堆采用包覆颗粒球形燃料元件,在反应堆运行过程中,不断排出的乏燃料球将被装入乏燃料贮罐.乏燃料贮罐应选取适当的材料和厚度,对光子和中子进行有效屏蔽,使罐外的剂量率满足相应的限值要求.为此,使用张弛长度法和蒙特卡罗模拟法研究乏燃料贮罐的中子屏蔽性能.屏蔽材料为铁和含硼聚乙烯,计算了铁和不同B4C含量聚乙烯的屏蔽性能,并给出了乏燃料贮罐装满乏燃料球后,乏燃料球自吸收对贮罐外剂量率的影响.两种方法计算结果吻合很好,可以为实际工程中的屏蔽设计提供参考意见.

  20. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  1. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  2. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hall, H. K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  3. HANFORD TANK CLEANUP UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  4. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Waltz, R.

    2012-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

  5. Integral Radiator and Storage Tank

    Science.gov (United States)

    Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott

    2007-01-01

    A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0

  6. Tank closure reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, T.B.

    1997-04-18

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

  7. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...... are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle...... tank is investigated....

  8. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    Science.gov (United States)

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control.

  9. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  10. Tank characterization report: Tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  11. Criteria: waste tank isolation and stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.P.; Ogren, W.E.

    1976-09-01

    The crystallized Hanford high-level wastes stored in single-shell underground tanks consist of sludges and salt cakes covered with supernatural liquor. Purpose of stabilization and isolation is to reduce the releases and losses as a result of a loss of tank integrity. The tanks will be modified so that no inadvertent liquid additions can be made. Criteria for the isolation and stabilization are given and discussed briefly. (DLC)

  12. Tank evaluation system shielded annular tank application

    Energy Technology Data Exchange (ETDEWEB)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  13. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  14. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

  15. Fuel Tank Survivability for Hydrodynamic Ram Induced by High Velocity Fragments: Part I. Experimental Results and Design Summary

    Science.gov (United States)

    1979-01-01

    target tank without 5 the target panel. 2.3 Stiffener geometry. Material is 6063 -T6 6 aluminum. Dimensions are in mm. 2.4 Illustration of construction of...3.18 38.1 2.39 3.18 I’Figure 2.3. Stiffener geometry. Material is 6063 -’i𔄀 aluminum. Dimensions are in tim. i4 Figure 2.4. Illustration of construction...6 T2 100 6 T3 200 6 T4 100 100 T5 100 200 Dynamic panel displacement was determined with a moire fringe apparatus as described in Reference 2. A

  16. A systematic look at Tank Waste Remediation System privatization

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

    1996-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction.

  17. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    Energy Technology Data Exchange (ETDEWEB)

    SHULTZ, M.V.

    1999-02-12

    Tank 241-SY-101 (SY-101) waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from SY-101 to 241-SY-102 (SY-102). The results of the hazards evaluation will be compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Unreviewed Safety Question (USQ) process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

  18. Tank 241-TX-118 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1994-12-09

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-118.

  19. Tank 241-TX-105 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

  20. Tank 241-BX-104 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B.C.

    1994-12-14

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104.

  1. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  2. ICPP tank farm closure study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M. [and others

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituents are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.

  3. Long-term operation of a novel pilot-scale six tanks alternately operating activated sludge process in treating domestic wastewater.

    Science.gov (United States)

    Mohammed, R N; Abu-Alhail, S; Xi-Wu, L

    2014-08-01

    The performance of a new pilot-scale six tanks activated sludge process has been evaluated for 303 d, receiving real domestic wastewater with a flow rate of 15-24.4 L/h. Partial nitrification via nitrite and microbial community structure were investigated in this system. The result shows that the nitrite accumulation rate was achieved successfully over 94% in the last aerobic compartment through a combination of short hydraulic retention time and low dissolved oxygen (DO) level. Fluorescence in situ hybridization analysis was used to correlate ammonia-oxidizing bacteria (AOB) numbers with nutrient removal via nitrite. It was shown that in response to complete and partial nitrification modes, the numbers of AOB population were 7.7 x 10(7) cells/g mixed liquor suspended solids (MLSS) and 5.31 x 10(8) cells/g MLSS, respectively. The morphology of the sludge indicated that there is a small rod-shaped and spherical cluster which was mainly dominantly bacterial according to scanning electron microscope. Higher pollutant removal efficiencies of 86.2%, 98%, and 96.1%, for total nitrogen, NH4+ - N, and total phosphorus, respectively, were achieved by a long-term operation of the six tanks activated sludge process at a low DO concentration and low chemical oxygen demand to nitrogen ratio which were approximately equal to the complete nitrification-ldenitrification with the addition of an external carbon source at a concentration of 1.5-2.5 mg/L.

  4. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2.

    Science.gov (United States)

    Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl

    2017-04-01

    Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng, a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.

  5. On the network activity of the think tank in Zhejiang Province%浙江省高校智库网络活跃度评价研究

    Institute of Scientific and Technical Information of China (English)

    浙江工业大学全球智库研究中心课题组

    2016-01-01

    Based on the open internet data , we take the think tanks of Zhejiang universities as the research object .Their network activity is evaluated from two dimensions: the network attention de-gree and the construction of their websites .The study has found that although the network data can objectively and quantitatively reflect the activity of the university think tank in the network media , they are still impacted by such indeterminate factors as their search accuracy , institutional change , switch of communication , and so on .%以浙江省高校智库为研究对象,以网络公开数据为依据,从智库机构的网络关注度与智库机构网站建设状况两个维度尝试对浙江高校智库网络媒体活跃度进行评价。研究发现网络数据尽管能够客观、量化地反映高校智库在网络媒体上的活跃度,但也受到其搜索精度、机构变更、传播切换等不确定性的影响。

  6. Physical properties of highly active liquor containing molybdate solids

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, B.; Ward, T.; Roberts, R. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom); Cheeseright, J. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2016-07-01

    The reprocessing of irradiated nuclear fuel at Sellafield produces a nitric acid based Highly Active Liquor (HAL) waste. The liquor, containing fission products and process additives, is concentrated in an evaporator in order to reduce the volume and is then stored in Highly Active Storage Tanks (HASTs) prior to vitrification. Caesium phosphomolybdate (CPM) is precipitated during the evaporation process and can convert to zirconium molybdate (ZM) during storage. During Post Operational Clean Out (POCO) of the HASTs, it is expected that their highly active content will be reduced by repeated cycles of washing using nitric acid and other reagents. Initial washings are likely to have a chemical composition comparable to concentrated HAL, becoming more dilute during the wash-out process. It is expected that the wash-out process will also recover significant quantities of molybdate solids (ZM, CPM or a mixture) from the HASTs. In order to determine the processing challenges from such washings during POCO, the physical properties of varying concentrations of non-active HAL simulants containing molybdate solids have recently been measured by the UK's National Nuclear Laboratory. The following measurements are presented and discussed: Particle size distribution; Density; Settling behaviour of solids; Voidage of settled sediment beds; Viscosity; Yield stress; And influence of ZM morphology on physical properties. (authors)

  7. Preliminary safety criteria for organic watch list tanks at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Webb, A.B.; Stewart, J.L.; Turner, O.A. [Westinghouse Hanford Co., Richland, WA (United States); Plys, M.G.; Malinovic, B. [Fauske and Associates, Inc., Burr Ridge, IL (United States); Grigsby, J.M. [G & P Consulting, Inc. (United States); Camaioni, D.M.; Heasler, P.G.; Samuels, W.O.; Toth, J.J. [Pacific Northwest Lab., Portland, OR (United States)

    1995-11-01

    Condensed-phase, rapid reactions of organic salts with nitrates/nitrites in Hanford High Level Radioactive Waste single-shell tanks could lead to structural failure of the tanks resulting in significant releases of radionuclides and toxic materials. This report establishes appropriate preliminary safety criteria to ensure that tank wastes will be maintained safe. These criteria show that if actual dry wastes contain less than 1.2 MJ/kg of reactants reaction energy or less 4.5 wt % of total organic carbon, then the waste will be safe and will not propagate if ignited. Waste moisture helps to retard reactions; when waste moisture exceeds 20 wt %, rapid reactions are prevented, regardless of organic carbon concentrations. Aging and degradation of waste materials has been considered to predict the types and amounts to organic compounds present in the waste. Using measurements of 3 waste phases (liquid, salt cake, and sludge) obtained from tank waste samples analyzed in the laboratory, analysis of variance (ANOVA) models were used to estimate waste states for unmeasured tanks. The preliminary safety criteria are based upon calorimetry and propagation testing of likely organic compounds which represent actual tank wastes. These included sodium salts of citrate, formate, acetate and hydroxyethylethylenediaminetricetate (HEDTA). Hot cell tests of actual tank wastes are planned for the future to confirm propagation tests performed in the laboratory. The effects of draining liquids from the tanks which would remove liquids and moisture were considered because reactive waste which is too dry may propagate. Evaporation effects which could remove moisture from the tanks were also calculated. The various ways that the waste could be heated or ignited by equipment failures or tank operations activities were considered and appropriate monitoring and controls were recommended.

  8. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  9. Thermography to Inspect Insulation of Large Cryogenic Tanks

    Science.gov (United States)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  10. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  11. PROGRESS & CHALLENGES IN CLEANUP OF HANFORDS TANK WASTES

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT, W.M.; SCHEPENS, R.

    2006-01-23

    The River Protection Project (RPP), which is managed by the Department of Energy (DOE) Office of River Protection (ORP), is highly complex from technical, regulatory, legal, political, and logistical perspectives and is the largest ongoing environmental cleanup project in the world. Over the past three years, ORP has made significant advances in its planning and execution of the cleanup of the Hartford tank wastes. The 149 single-shell tanks (SSTs), 28 double-shell tanks (DSTs), and 60 miscellaneous underground storage tanks (MUSTs) at Hanford contain approximately 200,000 m{sup 3} (53 million gallons) of mixed radioactive wastes, some of which dates back to the first days of the Manhattan Project. The plan for treating and disposing of the waste stored in large underground tanks is to: (1) retrieve the waste, (2) treat the waste to separate it into high-level (sludge) and low-activity (supernatant) fractions, (3) remove key radionuclides (e.g., Cs-137, Sr-90, actinides) from the low-activity fraction to the maximum extent technically and economically practical, (4) immobilize both the high-level and low-activity waste fractions by vitrification, (5) interim store the high-level waste fraction for ultimate disposal off-site at the federal HLW repository, (6) dispose the low-activity fraction on-site in the Integrated Disposal Facility (IDF), and (7) close the waste management areas consisting of tanks, ancillary equipment, soils, and facilities. Design and construction of the Waste Treatment and Immobilization Plant (WTP), the cornerstone of the RPP, has progressed substantially despite challenges arising from new seismic information for the WTP site. We have looked closely at the waste and aligned our treatment and disposal approaches with the waste characteristics. For example, approximately 11,000 m{sup 3} (2-3 million gallons) of metal sludges in twenty tanks were not created during spent nuclear fuel reprocessing and have low fission product concentrations. We

  12. Functions and requirements for a waste dislodging and conveyance system for the gunite and associated tanks treatability study at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Potter, J.D.; Mullen, O.D.

    1997-02-01

    Since the mid 1940s, the Department of Defense (DOD) and the Department of Energy (DOE) have conducted research and development activities at the Oak Ridge National Laboratory (ORNL) in support of urgent national interests in the fields of nuclear weaponry and nuclear energy. Some of these activities resulted in radiologically hazardous waste being temporarily deposited at ORNL, Waste Area Grouping 1. At this location, waste is stored in several underground storage tanks, awaiting ultimate final disposal. There are tanks of two basic categories. One category is referred to as the gunite tanks, the other category is associated tanks. The ORNL Gunite and Associated Tanks Treatability Study (GAAT TS) project was initiated in FY 1994 to support a record of decision in selecting from seven different options of technologies for retrieval and remediation of these tanks. As part of this decision process, new waste retrieval technologies will be evaluated at the 25-foot diameter gunite tanks in the North tank farm. Work is currently being conducted at Hanford and the University of Missouri-Rolla to evaluate and develop some technologies having high probability of being most practical and effective for the dislodging and conveying of waste from underground storage tanks. The findings of these efforts indicate that a system comprised of a dislodging end effector employing jets of high-pressure fluids, coupled to a water-jet conveyance system, all carried above the waste by a mechanical arm or other mechanism, is a viable retrieval technology for the GAAT TS tasks.

  13. Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    The emergence of more think tanks in recent decades has spawned some interest in how they function and impact policy-making in the European Union and its member states. So far however few empirical studies of think tanks have been carried out and think tanks have mainly been studied...... in their national contexts. Questions regarding patterns and differences in think tank organisations and functions across countries have largely been left unanswered. This paper advances a definition and research design that uses different expert roles to categorise think tanks. A sample of 34 think tanks from...... Brussels, Denmark and Germany are categorised according to different expert roles in a pilot analysis. As the analysis is sensitive to the interpretation and weight given to different indicators, besides from picturing the think tank landscape, the analysis is intended to trigger a discussion of how...

  14. TANK48 CFD MODELING ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.

    2011-05-17

    -phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

  15. Think Tanks as Policy Brokers in Partially Organized Fields

    DEFF Research Database (Denmark)

    Garsten, Christina; Sörbom, Adrienne

    As has been noted in research on think tanks it is difficult to describe what a think tank is, and to pinpoint what it is in think tank activities that generates powerful relationships towards other actors. This is even more the case when talking of transnational think tanks. In this report we give...... in the brokerage of ideas and knowledge, implying an intermediary activity, wherein ideas are translated, shaped and formatted. Operating at the interfaces of various actors, think-tank experts formulate and negotiate ideas with and among actors, encouraging them to adopt and use those ideas. The main argument...

  16. A robotic end effector for inspection of storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, G.; Gittleman, M. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work.

  17. Vadose zone characterization project at the Hanford Tank Farms: U Tank Farm Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The U.S. Department of Energy Grand Junction Office (DOE-GJO) was tasked by the DOE Richland Operations Office (DOE-RL) to perform a baseline characterization of the gamma-ray-emitting radionuclides that are distributed in the vadose zone sediments beneath and around the single-shell tanks (SSTs) at the Hanford Site. The intent of this characterization is to determine the nature and extent of the contamination, to identify contamination sources when possible, and to develop a baseline of the contamination distribution that will permit future data comparisons. This characterization work also allows an initial assessment of the impacts of the vadose zone contamination as required by the Resource Conservation and Recovery Act (RCRA). This characterization project involves acquiring information regarding vadose zone contamination with borehole geophysical logging methods and documenting that information in a series of reports. This information is presently limited to detection of gamma-emitting radionuclides from both natural and man-made sources. Data from boreholes surrounding each tank are compiled into individual Tank Summary Data Reports. The data from each tank in a tank farm are then compiled and summarized in a Tank Farm Report. This document is the Tank Farm Report for the U Tank Farm. Logging operations used high-purity germanium detection systems to acquire laboratory-quality assays of the gamma-emitting radionuclides in the sediments around and below the tanks. These assays were acquired in 59 boreholes that surround the U Tank Farm tanks. Logging of all boreholes was completed in December 1995, and the last Tank Summary Data Report for the U Tank Farm was issued in September 1996.

  18. Safety criteria for organic watch list tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Meacham, J.E., Westinghouse Hanford

    1996-08-01

    This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.

  19. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    Anantatmula, R.P.; Schwenk, E.B. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations.

  20. Process control plan for tank 241-SY-101 surface level rise remediation

    Energy Technology Data Exchange (ETDEWEB)

    ESTEY, S.D.

    1999-06-29

    The tank 241-SY-101 transfer system was conceived and designed to address the immediate needs presented by rapidly changing waste conditions in tank 241-SY-101. Within the past year or so, the waste in this tank has exhibited unexpected behavior in the form of rapidly increasing crust growth. The Process Control Plan (PCP), HNF-4264, was written to translate high-level guidance and regulatory criteria and express it in terms of operating instructions for the waste transfer system. These controls include: (1) Tank Farm Operations Administrative Controls developed in response to DOE-ORP direction reg,arding supplemental controls placed upon tank 241-SY-101 surface level rise remediation activities specifically involving waste transfer activities. (2) Authorization Basis controls (Basis for Interim Operation (BIO)/Technical Safety Requirements (TSRs)) and supplemental DOE direction. (3) Environmental, Industrial Hygiene and Safety controls. (4) Operating Specification Document (OSD) controls. (5) Good operating practices. Included in the document are descriptions of tank conditions, waste conditions, major equipment, and a high-level overview of the system and the line-ups in which it operates. Primarily, the PCP addresses how the waste transfer will be managed, defining the monitoring and control methods including material balances to determine the progress and to define completion criteria for the transfer. The actual plant modifications and waste transfer will be authorized and controlled by plant procedures.

  1. 33 CFR 157.15 - Slop tanks in tank vessels.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Slop tanks in tank vessels. 157... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.15 Slop tanks in tank vessels. (a) Number....

  2. Chemical species of plutonium in Hanford radioactive tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  3. AX Tank farm process impacts study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-03-18

    This study provides facility and process concepts and costs for partial decontamination of the most heavily contaminated debris from the demolition of the four AX tanks and ancillary equipment items. This debris would likely be classified as high-level and/or remote handle TRU waste based on source and radiological inventory. A process flow sheet was developed to treat contaminated metal wastes such as pipes and tank liners as well as contaminated concrete and the residual waste and grout left in the tanks after final waste retrieval. The treated solid waste is prepared for delivery to either the ERDF or the Low-Level waste burial grounds. Liquid waste products are delivered to the private vitrification contractor for further treatment and storage. This is one of several reports prepared for use by the Hanford Tanks Initiative Project to develop retrieval performance criteria for tank farms.

  4. Radioactive tank waste remediation focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  5. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank...

  6. Tank characterization report for single-shell tank 241-BX-107

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, G.F.

    1996-02-28

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents.

  7. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    Energy Technology Data Exchange (ETDEWEB)

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanks (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.

  8. Successful field application of novel, non-silicone antifoam chemistries for high foaming heavy oil storage tanks in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Wylde, J.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Clariant Oil Services, Montreal, PQ (Canada)

    2008-10-15

    Heavy oil operators in northern Alberta have experienced production problems associated with foam formation in crude oil storage tanks. The foam could enter the transportation trucks and create separation problems in the process systems. Any antifoam used in the system could not contain silicone based polymers since these compounds affected the catalysts used in upgrading the crude oil and in the manufacture of asphalt. As such, there was a need to change the performance of the antifoam product. A phosphate ester and a salted amine were the previous incumbent antifoam products that did not perform well. Several chemistries were tested, including phosphate based products; ethoxylated and propoxylated esters; polyethylene glycol esters and oleates; alcohols, fatty alcohols and ethoxylated; and propoxylated alcohols. All products had to be freeze protected to -40 degrees C, which influenced the efficacy of antifoam chemicals. This paper described how laboratory testing has evolved to field wide implementation of a combined defoamer/antifoam chemistry. The laboratory tests revealed that foam induced in heavy, aged crude was very challenging and required the addition of heptane to create the foam. A potential follow-up may be to induce the foam without the addition of heptane by using a Seltzer cylinder in a semi-quantitative manner to rank performance of products against one another. The final selection of antifoam will depend on supply chain cost since the performance of the 2 blend products was essentially the same. 12 refs., 7 figs.

  9. High-melting point sediment from refined coconut oil stored in a tank for a long term.

    Science.gov (United States)

    Mochida, Yoshiyuki; Hasegawa, Fukiko

    2008-01-01

    A small amount of sediment occurs in refined coconut oil stored in a large-scale tank for a long term. This sediment is different from that generally called Cocos Wax, is insoluble in various organic solvents, and has an m.p. of about 100 degrees C. In this report, we have done a structural analysis of this sediment. The sediment was carried out by hydrolyzing with a KOH/ethyl alcohol solution including toluene. Samples were analyzed by elemental analysis, IR spectroscopy, EI-MS, CI-MS, field desorption mass spectrometry (FD-MS), and MALDI/TOF-MS. The hydrolyzates were a compound including an oxo group, and its relative molecular mass was 382 for the acid part and 412 for the unsaponified matter according to EI-MS (ionization energy was 70 eV and 15 eV) and CI-MS (reagent gases were i-butane, ammonia, and nitrogen monoxide). The relative molecular mass of the sediment was 1140 according to the mass spectrometry of FD, EI, and MALDI. It was elucidated based on the characteristic absorption analysis by IR and the fragmentation behavior of the EI-MS that the sediment was a wax ester, 3, 9-di-9-oxotetradocosanecarboxy-11-oxohexacosane, consisting of an acid part of 9-oxotetradocosanecarboxylic acid and an unsaponified matter of 3, 9-di-hydroxy-11-oxohexacosane.

  10. Fermentation characteristics in stirred-tank reactor of exopolysaccharides with hypolipidemic activity produced by Pleurotus geesteranus 5#

    Directory of Open Access Journals (Sweden)

    MAO DUOBIN

    2013-01-01

    Full Text Available In this study, the hypolipidemic effect of exopolysaccharides (EPS from Pleurotus geesteranus 5# fermenting liquor by the optimal culture conditions in a 5-L stirred-tank reactor was investigated. The hypolipidemic effect of the polysaccharide, investigated in streptozotocin induced diabetic mice, decreased plasma glucose, total cholesterol and triacylglycerol concentrations by 17.1 %, 18.8 % and 12.0 %, respectively. The results of the present investigation strongly demonstrate the potential of this polysaccharide to prevent hyperglycemia in the experimental animals. Under optimal culture conditions, the maximum concentrations of mycelial and EPS were 22.63 g/L after 7 d cultivation and 11.09 g/L after 10 d, respectively. Furthermore, the morphological parameters (i.e. mean diameter, circularity, roughness and compactness of the pellets and the broth viscosity were characterized. It was proved that compactness of the pellet morphology (R2=0.963, p<0.01 was significantly and positively determined with mycelial biomass. Moreover, mean diameter (R2=93.3, p<0.01 and broth viscosity (R2=0.950, p<0.01 were significantly and positively determined with EPS content.

  11. Lifecycle Verification of Tank Liner Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Smith, Barton [ORNL

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  12. Lifecycle Verification of Tank Liner Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Smith, Barton [ORNL

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  13. Fuel Tank Technology

    Science.gov (United States)

    1989-11-01

    structures b) - Equal thermic inertia c) - Equal fluid volume d) - Equal pressure variation on both wings at the change of the room temperature - This...individual fuel sections. Each fuel section is further ccmpartmentated by metall tank shear walls and tank floors into three individual fuel cells to...plate Dy a stretch forming process, and the metallic tank floors . The air intake segments extend from one bulkhead to the other, thus reducing assembly

  14. Bases for solid waste volume estimates for tank waste remediation system

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, G.W., Westinghouse Hanford

    1996-08-01

    This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

  15. Out-of-tank evaporator demonstration: Tanks focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned.

  16. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    DiCenso, A.T.; Amato, L.C.; Lambie, R.W.; Franklin, J.D.; Seymour, B.J.; Johnson, K.W.; Stevens, R.H. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Remund, K.M. [Pacific Northwest Lab., Richland, WA (United States); Sasaki, L.M.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-01

    This document provides the characterization information and interprets the data for Single-Shell Tank 241-C-109. Single-Shell Tank 241-C-109 is an underground storage tank containing high-level radioactive waste. It is located in the C Tank Farm in the Hanford Site`s 200 East Area. The tank was sampled in September of 1992 to address the Ferrocyanide Unreviewed Safety Question. Analyses of tank waste were also performed to support Hanford Federal Facility Agreement and Consent Order Milestone M-44-08. Tank 241-C-109 went into service in 1946 and received first-cycle decontamination waste from bismuth phosphate process operations at B Plant in 1948. Other waste types added that are expected to contribute to the current contents include ferrocyanide scavenging waste and Strontium Semiworks waste. It is the last tank in a cascade with Tanks 241-C-107 and 241-C-108. The tank has a capacity of 2,010 kL (530 kgal) and currently contains 250 kL (66 kgal) of waste, existing primarily of sludge. Approximately 9.15 kL (4 kgal) of supernate remain. The sludge is heterogeneous, with significantly different chemical compositions depending on waste depth. The major waste constituents include aluminum, calcium, iron, nickel, nitrate, nitrite, phosphate, sodium, sulfate and uranium. The major radionuclides present are Cesium 137 and Strontium 90. The results of this characterization indicate that the waste in this tank is adequately described in the Dangerous Waste Permit Application of the Single-Shell Tank System.

  17. 高温气体增压对液氧贮箱壁面温度影响研究%Study of the Effect of High-temperature Gas Pressurization on LOX Tank Wall Temperature

    Institute of Scientific and Technical Information of China (English)

    范瑞祥; 黄兵; 田玉蓉

    2013-01-01

    新一代运载火箭液氧贮箱普遍采用高温氦气增压方案,高温气体进入液氧贮箱后对贮箱壁面进行加热,贮箱壁面温度的升高会引起材料机械性能变化而影响贮箱壁厚的设计参数,进而影响到全箭性能。通过研究,提出一种分析高温气体增压下液氧贮箱壁温的一维分布参数模型,使用该模型的计算结果与试验结果吻合良好。以此模型为基础,对影响贮箱壁温的3个主要因素进行分析。%High-temperature helium pressurization system is commonly used in LOX tanks of Chinese new generation launch vehicles. The tank wall is heated after high-temperature helium entering the tank. So the temperature rising of tank wall will change material mechanical property and influence its thickness design, and therefore the performance of the launch vehicle will be affected. In this paper, a model which could be used to analyze the temperature distribution of LOX tank wall during high-temperature gas pressurization is presented. The analysis results with the model show good agreement with the experiment results. Based on this model, three main factors which affect the temperature of tank wall are analyzed.

  18. Homogeneity of passively ventilated waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.; Jensen, L.; Cromar, R.D.; Hayes, J.C. [and others

    1997-07-01

    Gases and vapors in the high-level radioactive waste underground storage tanks at the Hanford Site are being characterized to help resolve waste storage safety issues and estimate air emissions. Characterization is accomplished by collecting and analyzing air samples from the headspaces of the tanks. Samples are generally collected from a single central location within the headspace, and it is assumed that they are representative of the entire headspace. The validity of this assumption appears to be very good for most tanks, because thermally induced convection currents within the headspaces mix constituents continuously. In the coolest waste tanks, however, thermally induced convection may be suppressed for several months of each year because of the seasonal soil temperature cycle. To determine whether composition does vary significantly with location in a cool tank, the headspaces of three waste tanks have been sampled at different horizontal and vertical locations during that part of the year when thermally induced convection is minimized. This report describes the bases for tank selection and the sampling and analytical methods used, then analyzes and discusses the results. Headspace composition data from two risers at three elevations in Tanks 241-B-103, TY-103, and U-112 have been analyzed by standard analysis of variance (ANOVA) methods, which indicate that these tank headspaces are essentially homogeneous. No stratification of denser vapors (e.g., carbon tetrachloride, dodecane) or lighter gases (e.g., ammonia, hydrogen) was detected in any of the three tanks. A qualitative examination of all tentatively identified organic vapors in SUMMA{trademark} and TST samples supported this conclusion.

  19. CHARACTERIZATION OF THE TANK 18F SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Click, D.; Diprete, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 18F closure samples. Tank 18F slurry samples analyzed included the liquid and solid fractions derived from the 'as-received' slurry materials along with the floor scrape bottom Tank 18F wet solids. These samples were taken from Tank 18F in March 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 18F samples, the samples from the north quadrants of the tank were combined into one North Tank 18F Hemisphere sample and similarly the south quadrant samples were combined into one South Tank 18F Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 18F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the minimum detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 18F, some were not met due to spectral interferences. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  20. CHARACTERIZATION OF TANK 19F SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Click, D.

    2009-12-17

    The Savannah River National Laboratory (SRNL) was asked by Liquid Waste Operations to characterize Tank 19F closure samples. Tank 19F slurry samples analyzed included the liquid and solid fractions derived from the slurry materials along with the floor scrape bottom Tank 19F wet solids. These samples were taken from Tank 19F in April 2009 and made available to SRNL in the same month. Because of limited amounts of solids observed in Tank 19F samples, the samples from the north quadrants of the tank were combined into one Tank 19F North Hemisphere sample and similarly the south quadrant samples were combined into one Tank 19F South Hemisphere sample. These samples were delivered to the SRNL shielded cell. The Tank 19F samples were analyzed for radiological, chemical and elemental components. Where analytical methods yielded additional contaminants other than those requested by the customer, these results were also reported. The target detection limits for isotopes analyzed were based on detection values of 1E-04 {micro}Ci/g for most radionuclides and customer desired detection values of 1E-05 {micro}Ci/g for I-129, Pa-231, Np-237, and Ra-226. While many of the target detection limits, as specified in the technical task request and task technical and quality assurance plans were met for the species characterized for Tank 19F, some were not met. In a number of cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  1. NHD溶液脱碳高压闪蒸槽的改造总结%RECONSTRUCTION SUMMARY OF DE-CARBON HIGH-PRESSURE FLASH-TANK FOR NHD SOLUTION

    Institute of Scientific and Technical Information of China (English)

    沈君

    2012-01-01

    水煤浆气化装置由于净化脱碳系统负荷达到70%时,高压闪蒸槽多次出现带液现象。对高压闪蒸槽内部进行二次结构改造,但效果不理想,后又通过增加一套高压闪蒸槽的方法,彻底解决了高压闪蒸槽带液问题,通过4a的稳定运行表明,高压闪蒸槽改造是非常成功的。%Several liquid-entrainments is encountered in a high-pressure flash tank when the load of purification de-carbon system reaches 70% in coal-water slurry gasification plant. A second inner-structure reconstruction of the high-pressure flash tank is carried out with no good effect. Afterwards, an additional high-pressure flash tank is added and the liquid-entrainment is completely resolved. A 4-years'stable running shows that such reconstruction to the high-pressure flash tank is very successful.

  2. Rainwater tank drowning.

    Science.gov (United States)

    Byard, Roger W

    2008-11-01

    Drowning remains a significant cause of accidental death in young children. The site of drowning varies among communities and is influenced by cultural and geographic factors, including the availability of particular water sources. The drowning deaths of a twin two-year-old brother and sister in a rainwater tank are reported to demonstrate specific issues that may arise. Ladders, vegetation and trellises may provide access to tanks and should be removed. Secure child-proof access points should also be installed, particularly on in-ground tanks (given the ready accessibility of the latter). As there has been a recent trend in Australia to install more domestic rainwater tanks, the number of childhood rainwater tank drownings and near-drownings will need to be monitored by forensic pathologists and child death review committees to ensure that this has not led to the introduction of a new hazard into the home environment.

  3. The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov.

    Science.gov (United States)

    Gomes, Fátima C O; Safar, Silvana V B; Marques, Andrea R; Medeiros, Adriana O; Santos, Ana Raquel O; Carvalho, Cláudia; Lachance, Marc-André; Sampaio, José Paulo; Rosa, Carlos A

    2015-02-01

    The diversity of yeast species collected from the bromeliad tanks of Vriesea minarum, an endangered bromeliad species, and their ability to produce extracellular enzymes were studied. Water samples were collected from 30 tanks of bromeliads living in a rupestrian field site located at Serrada Piedade, Minas Gerais state, Brazil, during both the dry and rainy seasons. Thirty-six species were isolated, representing 22 basidiomycetous and 14 ascomycetous species. Occultifur sp., Cryptococcus podzolicus and Cryptococcus sp. 1 were the prevalent basidiomycetous species. The yeast-like fungus from the order Myriangiales, Candida silvae and Aureobasidium pullulans were the most frequent ascomycetous species. The diversity of the yeast communities obtained between seasons was not significantly different, but the yeast composition per bromeliad was different between seasons. These results suggest that there is significant spatial heterogeneity in the composition of populations of the yeast communities within bromeliad tanks, independent of the season. Among the 352 yeast isolates tested, 282 showed at least one enzymatic activity. Protease activity was the most widely expressed extracellular enzymatic activity, followed by xylanase, amylase, pectinase and cellulase activities. These enzymes may increase the carbon and nitrogen availability for the microbial food web in the bromeliad tank of V. minarum. Sequence analyses revealed the existence of 10 new species, indicating that bromeliad tanks are important sources of new yeasts. The novel species Occultifur brasiliensis, f.a., sp. nov., is proposed to accommodate the most frequently isolated yeast associated with V. minarum. The type strain of O. brasiliensis, f.a., sp. nov. is UFMG-CM-Y375(T) (= CBS 12687(T)). The Mycobank number is MB 809816.

  4. Energy storage-boiler tank

    Science.gov (United States)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  5. Fluid in Rectangular Tank – Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Kotrasová Kamila

    2014-06-01

    Full Text Available Ground-supported tanks are used to store a variety of liquids. During earthquake activity the liquid exerts impulsive and convective pressures (sloshing on the walls and bottom of the rectangular tank. This paper provides theoretical background for analytical calculating of circular frequencies and hydrodynamic pressures developed during an earthquake in rectangular container. Analytical results of first natural frequency are compared with experiment.

  6. Chemical and chemically-related considerations associated with sluicing tank C-106 waste to tank AY-102

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.

    1997-04-04

    New data on tank 241-C-106 were obtained from grab sampling and from compatibility testing of tank C-106 and tank AY-102 wastes. All chemistry-associated and other compatibility Information compiled in this report strongly suggests that the sluicing of the contents of tank C-106, in accord with appropriate controls, will pose no unacceptable risk to workers, public safety, or the environment. In addition, it is expected that the sluicing operation will successfully resolve the High-Heat Safety Issue for tank C-106.

  7. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  8. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  9. Tank 241-C-203: Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-C-203.

  10. Tank 241-C-204 Tank Characterization Plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-C-204.

  11. Tank 241-SX-115 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, L.M.

    1995-04-24

    This document is a plan which serves as the contractual agreement between the Characterization Project, Sampling Operations, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-SX-115.

  12. Tank 241-TY-104 Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-15

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-C Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-TY-104.

  13. TANK INSPECTION NDE RESULTS FOR FISCAL YEAR 2007INCLUDING WASTE TANKS 35, 36, 37, 38 AND 15

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J

    2007-09-27

    Ultrasonic (UT) nondestructive examinations (NDE) were performed on waste storage tanks 35, 36, 37, 38 and 15 at the Savannah River Site as a part of the 'In-Service Inspection (ISI) Program for High Level Waste Tanks.' 1 The inspections were performed from the annular space of the waste storage tanks. The inspections included thickness mapping and crack detection scans on specified areas of the tanks covering all present and historic interface levels and selected welds with particular emphasis on the vapor space regions. Including the tanks in this report, all of the 27 Type III tanks at SRS have been inspected in accordance with the ISI plan. Of the four Type III tanks examined this year, all had areas of reportable thickness in either the Primary or Secondary tank. All of these areas on the primary tank are attributed to fabrication artifacts. None of the four Type III tanks examined this year showed evidence of service induced thinning on the primary wall. All four tanks had secondary wall and/or floor plates where the remaining thickness measured below the 10% wall loss criteria. Tank 15, a Type II, non-stress relieved, waste tank was also inspected this fiscal year as part of the ISI program. The same examination techniques were used on Tank 15 as on the Type III tanks. Tank 15 has been out of service due to leakage from stress corrosion cracking (SCC). Inspections were performed to validate known corrosion models and determine if crack growth occurred since the previous examination five years ago. Several cracks were found to have increased in length perpendicular to the weld seam. In the areas of the 27 Type III tanks inspected to date, ten tanks have reportable thickness in the primary wall and 17 have reportable thickness in the secondary tank walls or floor. All of the reportable thickness areas in the primary walls are from fabrication artifacts. Incipient pitting has been detected in five of the 27 Type III primary tanks. No cracking was

  14. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    2013-11-27

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and tested with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing

  15. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    2013-11-27

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and tested with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing

  16. Supporting document for the historical tank content estimate for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  17. Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic.

    Science.gov (United States)

    Hong, Jeongsik; Silva, Rene A; Park, Jeonghyun; Lee, Eunseong; Park, Jayhyun; Kim, Hyunjung

    2016-05-01

    We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations.

  18. Annual Report, Fall 2016: Identifying Cost Effective Tank Waste Characterization Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Reboul, S. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-12-12

    This report documents the activities that were performed during the second year of a project undertaken to improve the cost effectiveness and timeliness of SRNL’s tank closure characterization practices. The activities performed during the first year of the project were previously reported in SRNL-STI-2015-00144. The scope of the second year activities was divided into the following three primary tasks: 1) develop a technical basis and strategy for improving the cost effectiveness and schedule of SRNL’s tank closure characterization program; 2) initiate the design and assembly of a new waste removal system for improving the throughput and reducing the personnel dose associated with extraction chromatography radiochemical separations; and 3) develop and perform feasibility testing of three alternative radiochemical separation protocols holding promise for improving high resource demand/time consuming tank closure sample analysis methods.

  19. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

  20. Status of tank 241-SY-101 data analyses

    Energy Technology Data Exchange (ETDEWEB)

    Anantatmula, R.P.

    1992-09-01

    The Waste Tank Flammable Gas Stabilization Program was established in 1990 to provide for resolution of a major safety issue identified for 23 of the high-level waste tanks at the Hanford Site. The safety issue involves the production, accumulation, and periodic release from these tanks of flammable gases in concentrations exceeding the lower flammability limits. This document deals primarily with tank 241-SY-101 from the SY Tank Farm. The flammable gas condition has existed for this tank since the tank was first filled in the time period from 1977 to 1980. During a general review of waste tank chemical stability in 1988--1989, this situation was re-examined and, in March 1990, the condition was declared to be an unreviewed safety question. Tank 241-SY-101 was placed under special operating restrictions, and a program of investigation was begun to evaluate the condition and determine appropriate courses of action. This report summarizes the data that have become available on tank 241-SY-101 since it was declared as an unreviewed safety question and updates the information reported in an earlier document (WHC-EP-0517). The report provides a technical basis for use in the evaluation of safety risks of the tank and subsequent resolution of the unreviewed safety question.

  1. 解读TANKED

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    品牌为重、创造为先,Tanked racing用不走“寻常路”给国内众多同行们生动地上了一课。通过持续近四年的高速成长,Tanked racingE成为中国头盔业翘楚,然而Tanked racing并不局限于此,因为未来的舞台还很大。

  2. Tank waste remediation system: An update

    Energy Technology Data Exchange (ETDEWEB)

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy`s Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M{sup 3} (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of {sup 90}Sr and {sup 137}Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal.

  3. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-03-02

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  4. Chemical speciation of strontium, americium, and curium in high level waste: Predictive modeling of phase partitioning during tank processing. Annual progress report, October 1996--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, A.R. [Pacific Northwest National Lab., Richland, WA (US); Choppin, G. [Florida State Univ., Tallahassee, FL (US)

    1997-12-31

    'The program at Florida State University was funded to collaborate with Dr. A. Felmy (PNNL) on speciation in high level wastes and with Dr. D. Rai (PNNL) on redox of Pu under high level waste conditions. The funding provided support for 3 research associates (postdoctoral researchers) under Professor G. R. Choppin as P.I. Dr. Kath Morris from U. Manchester (Great Britain), Dr. Dean Peterman and Dr. Amy Irwin (both from U. Cincinnati) joined the laboratory in the latter part of 1996. After an initial training period to become familiar with basic actinide chemistry and radiochemical techniques, they began their research. Dr. Peterman was assigned the task of measuring Th-EDTA complexation prior to measuring Pu(IV)-EDTA complexation. These studies are associated with the speciation program with Dr. Felmy. Drs. Morris and Irwin initiated research on redox of plutonium with agents present in the Hanford Tanks as a result of radiolysis or from use in separations. The preliminary results obtained thus far are described in this report. It is expected that the rate of progress will continue to increase significantly as the researchers gain more experience with plutonium chemistry.'

  5. 基于CFD的潜艇高压气吹除主压载水舱系统模拟%The simulation research of high Pressure air blowing the main ballast tank based on CFD

    Institute of Scientific and Technical Information of China (English)

    李其修; 刘辉; 吴向君

    2012-01-01

    高压气吹除主压载水舱是潜艇舱室进水情况下最有效的应急挽回手段之一.由于高压气吹除时压载水舱中剧烈的气液混合流动,导致建立的理论模型有一定局限性.本文通过CFD中两相流VOF模型对高压气吹除压载水舱的动态过程进行仿真,分析吹除过程中压载水舱中气-液混合现象、压力变化情况及压载水舱排水速率等特点,以验证高压气吹除压载水舱的理论模型.%The high pressure air blowing ballast tanks are the most effective means of emergency to restore under flooded submarine. As the process of blowing, there will bring the flow of exquisite gas-liquid mixture in the ballast compartment. This led to the theoretical models that have certain limitations. The paper simulates the dynamic process of high-pressure air blowing ballast tanks by VOF two-phase flow model to analyze gas-liquid mixture phenomena, pressure changes, the ballast tank drainage rate during the process of blowing ballast tank, which provides the basis to theoretical models for the establishment of the high pressure air blowing ballast tanks.

  6. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kearn P.; Thien, Michael G.

    2013-11-07

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.

  7. Tank waste remediation system operation and utilization plan,vol. I {ampersand} II

    Energy Technology Data Exchange (ETDEWEB)

    Kirkbride, R.A.

    1997-09-01

    The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

  8. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  9. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  10. Sonar Tank Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Sonar Tank Facility permits low cost initial 'wet' testing and check out prior to full scale deployment at sea. It can manage controlled conditions calibration...

  11. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Rapko, Brian M.

    2014-05-02

    The purpose of this report is three fold: 1) assemble the available information regarding technetium (Tc) inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into a final waste form; and 3) discuss/document in less detail the available data on the inventory of Tc in other "pools" such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. A thorough understanding of the inventory for mobile contaminants is key to any performance or risk assessment for Hanford Site facilities because potential groundwater and river contamination levels are proportional to the amount of contaminants disposed at the Hanford Site. Because the majority of the total 99Tc produced at Hanford (~32,600 Ci) is currently stored in Hanford’s 177 tanks (~26,500 Ci), there is a critical need for knowledge of the fate of this 99Tc as it is removed from the tanks and processed into a final solid waste form. Current flow sheets for the Hanford Waste Treatment and Immobilization Plant process show most of the 99Tc will be immobilized as low-activity waste glass that will remain on the Hanford Site and disposed at the Integrated Disposal Facility (IDF); only a small fraction will be shipped to a geologic repository with the immobilized high-level waste. Past performance assessment studies, which focused on groundwater protection, have shown that 99Tc would be the primary dose contributor to the IDF performance.

  12. Tank characterization report for Double-Shell Tank 241-SY-102

    Energy Technology Data Exchange (ETDEWEB)

    DiCenso, A.T.; Amato, L.C. [Los Alamos Technical Associates, Inc., NM (United States); Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-09

    This tank characterization report presents an overview of Double-Shell Tank 241-SY-102 (hereafter, Tank 241-SY-102) and its waste contents. It provides estimated concentrations and inventories for the waste components based on the latest sampling and analysis activities and background tank information. This report describes the results of three sampling events. The first core sample was taken in October 1988. The tank supernate and sludge were next core sampled in February and March of 1990 (Tingey and Sasaki 1995). A grab sample of the supernate was taken in March of 1994. Tank 241-SY-102 is in active service and can be expected to have additional transfers to and from the tank that will alter the composition of the waste. The concentration and inventory estimates reported in this document no longer reflect the exact composition of the waste but represent the best estimates based on the most recent and available data. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-08 (Ecology, EPA, DOE 1994).

  13. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid... requirements applicable to inner tanks for cryogenic liquid tank car tanks. ...

  14. TANK CAR CONSTRUCTION REFINMENT

    Directory of Open Access Journals (Sweden)

    A. N. Soberzhansjkyj

    2010-06-01

    Full Text Available The increase of volume and load-carrying capacity of tank cars is an urgent task for improving the efficiency of transportation of liquid bulk cargoes. Variants of the constructive and technical approaches, which allow increasing the specified indices, are considered. After the analysis the most rational constructive scheme meeting the modern requirements for tank cars and allowing to raise their productivity is chosen.

  15. Tank Inspection NDE Results for Fiscal Year 2014, Waste Tanks 26, 27, 28 and 33

    Energy Technology Data Exchange (ETDEWEB)

    Elder, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Vandekamp, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-29

    Ultrasonic nondestructive examinations (NDE) were performed on waste storage tanks 26, 27, 28 and 33 at the Savannah River Site as a part of the “In-Service Inspection (ISI) Program for High Level Waste Tanks.” No reportable conditions were identified during these inspections. The results indicate that the implemented corrosion control program continues to effectively mitigate corrosion in the SRS waste tanks. Ultrasonic inspection (UT) is used to detect general wall thinning, pitting and interface attack, as well as vertically oriented cracks through inspection of an 8.5 inch wide strip extending over the accessible height of the primary tank wall and accessible knuckle regions. Welds were also inspected in tanks 27, 28 and 33 with no reportable indications. In a Type III/IIIA primary tank, a complete vertical strip includes scans of five plates (including knuckles) so five “plate/strips” would be completed at each vertical strip location. In FY 2014, a combined total of 79 plate/strips were examined for thickness mapping and crack detection, equating to over 45,000 square inches of area inspected on the primary tank wall. Of the 79 plate/strips examined in FY 2014 all but three have average thicknesses that remain at or above the construction minimum thickness which is nominal thickness minus 0.010 inches. There were no service induced reportable thicknesses or cracking encountered. A total of 2 pits were documented in 2014 with the deepest being 0.032 inches deep. One pit was detected in Tank 27 and one in Tank 33. No pitting was identified in Tanks 26 or 28. The maximum depth of any pit encountered in FY 2014 is 5% of nominal thickness, which is less than the minimum reportable criteria of 25% through-wall for pitting. In Tank 26 two vertical strips were inspected, as required by the ISI Program, due to tank conditions being outside normal chemistry controls for more than 3 months. Tank 28 had an area of localized thinning on the exterior wall of the

  16. The Advance Experience of Foreign Top-level Think Tanks and its Enlightment to the Construction of Chinese University Think-Tank

    Directory of Open Access Journals (Sweden)

    Tao Yong

    2016-01-01

    Full Text Available This paper expounds the development course and current situation of foreign top-level Think Tank, and analyzes the important effects of foreign colleges and universities Think Tank in supporting national scientific decision-making and rapid development. It analyzes the development course and advanced experience of top-level Think Tank in America and other countries. The paper summaries the advance experiences, combines with the background and features of Think Tank construction of colleges and universities in China. It puts forward that Chinese colleges and universities Think Tank should aim at the national strategic needs, play the advantages of talents gathering and main innovation force, insist on opening, and set constructing professional colleges and universities Think Tank as the breakthrough point. The think tanks produce strategic consulting research results with high quality. The paper proposes the reference effect of foreign Think Tank on characteristic Think Tank construction of colleges and universities in China and the development strategy recommendations.

  17. Runtime and Pressurization Analyses of Propellant Tanks

    Science.gov (United States)

    Field, Robert E.; Ryan, Harry M.; Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chung P.

    2007-01-01

    , shown in blue on the right-hand side of the figures, enters the tank from the diffuser at the top of the figures and impinges on the RP-1, shown in red, while the propellant is being continuously drained at the rate of 1050 lbs/sec through a pipe at the bottom of the tank. The sequence of frames in Figure 1 shows the resultant velocity fields and mixing between nitrogen and RP-1 in a cross-section of the tank at different times. A vortex is seen to form in the incoming nitrogen stream that tends to entrain propellant, mixing it with the pressurant gas. The RP-1 mass fraction contours in Figure 1 are also indicative of the level of mixing and contamination of the propellant. The simulation is used to track the propagation of the pure propellant front as it is drawn toward the exit with the evolution of the mixing processes in the tank. The CFD simulation modeled a total of 10 seconds of run time. As is seen from Figure 1d, after 5.65 seconds the propellant front is nearing the drain pipe, especially near the center of the tank. Behind this pure propellant front is a mixed fluid of compromised quality that would require the test to end when it reaches the exit pipe. Such unsteady simulations provide an estimate of the time that a high-quality propellant supply to the test article can be guaranteed at the modeled mass flow rate. In the final paper, we will discuss simulations of the LOX and propellant tanks at NASA SSC being pressurized by an inert ullage. Detailed comparisons will be made between the CFD simulations and lower order models as well as with test data. Conditions leading to cryo collapse in the tank will also be identified.

  18. Fracture control plan for propellant and pressurant tanks

    Science.gov (United States)

    1981-01-01

    To assure the functional integrity of the GLL-RPM fuel and pressurized gas tank, all activities during entire lifetime of the tank, from manufacture to the end of the mission, must be monitored. Specifications are given for all procedures which influence the tank structure including design, manufacture, cleaning, test operations, and storage. Tests to be conducted to demonstrate that requirements of the fracture control plan are satisfied include static tests, cyclic load tests, proof tests, He-leak test, and acceptance tests.

  19. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Wang, Wen; Zhou, Qi [Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), UNEP-Tongji, Tongji University, Siping Road No. 1239, Shanghai 200092 (China); Shim, Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078 (China)

    2010-11-15

    Anaerobic hydrogen and methane production from cassava stillage in continuously stirred tank reactor (CSTR) were investigated in this study. Results showed that the heat-pretreatment of inoculum did not enhance hydrogen yield compared to raw inoculum under mesophilic condition after continuous operation. However, the hydrogen yield increased from about 14 ml H{sub 2}/gVS under mesophilic condition to 69.6 ml H{sub 2}/gVS under thermophilic condition due to the decrease of propionate concentration and inhibition of homoacetogens. Therefore, temperature was demonstrated to be more important than pretreatment of inoculum to enhance the hydrogen production. Under high organic loading rate (OLR) (>10 gVS/(L.d)), the two-phase thermophilic CSTR for hydrogen and methane production was stable with hydrogen and methane yields of 56.6 mlH{sub 2}/gVS and 249 mlCH{sub 4}/gVS. The one-phase thermophilic CSTR for methane production failed due to the accumulation of both acetate and propionate, leading to the pH lower than 6. Instead of propionate alone, the accumulations of both acetate and propionate were found to be related to the breakdown of methane reactor. (author)

  20. Planning High-Risk High-Reward Activities.

    NARCIS (Netherlands)

    Casault, Sébastien

    2014-01-01

    This body of work addresses a gap in financial and economic theories related to assets that are typically associated with high uncertainty. Specifically, this thesis provides some foundational work towards a new way to quantify and explain how high-risk high-reward activities, such as exploration,

  1. Poly stock project: development and studies on new Type IV tanks for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Barral, K.; Hembert, C.; Gerard, J. F.; Mazabraud, P.

    2005-07-01

    process consists in making the liner directly from the polyamide monomer : caprolactame in the rotomolding mold. This reaction takes place at moderate temperature. Metallic boss integration was slightly modified. Liner specific mechanical and permeation performances can be achieved by adjusting the initial chemical amount of monomer, activator and catalyst (formulation work). In parallel, 350 bar polymeric liner fully wrapped composite tank were manufactured and mechanically qualified in order to validate the composite design. Results of burst pressure and cycling are presented. The type IV tank prototype was very good at cycling : more than 55 000 cycles were reached without failure of the tank. Weight performance of the 22 liter tank, calculated as being the percentage of the mass of H2 stored on the mass of the tank filled with H2, is 4.25%. The H2 permeation rate through the liner was determined from tanks filled at very high pressure (350 bar). It was compared to laboratory measurements on disc-shaped polymer samples conducted at moderate pressure (4 to 100 bar). The material behaviour with pressure is not linear as it could have been expected. The complete study on polymer liner behaviour highlights the fact that depending on material type, permeation can be lower at high pressure. (Author)

  2. Grout and Glass Performance in Support of Stabilization/Solidification of the MVST Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.; Spence, R.D.

    1998-11-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) pending treatment for disposal. The waste separates into two phases: sludge and supematant. Some of the supematant from these tanks has been decanted, solidified into a grout, and stored for disposal as a solid low-level waste. The sludges in the tank bottoms have been accumulating ,for several years. Some of the sludges contain a high amount of gamma activity (e.g., `37CS concentration range of 0.01 3-11 MBq/g) and contain enough transuranic (TRU) radioisotopes to be classified as TRU wastes. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough in the available total constituent analysis for the MVST sludge to be classified as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste.

  3. Ferrocyanide Safety Program rationale for removing six tanks from the safety watch list

    Energy Technology Data Exchange (ETDEWEB)

    Borsheim, G.L.

    1993-09-01

    This report documents an in-depth study of single-shell tanks containing ferrocyanide wastes. Topics include: safety assessments, tank histories, supportive documentation about interim stabilization and planned remedial activities.

  4. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  5. Tanks focus area multiyear program plan FY97-FY99

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.

  6. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  7. Ce-Zr-La/Al2O3 prepared in a continuous stirred-tank reactor: a highly thermostable support for an efficient Rh-based three-way catalyst.

    Science.gov (United States)

    Wang, Su-Ning; Lan, Li; Hua, Wei-Bo; Shi, Zhong-Hua; Chen, Yao-Qiang; Gong, Mao-Chu; Zhong, Lin

    2015-12-21

    Two Ce-Zr-La/Al2O3 composite oxides, CZLA-C and CZLA-B, were synthesized using a co-precipitation method in a continuous stirred-tank reactor (CSTR) and a batch reactor (BR), respectively. Two Rh-based three-way catalysts (TWCs), Rh/CZLA-C and Rh/CZLA-B were obtained by a wet-impregnation method using the two composites as the supports. The physicochemical properties of the samples before and after thermal treatment at 1000 °C were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), H2-temperature programmed reduction (H2-TPR) and CO chemisorption. The results indicated that CZLA-C shows higher thermal stability than CZLA-B due to a sparsely-agglomerated morphology. Compared with Rh/CZLA-B, Rh/CZLA-C displayed better reducibility and higher thermal stability and exhibited significantly higher activity in the catalytic removal of the simulated gasoline vehicle exhaust emission (NO, CO and C3H8). Our work can provide a facile and economical synthesis route to advanced support materials and catalysts for exhaust emission control.

  8. Tank 241-Z-361 process and characterization history

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.A.

    1998-08-06

    An Unreviewed Safety Question (Wagoner, 1997) was declared based on lack of adequate authorization basis for Tank 241-Z-361 in the 200W Area at Hanford. This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people`s recollections of over twenty years ago. Records of transfers into the tank, past characterization efforts, and speculation were used to estimate the current condition of Tank 241-Z-361 and its contents. Information about the overall waste system as related to the settling tank was included to help in understanding the numbering system and process relationships. The Plutonium Finishing Plant was built in 1948 and began processing plutonium in mid-1949. The Incinerator (232-Z) operated from December 1961 until May 1973. The Plutonium Reclamation Facility (PRF, 236-Z) began operation in May 1964. The Waste Treatment Facility (242-Z) operated from August 1964 until August 1976. Waste from some processes went through transfer lines to 241-Z sump tanks. High salt and organic waste under normal operation were sent to Z-9 or Z-18 cribs. Water from the retention basin may have also passed through this tank. The transfer lines to 241-Z were numbered D-4 to D-6. The 241-Z sump tanks were numbered D-4 through D-8. The D-4, 5, and 8 drains went to the D-6 sump tank. When D-6 tank was full it was transferred to D-7 tank. Prior to transfer to cribs, the D-7 tank contents was sampled. If the plutonium content was analyzed to be more than 10 g per batch, the material was (generally) reprocessed. Below the discard limit, caustic was added and the material was sent to the cribs via the 241-Z-361 settling tank where solids settled out and the liquid overflowed by gravity to the cribs. Waste liquids that passed through the 241-Z-361 settling tank flowed from PFP to ground in

  9. Innovative optronics for the new PUMA tank

    Science.gov (United States)

    Fritze, J.; Münzberg, M.; Schlemmer, H.

    2010-04-01

    The new PUMA tank is equipped with a fully stabilized 360° periscope. The thermal imager in the periscope is identical to the imager in the gunner sight. All optronic images of the cameras can be fed on every electronic display within the tank. The thermal imagers operate with a long wave 384x288 MCT starring focal plane array. The high quantum efficiency of MCT provides low NETD values at short integration times. The thermal imager has an image resolution of 768x576 pixels by means of a micro scanner. The MCT detector operates at high temperatures above 75K with high stability in noise and correctibility and offers high reliability (MTTF) values for the complete camera in a very compact design. The paper discusses the principle and functionality of the optronic combination of direct view optical channel, thermal imager and visible camera and discusses in detail the performances of the subcomponents with respect to demands for new tank applications.

  10. Sloshing Simulation of Three Types Tank Ship on Pitching and Heaving Motion

    Directory of Open Access Journals (Sweden)

    Edi Djatmiko

    2017-06-01

    Full Text Available As an important part of a ship, tanker / cargo hold specifically designed to distribute the load to be maintained safely. In a related IMO classification of LNG carrier, there are a wide variety of types of LNG tanks on ships. Are generally divided into two types, namely tank (Independent Self Supporting Tank and (Non Self Supporting Tanks. The tank-type variation will affect the characteristics of fluid motion that is inside the tank. Need for simulation of sloshing and analysis of the structure of the tank due to the force created by the load when the heaving and pitching. Sloshing the effect of the free movement of the fluid in the tank with the striking motion wall tank walls that can damage the walls of the tank. Type 1 tank is a tank octagonal (octogonal for membrane-type LNG carrier with dimensions of length 38 m width 39.17 m 14.5 m high side of the tank. Type 2 tank is a tank-shaped capsule with the long dimension of 26.6 m and a diameter of 10.5 m. Type 3 tank is rectangular tank (rectanguler with dimensions of length of 49.68 m, width 46.92 and 32.23 m high. Simulations conducted using Computational Fluid Dynamic (CFD using ANSYS FLUENT software. From the simulation results concluded that the tank 1 to form (octogonal have a total pressure of 3013.99 Pa on the front wall with a height of 13.65 m from the base of the tank

  11. Hanford Site organic waste tanks: History, waste properties, and scientific issues. Hanford Tank Safety Project

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, D.M.; Schulz, W.W.; Reynolds, D.A.

    1993-01-01

    Eight Hanford single-shell waste tanks are included on a safety watch list because they are thought to contain significant concentrations of various organic chemical. Potential dangers associated with the waste in these tanks include exothermic reaction, combustion, and release of hazardous vapors. In all eight tanks the measured waste temperatures are in the range 16 to 46{degree}C, far below the 250 to 380{degree}C temperatures necessary for onset of rapid exothermic reactions and initiation of deflagration. Investigation of the possibility of vapor release from Tank C-103 has been elevated to a top safety priority. There is a need to obtain an adequate number of truly representative vapor samples and for highly sensitive and capable methods and instruments to analyze these samples. Remaining scientific issues include: an understanding of the behavior and reaction of organic compounds in existing underground tank environments knowledge of the types and amounts of organic compounds in the tanks knowledge of selected physical and chemical properties of organic compounds source, composition, quality, and properties of the presently unidentified volatile organic compound(s) apparently evolving from Tank C-103.

  12. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text. Volume 2: Checklists and work instructions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring.

  13. Hybrid Composite Cryogenic Tank Structure

    Science.gov (United States)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  14. Composite propellant tank study for very low cost space transportation

    Science.gov (United States)

    Moser, D. J.; Keith, E. L.

    1992-01-01

    A study of life-cycle cost is conducted to determine acceptable options for composite propellant tanks at low cost and weight and for use at moderate pressures. The review examines all cost issues relevant to the production, mass, applications, and reliability of the tanks for pressure-fed rockets. Specific attention is given to the manufacturing and life-cycle issues relevant to the use of composite materials in this application since composites are effective materials for liquid propellant tanks. Specific costs and parametric considerations are given for several tank candidates with 62,303-lb capacities. The mass sensitivity of the fourth stage for the concept vehicle is shown to be high, and the use of a 325-psi fourth-stage tank is shown to yield the minimum cost/lb for the stage. Wound S-glass/epoxy composites can be employed as cost-effective replacements for steel in the design of liquid-propellant tanks.

  15. Dwelling Water Tanks in Diyarbakir

    Directory of Open Access Journals (Sweden)

    Ali Ceylan

    2008-02-01

    Full Text Available BACKGROUND: In this connection, the object of this study has been to identify and compare the microbiological contamination and residue chlorine levels in the main network water that is taken from the Dicle Dam and distributed in Diyarbakir Province Centre and in the tanks of dwellings that use this water as well as the effects of the maintenance, hygiene, and physical conditions of these tanks on microbiological contamination. METHODS: Water samples were taken from both the tank input side network water and tank output side tank waters of 200 dwellings with water tanks in Diyarbakir city centre (tank entrance network side water for 200 and tank output side tank water for 200 within the framework of the research study. RESULTS: Coliform bacteria were detected in 35% of the tank entrance side network water samples and in 52.0% percent of the tank output side water samples. Faecal coliform bacteria were not detected in tank entrance side network water samples, but they existed in 2.5% of the tank output side water samples. Free residue chlorine level was found to be over 0.2 ppm in 67% of tank entrance side network water samples and in 35% of the tank output side water samples. Coliform bacteria were detected in 95.5% of the tank entrance side network water samples, of which free residue chlorine level were below 0.2 ppm. Total germ growth was detected in 52.0% of the tank entrance side network water samples and in 67.5% of the tank output side water samples. The most frequently isolated bacteria both in tank entrance side network and tank output side water samples were found to be Bacillus spp. Bacillus type bacteria were found in 48% of tank entrance side network water samples and 57.5% of the tank output side water samples. Filamentous fungi were prevalent in 8% of all the samples examined within the study and the most commonly isolated filamentous fungi were Aspergillus spp (5.5% and Penicillum spp (2.5%. Water tanks of dwellings contain more

  16. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  17. Oil road effects on the anuran community of a high canopy tank bromeliad (Aechmea zebrina in the upper Amazon basin, Ecuador.

    Directory of Open Access Journals (Sweden)

    Shawn F McCracken

    Full Text Available Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (Aechmea zebrina at ∼20-45 m (x¯ = 33 m above the forest floor. Bromeliads were sampled from trees located near trails in undisturbed primary rainforest and oil access roads in the Yasuní Biosphere Reserve of Amazonian Ecuador. We collected 95 anurans representing 10 species from 160 bromeliads in 32 trees. We used generalized linear mixed models to assess the effects of disturbance and habitat factors on the occupancy and abundance of anurans collected. Bromeliads in forest along oil roads had a lower occupancy and abundance of anurans than those in undisturbed forest, a somewhat unexpected result due to the intactness and quality of forest adjacent to the roads. Recorded habitat variables had no relationship with occupancy or abundance of anurans, and did not differ significantly between treatments. Our findings reveal that even the minimal footprint of natural resource extraction operations, primarily roads, in rainforest environments can have significant negative impacts on the unique upper canopy anuran community. Based on these results, we recommend that natural resource development treat rainforest habitat as an offshore system where roads are not used, employ industry best practice guidelines, and current access roads be protected from colonization and further deforestation.

  18. Oil road effects on the anuran community of a high canopy tank bromeliad (Aechmea zebrina) in the upper Amazon basin, Ecuador.

    Science.gov (United States)

    McCracken, Shawn F; Forstner, Michael R J

    2014-01-01

    Tropical forest canopies are among the most species-rich terrestrial habitats on earth and one of the remaining relatively unexplored biotic frontiers. Epiphytic bromeliads provide microhabitat for a high diversity of organisms in tropical forest canopies and are considered a keystone resource. A number of amphibians inhabit these phytotelmata, yet their ecological role and status in forest canopies remains unknown. For this study, anurans were collected from an upper canopy tank bromeliad (Aechmea zebrina) at ∼20-45 m (x¯ = 33 m) above the forest floor. Bromeliads were sampled from trees located near trails in undisturbed primary rainforest and oil access roads in the Yasuní Biosphere Reserve of Amazonian Ecuador. We collected 95 anurans representing 10 species from 160 bromeliads in 32 trees. We used generalized linear mixed models to assess the effects of disturbance and habitat factors on the occupancy and abundance of anurans collected. Bromeliads in forest along oil roads had a lower occupancy and abundance of anurans than those in undisturbed forest, a somewhat unexpected result due to the intactness and quality of forest adjacent to the roads. Recorded habitat variables had no relationship with occupancy or abundance of anurans, and did not differ significantly between treatments. Our findings reveal that even the minimal footprint of natural resource extraction operations, primarily roads, in rainforest environments can have significant negative impacts on the unique upper canopy anuran community. Based on these results, we recommend that natural resource development treat rainforest habitat as an offshore system where roads are not used, employ industry best practice guidelines, and current access roads be protected from colonization and further deforestation.

  19. Investigations in Ceramicrete Stabilization of Hanford Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, A. S.; Antink, A.; Maloney, M. D.; Thomson, G. H.

    2003-02-26

    This paper provides a summary of investigations done on feasibility of using Ceramicrete technology to stabilize high level salt waste streams typical of Hanford and other sites. We used two non-radioactive simulants that covered the range of properties from low activity to high level liquids and sludges. One represented tank supernate, containing Cr, Pb, and Ag as the major hazardous metals, and Cs as the fission products; the other, a waste sludge, contained Cd, Cr, Ag, Ni, and Ba as the major hazardous contaminants, and Cs, and Tc as the fission products.

  20. TANK SPACE OPTIONS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  1. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  2. Topographical Mapping System. Tanks Focus Area. OST Reference # 130

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    Radioactive waste storage tanks in use at many of the U.S. Department of Energy (DOE) sites are beyond the intended design life. The waste in these tanks must be remediated and the tanks closed. Before these activities are performed, the physical condition of tank interiors must be determined along with detailed information regarding any obstructions and potential problems that may be encountered during installation of retrieval systems. This task is difficult because the tanks are underground and have limited access. The only way to see the physical contents of the tank is to install tools through the tank’s openings, or risers. The Topographical Mapping System (TMS), a three-dimensional (3-D) mapping system that can safely operate in hazardous and radiological environments, has been developed to meet this need. This system provides an accurate 3-D view of the tank interior and gathers data on volume and contents inside storage tanks. How It Works: TMS is self-contained and reconfigurable system capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention. TMS uses structured light to create maps of waste topography and tank structures, determine surface features and deviations, model the tank environment, and determine residual tank waste volume. The system gathers and analyzes data to generate 3-D maps. The data can be used on a stand-alone basis or integrated with other modeling software to generate “world models” of tanks or other work environments. Figure 1 is a time-lapse photograph of the contour lines that result when the laser planes intersect with the mapped surface. The simulated waste surface in the photograph contains sand, simulated saltcake (white rock), and two black vertical pipes.

  3. EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED SOLUBILITY CONTROLS ON RADIONUCLIDES IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF HIGH-LEVEL WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Millings, M.

    2012-08-28

    This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use

  4. Improved Polyurethane Storage Tank Performance

    Science.gov (United States)

    2014-06-30

    Figure 5.2.4 – Teen / Twenty Berm Bays from Tank 11 Corner Improved Polyurethane Storage Tank Performance Page 63 of 197 FY2009 Final Technical...5.3.9 Pump Discharge Pressure Measurement Improved Polyurethane Storage Tank Performance Page 76 of 197 FY2009 Final Technical Report...chamber pressure Improved Polyurethane Storage Tank Performance Page 173 of 197 FY2009 Final Technical Report Seaman Corporation could not be

  5. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  6. Permeation Barrier for Lightweight Liquid Hydrogen Tanks

    OpenAIRE

    Schultheiß, Daniel

    2007-01-01

    For the future usage of hydrogen as an automotive fuel, its on-board storage is crucial. One approach is the storage of liquid hydrogen (LH2, 20 K) in double-walled, vacuum insulated tanks. The introduction of carbon fiber reinforced plastics (CFRP) as structural material enables a high potential of reducing the weight in comparison to the state-of-the-art stainless steel tanks. The generally high permeability of hydrogen through plastics, however, can lead to long-term degradation of the ins...

  7. Nested Fixed Depth Fluidic Sampler and At Tank Analysis System Deployment Strategy and Plan

    Energy Technology Data Exchange (ETDEWEB)

    REICH, F.R.

    2000-02-01

    Under the Hanford Site River Protection Project (RPP) privatization strategy, the U.S. Department of Energy (DOE) Office of River Protection (ORP) requires the CH2M Hill Hanford Group, Inc. (CHG) to supply tank waste to the privatization contractor, BNFL Inc. (BNFL), for separation and/or treatment and immobilization (vitrification). Three low-activity waste (LAW) specification envelopes represent the range of liquid waste types in the large, Hanford Site underground waste storage tanks. The CHG also is expected to supply high-level waste (HLW) separation and/or treatment and disposal. The HLW envelope is an aqueous slurry of insoluble suspended solids (sludge). The Phase 1 demonstration will extend over 24 years (1996 through 2019) and will be used to resolve technical uncertainties. About one-tenth of the total Hanford Site tank waste, by mass, will be processed during this period. This document provides a strategy and top-level implementation plan for demonstrating and deploying an alternative sampling technology. The alternative technology is an improvement to the current grab sampling and core sampling approaches that are planned to be used to support the RPP privatization contract. This work also includes adding the capability for some at-tank analysis to enhance the potential of this new technology to meet CHG needs. The first application is to LAW and HLW feed staging for privatization; the next is to support cross-site waste transfer from 200 West Area tanks.

  8. Potential for criticality in Hanford tanks resulting from retrieval of tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

    1996-09-01

    This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

  9. Oxygen transfer in circular surface aeration tanks.

    Science.gov (United States)

    Rao, Achanta Ramakrishna; Patel, Ajey Kumar; Kumar, Bimlesh

    2009-06-01

    Surface aeration systems employed in activated sludge plants are the most energy-intensive units of the plants and typically account for a higher percentage of the treatment facility's total energy use. The geometry of the aeration tank imparts a major effect on the system efficiency. It is said that at optimal geometric conditions, systems exhibits the maximum efficiency. Thus the quantification of the optimal geometric conditions in surface aeration tanks is needed. Optimal geometric conditions are also needed to scale up the laboratory result to the field installation. In the present work, experimental studies have been carried out on baffled and unbaffled circular surface aeration tanks to ascertain the optimal geometric conditions. It is found that no optimal geometric conditions exist for the liquid/water depth in circular surface aeration tanks; however, for design purposes, a standard value has been assumed. Based on the optimal geometric conditions, a scale-up equation has been developed for the baffled circular surface aeration tanks.

  10. Enclosure for handling high activity materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F.

    1977-07-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  11. Opportunistic pathogens relative to physicochemical factors in water storage tanks.

    Science.gov (United States)

    Al-Bahry, S N; Elshafie, A E; Victor, R; Mahmoud, I Y; Al-Hinai, J A

    2011-06-01

    Household water in Oman, as well as in other countries in the region, is stored in tanks placed on house roofs that can be subjected to physicochemical factors which can promote microbial growth, including pathogens and opportunistic pathogens which pose health risks. Water samples were collected from 30 houses in a heavily populated suburb of Muscat. The tanks used were either glass reinforced plastic (GRP), polyethylene or galvanised iron (GI). Heterotrophic bacteria, coliforms, faecal coliforms and iron sulphur bacteria varied significantly in the three tanks. Yeast and mould count showed significant variations. Isolation of Aeromonas spp., fluorogenic and pathogenic Pseudomonas, Pasteurella, Salmonella, Serratia and Tatumella, and Yersinia and Legionella in biofilms varied in the three tanks. The fungi isolates in the three tanks were Penicillium, Cladosporium and Aspergillus. Nephelometric turbidity unit, threshold odour number and free chlorine varied significantly in the three tanks. True colour unit values did not show a significant difference; however, GRP tanks had algae, autotrophic and pigmented microorganisms. In addition, GI tanks had sediments and corrosion. The results of this investigation are important to evaluate the status of the present household water tanks in countries with high annual temperatures, which may affect public health.

  12. Preliminary characterization of abandoned septic tank systems. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site.

  13. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    Science.gov (United States)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  14. Analysis of Adsorbed Natural Gas Tank Technology

    Science.gov (United States)

    Knight, Ernest; Schultz, Conrad; Rash, Tyler; Dohnke, Elmar; Stalla, David; Gillespie, Andrew; Sweany, Mark; Seydel, Florian; Pfeifer, Peter

    With gasoline being an ever decreasing finite resource and with the desire to reduce humanity's carbon footprint, there has been an increasing focus on innovation of alternative fuel sources. Natural gas burns cleaner, is more abundant, and conforms to modern engines. However, storing compressed natural gas (CNG) requires large, heavy gas cylinders, which limits space and fuel efficiency. Adsorbed natural gas (ANG) technology allows for much greater fuel storage capacity and the ability to store the gas at a much lower pressure. Thus, ANG tanks are much more flexible in terms of their size, shape, and weight. Our ANG tank employs monolithic nanoporous activated carbon as its adsorbent material. Several different configurations of this Flat Panel Tank Assembly (FPTA) along with a Fuel Extraction System (FES) were examined to compare with the mass flow rate demands of an engine.

  15. Families Talking about Ecology at Touch Tanks

    Science.gov (United States)

    Kopczak, Charles; Kisiel, James F.; Rowe, Shawn

    2015-01-01

    Research has demonstrated that conversations among museum, aquarium, and zoo visitors can be a clear indication of active learning, engagement, and participation in scientific reasoning. This descriptive study sought to determine the extent of talk about ecology-related topics exhibited by family groups visiting marine touch tanks at four Pacific…

  16. Families Talking about Ecology at Touch Tanks

    Science.gov (United States)

    Kopczak, Charles; Kisiel, James F.; Rowe, Shawn

    2015-01-01

    Research has demonstrated that conversations among museum, aquarium, and zoo visitors can be a clear indication of active learning, engagement, and participation in scientific reasoning. This descriptive study sought to determine the extent of talk about ecology-related topics exhibited by family groups visiting marine touch tanks at four Pacific…

  17. Permitting plan for Hanford tanks initiative

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, J.W., Fluor Daniel Hanford

    1997-02-10

    This plan describes all the possible permitting actions that could be required to implement the Hanford Tanks Initiative Project (HTI). Since the HTI Project Plan has several decision points where possible future activities could be eliminated, not all permitting actions described will be implemented. The cost and schedule for the permitting actions are included.

  18. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    Energy Technology Data Exchange (ETDEWEB)

    JARAYSI, M.N.

    2007-01-08

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  19. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Groth, B.D.

    1995-01-11

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  20. Tank characterization report for single-shell tank 241-SX-115

    Energy Technology Data Exchange (ETDEWEB)

    HULSE, N.L.

    1999-05-13

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-SX-115. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-115 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998).

  1. Tank characterization report for single-shell tank 241-U-112

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1998-05-28

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-112. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-112 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendixes contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998.

  2. Tank characterization report for single-shell tank 241-BX-110

    Energy Technology Data Exchange (ETDEWEB)

    RASMUSSEN, J.H.

    1999-02-23

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-BX-110. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-BX-110 waste, and (2) to provide a standard characterization of the waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the tank's safety status and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for 1998.''

  3. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  4. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  5. High activity carbon sorbents for mercury capture

    Energy Technology Data Exchange (ETDEWEB)

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  6. Defeating Mechanisms of Armours for Main Battle Tanks

    Institute of Scientific and Technical Information of China (English)

    Manfred Held

    2005-01-01

    The fundamental protection principles of the new armours for main battle tanks against kinetic energy projectiles (KE) and chemical energy weapons (CE)--shaped charges are shortly described and their efficiency against both threats discussed. The armour topics can be split into: "perpendicular or zero-degree armours", such as rolled homogeneous armour (RHA), also with extremely high strength, ceramics, glass, liquid filled columns and explosive filled cells,"inclined armours", as spaced RHA plates with their corner effects, bulging armour, additive and integrated explosive reactive armours (ERA) and "hard kill active defence possibilities" in different defeating distances.

  7. 27 CFR 25.145 - Tanks, vehicles, and vessels.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.145 Tanks, vehicles, and... mark each tank, tank car, tank truck, tank ship, barge, or deep tank of a vessel in accordance...

  8. Program plan for the resolution of tank vapor issues

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, J.W.; Huckaby, J.L.

    1994-05-01

    Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

  9. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the material transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of

  10. Development and Testing of a Novel Green Propellant Piston Tank

    Science.gov (United States)

    Diaz, C. E.; Cavender, D. P.; Higdon, K.; Abrams, J.; Duchek, M. E.; Mader, H.

    2017-01-01

    Analytical Mechanics Associates (AMA), in cooperation with NASA Marshall Space Flight Center's (MSFC's) Spacecraft Propulsion Systems Branch, developed and tested a novel propellant tank design that employs an internal piston pressurized with an inert gas to expel propellant to thrusters. During the course of this activity, AMA designed, oversaw fabrication, and delivered to MSFC for testing, a piston propellant tank sized for 3U or larger CubeSats. MSFC conducted liquid expulsion testing using ethylene glycol as a referee fluid to map the tank's performance at different pressures and piston positions. Following the expulsion test campaign, the tank is planned to be integrated into a propulsion system test bed for hot fire tests with a 100mN monopropellant thruster to evaluate the tank's influence on thruster performance when operated in a flight like manner. Described in this paper is a comprehensive summary of how the tanks were designed, built, and tested. The fundamental knowledge gained through the fabrication and testing of these tanks gives evidence that the piston tank design may be scalable to meet the requirements and constraints of other small satellites.

  11. Tank 40 Final Sludge Batch 8 Chemical Characterization Results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, Christopher J.

    2013-09-19

    A sample of Sludge Batch 8 (SB8) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB8 WAPS sample was also analyzed for chemical composition, including noble metals, and fissile constituents, and these results are reported here. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to the Defense Waste Processing Facility (DWPF) as SB8. At SRNL, the 3-L Tank 40 SB8 sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 553 g sub-sample was removed. This sub-sample was then utilized for all subsequent slurry sample preparations. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon(r) vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass - 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB8 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH-/other base, total inorganic carbon/total organic

  12. Tank Farms Technical Safety Requirements [VOL 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  13. Tank Farms Technical Safety Requirements [VOL 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  14. Production of high specific activity silicon-32

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R. [Los Alamos National Lab., NM (United States); Brzezinski, M.A. [Univ. of California, Santa Barbara, CA (United States). Marine Biotechnology Center

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  15. Molecular basis for TANK recognition by TRAF1 revealed by the crystal structure of TRAF1/TANK complex.

    Science.gov (United States)

    Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho

    2017-02-02

    Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT.

  16. An analysis of tank and pump pit flammable gas data in support of saltwater pumping safety basis simplification

    Energy Technology Data Exchange (ETDEWEB)

    MCCAIN, D.J.

    2000-07-26

    Hanford Site high-level waste tanks are interim stabilized by pumping supernatant and interstitial waste liquids to double-shell tanks (DSTs) through a saltwell pump (SWP). The motor to this SWP is located atop the tank, inside a pump pit. A pumping line extends down from the pump motor into the well area, located in the salt/sludge solids in the tank below. Pumping of these wastes is complicated by the fact that some of the wastes generate and retain potentially hazardous amounts of hydrogen, nitrous oxide, and ammonia. Monitoring of flammable gas concentrations during saltwell pumping activities has shown that one effect of pumping is acceleration in the release of accumulated hydrogen. A second effect is that of a temporarily increased hydrogen concentration in both the dome space and pump pit. There is a safety concern that the hydrogen concentration during saltwell pumping activities might approach the lower flammability limit (LFL) in either the tank dome space or the pump pit. The current Final Safety Analysis Report (FSAR) (CHG 2000) for saltwell pumping requires continuous flammable gas monitoring in both the pump pit and the tank vapor space during saltwell pumping. The FSAR also requires that portable exhauster fans be available by most of the passively ventilated tanks to be saltwell pumped in the event that additional air flow is required to dilute the headspace concentration of flammable gases to acceptable levels. The first objective of this analysis is to review the need for an auxiliary exhauster. Since the purpose of the exhauster is to diffuse unacceptably high flammable gas concentrations, discovery of an alternate method of accomplishing the same task may provide cost savings. The method reviewed is that of temporarily stopping the saltwell pumps. This analysis also examines the typical hydrogen concentration peaks and the rates of increase in hydrogen levels already witnessed in tanks during saltwell pumping activities. The historical data

  17. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  18. EVOLUTION OF CHEMICAL CONDITIONS AND ESTIMATED SOLUBILITY CONTROLS ON RADIONUCLIDES IN THE RESIDUAL WASTE LAYER DURING POST-CLOSURE AGING OF HIGH-LEVEL WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Millings, M.

    2012-08-28

    This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use

  19. Drying effects on archaeal community composition and methanogenesis in bromeliad tanks.

    Science.gov (United States)

    Brandt, Franziska B; Martinson, Guntars O; Pommerenke, Bianca; Pump, Judith; Conrad, Ralf

    2015-02-01

    Tank bromeliads are highly abundant epiphytes in neotropical forests and form a unique canopy wetland ecosystem which is involved in the global methane cycle. Although the tropical climate is characterized by high annual precipitation, the plants can face periods of restricted water. Thus, we hypothesized that water is an important controller of the archaeal community composition and the pathway of methane formation in tank bromeliads. Greenhouse experiments were established to investigate the resident and active archaeal community targeting the 16S rDNA and 16S rRNA in the tank slurry of bromeliads at three different moisture levels. Archaeal community composition and abundance were determined using terminal restriction fragment length polymorphism and quantitative PCR. Release of methane and its stable carbon isotopic signature were determined in a further incubation experiment under two moisture levels. The relative abundance of aceticlastic Methanosaetaceae increased up to 34% and that of hydrogenotrophic Methanobacteriales decreased by more than half with decreasing moisture. Furthermore, at low moisture levels, methane production was up to 100-fold lower (≤0.1-1.1 nmol gdw(-1) d(-1)) than under high moisture levels (10-15 nmol gdw(-1) d(-1)). The rapid response of the archaeal community indicates that the pathway of methane formation in bromeliad tanks may indeed be strongly susceptible to periods of drought in neotropical forest canopies.

  20. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  1. Seismic analysis of a sodium-filled tank

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.

    1990-12-01

    An analysis is described to determine the seismically-induced hydrodynamic responses such as sloshing natural frequency, sloshing pressure, and impulse pressure for a top-supported sodium-filled cylindrical tank. The vibrational effects of an internally immersed pipe on the fluid responses also are considered. Reaction forces from both low frequency fluid modes and high frequency tank modes are combined to determine the required tank support loads. Results from the analysis of the sodium-filled tank model have been compared with the results using the same three-dimensional (3-D) model with lumped fluid mass at evenly distributed shell nodes. The results from the lumped-mass model gave conservative support loads. The analysis used the ANSYS finite-element computer code. The results of the analyses indicate that no sodium sloshing modes exist that may interact with the shell mode. Both the immersed pipe and the tank shell behave in the rigid frequency range.

  2. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Science.gov (United States)

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  3. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code.

  4. A Study on the High Intelligent Device for Measuring Water in the Oil Tank%油罐水高智能测量装置研究

    Institute of Scientific and Technical Information of China (English)

    高文浩; 刘德俊; 梅宏林

    2014-01-01

    The water in crude oil must be removed in the mining and processing ,in order to reduce waste in the transportation and storage ,and to ensure the safety of transportation and processing .Therefore , the tank bottom‐line monitoring of water is important for crude oil production and management . With intelligent oil density meter , float type level gauge , parameters measured by pressure sensors online ,as well as the relationship between these three parameters ,the intelligent device for measuring water in the oil tank realized the online real‐time automatic monitoring of the height of water in the oil‐water mixture condition through PLC pro‐gramming calculation .It provides the technical support to timely discharge the water at the bottom of the tank in the process of oil dehydration and storage .%原油在开采和加工过程中必须除去原油中的水分,以减少在输送和储存过程中的浪费,确保输送、加工过程中的安全。因此,油罐底部水在线监测对原油生产和管理具有重要意义。油罐水高智能测量装置通过石油密度计、浮球式液位仪、压力传感器的在线测得参数,利用这3个参数关系,通过PLC编程计算实现对油罐中油水混合状态下底部水高的在线实时自动监测。这对于在石油脱水和存储过程中及时排放罐底水提供技术支持。

  5. Evaporation losses and dispersion of volatile organic compounds from tank farms.

    Science.gov (United States)

    Howari, Fares M

    2015-05-01

    The present study is an application of a Gaussian dispersion model to evaluate volatilization losses from tank farms. It reports methodology to estimate evaporation losses of volatile organic compounds (VOCs) from organic liquid in storage tanks. This study used fixed roof and floating roof equations for breathing and working losses. Total loss, the breathing loss, vapor pressure, molecular weight of the product, tank diameter, diurnal temperature, paint factor, tank capacity, and number of turnovers were considered and factored in the calculation. AERMOD and ALOHA softwares were used to simulate the dispersion of VOCs under normal and accidental scenarios. For the modeling purposes, meteorological data such as annual average ambient temperature, annual average atmospheric pressure, daily minimum ambient temperature, daily maximum ambient temperature, solar insulation factor, and average wind speed were included as input in the calculation and modeling activities. The study took place in Sharjah Emirate in United Arab Emirates, which borders Dubai to the south and Ajman to the north, and the three form a conurbation. The reported method was used to estimate evaporation losses for baseline and hypothetical leak scenarios. Results of this research show that liquid storage tanks in the study area emit a low concentration of VOC under the studied and assumed conditions, e.g., new tanks with high performance sealing as well as the noted earlier climatic conditions. The dispersion of those concentrations is controlled by the prevailing wind direction. The predicted VOCs concentrations were within the range of the measured VOCs values in air. The study found that the spatial distributions of the predicted concentration attenuate with time and distance. Under the reported accidental spill scenario, the Gaussian model indicates that the danger area starts within the zone of less than 10 m. The danger area is subjected to flame pockets, and the VOC concentrations in this

  6. Tank Characterization Report for Double Shell Tank (DST) 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, M.R.

    2000-03-23

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.

  7. Fish tank as evidence for modern coastal uplift at Diu, Saurashtra Peninsula, India

    Science.gov (United States)

    Kázmér, Miklós; Bhatt, Nilesh; Ujay, Vishal; Prizomwala, Siddharth; Taboroši, Danko; Székely, Balázs

    2013-04-01

    India - except the Himalayas - is considered to be tectonically stable region, with an occasional intra-plate earthquake here and there. The Saurashtra Peninsula in Western India had earthquakes less than Mw 5.7 during the last fifty years. Search for evidence of preceding major seismic events is ongoing. There is a ~16th century fish tank hewn in coastal Pleistocene limestone near Diu city, Saurashtra Peninsula, western India. The 3×4 m basin is connected to the sea by an 1 m deep channel. Today the tank is inoperable: not even high spring tide can fill the basin. We suggest that the tank, the tidal platform and the whole Diu coast have been uplifted by ~0.5 m shortly after the tank was constructed by early Portuguese colonists in the 16-17th century. Coastal karst dissolution - active in the spray zone above sea level - left deep marks on carved surfaces since uplift. We suggest that uplift of Diu Island occurred in the 16-17th century, during a major seismic event, connected to active faulting offshore along the Narmada Fault.

  8. Numerical Simulation on Stir System of Jet Ballast in High Level Liquid Waste Storage Tank%高放废液贮槽气镇器搅拌系统的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    逯迎春

    2012-01-01

    以后处理厂高放废液贮槽气镇器搅拌系统为模拟对象,其中气相、液相和固相分别为空气、硝酸钠水溶液和球磨后的钛白粉,基于颗粒动力学理论,建立适用于高放废液贮槽气镇器搅拌系统的气、液、固三相流动的数学模型,用CFD商用计算软件对其进行计算,得到了高放废液贮槽气镇器搅拌过程中气、液和固三相的速度、压力和相含率等详细数据.研究结果表明,计算值与实验值吻合较好,验证了建立的数学模型的正确性和适用性,为高放废液贮槽气镇器搅拌系统进一步优化设计和放大提供参考.%The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD software by commerciality was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank.

  9. 46 CFR 154.420 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling...

  10. 46 CFR 154.439 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of...

  11. 27 CFR 25.35 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 25.35 Section 25.35... TREASURY LIQUORS BEER Construction and Equipment Equipment § 25.35 Tanks. Each stationary tank, vat, cask... contents of tanks or containers in lieu of providing each tank or container with a measuring device....

  12. 49 CFR 230.116 - Oil tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free... adjacent to the fuel supply tank or in another safe location; (b) Closes automatically when tripped...

  13. 14 CFR 23.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 23.1013 Section 23.1013... tanks. (a) Installation. Each oil tank must be installed to— (1) Meet the requirements of § 23.967 (a...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with...

  14. 49 CFR 238.423 - Fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at...

  15. Differential Draining of Parallel-Fed Propellant Tanks in Morpheus and Apollo Flight

    Science.gov (United States)

    Hurlbert, Eric; Guardado, Hector; Hernandez, Humberto; Desai, Pooja

    2015-01-01

    Parallel-fed propellant tanks are an advantageous configuration for many spacecraft. Parallel-fed tanks allow the center of gravity (cg) to be maintained over the engine(s), as opposed to serial-fed propellant tanks which result in a cg shift as propellants are drained from tank one tank first opposite another. Parallel-fed tanks also allow for tank isolation if that is needed. Parallel tanks and feed systems have been used in several past vehicles including the Apollo Lunar Module. The design of the feedsystem connecting the parallel tank is critical to maintain balance in the propellant tanks. The design must account for and minimize the effect of manufacturing variations that could cause delta-p or mass flowrate differences, which would lead to propellant imbalance. Other sources of differential draining will be discussed. Fortunately, physics provides some self-correcting behaviors that tend to equalize any initial imbalance. The question concerning whether or not active control of propellant in each tank is required or can be avoided or not is also important to answer. In order to provide data on parallel-fed tanks and differential draining in flight for cryogenic propellants (as well as any other fluid), a vertical test bed (flying lander) for terrestrial use was employed. The Morpheus vertical test bed is a parallel-fed propellant tank system that uses passive design to keep the propellant tanks balanced. The system is operated in blow down. The Morpheus vehicle was instrumented with a capacitance level sensor in each propellant tank in order to measure the draining of propellants in over 34 tethered and 12 free flights. Morpheus did experience an approximately 20 lb/m imbalance in one pair of tanks. The cause of this imbalance will be discussed. This paper discusses the analysis, design, flight simulation vehicle dynamic modeling, and flight test of the Morpheus parallel-fed propellant. The Apollo LEM data is also examined in this summary report of the

  16. Accountability Tanks Calibration Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salazar, William Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-25

    MET-1 utilizes tanks to store plutonium in solution. The Nuclear Material Control & Accountability group at LANL requires that MET-1 be able to determine the amount of SNM remaining in solution in the tanks for accountability purposes. For this reason it is desired to determine how well various operators may read the volume of liquid left in the tank with the tank measurement device (glass column or slab). The accuracy of the measurement is then compared to the current SAFE-NMCA acceptance criteria for lean and rich plutonium solutions to determine whether or not the criteria are reasonable and may be met.

  17. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  18. Annual report of tank waste treatability

    Energy Technology Data Exchange (ETDEWEB)

    Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-01

    This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

  19. High Energy Activation Data Library (HEAD-2009)

    CERN Document Server

    Korovin, Yury A; Konobeyev, Alexander Yu; Stankovskiy, Alexey Yu; Mashnik, Stepan G

    2010-01-01

    A proton activation data library for 682 nuclides from 1-H to 210-Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed: A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the fin...

  20. Degradation of fipronil (Termidor) in aqueous solution stored in polyethylene tanks exposed to sunlight or shade.

    Science.gov (United States)

    Husen, T J; Spomer, N A; Kamble, S T

    2009-05-01

    Pest Management Professionals commonly use polyethylene or fiberglass tanks for mixing and applying termiticides. We investigated the stability of fipronil (Termidor SC) (0.06%, 0.09% and 0.125% active ingredient) in aqueous solutions stored in polyethylene tanks under sun and shade for 2 week. Chemical analysis of tank-mixed solutions sampled at 0, 24, 48, 72, 168 and 336 h indicated that fipronil remained stable. Our data indicated that polyethylene tanks prevent fipronil from photodegradation and these tanks can be safely used for short term storage (up to 2 week) of liquid termiticides.

  1. Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Lenseigne, D. L.

    1997-09-15

    The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

  2. Engineering study of the criticality issues associated with Hanford tank 241-Z-361

    Energy Technology Data Exchange (ETDEWEB)

    Lipke, E.J.

    1997-12-22

    Tank 241-Z-361 is associated with the Plutonium Finishing Plant (PFP). Uncertainty about the contents of the tank have led to the declaration of an Unreviewed Safety Question (USQ) and the preparation of a Justification for Continued Operation (JCO) to address flammable gas and other authorization basis issued. A Criticality Safety Team was assembled to review old data, determine its validity, and reevaluate the tank. It was concluded that the tank has a sufficient margin of safety to allow opening, sampling, and other characterizing activities. The team concluded that a criticality in Tank 241-Z-361 was extremely unlikely.

  3. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  4. Glass optimization for vitrification of Hanford Site low-level tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  5. Uncertainty and sampling issues in tank characterization

    Energy Technology Data Exchange (ETDEWEB)

    Liebetrau, A.M.; Pulsipher, B.A.; Kashporenko, D.M. [and others

    1997-06-01

    A defensible characterization strategy must recognize that uncertainties are inherent in any measurement or estimate of interest and must employ statistical methods for quantifying and managing those uncertainties. Estimates of risk and therefore key decisions must incorporate knowledge about uncertainty. This report focuses statistical methods that should be employed to ensure confident decision making and appropriate management of uncertainty. Sampling is a major source of uncertainty that deserves special consideration in the tank characterization strategy. The question of whether sampling will ever provide the reliable information needed to resolve safety issues is explored. The issue of sample representativeness must be resolved before sample information is reliable. Representativeness is a relative term but can be defined in terms of bias and precision. Currently, precision can be quantified and managed through an effective sampling and statistical analysis program. Quantifying bias is more difficult and is not being addressed under the current sampling strategies. Bias could be bounded by (1) employing new sampling methods that can obtain samples from other areas in the tanks, (2) putting in new risers on some worst case tanks and comparing the results from existing risers with new risers, or (3) sampling tanks through risers under which no disturbance or activity has previously occurred. With some bound on bias and estimates of precision, various sampling strategies could be determined and shown to be either cost-effective or infeasible.

  6. 33 CFR 157.208 - Dedicated Clean Ballast Tanks Operations Manual for foreign tank vessels: Submission.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Dedicated Clean Ballast Tanks... MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Dedicated Clean Ballast Tanks on Tank Vessels General § 157.208 Dedicated Clean Ballast Tanks Operations Manual for foreign tank...

  7. Tank characterization report for single-shell tank 241-S-111

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  8. Tank characterization report for double-shell tank 241-AN-105

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J.

    1997-05-02

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AN-105. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-AN-105 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  9. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  10. Criticality safety assessment of tank 241-C-106 remediation

    Energy Technology Data Exchange (ETDEWEB)

    Waltar, A.E., Westinghouse Hanford

    1996-07-19

    A criticality safety assessment was performed in support of Project 320 for the retrieval of waste from tank 241-C-106 to tank 241-AY-102. The assessment was performed by a multi-disciplined team consisting of expertise covering the range of nuclear engineering, plutonium and nuclear waste chemistry,and physical mixing hydraulics. Technical analysis was performed to evaluate the physical and chemical behavior of fissile material in neutralized Hanford waste as well as modeling of the fluid dynamics for the retrieval activity. The team has not found evidence of any credible mechanism to attain neutronic criticality in either tank and has concluded that a criticality accident is incredible.

  11. Single-shell tank retrieval program mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  12. Hanford waste tank cone penetrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ``waste`` data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment.

  13. SINDA/FLUINT Stratified Tank Modeling for Cryrogenic Propellant Tanks

    Science.gov (United States)

    Sakowski, Barbara

    2014-01-01

    A general purpose SINDA/FLUINT (S/F) stratified tank model was created to simulate self-pressurization and axial jet TVS; Stratified layers in the vapor and liquid are modeled using S/F lumps.; The stratified tank model was constructed to permit incorporating the following additional features:, Multiple or singular lumps in the liquid and vapor regions of the tank, Real gases (also mixtures) and compressible liquids, Venting, pressurizing, and draining, Condensation and evaporation/boiling, Wall heat transfer, Elliptical, cylindrical, and spherical tank geometries; Extensive user logic is used to allow detailed tailoring - Don't have to rebuilt everything from scratch!!; Most code input for a specific case is done through the Registers Data Block:, Lump volumes are determined through user input:; Geometric tank dimensions (height, width, etc); Liquid level could be input as either a volume percentage of fill level or actual liquid level height

  14. Static Stress Analysis of Security Injection Tank

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The static structural analysis of the security injection tank is made to make sure whether the tank can withstand concerned loads or not on all conditions conforming to concerned code prescripts and design requirements. The tanks

  15. Oil Storage Facilities - Storage Tank Locations

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  16. Tank characterization report for single-shell tank 241-C-110. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Benar, C.J.

    1997-06-14

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E

  17. Full Scale Performance of Primary Settling Tanks

    OpenAIRE

    Ahmad, Shamim; Murad, M.; Javed, K. H.

    1989-01-01

    The characteristics and the flowrate of municipal wastewater from the city of Doha, located in the Arabian Gulf have been studied to examine their effect on the performance of the primary settling tanks at the local sewage treatment plant. The wastweater is predominantly domestic and characterized by low suspended solids concentration but high total dissolved solids. The high temperature of the wastewater and long flowtime in the sewerage system turn it septic. The performance efficiency o...

  18. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    Energy Technology Data Exchange (ETDEWEB)

    Leach, C.E., Westinghouse Hanford

    1996-07-31

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  19. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  20. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H.; Lahtinen, M. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  1. Solitons in a wave tank

    Science.gov (United States)

    Olsen, M.; Smith, H.; Scott, A. C.

    1984-09-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment is intended for lecture demonstrations.

  2. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  3. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  4. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula o...

  5. Solitons in a wave tank

    DEFF Research Database (Denmark)

    Olsen, M.; Smith, H.; Scott, Alwyn C.

    1984-01-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment...

  6. Double-shell tank ultrasonic inspection plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1994-09-30

    The waste tank systems managed by the Tank Waste Remediation System Division of Westinghouse Hanford Company includes 28 large underground double-shell tanks (DST) used for storing hazardous radioactive waste. The ultrasonic (UT) inspection of these tanks is part of their required integrity assessment (WAC 1993) as described in the tank systems integrity assessment program plan (IAPP) (Pfluger 1994a) submitted to the Ecology Department of the State of Washington. Because these tanks hold radioactive waste and are located underground examinations and inspections must be done remotely from the tank annuli with specially designed equipment. This document describes the UT inspection system (DSTI system), the qualification of the equipment and procedures, field inspection readiness, DST inspections, and post-inspection activities. Although some of the equipment required development, the UT inspection technology itself is the commercially proven and available projection image scanning technique (P-scan). The final design verification of the DSTI system will be a performance test in the Hanford DST annulus mockup that includes the demonstration of detecting and sizing corrosion-induced flaws.

  7. Sample preparation for semivolatile organics analysis of Hanford single-shell tank waste with high nitrate/nitrite and water content

    Energy Technology Data Exchange (ETDEWEB)

    Stromatt, R.W.; Hoppe, E.W.; Steele, M.J.

    1993-11-01

    This report describes research work carried out to solve sample preparation problems associated with applying gas chromatography with mass spectrometric detection (GC/MS) to the analysis of single shell tank (SST) samples from Hanford for semivolatile organic compounds. Poor performance was found when applying the procedures based on the U.S. Environmental Protection Agency (EPA), Contract Laboratory Program, Statement of Work (CLP SOW). Analysis work was carried out on simulated drainable liquid modeled after the SST core samples which had evidenced analysis problems. Some work was also conducted on true SST samples. It was found that the pH range was too broad in the original procedure. It was also found that by decreasing the amount of methanol used in the extraction process, problems associated with the formation of an azeotrope phase could be avoided. The authors suggest a new procedure, whose eventual application to a wide array of SST samples will lend itself to better quality control limits.

  8. Competitive Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in opportunity structures that are mediated by historically constituted institutions in knowledge regimes. The paper distinguishes between four different strategies, the authoritative, the collaborative, the agenda-setting and the competitive strategy that are distinguished by the relations think tanks have...... to established institutions and power in public policy. On the basis of the hypothesis that more competitive think tanks have emerged due to lower opportunity costs, the paper investigates how ‘competitive’ think tank strategies have been used in Germany, Denmark, the EU-institutions in Brussels...... and in the United Kingdom from 2000 to 2012. The findings contradict the hypothesis that the competitive think tank strategy is the dominant or even a common strategy across the cases under investigation. The competitive strategy is particularly rare among EU and German think tanks. As such the paper challenges...

  9. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air. T....... The accident described in this article serves to illustrate that care should be taken if a tank originally designed for atmospheric pressure is modified to operate at slight overpressure.......GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  10. In-tank photo analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G. [and others

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods.

  11. Waste tank safety program annual status report for FY 1993, Task 5: Toxicology and epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Mahlum, D.D.; Young, J.Y.

    1993-09-01

    A toxicology team independently reviewed analytical data and provided advice concerning potential health effects associated with exposure to tank-vapor constituents at the Hanford site. Most of the emphasis was directed toward Tank 241-C-103, but a preliminary assessment was also made of the toxicologic implication of the cyanide levels in the headspace of Tank 241-C-108. The objectives of this program are to (1) review procedures used for sampling vapors from various tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by waste-tank workers, (3) evaluate the toxicologic implications of those constituents by comparison to established toxicologic data bases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by the project manager and the cognizant Westinghouse Hanford Company Tank Vapor Issues Safety Resolution Manager.

  12. Tank Farm Operations Surveillance Automation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MARQUEZ, D.L.

    2000-12-21

    The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities.

  13. POTENTIAL IMPACT OF TANK F FLUSH SOLUTION ON H-CANYON EVAPORATOR OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; Fondeur, F.; Fink, S.

    2010-09-13

    Previous chemical analysis of a sample from the liquid heel found in Tank F of the High Activity Drain (HAD) system in F/H laboratory revealed the presence of n-paraffin, tributyl phosphate (TBP), Modifier from the Modular Caustic-Side Solvent Extraction Unit (MCU) process and a vinyl ester resin that is very similar to the protective lining on Tank F. Subsequent analyses detected the presence of a small amount of diisopropylnaphthalene (DIN) (major component of Ultima Gold{trademark} AB liquid scintillation cocktail). Indications are that both vinyl ester resin and DIN are present in small amounts in the flush solution. The flush solution currently in the LR-56S trailer likely has an emulsion which is believed to contain a mixture of the reported organic species dominated by TBP. An acid treatment similar to that proposed to clear the HAD tank heel in F/H laboratory was found to allow separation of an organic phase from the cloudy sample tested by SRNL. Mixing of that clear sample did re-introduce some cloudiness that did not immediately clear but that cloudiness is attributed to the DIN in the matrix. An organic phase does quickly separate from the cloudy matrix allowing separation by a box decanter in H-Canyon prior to transfer to the evaporator feed tank. This separation should proceed normally as long as the emulsion is broken-up by acidification.

  14. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  15. Regulatory Closure Options for the Residue in the Hanford Site Single-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, J.R. Shyr, L.J.

    1998-10-05

    Liquid, mixed, high-level radioactive waste (HLW) has been stored in 149 single-shell tanks (SSTS) located in tank farms on the U.S. Department of Energy's (DOE's) Hanford Site. The DOE is developing technologies to retrieve as much remaining HLW as technically possible prior to physically closing the tank farms. In support of the Hanford Tanks Initiative, Sandia National Laboratories has addressed the requirements for the regulatory closure of the radioactive component of any SST residue that may remain after physical closure. There is significant uncertainty about the end state of each of the 149 SSTS; that is, the nature and amount of wastes remaining in the SSTS after retrieval is uncertain. As a means of proceeding in the face of these uncertainties, this report links possible end-states with associated closure options. Requirements for disposal of HLW and low-level radioactive waste (LLW) are reviewed in detail. Incidental waste, which is radioactive waste produced incidental to the further processing of HLW, is then discussed. If the low activity waste (LAW) fraction from the further processing of HLW is determined to be incidental waste, then DOE can dispose of that incidental waste onsite without a license from the U.S. Nuclear Regulatory Commissions (NRC). The NRC has proposed three Incidental Waste Criteria for determining if a LAW fraction is incidental waste. One of the three Criteria is that the LAW fraction should not exceed the NRC's Class C limits.

  16. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-09-18

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.

  17. Concrete with Highly Active Rice Husk Ash

    Institute of Scientific and Technical Information of China (English)

    FENG Qing-ge; LIN Qing-yu; YU Qi-jun; ZHAO San-ying; YANG Lu-feng; Shuichi Sugita

    2004-01-01

    The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.

  18. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-12-31

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  19. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  20. Engineering study of tank fill options for landfill closure

    Energy Technology Data Exchange (ETDEWEB)

    Skelly, W.A.

    1996-09-27

    To prepare single-shell tanks for closure, it will be necessary to piece some type of load- bearing fill material inside the tanks to support the domes. Provision of internal support permits the simplifying assumption that the combined weight of the dome, the existing operational soil cover, and the surface barrier will eventually transfer to and be carried by the fill. This engineering study provides descriptions and evaluations of four alternative concepts for fitting and stabilizing nominally empty SSTs with fill materials. For this study it is assumed that 99 percent (or more) of tank wastes will be retrieved before closure is undertaken. The alternatives are: Gravel: tanks would be fitted with crushed aggregate using a rotating stinger apparatus installed in the central riser; Grout: tanks would be fitted with a pumpable, ex-situ mixed grout formulation; Hybrid: tanks would be fitted first with coarse aggregate, then with grout, producing a pre-placed aggregate concrete material; or Concrete: tank. would be filled with a highly-flowable, ex-situ mixed concrete formulation.

  1. External Tank Program - Legacy of Success

    Science.gov (United States)

    Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth

    2011-01-01

    The largest single element of Space Shuttle is the External Tank (ET), which serves as the structural backbone of the vehicle during ascent and provides liquid propellants to the Orbiter s three Main Engines. The ET absorbs most of the seven million pounds of thrust exerted by the Solid Rocket Boosters and Main Engines. The design evolved through several block changes, reducing weight each time. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. The initial configuration, the standard weight tank, weighed 76,000 pounds and was an aluminum 2219 structure. The light weight tank weighed 66,000 pounds and flew 86 missions. The super light weight tank weighed 58,500 pounds and was primarily an aluminum-lithium structure. The final configuration and low weight enabled system level performance sufficient for assembly of the International Space Station in a high inclination orbit, vital for international cooperation. Another significant challenge was the minimization of ice formation on the cryogenic tanks. This was essential due to the system configuration and the choice of ceramic thermal protection system materials on the Orbiter. Ice would have been a major debris hazard. Spray on foam insulation materials served multiple functions including thermal insulation, conditioning of cryogenic propellants, and thermal protection for the tank structure during ascent and entry. The tank is large, and unique manufacturing facilities, tooling, and handling, and transportation operations were developed. Weld processes and tooling evolved with the design as it matured through several block changes. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir

  2. Tank characterization report for Single-Shell Tank 241-BX-107

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of {approximately}3.07 m (120.7 {+-} 2 in. from sidewall bottom or {approximately}132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19{degrees}C (66{degrees}F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992.

  3. Tank characterization report for Single-Shell Tank 241-BX-107

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of {approximately}3.07 m (120.7 {+-} 2 in. from sidewall bottom or {approximately}132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19{degrees}C (66{degrees}F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992.

  4. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  5. 西门子高密度沉淀池在煤化工回用水的应用研究%Applied Research on Recycle Water of Coal Chemical Industry in SIEMENS High-density Sedimentation Tank

    Institute of Scientific and Technical Information of China (English)

    李孝洪

    2012-01-01

      某煤制烯烃项目回用水装置采用德国西门子公司高密度沉淀池专利技术,该装置自2010年5月底运行至今,曾多次出现影响高密度沉淀池正常运行的严重问题,具体表现为沉淀区产生高浓度黏泥无法正常排出和絮凝区产生积泥破坏絮凝区水动力平衡,最终导致高密度沉淀池出水不合格。为了解决这些难题,经过不断摸索,通过控制絮凝区和沉淀区较低的5min沉降比与定时排泥相结合和改变絮凝区搅拌器的转动方向的运行方式,系统运行近3个月后未出现上述问题,表明采取的措施有一定效果。%  The high-density sedimentation tank patent technology, belonging to German Siemens Company, is adopted by water reuse device of a coal-to-olefin project. Since the end of May 2010, the device has appeared serious problems that effect normal operation of high-density sedimentation tank. Settling zone produced high concentration sludge that can not be discharged properly and flocculation zone produced mud that damage its water dynamic balance, eventually it leads to high density tank water unqualified. In order to solve these problems, we adopt a new mode of operation through continuous exploration:1. Control settlement ratio (5 minutes)of flocculation area and sedimentation zone combining with timing dredge;2. Change the rotation direction of agitator in flocculation zone. The system has not appeared afore-mentioned problems after running for nearly three months, showing that the measures adopted have certain effect.

  6. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  7. 49 CFR 180.519 - Periodic retest and inspection of tank cars other than single-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Periodic retest and inspection of tank cars other... of Tank Cars § 180.519 Periodic retest and inspection of tank cars other than single-unit tank car... devices must be retested periodically as specified in Retest Table 1 of paragraph (b)(5) of this...

  8. Industrial mixing techniques for Hanford double-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks.

  9. Tank 40 Final SB7b Chemical Characterization Results

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. J.

    2012-11-06

    A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235

  10. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  11. Tanks Focus Area Site Needs Assessment FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Robert W.

    2000-03-10

    This document summarizes the Tanks Focus Area (TFA's) process of collecting, analyzing, and responding to high-level radioactive tank waste science and technology needs developed from across the DOE complex in FY 2000. The document also summarizes each science and technology need, and provides an initial prioritization of TFA's projected work scope for FY 2001 and FY 2002.

  12. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  13. CFD simulations of filling and emptying of hydrogen tanks

    OpenAIRE

    MELIDEO DANIELE; BARALDI DANIELE; ACOSTA IBORRA BEATRIZ; ORTIZ CEBOLLA RAFAEL; MORETTO PIETRO

    2016-01-01

    During the filling of hydrogen tanks high temperatures can be generated inside the vessel because of the gas compression while during the emptying low temperatures can be reached because of the gas expansion. The design temperature range goes from 40 C to 85 C. Temperatures outside that range could affect the mechanical properties of the tank materials. CFD analyses of the filling and emptying processes have been performed in the HyTransfer project. To assess the accuracy of the CFD model the...

  14. Ultralight linerless composite tanks for the In-Space applications

    Science.gov (United States)

    Mallick, Kaushik; Tupper, Michael L.; Grimes-Ledesma, Lorie; Lewis, Joseph C.; Welsh, Jeffry

    2004-01-01

    A program has been proposed to NASA to develop a technology that will provide helium containment a the high strain levels required to create low mass tanks for in-space propulsion applications. The specific goal of the program is to develop linerless composite tanks that will successfully contain small molecule gases, such as, He, at 10,000 psia for a target mission life or 15 years.

  15. Chemical information on tank supernatants, Cs adsorption from tank liquids onto Hanford sediments, and field observations of Cs migration from past tank leaks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Zachara, J.M.; Burke, D.S.

    1998-01-01

    Borehole gamma-logging profiles beneath the SX-Tank Farm suggest that contamination from Cs-137 extends to at least a depth of 40 m (130 ft), and may extend even deeper. What is presently not known is the pathway that Cs-137 has taken to reach these depths. In this report we provide an analysis of the chemistry of tank supernates with emphasis on the REDOX waste stream disposed in SX tanks, Cs chemistry in aqueous solutions and adsorption properties onto minerals, available data on Cs adsorption onto Hanford sediments, and information on Cs migration from other Hanford tank leaks that have been studied. The data in this report was used to help guide the vadose zone transport analysis of the SX Tank Farm presented in a companion report. The goal of the vadose zone transport modelling is to attempt to explain the depth and extent of the Cs-137 plume under the SX Tank farm, specifically in the vicinity of the greatest leak, near the SX-109 Tank as inferred from the gamma logs (DOE 1996). In solution Cs is present as the monovalent cation and shows very little tendency to form aqueous complexes with inorganic or organic ligands. Cs is expected to adsorb primarily onto selective minerals that have unique adsorption sites. The small Cs{sup +} ion is accommodated on these frayed edge and interlayer sites. Adsorption within the interlayers often leads to collapse of the layers such that the Cs{sup +} ion is effectively trapped and not readily exchangeable by all other common cations. The degree of adsorption is thus only moderately dependent on the types and high concentrations of other cations in leaking tank liquors.

  16. Estimation of heat load in waste tanks using average vapor space temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, R.D.; Kummerer, M.; Postma, A.K.

    1993-12-01

    This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

  17. Tank characterization report for double shell tank 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    Winkelman, W.D., Westinghouse Hanford

    1996-08-07

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AP-104. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  18. Tank characterization report for single shell tank 241-S-107

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  19. Tank characterization report for single shell tank 241-S-107

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1996-09-19

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-S-107. This report supports the requirements of Tri- Party Agreement Milestone M-44-09.

  20. Tank characterization report for single-shell Tank B-201

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank.

  1. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  2. [Death in a relaxation tank].

    Science.gov (United States)

    Rupp, Wolf; Simon, Karl-Heinz; Bohnert, Michael

    2009-01-01

    Complete relaxation can be achieved by floating in a darkened, sound-proof relaxation tank filled with salinated water kept at body temperature. Under these conditions, meditation exercises up to self-hypnosis may lead to deep relaxation with physical and mental revitalization. A user manipulated his tank, presumably to completely cut off all optical and acoustic stimuli and accidentally also covered the ventilation hole. The man was found dead in his relaxation tank. The findings suggested lack of oxygen as the cause of death.

  3. Think tank (1) - Its definition and the overseas situation

    Science.gov (United States)

    Obara, Michio

    The definition as organization is that 1) the think tank should be policy oriented and propose the current issues, 2) it should be interdisciplinary and future oriented, and 3) it should be independent without any outside interference upon it. It is divided into three types in terms of business activity; 1) policy proposing, 2) R&D undertaking and 3) business consulting think tanks. Historically the U.S. has been leading the world because the first think tank was born in this country, and three types of think tanks have brought out the mature business undertakings there. Most of the countries other than the U.S. has held policy proposing type think tanks. The notable think tanks are Brookings Research Institute, Rand Research Institute, Battelle Memorial Institute, Arthur D. Little Co. Ltd. SRI International in the U.S.A., IFO Economic Research Institute, German Economic Research Institute in Germany, France International Relations Research Institute in France, Royal International Relations Research institute, International Strategic Matters Research Institute in the U.K., and Korean Development Research Institute, Korean industrial Research Institute in Korea. All of these have been active in the areas of politics, economics, industry and technology.

  4. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  5. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

  6. Metabolic Activity of Bacteria at High Pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  7. 46 CFR 154.446 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under §...

  8. 40 CFR 265.1085 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Tanks. 265.1085 Section 265... FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1085 Standards: Tanks. (a) The provisions of this section apply to the control of air pollutant emissions from tanks...

  9. 40 CFR 63.685 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Tanks. 63.685 Section 63... Standards: Tanks. (a) The provisions of this section apply to the control of air emissions from tanks for.... (b) The owner or operator shall control air emissions from each tank subject to this section...

  10. 27 CFR 24.167 - Tanks.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Tanks. 24.167 Section 24... TREASURY LIQUORS WINE Construction and Equipment § 24.167 Tanks. (a) General. All tanks on wine premises... the intended purpose. Each tank used for wine operations will be located, constructed, and equipped...

  11. 7 CFR 58.218 - Surge tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Surge tanks. 58.218 Section 58.218 Agriculture....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including foam being held in the surge tank during processing, is not maintained at a minimum of 150 °F, then two...

  12. 14 CFR 25.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 25.1013 Section 25.1013... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank...

  13. 14 CFR 27.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 27.1013 Section 27.1013... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1013 Oil tanks. Each oil tank must be... space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and where used...

  14. 14 CFR 29.1013 - Oil tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tanks. 29.1013 Section 29.1013... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1013 Oil tanks. (a) Installation. Each oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank...

  15. 40 CFR 264.1084 - Standards: Tanks.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Tanks. 264.1084 Section 264... Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1084 Standards: Tanks. (a) The provisions of this section apply to the control of air pollutant emissions from tanks for which §...

  16. 7 CFR 58.320 - Brine tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet....

  17. The Politics of Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    of a typology of think tanks, quantitative data and interviews with think tank practitioners, the interplay between state and market dynamics and the development of different types of think tanks is analysed. Although think tanks develop along different institutional trajectories, it is concluded that the Anglo...

  18. Analysis Of The Tank 5F Final Characterization Samples-2011

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  19. ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-08-03

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  20. ANALYSIS OF THE TANK 5F FINAL CHARATERIZATION SAMPLES-2011

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-01-20

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the

  1. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    "Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small

  2. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates.

  3. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.; Collins, J.L.; Chase, C.W.

    1998-07-01

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both {sup 137}Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report.

  4. Ostwald Ripening and Its Effect on PuO2 Particle Size in Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.

    2011-09-29

    Between 1944 and 1989, the Hanford Site produced 60 percent (54.5 metric tons) of the United States weapons plutonium and produced an additional 12.9 metric tons of fuels-grade plutonium. High activity wastes, including plutonium lost from the separations processes used to isolate the plutonium, were discharged to underground storage tanks during these operations. Plutonium in the Hanford tank farms is estimated to be {approx}700 kg but may be up to {approx}1000 kg. Despite these apparent large quantities, the average plutonium concentration in the {approx}200 million liter tank waste volume is only about 0.003 grams per liter ({approx}0.0002 wt%). The plutonium is largely associated with low solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO{sub 2} {center_dot} xH{sub 2}O, could undergo sufficient crystal growth through Ostwald ripening in the alkaline tank waste to potentially be separable from neutron absorbing constituents by settling or sedimentation. It was found that plutonium that entered the alkaline tank waste by precipitation through neutralization from acid solution is initially present as 2- to 3-nm (0.002- to 0.003-{mu}m) scale PuO{sub 2} {center_dot} xH{sub 2}O crystallite particles and grows from that point at exceedingly slow rates, posing no risk to physical segregation. These conclusions are reached by both general considerations of Ostwald ripening and specific observations of the behaviors of PuO{sub 2} and PuO{sub 2} {center_dot} xH{sub 2}O upon aging in alkaline solution.

  5. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  6. Motivational indictors predicting the engagement, frequency and adequacy of rainwater tank maintenance

    Science.gov (United States)

    Mankad, Aditi; Greenhill, Murni

    2014-01-01

    Rainwater tank maintenance is a key social behavior in our changing environment, as tanks are being adopted worldwide to augment household water supplies and reduce urban water stress. The maintenance of rainwater tanks in urban areas is an important pro-environmental behavior that prevents public health issues arising from unhygienic tank use. This study examined motivational differences in maintenance behavior between householders with retrofitted and mandated (compulsory) rainwater tanks on their property (N = 1988). Results showed that retrofitted tank owners were more self-determined in their motivation than mandated owners. Amotivation and integrated regulation were both dominant predictors of engagement in tank maintenance, frequency and adequacy of tank maintenance activities. Those involved in more maintenance activity were likely driven to do so because of feelings of adherence to personal goals and values (e.g., as "sustainable" citizens), whereas individuals who experienced a lack of control and alienation from the activity were likely to view maintenance as meaningless. Thus, people with higher integrated regulation engaged in more tank maintenance activities, whereas more amotivated individuals engaged in less maintenance. As cities begin relying more on citizen self-sufficiency with respect to water and energy resources, issues relating to infrastructure maintenance and operation become paramount. Results show that motivation is important in the impetus to engage in a pro-environmental behavior as well as the frequency and accuracy with which that behavior is undertaken. Policy implications are further discussed.

  7. Dynamic Effects of Tank Waste Aging on Radionuclide-Complexant Interactions - Final Report - 10/01/1997 - 10/01/2000

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, Rebecca M.; Arterburn, Jeffrey B. rmchamberlin@lanl.gov; jarterbu@nmsu.edu

    2000-10-01

    The long-range objective of this project is to provide a scientific basis for safely processing high-level nuclear tanks wastes for disposal. Our goals are to identify a means to prepare realistic simulant formulations for complexant-containing Hanford tank wastes, and then use those simulants to determine the relative importance of various organic complexants and their breakdown products on the partitioning of important radionuclides. The harsh chemical and radiolytic environment in high-level waste tanks alters both the organic complexants and the metal species, producing radionuclide-chelator complexes that resist standard separation methods. A detailed understanding of the complexation reactions of the key radionuclides in tank wastes would allow for reliable, science-based solutions for high-level waste processing, but a key problem is that tank waste samples are exceedingly difficult to obtain, transport and handle in the laboratory. In contrast, freshly-prepared simulated wastes are safe and readily obtained, but they do not reproduce the partitioning behavior of actual tank waste samples. For this project, we will first artificially age complexant-containing tank waste simulants using microwave, ultrasound, and photolysis techniques that can be applied in any standard laboratory. The aged samples will be compared to samples of actual Hanford tank wastes to determine the most realistic aging method, on the basis of the organic fragments present, and the oxidation states and partitioning behavior of important radionuclides such as 90Sr, 99Tc, and 239Pu. Our successful completion of this goal will make it possible for scientists in academic and industrial laboratories to address tank waste remediation problems without the enormous costs and hazards associated with handling actual tank waste samples. Later, we will use our simulant aging process to investigate the relative effects of chelator degradation products on the partitioning of important radionuclides

  8. Effects of deodorants on treatment of boat holding-tank waste

    Science.gov (United States)

    Walker, William R.; Haley, Carol J.; Bridgeman, Phyllis; Goldstein, Stephen H.

    1991-05-01

    A literature search and survey of Virginia, USA, campgrounds with RV pump-out stations were used to determine whether boat holding-tank deodorant chemicals would have deleterious effects on marina septic systems or package treatment plants. Laboratory studies reported in the literature indicate that these chemical additives could affect septic system function in three ways: (1) active ingredients in the additives can impair sewage degradation in septic tanks, causing sludge buildup and overflow of solids into the drainfield, (2) additive chemicals might enter the drainfield and, in high enough concentrations, reduce the drainfield's ability to degrade waste, or (3) toxic additive chemicals might migrate from the drainfield to ground or surface water. Laboratory studies also show that some ingredients added to holding tanks interfere with functioning of activated sludge treatment process. Experience in the field and in other laboratory studies suggests that factors such as dilution of treated waste with untreated waste and the characteristics of the sewage to be treated can reduce the possibility of damage to septic and activated sludge systems. The campground owners surveyed indicated that they have few problems with their septic systems in spite of the presence of chemical additives in the RV waste. However, most of them practice good septic system maintenance and have devised other means of ensuring that their systems function efficiently. In addition, the survey indicates that most Virginia campgrounds get only seasonal use (as would marinas in Virginia), allowing their systems to recover between peak seasons.

  9. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  10. Hazard assessments of double-shell flammable gas tanks

    Energy Technology Data Exchange (ETDEWEB)

    Fox, G.L.; Stepnewski, D.D.

    1994-09-28

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures.

  11. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  12. CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV; ALCALA LJ

    2009-01-06

    chemically as well as radiologically, all retrieval operations must be performed using remote-controlled equipment which has to be installed in each tank, then removed when retrieval is completed. This process involves a variety of potentially hazardous construction activities including crane and rigging, excavation, electrical and piping work. It also requires strong attention to safety to avoid injuries to personnel and contamination of the environment.

  13. Tank 241-C-109 vapor sampling and analysis tank characterization report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L.

    1995-05-31

    This report presents the details of the Hanford waste tank characterization study for tank C-109. The drivers and objectives of the waste tank headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports.

  14. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    Energy Technology Data Exchange (ETDEWEB)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  15. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  16. North Tank Farm data report for the Gunite and Associated Tanks at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rule, V.A. [XL Associates, Inc., Oak Ridge, TN (United States); Burks, B.L. [Providence Group, Knoxville, TN (United States); Hoesen, S.D. van [Oak Ridge National Lab., TN (United States)

    1998-05-01

    The US Department of Energy (DOE) Office of Science and Technology, in cooperation with the Oak Ridge Environmental Management Program, has developed and demonstrated the first full-scale remotely operated system for cleaning radioactive liquid and waste from large underground storage tanks. The remotely operated waste retrieval system developed and demonstrated at Oak Ridge National Laboratory (ORNL) is designed to accomplish both retrieval of bulk waste, including liquids, thick sludge, and scarified concrete, and final tank cleaning. This report provides a summary of the North Tank Farm (NTF) operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations data and an assessment of the performance and efficiency of the waste retrieval system during NTF operations. The organization of this report is as follows: Section 1 provides an introduction to the report. Section 2 describes the NTF tank structures (W-3 and W-4 only) and the contents of the tanks. Section 3 outlines the objectives of the NTF testing and explains how these objectives were met. Section 4 provides a description of the various operating systems used in the NTF operations. Sections 5 and 6 present a summary of the data collected during NTF operations. Section 7 summarizes the maintenance activities performed and Section 8 summarizes the on-the-job training performed in the NTF. Section 9 summarizes the capital cost for the waste retrieval and characterization equipment and operating costs for performing the NTF work. Section 10 provides observations and lessons learned, and Section 11 provides a summary and conclusions.

  17. Tank safety screening data quality objective. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.W.

    1995-04-27

    The Tank Safety Screening Data Quality Objective (DQO) will be used to classify 149 single shell tanks and 28 double shell tanks containing high-level radioactive waste into safety categories for safety issues dealing with the presence of ferrocyanide, organics, flammable gases, and criticality. Decision rules used to classify a tank as ``safe`` or ``not safe`` are presented. Primary and secondary decision variables used for safety status classification are discussed. The number and type of samples required are presented. A tabular identification of each analyte to be measured to support the safety classification, the analytical method to be used, the type of sample, the decision threshold for each analyte that would, if violated, place the tank on the safety issue watch list, and the assumed (desired) analytical uncertainty are provided. This is a living document that should be evaluated for updates on a semiannual basis. Evaluation areas consist of: identification of tanks that have been added or deleted from the specific safety issue watch lists, changes in primary and secondary decision variables, changes in decision rules used for the safety status classification, and changes in analytical requirements. This document directly supports all safety issue specific DQOs and additional characterization DQO efforts associated with pretreatment and retrieval. Additionally, information obtained during implementation can assist in resolving assumptions for revised safety strategies, and in addition, obtaining information which will support the determination of error tolerances, confidence levels, and optimization schemes for later revised safety strategy documentation.

  18. The modified swirl sedimentation tanks for water purification.

    Science.gov (United States)

    Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika

    2017-03-15

    This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10(-5) to 5.1⋅10(-4) [m(3)/s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks.

  19. A bacterial community analysis using reverse transcription (RT) PCR which detects the bacteria with high activity in a wastewater treatment reactor

    Science.gov (United States)

    This research used reverse transcription polymerase chain reaction (RT-PCR) method to help detect active bacteria in a single-tank deammonification reactor combining partial nitritation and anammox. The single-tank aerobic deammonification reactor effectively removed the ammonia in anaerobically di...

  20. ANALYSIS OF THE TANK 6F FINAL CHARACTERIZATION SAMPLES-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.; Shine, G.

    2012-06-28

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  1. Analysis Of The Tank 6F Final Characterization Samples-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  2. Analysis of the Tank 6F Final Characterization Samples-2012

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2013-01-31

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite

  3. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  4. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  5. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  6. Criteria for temperature monitoring in ferrocyanide waste tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, K.D.; Dukelow, G.T.

    1994-09-01

    This report is relevant to the twenty underground waste storage tanks at the Hanford Site that have been identified as potentially containing a significant amount of ferrocyanide compounds. Tanks believed to contain > 1,000 gram moles of ferrocyanide have been classified as Watch List tanks. This report addresses temperature monitoring criteria for the Ferrocyanide Watch List tanks. These criteria must comply with governing regulations to ensure that safe continued storage of the tank wastes is not jeopardized. Temperature monitoring is defined in this report as the routine as the routine continuous measurement of a waste tank temperature with an output that is tied to an actively interrogated information collection system that includes an automated warning of temperature increases beyond the established limits.

  7. A storage gas tank is moved to a pallet in the O&C

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Workers in the Operations and Checkout Building stand by while one of four gas tanks is moved toward the Spacelab Logistics Double Pallet. Part of the STS-104 payload, the storage tanks two gaseous oxygen and two gaseous nitrogen -- comprise the high pressure gas assembly that will be attached to the Joint Airlock Module during two spacewalks. The tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system.

  8. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2014-02-01

    Full Text Available In order to advance understanding of the role of seawater surfactants in the air–sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw, we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air–sea gas exchange process.

  9. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2014-07-01

    Full Text Available In order to advance understanding of the role of seawater surfactants in the air–sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw, we constructed a fully automated, closed air–water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air–sea gas exchange process.

  10. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  11. Highly active thermally stable nanoporous gold catalyst

    Science.gov (United States)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  12. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  13. Lightweight Tanks for Storing Liquefied Natural Gas

    Science.gov (United States)

    DeLay, Tom

    2008-01-01

    Single-walled, jacketed aluminum tanks have been conceived for storing liquefied natural gas (LNG) in LNG-fueled motor vehicles. Heretofore, doublewall steel tanks with vacuum between the inner and outer walls have been used for storing LNG. In comparison with the vacuum- insulated steel tanks, the jacketed aluminum tanks weigh less and can be manufactured at lower cost. Costs of using the jacketed aluminum tanks are further reduced in that there is no need for the vacuum pumps heretofore needed to maintain vacuum in the vacuum-insulated tanks.

  14. In-tank recirculating arsenic treatment system

    Science.gov (United States)

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  15. DEVELOPMENT OF A SMART SOLAR TANK

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    Theoretical and experimental investigations of small SDHW systems based on so-called smart solar tanks are presented. A smart solar tank is a hot water tank in which the domestic water can both be heated by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply....... The investigations showed that the yearly thermal performance of small SDHW systems can be increased by up to about 30 % if a smart solar tank is used instead of a traditional solar combi tank. The thermal increase is strongly influenced by the hot water consumption and consumption pattern. Recommendations...... for future development of smart solar tanks are given....

  16. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  17. Maintenance of submersible pumps in the septic tanks: ergonomic and biological risks to the worker.

    Science.gov (United States)

    Mariño, Suzi; Figueiredo, Alex

    2012-01-01

    In this study was observed the maintenance task of submersible pumps septic tanks installed in industrial bathrooms. This maintenance activity operators are exposed to various biological and ergonomic risks. This type of activity requires its great physical performers who are also subject to contact with human waste in the form of liquids, gases and solids. Besides the problems mentioned, are still exposed to high temperatures that can cause diseases such as hyperthermia or heatstroke. These aspects were observed using the ergonomic assessment methodology in order to suggest improvements that are reflected in productivity and employee satisfaction.

  18. Tank farm health and safety plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Mickle, G.D.

    1995-03-29

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  19. Thermal Stratification in Small Solar Domestic Storage Tanks caused by Draw-offs

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Furbo, Simon

    2005-01-01

    As shown in many research studies in the past, the thermal stratification of the tank caused by draw-offs has a high impact on the performance of a Solar Domestic Hot Water (SDHW) system. Nevertheless, in most tank models for system simulations the influence of the draw-off pattern on the mixing...... behaviour is not taken into account sufficiently. Two typical Danish domestic water storage tanks, each with a volume of about 150 l, were investigated. In both tanks the inlet pipes are placed at the bottom and hot water is drawn from the upper part of tank. Above the inlet pipes, differently shaped plates...... are placed in order to reduce the mixing of the incoming cold water with the warmer storage water. To measure the thermal stratification thermocouples were placed in a vertical glass tube inside the tank. Measurements were carried out with different draw-off volumes, flow rates, and initial temperatures...

  20. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.