WorldWideScience

Sample records for high activity sulfonated

  1. Papillomavirus microbicidal activities of high-molecular-weight cellulose sulfate, dextran sulfate, and polystyrene sulfonate.

    Science.gov (United States)

    Christensen, N D; Reed, C A; Culp, T D; Hermonat, P L; Howett, M K; Anderson, R A; Zaneveld, L J

    2001-12-01

    The high-molecular-weight sulfated or sulfonated polysaccharides or polymers cellulose sulfate, dextran sulfate, and polystyrene sulfonate were tested for microbicidal activity against bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 11 (HPV-11) and type 40 (HPV-40). In vitro assays included the BPV-1-induced focus-forming assay and transient infection of human A431 cells with HPVs. The compounds were tested for microbicidal activity directly by preincubation with virus prior to addition to cell cultures and indirectly by addition of virus to compound-treated cells and to virus-coated cells to test inactivation of the virus after virus-cell binding. The data indicated that all three compounds showed direct microbicidal activity with 50% effective concentrations between 10 to 100 microg/ml. These concentrations were nontoxic to cell cultures for both assays. When a clone of C127 cells was tested for microbicidal activity, approximately 10-fold-less compound was required to achieve a 50% reduction in BPV-1-induced foci than for the uncloned parental C127 cells. Pretreatment of cells with compound prior to addition of virus also demonstrated strong microbicidal activity with dextran sulfate and polystyrene sulfonate, but cellulose sulfate required several orders of magnitude more compound for virus inactivation. Polystyrene sulfonate prevented subsequent infection of HPV-11 after virus-cell binding, and this inactivation was observed up to 4 h after addition of virus. These data indicate that the polysulfated and polysulfonated compounds may be useful nontoxic microbicidal compounds that are active against a variety of sexually transmitted disease agents including papillomaviruses.

  2. Well-Shaped Sulfonic Organosilica Nanotubes with High Activity for Hydrolysis of Cellobiose

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2017-04-01

    Full Text Available Sulfonic organosilica nanotubes with different acidity densities could be synthesized through the co-condensation of ethenyl- or phenylene-bridged organosilane and 3-mercaptopropyltrimethoxysilane followed by sulfhydryl (–SH oxidation. Transmission electron microscopy (TEM analysis and nitrogen adsorption-desorption experiment clearly exhibit the hollow nanotube structures with the diameters of about 5 nm. The compositions of the nanotube frameworks are confirmed by solid state 13C nuclear magnetic resonance (NMR while X-ray photoelectron spectroscopy (XPS shows that about 60–80% of SH groups were oxidized to sulfonic acid (SO3H. The acid contents were measured by both elemental analysis (CHNS mode and acid-base titration experiment, which revealed that the acid density was in the range of 0.74 to 4.37 μmol·m−2 on the solid. These nanotube-based acid catalysts exhibited excellent performances in the hydrolysis of cellobiose with the highest conversion of 92% and glucose selectivity of 96%. In addition, the catalysts could maintain high activity (65% conversion with 92% selectivity even after six recycles.

  3. Synthesis of a high specific activity methyl sulfone tritium isotopologue of fevipiprant (NVP-QAW039).

    Science.gov (United States)

    Luu, Van T; Goujon, Jean-Yves; Meisterhans, Christian; Frommherz, Matthias; Bauer, Carsten

    2015-05-15

    The synthesis of a triple tritiated isotopologue of the CRTh2 antagonist NVP-QAW039 (fevipiprant) with a specific activity >3 TBq/mmol is described. Key to the high specific activity is the methylation of a bench-stable dimeric disulfide precursor that is in situ reduced to the corresponding thiol monomer and methylated with [(3)H3]MeONos having per se a high specific activity. The high specific activity of the tritiated active pharmaceutical ingredient obtained by a build-up approach is discussed in the light of the specific activity usually to be expected if hydrogen tritium exchange methods were applied.

  4. Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery

    Science.gov (United States)

    Yin, Bibo; Li, Zhaohua; Dai, Wenjing; Wang, Lei; Yu, Lihong; Xi, Jingyu

    2015-07-01

    A series of highly branched sulfonated poly (fluorenyl ether ketone sulfone)s (HSPAEK) are synthesized by direct polycondensation reactions. The HSPAEK with 8% degree of branching is further investigated as membrane for vanadium redox flow battery (VRFB). The HSPAEK membrane prepared by solution casting method exhibits smooth, dense and tough morphology. It possesses very low VO2+ permeability and high ion selectivity compared to those of Nafion 117 membrane. When applied to VRFB, this novel membrane shows higher coulombic efficiency (CE, 99%) and energy efficiency (EE, 84%) than Nafion 117 membrane (CE, 92% and EE, 78%) at current density of 80 mA cm-2. Besides, the HSPAEK membrane shows super stable CE and EE as well as excellent discharge capacity retention (83%) during 100 cycles life test. After being soaked in 1.5 mol L-1 VO2+ solution for 21 days, the weight loss of HSPAEK membrane and the amount of VO2+ reduced from VO2+ are only 0.26% and 0.7%, respectively, indicating the superior chemical stability of the membrane.

  5. Mesoporous silica materials with an extremely high content of organic sulfonic groups and their comparable activities with that of concentrated sulfuric acid in catalytic esterification.

    Science.gov (United States)

    Feng, Ye-Fei; Yang, Xiao-Yu; Di, Yan; Du, Yun-Chen; Zhang, Yong-Lai; Xiao, Feng-Shou

    2006-07-27

    Mesoporous silica materials (HS-JLU-20) with an extremely high content of mercaptopropyl groups have been successfully synthesized using fluorocarbon-hydrocarbon surfactant mixtures through a simple co-condensation approach of tetraethyl orthosilicate (TEOS) and (3-mercaptopropyl)trimethoxysilane (MPTS), which are characterized by X-ray diffraction (XRD), nitrogen adsorption and desorption isotherms, transmission electron microscopy (TEM), CHNS elemental analysis, thermogravimetry analysis (TGA), and (29)Si NMR spectroscopy. The results show that HS-JLU-20 samples with molar ratios of MPTS/(MPTS + TEOS) at 0.5-0.8 in the starting synthetic gels still show their mesostructures, while HS-SBA-15 with the molar ratio of MPTS/(MPTS + TEOS) at 0.50 completely loses its mesostructure in the absence of fluorocarbon surfactant. Possibly, fluorocarbon surfactant containing N(+) species with a positive charge could effectively interact with negatively charged mercapto groups in the synthesis of HS-JLU-20 materials, resulting in the formation of mesoporous silicas with good cross-linking of silica condensation even at an extremely high content of organic mercapto groups. More interestingly, after the treatment with hydrogen peroxide, HSO(3)-JLU-20 materials with an extremely high content of organic sulfonic groups exhibit comparable activity with liquid concentrated sulfuric acid in catalytic esterification of cyclohexanol with acetic acid.

  6. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants

    NARCIS (Netherlands)

    Temmink, B.G.; Klapwijk, A.

    2004-01-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg/l and at sludge retention times of 10 and 27 days<

  7. Mechanoassisted Synthesis of Sulfonated Covalent Organic Frameworks with High Intrinsic Proton Conductivity.

    Science.gov (United States)

    Peng, Yongwu; Xu, Guodong; Hu, Zhigang; Cheng, Youdong; Chi, Chenglong; Yuan, Daqiang; Cheng, Hansong; Zhao, Dan

    2016-07-20

    It is challenging to introduce pendent sulfonic acid groups into modularly built crystalline porous frameworks for intrinsic proton conduction. Herein, we report the mechanoassisted synthesis of two sulfonated covalent organic frameworks (COFs) possessing one-dimensional nanoporous channels decorated with pendent sulfonic acid groups. These COFs exhibit high intrinsic proton conductivity as high as 3.96 × 10(-2) S cm(-1) with long-term stability at ambient temperature and 97% relative humidity (RH). In addition, they were blended with nonconductive polyvinylidene fluoride (PVDF) affording a series of mixed-matrix membranes (MMMs) with proton conductivity up to 1.58 × 10(-2) S cm(-1) and low activation energy of 0.21 eV suggesting the Grotthuss mechanism for proton conduction. Our study has demonstrated the high intrinsic proton conductivity of COFs shedding lights on their wide applications in proton exchange membranes.

  8. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  9. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Science.gov (United States)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  10. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.

    Science.gov (United States)

    Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin

    2017-05-03

    The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g(-1) and good capacity retention of 802 mAh g(-1) after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g(-1) at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.

  12. High Levels of Perfluorooctane Sulfonate in Children at the Onset of Diabetes

    Directory of Open Access Journals (Sweden)

    Barbara Predieri

    2015-01-01

    Full Text Available Background. Impairments of endocrine system may be associated with exposure to perfluorinated compounds that are able to bind nuclear receptors, including the peroxisome proliferator-activating receptors. Aim of this study was to assess perfluorooctane sulfonate and perfluorooctanoic acid concentrations in children and adolescents at the onset of type 1 diabetes compared to healthy controls. Methods. Forty-four children and adolescents were recruited and subdivided into two groups: (A 25 subjects with type 1 diabetes and (B 19 healthy controls. Perfluorinated compounds were measured using high performance liquid chromatography with electrospray ionization tandem mass spectrometry. Nonparametric statistical analysis was performed. Results. Perfluorooctane sulfonate concentrations were significantly higher in patients with type 1 diabetes compared to controls (1.53 ± 1.50 versus 0.55 ± 0.15 ng/mL, resp.; p<0.001. Multivariate linear regression analysis identified lipid levels as significant predictive factors for perfluorooctane sulfonate levels. Conclusions. Our data suggests that higher serum levels of perfluorooctane sulfonate may be considered a biomarker of exposure and susceptibility to develop type 1 diabetes.

  13. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants.

    Science.gov (United States)

    Temmink, H; Klapwijk, Bram

    2004-02-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg l(-1) and at sludge retention times of 10 and 27 days. Effluent and waste sludge concentrations varied between 5 and 10 microg l(-1) and between 37 and 69 microg g(-1) VSS, respectively. In the sludge samples only 2-8% was present as dissolved LAS-C12, whereas the remaining 92-98% was found to be adsorbed to the sludge. In spite of this high degree of sorption, more than 99% of the LAS-C12 load was removed by biodegradation, showing that not only the soluble fraction but also the adsorbed fraction of LAS-C12 is readily available for biodegradation. Sorption and biodegradation of LAS-C12 were also investigated separately. Sorption was an extremely fast and reversible process and could be described by a linear isotherm with a partition coefficient of 3.2 l g(-1) volatile suspended solids. From the results of biodegradation kinetic tests it was concluded that primary biodegradation of LAS-C12 cannot be described by a (growth) Monod model, but a secondary utilisation model should be used instead. The apparent affinity of the sludge to biodegrade LAS-C12 increased when the sludge was loaded with higher influent concentrations of LAS-C12.

  14. Synthesis, structure, theoretical calculations and biological activity of sulfonate active ester new derivatives

    Science.gov (United States)

    Ghazzali, Mohamed; Khattab, Sherine A. N.; Elnakady, Yasser A.; Al-Mekhlafi, Fahd A.; Al-Farhan, Khalid; El-Faham, Ayman

    2013-08-01

    A series of naphthyl and tolyl sulfonate ester were synthesized and characterized by H NMR. X-ray single crystal diffraction experiments established the molecular structure of three new sulfonate esters derivatives, and spectral data agree with these in solution. The observed hydrogen bonding is discussed on the basis of crystal structural analyses and DFT/MP2 geometry optimization quantum calculations. Antimicrobial activities were screened for selected compounds against three human cancer cell lines and Mosquito Culex pipiens larvae.

  15. Synthesis of sulfonated oxindoles by potassium iodide catalyzed arylsulfonylation of activated alkenes with sulfonylhydrazides in water.

    Science.gov (United States)

    Li, Xiaoqing; Xu, Xiangsheng; Hu, Peizhu; Xiao, Xuqiong; Zhou, Can

    2013-07-19

    A catalytic system consisting of KI, 18-crown-6, and TBHP for arylsulfonylation of activated alkenes with sulfonylhydrazides as sulfonyl precursor is described. This protocol provides a practical and environmentally benign method for the construction of sulfonated oxindoles in water.

  16. Activated-sludge nitrification in the presence of linear and branched-chain alkyl benzene sulfonates.

    Science.gov (United States)

    Baillod, C R; Boyle, W C

    1968-01-01

    The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon.

  17. Derivatives of phenyl tribromomethyl sulfone as novel compounds with potential pesticidal activity

    Directory of Open Access Journals (Sweden)

    Krzysztof M. Borys

    2012-02-01

    Full Text Available A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the SNAr reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.

  18. Synthesis, Characterization, and Catalytic Activity of Sulfonated Carbon-Based Catalysts Derived From Rubber Tree Leaves and Pulp and Paper Mill Waste

    Science.gov (United States)

    Janaun, J.; Sinin, E.; Hiew, S. F.; Kong, A. M. T.; Lahin, F. A.

    2016-06-01

    Sulfonated carbon-based catalysts derived from rubber tree leaves, and pulp and paper mill waste were synthesized and characterized. Three types of catalyst synthesized were sulfonated rubber tree leaves (S-RTL), pyrolysed sludge char (P-SC) and sulfonated sludge char (S-SC). Sulfonated rubber tree leaves (S-RTL) and sulfonated sludge char (S-SC) were prepared through pyrolysis followed by functionalization via sulfonation process whereas, P- SC was only pyrolyzed without sulfonation. The characterization results indicated sulfonic acids, hydroxyl, and carboxyl moieties were detected in S-RTL and S-SC, but no sulfonic acid was detected in P-SC. Total acidity test showed S-RTL had the highest value followed by S-SC and P-SC. The thermal stability of S-RTL and S-SC were up to 230oC as the loss was associated with the decomposition of sulfonic acid group, whereas, P-SC showed higher stability than the S-RTL and S-SC. Morphology analysis showed that S-RTL consisted of an amorphous carbon structure, and a crystalline structure for P-SC and S-SC. Furthermore, traces of metal components were also detected on all of the catalysts. The catalyst catalytic activity was tested through esterification of oleic acid with methanol. The results showed that the reaction using S-RTL catalyst produced the highest conversion (99.9%) followed by P-SC (88.4%) and lastly S-SC (82.7%). The synthesized catalysts showed high potential to be used in biodiesel production.

  19. Efficiency of conventional activated sludge in the removal of linear alkylbenzene sulfonate from municipal sewage

    OpenAIRE

    2014-01-01

    Background: Linear Alkylbenzene Sulfonate (LAS) is an anionic detergent that is abundantly produced in different countries and discharged into natural environment through wastewater collection systems. Wastewater treatment systems play an important role in the removal of this contaminant. The purpose of this study was to determine the efficiency of a conventional activated sludge system in removing linear alkylbenzene sulfonate from wastewater in Kermanshah. Methods: This cross-sectional d...

  20. Highly charged proton-exchange membrane. Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat (India)

    2007-01-15

    Sulfonation of poly(ether sulfone) was carried out with chlorosulphonic acid in chloroform and its composite proton-exchange membrane was prepared using aminopropyltriethoxysilane as inorganic precursor by sol-gel in acidic medium. These membranes were further subjected to phosphorylation with phosphorous acid for introducing phosphonic acid functionality at inorganic segment. Extent of sulphonation was estimated by {sup 1}H-NMR spectroscopy while introduction of phosphonic acid groups was confirmed by FTIR spectroscopy and ion-exchange capacity studies. Different membranes, with varied silica content without and with phosphorylation, were characterized for their thermal and mechanical stabilities, physicochemical and electrochemical properties using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), aq. methanol uptake studies, proton conductivity and methanol permeability measurements. The silica content in the membrane matrix and effect of phosphorylation was optimized as a function of membrane properties. Activation energy required for the proton transport across the membrane was also estimated and found to be comparable with Nafion 117 membrane. From the frictional interpretation and estimation of selectivity parameter it was observed that SPS-Si composite phosphorylated membrane with 20% silica content (SPS-Si(P)/20) resulted in the best proton-exchange membrane, which exhibited quite higher selectivity parameter in comparison to Nafion 117 for direct methanol fuel cell applications. Also, current-voltage polarization characteristics of SPS-Si(P)/20 membrane measured in direct methanol fuel cell, were found to be comparable to the Nafion 117 membrane. (author)

  1. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2015-06-01

    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  2. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    Science.gov (United States)

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C.

  3. Synthesis and Promising in Vitro Antiproliferative Activity of Sulfones of a 5-Nitrothiazole Series

    Directory of Open Access Journals (Sweden)

    Nadine Azas

    2012-12-01

    Full Text Available  The synthesis in water of new sulfone derivatives under microwave irradiation is described. This eco-friendly process leads to the expected products in good yields by reaction of various substituted sulfinates (commercially available or obtained by reduction of the corresponding sulfonyl chlorides with 4-chloromethyl-2-methyl-5-nitro-1,3-thiazole. In order to evaluate the antiproliferative effect of these compounds, several sulfone derivatives are also dichlorinated on the Cα next to the sulfonyl group. An evaluation on different cancer cell lines reveals promising selective in vitro antiproliferative activity toward HepG2 human cell lines by dihydrogenated sulfones, suggesting further research should be to explore their anticancer potential in the treatment of liver cancer.

  4. Highly Efficient Biomimetic Oxidation of Sulfide to Sulfone by Hydrogen Peroxide in the Presence of Manganese meso-Tetraphenylporphyrin

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Xian-Tai; JI,Hong-Bing; YUAN,Qiu-Lan; XU,Jian-Chang; PEI,Li-Xia; WANG,Le-Fu

    2008-01-01

    Low amount of manganese meso-tetraphenyl porphyrin [Mn(TPP)] was used for highly efficient selective oxidation of sulfide to sulfone by hydrogen peroxide at room temperature.Sulfones were produced directly with yields generally around 90% while the catalyst concentration was only 4 ×10-5 mol·L-1.In a large-scale experiment of thioanisole oxidation,the isolated yield of sulfone (87%) was obtained and the turnover number (TON) reached up to 8×106,which is the highest TON for the oxidation systems of sulfide to sulfone catalyzed by metalloporphyrins.

  5. Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide.

    Science.gov (United States)

    Zhang, Honglei; Luo, Xiang; Shi, Kaiqi; Wu, Tao; He, Feng; Zhou, Shoubin; Chen, George Z; Peng, Chuang

    2017-09-11

    A new sulfonic/carboxylic dual-acid catalyst based on sulfur-rich graphene oxide (GO-S) was readily prepared and used as a highly efficient and reusable solid acid catalyst toward the esterification of oleic acid with methanol for biodiesel production. Higher yields of methyl oleate (98 %) and over 3 times higher turnover frequencies (TOFs) were observed for the GO-S dual-acid catalyst, compared to liquid sulfuric acid or other carbon-based solid acid catalysts. The "acidity" of sulfonic acid groups was enhanced by the addition of carboxylic acid groups as the combination of the two acids enhances their inherent activity by associative interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  7. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties

    Directory of Open Access Journals (Sweden)

    Maoguo Tong

    2011-11-01

    Full Text Available A series of new sulfone compounds containing 1,3,4-oxadiazole moieties were synthesized. The structures of these compounds were confirmed by spectroscopic data (IR, 1H- and 13C-NMR and elemental analyses. Antifungal tests indicated that all the title compounds exhibited good antifungal activities against eight kinds of plant pathogenic fungi, and some showed superiority over the commercial fungicide hymexazol. Among them, compounds 5d, 5e, 5f, and 5i showed prominent activity against B. cinerea, with determined EC50 values of 5.21 μg/mL, 8.25 µg/mL, 8.03 µg/mL, and 21.00 µg/mL, respectively. The present work demonstrates that sulfone derivatives such as 5d containing a 1,3,4-oxadiazole moiety can be used as possible lead compounds for the development of potential agrochemicals.

  8. Selective Dehydration of Sorbitol to Isosorbide over Sulfonated Activated Carbon Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyo Yoon; Hwang, Dong Won; Hwang, Young Kyu; Hwang, Jin-Soo; Chang, Jong-San [Korea Research Institute of Chemical Technology (KRICT), Daejeon (Korea, Republic of)

    2013-04-15

    A sulfonated activated carbon (AC-SO{sub 3}H) was used as a solid acid catalyst for dehydration of sorbitol to isosorbide and its catalytic performance was compared with the commercial solid acid such as acidic ion exchange resin, Amberlyst-36, and sulfated copper oxide. The catalytic performance with 100% sorbitol conversion and 52% isosorbide selectivity was obtained over AC-SO{sub 3}H at 423.15 K. Although AC-SO{sub 3}H possessed only 0.5 mmol/g of sulfur content, it showed the similar dehydration activity of sorbitol to isosorbide with Amberlyst-36 (5.4 mmol/g) at 423.15 K. Based on the high thermal and chemical stability of AC-SO{sub 3}H, one-step reactive distillation, where isosorbide separation can be carried out simultaneously with sorbitol dehydration, was tried to increase the recovery yield of isosorbide from sorbitol. The reactive distillation process using AC-SO{sub 3}H, the turnover number of AC-SO{sub 3}H was 4 times higher than the conventional two-step process using sulfuric acid.

  9. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    isotherm), the ionomer has varying affinities for CNFs (Keq. = between 5 and 22) as compared to Vulcan (Keq. = 18), depending on surface treatments. However, the interactions are most likely governed by different adsorption mechanisms depending on hydrophilicity / hydrophobicity of the adsorbent carbon......A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  10. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Science.gov (United States)

    Kordoghli, Bessem; Khiari, Ramzi; Mhenni, Mohamed Farouk; Sakli, Faouzi; Belgacem, Mohamed Naceur

    2012-10-01

    This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of sbnd SO3H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  11. Methanogenic activity inhibition by increasing the linear alkylbenzene sulfonate (LAS) concentration.

    Science.gov (United States)

    Souza, Luiza F C; Florencio, Lourdinha; Gavazza, Savia; Kato, Mario T

    2016-07-02

    The effect of the initial concentration of linear alkylbenzene sulfonate (LAS) on specific methanogenic activity (SMA) was investigated in this work. Six anaerobic flasks reactors with 1 L of total volume were inoculated with anaerobic sludge (2 g VSS L(-1)). The reactors were assayed for 42 days, and fed with volatile fatty acids, nutrients, and LAS. The initial LAS concentrations were 0, 10, 30, 50, 75, and 100 mg L(-1) for the treatment flasks T1 (control), T2, T3, T4, T5, and T6, respectively. When compared with T1, T2 exhibited a 30% reduction in maximum SMA and total methane production (TMP). In treatment T3 through T6, the reductions were 44-97% (T3-T6) for SMA, and 30-90% (T3-T6) for TMP. Total LAS removal increased following the increase in the initial LAS concentration (from 36% at T1 to 76% at T6), primarily due to the high degree of sludge adsorption. LAS biodegradation also occurred (32% in all treatments), although this was most likely associated with the formation of non-methane intermediates. Greater removal by adsorption was observed in long-chain homologues, when compared to short-chain homologues (C13 > C10), whereas the opposite occurred for biodegradation (C10 > C13). The C13 homologue was adsorbed to a great extent (in mass) in T4, T5 and T6, and may also have inhibited methane formation in these treatments.

  12. A cell-repellent sulfonated PEG comb-like polymer for highly resolved cell micropatterns.

    Science.gov (United States)

    Jung, Jaeyeon; Na, Kyunga; Shin, Byungcheol; Kim, Okgene; Lee, Jonghwan; Yun, Kyusik; Hyun, Jinho

    2008-01-01

    This paper investigates the chemical modification of a cell-repellent poly(ethylene glycol) (PEG)-based polymer to enhance its hydrophilicity with sulfonate groups, and its application in the fabrication of a cell microarray. First, a polymer comprised of a methyl methacrylate (MMA) backbone with PEG side-chains (PMMA-b-PEG) was synthesized from three monomers by radical polymerization and purified. Despite the hydrophilic side-groups in the amphiphilic polymer, the backbone structure's hydrophobicity allows for local adsorption of biomolecules in incubation media with or without serum. To enhance the hydrophilicity of the polymer, we tethered sulfonate groups to the hydroxyl groups on the PEG side chains (PMMA-b-PEG-SO3). The sulfate groups' physical and mechanical movement competitively repels biomolecules approaching the PMMA-b-PEG surface. Polymers modified with sulfonate were characterized by contact angle measurement, FT-IR, NMR, AFM and GPC. PMMA-b-PEG and PMMA-b-PEG-SO3 were successfully micropatterned on polystyrene and glass surfaces, and cell attachment was performed in either serum-free or serum-containing media, resulting in highly resolved cell micropatterns.

  13. Indole alkaloid sulfonic acids from an aqueous extract of Isatis indigotica roots and their antiviral activity

    Directory of Open Access Journals (Sweden)

    Lingjie Meng

    2017-05-01

    Full Text Available Six new indole alkaloid sulfonic acids (1–6, together with two analogues (7 and 8 that were previously reported as synthetic products, were isolated from an aqueous extract of the Isatis indigotica root. Their structures including the absolute configurations were determined by spectroscopic data analysis, combined with enzyme hydrolysis and comparison of experimental circular dichroism and calculated electronic circular dichroism spectra. In the preliminary assay, compounds 2 and 4 showed antiviral activity against Coxsackie virus B3 and influenza virus A/Hanfang/359/95 (H3N2, respectively.

  14. Efficiency of conventional activated sludge in the removal of linear alkylbenzene sulfonate from municipal sewage

    Directory of Open Access Journals (Sweden)

    Razieh Khamutian

    2014-04-01

    Full Text Available Background: Linear Alkylbenzene Sulfonate (LAS is an anionic detergent that is abundantly produced in different countries and discharged into natural environment through wastewater collection systems. Wastewater treatment systems play an important role in the removal of this contaminant. The purpose of this study was to determine the efficiency of a conventional activated sludge system in removing linear alkylbenzene sulfonate from wastewater in Kermanshah. Methods: This cross-sectional descriptive study was conducted on the wastewater in Kermanshah for 10 months. In order to determine the efficiency of the influent activated sludge process, 60 wastewater samples were taken after primary sedimentation and effluent of wastewater treatment system and LAS concentration was measured. All the sampling and testing methods were performed according to the standard method guidelines. Results: The results showed the means of LAS removal in the winter and warm seasons were 90.8% and 96.5%, respectively. The total mean of LAS removal in this system was 93.9 ±3.6. In addition, COD and TSS removal levels in winter were 88.3% and 72.3%; these values, however, in the summer were 86.9%, and 83.3%, respectively. Conclusion: The results showed that the conventional activated sludge process plays a pivotal role in the removal of LAS concentration. Moreover, the effluent concentration of LAS is less than the environmental standards for discharge into surface water in warm seasons.

  15. Sulfonation of polyester fabrics by gaseous sulfur oxide activated by UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kordoghli, Bessem [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Khiari, Ramzi, E-mail: khiari_ramzi2000@yahoo.fr [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France); Mhenni, Mohamed Farouk [Laboratory of Applied Chemical and Environment (UR-CAE) - University of Monastir (Tunisia); Sakli, Faouzi [Textile Research Laboratory (LRT) - ISET Kasr Hellal, University of Monastir (Tunisia); Belgacem, Mohamed Naceur [LGP2 - Laboratory of Pulp and Paper Science, 461, Rue de la Papeterie - BP 65, 38402 Saint Martin d' Heres Cedex (France)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer In this paper, an original technique was present to improve the hydrophilic properties of polyester fibres. Black-Right-Pointing-Pointer The modification of PET fabric was carried out using gaseous sulfur trioxide activated by UV irradiations. Black-Right-Pointing-Pointer We fully characterized the modified and untreated fabrics. - Abstract: This paper describes an original technique aiming to improve the hydrophilic properties of polyester fibres. In this method, the sulfonation of the aromatic rings is carried out using gaseous sulfur trioxide activated by UV irradiations. Thus, exposing the polyester textile fabric to the UVC light (wavelength around 254 nm) under a stream of sulfur trioxide leads to the fixation of -SO{sub 3}H groups. The amounts of the fixed sulfonate groups depended on the reaction conditions. Evidence of grafting deduced from the measurements of hygroscopic properties was carried out by contact angle measurement, moisture regain as well as by measuring the rate of retention. SEM and FT-IR analysis, DSC and DTA/TGA thermograms showed that no significant modifications have occurred in the bulk of the treated PET fabrics.

  16. Sulfone-Containing Dipolar Glass Polymers with High Dielectric Constant and Low Loss Property

    Science.gov (United States)

    Zhu, Yufeng; Zhang, Zhongbo; Litt, Morton; Zhu, Lei

    Sulfone-containing polyoxetanes are designed and synthesized for high dielectric constant and low loss dipolar glasses. The precursor polymer, poly(3,3-bis(chloromethyl)oxetane) (PBCMO) is synthesized by bulk cationic polymerization with boron trifluoride diethyl etherate as initiator. The number-average molecular weight of PBCMO is 73 kDa, with a polydispersity of 1.53 as obtained from size-exclusion chromatography results. Post-modification of PBCMO yields the dipolar glass polymer, poly(3,3-bis(methylsulfonylmethyl)oxetane) (MST). Nuclear magnetic resonance result shows 100% conversion. Differential scanning calorimetry result indicates that MST has a glass transition temperature of ca. 120 °C. Due to the large dipole moment (4.25 D) and small size of the side-chain sulfone groups, MST exhibits a high dielectric constant of 8.7 and a low dissipation factor of 0.01 at 25 °C and 1 Hz. This study suggests that dipolar glass polymers with large dipole moments and small-sized dipoles in the side chains are promising candidates for high energy density and low loss dielectric applications. This work is supported by NSF Polymers Program (DMR-1402733).

  17. How adaptation and mass transfer control the biodegradation of linear alkylbenzene sulfonate by activated sludge.

    Science.gov (United States)

    Rittmann, B E; Tularak, P; Lee, K C; Federle, T W; Itrich, N R; Kaiser, S K; Shi, J; McAvoy, D C

    2001-01-01

    We use a nonsteady-state model to evaluate the effects of community adaptation and sorption kinetics on the fate of linear alkylbenzene sulfonate (LAS) in batch experiments conducted with activated sludge that was continuously fed different concentrations of LAS. We observed a sharp decrease in the biodegradation rate between 30 and 60 minutes and the presence of an LAS residual at the end of the batch experiments. The modeling analysis indicates that these phenomena were caused by relatively slow inter-phase mass transport of LAS. The modeling analyses also showed that the amount of LAS-degrading biomass increased when the continuous activated sludge was fed a higher LAS concentration. Although community adaptation to LAS involved accumulation of more LAS degraders, the increase was not proportional to the feed concentration of LAS, which supports the concept that LAS degraders also utilized portions of the general biochemical oxygen demand (BOD) fed to the continuous activated sludge systems.

  18. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    Science.gov (United States)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  19. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    Science.gov (United States)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  20. Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO{sub 4}) composite membranes for high-temperature proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Sheng [Faculty of Chemistry and Material Science, Xiaogan University, Xiaogan, Hubei 432100 (China); Ministry of Education, Key Laboratory for the Green, Preparation and Application of Functional Materials, Institute of Composite Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Gong, Chunli [Faculty of Chemistry and Material Science, Xiaogan University, Xiaogan, Hubei 432100 (China); Tsen, Wen-Chin; Shu, Yao-Chi [Department of Polymer Materials, Vanung University, Tao-Yuan, Taiwan 32045 (China); Tsai, Fang-Chang [Ministry of Education, Key Laboratory for the Green, Preparation and Application of Functional Materials, Institute of Composite Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China)

    2009-11-15

    A new series of sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO{sub 4}) composite membranes for proton-exchange membrane fuel cells (PEMFCs) applications, with a BPO{sub 4} content up to 40 wt%, were prepared by a sol-gel method using tripropylborate and phosphoric acid as precursors. Compared to a pure SPES membrane, BPO{sub 4} doping in the membranes led to a higher thermal stability and glass-transition temperature (T{sub g}) as revealed by TGA-FTIR, DSC and DMTA. Water uptake and oxidative stability were significantly increased by increasing the content of BPO{sub 4}. At both operating temperature conditions, namely 20 C and 100 C, the tensile strength of all the composite membranes were lower than that of the SPES membrane. However, even when the content of BPO{sub 4} was as high as 30%, the composite membrane still possessed strength similar to the Nafion 112 membrane. SEM-EDX indicated that the BPO{sub 4} particles were uniformly embedded throughout the SPES matrix, which may facilitate proton transport. Proton conductivities increased from 0.0065 to 0.022 S cm{sup -1} at room temperature as BPO{sub 4} increased from 0 to 40%. The conductivities also increased with the temperature. The SPES/BPO{sub 4} composite membrane is a promising candidate for PEMFCs applications, especially at higher temperatures. (author)

  1. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    Science.gov (United States)

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-08

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity.

  2. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen

    2012-01-01

    Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para-phenylene and ......Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para......-phenylene and flexible aryl sulfone linkages in the macromolecular structures resulted in high molecular weight copolymers with good solubility. The chemical stability towards radical oxidation was improved for SO2PBI and its copolymer membranes due to the electron-withdrawing sulfone functional groups. Upon acid doping...

  3. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  4. A rapid and high-throughput quantum dots bioassay for monitoring of perfluorooctane sulfonate in environmental water samples

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiong; Wan Yanjian; Li Yuanyuan; Zhang Qiongfang; Xu Shunqing [Minister of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 (China); Zhu Huijun [Cranfield Health, Cranfield University, Kempston, Bedfordshire, MK43 0AL (United Kingdom); Shu Baihua, E-mail: shubaihua@hotmail.com [Minister of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 (China)

    2011-05-15

    Currently HPLC/MS is the state of the art tool for environmental/drinking water perfluorooctane sulfonate (PFOS) monitoring. PFOS can bind to peroxisomal proliferator-activated receptor-alpha (PPAR{alpha}), which forms heterodimers with retinoid X receptors (RXRs) and binds to PPAR response elements. In this bioassay free PFOS in water samples competes with immobilized PFOS in ELISA plates for a given amount of PPAR{alpha}-RXR{alpha}. It can be determined indirectly by immobilizing PPAR{alpha}-RXR{alpha}-PFOS complex to another plate coated with PPAR{alpha} antibody and subsequent measuring the level of PPAR{alpha}-RXR{alpha} by using biotin-modified PPAR{alpha}-RXR{alpha} probes-quantum dots-streptavidin detection system. The rapid and high-throughput bioassay demonstrated a detection limit of 2.5 ng L{sup -1} with linear range between 2.5 ng L{sup -1} and 75 ng L{sup -1}. Detection results of environmental water samples were highly consistent between the bioassay and HPLC/MS. - We developed a rapid and high-throughput bioassay for monitoring of PFOS in environmental water samples. - Highlights: > We developed a rapid and high-throughput bioassay for monitoring of PFOS in water. > We detected the PFOS concentration of water samples by two methods. > The bioassay is effective for evaluating PFOS contamination level.

  5. Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells

    Science.gov (United States)

    Singha, Shuvra; Jana, Tushar; Modestra, J. Annie; Naresh Kumar, A.; Mohan, S. Venkata

    2016-06-01

    Although microbial fuel cells (MFCs) represent a promising bio-energy technology with a dual advantage (i.e., electricity production and waste-water treatment), their low power densities and high installation costs are major impediments. To address these bottlenecks and replace highly expensive Nafion, which is a proton exchange membrane (PEM), the current study focuses for the first time on membranes made from an easily synthesizable and more economical oxy-polybenzimidazole (OPBI) and its sulfonated analogue (S-OPBI) as alternate PEMs in single-chambered MFCs. The S-OPBI membrane exhibits better properties, with high water uptake, ion exchange capacity (IEC) and proton conductivity and a comparatively smaller degree of swelling compared to Nafion. The membrane morphology is characterized by atomic force microscopy, and the bright and dark regions of the S-OPBI membrane reveals the formation of ionic domains in the matrix, forming continuous water nanochannels when doped with water. These water-filled nanochannels are responsible for faster proton conduction in S-OPBI than in Nafion; therefore, the power output in the MFC with S-OPBI as the PEM is higher than in other MFCs. The open circuit voltage (460 mV), current generation (2.27 mA) and power density profile (110 mW/m2) as a function of time, as well as the polarization curves, exhibits higher current and power density (87.8 mW/m2) with S-OPBI compared to Nafion as the PEM.

  6. Identification of alkylbenzene sulfonate surfactants leaching from an acrylonitrile butadiene rubber as novel inhibitors of calcineurin activity.

    Science.gov (United States)

    Ito, Noboru; Shibuguchi, Nao; Ishikawa, Ryoki; Tanaka, Susumu; Tokita, Yoshiharu; Nakajima-Shimada, Junko; Hosaka, Kohei

    2013-01-01

    Calcineurin (CN) is a Ca(2+)/calmodulin (CaM) dependent serine/threonine protein phosphatase and plays important role in several cellular functions in both higher and lower eukaryotes. Here we report inhibition of CN by linear alkylbenzene sulfonate. The clue to the finding was obtained while identifying the inhibitory material leaching from acrylonitrile butadiene rubber used for packing. Using standard dodecylbenzene sulfonate (C12-LAS), we obtained strong inhibition of CN with a half maximal inhibitory concentration of 9.3 µM, whereas analogs such as p-octylbenzene sulfonate and SDS hardly or only slightly affected CN activity. Three alkaline phosphatases, derived from shrimp, bacteria, and calf-intestine, which exhibit similar enzymatic activities to CN, were not inhibited by C12-LAS at concentrations of up to 100 µM. Furthermore, C12-LAS did not inhibit Ca(2+)/CaM-dependent myosin light chain kinase activity when tested at concentrations of up to 36 µM. The results indicate that C12-LAS is a potent selective inhibitor of CN activity.

  7. A functional sulfonic additive for high efficiency and low hysteresis perovskite solar cells

    Science.gov (United States)

    Han, Fei; Luo, Junsheng; Malik, Haseeb Ashraf; Zhao, Bowen; Wan, Zhongquan; Jia, Chunyang

    2017-08-01

    Grain size of MAPbI3 and thickness of mesoporous TiO2 (mp-TiO2) film are found to influence current-voltage (J-V) hysteresis, where the J-V hysteresis is alleviated as grain size increases and thickness of mp-TiO2 varies. In this work, a low-cost and high-efficiency additive 4-methylbenzenesulfonic acid (4-MSA) is introduced into perovskite precursor solution to improve the performances of perovskite solar cells (PSCs) and reduce the device hysteresis. By adjusting 4-MSA concentration, the fabricated PSC shows the best power conversion efficiency (PCE) of 17.58% (Jsc = 23.15 mA cm-2, Voc = 1.04 V and FF = 0.73) and a hysteresis index (HI) of 0.048 with a fixed device area of 0.15 cm2 under illumination of AM 1.5G (100 mW cm-2). The significantly improved device performances maybe due to the fact that the carriers more easily be collected for larger grain sizes and fewer grain boundaries by doping 4-MSA into perovskite precursor solution. Furthermore, the sulfonic group is chemically bonded to mp-TiO2 and phenyl backbone has π-conjugated structure, which benefits electron transfer.

  8. Evaluation of genotoxic activity of maleic hydrazide, ethyl methane sulfonate, and N-nitroso diethylamine in Tradescantia

    Directory of Open Access Journals (Sweden)

    Alvarez-Moya Carlos

    2001-01-01

    Full Text Available Objective. To assess the genotoxic activity of N-nitroso diethylamine (NDEA, maleic hydrazide (MH, and ethyl methane sulfonate (EMS using two systems: the comet assay on nuclei from Tradescantia, and the pink mutation test on Tradescantia staminal hairs (clone 4430. Material and Methods. Tradescantia cups was obtained from Laboratorio de Citogenética y Mutagénesis del Centro de Ciencias de la Atmósfera de la Universidad Nacional Autónoma de México and treated with: N-nitroso diethylamine (NDEA at 1, 5, 10 mM, maleic hidrazide (MH at 1, 5, 10 mM and ethyl methane sulfonate (EMS at 15, 30 and 45 mM; and used in both pink mutation assay and comet assay using cellular nuclei from Tradescantia staminal hairs. The observation of staminal hair was realized along eight days (6-14 after treatment, flowers produced day 14 after treatment were utilized done according to Underbrink. In previous reports on plants, were comet assay was used, breaking cellular wall and separating by centrifugation gradient are necessary. Here, nuclei from staminal hairs were obtained by squashing the cells (is not necessary to utilize to break special procedure cellular wall, collected using a nylon mesh of 80Mm and next the comet assay was applied. Student's T test was the statistical test used for analyzing the comet assay data. Results. Both assays showed a great sensitivity to the studied mutagens. A relationship between the dose-pink event and the dose-tail length was evident. Even though the Tradescantia mutation assay is a sensitive test with MH and EMS, low doses of NDEA were not able to induce a significant increase in the pink event frequencies; however, the comet assay was able to detect the mutagenic effect of NDEA at the same dose. Thus, it is clear that the comet assay is highly sensitive to the lowest dose of chemical mutagens. Conclusions. The comet assay on nuclei from Tradescantia staminal hairs is a useful tool to monitor genotoxic agents; it is simple

  9. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times.

  10. Ileum and colon perforation following peritoneal dialysis-related peritonitis and high-dose calcium polystyrene sulfonate.

    Science.gov (United States)

    Kao, Chih-Chin; Tsai, Yi-Chiun; Chiang, Wen-Chih; Mao, Tsui-Lien; Kao, Tze-Wah

    2015-10-01

    A rare but severe complication, intestinal necrosis, has been reported after sodium polystyrene sulfonate (SPS; Kayexalate) and sorbitol intake. Some case reports described bowel perforation following calcium polystyrene sulfonate (CPS; Kalimate) administration. We report a case of ileum and colon perforation following peritoneal dialysis-related peritonitis and high-dose Kalimate in a 59-year-old female patient. The patient had a history of hypertension, diabetes mellitus, and end-stage renal disease (ESRD). During hospitalization for peritoneal dialysis-related peritonitis, she developed hyperkalemia, and Kalimate was administered orally. However, severe abdominal distension and pain occurred just one day after Kalimate intake. An urgent surgery disclosed several perforations in the ileum and sigmoid colon. Pathology of the resected gut showed transmural necrosis and perforation with basophilic angulated crystals. The patient finally expired during hospitalization due to refractory septic shock.

  11. DETERMINATION OF ALKYLATED & SULFONATED DIPHENYL OXIDE SULFACTANT BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Science.gov (United States)

    Methods for the determination of the anionic surfactant Dowfax 8390 are described. Dowfax is a complex mixture of various alkylated and sulfonated diphenyl oxides. The primary component of Dowfax is monoalkylated disulfonated diphenyl oxide (MADS). This work uses ion pairing chro...

  12. Sodium polyanethole sulfonate as an inhibitor of activation of complement function in blood culture systems

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjoedt, Mikkel-Ole; Vitved, Lars

    2010-01-01

    Sodium polyanethole sulfonate (SPS; trade name, Liquoid) is a constituent in culture media used to grow bacteria from blood samples from patients suspected of bacteremia. SPS prevents the killing of bacteria by innate cellular and humoral factors. We analyzed the effect of SPS on the three...

  13. Design, Synthesis, Acaricidal/Insecticidal Activity, and Structure-Activity Relationship Studies of Novel Oxazolines Containing Sulfone/Sulfoxide Groups Based on the Sulfonylurea Receptor Protein-Binding Site.

    Science.gov (United States)

    Yu, Xiuling; Liu, Yuxiu; Li, Yongqiang; Wang, Qingmin

    2016-04-20

    Enormous compounds containing sulfone/sulfoxide groups have been used in a variety of fields, especially in drug and pesticide design. To search for novel environmentally benign and ecologically safe pesticides with unique modes of action, a series of 2,4-diphenyl-1,3-oxazolines containing sulfone/sulfoxide groups as chitin synthesis inhibitors (CSIs) were designed and synthesized on the basis of the sulfonylurea receptor protein-binding site for CSIs. Their structures were characterized by (1)H and (13)C nuclear magnetic resonance and high-resolution mass spectrometry. The acaricidal and insecticidal activities of the new compounds were evaluated. It was found that most of the target compounds displayed wonderful acaricidal activities against spider mite (Tetranychus cinnabarinus) larvae and eggs. Especially compounds I-4, II-3, and II-4 displayed higher activities than commercial etoxazole at a concentration of 2.5 mg L(-1). Some target compounds exhibited insecticidal activities against lepidopteran pests. The present work demonstrated that these compounds containing sulfone/sulfoxide groups could be considered as potential candidates for the development of novel acaricides in the future.

  14. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.

    Science.gov (United States)

    Belanger, Scott E; Brill, Jessica L; Rawlings, Jane M; Price, Brad B

    2016-07-01

    Linear Alkylbenzene Sulfonate (LAS) is high tonnage and widely dispersed anionic surfactant used by the consumer products sector. A range of homologous structures are used in laundry applications that differ primarily on the length of the hydrophobic alkyl chain. This research summarizes the development of a set of acute toxicity QSARs (Quantitative Structure Activity Relationships) for fathead minnows (Pimephales promelas) and daphnids (Daphnia magna, Ceriodaphnia dubia) using accepted test guideline approaches. A series of studies on pure chain length LAS from C10 to C14 were used to develop the QSARs and the robustness of the QSARs was tested by evaluation of two technical mixtures of differing compositions. All QSARs were high quality (R(2) were 0.965-0.997, p < 0.0001). Toxicity normalization employing QSARs is used to interpret a broader array of tests on LAS chain length materials to a diverse group of test organisms with the objective of developing Species Sensitivity Distributions (SSDs) for various chain lengths of interest. Mixtures include environmental distributions measured from exposure monitoring surveys of wastewater effluents, various commercial mixtures, or specific chain lengths. SSD 5th percentile hazardous concentrations (HC5s) ranged from 0.129 to 0.254 mg/L for wastewater effluents containing an average of 11.26-12 alkyl carbons. The SSDs are considered highly robust given the breadth of species (n = 19), use of most sensitive endpoints from true chronic studies and the quality of the underlying statistical properties of the SSD itself. The data continue to indicate a low hazard to the environment relative to expected environmental concentrations.

  15. Silylation of Alcohols and Phenols with Hexamethyldisilazane over Highly Reusable Propyl Sulfonic Acid Functionalized Nanostructured SBA-15

    Institute of Scientific and Technical Information of China (English)

    Daryoush ZAREYEE; Rezvaneh ASGHARI; Mohammad A. KHALILZADEH

    2011-01-01

    Various alcohols and phenols were trimethylsilylated in excellent yields using hexamethyldisilazane in the presence of catalytic amounts of environmentally friendly,hydrophobic,highly thermal stable,and completely heterogeneous sulfonic acid functionalized mesostructured SBA-15 in dichloromethane at ambient temperature.Primary,bulky secondary,tertiary,and phenolic hydroxyl functional groups were transformed to the corresponding trimethylsilyl ethers in excellent yields.The simple experimental procedure was accompanied by easy recovery and the catalyst was reusable (at least 18 reaction cycles); these are attractive features of this protocol.

  16. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    Science.gov (United States)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  17. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  18. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  19. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  20. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Brandt, K. K.; Sørensen, J.; Krogh, P. H.

    2003-01-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present...... in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass......) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH+4 availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea...

  1. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  2. Proton-conducting electrolyte membranes based on hyperbranched polymer with a sulfonic acid group for high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takahito, E-mail: itoh@chem.mie-u.ac.j [Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Sakakibara, Takahiro; Takagi, Yuki; Tamura, Masashi; Uno, Takahiro; Kubo, Masataka [Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)

    2010-01-25

    The hyperbranched polymers (HBP-SA-Acs) with both a sulfonic acid group as a functional group and an acryloyl group as a cross-linker at terminals in different ratios of sulfonic acid group/acryloyl group (SO{sub 3}H/Ac) were successfully synthesized as a new thermally stable proton-conducting electrolyte. The cross-linked hyperbranched polymer electrolyte membranes (CL-HBP-SAs) were prepared by thermal polymerizations of the HBP-SA-Acs using benzoyl peroxide, and their ionic conductivities under dry condition and thermal properties were investigated. The ionic conductivities of the CL-HBP-SAs were found to be in the range of 2.2 x 10{sup -4} to 3.3 x 10{sup -6} S/cm, depending upon the SO{sub 3}H unit contents, at 150 deg. C under dry condition, and showed the Vogel-Tamman-Fulcher (VTF) type temperature dependence, indicating that proton transfer is cooperated by local polymer chain motion. All CL-HBP-SAs were thermally stable up to 260 deg. C, and they had suitable thermal stability as electrolyte membranes for the high-temperature fuel cells under dry condition. Fuel cell measurement using a single membrane electrode assembly cell with a cross-linked electrolyte membrane was successfully performed under non-humidified condition. It was demonstrated that applying the concept of dry polymer system to proton conduction is one possible approach toward high-temperature fuel cells.

  3. Nanostructured bacterial cellulose-poly(4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity.

    Science.gov (United States)

    Gadim, Tiago D O; Figueiredo, Andrea G P R; Rosero-Navarro, Nataly C; Vilela, Carla; Gamelas, José A F; Barros-Timmons, Ana; Neto, Carlos Pascoal; Silvestre, Armando J D; Freire, Carmen S R; Figueiredo, Filipe M L

    2014-05-28

    The present study reports the development of a new generation of bio-based nanocomposite proton exchange membranes based on bacterial cellulose (BC) and poly(4-styrene sulfonic acid) (PSSA), produced by in situ free radical polymerization of sodium 4-styrenesulfonate using poly(ethylene glycol) diacrylate (PEGDA) as cross-linker, followed by conversion of the ensuing polymer into the acidic form. The BC nanofibrilar network endows the composite membranes with excellent mechanical properties at least up to 140 °C, a temperature where either pure PSSA or Nafion are soft, as shown by dynamic mechanical analysis. The large concentration of sulfonic acid groups in PSSA is responsible for the high ionic exchange capacity of the composite membranes, reaching 2.25 mmol g(-1) for a composite with 83 wt % PSSA/PEGDA. The through-plane protonic conductivity of the best membrane is in excess of 0.1 S cm(-1) at 94 °C and 98% relative humidity (RH), decreasing to 0.042 S cm(-1) at 60% RH. These values are comparable or even higher than those of ionomers such as Nafion or polyelectrolytes such as PSSA. This combination of electric and viscoelastic properties with low cost underlines the potential of these nanocomposites as a bio-based alternative to other polymer membranes for application in fuel cells, redox flow batteries, or other devices requiring functional proton conducting elements, such as sensors and actuators.

  4. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation.

    Science.gov (United States)

    Park, Saerom; Lee, Linda S; Medina, Victor F; Zull, Aaron; Waisner, Scott

    2016-02-01

    PFOA (perfluorooctanoic acid) oxidation (0.121-6.04 μM) by heat-activated persulfate was evaluated at 20-60 °C with 4.2-84 mM [Formula: see text] and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups ('unzipping') to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F(-). At 50 °C, a 5-fold increase in [Formula: see text] led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more [Formula: see text] . Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2-CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated [Formula: see text] on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field.

  5. Inorganic base-catalyzed formation of antivirally active N-substituted benzamides from α-amido sulfones and N-nucleophile

    Directory of Open Access Journals (Sweden)

    Wang Zhenchao

    2011-05-01

    Full Text Available Abstract Background Heteronucleophiles as well as carbanionic reagents can be used to react with α-amido sulfones, thus giving the opportunity to prepare a large array of amino derivatives. Since, novel 1,3,4-oxadiazole-2-thiol derivatives can serve as potent nucleophiles, we employed 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the nucleophilic source of nitrogen in the reaction with α-amido sulfones. Results A series of N-substituted benzamides bearing 1,3,4-oxadiazol unit were prepared for the first time by the reaction of in situ generated protected imine from α-amido sulfones with 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the source of nitrogen nucleophile. Some of the synthesized products displayed favourable antiviral activity against cucumber mosaic virus (CMV in preliminary antiviral activity tests. The title compounds 5c, 5o and 5r revealed curative activity of 42.2%, 48.7% and 40.5%, respectively against CMV (inhibitory rate compared to the commercial standard Ningnanmycin (53.4% at 500 μg/mL. Conclusion A practical synthetic route to N-benzoyl-α-amido sulfones by the reaction of 5-subsititued phenyl-1,3,4-oxadiazole-2-thiols as the source of nitrogen nucleophiles with in situ generated protected imine from N-benzoyl-α-amido sulfones is presented. The reaction catalyzed by an inorganic base has considerable significance to exploit the potential of α-amido sulfones in organic synthesis.

  6. SYNTHESIS, STRUCTURE AND PROPERTIES OF INTERPENETRATING SULFONIC ACID RESINS WITH HIGH CAPACITY

    Institute of Scientific and Technical Information of China (English)

    XU Hede; LI Guoming

    1989-01-01

    Two series of interpenetrating sulfonic acid resins (ISAR), 10 × n and n × 10 ,were prepared by means of the wet method, and the physicochemical, thermodynamic and kinetic properties of the ISAR were measured . The results show: 10 × n resins exhibit better properties than n × 10 ones ,mainly in higher apparent degree of crosslinking and larger conformational entropy effect, among which , 10 × 1 resin exhibits the best thermodynamic and kinetic properties. In the DTA graphs of n × 10 resins, there are two Tg and two Tox, but in those of 10 × n, only one Tg and one Tox . This result well supports the conclusion that 10 × n resins have much better interpenetrating structural aspects.

  7. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation.

    Science.gov (United States)

    Zhang, Yi; He, Meilin; Zou, Shanmei; Fei, Cong; Yan, Yongquan; Zheng, Shiyan; Rajper, Aftab Ahmed; Wang, Changhai

    2016-05-01

    To improve the biomass yield and lipid productivity, two desert microalgae, Desmodesmus sp. S81 and G41 were induced mutagenesis by Ethylmethane sulfonate (EMS), and obtained two potential mutants, Desmodesmus sp. S5 and G3 from the mutagenic clones for their greatly promoted biomass and lipid production. The results showed that the biomass yield, lipid content and lipid productivity of the mutant strains S5 and G3 were 778.10mg·L(-1), 48.41% and 19.83mg·L(-1)·d(-1), 739.52mg·L(-1), 46.01%, and 17.92mg·L(-1)·d(-1), respectively, which presented the increment of 45.50%, 8.00% and 74.24%, 20.67%, 10.35% and 55.77% than those of S81 and G41. Comparing with the wild strains, the mutants showed reduced PUFAs and glycol lipids, elevated MUFAs and neutral lipids contents, which were appropriate for biodiesel production.

  8. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains.

    Science.gov (United States)

    Brandt, K K; Hesselsøe, M; Roslev, P; Henriksen, K; Sørensen, J

    2001-06-01

    Strong inhibitory effects of the anionic surfactant linear alkylbenzene sulfonate (LAS) on four strains of autotrophic ammonia-oxidizing bacteria (AOB) are reported. Two Nitrosospira strains were considerably more sensitive to LAS than two Nitrosomonas strains were. Interestingly, the two Nitrosospira strains showed a weak capacity to remove LAS from the medium. This could not be attributed to adsorption or any other known physical or chemical process, suggesting that biodegradation of LAS took place. In each strain, the metabolic activity (50% effective concentration [EC(50)], 6 to 38 mg liter(-1)) was affected much less by LAS than the growth rate and viability (EC(50), 3 to 14 mg liter(-1)) were. However, at LAS levels that inhibited growth, metabolic activity took place only for 1 to 5 days, after which metabolic activity also ceased. The potential for adaptation to LAS exposure was investigated with Nitrosomonas europaea grown at a sublethal LAS level (10 mg liter(-1)); compared to control cells, preexposed cells showed severely affected cell functions (cessation of growth, loss of viability, and reduced NH(4)(+) oxidation activity), demonstrating that long-term incubation at sublethal LAS levels was also detrimental. Our data strongly suggest that AOB are more sensitive to LAS than most heterotrophic bacteria are, and we hypothesize that thermodynamic constraints make AOB more susceptible to surfactant-induced stress than heterotrophic bacteria are. We further suggest that AOB may comprise a sensitive indicator group which can be used to determine the impact of LAS on microbial communities.

  9. Properties of polypyrrole doped with alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Bay, Lasse; Skaarup, Steen; West, Keld

    2001-01-01

    -standing 10 mu m thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states...... are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p......-(n-octyl)benzene sulfonate and in conductivity for p-(n-butyl)benzene sulfonate....

  10. Phenotypic assessment of the ovicidal activity of monepantel and monepantel sulfone on gastro-intestinal nematode eggs.

    Science.gov (United States)

    Bartley, D J; Meslé, M; Donegan, H; Devin, L; Morrison, A A

    2016-04-15

    The in vitro ovicidal activity of the amino acetonitrile derivative, monepantel (MPTL) and its active metabolite monepantel sulfone (MPTL-SO2) were assessed against a number of commercially important nematode species of ruminants, namely Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus axei. An egg hatch test (EHT) was used to make the assessment of both drug sensitive and drug resistant isolates. Both MPTL and MPTL-SO2 showed moderate ovicidal activity in vitro against all of the species examined, although species specific differences as measured by inhibitory concentration were observed. Analysis of the drug sensitive isolates showed H. contortus to be the most sensitive to both MPTL and MPTL-SO2 (ED50 1.7 and 2.7 μg/ml respectively) followed by T. circumcincta (ED50 2.1 and 2.7 μg/ml respectively) followed by T. axei (ED50 68.7 and 60.1 μg/ml respectively). Overall the EHT results would suggest no "global" in vitro discriminatory dose for detection of MPTL resistance is likely to be achievable, using the egg hatch test, due to large inherent variability observed between species. The test identified a dose dependent increase in MPTL and MPTL-SO2 sensitivity in two MPTL resistant T. circumcincta isolates and therefore offers to be a promising tool for the phenotypic characterisation of MPTL sensitivity, allowing exploration into the mechanisms involved in selection and development of MPTL resistance.

  11. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Dong Cai

    2015-09-01

    Full Text Available A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H2SO4. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, 1H-NMR, 13C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  12. Structures and properties of sulfonated ionomers probed by transport and mechanical measurements: The role of solute activity

    Science.gov (United States)

    Zhao, Qiao

    This work is focused on advancing the understanding of the structures and properties of sulfonated ionomer membranes in the context of Polymer Electrolyte Membrane Fuel Cell applications by transport and mechanical measurements. Transport and mechanical properties are two critical elements of ionomer membranes that govern the performance and longevity of fuel cells. Additionally, transport and mechanical property measurements can also provide valuable information about the structure of the ionomer membranes. It is essential to develop a comprehensive understanding of them under well controlled environmental conditions. The mechanism of water transport through Nafion membranes was found to be governed by water diffusivity, swelling of the hydrophilic phase and the interfacial transport across membrane/vapor interface. A transport model incorporating these parameters was developed and successfully employed to resolve water activity profiles in the membrane and make quantitative predictions under steady state and dynamic conditions. Experimental results of diffusivity, volume of mixing and tortuosity also provided hints about the hydration shell structure around in the hydrophilic domains of Nafion. The alcohol sorption and transport was found to be qualitatively similar to the behavior of water and the quantitative differences were attributed to the difference in molecular size. The transport of alcohol water mixtures through Nafion displayed significant non-ideality which was connected to the abnormal swelling and incomplete mixing within the hydrophilic domains. The mechanical properties of several perfluoro-sulfonated ionomer (PFSI) membranes were studied as functions of temperature and solute activity. The thermal transition found between 60-100°C was described as an order-disorder transition of the ionic clusters. Water and other polar solutes were found to plasticize PFSI below the transition but stiffen PFSI above the transition. The stiffening effect was

  13. Possible role of serotonin and neuropeptide Y on the disruption of the reproductive axis activity by perfluorooctane sulfonate.

    Science.gov (United States)

    López-Doval, S; Salgado, R; Fernández-Pérez, B; Lafuente, A

    2015-03-04

    Perfluorooctane sulfonate (PFOS) is an endocrine disruptor, whose exposure can induce several alterations on the reproductive axis activity in males during adulthood. This study was undertaken to evaluate the possible role of serotonin and neuropeptide Y (NPY) on the disruption of the hypothalamic-pituitary-testicular (HPT) axis induced by PFOS in adult male rats. For that, adult male rats were orally treated with 0.5; 1.0; 3.0 and 6.0mg of PFOS/kg/day for 28 days. After PFOS exposure, serotonin concentration increased in the anterior and mediobasal hypothalamus as well as in the median eminence. The metabolism of this amine (expressed as the ratio 5-hydroxyindolacetic acid (5-HIAA)/serotonin) was diminished except in the anterior hypothalamus, with the doses of 3.0 and 6.0mg/kg/day, being this dose 0.5mg/kg/day in the median eminence. In general terms, PFOS-treated rats presented a decrease of the hypothalamic concentration of the gonadotropin releasing hormone (GnRH) and NPY. A diminution of the serum levels of the luteinizing hormone (LH), testosterone and estradiol were also shown. These results suggest that both serotonin and NPY could be involved in the inhibition induced by PFOS on the reproductive axis activity in adult male rats.

  14. Decreases in surface activities and aquatic toxicities of linear alkylbenzene sulfonate and alcohol ethoxylates during biodegradation.

    Science.gov (United States)

    Oya, Masaru; Hisano, Noriko

    2010-01-01

    We discussed the relation between aquatic toxicity and interfacial activity during biodegradation with using LAS (Linear Alkylbenzene Sulphonate) and AE (Alcohol Ethoxylate). The change of death rate of Daphnia magna, surface tension, concentration of surfactant, and biodegradation by oxygen demand during biodegradation were measured. As a result, a rapid decrease in toxicity and rapid increase in surface tension were observed within the time before biodegradation based on oxygen demand started to increase. These rapid changes in toxicity and surface tension occurred due to the structural change of surfactant molecules in the primary biodegradation process, which was confirmed by HPLC (High Performance Liquid Chromatography) analysis. We also performed re-addition test to study the effects of acclimatization since it takes an important role on boidegradation, and found that the acclimatization significantly accelerated the primary biodegradation, which were indicated by increase in surface tension and decrease in aquatic toxicity. These results show that the environmental risk of surfactants should be considered not only with the biodegradation based on oxygen demand but also with the decrease of interfacial activity through the primary biodegradation process.

  15. Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells

    Science.gov (United States)

    Watanabe, Yuu; Kinoshita, Shin-ichi; Wada, Satoshi; Hoshino, Keiji; Morimoto, Hideyuki; Tobishima, Shin-ichi

    2008-05-01

    Sulfone-ester mixed solvent electrolytes were examined for 5 V-class high-voltage rechargeable lithium cells. As the base-electrolyte, sulfolane (SL)-ethyl acetate (EA) (1:1 mixing volume ratio) containing 1 M LiBF4 solute was investigated. Electrolyte conductivity, electrochemical stability, Li+ ion solvation behavior and cycleability of lithium electrode were evaluated. 13C NMR measurement results suggest that Li+ ions are solvated with both SL and EA. Charge-discharge cycling efficiency of lithium anode in SL-EA electrolytes was poor, being due to its poor tolerance for reduction. To improve lithium charge-discharge cycling efficiency in SL-EA electrolytes, following three trials were carried out: (i) improvement of the cathodic stability of electrolyte solutions by change in polarization through modification of solvent structure; isopropyl methyl sulfone and methyl isobutyrate were investigated as alternative SL and EA, respectively, (ii) suppression of the reaction between lithium and electrolyte solutions by addition of low reactivity surfactants of cycloalkanes (decalin and adamantane) or triethylene glycol derivatives (triglyme, 1,8-bis(tert-butyldimethylsilyloxy)-3,6-dioxaoctane and triethylene glycol di(methanesulfonate)) into SL-EA electrolytes, and (iii) change in surface film by addition of surface film formation agent of vinylene carbonate (VC) into SL-EA electrolytes. These trials made lithium cycling behavior better. Lithium cycling efficiency tended to increase with a decrease in overpotential. VC addition was most effective for improvement of lithium cycling efficiency among these additives. Stable surface film is formed on lithium anode by adding VC and the resistance between anode/electrolyte interfaces showed a constant value with an increase in cycle number. When the electrolyte solutions without VC, the interfacial resistance increased with an increase in cycle number. VC addition to SL-EA was effective not only for Li/LiCoO2 cell with charge

  16. Susceptibility of Candida albicans to new synthetic sulfone derivatives.

    Science.gov (United States)

    Staniszewska, Monika; Bondaryk, Małgorzata; Ochal, Zbigniew

    2015-02-01

    The influence of halogenated methyl sulfones, i.e. bromodichloromethyl-4-chloro-3-nitrophenyl sulfone (named halogenated methyl sulfone 1), dichloromethyl-4-chloro-3-nitrophenyl sulfone (halogenated methyl sulfone 2), and chlorodibromomethyl-4-hydrazino-3-nitrophenyl sulfone (halogenated methyl sulfone 3), on cell growth inhibition, aspartic protease gene (SAP4-6) expression, adhesion to epithelium, and filamentation was investigated. Antifungal susceptibility of the halogenated methyl sulfones was determined with the M27-A3 protocol in the range of 16-0.0313 µg/mL. Adherence to Caco-2 cells was performed in 24-well plates; relative quantification was normalized against ACT1 in cells after 18 h of growth in YEPD and on Caco-2 cells. SAP4-6 expression was analyzed using RT-PCR. Structure-activity relationship studies suggested that halogenated methyl sulfone 1 containing bromodichloromethyl or dichloromethyl function at C-4 (halogenated methyl sulfone 2) of the phenyl ring showed the best activity (100% cell inhibition at 0.5 µg/mL), while hydrazine at C-1 (halogenated methyl sulfone 3) reduced the sulfone potential (100% = 4 µg/mL). SAP4-6 were up- or down-regulated depending on the strains' genetic background and the substitutions on the phenyl ring. Halogenated methyl sulfone 2 repressed germination and affected adherence to epithelium (P ≤ 0.05). The tested halogenated methyl sulfones interfered with the adhesion of Candida albicans cells to the epithelial tissues, without affecting their viability after 90 min of incubation. The mode of action of the halogenated methyl sulfones was attributed to the reduced virulence of C. albicans. SAP5 and SAP6 contribute to halogenated methyl sulfones resistance. Thus, halogenated methyl sulfones can inhibit biofilm formation due to their interference with adherence and with the yeast-to-hyphae transition.

  17. Initial study on the possible mechanisms involved in the effects of high doses of perfluorooctane sulfonate (PFOS) on prolactin secretion.

    Science.gov (United States)

    Salgado, R; Pereiro, N; López-Doval, S; Lafuente, A

    2015-09-01

    Perfluorooctane sulfonate (PFOS) is a fluorinated organic compound. This chemical is neurotoxic and can alter the pituitary secretion. This is an initial study aimed at knowing the toxic effects of high doses of PFOS on prolactin secretion and the possible mechanisms involved in these alterations. For that, adult male rats were orally treated with 3.0 and 6.0 mg of PFOS/kg body weight (b.w.)/day for 28 days. At the end of the treatment, the serum levels of prolactin and estradiol as well as the concentration of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and gamma-aminobutyric acid (GABA) were quantified in the anterior and in the mediobasal hypothalamus. PFOS, at the administered doses, reduced prolactin and estradiol secretion, increased the concentration of dopamine and GABA in the anterior hypothalamus, and decreased the ratios DOPAC/dopamine and HVA/dopamine in this same hypothalamic area. The outcomes reported in this study suggest that (1) high doses of PFOS inhibit prolactin secretion in adult male rats; (2) only the periventricular-hypophysial dopaminergic (PHDA) neurons seem to be involved in this inhibitory effect but not the tuberoinfundibular dopaminergic (TIDA) and the tuberohypophysial dopaminergic (THDA) systems; (3) GABAergic cells from the paraventricular and supraoptic nuclei could be partially responsible for the PFOS action on prolactin secretion; and finally (4) estradiol might take part in the inhibition exerted by elevated concentration of PFOS on prolactin release.

  18. 聚苯乙烯磺酸钠阳离子交换树脂(高温磺化)制备浅色高纯树脂的方法%Method for the Preparation of Lighted Colored Sodium Polystyrene Sulfonate Cation-ion-exchange Resin of High Purity Sulfonated at High Temperature

    Institute of Scientific and Technical Information of China (English)

    杨光; 顾浩

    2009-01-01

    Sodium polystyrene sulfonate ion-exchange resin(SPSR) is a medicine used as lowering kalieraia. Using commercial dark colored sodium polystyrene sulfonate cation-ion-exchange resin prepared by the conventional process at the sulfonated temperature higher than 100℃as raw material, light colored SPSR of high purity was prepared by the bleaching-purifying combined process. The resin reached the criterion of medicinal SPSR of Japanese pharmacopoeia(14 ed. ).%聚苯乙烯磺酸钠阳离子交换树脂(SPSR)是降血钾药.以市售的高于100℃的高温磺化工艺生产的深棕色SPSR为原料,经过漂白和净化联合工艺处理,得到了浅色高纯SPSR,该浅色树脂达到日本药典(第14版)规定的药用SPSR标准.

  19. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    Science.gov (United States)

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  20. Molecular docking and 3D-quantitative structure activity relationship analyses of peptidyl vinyl sulfones: Plasmodium Falciparum cysteine proteases inhibitors

    Science.gov (United States)

    Teixeira, Cátia; Gomes, José R. B.; Couesnon, Thierry; Gomes, Paula

    2011-08-01

    Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (39 molecules) of peptidyl vinyl sulfone derivatives as potential Plasmodium Falciparum cysteine proteases inhibitors. Two different methods of alignment were employed: (i) a receptor-docked alignment derived from the structure-based docking algorithm GOLD and (ii) a ligand-based alignment using the structure of one of the ligands derived from a crystal structure from the PDB databank. The best predictions were obtained for the receptor-docked alignment with a CoMFA standard model ( q 2 = 0.696 and r 2 = 0.980) and with CoMSIA combined electrostatic, and hydrophobic fields ( q 2 = 0.711 and r 2 = 0.992). Both models were validated by a test set of nine compounds and gave satisfactory predictive r 2 pred values of 0.76 and 0.74, respectively. CoMFA and CoMSIA contour maps were used to identify critical regions where any change in the steric, electrostatic, and hydrophobic fields may affect the inhibitory activity, and to highlight the key structural features required for biological activity. Moreover, the results obtained from 3D-QSAR analyses were superimposed on the Plasmodium Falciparum cysteine proteases active site and the main interactions were studied. The present work provides extremely useful guidelines for future structural modifications of this class of compounds towards the development of superior antimalarials.

  1. Activity and population dynamics of heterotrophic and ammonia-oxidizing microorganisms in soil surrounding sludge bands spiked with linear alkylbenzene sulfonate: a field study.

    Science.gov (United States)

    Brandt, Kristian Koefoed; Krogh, Paul Henning; Sørensen, Jan

    2003-04-01

    Recent research has documented soil microorganisms to be rather sensitive to linear alkylbenzene sulfonates (LAS), which may enter the soil environment in considerable quantities following sewage sludge disposal. We here report field effects of LAS on selected microbial populations present in a sandy soil surrounding well-defined sludge bands spiked with high but realistic LAS levels (7.1 or 31.3 g/kg). Surprisingly, LAS had no effect on heterotrophic respiration in the sludge compartment per se but stimulated activity and metabolic quotient (microbial activity per unit of biomass) in the surrounding soil. By contrast, autotrophic ammonia oxidation was initially inhibited in the LAS-spiked sludge. This led to dramatic transient increases of NH4+ availability in the sludge and surrounding soil, subsequently stimulating soil ammonia oxidizers. As judged from a Nitrosomonas europaea bioluminescence toxicity assay, however, LAS or other sludge components never accumulated to toxic levels in the soil compartments and the LAS tolerance of the indigenous microbes further remained unchanged following LAS exposure. LAS effects on the investigated microbial populations largely occurred during the first two months and were confined to soil closer than 30 mm from LAS-spiked sludge. Our results strongly suggest that disposal of LAS-contaminated sludge does not pose a major risk to the function of the soil microbial community under field conditions.

  2. Highly selective colorimetric detection of Ni2+ using silver nanoparticles cofunctionalized with adenosine monophosphate and sodium dodecyl sulfonate

    Science.gov (United States)

    Feng, Jiayu; Jin, Weiwei; Huang, Pengcheng; Wu, Fangying

    2017-09-01

    We report a dual-ligand strategy based on silver nanoparticles (AgNPs) for highly selective detection of Ni2+ using colorimetric techniques. Adenosine monophosphate (AMP) and sodium dodecyl sulfonate (SDS) were both used as ligands to modify AgNPs. The presence of Ni2+ induces the aggregation of AgNPs through cooperative electrostatic interaction and metal-ligand interaction, resulting in a color change from bright yellow to orange. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by AMP or SDS in terms of selectivity. Under the optimized conditions, this sensing platform for Ni2+ works in the concentration range of 4.0 to 60 μM and has a low detection limit of 0.60 μM. In addition, the colorimetric assay is very fast, and the whole analysis can be completed within a few minutes. Thus, it can be directly used in tap water and lake water samples. [Figure not available: see fulltext.

  3. One step graft copolymerization of acrylic acid and sodium styrene sulfonate onto high-density polyethylene film by preirradiation method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr's salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr's salt concentration, but increases at low temperature when Mohr's salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.

  4. Sulfonated poly(ether ether ketone)/mesoporous silica hybrid membrane for high performance vanadium redox flow battery

    Science.gov (United States)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-07-01

    Hybrid membranes of sulfonated poly(ether ether ketone) (SPEEK) and mesoporous silica SBA-15 are prepared with various mass ratios for vanadium redox flow battery (VRB) application and investigated in detail. The hybrid membranes are dense and homogeneous with no visible hole as the SEM and EDX images shown. With the increasing of SBA-15 mass ratio, the physicochemical property, VO2+ permeability, mechanical property and thermal stability of hybrid membranes exhibit good trends, which can be attributed to the interaction between SPEEK and SBA-15. The hybrid membrane with 20 wt.% SBA-15 (termed as S/SBA-15 20) shows the VRB single cell performance of CE 96.3% and EE 88.1% at 60 mA cm-2 due to its good balance of proton conductivity and VO2+ permeability, while Nafion 117 membrane shows the cell performance of CE 92.2% and EE 81.0%. Besides, the S/SBA-15 20 membrane shows stable cell performance of highly stable efficiency and slower discharge capacity decline during 120 cycles at 60 mA cm-2. Therefore, the SPEEK/SBA-15 hybrid membranes with optimized mass ratio and excellent VRB performance can be achieved, exhibiting good potential usage in VRB systems.

  5. Interaction of apo cytochrome c with sulfonated polystyrene nanoparticles.

    Science.gov (United States)

    Liang, Li; Yao, Ping; Gong, Jie; Jiang, Ming

    2004-04-13

    Stable nanoparticle dispersion in aqueous solutions was obtained with partially sulfonated polystyrene. The hydrophobic association of the backbone chains and phenyl groups is balanced by the electrostatic repulsion of the sulfonate groups on the particle surface. The size distribution of the sulfonated polystyrene particles in relation to concentration, degree of sulfonation and chain length, and pH was characterized by dynamic laser light-scattering. The structure and morphology of the particles were characterized with fluorescence and atom force microscopy. Highly sulfonated polystyrene particles can form large complex particles with positively charged protein, apo cytochrome c. Dynamic laser light-scattering and atom force microscopy studies show that the size and distribution of the complex particles depend on the relative amount of apo cytochrome c and sulfonated polystyrene. When sulfonated polystyrene is in excess, apo cytochrome c interacts with sulfonated polystyrene particles forming stable complexes and excessive sulfonated polystyrene particles bind to the periphery of the complexes preventing them from further aggregation. When apo cytochrome c is in excess, apo cytochrome c links the complexes forming much larger particles. Fluorescence study demonstrates that the hydrophobicity/hydrophility of the complex particles is relative to the ratio of apo cytochrome c and sulfonated polystyrene, degree of sulfonation, and pH. Apo cytochrome c not only can neutralize the negative charges on the surface of sulfonated polystyrene particles, but may also insert into the cores disrupting the original structure of sulfonated polystyrene particles.

  6. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.

    Science.gov (United States)

    Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego

    2017-03-01

    Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.

  7. Suppression of angiogenic activity of sera from diabetic patients with non-proliferative retinopathy by compounds of herbal origin and sulindac sulfone.

    Science.gov (United States)

    Skopinski, Piotr; Szaflik, Jerzy; Duda-Król, Barbara; Nartowska, Jadwiga; Sommer, Ewa; Chorostowska-Wynimko, Joanna; Demkow, Urszula; Skopinska-Rózewska, Ewa

    2004-10-01

    Angiogenesis, the process of new blood vessel formation, is the key event in the mechanism of several pathological processes including diabetic retinopathy. The physiological control of angiogenesis depends on the balance between stimulatory and inhibitory factors. Therefore, a number of anti-angiogenic approaches has been developed, many of them based on the inhibition of the functional activity of pro-angiogenic factors. The aim of the present study was to compare the anti-angiogenic effectiveness of sulindac sulfone and some herbal compounds in the serum-induced angiogenesis test performed in Balb/c mice. Pooled sera from 35 patients with diabetes type 2 and retinopathy were used as pro-angiogenic stimuli. The strongest inhibitory effect was observed for the sulindac sulfone and ursolic acid in the highest concentration of 200 micro g/ml, as well as for the low-dosage concomitant treatment with 2 micro g/ml of epigallocatechin gallate (EGCG, green tea flavanol), ursolic acid (plant-derived triterpenoid), sulindac sulfone and convalamaroside (steroidal saponin). Combination treatment was significantly more effective than monotherapy with medium (20 micro g/ml) or lowest doses of tested compounds. The present study is the first to demonstrate the potent anti-angiogenic effect of the combination therapy comprising of plant-derived extracts and sulindac sulfone, as tested in the in vivo angiogenesis experimental model with sera of non-proliferative diabetic retinopathy patients used as the pro-angiogenic stimuli. We think that it might be the first step toward application of some of these compounds, in the future, in preventive anti-angiogenic therapy of these patients, as well, as in the treatment of later, proliferative stage of this disease.

  8. Improved catalytic activity and stability using mixed sulfonic acid- and hydroxy-bearing polymer brushes in microreactors

    NARCIS (Netherlands)

    Ricciardi, R.; Munirathinam, Rajesh; Huskens, Jurriaan; Verboom, Willem

    2014-01-01

    Sulfonic acid-bearing polymer brushes were grown on the inner walls of continuous flow glass microreactors and used in the acid-catalyzed hydrolysis of benzaldehyde dimethyl acetal as a test reaction. Randomly 1:1 mixed polymer brushes of poly-3-sulfopropyl methacrylate (PSPM) and

  9. 磺化石墨烯/活性炭复合电极的制备及其不对称电容器脱盐%Preparation of Sulfonated Graphene/Activated Carbon Composite Electrode for Asymmetric Capacitive Deionization

    Institute of Scientific and Technical Information of China (English)

    卢淼; 刘建允; 王世平; 程健

    2014-01-01

    在还原剂 NaBH4存在下,采用对氨基苯磺酸重氮盐与氧化石墨(GO)表面共价键合制备磺化石墨烯(GP-SO3 H).傅里叶变换红外光谱(FTIR)证明磺酸基团在石墨烯表面接枝.采用扫描电子显微镜(SEM)研究了磺化石墨烯的表面形貌.以磺化石墨烯为添加剂,制备了磺化石墨烯/活性炭(GP-SO3 H/ AC)复合电极.循环伏安及阻抗分析结果表明,该复合电极的电容特性及导电性有明显改善.以活性炭电极为对电极组装了不对称电容器(GP-SO3 H/ AC| AC),研究了该不对称电容器的电化学脱盐性能.与对称电容器(AC | AC)相比,不对称电容器中由于电极内磺酸基团对反离子的屏蔽作用,电容器的电流效率达到89.4%以上,脱盐量提高2.4倍,单个循环脱盐量达到10.87 mg/ g.%Sulfonated graphene( GP-SO3 H) was prepared by grafting reaction of sulfonated diazoniun salt. The sulfonated graphene was characterized by Fourier transform infrared spectrometry( FTIR) and scanning electron microscopy(SEM), respectively. The experimental results indicate that the sulfonic groups have been grafted onto graphene oxide. The sulfonated graphene / activated carbon composite electrode(GP-SO3 H/ AC) was prepared by mixing 10% ( mass fraction) GP-SO3 H as dopant. Compared with AC electrode, this composite electrode exhibits an ideal double layer capacitive behavior and high conductivity, confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. The hybrid capacitor was assembled by the resultant GP-SO3 H/ AC as negative electrode and AC as counter electrode for capacitor deionization(CDI). Under the constant current charging-discharging condition, the salt removal amount of 10. 87 mg / g in single cycle was obtained, about 2. 4 times that of the normal AC capacitor. And the current efficiency was improved dramatically owing to the facile adsorption of sulfonic groups to cations, and the shielding effect of sulfonic groups

  10. High proton-conducting organic/inorganic nanocomposite films based on sulfonated polystyrene-block-poly(ethyl-ran-propylene)-block-polystyrene and silica nanoparticles.

    Science.gov (United States)

    Jang, Suk-Yong; Han, Sien-Ho

    2013-12-01

    Sulfonated polystyrene-block-poly(ethyl-ran-propylene)-block-polystyrene (S-polySEPS) was prepared by sulfonation at the phenyl groups of the polystyrene-block-poly(ethyl-ran-propylene)-block-polystyrene (polySEPS) containing 65% styrene groups for proton exchange membrane. High proton-conducting S-polySEPS/silica nanocomposite films were produced by direct-mixing of nanosilica particles with the S-polySEPS copolymer. The TEM image of the S-polySEPS/silica nanocomposite films showed that the silica particles were very-well dispersed within the S-polySEPS matrix. Also, the XRD patterns showed the presence of the nano-scaled silica particles. Moreover, the nano-scaled silica particles played an important role in the prepared organic/inorganic nanocomposite properties such as proton conductivity, thermal stability, water content and ion exchange capacity (IEC). The S-polySEPS/silica 1 wt% (1.41 x 10(-1) S/cm) and 2 wt% (9.9 x 10(-2) S/cm) nanocomposite films had higher proton conductivity than Nafion 117 (9.8 x 10(-2) S/cm) at the temperature of 90 degrees C. The FT-IR analysis was used to verify the sulfonation of the S-polySEPS copolymer. The TGA analysis was carried out to investigate the thermal stability of the S-polySEPS/silica nanocomposite films.

  11. Assembly of three coordination polymers based on a sulfonic-carboxylic ligand showing high proton conductivity.

    Science.gov (United States)

    Zhao, Shu-Na; Song, Xue-Zhi; Zhu, Min; Meng, Xing; Wu, Lan-Lan; Song, Shu-Yan; Wang, Cheng; Zhang, Hong-Jie

    2015-01-21

    Three new coordination polymers (CPs)/metal-organic frameworks (MOFs) with different structures have been synthesized using 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid (H4L) and metal ions, Cu(2+), Ca(2+) and Cd(2+). The Cu compound features a one-dimensional chain structure, further extending into a 2D layer network through H-bond interactions. Both the Ca and Cd compounds show 3D frameworks with (4,4)-connected PtS-type topology and (3,6)-connected bct-type topology, respectively. These CPs/MOFs all exhibit proton conduction behavior, especially for the Cu compound with a proton conductivity of 3.46 × 10(-3) S cm(-1) at 368 K and 95% relative humidity (RH). Additionally, the activation energy (Ea) has also been investigated to deeply understand the proton-conduction mechanism.

  12. Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Lim, Youngdon; Seo, Dongwan; Lee, Soonho; Hossain, Md Awlad; Lim, Jinseong; Lee, Sangyoung; Hong, Taehoon; Kim, Whangi

    2014-10-01

    The novel sulfonated poly(ether sulfone)s containing mesonaphthobifluorene (MNF) moiety were synthesized and characterized their properties. The prepared polymers have highly conjugated aromatic structure due to the MNF group which is an allotrope of carbon and one atom thick planar sheets of sp2-bonded carbon atoms. Poly(ether sulfone)s bearing tetraphenylethylene on polymer backbone were synthesized by polycondensation and followed intra-cyclization from tetraphenylethylene to form MNF by Friedel-craft reaction with Lewis acid (FeCl3). The sulfonation was performed selectively on MNF units with conc. sulfuric acid. The structural properties of the sulfonated polymers were investigated by 1H-NMR spectroscopy. The membranes were studied by ion exchange capacity (IEC), water uptake, and proton conductivity. The synthesized polymer electrolyte membranes showed better thermal and dimensional stabilities owing to the inducted highly conjugated aromatic structure in the polymer backbone. The water uptake of the synthesized membranes ranged from 23-52%, compared with 32.13% for Nafion 211 at 80 degrees C. The synthesized membranes exhibited proton conductivities (80 degrees C, RH 90%) of 74.6-100.4 mS/cm, compared with 102.7 mS/cm for Nafion 211.

  13. IN SITU PREPARED TiO2 NANOPARTICLES CROSS-LINKED SULFONATED PVA MEMBRANES WITH HIGH PROTON CONDUCTIVITY FOR DMFC

    Directory of Open Access Journals (Sweden)

    Jignasa N. Solanki

    2016-07-01

    Full Text Available Organic/inorganic membranes based on sulfonated poly(vinyl alcohol (SPVA and in situ prepared TiO2 nanoparticles nanocomposite membranes with various compositions were prepared to use as proton exchange membranes in direct membrane fuel cells. Poly(vinyl alcohol (PVA was sulfonated and cross-linked separately by 4-formylbenzene-1,3-disulfonic acid disodium salt hydrate and glutaraldehyde. The ion exchange capacity and proton conductivity of the membranes increased with increasing amount of TiO2 nanoparticles. The composite membranes with 15 wt% TiO2 exhibited excellent proton conductivity of 0.0822 S cm-1, as well as remarkably low methanol permeability of 1.11×10-9 cm2 s-1. The thermal stability and durability were also superior and performance in methanol fuel cell was also reasonably good

  14. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  15. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-11-01

    Full Text Available A simple and clean one-pot method for the preparation of 7-amino-2,4-dioxo-5-aryl-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carbonitrile derivatives using 6-amino uracil, various aromatic aldehydes and malononitrile in the presence of sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H is described. Some of synthesized pyrido[2,3-d]pyrimidines showed antimicrobial activities against some fungi and gram positive and negative bacteria.

  16. Preparation of Overbased Calcium Alkylbenzene Sulfonate for Formulating Complex Sulfonate Grease

    Institute of Scientific and Technical Information of China (English)

    Liu Yinong

    2015-01-01

    Six kinds of alkylbenzene sulfonic acids were selected to prepare the sulfonates S1—S6. Among them, the sul-fonates S3, S4, and S6 could be incorporated into lubricating grease with good performance in comparison with the grease produced from commercial sulfonates T106-1 and T106-2. The optimized conditions for synthesis of the sulfonates S3, S4, and S6were explored by using different mass ratios of methanol, water and the type of copromoters. It was found out that the appropriate conditions for synthesis of the sulfonate S3 included a methanol to M (M is the total mass of alkylbenzene sulfonic acid and base oil) mass ratio of 16%, a water to M mass ratio of 4%, and a copromoter A to M mass ratio of 2%; the appropriate conditions for synthesis of the sulfonate S4 included a methanol to M mass ratio of 24%, a water to M mass ratio of 2%, a copromoter B to M mass ratio of 2%; and the optimized conditions for synthesis of the sulfonate S6 included a methanol/ M mass ratio of 8%, a water/M mass ratio of 4% and a copromoter B/M mass ratio of 2%. The new sulfonates S3, S4, and S6 produced under the optimized conditions exhibited higher TBN and better antiwear property in camparison with the previous products. Grease samples G9, G10, and G11 were prepared with new sulfonates S3, S4, and S6 successfully and exhibited improved water stability and high temperature performance.

  17. Fully Aromatic Block Copolymers for Fuel Cell Membranes with Densely Sulfonated Nanophase Domains

    DEFF Research Database (Denmark)

    Takamuku, Shogo; Jannasch, Patrick; Lund, Peter Brilner

    Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully...... tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclu- sively placed in ortho positions to the many sulfone bridges, giving these locks IECs of 4.1 and 4.6 meqg1, respectively. Copolymer...

  18. Sulfonation of 17{beta}-estradiol and inhibition of sulfotransferase activity by polychlorobiphenylols and celecoxib in channel catfish, Ictalurus punctatus

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liquan [Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 (United States); James, Margaret O. [Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610 (United States)]. E-mail: mojames@ufl.edu

    2007-03-10

    The sulfonation of 17{beta}-estradiol (E2) by human liver and recombinant sulfotransferases is influenced by environmental contaminants such as hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs), which are potent inhibitors, and the therapeutic drug, celecoxib, which affects positional sulfonation of E2. In some locations, the aquatic environment is contaminated by PCBs, OH-PCBs and widely used therapeutic drugs. The objectives of this study were to investigate the sulfonation kinetics of E2 in liver cytosol from channel catfish (Ictalurus punctatus); to examine the effect of OH-PCBs on E2 sulfonation; and to determine if celecoxib altered the position of E2 sulfonation, as it does with human liver cytosol. E2 was converted to both 3- and 17-sulfates by catfish liver cytosol. At E2 concentrations below 1{mu}M, formation of E2-3-sulfate (E2-3-S) predominated, but substrate inhibition was observed at higher concentrations. Rates of E2-3-S formation at different E2 concentrations were fit to a substrate inhibition model, with K{sup '}{sub m} and V{sup '}{sub max} values of 0.40+/-0.10{mu}M and 91.0+/-4.7pmol/min/mg protein, respectively and K{sub i} of 1.08+/-0.09{mu}M. The formation of E2-17-S fit Michaelis-Menten kinetics over the concentration range 25nM to 2.5{mu}M, with K{sub m} and V{sub max} values of 1.07+/-0.23{mu}M and 25.7+/-4.43pmol/min/mg protein, respectively. The efficiency (V{sub max}/K{sub m}) of formation of E2-3-S was 9.8-fold higher than that of E2-17-S. Several OH-PCBs inhibited E2 3-sulfonation, measured at an E2 concentration of 1nM. Of those tested, the most potent inhibitor was 4'-OH-CB79, with two chlorine atoms flanking the OH group (IC{sub 50}: 94nM). The inhibition of estrogen sulfonation by OH-PCBs may disrupt the endocrine system and thus contribute to the known toxic effects of these compounds. Celecoxib did not stimulate E2-17-S formation, as is the case with human liver cytosol, but did inhibit the

  19. Positional isomers of linear sodium dodecyl benzene sulfonate: solubility, self-assembly, and air/water interfacial activity.

    Science.gov (United States)

    Ma, Jian-Guo; Boyd, Ben J; Drummond, Calum J

    2006-10-10

    Commercial linear alkyl benzene sulfonates (ABS) are a very important class of anionic surfactants that are employed in a wide variety of applications, especially those involving wetting and detergency. Linear ABS surfactants generally consist of a complex mixture of different chain lengths and positional isomers. This diversity and level of complexity makes it difficult to develop fundamental structure-property correlations for the commercial surfactants. In this work, six monodisperse headgroup positional isomers of sodium para-dodecyl benzene sulfonate (Na-x-DBS, x = 1-6) have been studied. The influence of headgroup position and added electrolyte (NaCl) on the solubility and self-assembly (micellar and vesicular aggregation and lyotropic liquid crystalline phase behavior) in the temperature range from 10 to 90 degrees C have been investigated. Additionally, the air-aqueous solution interfacial adsorption at 25 (no added NaCl) and 50 degrees C (from 0 to 1.0 M added NaCl) has been examined. The observed physicochemical behavior is interpreted in terms of local molecular packing constraints, and in the case of the lyotropic liquid crystalline behavior global aggregate packing constraints as well.

  20. Irreversible Oxidation of the Active-site Cysteine of Peroxiredoxin to Cysteine Sulfonic Acid for Enhanced Molecular Chaperone Activity*

    OpenAIRE

    2008-01-01

    The thiol (–SH) of the active cysteine residue in peroxiredoxin (Prx) is known to be reversibly hyperoxidized to cysteine sulfinic acid (–SO2H), which can be reduced back to thiol by sulfiredoxin/sestrin. However, hyperoxidized Prx of an irreversible nature has not been reported yet. Using an antibody developed against the sulfonylated (–SO3H) yeast Prx (Tsa1p) active-site peptide (AFTFVCPTEI), we observed an increase in the immunoblot intensity in proportion to the ...

  1. SULFONATION OF A NEW POLYETHERETHERKETONE PREPARED FROM PHENOLPHTHALEIN

    Institute of Scientific and Technical Information of China (English)

    CHEN Tianlu; YUAN Yagui; ZHANG Manhua; CHEN Zhongqing; XU Jiping

    1990-01-01

    A novel polyetheretherketone (PEK-C) prepared from phenolphthalein has been synthesized. In order to improve some of its properties for application in high performance membrane, the PEK-C has been sulfonated with concentrated sulfuric acid. Degree of sulfonation can be regulated by controlling the temperature and time of sulfonation. The characterization of the sulfonated PEK-C in sodium salt form has been made by IR, 1H NMR and 13C NMR etc. It is shown that the sulfonation appears to take place exclusively in the ortho position to phenolic ether of phenolphthalein unit. The result is in agreement with theoretical deduction. Some properties of the sulfonated PEK-C, such as solubility, transition temperature, thermal degradation and hydrophilicity have also been discussed.

  2. Three-dimensional carbon foam supported tin oxide nanocrystallites with tunable size range: Sulfonate anchoring synthesis and high rate lithium storage properties

    Science.gov (United States)

    Ma, Yue; Asfaw, Habtom Desta; Edström, Kristina

    2015-10-01

    The development of a free-standing electrode with high rate capability requires the realization of facile electrolyte percolation, fast charge transfer at the electrode-electrolyte interface as well as the intimate electrical wiring to the current collector. Employing a sulfonated high internal phase emulsion polymer (polyHIPE) as the carbon precursor, we developed a free-standing composite of carbon foam encapsulated SnO2 nanocrystallites, which simultaneously satisfies the aforementioned requirements. When directly evaluated in the pouch cell without using the binder, carbon additive or metallic current collector, the best performing composite exhibits a good rate performance up to 8 A g-1 and very stable cyclability for 250 cycles. This cycling performance was attributed to the synergistic coupling of hierarchical macro/mesoporous carbon foam and SnO2 nanocrystals with optimized size range. Postmortem characterizations unveiled the significant influence of subtle size variation of oxides on the electrochemical performance.

  3. Sulfonated Polyetherimide and Its Membranes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Polyetherimide (PEI) was sulfonated by chlorosulfonic acid for the first time. The sulfonated products were characterized by FT-IR, DSC, ion exchange capacity and water sorption measurement. The hydrophilicity of PEI was improved by the sulfonation. The PEI was blended with the sodium salt form of sulfonated PEI (SPEI) to prepare microporous membranes. The morphologies of the membranes were studied with Scanning Electron Microscope (SEM).

  4. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  5. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  6. High Performance Thin-film Composite Membranes with Mesh-Reinforced Hydrophilic Sulfonated Polyphenylenesulfone (sPPSU) Substrates for Osmotically Driven Processes

    KAUST Repository

    Han, Gang

    2015-12-17

    We have for the first time combined the strength of hydrophilic sulfonated material and thin woven open-mesh via a continuous casting process to fabricate mesh-reinforced ultrafiltration (UF) membrane substrates with desirable structure and morphology for the development of high-performance thin-film composite (TFC) osmosis membranes. A new sulfonated polyphenylenesulfone (sPPSU) polymer with super-hydrophilic nature is used as the substrate material, while a hydrophilic polyester (PET) open-mesh with a small thickness of 45 μm and an open area of 44.5% is employed as the reinforcing fabric during membrane casting. The newly developed sPPSU-TFC membranes not only exhibit a fully sponge-like cross-section morphology, but also possess excellent water permeability (A=3.4–3.7 L m−2 h−1 bar−1) and selectivity toward NaCl (B=0.10–0.23 L m−2 h−1). Due to the hydrophilic nature and low membrane thickness of 53–67 μm, the PET-woven reinforced sPPSU substrates have remarkably small structural parameters (S) of less than 300 μm. The sPPSU-TFC membranes thereby display impressive water fluxes (Jw) of 69.3–76.5 L m−2 h−1 and 38.7–47.0 L m−2 h−1 against a deionized water feed using 2 M NaCl as the draw solution under pressure retarded osmosis (PRO) and forward osmosis (FO) modes, respectively. This performance surpasses the state-of-the-art commercially available FO membranes. The sPPSU-TFC membranes also show exciting performance for synthetic seawater (3.5 wt% NaCl) desalination and water reclamation from real municipal wastewater. The newly developed PET-woven sPPSU-TFC membranes may have great potential to become a new generation membrane for osmotically driven processes.

  7. The Antidotal Effects of High-dosage γ-Aminobutyric Acid on Acute Tetramine Poisoning as Compared with Sodium Dimercaptopropane Sulfonate

    Institute of Scientific and Technical Information of China (English)

    SUN Peng; HAN Jiyuan; WENG Yuying

    2007-01-01

    To investigate the therapeutic effect of high-dosage γ-aminobutyric acid (GABA) on acute tetramine (TET) poisoning, 50 Kunming mice were divided into 5 groups at random and the antidotal effects of GABA or sodium dimercaptopropane sulfonate (Na-DMPS) on poisoned mice in different groups were observed in order to compare the therapeutic effects of high-dosage GABA with those of Na-DMPS. Slices of brain tissue of the poisoned mice were made to examine pathological changes of cells. The survival analysis was employed. Our results showed that both high-dosage GABA and Na-DMPS could obviously prolong the survival time, delay onset of convulsion and muscular twitch, and ameliorate the symptoms after acute tetramine poisoning in the mice.Better effects could be achieved with earlier use of high dosage GABA or Na-DMPS. There was no significant difference in prolonging the survival time between high-dose GABA and Na-DMPS used immediately after poisioning. It is concluded that high-dosage GABA can effectively antagonize acute toxicity of teramine in mice. And it is suggested that high-dosage GABA may be used as an excellent antidote for acute TET poisoning in clinical practice. The indications and correct dosage for clinical use awaits to be further studied.

  8. Fluorescent Polystyrene Sulfonate for Polyelectrolyte Studies

    Science.gov (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Zhang, Donghui; Russo, Paul

    2012-02-01

    The slow-mode decay found by dynamic light scattering for polyelectrolytes in low-salt conditions has perplexed investigators since its first observation. Many characterization methods have suggested temporary or transient aggregation, although there is still no consensus on the cause. Many different polyelectrolytes demonstrate the slow-mode decay, but the sodium salt of polystyrene sulfonate (NaPSS) is the most popular choice for study. Commercially available NaPSS may have hydrophobic patches due to incomplete sulfonation leading to associations apart from any putative ionic mechanisms. Therefore, essentially full sulfonation, or ``patchless'', NaPSS should be synthesized. To facilitate fluorescence measurements, which can provide new insights to the slow-mode phenomenon, the material must be rendered fluorescent (F-NaPSS). Several approaches to F-NaPSS have appeared; some labeled a previously synthesized NaPSS without concern for its hydrophobic patches. Other strategies include a free radical copolymerization of styrene sulfonate and a vinyl amine to provide side chains viable for labeling. This method is successful, but yields only small amounts of nearly monodisperse polymer after fractionation. In this presentation, a high-yield synthesis of fully sulfonated, low-polydispersity, fluorescently tagged polymer will be discussed.

  9. Electrochemical quartz crystal microbalance studies on enzymatic specific activity and direct electrochemistry of immobilized glucose oxidase in the presence of sodium dodecyl benzene sulfonate and multiwalled carbon nanotubes.

    Science.gov (United States)

    Su, Yuhua; Xie, Qingji; Chen, Chao; Zhang, Qingfang; Ma, Ming; Yao, Shouzhuo

    2008-01-01

    The electrochemical quartz crystal microbalance (EQCM) technique was utilized to monitor in situ the adsorption of glucose oxidase (GOD) and the mixture of GOD and sodium dodecyl benzene sulfonate (SDBS) onto Au electrodes with and without modification of multiwalled carbon nanotubes (MWCNTs) or SDBS/MWCNTs composite, and the relationship between enzymatic specific activity (ESA) and direct electrochemistry of the immobilized GOD was quantitatively evaluated for the first time. Compared with the bare gold electrode at which a little GOD was adsorbed and the direct electrochemistry of the adsorbed GOD was negligible, the amount and electroactivity of adsorbed GOD were greatly enhanced when the GOD was mixed with SDBS and then adsorbed onto the SDBS/MWCNTs modified Au electrode. However, the ESA of the adsorbed GOD was fiercely decreased to only 16.1% of the value obtained on the bare gold electrode, and the portion of adsorbed GOD showing electrochemical activity exhibited very low enzymatic activity, demonstrating that the electroactivity and ESA of immobilized GOD responded oppositely to the presence of MWCNTs and SDBS. The ESA results obtained from the EQCM method were well supported by conventional UV-vis spectrophotometry. The direct electrochemistry of redox proteins including enzymes as a function of their biological activities is an important concern in biotechnology, and this work may have presented a new and useful protocol to quantitatively evaluate both the electroactivity and ESA of trace immobilized enzymes, which is expected to find wider applications in biocatalysis and biosensing fields.

  10. Rh-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinyl Sulfones: An Efficient Approach to Chiral Sulfones.

    Science.gov (United States)

    Shi, Liyang; Wei, Biao; Yin, Xuguang; Xue, Peng; Lv, Hui; Zhang, Xumu

    2017-03-03

    Rh/(S)-(+)-DTBM-Segphos complex catalyzed asymmetric hydrogenation of α-substituted vinyl sulfones has been achieved, furnishing the desired products in high yields and excellent enantioselectivities (>90% yield, up to 99% ee). This method provided an efficient approach to α-substituted chiral sulfones under mild conditions and has potential applications in organic synthesis.

  11. Properties of polypyrrole doped with alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Bay, Lasse; Skaarup, Steen; West, Keld;

    2001-01-01

    -standing 10 mu m thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states...... are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p...

  12. Activity of Antifungal Organobismuth(III Compounds Derived from Alkyl Aryl Ketones against S. cerevisiae: Comparison with a Heterocyclic Bismuth Scaffold Consisting of a Diphenyl Sulfone

    Directory of Open Access Journals (Sweden)

    Toshihiro Murafuji

    2014-07-01

    Full Text Available A series of hypervalent organobismuth(III compounds derived from alkyl aryl ketones [XBi(5-R'C6H3-2-COR(Ar] was synthesized to investigate the effect of the compounds’ structural features on their antifungal activity against the yeast Saccharomyces cerevisiae. In contrast to bismuth heterocycles [XBi(5-RC6H3-2-SO2C6H4-1'-] derived from diphenyl sulfones, a systematic quantitative structure-activity relationship study was possible. The activity depended on the Ar group and increased for heavier X atoms, whereas lengthening the alkyl chain (R or introducing a substituent (R' reduced the activity. IBi(C6H4-2-COCH3(4-FC6H4 was the most active. Its activity was superior to that of the related acyclic analogues ClBi[C6H4-2-CH2N(CH32](Ar and ClBi(C6H4-2-SO2 tert-Bu(Ar and also comparable to that of heterocyclic ClBi(C6H4-2-SO2C6H4-1'-, which was the most active compound in our previous studies. Density function theory calculations suggested that hypervalent bismuthanes undergo nucleophilic addition with a biomolecule at the bismuth atom to give an intermediate ate complex. For higher antifungal activity, adjusting the lipophilicity-hydrophilicity balance, modeling the three-dimensional molecular structure around the bismuth atom, and stabilizing the ate complex appear to be more important than tuning the Lewis acidity at the bismuth atom.

  13. Bisphenol A sulfonation is impaired in metabolic and liver disease

    Science.gov (United States)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L.; King, Roberta

    2016-01-01

    Background Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. Liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. PMID:26712468

  14. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.

  15. The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Wang, S.J.; Xiao, M.; Bian, S.G.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Xingangxi Road, Guangzhou 510275 (China)

    2009-05-15

    The sulfonated poly(fluorenyl ether ketone)s (SPFEK) membranes doped with SiO{sub 2} and dispersed by hydroxypropyl methyl cellulose (HPMC) were prepared and investigated for polymer electrolyte membrane fuel cells (PEMFCs) used at high temperature and low relative humidity (RH). The above membrane was prepared by solution dispersion of SPFEK and SiO{sub 2} using HPMC as dispersant. The physio-chemical properties of the hybrid membrane were studied by means of scanning electron microscope (SEM), ion-exchange capacity (IEC), proton conductivity, and single cell performance tests. The hybrid membranes dispersed by HPMC were well dispersed when compared with common organic/inorganic hybrid membranes. The hybrid membranes showed superior characteristics as a proton exchange membrane (PEM) for PEMFC application, such as high ionic exchange content (IEC) of 1.51 equiv/g, high temperature operation properties, and the satisfactory ability of anti-H{sub 2} crossover. The single cell performances of the hybrid membranes were examined in a 5 cm{sup 2} commercial single cell at both 80 C and 120 C under different relative humidity (RH) conditions. The hybrid membrane dispersed by HPMC gave the best performance of 260 mW/cm{sup 2} under conditions of 0.4 V, 120 C, 50% RH and ambient pressure. The results demonstrated HPMC being an efficient dispersant for the organic/inorganic hybrid membrane used for PEM fuel cell. (author)

  16. Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups.

    Science.gov (United States)

    Wei, Junji; Zhang, Zhongbo; Tseng, Jung-Kai; Treufeld, Imre; Liu, Xiaobo; Litt, Morton H; Zhu, Lei

    2015-03-11

    In this report, a dipolar glass polymer, poly(2-(methylsulfonyl)ethyl methacrylate) (PMSEMA), was synthesized by free radical polymerization of the corresponding methacrylate monomer. Due to the large dipole moment (4.25 D) and small size of the side-chain sulfone groups, PMSEMA exhibited a strong γ transition at a temperature as low as -110 °C at 1 Hz, about 220 °C below its glass transition temperature around 109 °C. Because of this strong γ dipole relaxation, the glassy PMSEMA sample exhibited a high dielectric constant of 11.4 and a low dissipation factor (tan δ) of 0.02 at 25 °C and 1 Hz. From an electric displacement-electric field (D-E) loop study, PMSEMA demonstrated a high discharge energy density of 4.54 J/cm(3) at 283 MV/m, nearly 3 times that of an analogue polymer, poly(methyl methacrylate) (PMMA). However, the hysteresis loss was only 1/3-1/2 of that for PMMA. This study suggests that dipolar glass polymers with large dipole moments and small-sized dipolar side groups are promising candidates for high energy density and low loss dielectric applications.

  17. Effect of laundry activities on in-stream concentrations of linear alkylbenzene sulfonate in a small rural South African river.

    Science.gov (United States)

    Gordon, A K; Muller, W J; Gysman, N; Marshall, S J; Sparham, C J; O'Connor, S M; Whelan, M J

    2009-07-15

    In many parts of the world clothes are washed near to or in rivers and streams. Little information is available on resulting concentrations of detergent ingredients or on any potential effects caused. In this study, the fate of a commonly used anionic surfactant, linear alkylbenzene sulphonate (LAS) was investigated in a reach of the Balfour River (Eastern Cape Province, South Africa) which was regularly used as a site for laundry activity. Samples of river water were collected upstream of the main washing site and at a number of locations downstream on several occasions in winter and summer. Sediment samples were also collected and analysed. In addition, a household survey was conducted to ascertain the amount of detergent used and the distribution of washing practices. The results of the survey suggested that the use of riverside locations for laundry activities was seasonal. Most washing tended to be done at home during the winter with riverside sites used more frequently during the summer months. The monitoring data showed that LAS concentrations in water were very variable. They were occasionally high in the immediate vicinity of the laundry site (up to 342 microg L(-1)) but were generally very low (effects are expected from LAS emissions at this site.

  18. Low Work-function Poly(3,4-ethylenedioxylenethiophene): Poly(styrene sulfonate) as Electron-transport Layer for High-efficient and Stable Polymer Solar Cells.

    Science.gov (United States)

    Zhang, Yong; Chen, Lie; Hu, Xiaotian; Zhang, Lin; Chen, Yiwang

    2015-08-04

    Low-work-function poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PSS) modified with polyethylenimine (PEIE) was used as an electron transport layer (ETL) for polymer solar cells (PSCs). A thin layer of PEIE film was spin-coated onto the surface on the PSS films, thus substantially changing their charge selectivity from supporting hole transport to supporting electron transport. It was also found that the PSS/PEIE ETL exhibited higher interfacial contact, a more favorable active morphology, and improved charge mobility. By virtue of these beneficial properties, inverted PSCs based on low-bandgap semiconducting photoactive layers achieved a notably improved power conversion efficiency (PCE) of 7.94%, superior even to the corresponding performance of devices with only a ZnO layer. Surpassing our expectations, compared with the extreme degradation of device stability observed when pure PSS is used, PEIE-modified PSS can considerably suppress device degradation because of the hydrophobic and alkaline nature of PEIE, which not only reduces the hygroscopicity of the PSS but also neutralizes the acidic PSS and thus prevents the corrosion of the ITO cathode. These results demonstrate the potential of PEIE-modified PSS for use as an efficient ETL in commercial printed electronic devices.

  19. Unique action of sodium tanshinone II-A sulfonate (DS-201) on the Ca(2+) dependent BK(Ca) activation in mouse cerebral arterial smooth muscle cells.

    Science.gov (United States)

    Tan, Xiaoqiu; Yang, Yan; Cheng, Jun; Li, Pengyun; Inoue, Isao; Zeng, Xiaorong

    2011-04-10

    Sodium tanshinone II-A sulfonate (DS-201) is a water-soluble derivative of tanshinone IIA, a main active constituent of Salvia miltiorrhiza which has been used for treatments of cardio- and cerebro-vascular diseases. DS-201 activates large conductance Ca(2+)-sensitive K(+) channels (BK(Ca)) in arterial smooth muscle cells, and reduces the vascular tone. Here we investigated the effect of DS-201 on the BK(Ca) channel kinetics by analyzing single channel currents. Smooth muscle cells were freshly isolated from mouse cerebral arteries. Single channel currents of BK(Ca) were recorded by patch clamp. DS-201 increased the total open probability (NPo) of BK(Ca) in a concentration-dependent manner. But this action required intracellular Ca(2+), and the effect depended on the Ca(2+) concentration ([Ca(2+)](free)). DS-201 activated BK(Ca) with the half maximal effective concentration (EC(50)) of 111.5μM at 0.01μM [Ca(2+)](free), and 68.5μM at 0.1μM [Ca(2+)](free.) The effect of DS-201 on NPo was particularly strong in the range of [Ca(2+)](free) between 0.1 and 1μM. Analysis of the channel kinetics revealed that DS-201 had only the effect on the channel closing without affecting the channel opening, which was a striking contrast to the effect of [Ca(2+)](free), that is characterized by changing the channel opening without changing the channel closing. DS-201 may be bound to the open state of BK(Ca), and have an inhibitory effect on the transition from the open to closed state. By this way DS-201 may enhance the activity of BK(Ca), and exhibit a strong vasodilating effect against vasoconstriction in the range of [Ca(2+)](free) between 0.1 and 1μM. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. CYP450-dependent biotransformation of the insecticide fipronil into fipronil sulfone can mediate fipronil-induced thyroid disruption in rats.

    Science.gov (United States)

    Roques, Béatrice B; Lacroix, Marlène Z; Puel, Sylvie; Gayrard, Véronique; Picard-Hagen, Nicole; Jouanin, Isabelle; Perdu, Elisabeth; Martin, Pascal G; Viguié, Catherine

    2012-05-01

    In rats, the widely used insecticide fipronil increases the clearance of thyroxine (T(4)). This effect is associated with a high plasma concentration of fipronil sulfone, the fipronil main metabolite in several species including rats and humans. In sheep, following fipronil treatment, fipronil sulfone plasma concentration and thyroid disruption are much lower than in rats. We postulated that fipronil biotransformation into fipronil sulfone by hepatic cytochromes P450 (CYP) could act as a potential thyroid disruptor. The aim of this study was to determine if fipronil sulfone treatment could reproduce the fipronil treatment effects on T(4) clearance and CYP induction in rats. Fipronil and fipronil sulfone treatments (3.4 μmol/kg/day per os, 14 days) increased total and free T(4) clearances to the same extent in THX + T(3), euthyroid-like rats. Both treatments induced a 2.5-fold increase in Ugt1a1 and Sult1b1 messenger RNA (mRNA) expressions and a twofold increase in UGT1A activity suggesting that T(4) elimination was mediated, at least in part, by hepatic uridine 5'-diphospho-glucuronosyltransferases (UGT) and/or sulfotransferases (SULT) induction. Both treatments induced a 10-fold increase in Cyp3a1 and Cyp2b2 mRNA expressions concomitant with a threefold increase in CYP3A immunoreactivity and a 1.7-fold increase in antipyrine clearance, a biomarker of CYP3A activity. All these results showed that fipronil sulfone treatment could reproduce the fipronil treatment effects on T(4) clearance and hepatic enzyme induction in rats. The potential of fipronil sulfone to act as a thyroid disruptor is all the more critical because it persists much longer in the organism than fipronil itself.

  1. Cation exchange for mercury and cadmium of xanthated, sulfonated, activated and non-treated subbituminous coal, commercial activated carbon and commercial synthetic resin:effect of pre-oxidation on xanthation of subbituminous coal

    Institute of Scientific and Technical Information of China (English)

    Lewis M. Gomez; Fredy Colpas-Castillo; Roberto Fernandez-Maestre

    2014-01-01

    A subbituminous coal was oxidized with air at 150 ?C on a fixed bed for 4 h and xanthated with carbon disulfide in a basic solution, at 30 or 5–10 ?C. This xanthated coal was evaluated for the removal of Hg2? and Cd2? from 7,000 mg/L aqueous solutions; metal concentrations were determined by atomic absorption spectrometry. The ion exchange of the xanthated coal was compared against those of the original subbituminous coal, a sulfonated subbituminous coal, activated carbon, commercial activated carbon, and commercial synthetic resin. The commercial synthetic resin showed the highest exchange capacity (concentration factor 98%) followed by the xanthated coal (concentration factor 96%). The retention of cadmium on the sulfonated subbituminous coal was lower (exchange capacity 0.56 meq/g) than that of xanthated coals (1.85 ± 0.09 meq/g). Our xanthated coal showed a better Cd2? removal (81%against 15%) than a non preoxidized 40-h-xanthated coal, which shows that oxidation of coal increased the amount of oxygenated groups which enhanced xanthation.

  2. The mechanical properties of the ultra high molecular weight polyethylene grafted with 3-dimethy (3-(N-methacryamido) propyl) ammonium propane sulfonate.

    Science.gov (United States)

    Deng, Yaling; Xiong, Dangsheng; Wang, Kun

    2014-07-01

    Ultra-high molecular weight polyethylene (UHMWPE) powder was modified with a zwitterion monomer with good biocompatibility of MPDSAH (3-dimethy (3-(N-methacryamido) propyl) ammonium propane sulfonate) by UV irradiation and then hot pressed. The microstructure and mechanical properties of modified UHMWPE are investigated. The results show that the structure of powder and bulk materials has been changed. The modified powders have more filaments than that of untreated. The surface of modified bulk materials is more rough and displays the granular protuberances which have the random loose arrangement compared with untreated UHMWPE. The crystallinity, uniaxial tensile and compressive properties decreased after grafting. Ultimate elongations decrease with the increase of the monomer concentration and are higher than 300% which is recommended by ASTM and ISO except the sample with 0.45mol/L MPDSAH. The friction coefficient of modified UHMWPE is lower than that of the untreated UHMWPE and it decreases gradually with the increase of monomer concentration. The wear rates have been decreased and the wear resistance has been improved under saline and distilled water lubrication.

  3. Properties of polypyrrole doped with alkylbenzene sulfonates

    Science.gov (United States)

    Bay, Lasse; Skaarup, Steen; West, Keld; Mazur, Tanja; Joergensen, Ole; Rasmussen, Helle D.

    2001-07-01

    Conducting polymers such as polypyrrole (PPy) doped with large anionic detergents have high stability in aqueous systems. PPy can be reversibly oxidised and reduced electrochemically. The redox change of PPy is accompanied by a change in volume of the polymer. This is partly ascribed to take-up of ions and solvent molecules. This volume change can be used as a polymer actuator (artificial muscle) working in a narrow voltage range (less than 1 V). The properties of the PPy polymer are largely determined by the dopant ions and also by the deposition conditions and the substrate. A free-standing 10 micrometers thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p-(n-octyl)benzene sulfonate and in conductivity for p-(n-butyl)benzene sulfonate.

  4. [Hygienic assessment of biologically rigid linear alkylbenzene sulfonates].

    Science.gov (United States)

    Bocharov, V V; Ryzhkova, O A

    2010-01-01

    It has been found that there are both biologically rigid and biologically soft homologues in the homologous series of linear alkylbenzene sulfonates (LABS). It is shown that absorption of LABS molecules from aqueous to activated sludge phase may serve as a determinant that should be used to refer a homologue to as rigid or soft surfactants. The biodegradability, detergency, and toxicity of LABS were ascertained to be related to the size of molecular alkyl molecular substitute. It has established that the fractional compositions of linear alkobenzenes should be changed for the synthesis of LABS that have the maximum detergency, a high biodegradability rate, and a low toxicity.

  5. Synthesis of Cyclohexanone Glycol Ketal with Sulfonated Activated Carbon%磺化炭催化合成环己酮乙二醇缩酮的研究

    Institute of Scientific and Technical Information of China (English)

    李永梅; 刘啸天

    2015-01-01

    以活性炭为原料,采用磺化法制备了磺化炭固体酸催化剂,用于环己酮与乙二醇的缩合反应.系统研究了反应时间、酮醇量比、催化剂用量及带水剂用量等因素对环己酮乙二醇缩酮产率的影响.得出了最佳反应条件:n(酮)︰n(醇)=1︰1.4,催化剂用量为环己酮质量的4%,带水剂环己烷用量15.0mL,反应时间90min,缩酮产率可达99.8%.实验证明,磺化炭是合成缩酮类化合物的优良催化剂,绿色环保,可重复使用8次以上.%Cyclohexanone glycol ketal was synthezed from cyclohexanone and ethylene glycol using sulfonated activated carbon as solid acid catalyst. Various reaction parameters such as the molar ratio of cyclohexanone to ethylene glycol, amount of catalyst, reaction time, water-carrying reagent amount and other factors influenced the synthesis were discussed and the best conditions were: molar ratio of cyclohexanone to ethylene glycol was 1 1.4, the amount of catalyst was equal to 4% cyclohexanone, amount of cyclohexane was 15mL, the reaction time 90 min. the yield of cyclohexanone ethylene ketal reached to 99.8% under the optimum conditions. It was proved that the catalyst had a higher activity to condensation reaction and could be used repeated.

  6. Tanshinone II-A sodium sulfonate (DS-201) enhances human BKCa channel activity by selectively targeting the pore-forming α subunit.

    Science.gov (United States)

    Tan, Xiao-qiu; Cheng, Xiu-li; Yang, Yan; Yan, Li; Gu, Jing-li; Li, Hui; Zeng, Xiao-rong; Cao, Ji-min

    2014-11-01

    Tanshinone II-A sodium sulfonate (DS-201), a water-soluble derivative of Tanshinone II-A, has been found to induce vascular relaxation and activate BKCa channels. The aim of this study was to explore the mechanisms underlying the action of DS-201 on BKCa channels. Human BKCa channels containing α subunit alone or α plus β1 subunits were expressed in HEK293 cells. BKCa currents were recorded from the cells using patch-clamp technique. The expression and trafficking of BKCa subunits in HEK293 cells or vascular smooth muscle cells (VSMCs) were detected by Western blotting, flow cytometry and confocal microscopy. DS-201 (40-160 μmol/L) concentration-dependently increased the total open probability of BKCa channels in HEK293 cells, associated with enhancements of Ca(2+) and voltage dependence as well as a delay in deactivation. Coexpression of β1 subunit did not affect the action of DS-201: the values of EC50 for BKCa channels containing α subunit alone and α plus β1 subunit were 66.6±1.5 and 62.0±1.1 μmol/L, respectively. In both HEK293 cells and VSMCs, DS-201 (80 μmol/L) markedly increased the expression of α subunit without affecting β1 subunit. In HEK293 cells, DS-201 enriched the membranous level of α subunit, likely by accelerating the trafficking and suppressing the internalization of α subunit. In both HEK293 cells and VSMCs, DS-201 (≥320 μmol/L) induced significant cytotoxicity. DS-201 selectively targets the pore-forming α subunit of human BKCa channels, thus enhancing the channel activities and increasing the subunit expression and trafficking, whereas the β1 subunit does not contribute to the action of DS-201.

  7. [Determination of perfluorooctane sulfonates in fire-fighting foam and other materials by high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Chen, Huiming; Cheng, Yan; Chen, Wei; Yu, Wenlian; Li, Xi; Wang, Zheng

    2010-02-01

    A novel method based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the determination of perfluorooctane sulfonates (PFOS) in the fire-fighting foam, detergents and fabric finishing agents. The PFOS residue was extracted with water at first by ultrasonic, then separated by high-speed centrifugation. The supernatant was purified by pre-conditioned solid phase extraction (SPE) micro-column, and the extract was filtrated through a membrane with 0.2 microm diameter. The filtrated liquid was analyzed by HPLC using acetonitrile-10 mmol/L ammonium acetate solution (80 : 20, v/v) as mobile phase. The PFOS was detected by using negative electrospray ionization (ESI) on a tandem mass spectrometer in multiple reaction monitoring (MRM) mode. The qualitative analysis of the PFOS can be performed by using the relative abundance of two daughter ions of PFOS, and the quantitative analysis was performed by external standard method. The linear calibration curve was obtained in the range of 0.002 - 0.1 mg/L with a linear correlation coefficient (r2 ) of 0.998. The spiked recoveries for PFOS in the fire-fighting foam, detergents and fabric finishing agents were 93.4% - 103%, 93.2% - 102% and 91.8% - 102% with the relative standard deviation of 0.48% - 3.52%, 0.78% - 1.79% and 0.47% - 3.47%, respectively. And the detection limit for PFOS was 2 mg/kg (S/N > or = 10), which can meet the requirement for the PFOS restriction in fire-fighting foam, detergents and fabric finishing agents in the EU directives. With high accuracy and sensitivity, the method is simple and rapid, and can be used for PFOS inspection in fire-fighting foam, detergents and fabric finishing agents.

  8. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    Science.gov (United States)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-03-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  9. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    Science.gov (United States)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-01-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  10. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs).

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Field, Jim A; Luna-Velasco, Antonia; Sierra-Alvarez, Reyes

    2016-09-14

    Perfluorooctane sulfonate (PFOS) and related perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been widely applied in consumer and industrial applications for decades. However, PFOS has raised public concern due to its high bioaccumulative character, environmental persistence, and toxicity. Shorter PFASs such as perfluorobutane sulfonate (PFBS) and polyfluoroalkyl compounds have been proposed as alternatives to PFOS but it is unclear whether these fluorinated substances pose a risk for public health and the environment. The objective of this research was to investigate the microbial toxicity and the susceptibility to microbial degradation of PFOS and several related fluorinated compounds, i.e., short-chain perfluoroalkyl and polyfluoroalkyl sulfonic and carboxylic acids. None of the compounds tested were toxic to the methanogenic activity of anaerobic wastewater sludge even at very high concentrations (up to 500 mg L(-1)). All PFASs evaluated were highly resistant to microbial degradation. PFOS was not reductively dehalogenated by the anaerobic microbial consortium even after very long periods of incubation (3.4 years). Similarly, the tested short chain perfluoroalkyl substances (i.e., PFBS and trifluoroacetic acid) and a polyfluoroalkyl PFOS analogue, 6 : 2 fluorotelomer sulfonic acid (FTSA) were also resistant to anaerobic biodegradation. Likewise, no conclusive evidence of microbial degradation was observed under aerobic conditions for any of the short-chain perfluoroalkyl and polyfluoroalkyl carboxylic acids tested after 32 weeks of incubation. Collectively, these results indicate that PFOS and its alternatives such as short chain perfluoroalkyl sulfonates and carboxylates and their polyfluorinated homologues are highly resistant to microbial degradation.

  11. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical Microscopy

    Indian Academy of Sciences (India)

    Meera Parthasarathy; Vijayamohanan K Pillai

    2009-09-01

    Scanning Electrochemical Microscopy (SECM) is a unique technique for studying fast heterogeneous kinetics and to map reactivity gradients along the surface of an electrocatalyst, especially when it involves multiple surface sites of varying reactivity. It combines the dual advantages offered by ultramicroelectrode (UME) voltammetry in terms of reduced ohmic drop and insignificant double layer charging contribution with the advantages of imaging by rastering the UME across an electro-active surface. In this work, we demonstrate these distinctive features of SECM in evaluating reactivity gradients on catalyst (Pt/C) coated Nafion® films towards hydrogen oxidation activity, a reaction of immense technological relevance. Imaging has been performed in the feedback mode by allowing H2 evolution at the tip (25 m Pt UME), which is reoxidized at the substrate electrode containing Pt/C-Nafion film. Interesting distribution in H2 oxidation activity has been observed as a function of potential applied to the Pt/CNafion film. In addition, a plot of normalized tip current versus the substrate electrode potential indicates the effect of potential-induced reactivity change in the catalyst-coated membranes. The results of the present investigation are believed to be useful to H2/O2 PEM fuel cells with respect to evaluating reactivity gradients of catalyst-coated polymer electrolyte membranes, which is important to rectify problems related to catalyst utilization.

  12. Characterization of sulfonated poly(ether ether ketone)/silane nanocomposite membrane for high temperature polymer electrolyte membrane fuel cells.

    Science.gov (United States)

    Ghil, Lee-Jin; Kim, Chang-Kyeom; Park, Na-Ri; Rhee, Hee-Woo

    2011-01-01

    The perfluorosulfonic acid polymer membrane is most widely used in PEMFCs. However, its some major drawbacks like high cost and performance limitation at high temperature are obstacles of its commercialization. The goal of this study was to develop low cost membranes which have good conductivity in the range of PEMFCs operating temperature. We fabricated new sPEEK/3-APTES nanocomposite membrane where inorganic particles were chemically bonded to sulfuric acid group of sPEEK. PEEK is a thermally stable, mechanically tough and very cheap polymer. And the addition of 3-APTES and phosphorous acid increased the proton conductivity of composite membranes at high temperatures. This nanocomposite membranes maintained good conductivity at 110 degrees C.

  13. Synthesis and antibacterial and antifungal evaluation of some chalcone based sulfones and bisulfones.

    Science.gov (United States)

    Konduru, Naveen Kumar; Dey, Sunita; Sajid, Mohammad; Owais, Mohammad; Ahmed, Naseem

    2013-01-01

    Two series of chalcone based sulfone and bisulfone derivatives were synthesized using chalcone, thiophenol and sodium metal at room temperature, followed by oxidation of chalcone sulfides with m-CPBA at 0 °C in a novel method. Both sulfones and bisulfones were evaluated for their antimicrobial activities against Aspergillus niger and Candida albicans (yeast), Bacillus subtilis and Staphylococcus aureus (Gram (+) bacteria) and Pseudomonas aeruginosa and Salmonella typhimurium (Gram (-) bacteria) strains. Among them, compounds 2c, 3c, 6c, 7c, 8c and 9c have shown high antifungal activity against C. albicans compare to reference drugs viz. Amphotericin-B and Nystatin. Compound 1c has shown slightly better antibacterial activity against B. subtilis and compounds 5c, 6c and 7c have shown excellent antibacterial activity against S. typhimurium in compare to reference drugs Ampicillin and Kanamycin.

  14. Thermal and Dielectric Behavior Studies of Poly(Arylene Ether Sulfones with Sulfonated and Phosphonated Pendants

    Directory of Open Access Journals (Sweden)

    Shimoga D. Ganesh

    2016-01-01

    Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.

  15. PHOTOPHYSICAL STUDY OF SULFONATED POLYSTYRENE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jixiang; LI Hexian; WANG Guochang; WANG Yuexi; HE Binglin

    2004-01-01

    The photophysical properties of a series of sulfonated micromolecule (paratoluenesulfonic acid, HPTS) and macromolecules (linear and crosslinked polystyrene) have been studied by steady-state fluorescence spectra. The results indicate that the ground sulfonated ring associations can form in both the micromolecules and the macromolecules. The fluorescence spectra of the sulfonated crosslinked copolymers appear a red-shift when the copolymers change from hydrogen-type to sodium-type, and some new emission bands appear in the long-wavelength region. These results are explained in terms of synergetic effect of hydrogen bond, π-π interaction and crosslinking effect.

  16. Sodium Tanshinone IIA Sulfonate Ameliorates Bladder Fibrosis in a Rat Model of Partial Bladder Outlet Obstruction by Inhibiting the TGF-β/Smad Pathway Activation.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Jiang

    Full Text Available Transforming growth factor (TGF-β1 is known to play a pivotal role in a diverse range of biological systems including modulation of fibrosis in several organs. The precise role of TGF-β/Smad signaling in the progression of bladder fibrosis secondary to partial bladder outlet obstruction (PBOO is yet to be conclusively. Using a rat PBOO model, we investigated TGF-β1 expression and exaimined whether sodium tanshinone IIA sulfonate (STS could inhibit TGF-β/Smad signaling pathway activation and ameliorate bladder fibrosis. Forty-eight female Sprague-Dawley rats were randomly divided into three groups: sham operation group (n = 16, PBOO operation without STS treatment group (n = 16 and PBOO operation with STS treatment group (n = 16. Thirty-two rats underwent the operative procedure to create PBOO and subsequently received intraperitoneal injections of STS (10 mg/kg/d; n = 16 or vehicle (n = 16 two days after the surgery. Sham surgery was conducted on 16 rats, which received intraperitoneal vehicle injection two days later. In each of the three groups, an equal number of rats were sacrificed at weeks 4 and 8 after the PBOO or sham operation. The TGF-β/Smad signaling pathway was analyzed using western blotting, immunohistochemical staining and reverse transcriptase polymerase chain reaction (RT-PCR. One-way analysis of variance was conducted to draw statistical inferences. At 4 and 8 weeks, the expression of TGF-β1 and phosphorylated Smad2 and Smad3 in STS-treated PBOO rats was significantly lower than in the PBOO rats not treated with STS. Alpha smooth muscle actin (α-SMA, collagen I and collagen III expression at 4 and 8 weeks post PBOO was lower in STS-treated PBOO rats when compared to that in PBOO rats not treated with STS. Our findings indicate that STS ameliorates bladder fibrosis by inhibiting TGF-β/Smad signaling pathway activation, and may prove to be a potential therapeutic measure for preventing bladder fibrosis secondary to PBOO

  17. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics.

    Science.gov (United States)

    Yeo, Jun-Seok; Yun, Jin-Mun; Kim, Dong-Yu; Park, Sungjun; Kim, Seok-Soon; Yoon, Myung-Han; Kim, Tae-Wook; Na, Seok-In

    2012-05-01

    In the present study, a novel polar-solvent vapor annealing (PSVA) was used to induce a significant structural rearrangement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films in order to improve their electrical conductivity and work function. The effects of polar-solvent vapor annealing on PEDOT:PSS were systematically compared with those of a conventional solvent additive method (SAM) and investigated in detail by analyzing the changes in conductivity, morphology, top and bottom surface composition, conformational PEDOT chains, and work function. The results confirmed that PSVA induces significant phase separation between excess PSS and PEDOT chains and a spontaneous formation of a highly enriched PSS layer on the top surface of the PEDOT:PSS polymer blend, which in turn leads to better 3-dimensional connections between the conducting PEDOT chains and higher work function. The resultant PSVA-treated PEDOT:PSS anode films exhibited a significantly enhanced conductivity of up to 1057 S cm(-1) and a tunable high work function of up to 5.35 eV. The PSVA-treated PEDOT:PSS films were employed as transparent anodes in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs). The cell performances of organic optoelectronic devices with the PSVA-treated PEDOT:PSS anodes were further improved due to the significant vertical phase separation and the self-organized PSS top surface in PSVA-treated PEDOT:PSS films, which can increase the anode conductivity and work function and allow the direct formation of a functional buffer layer between the active layer and the polymeric electrode. The results of the present study will allow better use and understanding of polymeric-blend materials and will further advance the realization of high-performance indium tin oxide (ITO)-free organic electronics.

  18. Synthesis and Water Uptake of Sulfonated Poly (phthalazinone ether sulfone ketone)/Polyacrylic Acid Proton Exchange Membranes

    Institute of Scientific and Technical Information of China (English)

    Xue Mei WU; Gao Hong HE; Lin GAO; Shuang GU; Zheng Wen HU; Ping Jing YAO

    2006-01-01

    Novel SPPESK/PAA composite proton exchange membranes with semi-interpenetrating polymer network (sIPN) structure have been synthesized through the in-situ polymerization of acrylic acid (AA) in the presence of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK). The composite membranes were identified by FT-IR analysis. Water uptake of the composite membranes was as high as 89.7% at 90℃, nearly one time higher than that of the corresponding SPPESK membrane.

  19. High performance disulfonated poly(arylene sulfone) co- and terpolymers for proton exchange membranes for fuel cell and transducer applications: Synthesis, characterization and fabrication of ion conducting membranes

    Science.gov (United States)

    Wiles, Kenton Broyhill

    2005-07-01

    The results described in this dissertation have demonstrated several alternative proton exchange membranes (PEM) for hydrogen-air and direct methanol fuel cells (DMFC) that perform as well or better than the state of the art Nafion perfluorosulfonic acid membrane. Direct aromatic nucleophilic substitution polycondensations of disodium 3,3'-disulfonate-4,4 '-difluorodiphenylsulfone (SDFDPS), 4,4'-difluorodiphenylsulfone (DFDPS) (or their chlorinated analogs, SDCDPS, DCDPS) and 4,4' -thiobisbenzenethiol (TBBT) in the presence of potassium carbonate were investigated. Electrophilic aromatic substitution was employed to synthesize the SDFDPS or SDCDPS comonomers in high yields and purity. High molecular weight disulfonated poly(arylene thioether sulfone) (PATS) copolymers were easily obtained using the SDFDPS monomers, but in general, slower rates and a lower molecular weight copolymer was obtained using the analogous chlorinated monomers. Tough and ductile membranes were solution cast from N,N-dimethylacetamide for both series of copolymers. The degrees of disulfonation (20--50%, PATS 20--50) were controlled by varying the ratio of disulfonated to unsulfonated comonomers. Composite membranes were prepared by homogeneous solution blending the copolymers with phosphotungstic acid (PTA) in dimethylacetamide (DMAc). The composite PATS membranes exhibited moderate PTA molecule water extraction after acidification treatments performed at either room or boiling temperatures. The membranes containing HPA showed improved conductivity at high temperatures (120°C) and low relative humidities when compared to the pure copolymers. Molecular weight of the copolymers plays a critical role in the overall copolymer physical behavior. It is well known that molecular weight has an enormous impact on practically all of the physical properties of polymeric systems. This dissertation discusses the influence of molecular weight on the characteristics of a specific family of PEM PATS

  20. An efficient and highly selective ortho-tert-butylation of p-cresol with methyl tert-butyl ether catalyzed by sulfonated ionic liquids

    Directory of Open Access Journals (Sweden)

    Alamdari Reza Fareghi

    2014-01-01

    Full Text Available A novel series of sulfonic acid-functionalized ionic liquids (SFILs was found to act as efficient catalysts for ortho-tert-butylation of p-cresol with methyl tert-butyl ether (MTBE as the tert-butylating agent without an added solvent. The mono o-tert-butylated product was obtained in up to 80.4% isolated yield and 95.2% selectivity under such green conditions. No O-tert-butylated byproducts were formed.

  1. Molecular sieve/sulfonated poly(ether ketone ether sulfone) composite membrane as proton exchange membrane

    Science.gov (United States)

    Changkhamchom, Sairung; Sirivat, Anuvat

    2012-02-01

    A proton exchange membrane (PEM) is an electrolyte membrane used in both polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFCs). Currently, PEMs typically used for PEMFCs are mainly the commercially available Nafion^ membranes, which is high cost and loss of proton conductivity at elevated temperature. In this work, the Sulfonated poly(ether ketone ether sulfone), (S-PEKES), was synthesized by the nucleophilic aromatic substitution polycondensation between bisphenol S and 4,4'-dichlorobenzophenone, and followed by the sulfonation reaction with concentrated sulfuric acid. The molecular sieve was added in the S-PEKES matrix at various ratios to form composite membranes to be the candidate for PEM. Properties of both pure sulfonated polymer and composite membranes were compared with the commercial Nafion^ 117 membrane from Dupont. S-PEKES membranes cast from these materials were evaluated as a polymer electrolyte membrane for direct methanol fuel cells. The main properties investigated were the proton conductivity, methanol permeability, thermal, chemical, oxidative, and mechanical stabilities by using a LCR meter, Gas Chromatography, Thermogravimetric Analysis, Fourier Transform Infrared Spectroscopy, Fenton's reagent, and Universal Testing Machine. The addition of the molecular sieve helped to increase both the proton conductivity and the methanol stability. These composite membranes are shown as to be potential candidates for use as a Proton Exchange Membrane (PEM).

  2. Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons

    Institute of Scientific and Technical Information of China (English)

    Filoklis D. Pileidis; Maham Tabassum; Sam Coutts; Maria-Magdalena Ttitirici

    2014-01-01

    The synthesis of carbon-based, heterogeneous sulphonic catalysts for the production of levulinate esters. Hydrothermal treatment at moderated temperatures was employed to generate highly func-tional carbonaceous materials, referred to as hydrothermal carbons (HTCs), from both glucose, cellulose and rye straw. The products were sulfonated to generate solid acid-catalysts. Characterisa-tion of the as-synthesised materials as well as catalyst activity tests were performed. SEM images indicate the micrometre-sized particles present in both HTCs were largely unaffected by sulfona-tion, although cellulose-derived HTC displayed signs of inadequate hydrolysis. FT-IR spectroscopy and elemental analysis confirmed successful incorporation of sulphonic groups. 13C solid state NMR, in addition to TGA, elucidated the carbons’ structural composition and supported the common-ly-proposed hydrothermal carbonisation mechanism. Finally, the catalysts were tested via levulinic acid-ethanol esterification and gave high conversion and ester-selectivities (>90%).

  3. Study on the generation of perfluorooctane sulfonate from the aqueous film-forming foam.

    Science.gov (United States)

    Kishi, Takahiro; Arai, Mitsuru

    2008-11-15

    Perfluorooctane sulfonate (C(8)HF(17)SO(3)) and perfluorooctane acid (C(8)HF(15)O(2)) are artificial chemicals and have been used all over the world, mainly as water repellent agents, fluorochemical surfactants, coating agents, etc. However, perfluorooctane sulfonate and perfluorooctane acid are environmental contaminants because of their stability, bio-accumulativeness, and long-term persistence in the ecological environment. At the present day, they are diffused all over the world. Lately, this diffusion is viewed with suspicion and there is a movement towards their restriction, even if the environmental fate of them is still under investigation. Fluorochemical surfactants are key compounds in the aqueous film-forming foam (AFFF) formulations. AFFFs are used for massive conflagration such as industrial fire and petroleum fire because of their efficient fire control. On the other hand, a lot of AFFFs are used in case of massive conflagration and most of them enter ocean and groundwater. Actually, perfluorooctane sulfonate and perfluorooctane sulfonate related substances were detected from the fire-fighting facility of US forces. Therefore, there is the possibility of generating perfluorooctane sulfonate and perfluorooctane sulfonate related substances from fluorochemical surfactants in the AFFFs. In this study, activated sludge added AFFF were analyzed for perfluorooctane sulfonate and perfluorooctane acid with time. And the perfluorooctane sulfonate was directly detected after 2 days using LC-MS. This shows that AFFF can be decomposed perfluorooctane sulfonate by microorganisms easily. However, perfluorooctane sulfonate would not decompose at all. Additionally, activated sludge added N-polyoxyethylene-N-propyl perfluorooctane sulfonamide which is one of the fluorochemical surfactants used in the AFFF was analyzed for perfluorooctane sulfonate and perfluorooctane acid with time and the perfluorooctane sulfonate was detected too.

  4. Proton sponge-functionalized silica as high performance adsorbents for solid-phase extraction of trace perfluoroalkyl sulfonates in the environmental water samples and their direct analysis by MALDI-TOF-MS.

    Science.gov (United States)

    Cao, Dong; Hu, Ming; Han, Chunguang; Yu, Jiyao; Cui, Lin; Liu, Yongxue; Wang, Hailin; Cai, Yaqi; Kang, Yuehui; Zhou, Yiqi

    2012-05-07

    1,8-Bis(dimethylamino)naphthalene (DMAN), a classical 'proton sponge', was functionalized on silica particles as a novel solid-phase extraction (SPE) adsorbent (DMAN@silica) for extracting perfluoroalkyl sulfonates (PFSs). High reproducibility and excellent extraction capability for PFSs were obtained in a wide pH range (3.0~8.5). The adsorbed PFSs on DMAN@silica sorbents could be efficiently eluted by 1,8-bis(tetramethylguanidino)naphthalene (TMGN) solution which is a proton sponge with higher proton affinity than DMAN. The elution could be directly analyzed by MALDI-TOF-MS using TMGN as matrix. Clear mass spectra for the PFSs were obtained due to no matrix ions interference observed. Furthermore, a novel strategy based on the DMAN@silica-SPE enrichment, followed by MALDI-TOF-MS analysis, was proposed and applied for PFSs quantification in environmental water samples. The calibration curves of each of the target analytes showed a wide linear dynamic range of response (0.1-10 ng L(-1) for perfluorooctane sulfonate (PFOS), perfluorohexyl sulfonate (PFHxS) and perfluorobutylsulfonate (PFBS)), which were over 2 orders of magnitude. The detection limits for PFOS, PFHxS, and PFBS were 0.021, 0.016, and 0.013 ng L(-1), respectively (S/N = 3). Recoveries of PFOS, PFHxS, and PFBS are in the ranges of 92-104%, 95-102%, and 98-109% for spiked river water samples. These results indicated that the prepared DMAN@silica adsorbents could efficiently enrich PFSs and that the proposed method is reliable.

  5. Imidazolium ionic liquid-supported sulfonic acids: Efficient and recyclable catalysts for esterification of benzoic acid

    Institute of Scientific and Technical Information of China (English)

    Yue Qin Cai; Guo Qiang Yu; Chuan Duo Liu; Yuan Yuan Xu; Wei Wang

    2012-01-01

    Several imidazolium ionic liquid (IL)-supported sulfonic acids with different anions,[C3SO3Hmim]HSO4,[C3SO3Hmim]BF4,[C3SO3Hmim]PF6,and [C3SO3Hmim]CF3SO3,were synthesized and applied as catalysts for esterification reaction of benzoic acid.The experimental results indicate that imidazolium IL-supported sulfonic acid containing anion of HSO4- shows the best catalytic activity.Only when less [C3SO3Hmim]HSO4 (0.3 equiv.) applied,was the product obtained with high yield of 97%.Furthermore,the produced esters could be separated by decantation,and the catalyst could be reused after the removal of water.

  6. Lignin Sulfonation - A different Approach

    DEFF Research Database (Denmark)

    Bjørkmann, Anders

    2001-01-01

    . It was found that lignin is very reactive, that is why the sulfonation chemistry alone does not necessarily determine its dissolution rate. It became evident that the ultrastructure dispersion of lignin in wood is beneficial for its dissolution. For W, the rate was much higher at pH 1.5 than at 6. MW lignin...... and MWL dissolved (after extraction of the "immediate" lignin) at higher rates than W lignin. For MWL, the rate difference between pH 1.5 and 6 was moderate, compared to W lignin. Borohydride reduction did not affect the lignin dissolution from W, but gave a large decrease of sulfonation rate for MWL...

  7. A rapid method for the determination of perfluoroalkyl substances including structural isomers of perfluorooctane sulfonic acid in human serum using 96-well plates and column-switching ultra-high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Salihovic, Samira; Kärrman, Anna; Lindström, Gunilla; Lind, P Monica; Lind, Lars; van Bavel, Bert

    2013-08-30

    To facilitate high-throughput analysis suitable for large epidemiological studies we developed an automated column-switching ultra-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for determination of perfluorocarboxylic acids (PFCAs; C5, C6, C7, C8, C9, C10, C11, C12, and C13), perfluoroalkyl sulfonic acids (PFSAs; C4, C6, C8, and C10), perfluorooctane sulfonamide (PFOSA), and five groups of structural perfluorooctane sulfonic acid (PFOS) isomers in human serum or plasma. The analytical procedure involves rapid protein precipitation using 96-well plates followed by an automated sample clean-up using an on-line trap column removing many potentially interfering sample components while through the mobile phase gradient the target analytes are eluted onto the analytical column for further separation and subsequent mass detection. The method was linear (R(2)method detection limits ranging between 0.01 and 0.17ngmL(-1) depending on the analyte. The developed method was precise, with repeatability (n=7) and reproducibility (n=103) coefficients of variation between 2% and 20% for most compounds including PFOS (2% and 8%) and its structural isomers (2-6% and 4-8%). The method was in conformity with a standard reference material. The column-switching HPLC-MS/MS method has been successfully applied for the determination of perfluoroalkyl substances including structural PFOS isomers in human plasma from an epidemiological study.

  8. 高磺化度芳香聚醚醚酮的合成与表征%Synthesis and Characterization of a Series of High Sulfonated Poly(ether ether ketone)s

    Institute of Scientific and Technical Information of China (English)

    刘盛洲; 王烽; 陈天禄

    2001-01-01

    A series of high sulfonated poly(ether ether ketone)s were prepared by copolymerization of sodium 5,5-carbonylbis(2-fluorobenzenesulfonate)(2), 4,4-difluorobenzophenone(1) and bisphenol A(3) in the presence of potassium carbonate in dimethylsulfoxide. The copolymers were characterized by IR and DSC. The influence of degree of sulfonation on the properties of copolymers, such as component, thermal stability, solubility and filming ability, was studied.%用3,3-二磺酸钠基-4,4-二氟二苯酮合成了具有高磺化度的荷电聚醚醚酮. 用红外吸收光谱及DSC对其进行了表征. 研究了共聚物的组成、 热稳定性、 溶解性、 成膜性及磺化度对共聚物性能的影响.

  9. Green procedures for the chemoselective synthesis of acylals and their cleavage promoted by recoverable sulfonic acid based nanoporous carbon (CMK-5-SO3H)

    Indian Academy of Sciences (India)

    Daryoush Zareyee; Ehsan Mirzajanzadeh; Mohammad Ali Khalilzadeh

    2015-07-01

    A selective synthesis of gem-diacetates from the reaction of aldehydes and acetic anhydride in the presence of recyclable nanoporous solid sulfonic acid (CMK-5-SO3H) under solvent-free reaction conditions is reported. The catalyst was also found to be highly active for deprotection of resulting acylals in water.

  10. 双活性磺酸基蔗渣木聚糖邻苯二甲酸酯的合成与表征%Synthesis and Characterization of Dual Active Sulfonic Groups Bagasse Xylan Phthalate

    Institute of Scientific and Technical Information of China (English)

    李和平; 武冠亚; 杨旭; 袁金伟; 孙彦; 邹英东

    2016-01-01

    以蔗渣木聚糖为主要原料,经两步酯化反应合成磺酸基蔗渣木聚糖邻苯二甲酸酯,考察反应条件对合成反应的影响,并通过红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TG-DTG)和扫描电镜(SEM)对蔗渣木聚糖经双酯化改性前后的样品进行表征.结果表明,较优的反应条件为:第一步以邻苯二甲酸酐为羧酸酯化剂,三乙胺为催化剂,在三乙胺与N,N-二甲基甲酰胺体积比为1:16,蔗渣木聚糖单元和邻苯二甲酸酐物质的量之比为1:2时,于80℃下反应4 h,经催化羧酸酯化合成单活性蔗渣木聚糖邻苯二甲酸酯;第二步以氨基三磺酸钠为酯化剂,在碱性条件下,蔗渣木聚糖邻苯二甲酸酯与NaNO2的质量比为1:2时,于50℃下反应4 h,合成了双活性磺酸基蔗渣木聚糖邻苯二甲酸酯.双酯化后的磺酸基蔗渣木聚糖邻苯二甲酸酯的热稳定性增强,其分子表面形貌更加紧密.%The sulfonic groups bagasse xylan phthalate was synthesized by two steps of esterification using bagasse xylan as the raw material. The effects of reaction conditions were investigated and the optimal conditions were obtained. Thesamples were characterized by infrared spectroscopy(FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TG-DTG) and scanning electron microscopy (SEM) before and after double esterification of the bagasse xylan.The single active bagasse xylan phthalate was synthesized in the first step by catalytic esterification with phthalic anhydride as carboxylic acid esterification agent and triethylamine as the catalyst with the volume ratio of triethylamine to DMF 1:16, the molar ratio of bagasse xylan unit to phthalic anhydride 1:2, the reaction temperature 80℃ and the reaction time 4 h. The dual active sulfonic groups bagasse xylan phthalate was synthesized in the second step under alkaline conditions using sodium nitrilotriacetic sulfonate as the sulfonation agent with the mass ratio of bagasse xylan to

  11. Synthesis of Petroleum Sulfonate Surfactant with Ultra-Low Interfacial Tension in Rotating Packed Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    Weng Zhan; Zhang Pengyuan; Chu Guangwen; Zou Haikui; Jimmy Yun; Chen Jianfeng

    2015-01-01

    Petroleum sulfonate is one of the most important surfactants used in surfactant lfooding for enhanced oil recov-ery, which is mainly obtained by treating high-boiling petroleum fractions in a stirred tank reactor (STR) or in a falling-iflm reactor (FFR). The synthesis of petroleum sulfonate with ultra-low interfacial tension from viscous petroleum fractions was carried out in a rotating packed bed (RPB) reactor using dilute liquid sulfur trioxide as the sulfonating agent in this study. The effects of various experimental conditions on components content and oil-water interfacial tension (IFT) were investigated. Under the optimum conditions, the active matter content could reach up to 50.3% and the IFT could be equal to 4.7×10−3 mN/m. Compared with the traditional reactor, the active matter content is by 14.12% higher in the RPB as compared to that obtained in the STR. The uneven change of the test oil droplets during the IFT measurement was also dis-cussed. The increase of heavy components content not only can eliminate the contraction phenomenon, but also can reduce the IFT to a minimum. This can be conducive to explaining the reason for producing IFT and the preparation of proper for-mulations for practical application.

  12. Coarse graining of polystyrene sulfonate

    Science.gov (United States)

    Perahia, Dvora; Agrawal, Anupriya; Grest, Gary S.

    2015-03-01

    Capturing large length scales in soft matter while retaining atomistic properties is imperative to computational studies. Here we develop a new coarse-grained model for polystyrene sulfonate (PSS) that often serves as a model system because of its narrow molecular weight distribution and defined degree of sulfonation. Four beads are used to represent polymer where the backbone, the phenyl group, and the sulfonated group are each represented by a different bead and the fourth one represents counterion, which is sodium in our case. Initial atomistic simulations of PSS melt with sulfonation levels of 2-10%, with a dielectric constant ɛ = 1 revealed a ``locked'' phase where motion of the polymer is limited. Dielectric constant of ɛ = 5 was used to accelerate the dynamics. Bonded interactions were obtained using Boltzmann inversion on the bonded distributions extracted from atomistic simulation. Non-bonded interaction of polystyrene monomer was taken from our previous work and potential of mean force was used as the initial guess for interaction of the ionic beads. This set of potential was subsequently iterated to get a good match with radial distribution functions. This potential and its transferability across dielectric constants and temperatures will be presented. Grant DE-SC007908.

  13. Degradation of linear alkylabenzene sulfonate (LAS) and its compounds in Donghu Lake (Hubei, P.R.C.) determined by high performance liquid chromatography (HPLC)

    Science.gov (United States)

    Ayfer, Yediler; Xu, Ying; Zhang, Yongyuan; Chen, Junjian

    1990-06-01

    Commercial linear alkylbenzene sulfonate (LAS), mixture of alkylchain lengths and phenyl position isomers (C10-C13), is widely used as a major constituent of household and industrial detergents in the People's Republic of China. Degradation process and behaviour of LAS compounds during an 82-hour lake water die-away study, with an added LAS concentration of 1.5mg·L-1, was quantified and accomplished by HPLO-UV after extractionon the SepPek C18 reversed-phase cartridges. The degradation rate became progressively faster with increasing chain length. The technique described in this study is fast, sensitive and specific, and can be used to determine low levels of LAS and for establishing water quality criteria and standards relating to LAS and its compounds.

  14. Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabrouk, W. [ERAS Labo, St Nazaire Les Eymes, Grenoble (France); Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris, 75003 Paris (France); Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire, 1092 Tunis (Tunisia); Ogier, L.; Vidal, S. [ERAS Labo, St Nazaire Les Eymes, Grenoble (France); Sollogoub, C.; Fauvarque, J.F. [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris, 75003 Paris (France); Matoussi, F.; Dachraoui, M. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire, 1092 Tunis (Tunisia)

    2012-04-15

    Our goal in the present work was to synthesize a new proton exchange membrane that could be used in proton exchange membrane fuel cell (PEMFC), based on a blend of sulfonated polyethersulfone (S-PES) and sulfonated polyethersulfone octylsulfonamide (S-PESOS). Five blends, using S-PESOS with different grafting ratios of sulfonamide groups, have been elaborated, characterized, and tested in a PEMFC. The similar chemical structure between these two polymers favored their compatibility. The synthesized membranes showed a high water swelling capacity and an ionic conductivity equivalent to that of Nafion registered (0.1 S cm{sup -1}) in the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Kug; Park, Jung Soo; Han, Do Hung, E-mail: dhhan@yumail.ac.kr; Bondar, Iuliia, E-mail: juliavad@yahoo.co

    2011-04-01

    A sorption-active material carrying sulfonic acid groups was synthesized by the radiation-induced graft polymerization of styrene monomer onto the surface of non-woven polypropylene fabric, followed by sulfonation of the grafted polystyrene chains. The effect of the main experimental parameters (absorbed dose, monomer concentration, reaction time) on the styrene degree of grafting was investigated. The sulfonation process with 5% chlorosulfonic acid at room temperature was investigated in detail and the optimal sulfonation conditions for the samples with a medium degree of grafting (70-140%) were determined. Densities of 3.5-5 meq/g were obtained by applying those sorption-active PP fabrics with a sulfonic acid group.

  16. Surface Sulfonation of Polyvinyl Chloride by Plasma for Antithrombogenicity

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 陈亚芍

    2004-01-01

    To enhance the blood compatibility of Polyvinyl Chloride (PVC) film, the film was modified by SO2/O2 gas plasma treatment. The effect of surface sulfonation of PVC treated by various SO2/O2 gas plasma depended on the volume ratio O2/(SO2 + 02). When the volumeratio was 0.5, the effect of sulfonation was the best. Sulfonic acid groups were specifically and efficiently introduced onto the PVC surface, which was proved by X-ray photoelectron spectroscopy (XPS) and Attenuated Total Reflectance Fourier Transfer Infrared (ATR-FTIR) spectroscopy. The surface microstructure of modified PVC film was studied with scanning electron microscopy (SEM).The antithrombogenicity of the samples was determined by the activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and plasma recalcification time (PRT)tests and platelet adhesion experiment. The results indicated that the antithrombogenicity of modified PVC was improved remarkably.

  17. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Preparation and characterization of sulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)

    2010-12-15

    Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)

  19. Phase Behavior and Structural Transitions in Sodium Dodecyl Sulfonate Microemulsions

    Institute of Scientific and Technical Information of China (English)

    杨根生; 施介华; 等

    2002-01-01

    The forming mechanism of microemulsion of sodium dodecyl sulfonate.alcohols,water and isooctane was studied,with particular emphasis on the effect of molecular weight and concentration of alocohols.Phase diagram of the four components,alcohol, sodium dodecyl sulfonate,water and isooctane,was used as a means of study,through which the microemulsion regions were determined.Phase diagram of sodium dodecyl sulfonate/n-pentanol/isooctane/water system at km=2(km=Wn-pentanol/WSDS)is presented. The variation of conductivities of different microemulsion samples with water was measured.From the conductivities we investigated a change in structure from water droplets in oil(W/O)at low water content to liquid crystal at intermediate water content and a structure of oil droplets in water(O/W)at high water content.

  20. Dynamics of Sulfonated Polystyrene Ionomers by Dielectric Relaxation Spectroscopy

    Science.gov (United States)

    Castagna, Alicia; Wang, Wenqin; Winey, Karen; Runt, James

    2010-03-01

    Broadband dielectric spectroscopy was used to investigate the dynamics of sulfonated polystyrene (SPS) ionomers, in both the acid and neutralized form. This study seeks to elucidate the role of counter ion type (Zn, Na, and Cs), degree of sulfonation (9 and 6%), and ion cluster morphology on the relaxation phenomena of SPS. Degree of neutralization and ion type have been found to significantly impact the breadth and time scale of the segmental relaxation process. High temperature relaxation processes, tentatively proposed to arise from Maxwell-Wagner-Sillars interfacial polarization and a hydrogen bonding relaxation, have also been identified. Bands in the sulfonate stretching region of FTIR spectra reveal information about ion coordination in the local aggregate environment. A combination of scanning transmission electron microscopy imaging and X-ray scattering confirmed the presence of homogeneously distributed, nearly monodisperse spherical ionic aggregates in the polymer matrix.

  1. A Durable Alternative for Proton-Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Li, Jin Hui; Song, Min Kyu; Yi, Baolian; Zhang, Huamin; Liu, Meilin

    2011-02-24

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications.

  2. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Hydroquinone based sulfonated poly (arylene ether sulfone copolymer as proton exchange membrane for fuel cell applications

    Directory of Open Access Journals (Sweden)

    V. Kiran

    2015-12-01

    Full Text Available Synthesis of sulfonated poly (arylene ether sulfone copolymer by direct copolymerization of 4,4'-bis(4-hydroxyphenyl valeric acid, benzene 1,4-diol and synthesized sulfonated 4,4'-difluorodiphenylsulfone and its characterization by using FTIR (Fourier Transform Infrared and NMR (Nuclear Magnetic Resonance spectroscopic techniques have been performed. The copolymer was subsequently cross-linked with 4, 4!(hexafluoroisopropylidenediphenol epoxy resin by thermal curing reaction to synthesize crosslinked membranes. The evaluation of properties showed reduction in water and methanol uptake, ion exchange capacity, proton conductivity with simultaneous enhancement in oxidative stability of the crosslinked membranes as compared to pristine membrane. The performance of the membranes has also been evaluated in terms of thermal stability, morphology, mechanical strength and methanol permeability by using Thermo gravimetric analyzer, Differential scanning calorimetery, Atomic force microscopy, XPERT-PRO diffractometer, universal testing machine and diffusion cell, respectively. The results demonstrated that the crosslinked membranes exhibited high thermal stability with phase separation, restrained crystallinity, acceptable mechanical properties and methanol permeability. Therefore, these can serve as promising proton exchange membranes for fuel cell applications.

  4. Nanocasting Design and Spatially Selective Sulfonation of Polystyrene-Based Polymer Networks as Solid Acid Catalysts.

    Science.gov (United States)

    Richter, Felix H; Sahraoui, Laila; Schüth, Ferdi

    2016-09-12

    Nanocasting is a general and widely applied method in the generation of porous materials during which a sacrificial solid template is used as a mold on the nanoscale. Ideally, the resulting structure is the inverse of the template. However, replication is not always as direct as anticipated, so the influences of the degree of pore filling and of potential restructuring processes after removal of the template need to be considered. These apparent limitations give rise to opportunities in the synthesis of poly(styrene-co-divinylbenzene) (PSD) polymer networks of widely varying porosities (BET surface area=63-562 m(2)  g(-1) ; Vtot =0.18-1.05 cm(3)  g(-1) ) by applying a single synthesis methodology. In addition, spatially selective sulfonation on the nanoscale seems possible. Together, nanocasting and sulfonation enable rational catalyst design. The highly porous nanocast and predominantly surface-sulfonated PSD networks approach the activity of the corresponding molecular catalyst, para-toluenesulfonic acid, and exceed those of commercial ion-exchange polymers in the depolymerization of macromolecular inulin.

  5. Atomic force microscopy evidence for conformational changes of fibronectin adsorbed on unmodified and sulfonated polystyrene surfaces.

    Science.gov (United States)

    Kowalczyńska, Hanna M; Kołos, Robert; Nowak-Wyrzykowska, Małgorzata; Dobkowski, Jacek; Elbaum, Danek; Szczepankiewicz, Andrzej; Kamiński, Jarosław

    2009-12-15

    The effect of polystyrene surface polarity on the conformation of adsorbed fibronectin (FN) has been studied with atomic force microscopy. We demonstrated that bare sulfonated and nonsulfonated polystyrene surfaces featured similar topographies. After the FN adsorption, direct comparison of both types of substrata revealed drastically different topographies, roughness values, and also cell-adhesive properties. This was interpreted in terms of FN conformational changes induced by the surface polarity. At high-solute FN concentrations the multilayer FN adsorption took place resulting, for the sulfonated substratum, in an increase of surface roughness, whereas for the nonsulfonated one the roughness was approximately stable. Conversely, the FN conformation characteristic for the first saturative layer tended to be conserved in the consecutive layers, as evidenced by height histograms. The height of individual FN molecules indicated, consonantly with the derived thickness of the adsorbed protein layer (the latter value being 1.4 nm and 0.6 nm, respectively, for an unmodified and sulfonated polystyrene surface), that molecules are flattened on polar surfaces and more compact on nonsulfonated ones. It was also demonstrated that the FN adsorption and conformation on polymeric substrata, and hence the resultant cell-adhesive properties, depended on the chemistry of the original surface rather than on its topography. Our results also demonstrated the ability of surface polarity to influence the protein conformation and its associated biological activity.

  6. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  7. Thermoanalytical Investigation of Some Sulfone-Containing Drugs

    OpenAIRE

    2012-01-01

    The thermal behavior of some sulfone-containing drugs, namely, dapsone (DDS), dimethylsulfone (MSM), and topiramate (TOP) in drug substances, and products were investigated using different thermal techniques. These include thermogravimetry (TGA), derivative thermogravimetry (DTG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The thermogravimetric data allowed the determination of the kinetic parameters: activation energy (E a ), frequency factor (A), and r...

  8. Phase behavior of a pure alkyl aryl sulfonate surfactant. [Sodium 8-phenyl-n-hexadecyl-p-sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I.; Davis, H.T.; Miller, W.G.; Scriven, L.E.

    1978-03-01

    Specctroturbidimetry, visual and microscopic observations, ultracentrifugation and ultrafiltration, conductimetry, and /sup 13/C NMR were used to study the phase behavior of pure sodium 8-phenyl-n-hexadecyl-p-sulfonate in water--NaCl, decane, and water--decane. Solubility of the sulfonate in water is 0.06 wt % at 25/sup 0/C and 0.7 wt % at 90/sup 0/C, and it drops to 0.0002 wt % in 3 wt % NaCl (25/sup 0/C). A liquid crystalline phase in equilibrium with aqueous solution contains 25 wt % water. Nucleation of supersaturated solutions is slow. Dispersability of the sulfonate is high, but NaCl has an adverse effect. 39 references, 13 figs., 5 tables. (DLC)

  9. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  10. Lignin Sulfonation - A different Approach

    DEFF Research Database (Denmark)

    Bjørkmann, Anders

    2001-01-01

    . It was found that lignin is very reactive, that is why the sulfonation chemistry alone does not necessarily determine its dissolution rate. It became evident that the ultrastructure dispersion of lignin in wood is beneficial for its dissolution. For W, the rate was much higher at pH 1.5 than at 6. MW lignin....... Methylation had also a small rate effect for W, but again a large decrease for MWL....

  11. Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries

    Science.gov (United States)

    Chen, Liyun; Zhang, Shouhai; Chen, Yuning; Jian, Xigao

    2017-07-01

    A series of novel sulfonated poly(phthalazinone ether ketone)s containing pendant phenyl moieties (SPPEK-Ps) are synthesized and thoroughly characterized. The chemical structures of the polymers are confirmed by 1H NMR and FTIR analysis. The physicochemical properties and single cell performance of SPPEK-P membranes are systematically evaluated, revealing that the membranes are thermally, chemically and mechanically stable. The area resistances of SPPEK-P-90 and SPPEK-P-100 are 0.75 Ω cm2 and 0.34 Ω cm2, respectively. SPPEK-P membranes are impermeable to the bulky hydrated VO2+ ion and exhibited low V3+ ion permeability (SPPEK-P-90, 2.53 × 10-5 cm min-1) (Nafion 115 membrane: 9.0 × 10-4 cm min-1). Tests of SPPEK-P-90 in vanadium redox flow batteries (VRFBs) demonstrate a comparable columbic efficiency (CE) and energy efficiency (EE) to that of Nafion 115, where the CE is 98% and the EE is 83% at 60 mA cm-2. Moreover, the SPPEK-P-90 membrane exhibits stable performance in cell over 100 charge-discharge cycles (∼450 h).

  12. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    Science.gov (United States)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  13. 聚醚砜酮的磺化及其在异丁烯低聚反应中的应用%Sulfonation of Poly(phthalazinone ether sulfone ketone) and Its Application to Isobutene Oligomerization

    Institute of Scientific and Technical Information of China (English)

    安增建; 周硼; 蹇锡高; 蔡天锡

    2003-01-01

    @@ Concentrated homogeneous mineral acids have been widely used as catalysts in industrial processes for several decades. These catalysts are corrosive to the apparatus, and there are large volumes of chemically reactive waste stream that are difficult to deal with[1]. In order to solve these problems, investigators have replaced these mineral acids with solid acid catalysts. Besides inorganic solid acid catalysts such as zeolite, solid organic polymeric resins containing acid groups, especially sulfuric acid resins such as Amberlyst[2], have attracted much attention. Compared with most inorganic acid catalysts, they have the advantages of their potentially high acidity, controllable surface area and porosity[3]. This article reports a novel sulfonated poly(phthalazinone ether sulfone ketone) (S-PPESK) resin and its application to isobutene oligomerization. S-PPESK exhibits high catalytic activity and excellent dimerization selectivity.

  14. Determination of Linear Alkylbenzene Sulfonates by High-Performance Liquid Chromatography%高效液相色谱法测定线性烷基苯磺酸钠

    Institute of Scientific and Technical Information of China (English)

    曹海燕; 张洁; 郭萍; 黄玉明

    2011-01-01

    A fast and efficient high performance liquid chromatographic (HPLC) method was established for the separation and analysis of LAS (linear alkylbenzene sulfonates) by separation on Symmetry C8 column and UV detection at 224 nm. The effects of methanol to water ratio in the mobile phase, salts and their concentrations and flow rate on LAS separation were tested and the optimal separation conditions were obtained as follows: methanol to water ratio of 77:23 (v/v), 0. 5 mmol/L CH3COONa and a flow rate of 0. 5 mL/min. The linear range for LAS homologues was 0. 20-23. 00 mg/L with RSD of less than 5%. The proposed method has been successfully applied to the analysis of LAS in natural water and wastewater with satisfactory results.%建立了高效快速的液相色谱法对线性烷基苯磺酸钠(linear alkylbenzene sulfonates,LAS)的分离测定方法.采用Symmetry C8柱分离,检测波长为224 nm.探讨了流动相中甲醇和盐的种类等对LAS分离效果的影响;优化后的LAS分离条件为:流动相中V(甲醇)∶ V(水)=77∶23且含有0.5 mmol/L无水CH3 COONa,流速为0.5 mL/min,LAS同系物的线性范围为0.20~23.00 mg/L,其相对标准偏差均小于5%.将该方法用于实际水样中LAS的分析,结果满意.

  15. Overbased Calcium sulfonate Detergent Technology Overview

    Institute of Scientific and Technical Information of China (English)

    MA Qing-gao; MUIR Ronald J.

    2009-01-01

    Overbased calcium sulfonate is used widely as detergent in automotive and marine lubricants, as well as various industrial oil applications. In this paper, the process to produce overbased calcium sulfonate is overviewed. The sulfonate structure and molecular weight and its molecular weight distribution, the enclosed calcium carbonate nanoparticle size and crystalline structure, properties of the carrier oil, all influence its properties, such as stability, viscosity, and detergency of the system.

  16. Copolymers of fluorinated polydienes and sulfonated polystyrene

    Science.gov (United States)

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  17. Polystyrene-supported Selenomethyl-sulfonates:Efficient Reagents for Stereocontrolled Synthesis of Substituted Vinyl Sulfones

    Institute of Scientific and Technical Information of China (English)

    Wei Ming XU; Lu Ling WU; Xian HUANG

    2004-01-01

    Polystyrene-supported selenomethyl-sulfonates have been prepared. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with alkyl halide and epoxides, followed by selenoxide syn-elimination, to give E-vinyl sulfones and γ-hydroxy-substituted-E-vinyl sulfones respectively.

  18. Methyl sulfone induces loss of metastatic properties and reemergence of normal phenotypes in a metastatic cloudman S-91 (M3 murine melanoma cell line.

    Directory of Open Access Journals (Sweden)

    Joan McIntyre Caron

    Full Text Available BACKGROUND: The most deadly form of cancer is not lung or colon, breast or prostate; it is any cancer that has become metastatic. Mortality due to metastatic melanoma, one of the most aggressive and deadly cancers, has increased steadily over the last several decades. Unfortunately, the arsenal of chemotherapeutic agents available today is most often unsuccessful at extending and improving the life expectancy of afflicted individuals. We sought to identify an effective and nontoxic agent against metastatic melanoma. METHODOLOGY/PRINCIPAL FINDINGS: We chose to study Cloudman S-91 mouse melanoma cells (sub-clone M3, CCL53.1 because these cells are highly aggressive and metastatic, representing one of the deadliest types of cancer. Melanoma cells also had an experimental advantage because their morphology, which is easily monitored, relates to the physiology of metastatic cells and normal melanocytes. We chose to test methyl sulfone as a chemotherapeutic agent for two reasons. Because of its chemical structure, we speculated a potential anti-cancer activity by targeting microtubules. Equally important, methyl sulfone has a well-established safety profile in humans. Surprisingly, we found that malignant melanoma cells exposed to methyl sulfone demonstrated the loss of phenotypes characteristic of malignant cells, and the reemergence of phenotypes characteristic of healthy melanocytes. Briefly, over time methyl sulfone induced contact inhibition, loss of ability to migrate through an extracellular matrix, loss of anchorage-independent growth, proper wound healing followed by contact inhibition, irreversible senescence followed by arborization with melanosomes in arbors as seen in normal melanocytes. CONCLUSIONS/SIGNIFICANCE: Methyl sulfone may have clinical potential as a non-toxic agent effective against metastatic melanoma. Additionally, methyl sulfone has promise as a tool to explore molecular mechanisms of metastatic transformation as well as

  19. SYNTHESIS AND PROPERTIES OF SULFONATED POLY(ARYLENE ETHER) CONTAINING TRIPHENYL METHANE MOIETIES FROM ISOCYNATE MASKED BISPHENOL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by 1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.

  20. An investigation of proton conductivity of binary matrices sulfonated polysulfone/polyvinyltriazole after doping with inorganic acids

    Indian Academy of Sciences (India)

    Serkan Sevinç; Sevim Ünügür Çelik; Ayhan Bozkurt

    2015-04-01

    As anhydrous proton conductive membranes, sulfonated polysulfone (SPSU) and polyvinyl triazole were studied as binary matrices. The sulfonation of polysulfone was performed with trimethylsilylchlorosulfonate and high degree of sulfonation (140%) was obtained. Ion exchange capacity of SPSU was determined as 3.05 mmol−1/g. The polymer electrolyte membranes were prepared by blending of sulfonated polysulfone with polyvinyl triazole and phosphoric acid. Fourier transform infrared spectroscopy confirmed the sulfonation of the polysulfone and the ionic interaction between sulfonic acid and triazole units. Thermogravimetric analysis showed that the polymer electrolyte membranes are thermally stable up to at least 150° C. Scanning electron microscopy analysis indicated the homogeneity of the ternary composites. The maximum proton conductivity has been measured as 3.63 × 10−4S cm−1 at 150° C.

  1. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Haojie [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Shouchun, E-mail: zschun@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, Chunxiang [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-10-30

    Highlights: • A polyether sulfone emulsion (PES) sizing was prepared for the first time. • The sizing enhanced the surface activity and wettability of carbon fibers. • Compared to the original sizing, the PES emulsion sizing resulted in an 18.4% increase in the interlaminar shear strength of carbon fiber/PES composites. • Important influences of emulsifier on the fiber surface and composite interface were demonstrated. • The reinforcing mechanisms are the improved fiber surface wettability and interfacial compatibility in composites. - Abstract: Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of −52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  2. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  3. 4-Aminopyridinium-3-sulfonate monohydrate

    Directory of Open Access Journals (Sweden)

    Zhi-Biao Zhu

    2011-02-01

    Full Text Available The reaction of 4-aminopyridine and oleum yielded the title hydrated zwitterion, C5H6N2O3S·H2O. There are two formula units in the asymmetric unit. The H and non-H atoms of both zwitterions lie on a mirror plane except for one sulfonate O atom. The water molecules are also situated on a mirror plane. In the crystal, the zwitterions and water molecules are linked by O—H...O and N—H...O hydrogen bonds, generating a three-dimensional network.

  4. Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly (phthalazinone ether sulfone ketone) proton exchange membranes

    Science.gov (United States)

    Gong, Xue; He, Gaohong; Wu, Yao; Zhang, Shikai; Chen, Bo; Dai, Yan; Wu, Xuemei

    2017-08-01

    A novel approach is proposed to fabricate sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes with ordered through-plane electrospinning nanofibers, which provide nano-scale through-plane proton conductive channels along the thickness direction of the membranes, aiming to satisfy the challenging requirement of high through-plane proton conductivity in fuel cell operations. Induced by electrostatic attraction of strong electric field, the negatively charged sulfonic acid groups tend to aggregate towards surface of the electrospun fibers, which is evidenced by TEM and SAXS and further induces aggregation of the sulfonic acid groups in the SPPESK inferfiber voids filler along the surface of the nanofibers. The aligned electrospun nanofibers carries long-range ionic clusters along the thickness direction of the membrane and results in much higher total through-plane conductivity in the thickness aligned electrospun membranes, nearly twice as much as that of the cast SPPESK membrane. With smooth treatment, the thickness aligned electrospun SPPESK membranes exhibit higher single cell power density and tensile strength as compared with Nafion 115 (around 1.2 and 1.5 folds, respectively). Such a design of thickness aligned nano-size proton conductive channels provide feasibility for high performance non-fluorinated PEMs in fuel cell applications.

  5. High yield expression of catalytically active USP18 (UBP43 using a Trigger Factor fusion system

    Directory of Open Access Journals (Sweden)

    Basters Anja

    2012-08-01

    Full Text Available Abstract Background Covalent linkage of the ubiquitin-like protein ISG15 interferes with viral infection and USP18 is the major protease which specifically removes ISG15 from target proteins. Thus, boosting ISG15 modification by protease inhibition of USP18 might represent a new strategy to interfere with viral replication. However, so far no heterologous expression system was available to yield sufficient amounts of catalytically active protein for high-throughput based inhibitor screens. Results High-level heterologous expression of USP18 was achieved by applying a chaperone-based fusion system in E. coli. Pure protein was obtained in a single-step on IMAC via a His6-tag. The USP18 fusion protein exhibited enzymatic activity towards cell derived ISG15 conjugated substrates and efficiently hydrolyzed ISG15-AMC. Specificity towards ISG15 was shown by covalent adduct formation with ISG15 vinyl sulfone but not with ubiquitin vinyl sulfone. Conclusion The results presented here show that a chaperone fusion system can provide high yields of proteins that are difficult to express. The USP18 protein obtained here is suited to setup high-throughput small molecule inhibitor screens and forms the basis for detailed biochemical and structural characterization.

  6. Homolytic C-O cleavage in phosphates and sulfonates.

    Science.gov (United States)

    Ding, Lanlan; Zheng, Wenrui; Wang, Yingxing

    2015-04-09

    The C-O homolytic bond dissociation enthalpies(BDEs) were calculated by high-level ab initio including G4, G3B3, G3, CBS-QB3 and a series of density function theory (DFT) methods. It is found that the wB97 method gave the most reliable C-O BDEs and the root-mean-square deviation (RMSD) is 7.6 kJ/mol. Therefore, the C(sp(2))-O BDE predictions and the substituent effects of alkenyl phosphates/sulfonates and aryl phosphates/sulfonates were investigated in detail by using the wB97 method. Interestingly, there exist different substituent effects in α- and β-substituted alkenyl phosphates/sulfonates. Excellent linear relationships between the C-O BDEs of β-substituted alkenyl phosphates/sulfonates with substituent constant σp(+) were found. In addition, the NBO analysis further disclosed the essence of the substituent effects on C-O BDEs.

  7. MCM-41-SO3H as a Highly Efficient Sulfonic Acid Nanoreactor for the Rapid and Green Synthesis of Some Novel Highly Substituted Imidazoles under Solvent-Free Condition

    Institute of Scientific and Technical Information of China (English)

    Mahdavinia, Gholam Hossein; Amani, Ali Mohammad; Sepehrian, Hamid

    2012-01-01

    Nanosized MCM-41-SO3H based on ordered mesoporous silica material with a covalent sulfonic acid group was synthesized and used as acid catalyst for the new, simple, convenient and green synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetra-substituted imidazoles. Also some of synthesis products are new. Echo-friendly protocol, short reaction times, easy and quick isolation of the products and excellent yields are the main advantages of this procedure.

  8. Sterically Stabilized Poly(3,4-ethylenedioxythiophene) Colloidal Dispersions Doped with Different Sulfonic Acids

    Institute of Scientific and Technical Information of China (English)

    Tie Jun WANG; Ping CHEN; Xiu Jie HU; Shu Yun ZHOU

    2006-01-01

    The preparation of sterically stabilized poly(3, 4-ethylenedioxythiophene)(PEDOT)colloidal dispersions doped with different sulfonic acids is described. Three different sulfonic acids, i.e., p-toluenesulfonic acid, β-naphthalenesuffonic acid and D-camphor-10-sulfonic acid are used, facilitating the preparation of sterically stable PEDOT colloidal particles. The influences of the dopants and concentration of polymeric stabilizer on the yields, morphologies and electrical properties of the resultant colloidal particles were investigated. The colloidal particles with the size ranging from 172 to 334 nm have been obtained in good yields. The compressed pellet conductivity was as high as 4.5 Scm-1.

  9. Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core-shell composites with three-dimensional porous nano-network for electrochemical capacitors

    Science.gov (United States)

    Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming

    2015-01-01

    A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.

  10. Functionalization of immunostimulating complexes (ISCOMs with lipid vinyl sulfones and their application in immunological techniques and therapy

    Directory of Open Access Journals (Sweden)

    Cruz-Bustos T

    2012-12-01

    Full Text Available Teresa Cruz-Bustos,1,* Gloria González-González,1,* Julia Morales-Sanfrutos,2 Alicia Megía-Fernández,2 Francisco Santoyo-González,2 Antonio Osuna1 1Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain; 2Department of Organic Chemistry, Institute of Biotechnology, Faculty of Sciences, University of Granada, Granada, Spain *These authors contributed equally to this workBackground: Immunostimulating complexes (ISCOM-type nanocapsules have been functionalized with lipid vinyl sulfones that anchor to them via the hydrophobic zone of their structure and can be charged with pharmacologically active molecules or macromolecules. These functionalized nanocapsules can incorporate protein A and bind to G immunoglobulins (IgGs to make vehicles directed at the surface antigens of infectious agents, tumor cells, or receptor cells and deliver the encapsulated molecules in a highly specific way. They may be of particular use in pharmacological treatments with highly toxic molecules that should not be used in solution whenever it can be avoided. When bound to antibodies they can be used in biological processes that require the delivery or presentation of macromolecules to certain specific cells, in immunization processes for instance, or in diagnostic immunological techniques, as they are able to transport both the secondary antibodies and the reaction labels.Methods and results: We describe the preparation of ISCOMs, the binding to the ISCOMS of newly synthesized compounds composed of chain alkyl vinyl sulfone, and the subsequent binding of the vinyl-sulfone compounds to IgGs. Within this context, a compound deriving from cholesterol functionalized with vinyl sulfone and used together with cholesterol in varying proportions has been linked to the structure of the ISCOMs and bound to protein A–IgG. This functionalization in no way altered

  11. Therapeutic efficacy of carboxyamidotriazole on 2,4,6-trinitrobenzene sulfonic acid-induced colitis model is associated with the inhibition of NLRP3 inflammasome and NF-κB activation.

    Science.gov (United States)

    Du, Xiaowan; Chen, Wei; Wang, Yufeng; Chen, Chen; Guo, Lei; Ju, Rui; Li, Juan; Zhang, Dechang; Zhu, Lei; Ye, Caiying

    2017-04-01

    Excess proinflammatory cytokines owing to the activation of NF-κB and NLRP3 inflammasome play the key role in inflammatory bowel disease (IBD). Previously, we reported the anti-inflammatory activity of carboxyamidotriazole (CAI) resulting from decreasing cytokines. Therefore, we investigated the therapeutic effects of CAI in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and the involvement of CAI action with NLRP3 inflammasome and NF-κB pathway. CAI was orally administered to TNBS-induced colitis rat. The severity of colitis was assessed, and NLRP3 inflammasome, NF-κB pathway and cytokines were determined. Our results showed that CAI significantly reduced weight loss and disease activity index (DAI) scores in colitis rats and alleviated the colonic macroscopic signs and pathological damage. In addition, the intestinal inflammatory markers and permeability index were markedly ameliorated by CAI treatment. The decreased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18 were also detected in the colon tissues of CAI-treated colitis rats. Moreover, the activation of NLRP3 inflammasome in inflamed colon was significantly suppressed by showing an obvious reduction in the NLRP3 and activated caspase-1 levels. Furthermore, CAI reduced NF-κB p65 expression and IκBα phosphorylation and degradation in colitis rats. Therefore, CAI attenuates TNBS-induced colitis, which may be attributed to its inhibition of NLRP3 inflammasome and NF-κB activation, and down-regulation of proinflammatory cytokines. These results provide further understanding of the intestinal anti-inflammatory effect of CAI and highlight it as a potential drug for the treatment of IBD. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation and characterization of highly water-soluble magnetic Fe{sub 3}O{sub 4} nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Honghong; Qin, Li [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Feng, Ying [Department of Bridge Engineering, Shanxi Railway Institute, Weinan 714000 (China); Hu, Lihua [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Zhou, Chunhua, E-mail: chm_zhouch@ujn.edu.cn [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-06-15

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles (Fe{sub 3}O{sub 4}-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe{sub 3}O{sub 4}-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe{sub 3}O{sub 4}-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe{sub 3}O{sub 4}. Transmission electron microscopy (TEM) analysis confirmed that the Fe{sub 3}O{sub 4}-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe{sub 3}O{sub 4}-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe{sub 3}O{sub 4}-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe{sub 3}O{sub 4}-AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K.

  13. 微波促进磺化炭催化合成月桂酸乙酯的研究%Synthesis of Ethyl Laurate Catalyzed by Sulfonated Activated Carbon under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    袁霖; 毛兰兰; 杨俭; 刘望; 陈艳红; 张敏

    2012-01-01

    [Objective] The research aimed to discuss the synthesis technology of ethyl laurate. [ Method ] The lauric acid was extracted from Lit-sea cubeba kernel oil. With sulfonated activated carbon as catalyzer,the ethyl laurate was synthesized from lauric acid and ethanol. [Result] When the reaction temperature was increased from 160 ℃ to 170 ℃ ,the esterification rate was increased by 8.46 percentage points. When the reaction temperature was increased from 170 ℃ to 180 ℃ ,the esterification rate was increased by 6.06 percentage points. When the reaction time was increased from 50 min to 60 min, the esterification rate was increased by 6.30 percentage points. When the reaction time was increased from 60 min to 70 min,the esterification rate was increased by 2.85percentage points. When the reaction time was longer,the change of the esterification rate was little. When the dosage of catalyzer was increased from 0.08 g to 0.10 g,the esterification rate was increased by 2.61 percentage points. When the dosage of catalyzer was increased from 0.10 g to 0. 12 g,the esterification rate was decreased by 0. 11 percentage points. [Conclusion]The production of ethyl laurate from sythensis of lauric acid and ethanol under microwave irridation was efficient and non-pollution and its product quality was high.%[目的]探讨月桂酸乙酯的合成工艺.[方法]从山苍籽核仁油中分离出月桂酸,以磺化炭作催化剂,在微波辐射条件下,用月桂酸与乙醇合成月桂酸乙酯.[结果]当反应温度从160℃升高到170℃时,酯化率增加了8.46个百分点;当反应温度从170℃升高到180℃时,酯化率增加了6.06个百分点.当反应时间从50 min增加到60 min时,酯化率增加了6.30个百分点;当反应时间从60 min增加到70 min时,酯化率增加了2.85个百分点,再增加反应时间,酯化率变化不大.当催化剂用量从0.08 9增加到0.10g时,酯化率增加了2.61个百分点;当催化剂用量从0.10 9增加到0.12g

  14. Response of weeping willows to linear alkylbenzene sulfonate.

    Science.gov (United States)

    Yu, Xiaozhang; Trapp, Stefan; Zhou, Puhua; Peng, Xiaoying; Cao, Xi

    2006-06-01

    Linear alkylbenzene sulfonate (LAS) is the most commonly used anionic surfactant in laundry detergents and cleaning agents. LAS compounds are found in surface waters and soils. The short-term acute toxicity of LAS to weeping willows (Salix babylonica L.) was investigated. Willow cuttings were grown in hydroponic solution spiked with LAS at 24.0+/-1 degrees C for 192 h. The normalized relative transpiration of plants was used to determine toxicity. Severe reduction of the transpiration was only found for high doses of LAS (240 mgl(-1)). Chlorophyll contents in leaves of treated plants varied with the dose of LAS, but there was no significant linear correlation. The activities of the enzymes superoxide dismutases (SOD), catalase (CAT), and peroxidase (POD) were quantified at the end of experiments. At higher concentrations of LAS (240 mgl(-1)), the activities of SOD and CAT were decreased. The correlation between the dose of LAS and the POD activity in leaf cells was the highest of all enzyme assays (R(2)=0.5). EC(50) values for a 50% inhibition of the transpiration of the trees were estimated to 374 mgl(-1) (72 h) and 166 mgl(-1) (192 h). Results from this experiment indicated that phytotoxic effects of LAS on willow trees are not expected for normal environmental conditions.

  15. Permselectivity and conductivity of membranes based on sulfonated naphthalenic copolyimides.

    Science.gov (United States)

    Guo, Xiaoxia; Zhai, Fengxia; Fang, Jianhua; Laguna, Maria Fe; López-Gonzalez, Mar; Riande, Evaristo

    2007-12-13

    A series of sulfonated diamines were synthesized which were further used to obtain relevant sulfonated naphthalenic copolyimides. Tough and ductile membranes were cast from solutions of the copolyimides in dimethylsulfoxide, which exhibit high ion-exchange capacity and high water uptake. The protonic conductivity of the membranes equilibrated with water lies in the range 1.0-8.6 S/m, at 25 degrees C, being of the same order of magnitude as that reported for perfluorinated acidic membranes. The values of the transport number of protons and sodium ions are close to the unit for very dilute electrolyte solutions, but they lie in the range 0.80-0.90 for moderate concentrations. The membranes exhibit rather high electroosmotic permeability. The similarity of the diffusion coefficients of protons and water in the membranes suggests that the Grottus mechanism governs the protonic conductive process in the acidic membranes equilibrated with water.

  16. Synthesis and characterization of novel sulfonated polyimide containing phthalazinone moieties as PEM for PEMFC

    Institute of Scientific and Technical Information of China (English)

    Hai Yan Pan; Yong Fang Liang; Xiu Ling Zhu; Xi Gao Jian

    2007-01-01

    A novel sulfonated diamine monomer, 1,2-dihydro-2-(3-sulfonic-4-aminophenyl)-4-[4-(4-aminophenoxy)-phenyl]phthalazin1-one (S-DHPZDA), was successfully synthesized by direct sulfonation of diamine 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-phenyl]-phthalazin- 1-one (DHPZDA). A series of sulfonated polyimides (SPIs), which can be used as the material of the proton exchange membrane (PEM) for the proton exchange membrane fuel cell (PEMFC), were prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), S-DHPZDA, and nonsulfonated diamines DHPZDA. The structure of the monomer and polymers were characterized by FT-IR and 1H NMR. The solubility of the S-DHPZDA-based SPIs has been improved due to the induction of the phthalazione moiety. The SPIs membranes have high thermo-stability, predominant swelling resistance with high ion exchange capacity.

  17. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution.

    Science.gov (United States)

    Liang, Xuanqi; Gondal, Mohammed A; Chang, Xiaofeng; Yamani, Zain H; Li, Nianwu; Lu, Hongling; Ji, Guangbin

    2011-01-01

    The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well.

  18. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  19. Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes

    Science.gov (United States)

    Gomes, Dominique; Roeder, Jerusa; Ponce, Mariela L.; Nunes, Suzana P.

    A single-step approach for the synthesis of sulfonated polyoxadiazoles from hydrazine sulfate was developed using non-sulfonated diacids in polyphosphoric acid. The post-sulfonation conditions were optimized by varying reaction time, medium and reagent concentrations in sulfuric acid, oleum and/or their mixtures. For the first time, a series of sulfonated polyoxadiazoles with ion exchange capacity (IEC) ranging from 1.26 to 2.7 meqiv. g -1 and high molecular weight (about 40,0000 g mol -1) were synthesized. The structures of the polymers were characterized by elemental analysis, 1H NMR, and FTIR. Sulfonated polyoxadiazole membranes with high thermal stability indicated by observed glass-transition temperatures (T g) ranging from 364 to 442 °C in sodium salt form and from 304 to 333 °C in acid form and with high mechanical properties (storage modulus about 3 GPa at 300 °C) have been prepared. The membrane stability to oxidation was investigated by soaking the film in Fenton's reagent at 80 °C for 1 h. The sulfonated polyoxadiazole membranes exhibited high oxidative stability, retaining 98-100% of their weight after the test. Proton conductivity values with the order of magnitude of 10 -1 to 10 -2 S cm -1 at 80 °C and with relative humidity ranging from 100% to 20% were obtained.

  20. SULFONATED POLYIMIDES CONTAINING PYRIDINE GROUPS AS PROTON EXCHANGE MEMBRANE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    Rui Lei; Chuan-qing Kang; Yun-jie Huang; Xue-peng Qiu; Xiang-ling Ji; Wei Xing; Lian-xun Gao

    2011-01-01

    A series of sulfonated polyimides (SPIs) containing pyridine groups were prepared by direct polycondensation from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA),4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) and 4-(4-methoxy)phenyl-2,6-bis(4-aminophenyl)pyridine (DAM).The resulting copolymers displayed good solubility in common organic solvents.Flexible,transparent,tough membranes were obtained via solution casting.All the films showed high thermal stability with desulfonation temperature over 300℃.They exhibited prominent mechanical properties with Young's modulus around 2.0 GPa.High proton conductivity (0.23 S/em at 100% RH) was also observed.More importantly,the new materials exhibited low water uptake (30 wt%-75 wt% at 80℃) and improved water stability,which were attributed to the acid-base interaction between sulfonic acid and pyridine functional groups.

  1. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV and anti-cancer activities.

    Directory of Open Access Journals (Sweden)

    Ran He

    Full Text Available We recently reported that two artemisinin-derived dimers (dimer primary alcohol 606 and dimer sulfone 4-carbamate 832-4 are significantly more potent in inhibiting human cytomegalovirus (CMV replication than artemisinin-derived monomers. In our continued evaluation of the activities of artemisinins in CMV inhibition, twelve artemisinin-derived dimers and five artemisinin-derived monomers were used. Dimers as a group were found to be potent inhibitors of CMV replication. Comparison of CMV inhibition and the slope parameter of dimers and monomers suggest that dimers are distinct in their anti-CMV activities. A deoxy dimer (574, lacking the endoperoxide bridge, did not have any effect on CMV replication, suggesting a role for the endoperoxide bridge in CMV inhibition. Differences in anti-CMV activity were observed among three structural analogs of dimer sulfone 4-carbamate 832-4 indicating that the exact placement and oxidation state of the sulfur atom may contribute to its anti-CMV activity. Of all tested dimers, artemisinin-derived diphenyl phosphate dimer 838 proved to be the most potent inhibitor of CMV replication, with a selectivity index of approximately 1500, compared to our previously reported dimer sulfone 4-carbamate 832-4 with a selectivity index of about 900. Diphenyl phosphate dimer 838 was highly active against a Ganciclovir-resistant CMV strain and was also the most active dimer in inhibition of cancer cell growth. Thus, diphenyl phosphate dimer 838 may represent a lead for development of a highly potent and safe anti-CMV compound.

  2. Synthesis and Characterization of Sulfonated Poly(Phenylene Containing a Non-Planar Structure and Dibenzoyl Groups

    Directory of Open Access Journals (Sweden)

    Hohyoun Jang

    2016-02-01

    Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.

  3. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    Science.gov (United States)

    McGrath, James E.; Park, Ho Bum; Freeman, Benny D.

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  4. Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite as an efficient, eco-benign, and water-tolerant nanoreactor for chemoselective oxathioacetalization of aldehydes

    Science.gov (United States)

    Shirini, Farhad; Atghia, Seyyed Vahid; Mamaghani, Manouchehr

    2013-01-01

    Sulfonic acid-functionalized ordered nanoporous sodium montmorillonite has been found to be a mild and efficient solid acid catalyst for the chemoselective protection of a variety of carbonyl compounds as oxathiolanes in good to excellent yields. The present method offers several advantages such as short reaction times, high yields, simple procedure and mild conditions. Also, the catalyst could be recycled and reused at least for five times without noticeably decreasing the catalytic activity.

  5. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  6. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    Science.gov (United States)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  7. Sulfonated polystyrene fiber network-induced hybrid proton exchange membranes.

    Science.gov (United States)

    Yao, Yingfang; Ji, Liwen; Lin, Zhan; Li, Ying; Alcoutlabi, Mataz; Hamouda, Hechmi; Zhang, Xiangwu

    2011-09-01

    A novel type of hybrid membrane was fabricated by incorporating sulfonated polystyrene (S-PS) electrospun fibers into Nafion for the application in proton exchange membrane fuel cells. With the introduction of S-PS fiber mats, a large amount of sulfonic acid groups in Nafion aggregated onto the interfaces between S-PS fibers and the ionomer matrix, forming continuous pathways for facile proton transport. The resultant hybrid membranes had higher proton conductivities than that of recast Nafion, and the conductivities were controlled by selectively adjusting the fiber diameters. Consequently, hybrid membranes fabricated by ionomers, such as Nafion, incorporated with ionic-conducting nanofibers established a promising strategy for the rational design of high-performance proton exchange membranes.

  8. Synthesis and characterization of polystyrene-poly(arylene ether sulfone)-polystyrene triblock copolymer for proton exchange membrane applications.

    Science.gov (United States)

    Yang, Jung-Eun; Hong, Young Talk; Lee, Jae-Suk

    2006-11-01

    The polystyrene-poly(arylene ether sulfone)-polystyrene (PS-PAES-PS) coil-semirod-coil triblock copolymer was synthesized by the condensation reaction of PS-COCI and H2N-PAES-NH2 telechelic polymers. The reaction was facile characterized by high yields with a perfect control over the block lengths. Following a known reaction protocol it was possible to selectively sulfonate the PS block of the triblock copolymer that led to the sulfonated copolymer sPS-PAES-sPS. Studies on its proton conductivity and methanol permeability were carried out to evaluate its use as the proton exchange membrane in direct methanol fuel cells. Proton conductivity of the membranes was increased depending on the sulfonic acid group content in the sulfonated polymer. The membranes exhibited good dimensional and thermal stability, and low methanol permeability compared to Nafion 117.

  9. Sorption and desorption of dyes by sulfonated coal

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, A.K. (Motilal Nehru Regional Coll. of Engineering, Allahabad (India)); Venkobachar, C. (Indian Inst. of Tech., Kanpur (India))

    Wastewaters from dye-manufacturing factories and textile, paper, and pulp industries are highly colored. Their discharge into river waters make the water inhibitory to aquatic life, aside from causing, visible pollution. Dyes have a tendency to sequester metals, thus causing microtoxicity to fish and other aquatic organisms. A wide variety of low-cost materials such as flyash, clay minerals, coal, tire chippings, coconut shell powder and biosorbents are being tried as viable substitutes for activated carbon to remove different pollutants such as pesticides, heavy metals, and dyes. The removal of dyes depends upon their physical and chemical characteristics, as well as the properties of the selected sorbents. To understand the nature of the chemical bonding between dyes and sorbents during the sorption process, it is essential to conduct desorption studies. The reversibility of adsorption of dyes can also be determined by a simple mathematical equation. These studies provide information on whether or not the sorbent material can be regenerated after exhaustion. The present study focuses on sorption-desorption of dyes by sulfonated coal, whose dye sorption potential was established by Mittal and Venkobachar (1990).

  10. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    Science.gov (United States)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  11. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  12. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite.

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm(-2)·mM(-1). The biosensor achieved a broad linear range of detection (0.12-12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection.

  13. Thermally stimulated depolarization current studies of sulfonated polystyrene ionomers

    Science.gov (United States)

    Carvalho, Antonio José Felix; Viana, Vicente Galber Freitas; Faria, Roberto Mendonça

    2009-12-01

    A detailed study of thermally stimulated depolarization current (TSDC) was carried out to investigate dipolar relaxation and the charge storage phenomenon in films of sulfonated polystyrene (SPS) ionomers having lithium or potassium as counterions. Differential scanning calorimetry measurements were also applied as a complementary technique, mainly to follow the change of the glass transition temperature with the amount of sulfonated groups. It was observed that, since the glass transition does not change significantly with the amount of sulfonated groups, a cluster of multiplets is expected not to be formed in the range used in this work. TSDC of SPS samples polarized at temperatures higher than the glass transition temperature showed three peaks: one at lower temperature (peak β), an intermediate peak (peak α), and a third that appeared at a temperature coincident with the polarization temperature (peak ρ). Quantitative information about trapping-detrapping and dipolar relaxation and their corresponding activation energies was determined by fittings of the deconvoluted peaks with kinetic relaxation processes.

  14. Thermally stimulated depolarization current studies of sulfonated polystyrene ionomers

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Antonio Jose Felix [Universidade Federal de Sao Carlos, Laboratory of Polymers and Renewable Materials, Sorocaba, SP (Brazil); Viana, Vicente Galber Freitas [Universidade Federal do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil); Faria, Roberto Mendonca [USP, Instituto de Fisica de Sao Carlos, SP (Brazil)

    2009-12-15

    A detailed study of thermally stimulated depolarization current (TSDC) was carried out to investigate dipolar relaxation and the charge storage phenomenon in films of sulfonated polystyrene (SPS) ionomers having lithium or potassium as counterions. Differential scanning calorimetry measurements were also applied as a complementary technique, mainly to follow the change of the glass transition temperature with the amount of sulfonated groups. It was observed that, since the glass transition does not change significantly with the amount of sulfonated groups, a cluster of multiplets is expected not to be formed in the range used in this work. TSDC of SPS samples polarized at temperatures higher than the glass transition temperature showed three peaks: one at lower temperature (peak {beta}), an intermediate peak (peak {alpha}), and a third that appeared at a temperature coincident with the polarization temperature (peak {rho}). Quantitative information about trapping-detrapping and dipolar relaxation and their corresponding activation energies was determined by fittings of the deconvoluted peaks with kinetic relaxation processes. (orig.)

  15. Assessment of the involvement of oxidative stress and Mitogen-Activated Protein Kinase signaling pathways in the cytotoxic effects of arsenic trioxide and its combination with sulindac or its metabolites: sulindac sulfide and sulindac sulfone on human leukemic cell lines.

    Science.gov (United States)

    Stępnik, M; Ferlińska, M; Smok-Pieniążek, A; Gradecka-Meesters, D; Arkusz, J; Stańczyk, M

    2012-06-01

    The purpose of the study was to characterize the involvement of reactive oxygen species (ROS) in mediating the cytotoxic effects of arsenic trioxide (ATO) in combination with sulindac or its metabolites: sulfide (SS) and sulfone (SF) on human leukemic cell lines. Jurkat, HL-60, K562, and HPB-ALL cells were exposed to the drugs alone or in combinations. Cell viability was measured using WST-1 or XTT reduction tests and ROS production by dichlorodihydrofluorescein diacetate staining (flow cytometry). Modulation of (a) intracellular glutathione (GSH) level was done by using L: -buthionine sulfoximine (BSO) or diethylmaleate (DEM), (b) NADPH oxidase by using diphenyleneiodonium (DPI), and (c) MAP kinases by using SB202190 (p38), SP600125 (JNK), and U0126 (ERK) inhibitors. ATO cytotoxicity (0.5 or 1 μM) was enhanced by sulindacs, with higher activity showed by the metabolites. Strong cytotoxic effects appeared at SS and SF concentrations starting from 50 μM. The induction of ROS production seemed not to be the major mechanism responsible for the cytotoxicity of the combinations. A strong potentiating effect of BSO on ATO cytotoxicity was demonstrated; DEM (10-300 μM) and DPI (0.0025-0.1 μM; 72 h) did not influence the effects of ATO. Some significant decreases in the viability of the cells exposed to ATO in the presence of MAPK inhibitors comparing with the cells exposed to ATO alone were observed; however, the effects likely resulted from a simple additive cytotoxicity of the drugs. The combinations of ATO with sulindacs offer potential therapeutic usefulness.

  16. Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bujans, F. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)], E-mail: fbarroso@ictp.csic.es; Verdejo, R.; Lozano, A. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Lopez-Manchado, M.A. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2008-10-15

    In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy.

  17. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  18. CYP450-Dependent Biotransformation of the Insecticide Fipronil into Fipronil Sulfone Can Mediate Fipronil-Induced Thyroid Disruption in Rats (Full paper and erratum)

    OpenAIRE

    ROQUES, Beatrice; Lacroix, Marlène; Puel, Sylvie; Gayrard, Véronique; Picard-Hagen, Nicole; Jouanin, Isabelle; Perdu, Elisabeth; Martin, Pascal

    2012-01-01

    In rats, the widely used insecticide fipronil increases the clearance of thyroxine (T-4). This effect is associated with a high plasma concentration of fipronil sulfone, the fipronil main metabolite in several species including rats and humans. In sheep, following fipronil treatment, fipronil sulfone plasma concentration and thyroid disruption are much lower than in rats. We postulated that fipronil biotransformation into fipronil sulfone by hepatic cytochromes P450 (CYP) could act as a pote...

  19. Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31.

    Science.gov (United States)

    Khan, Razia; Fulekar, M H

    2016-08-01

    The present study aims at exploiting Bacillus amyloliquefaciens for the biosynthesis of titanium dioxide nanoparticles and also investigates role of bacterial enzymes in the biosynthesis of titanium dioxide nanoparticles. Bacterial synthesized as well as metal doped titanium dioxide nanoparticles were characterized by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDAX). Amylase activity (43.37IU) in culture supernatant evinced a potential involvement of extracellular enzyme in TiO2 nanoparticle biosynthesis. Crystallite size of bio-synthesized nanoparticles was found to be in the range of 15.23-87.6nm. FTIR spectroscopy and native-PAGE (Polyacrylamide Gel Electrophoresis) clearly indicated involvement of alpha amylase in biosynthesis of TiO2 nanoparticles and in their stabilization. TEM micrographs of the synthesized titanium dioxide nanoparticles revealed the formation of spherical nanoparticles with a size range of 22.11-97.28nm. Photocatalytic degradation of Reactive Red 31 (RR31) dye was carried out using bio-synthesized TiO2 nanoparticles under UV radiation. Photocatalytic activity of synthesized nanoparticles was enhanced by Ag, La, Zn and Pt doping. Platinum doped TiO2 showed highest potential (90.98%) in RR31 degradation as compared to undoped (75.83%).

  20. Primary biodegradation of linear alkyltoluene and alkylbenzene sulfonates.

    Science.gov (United States)

    Singh, M; Satish, S

    1989-01-01

    Studies on the primary biodegradation of linear dodecylbenzene sulfonate, linear dodecyltoluene sulfonate, linear C(10-14) benzene sulfonate, linear C(10-14) toluene sulfonate, commercial samples of linear C(10-14) benzene sulfonate and branched dodecylbenzene sulfonate (DDBS) were carried out using a microbial culture developed from garden soil. Results show that linear alkyl toluene (LAT) is as degradable as linear alkylbenzene (LAB) in 7 days. However, a slower rate of degradation was noted with LAT. Various distributions of the positional isomers of the phenyl ring in the alkane chain of C(10-14) LAB showed no change in the pattern of primary biodegradation.

  1. Crystal structures of the trifluoromethyl sulfonates M(SO3CF3)2 (M = Mg, Ca, Ba, Zn, Cu) from synchrotron X-ray powder diffraction data.

    Science.gov (United States)

    Dinnebier, Robert; Sofina, Natalia; Hildebrandt, Lars; Jansen, Martin

    2006-06-01

    The crystal structures of divalent metal salts of trifluoromethyl sulfonic acid ("trifluoromethyl sulfonates") M(SO(3)CF(3))(2) (M = Mg, Ca, Ba, Zn, Cu) were determined from high-resolution X-ray powder diffraction data. Magnesium, calcium and zinc trifluoromethyl sulfonate crystallize in the rhombohedral space group R(bar)3. Barium trifluoromethyl sulfonate crystallizes in the monoclinic space group I2/a(C2/c) and copper trifluoromethyl sulfonate crystallizes in the triclinic group P(bar)1. Within the crystal structures the trifluoromethyl sulfonate anions are arranged in double layers with the apolar CF(3) groups pointing towards each other. The cations are located next to the SO(3) groups. The symmetry relations between the different crystal structures have been analysed.

  2. Crystal Structures of the Trifluoromethyl Sulfonates M(SO3CF3)2 (M = Mg, Ca, Ba, Zn, Cu) from Synchrotron X-ray Powder Diffraction Data

    Energy Technology Data Exchange (ETDEWEB)

    Dinnebier,R.; Sofina, N.; Hildebrandt, L.; Jansen, M.

    2006-01-01

    The crystal structures of divalent metal salts of trifluoromethyl sulfonic acid ('trifluoromethyl sulfonates') M(SO{sub 3}CF{sub 3}){sub 2} (M = Mg, Ca, Ba, Zn, Cu) were determined from high-resolution X-ray powder diffraction data. Magnesium, calcium and zinc trifluoromethyl sulfonate crystallize in the rhombohedral space group R{bar 3}. Barium trifluoromethyl sulfonate crystallizes in the monoclinic space group I2/a(C2/c) and copper trifluoromethyl sulfonate crystallizes in the triclinic group P{bar 1}. Within the crystal structures the trifluoromethyl sulfonate anions are arranged in double layers with the apolar CF{sub 3} groups pointing towards each other. The cations are located next to the SO{sub 3} groups. The symmetry relations between the different crystal structures have been analyzed.

  3. Bioseparation of papain from Carica papaya latex by precipitation of papain-poly (vinyl sulfonate) complexes.

    Science.gov (United States)

    Braia, Mauricio; Ferrero, Maximiliano; Rocha, María Victoria; Loureiro, Dana; Tubio, Gisela; Romanini, Diana

    2013-09-01

    The formation of insoluble complexes between enzymes and polyelectrolytes is a suitable technique for isolating these biomolecules from natural sources, because it is a simple and rapid technique that allows the concentration of the protein. This technique can be used in most purification protocols at the beginning of the downstream process. The aim of this investigation is to isolate papain from Carica papaya latex by precipitation of insoluble complexes between this enzyme and poly (vinyl sulfonate). The papain-poly (vinyl sulfonate) complex was insoluble at pH lower than 6, with a PVS/PAP stoichiometric ratio of 1:279. Ionic strength affected the complex formation. The presence of the polymer increased the enzymatic activity and protected the enzyme from autodegradation. The optimal conditions for the formation of insoluble papain-polyelectrolyte complex formation were applied to C. papaya latex and a high recovery was obtained (around 86%) and a purification factor around 2. This method can be applied as an isolation method of papain from C. papaya latex or as a first step in a larger purification strategy.

  4. Fibronectin fibrillogenesis on sulfonated polystyrene surfaces.

    Science.gov (United States)

    Pernodet, Nadine; Rafailovich, Miriam; Sokolov, Jonathan; Xu, D; Yang, Nan-Loh; McLeod, Kenneth

    2003-03-15

    Extracellular matrix (ECM) protein adsorption and organization serves as a critical first step in the development and organization of tissues. Advances in tissue engineering, therefore, will depend on the ability to control the rate and pattern of ECM formation. Fibronectin is a prominent component of the ECM, which undergoes fibrillogenesis in the presence of cells. Using sulfonated polysyrene surfaces, we showed that fibronectin undergoes a transition from monolayer to multilayer adsorption at calculated surface charge densities above 0.03 Coulombs (C)/m(2). At charge densities above approximately 0.08 C/m(2), distinct fibronectin fibrillar networks are observed to form with a fibril morphology similar to those observed to form in situ on cell surfaces. This self-organization process is time dependent, with the fibrils achieving dimensions of 30-40 microm in length and 1 microm in height after 72 h of incubation. We suggest that the polarization of charge domains on the polyampholytic fibronectin molecules near high charge density surfaces is sufficient to initiate the multilayer adsorption and the organization of these fibrillar structures. These results suggest that the nonlinear dependence of adsorption on surface charge density may play an important role in the self-organization of many matrix components.

  5. Improving the biodecolorization of reactive blue 13 by sodium anthraquinone-2-sulfonate immobilized on modified polyvinyl alcohol beads

    Institute of Scientific and Technical Information of China (English)

    Yongxing Qian; Bin Yang; Zhongjian Li; Lecheng Lei; Xingwang Zhang

    2015-01-01

    In order to enhance the biodecolorization rate and avoid the wash-out problems of redox mediators in continuous systems such as a fluidized bed reactor, polyvinyl alcohol (PVA) beads modified with N-containing function groups were investigated and employed as a new sodium anthraquinone-2-sulfonate (AQS) carrier material. Elementary and XPS analyses confirm the existence of AQS on modified PVA bead. The modified PVA beads suit with immobilizing AQS better in adsorption capability and stability. AQS supported on modified PVA beads shows high catalytic activity for biodecolorization of reactive blue 13 in a long process (N 10 runs).

  6. The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.

    Directory of Open Access Journals (Sweden)

    James W Bruce

    2008-11-01

    Full Text Available The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV vector. This approach identified a role for 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1, one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.

  7. The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.

    Directory of Open Access Journals (Sweden)

    James W Bruce

    2008-11-01

    Full Text Available The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV vector. This approach identified a role for 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1, one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.

  8. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  9. One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction

    Institute of Scientific and Technical Information of China (English)

    康世民; 常杰; 范娟

    2014-01-01

    A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions:200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated cata-lyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g-1, 0.78 mmol·g-1, 2.18 mmol·g-1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zir-conia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.

  10. Reinforced films based on cross-linked water-soluble sulfonated carbon nanotubes with sulfonated polystyrene.

    Science.gov (United States)

    Dai, Ying; Haiping, Hong; Guiver, Michael; Welsh, Jeffry S

    2009-09-01

    Reinforced films based on sulfonated polystyrene cross-linked with water-soluble sulfonated carbon nanotubes were fabricated using a free-standing film-making method. Transmission and scanning electron microscopy (TEM and SEM), and X-ray photoelectron spectroscopy (XPS) were used to verify the cross-linking reaction. The mechanical properties of these films demonstrated that the tensile strength increases with an increase in the sulfonated nanotube concentration. At 5 wt% nanotube loading, the tensile strength increased 84% compared with polymer containing no nanotube loading. The relationships between structure and mechanical properties are discussed and a possible direction for making ultra thin and ultra lightweight film is proposed.

  11. Reinforced membrane based on crosslink reaction between water soluble sulfonated carbon nanotubes and sulfonated polystyrene

    Science.gov (United States)

    Dai, Ying; Hong, Haiping; Welsh, Jeffry S.

    2008-08-01

    Reinforced films based on sulfonated polystyrene cross-linked with water-soluble sulfonated carbon nanotubes were fabricated using a free-standing film-making method. Transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis were used to verify the cross-linking reaction. The mechanical properties of these films demonstrated that the tensile strength increases with an increase in the sulfonated nanotube concentration. At 5 wt% nanotube loading, the tensile strength increased 84% compared with polymer containing no nanotube loading. The relationships between structure and mechanical properties are discussed and a possible direction for making ultra thin and ultra lightweight film is proposed

  12. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  13. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  14. SYNTESIS OF THE COMPLEXES OF MACROPOROUS SULFONATED RESINS WITH FERRIC CHLORIDE AND THEIR CATALYTIC BEHAVIOR FOR SETERIFICATION OF ACETIC ACID WITH BUTANOL

    Institute of Scientific and Technical Information of China (English)

    HuangWenqiang; HouXin; 等

    1997-01-01

    The complex resins prepared from macroporous sulfonated resin D72(H+ form) with ferric chloride or ferric chloride hexahydrate have both sites of Bronsted acid and Lewis acid.In the catalysis of exterification of acetic acid with butanol the complex resins show to have much higher catalytic activity than that of its matrix.a conventional sulfonated cation exchange resin D72.

  15. Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation

    Directory of Open Access Journals (Sweden)

    Pascal Van Der Voort

    2013-08-01

    Full Text Available A Periodic Mesoporous Organosilica (PMO functionalized with sulfonic acid groups has been successfully synthesized via a sequence of post-synthetic modification steps of a trans-ethenylene bridged PMO material. The double bond is functionalized via a bromination and subsequent substitution obtaining a thiol functionality. This is followed by an oxidation towards a sulfonic acid group. After full characterization, the solid acid catalyst is used in the acetylation of glycerol. The catalytic reactivity and reusability of the sulfonic acid modified PMO material is investigated. The catalyst showed a catalytic activity and kinetics that are comparable with the commercially available resin, Amberlyst-15, and furthermore our catalyst can be recycled for several subsequent catalytic runs and retains its catalytic activity.

  16. The facile insertion of β-keto sulfones to arynes: The direct preparation of polysubstituted ortho-keto benzyl sulfones

    Institute of Scientific and Technical Information of China (English)

    Jian Xue; Lu Ling Wu; Xian Huang

    2008-01-01

    One novel carbon-carbon bond insertion reaction of arynes has been developed. By this reaction β-keto sulfones can insert the triple bond of arynes to prepare polysubstituted ortho-keto benzyl sulfones.

  17. 21 CFR 177.2500 - Polyphenylene sulfone resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfone resins. 177.2500 Section 177... Components of Articles Intended for Repeated Use § 177.2500 Polyphenylene sulfone resins. The polyphenylene sulfone resins (CAS Reg. No. 31833-61-1) identified in paragraph (a) of this section may be safely used...

  18. Molecular dynamics simulation of nanoscale distribution and mobility of water and dimethylmethylphosphonate in sulfonated polystyrene.

    Science.gov (United States)

    Vishnyakov, Aleksey; Neimark, Alexander V

    2008-11-27

    The interest in a better understanding of the specific interactions of phosphor-organic compounds and water with sulfonated polystyrene (sPS) is motivated by the use of block copolymers as protective membranes against chemical warfare agents. Using classical molecular dynamics simulations, we explored the nanoscale segregation and diffusion of water and nerve gas simulant dimethylmethylphosphonate (DMMP) in sPS neutralized with calcium counterions at different sulfonation and hydration levels. The water content was varied from 15 to 54% of dry polymer weight, and the DMMP content was varied from 0 to 100 wt %. We found that, in the 40% sulfonated polystyrene, water forms well defined aggregates, which grow in size as the hydration increases, reaching approximately 20 A at the maximum water content. In the 100% sulfonated polystyrene, the overall structure of hydrated polymer is more uniform with smaller water aggregates. Diffusion of water at the same number of water molecules per sulfonate group is faster at a lower sulfonation level. The solvation of sPS in water-DMMP binary mixtures was found to differ substantially from Nafion, where DMMP forms a layer between the hydropholic and hydrophobic subphases. In sPS with divalent Ca(2+) counterions, DMMP and water compete for the solvation of the sulfonate group. At high water and DMMP contents, the diffusion of DMMP turned out to be rather fast with a diffusion coefficient of ca. 30% of that of water. At the same time, water diffusion slows down as the DMMP concentration increases. This observation suggests that although sPS is permeable for both solvents, water and DMMP are partially segregated on the scale of 1-2 nm and have different pathways through the system. The nonuniform nanoscale distribution of water and DMMP in sPS is confirmed by analyses of different pair correlation functions. This feature may significantly affect the perm-selective properties of sPS-contained block copolymer membranes.

  19. Electrooxidation of Linear Alkyl Benzene Sulfonate (LAS) on Pt Electrodes

    OpenAIRE

    1999-01-01

    The electrochemical behaviour of linear alklybenzene sulfonate (LAS) on Pt electrodes was investigated in 0.05M Na2SO4 and in 0.1M NaCl at pH=8 by the potentiokinetic method and by electrolysis. The anodic and cathodic semilogarithmic current-potential curves were obtained between -1.6V - +1.6V. The experimental discharge potentials were determined by means of current-potential-curves obtained by electrolysis between 0-3V. The percentages of surface active material remaining in the so...

  20. Degradation of surface-active compounds in a constructed wetland determined using high performance liquid chromatography and extraction spectrophotometry.

    Science.gov (United States)

    Šíma, Jan; Pazderník, Marek; Tříska, Jan; Svoboda, Lubomír

    2013-01-01

    Degradation of anionic and nonionic surfactants in a constructed wetland with horizontal subsurface flow was studied using high performance liquid chromatography and extraction spectrophotometry. The ratio of individual homologues of linear alkylbenzene sulfonates (LAS) and the efficiency of their removal were studied. Tridecyl-, dodecyl-, undecyl-, and decylbenzene sulfonates were removed with efficiencies of 92.9%, 84.3%, 64.7%, and 41.1%, respectively. These differences are due to sequential shortening of the alkyl chain in homologues during degradation (the higher homologue can provide the lower one). The formation of sulfophenyl carboxylic acids during ω-oxidation of the alkyl chain followed by successive α- and/or β-oxidation is also a possible mechanism for removal of LAS. Solid phase extraction using Chromabond® HR-P columns was used for preconcentration of the analytes prior to their determination by HPLC. Methylene blue active compounds were determined using extraction spectrophotometry. The average efficiency of their removal was 84.9% in this case. The efficiency of nonionic surfactant removal (98.2%) was significantly higher in comparison to that for anionic surfactants. The concentration of the endocrine disruptor nonylphenol (a product of nonylphenol polyethoxylate surfactant degradation) determined in the profile of the wetland was beneath the limit of detection (0.4 μg/L). The average outflow concentrations of anionic and nonionic surfactants determined by spectrophotometry were 0.54 and 0.021 mg/L, respectively. The average outflow concentrations of decyl- and tridecylbenzene sulfonates determined by HPLC were 0.195 and 0.015 mg/L. Efficiencies of 86.4% and 92.2% were obtained for removal of organic compounds as indicated by chemical and biochemical oxygen demand (COD(Cr) and BOD(5)). These results demonstrate the suitability of the constructed wetland for degrading surface-active compounds.

  1. Mouse determinant lethal and bone marrow micronucleus studies on methyl vinyl sulfone and divinyl sulfone

    OpenAIRE

    1991-01-01

    Artículo científico-- Instituto de Investigaciones en Salud-- 1991. La revista no permite distribuir la versión final del documento. Methyl vinyl sulfone and divinyl sulfone were tested for the induction of dominant lethal mutations and micronucleated bone-marrow erythrocytes in male mice. These chemicals were chosen for study because of their similarities in structure and chemical reactivity to acrylamide which is known to induce both effects. Following administration of the test...

  2. Fate and biodegradability of sulfonated aromatic amines

    NARCIS (Netherlands)

    Tan, N.C.G.; Leeuwen, van A.; Voorthuizen, van E.M.; Slenders, P.; Prenafeta, F.X.; Temmink, H.; Lettinga, G.; Field, J.A.

    2005-01-01

    Ten sulfonated aromatic amines were tested for their aerobic and anaerobic biodegradability and toxicity potential in a variety of environmental inocula. Of all the compounds tested, only two aminobenzenesulfonic acid (ABS) isomers, 2- and 4-ABS, were degraded. The observed degradation occurred only

  3. Carbon dioxide sensing with sulfonated polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Bent, van der J.; Marcelis, A.T.M.; Tong, H.D.; Rijn, van C.J.M.

    2012-01-01

    The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO2) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO2 gas.

  4. Fate and biodegradability of sulfonated aromatic amines

    NARCIS (Netherlands)

    Tan, N.C.G.; Leeuwen, van A.; Voorthuizen, van E.M.; Slenders, P.; Prenafeta, F.X.; Temmink, H.; Lettinga, G.; Field, J.A.

    2005-01-01

    Ten sulfonated aromatic amines were tested for their aerobic and anaerobic biodegradability and toxicity potential in a variety of environmental inocula. Of all the compounds tested, only two aminobenzenesulfonic acid (ABS) isomers, 2- and 4-ABS, were degraded. The observed degradation occurred only

  5. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  6. Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells

    DEFF Research Database (Denmark)

    Li, Wei; Guo, Xiaoxia; Aili, David;

    2015-01-01

    . A series of sulfonated copolyimides (SPI) are prepared via random copolymerizatio of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) with a new diamine monomer with pendant benzimidazole groups, 2,2'-bis(4-(1H-benzo[d]imidazol-2-yl)phenoxy)benzidine (BIPOB), and a sulfonated diamine monomer 4,4'-bis...... pendant groups significantly improves the hydrolytic stability as well as the radical oxidative stability of the membranes. In addition, the SPI membranes exhibit high proton conductivities of 0.1 S cm(-1) in the fully hydrated state at 60 degrees C and high elastic modulus and tensile strength...

  7. Synthesis of Novel Oxime Sulfonate Derivatives of 2'(2',6')-(Di)chloropicropodophyllotoxins as Insecticidal Agents.

    Science.gov (United States)

    Wang, Rong; Zhi, Xiaoyan; Li, Jie; Xu, Hui

    2015-08-05

    To discover novel natural-product-based pesticidal agents, we prepared a series of oxime sulfonate derivatives of 2'(2',6')-(Di)chloropicropodophyllotoxins by structural modification of podophyllotoxin. Their structures were well-characterized by proton nuclear magnetic resonance ((1)H NMR), high-resolution mass spectrometry (HRMS), optical rotation, and melting point. Moreover, the key steric structure of compound 5f was unambiguously determined by single-crystal X-ray diffraction. Additionally, their insecticidal activity was evaluated at 1 mg/mL against the pre-third-instar larvae of oriental armyworm (Mythimna separata Walker), a typical lepidopteran pest. Among all derivatives, compounds 4c, 5c, and 5d exhibited more promising insecticidal activity, with the final mortality rates greater than 60%, when compared to their precursor podophyllotoxin and the positive control, toosendanin. It demonstrated that introduction of the chlorine atom at the C-2' or C-2',6' position on the E ring of picropodophyllotoxin or oxime sulfonate derivatives of picropodophyllotoxin was important for the insecticidal activity and introduction of a halogen (e.g., fluorine, chlorine, or bromine) atom-substituted phenylsulfonyl group on the oxime fragment of 2'(2',6')-(di)chloropicropodophyllones could lead to more promising compounds.

  8. Synthesis of High Solid Carboxylate/Sulfonate Waterborne Polyurethane Dispersions%高固含量羧酸/磺酸盐型水性聚氨酯乳液的合成

    Institute of Scientific and Technical Information of China (English)

    刘新迁; 屠晓华; 徐欣欣; 郦聪; 吴建一

    2013-01-01

    With poly( 1,4 - butanediol adipate) ( PBA) as soft chain segment and isophorone diisocya-nate (IPDI) as hard chain segment, N - (2 - aminoethyl) - 2 - amino sodium ethyl sulfonate (AAS) and dimethylol propionic acid ( DMPA) as hydrophilic chain extender, a carboxylate/sulfonate waterborne polyurethane dispersions(PUDs) was synthesized. The polyurethane molecule containing sulfonic acid groups was confirmed by infrared spectroscopic analysis. The effect of the -NCO/-OH ratio, the content of DMPA and AAS was systematically investigated. The results showed that the emulsion and PUDs film with optimal properties could be obtained when the -NCO/-OH ratio was 1. 6 and the content of DMPA and AAS was 0. 8% and 3. 5% respectively.%以聚己二酸-1,4-丁二醇酯(PBA)和异佛尔酮二异氰酸酯(IPDI)为原料,以乙二胺基乙磺酸钠(AAS)和二羟甲基丙酸(DMPA)为亲水扩链剂制备了高固含量羧酸/磺酸盐型水性聚氨酯乳液.聚氨酯薄膜经红外光谱分析证实聚氨酯分子中含有磺酸基团.系统研究了-NCO/-OH物质的量比(R值)、DMPA含量和AAS含量对乳液及胶膜性能的影响.研究结果表明:当R值为1.6、DMPA含量为0.8%~1.0%、AAS含量为3.5%时,获得的乳液和胶膜的综合性能最佳.

  9. Use of albendazole sulfoxide, albendazole sulfone, and combined solutions as scolicidal agents on hydatid cysts ( in vitro study)

    Institute of Scientific and Technical Information of China (English)

    Gokhan Adas; Soykan Arikan; Ozgur Kemik; Ali Oner; Nilgun Sahip; Oguzhan Karatepe

    2009-01-01

    AIM: To establish which scolicidal agents are superior and more suitable for regular use.METHODS: Echinococcus granulosus protoscoleces were obtained from 25 patients with liver hydatid cysts. Various concentrations of albendazole sulfone,albendazole sulfoxide, and albendazole sulfone and albendazole sulfoxide mixed together in concentrations of 50 μg/mL, and H2O2 in a concentration of 4%, NaCl 20%, and 1.5% cetrimide-0.15% chlorhexidine (10% Savlon-Turkey) were used to determine the scolicidal effects. Albendazole (ABZ) derivatives and other scolicidal agents were applied to a minimum of 100 scoleces for 5 and 10 min. The degree of viability was calculated according to the number of living scolices per field from a total of 100 scolices observed under the microscope.RESULTS: After 5 min, ABZ sulfone was 97.3% effective, ABZ sulfoxide was 98.4% effective, and the combined solution was 98.6% effective. When sulfone, sulfoxide and the combined solutions were compared,the combined solution seemed more effective than sulfone. However, there was no difference when the combined solution was compared with sulfoxide. After 10 min, hypertonic salt water, sulfone, sulfoxide, and the combined solution compared to other solutions looked more effective and this was statistically significant on an advanced level. When sulfone,sulfoxide, and the combined solutions were compared with each other, the combined solution appeared more effective than sulfone. When the combined solution was compared with sulfoxide, there was no difference.CONCLUSION: Despite being active, ABZ metabolites did not provide a marked advantage over 20% hypertonic saline. According to these results, we think creating a newly improved and more active preparation is necessary for hydatid cyst treatment.

  10. Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Structural evolution with hydration and heating

    Energy Technology Data Exchange (ETDEWEB)

    Sodeye, Akinbode [Department of Polymer Science and Engineering, University of Massachusetts; Huang, Tianzi [University of Tennessee, Knoxville (UTK); Gido, Samuel [University of Massachusetts, Amherst; Mays, Jimmy [ORNL

    2011-01-01

    Small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS) have been used to study the structural changes in fluorinated polyisoprene/sulfonated polystyrene (FISS) diblock copolymers as they evolved from the dry state to the water swollen state. A dilation of the nanometer-scale hydrophilic domains has been observed as hydration increased, with greater dilation occurring in the more highly sulfonated samples or upon hydration at higher temperatures. Furthermore, a decrease in the order in these phase separated structures is observed upon swelling. The glass transition temperatures of the fluorinated blocks have been observed to decrease upon hydration of these materials, and at the highest hydration levels, differential scanning calorimetry (DSC) has shown the presence of tightly bound water. A precipitous drop in the mechanical integrity of the 50% sulfonated materials is also observed upon exceeding the glass transition temperature (Tg), as measured by dynamic mechanical analysis (DMA).

  11. Synthesis and characterization of sulfonated polymers for ionomeric membranes based on styrene copolymers; Sintese e caracterizacao de precursores sulfonados para membranas polimericas a base de copolimeros estirenicos

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.M.; Forte, M.M.C.; Amico, S.C. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Escola de Engenharia. Lab. de Materiais Polimericos (LAPOL)], e-mail: crismbecker@yahoo.com.br, e-mail: mmcforte@ufrgs.br, e-mail: amico@ufrgs.br; Vargas, J.V.C. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], e-mail: jvargas@demec.ufpr.br

    2006-07-01

    Polymer electrolyte membrane fuel cell (PEMFC) have emerged strongly as a viable alternative for power source owing to their high energy efficiency and environmental friendliness. Currently, Nafion is the most frequently used membrane even though it has a high cost. The objective of this work is to synthesize sulfonated polymers, based on styrene copolymers, with different sulfonation degrees as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the resulting polymers were characterized by Fourier Transform Infra-red (FTIR), thermogravimetric analysis (TGA) and degree of substitution or sulfonation (DS). The polyelectrolytes were evaluated regarding their ion exchange capacity (IEC) and conductivity. The results demonstrated that increasing the sulfonic acid content of the polymer results in higher IEC, conductivity and water uptake. (author)

  12. Isolation and Characterization of the 2,2'-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Cation-Scavenging Reaction Products of Arbutin.

    Science.gov (United States)

    Tai, Akihiro; Ohno, Asako; Ito, Hideyuki

    2016-09-28

    Arbutin, a glucoside of hydroquinone, has shown strong 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging activity, especially in reaction stoichiometry. This study investigated the reaction mechanism of arbutin against ABTS radical cation that caused high stoichiometry of arbutin in an ABTS radical cation-scavenging assay. HPLC analysis of the reaction mixture of arbutin and ABTS radical cation indicated the existence of two reaction products. The two reaction products were purified and identified to be a covalent adduct of arbutin with an ABTS degradation fragment and 3-ethyl-6-sulfonate benzothiazolone. A time-course study of the radical-scavenging reactions of arbutin and the two reaction products suggested that one molecule of arbutin scavenges three ABTS radical cation molecules to generate an arbutin-ABTS fragment adduct as a final reaction product. The results suggest that one molecule of arbutin reduced two ABTS radical cation molecules to ABTS and then cleaved the third ABTS radical cation molecule to generate two products, an arbutin-ABTS fragment adduct and 3-ethyl-6-sulfonate benzothiazolone.

  13. Sulfonic-based precursors (SAPs for silica mesostructures: Advances in synthesis and applications

    Directory of Open Access Journals (Sweden)

    Sadegh Rostamnia*

    2016-01-01

    Full Text Available Sulfonic acid-based precursors (SAP play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfonated mesostructures compatible with reaction type and conditions. In the present review, some of the important SAPs, their reactivity and mechanism of functionalization are discussed.

  14. Simultaneous Determination of Four Kinds of Linear Alkyl Benzene Sulfonates by Solid Phase Extraction/High Performance Liquid Chromatography%固相萃取/高效液相色谱法同时测定水中4种直链烷基苯磺酸钠

    Institute of Scientific and Technical Information of China (English)

    周围; 解迎双; 王波; 贾松涛; 牛洪亮

    2011-01-01

    A solid phase extraction coupled with high performance liquid chromatographic (SPE/HPLC) method was established for the determination of 4 kinds of sodium n-alkyl benzene sulfonates in water. The samples were refrigerated and centrifuged, then purified and enriched with MAX complex anion exchange column. Four sodium n-alkyl benzene sulfonates were successfully separated by HPLC using acetonitrile - 100 mmol/L ammonium acetate (73 : 27, by volume) as mobile phase with a flow rate of 1 mL/min, column temperature of 30 ℃, detection wavelength of 225 nm and injection volume of 10 μL. Under the optimal conditions, the calibration curves were linear in the range of 10 -50 mg/L for sodium undecylbenzene sulfonte and sodium N-tridecylbenzene sulfonate with detection limits of 10 mg/L, and 5 -25 mg/L for sodium dodecylbenzene sulphonate and sodium tetradecylbenzene sulfonate with detection limits of 5 mg/L. The spiked recoveries were in the range of 86% -98% with relative standard deviations(RSDs) of 2. 9% -7.4%.%建立了水中4种直链烷基苯磺酸钠的固相萃取/高效液相色谱的测定方法.样品经高速冷冻离心,用MAX复合阴离子交换小柱净化富集后直接进样.在以乙腈-100 mmol/L乙酸铵(体积比73:27)为流动相,流速1 mL/min,柱温30 ℃,检测波长225 nm,进样体积10 μL的条件下,4种直链烷基苯磺酸钠得到很好的分离.在优化实验条件下,十一烷基苯磺酸钠与十三烷基苯磺酸钠的线性范围为10~50 mg/L,检出限为10 mg/L,十二烷基苯磺酸钠与十四烷基苯磺酸钠的线性范围为5~25 mg/L,检出限为5 mg/L;加标回收率为86%~98%;相对标准偏差为2.9%~7.4%.

  15. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  16. Photolytic treatment of aqueous linear alkylbenzene sulfonate.

    Science.gov (United States)

    Venhuis, Sarah Hatfield; Mehrvar, Mehrab

    2005-01-01

    Treatment of a model detergent compound, linear alkylbenzene sulfonate (LAS), using photolytic processes was studied. In the photolytic degradation of LAS, both ultraviolet (UV) light at 254 nm wavelength and its combination with hydrogen peroxide (H2O2) were investigated. Based on first-order rate constants, it was shown that 5000 mg/L of H2O2 for degradation of a 100-mg/L solution of linear alkylbenzene sulfonate was optimum. Addition of H2O2 at different illumination times with UV light at 254 nm did not improve first-order rate constants compared with the addition of H2O2 at the start of illumination. Degradation rates of the model compound (LAS) with three detergents were compared.

  17. STUDY ON LIGHTLY SULFONATED SYNDIOTACTIC POLYSTYRENE IONOMERS

    Institute of Scientific and Technical Information of China (English)

    Jin Wang; Fang-ming Zhu; Jin-cheng Lui; Hua-ming Li; Shang-an Lin

    2001-01-01

    ulfonated syndiotactic polystyrene ionomers (SsPS) with 1.8 mol% degree of sulfonation have been studied.SWAXD shows that the crystallinity of SsPS ionomers was decreased with increasing diameter size of the counter ions and sPS > SsPS-H > SsPS-K > SsPS-Zn. Moreover, SsPS ionomers only have α crystal form, while original sPS has two crystal forms: α and β crystal form. TGA shows that the thermal stability of SsPS ionomers is higher than that of the original sPS and SsPS-Zn > SsPS-K > SsPS-H. DSC shows that all the glass transition temperatures (Tg) of SsPS ionomers are higher than that of the neat sPS and SsPS-Zn > SsPS-Na > SsPS-K > SsPS-H. However, the melting temperature (Tm) and crystallization peak temperature (Tp) of SsPS ionomers are lower and SsPS-H > SsPS-Zn > SsPS-K > SsPS-Na, while the crystallinity (Xc) of SsPS-Zn is the lowest. Nonisothermal crystallization kinetics shows that the Avrami index of sPS and SsPS-H are both about 4, suggesting the nucleation growth of SsPS-H with lower degree of sulfonation still keeps its threedimension form. FTIR spectra of SsPS ionomers show a splitting absorption band for asymmetric stretching vibration of sulfonation group. The CH in-plane bending vibration of benzene ring shifted to higher wavenumber and the symmetric stretching vibration of sulfonation group changed slightly with different counter ion neutralized SsPS ionomers.

  18. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  19. Thin sulfonated poly(ether ether ketone) films for the dehydration of compressed carbon dioxide

    NARCIS (Netherlands)

    Koziara, B.T.

    2015-01-01

    In this thesis, the properties of thin films from highly sulfonated poly(ether ether ketone) (SPEEK) have been investigated within the context of their application as membranes for the dehydration of compressed carbon dioxide. Spectroscopic ellipsometry has been used as the predominant measurement t

  20. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  1. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng;

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...

  2. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, D.C.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds (C20

  3. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam

    2014-01-01

    The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  4. Double lawton SN2'addition to epoxyvinyl sulfones: selective construction of the stereotetrads of aplyronine A.

    Science.gov (United States)

    El-Awa, Ahmad; Fuchs, Philip

    2006-07-06

    [reaction: see text] Enantiopure epoxyvinyl sulfones function as templates for the diastereoselective construction of the three stereotetrads of aplyronine A. Lawton S(N)2' addition of 3,5-dimethylpyrazole followed by its displacement in an alcohol-directed Lawton S(N)2' reaction establishes the required product stereochemistry with high selectivity.

  5. The Effect of Sulfonation and Neutralization on the Dynamics of Zn Neutralized Sulfonated Polystyrene Ionomers

    Science.gov (United States)

    Castagna, Alicia; Wang, Wenqin; Winey, Karen I.; Runt, James

    2011-03-01

    The effect of sulfonation and neutralization levels on structure and dynamics of Zn neutralized sulfonated polystyrene (SPS) ionomers were investigated using scanning transmission electron microscopy (STEM), X-ray scattering, and dielectric relaxation spectroscopy. STEM and X-ray scattering revealed the presence of spherical aggregates 2 nm in diameter. Successful fitting of the scattering data to the Kinning-Thomas modified hard sphere model revealed that aggregate size is independent of degree of sulfonation and neutralization level, and that aggregate composition becomes increasingly ionic with increasing neutralization. Two segmental relaxations were identified in dielectric loss spectra corresponding to cooperative motion of chain segments in the unrestricted matrix and motions of chain segments restricted by aggregates. A Maxwell-Wagner-Sillars interfacial polarization process was revealed, with relaxation times that were in good agreement with predictions from a simple model of dispersed ionic spheres.

  6. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Yin-lin Lei

    2014-07-01

    Full Text Available With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB in the alloy particles on the feasibility of the membrane formation are discussed. The results indicate that a favorable sulfonation degree above 80% and a suitable ion exchange capacity of 1.5–2.4 mmol/g can be gained, with concentrated sulfuric acid as the sulfonation agent and 1,2-dichloroethane as the swelling agent. The running electrical resistance and desalination effect of the prepared cation exchange membrane were measured in a pilot-scale electrodialyser and not only obviously exceeded a commercial heterogeneous cation exchange membrane, but was also very close to a commercial homogenous membrane. In this way, the authors have combined the classical sulfonation method of polystyrene-based cation exchange resins with the traditional thermoforming manufacturing process of heterogeneous cation exchange membranes, to successfully develop a novel, low-price, but relatively high-performance polystyrene/PVDF cation exchange membrane with the semi-IPN structure.

  7. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  8. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Bijay P. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002, Gujarat (India); Department of Membranes for Sustainable Energy, GKSS Research Centre Geesthacht GmbH, Max Planck Str. 1, D-21502 Geesthacht (Germany); Schieda, M. [Department of Membranes for Sustainable Energy, GKSS Research Centre Geesthacht GmbH, Max Planck Str. 1, D-21502 Geesthacht (Germany); Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002, Gujarat (India); Nunes, Suzana P. [King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 x 10{sup -2} S cm{sup -1} at 30 C and 16.8 x 10{sup -2} S cm{sup -1} at 80 C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. (author)

  9. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    Science.gov (United States)

    Tripathi, Bijay P.; Schieda, M.; Shahi, Vinod K.; Nunes, Suzana P.

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm -1 at 30 °C and 16.8 × 10 -2 S cm -1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level.

  10. Phosphorus-containing sulfonated polyimides for proton exchange membranes

    OpenAIRE

    2008-01-01

    Synthesis and characterization of the novel sulfonated BAPPO monomer and its use in the synthesis of a new phosphine oxide-based sulfonated polyimide are described. BTDA, 6FDA, and DDS were used as monomers in the polyimide synthesis. Sulfonated polyimide membranes were obtained by a solution thermal imidization method. The thermal behavior of the polymers was investigated by DSC and TGA. The morphological structure of the membranes was investigated by tapping-mode AFM. The proton conductivit...

  11. Synthesis and Characterization of Ion-exchange Sulfonated Poly (ether sulfone)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    N,N'-Bis(3-hydroxyphenyl)-1,8,4,5-naphthalenetetracarboxylic bisimide was prepared from the reaction of 1,8,4,5-naphthalenetetrcarboxylic acid dianhydride and 2-aminophenol in N,N-dimethylformamide. Polymerization of this bisimide with 4,4'-difluorodiphenylsulfone and disodium 3,3'-disulfonate4,4'-difluorodiphenylsulfone gave ion-exchange sulfonated poly(ether sulfone). The structure of the title compound was characterized with 1H-NMR and its polymer was characterized with FT-IR.

  12. Planning High-Risk High-Reward Activities.

    NARCIS (Netherlands)

    Casault, Sébastien

    2014-01-01

    This body of work addresses a gap in financial and economic theories related to assets that are typically associated with high uncertainty. Specifically, this thesis provides some foundational work towards a new way to quantify and explain how high-risk high-reward activities, such as exploration,

  13. Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels.

    Science.gov (United States)

    Antunes, Margarida M; Russo, Patrícia A; Wiper, Paul V; Veiga, Jacinto M; Pillinger, Martyn; Mafra, Luís; Evtuguin, Dmitry V; Pinna, Nicola; Valente, Anabela A

    2014-03-01

    The acid-catalyzed reaction of 5-(hydroxymethyl)-2-furfural with ethanol is a promising route to produce biofuels or fuel additives within the carbohydrate platform; specifically, this reaction may give 5-ethoxymethylfurfural, 5-(ethoxymethyl)furfural diethylacetal, and/or ethyl levulinate (bioEs). It is shown that sulfonated, partially reduced graphene oxide (S-RGO) exhibits a more superior catalytic performance for the production of bioEs than several other acid catalysts, which include sulfonated carbons and the commercial acid resin Amberlyst-15, which has a much higher sulfonic acid content and stronger acidity. This was attributed to the cooperative effects of the sulfonic acid groups and other types of acid sites (e.g., carboxylic acids), and to the enhanced accessibility to the active sites as a result of the 2D structure. Moreover, the acidic functionalities bonded to the S-RGO surface were more stable under the catalytic reaction conditions than those of the other solids tested, which allowed its efficient reuse.

  14. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    OpenAIRE

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing sulfonated units were prepared by blending styrene-block-butadiene-block-styrene (SBS), with both sulfonated PS and sulfonated SEBS in a Brabender mixer. Such a procedure was performed as an alter...

  15. Design, synthesis, and evaluation of 2 beta-alkenyl penam sulfone acids as inhibitors of beta-lactamases.

    Science.gov (United States)

    Richter, H G; Angehrn, P; Hubschwerlen, C; Kania, M; Page, M G; Specklin, J L; Winkler, F K

    1996-09-13

    A general method for synthesis of 2 beta-alkenyl penam sulfones has been developed. The new compounds inhibited most of the common types of beta-lactamase. The level of activity depended very strongly on the nature of the substituent in the 2 beta-alkenyl group. The inhibited species formed with the beta-lactamase from Citrobacter freundii 1205 was sufficiently stable for X-ray crystallographic studies. These, together with UV absorption spectroscopy and studies of chemical degradation, suggested a novel reaction mechanism for the new inhibitors that might account for their broad spectrum of action. The (Z)-2 beta-acrylonitrile penam sulfone Ro 48-1220 was the most active inhibitor from this class of compound. The inhibitor enhanced the action of, for example, ceftriaxone against a broad selection of organisms producing beta-lactamases. The organisms included strains of Enterobacteriaceae that produce cephalosporinases, which is an exceptional activity for penam sulfones.

  16. Sulfonated carbon black-based composite membranes for fuel cell applications

    Indian Academy of Sciences (India)

    Hacer Doǧan; Emel Yildiz; Metin Kaya; Tülay Y Inan

    2013-08-01

    Two different commercial grade carbon black samples, Cabot Regal 400R (C1) and Cabot Mogul L (C2), were sulfonated with diazonium salt of sulfanilic acid. The resultant sulfonated carbon black samples (S–C) were characterized by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton conduction, water uptake, ion exchange capacity and chemical stability. Incorporation of S–C particles above 0.25 wt% caused decrease in chemical stability. Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of the composite membranes with the addition of S–C particles at high concentrations due to the agglomeration problems and decrease in the content of conductive polymer matrix.

  17. 40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses... salt (PMN P-90-456) is subject to reporting under this section for the significant new use described in...

  18. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  19. Controlling Structure in Sulfonated Block Copolymer Membranes

    Science.gov (United States)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  20. Anaerobic degradation of linear alkylbenzene sulfonate.

    Science.gov (United States)

    Mogensen, Anders S; Haagensen, Frank; Ahring, Birgitte K

    2003-04-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C12 LAS), which show that C12 LAS was biodegradable under methanogenic conditions. Sorption of C12 LAS on sewage sludge was described with a Freundlich isotherm. The C12 LAS sorption was determined with different concentrations of total solids (TS). In the semi-continuously stirred tank reactor, 18% of the added C12 LAS was bioavailable and 20% was biotransformed when spiking with 100 mg/L of C12 LAS and a TS concentration of 14.2 mg/L. Enhanced bioavailability of C12 LAS was obtained in an upflow anaerobic sludge blanket (UASB) reactor inoculated with granular sludge and sewage sludge. Biodegradation under thermophilic conditions was 37% with LAS as sole carbon source. Benzaldehyde was produced in the UASB reactor during LAS transformation.

  1. Sulfonated polyvinyl chloride fibers for cation-exchange microextraction.

    Science.gov (United States)

    Xu, Li; Lee, Hian Kee

    2009-09-18

    Polyvinyl chloride (PVC) fiber was derivatized by concentrated sulfuric acid to yield sulfonated PVC (PVC-SO3H). The PVC-SO3H fiber had dual properties as a sorbent, based on cation-exchange and hydrophobicity. In the present study, the novel fiber was used directly as an individual device for extraction purposes in the cation-exchange microextraction of anaesthetics, followed by high-performance liquid chromatography-UV analysis. The results demonstrated that this PVC-SO3H fiber-based microextraction afforded convenient operation and cost-effective application to basic analytes. The limits of detection for four anaesthetics ranged from 1.2 to 6.0 ng/mL. No carryover (because of its disposable usage), and no loss of sorbent phase (which normally occurs in stir-bar sorptive extraction) during extraction were observed.

  2. Mouse model of ulcerative colitis using trinitrobenzene sulfonic acid

    Directory of Open Access Journals (Sweden)

    Irfan Ahmad Rather

    2015-12-01

    Full Text Available Animal model of intestinal inflammation is of paramount significance that aids in discerning the pathologies underlying ulcerative colitis and Crohn’s disease, the two clinical presentations of inflammatory bowel disease. The 2,4,6-trinitrobenzene sulfonic acid (TNBS colitis model represents one such intestinal inflammation-prototype that is generated in susceptible strains of mice through intra-rectal instillation of compound TNBS. In this paper, we demonstrate the experimental induction of TNBS-mediated colitis in a susceptible strain of ICR mice. This can be done by the following steps: a acclimation, b induction and c observation. TNBS-mouse model provides the information in shortest possible time and simultaneously represents a cost effective and highly reproducible model method of studying the pathogenesis of inflammatory bowel disease.

  3. Chemoselective allylation of ketones in ionic liquids containing sulfonate anions.

    Science.gov (United States)

    Galletti, Paola; Moretti, Fabio; Samorì, Chiara; Tagliavini, Emilio

    2009-01-01

    The chemoselective addition of tetraallyltin to dialkyl, alkenyl-alkyl, and alkynyl-alkyl ketones can be performed with high yields in N-methyl-N-butylpyrrolidinium trifuoromethansulfonate (MBP-Tf). Other room temperature ionic liquids (RTILs) can also be successfully employed if some sulfonic acid is added. The reaction is very sensitive to the electronic properties of the substrate. Aryl alkyl ketones bearing electron-withdrawing substituents behave like dialkyl ketones and react promptly; on the contrary, electron-rich aryl alkyl ketones react sluggishly, which allows selective competitive allylation of dialkyl substrates to occur. The ionic liquid solvent can be easily recycled, which meets the green chemistry principles of selectivity and reuse of chemicals. NMR spectroscopic data support the formation of tin-triflate catalysts in situ.

  4. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2013-01-01

    Full Text Available A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported.ResultsReactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 muM.DiscussionThe compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  5. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ziarani Ghodsi Mohammadi

    2013-01-01

    Full Text Available Abstract Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 μM. Discussion The compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  6. Pengaruh Rasio Mol Reaktan dan Lama Sulfonasi terhadap Karakteristik Methyl Ester Sulfonic (MES) dari Metil Ester Minyak Sawit (Effects of Mol Ratio and Sulfonation Time on Methyl Ester Sulfonic (MES) Characteristics from Methyl Ester of Palm Oil)

    OpenAIRE

    Sri Hidayati; Pudji Permadi; Hestuti Eni

    2017-01-01

    An experiment of sulfonation process of methyl ester to produce methyl ester sulfonates (MES) was caried out using methyl ester palm oil in factorial design and NaHSO as sulfonating agent with variation of ratio mol NaHSO : methyl ester (1:1.25, 1:1.5, 1:1.75 and 1:2 ) and sulfonation time (3 hour (L1), 4.5 hour (L2) and 6 hour (L3). The result showed that the best sulfonation condition present in 1:1,5 mol ratio and sulfonation time of 4,5 hour. The best characteristic of MES was produced em...

  7. Reduction of dinitrotoluene sulfonates in TNT red water using nanoscale zerovalent iron particles.

    Science.gov (United States)

    Zhu, Shi-Ni; Liu, Guo-Hua; Ye, Zhengfang; Zhao, Quanlin; Xu, Ying

    2012-07-01

    This research was designed to investigate the feasibility of converting the dinitrotoluene sulfonates (DNTS) in TNT red water into the corresponding aromatic amino compounds using nanoscale zerovalent iron (NZVI). NZVI particles were simultaneously synthesized and stabilized by sodium borohydride reduction in a nondeoxygenated system. The morphology, elemental content, specific surface area, and crystal properties of the NZVI were characterized before and after the reaction by environmental scanning electron microscope; energy dispersive X-ray; Brunauer, Emmett, and Teller; and X-ray diffraction, respectively. The reduction process was conducted at pH = 6.3 at ambient temperature. The efficiency of the NZVI-mediated DNTS reduction process was monitored by HPLC, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses. The properties of the NZVI particles prepared were found to be similar to those obtained through oxygen-free preparation and inert stabilization processes. Both 2,4-DNT-3-sulfonate (2,220 mg L(-1)) and 2,4-DNT-5-sulfonate (3,270 mg L(-1)) in TNT red water underwent a pseudo-first-order transformation when mixed with NZVI at room temperature and near-neutral pH. Their observed rate constants were 0.11 and 0.30 min(-1), respectively. Within 1 h of processing, more than 99% of DNTS was converted by NZVI-mediated reduction into the corresponding diaminotoluene sulfonates. NZVI can be simultaneously prepared and stabilized in a nondeoxygenated system. NZVI reduction is a highly efficient method for the conversion of DNTS into the corresponding diaminotoluene sulfonates under near-neutral pH conditions. Therefore, NZVI reduction may be useful in the treatment of TNT red water and subsequent recovery of diaminotoluene from explosive wastewater.

  8. Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Sanz, José L; Culubret, Elayne; de Ferrer, Juan; Moreno, Alfonso; Berna, José L

    2003-01-01

    The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4-5 mg-LAS/l x day and a hydraulic retention time of one day. The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64-85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment.

  9. Palladium-catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines.

    Science.gov (United States)

    Vo, Giang D; Hartwig, John F

    2009-08-12

    We report that the complex generated from Pd[P(o-tol)(3)](2) and the alkylbisphosphine CyPF-t-Bu is a highly active and selective catalyst for the coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates. The couplings of ammonia with this catalyst conducted with a solution of ammonia in dioxane form primary arylamines from a variety of aryl electrophiles in high yields. Catalyst loadings as low as 0.1 mol % were sufficient for reactions of many aryl chlorides and bromides. In the presence of this catalyst, aryl sulfonates also coupled with ammonia for the first time in high yields. A comparison of reactions in the presence of this catalyst versus those in the presence of existing copper and palladium systems revealed a complementary, if not broader, substrate scope. The utility of this method to generate amides, imides, and carbamates is illustrated by a one-pot synthesis of a small library of these carbonyl compounds from aryl bromides and chlorides, ammonia, and acid chlorides or anhydrides. Mechanistic studies show that reactions conducted with the combination of Pd[P(o-tol)(3)](2) and CyPF-t-Bu as catalyst occur with faster rates and higher yields than those conducted with CyPF-t-Bu and palladiun(II) as catalyst precursors because of the low concentration of active catalyst that is generated from the combination of palladium(II), ammonia, and base.

  10. 一株高效降解直链烷基苯磺酸钠降解菌的分离鉴定及特性研究%Isolation and characterization of a bacteria strain with high efficiency to degrade linear alkylbenzene sulfonates

    Institute of Scientific and Technical Information of China (English)

    孙德坤; 赵海泉

    2011-01-01

    从合肥市王小郢污水处理厂的污泥中分离得到一株能高效降解直链烷基苯磺酸钠(linear alkylbenzene sulfonates,LAS)的菌株S1.通过对其形态特征、生理生化性质以及16s rDNA序列分析,鉴定菌株S1为人苍白杆菌(Ochrobactrum anthropi).对菌株S1降解LAS进行了研究,结果表明,菌株S1利用LAS生长的最适温度为30℃,最适pH值为7.0;菌株S1在LAS的浓度低于1 000mg·L-1的环境中,对LAS的降解率在80%以上;菌株S1在LAS浓度达到3 500mg·L-1环境中仍能生长.%A bacterial strain, S1, which is able to degrade linear alkylbenzene sulfonates (LAS) with high efficiency, was isolated from the sewage of Wangxiaoying wastewater treatment plant. According to its morpho logical and physiological properties and 16S rDNA sequence analysis, the bacteria strain was identified as Ochrobactrum anthropi. The optimum growth conditions for strain S1 were at 30℃ and pH 7.0, using LAS as sole carbon source. The degradation rate of strain S1 was higher than 80% when growing with LAS below 1 000 mg·L-1, and strain S1 could still grow with LAS above 3 500 mg·L-1.

  11. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  12. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor.

    Science.gov (United States)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-03-25

    The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion(®). The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion(®), resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  13. Investigating the potential of using acoustic frequency on the degradation of linear alkylbenzen sulfonates from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effectiveness of using acoustical (sonochemical) reactor for degradation of linear alkylbenzen sulfonate (LAS) from aqueous solution was investigated. LASs are anionic surfactants, found in relatively high amounts in domestic and industrial wastewaters. In this study, experiments on LAS solution were performed using methylene blue active substances (MBAS) method.The effectiveness of acoustical processor reactor for LAS degradation is evaluated with emphasis on the effect of treatment time and initial LAS concentration. Experiments were performed at initial concentrations of 0.2, 0.5, 0.8 and 1.0 mg/L, acoustic frequency of 130 kHz, applied power of 500 W and temperature of 18 ℃~20 ℃. At the conditions involved, LAS degradation was found to increase with increasing sonochemical time. In addition, as the concentration increased, the LAS degradation rate decreased in the acoustical processor reactor.

  14. The Role of Neutralizing Ion Type on the Dynamics of Sulfonated Polystyrene Ionomers

    Science.gov (United States)

    Castagna, Alicia; Wang, Wenqin; Winey, Karen I.; Runt, James

    2011-03-01

    Sulfonated polystyrene (SPS) ionomers neutralized with Na, Cs, and Zn were investigated using scanning transmission electron microscopy (STEM), X-ray scattering, and dielectric relaxation spectroscopy. The role of the neutralizing ion on the structure and molecular dynamics will be discussed as a function of sulfonation level. STEM and X-ray scattering revealed the presence of spherical aggregates 2 nm in diameter. Successful fitting of the scattering data to the Kinning-Thomas modified hardsphere model provides additional information on aggregate size, number density and radius of closest approach. The dynamics of these materials, as revealed by DRS, are highly sensitive to the neutralizing ion, in particular, the character of the segmental relaxation, i.e. relaxation time, breadth and number of relaxations. Additionally, the relaxation time of the Maxwell-Wagner-Sillars interfacial polarization process at high temperatures is also highly dependent on neutralization and ion character.

  15. Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery.

    Science.gov (United States)

    Zhou, Rui; Liu, Wanshuang; Leong, Yew Wei; Xu, Jianwei; Lu, Xuehong

    2015-08-05

    Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) are promising nonvolatile electrolytes with high ionic conductivity. The large cations of ILs are, however, difficult to diffuse into solid electrodes, making them unappealing for application in some electrochemical devices. To address this issue, a new strategy is used to introduce proton conduction into an IL-based electrolyte. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) copolymer is functionalized with sulfonic acid through covalent attachment of taurine. The sulfonic acid-grafted P(VDF-HFP) electrospun mats consist of interconnected nanofibers, leading to remarkable improvement in dimensional stability of the mats. IL-based polymer electrolytes are prepared by immersing the modified mats in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)). It is found that the SO3(-) groups can have Lewis acid-base interactions with the cations (BMIM(+)) of IL to promote the dissociation of ILs, and provide additional proton conduction, resulting in significantly improved ionic conductivity. Using this novel electrolyte, polyaniline-based electrochromic devices show higher transmittance contrast and faster switching behavior. Furthermore, the sulfonic acid-grafted P(VDF-HFP) electrospun mats can also be lithiated, giving additional lithium ion conduction for the IL-based electrolyte, with which Li/LiCoO2 batteries display enhanced C-rate performance.

  16. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    Energy Technology Data Exchange (ETDEWEB)

    Mabrouk, W. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France); Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Ogier, L. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Matoussi, F. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Sollogoub, C., E-mail: cyrille.sollogoub@cnam.fr [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France); Vidal, S. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Dachraoui, M. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Fauvarque, J.F. [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France)

    2011-08-15

    Highlights: {yields} New, simple and cheap way to synthesize a membrane. {yields} The membranes combine good proton conductivities with good mechanical properties. {yields} The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g{sup -1} (1.3 H{sup +} per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm{sup -1} at room temperature in aqueous H{sub 2}SO{sub 4} 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  17. Electrochemical characteristics of dodecylbenzene sulfonic acid-doped polyaniline in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.Y. [Korea Electr. Power Res. Inst., Taejon (Korea, Republic of). Power Utilization Group; Chung, I.J. [Department of Chemical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong Yusong, Taejon 305-701 (Korea, Republic of); Chun, J.H.; Ko, J.M. [Department of Industrial Chemistry, Taejon National University of Technology, 305-3, Samsung-2 dong, Dong-gu, Taejon 300-717 (Korea, Republic of)

    1999-02-26

    The electrochemical characteristics of the polyaniline (PAn) films doped with dodecylbenzene sulfonic acid (DBSA) were investigated in aqueous solutions by means of cyclic voltammetry. The PAn-DBSAs film showed a good electrochemical activity in a weak acid solution as well as in a strong acid solution due to the incorporation of small cation instead of DBSA trapped in the film for charge neutralization of polymer matrix. (orig.) 39 refs.

  18. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    Science.gov (United States)

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Enclosure for handling high activity materials

    Energy Technology Data Exchange (ETDEWEB)

    Jimeno de Osso, F.

    1977-07-01

    One of the most important problems that are met at the laboratories producing and handling radioisotopes is that of designing, building and operating enclosures suitable for the safe handling of active substances. With this purpose in mind, an enclosure has been designed and built for handling moderately high activities under a shielding made of 150 mm thick lead. In this report a description is given of those aspects that may be of interest to people working in this field. (Author)

  20. Sulfonated polystyrene as a new gradient-index medium for light-focusing elements.

    Science.gov (United States)

    Jung, S D; Hwang, W Y; Song, S H; Lee, el-H; Lee, J I; Shim, H K

    1995-06-01

    We have discovered that the sulfonation of polystyrene can form a gradient-index medium useful for lightfocusing purposes. We found that the refractive index of sulfonated polystyrene varies with the degree of sulfonation and that the refractive index of the fully sulfonated polystyrene decreased by approximately 0.06 at 0.633 microm from that of pure polystyrene.

  1. Silica-supported sulfonic acids as recyclable catalyst for esterification of levulinic acid with stoichiometric amounts of alcohols

    Directory of Open Access Journals (Sweden)

    Raimondo Maggi

    2016-10-01

    Full Text Available Converting biomass into value-added chemicals holds the key to sustainable long-term carbon resource management. In this context, levulinic acid, which is easily obtained from cellulose, is valuable since it can be transformed into a variety of industrially relevant fine chemicals. Here we present a simple protocol for the selective esterification of levulinic acid using solid acid catalysts. Silica supported sulfonic acid catalysts operate under mild conditions and give good conversion and selectivity with stoichiometric amounts of alcohols. The sulfonic acid groups are tethered to the support using organic tethers. These tethers may help in preventing the deactivation of the active sites in the presence of water.

  2. 高温油井水泥缓凝剂聚2-丙烯酰胺基-2-甲基丙磺酸/苯乙烯磺酸钠/衣康酸的合成及缓凝效果%Terpolymerization and Retardation of A High Temperature Cement Retarder Poly 2-Acrylamido-2-Methyl Propane Sulfonic Acid/Sodium Styrene Sulfonate/Itaconic Acid for Oil Well

    Institute of Scientific and Technical Information of China (English)

    董文博; 庄稼; 马彦龙; 程小伟; 郭小阳

    2012-01-01

    A retader with terpolymer 2-acrylamido-2-methyl propane sulfonic acid(AMPS)/sodium styrene sulfonate(SSS)/itaconic acid(IA) was synthesized via the aqueous solution copolymerization of free radical.The synthesized product was characterized by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy,respectively.The optimum reaction conditions of the copolymerization were obtained via the orthogonal experiment.The optimum reaction conditions were pH of 7 in the solution,3% of concentration by weight of the initiator in total monomers,the reaction time of 5 hours,the reaction temperature of 60 ℃,and the rate of the AMPS: IA: SSS of 57:24:19.The experiments of the cement early compressive strength at different dosages of cement retarder showed that the AMPS/SSS/IA could effectively suppress the cement strength degradation during 24 hours.The AMPS/SSS/IA had an excellent retardation property in a high temperature and a high pressure.The retardation time could reach 200 minutes at 140 ℃.The mechanism of the delayed coagulation of the terpolymer was analyzed via X-ray diffraction and scanning electron microscopy.The cement retardation could be since a) the terpolymer led to the restraint of the formation and growth of the Ca(OH)2 crys-tal,b) the terpolymer chelated Ca2+ to form chelate complex,and the terpolymer increased the thickness of the(C-S-H) coat.%根据自由基水溶液聚合原理,合成2-丙烯酰胺基-2甲基丙磺酸(AMPS)、苯乙烯磺酸钠(SSS)和衣康酸(IA)的三元共聚物缓凝剂(AMPS/SSS/IA),采用红外光谱和核磁共振表征其结构,表明所合成共聚物为目标产物。经正交实验得到AMPS/SSS/IA的最佳合成条件:溶液酸碱度pH=7、引发剂加量为3%、反应时间为5 h、反应温度为60℃、单体AMPS、IA、SSS的质量比为57:24:19。测试了缓凝剂不同加量的水泥石24 h抗压强度,结果表明AMPS/SSS

  3. Evaluation of genotoxic activity of maleic hydrazide, ethyl methane sulfonate, and N-nitroso diethylamine in Tradescantia Evaluación de la genotoxicidad de hidrazida málica, N-nitroso dietilamina, y etil metano sulfonato, en núcleos de Tradescantia, por medio de la prueba del cometa

    Directory of Open Access Journals (Sweden)

    Carlos Alvarez-Moya

    2001-12-01

    Full Text Available Objective. To assess the genotoxic activity of N-nitroso diethylamine (NDEA, maleic hydrazide (MH, and ethyl methane sulfonate (EMS using two systems: the comet assay on nuclei from Tradescantia, and the pink mutation test on Tradescantia staminal hairs (clone 4430. Material and Methods. Tradescantia cups was obtained from Laboratorio de Citogenética y Mutagénesis del Centro de Ciencias de la Atmósfera de la Universidad Nacional Autónoma de México and treated with: N-nitroso diethylamine (NDEA at 1, 5, 10 mM, maleic hidrazide (MH at 1, 5, 10 mM and ethyl methane sulfonate (EMS at 15, 30 and 45 mM; and used in both pink mutation assay and comet assay using cellular nuclei from Tradescantia staminal hairs. The observation of staminal hair was realized along eight days (6-14 after treatment, flowers produced day 14 after treatment were utilized done according to Underbrink. In previous reports on plants, were comet assay was used, breaking cellular wall and separating by centrifugation gradient are necessary. Here, nuclei from staminal hairs were obtained by squashing the cells (is not necessary to utilize to break special procedure cellular wall, collected using a nylon mesh of 80Mm and next the comet assay was applied. Student's T test was the statistical test used for analyzing the comet assay data. Results. Both assays showed a great sensitivity to the studied mutagens. A relationship between the dose-pink event and the dose-tail length was evident. Even though the Tradescantia mutation assay is a sensitive test with MH and EMS, low doses of NDEA were not able to induce a significant increase in the pink event frequencies; however, the comet assay was able to detect the mutagenic effect of NDEA at the same dose. Thus, it is clear that the comet assay is highly sensitive to the lowest dose of chemical mutagens. Conclusions. The comet assay on nuclei from Tradescantia staminal hairs is a useful tool to monitor genotoxic agents; it is simple

  4. Anhydrous proton conducting materials based on sulfonated dimethylphenethylchlorosilane grafted mesoporous silica/ionic liquid composite.

    Science.gov (United States)

    Amiinu, Ibrahim Saana; Liang, Xinmiao; Tu, Zhengkai; Zhang, Haining; Feng, Jiwen; Wan, Zhongmin; Pan, Mu

    2013-11-27

    Efficient membrane proton conductivity at elevated temperatures (>100 °C) and reduced humidification conditions is a critical issue hindering fuel cell commercialization. Herein, proton conducting materials consisting of high surface area acid catalyzed mesoporous silica functionalized with sulfonated dimethylphenethylchlorosilane was investigated under anhydrous conditions. The organic moiety covalently bonded to the silica substrate via active hydroxyl groups on the silica pore surface. The structure and dynamic phases of the attached organic molecule were characterized and qualitatively determined by XRD, TEM, FT-IR, and solid state NMR. The amount of grafted organic molecules was estimated to be 2.45 μmol m(-2) by carbon elemental analysis. The so-formed composite materials showed adequate thermal stability up to 300 °C as determined by TGA. Under anhydrous conditions, ionic conductivity of the composite material upon ionic liquid impregnation reaches a peak value of 1.14 × 10(-2) S cm(-1) at 160 °C associated with the activation energy of 9.24 kJ mol(-1) for proton transport.

  5. Random UV mutagenesis approach for enhanced biodegradation of sulfonated azo dye, Green HE4B.

    Science.gov (United States)

    Joshi, Swati M; Inamdar, Shrirang A; Jadhav, Jyoti P; Govindwar, Sanjay P

    2013-03-01

    The objective of the study was to execute mutant bacteria for efficient biodegradation of sulfonated azo dye, Green HE4B (GHE4B). UV irradiation was used to introduce random mutations in Pseudomonas sp. LBC1. Genetic alterations induced by UV irradiation in selected mutant bacteria were confirmed by random amplification of polymorphic DNA technique. The mutant bacteria named as Pseudomonas sp. 1 F reduced the time required for complete degradation of recalcitrant dye GHE4B by 25 % when compared with the wild one. The biodegradation was monitored by UV-Vis spectrophotometric analysis. Activities of enzymes like laccase, lignin peroxidase, veratryl alcohol oxidase, and NADH dichlorophenol indophenol reductase were found to be boosted in mutant bacteria as a consequence of UV-induced mutation. Matrix-assisted laser desorption/ionization-time of flight analysis of differentially expressed proteins of mutant bacteria suggested active role of antioxidant enzymes in the degradation of the dye. The degradation product was analyzed by Fourier transform infrared spectroscopy, high-performance thin-layer chromatography, and gas chromatography-mass spectrometry. Results revealed few variations in the degradation end products of wild-type and mutant bacteria. Phytotoxicity study underlined the safer biodegradation of GHE4B by mutant Pseudomonas sp. 1 F.

  6. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  7. Sulfonate-based fluorescent probes for imaging hydrogen peroxide in living cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the mechanism of H2O2-mediated hydrolysis of sulfonates, two fluorescein disulfonates compounds (FS-1 and FS-2) were designed and synthesized as the highly selective and sensitive fluorescent probes for imaging H2O2 in living cells. The probes were detected with elemental analysis, IR, 1H NMR and 13C NMR. Upon reaction with H2O2, the probes exhibit strong fluorescence responses and high selectivity for H2O2 over other reactive oxygen species and some biological compounds. Furthermore, the sulfonate-based probes, as novel fluorescent reagents, are cell-permeable and can detect micromolar changes in H2O2 concentrations in living cells by using confocal microscopy.

  8. Sulfonate-based fluorescent probes for imaging hydrogen peroxide in living cells

    Institute of Scientific and Technical Information of China (English)

    XU KeHua; LIU Fen; WANG HuiXia; WANG ShanShan; WANG LuLu; TANG Bo

    2009-01-01

    Based on the mechanism of H2O2-mediated hydrolysis of sulfonates, two fluorescein disulfonates compounds (FS-1 and FS-2) were designed and synthesized as the highly selective and sensitive fluo-rescent probes for imaging H2O2 in living cells. The probes were detected with elemental analysis, IR, 1H NMR and 13C NMR. Upon reaction with H2O2, the probes exhibit strong fluorescence responses and high selectivity for H202 over other reactive oxygen species and some biological compounds. Fur-thermore, the sulfonate-based probes, as novel fluorescent reagents, are cell-permeable and can detect micromolar changes in H202 concentrations in living cells by using confocal microscopy.

  9. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.; Hirth, Thomas [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany); Schiestel, Thomas, E-mail: Thomas.Schiestel@igb.fraunhofer.de [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany)

    2011-05-25

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 {+-} 2.6 kJ mol{sup -1}. High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  10. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    Science.gov (United States)

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-activity liquid packaging design criteria

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    In recent studies, it has been acknowledged that there is an emerging need for packaging to transport high-activity liquid off the Hanford Site to support characterization and process development activities of liquid waste stored in underground tanks. These studies have dealt with specimen testing needs primarily at the Hanford Site; however, similar needs appear to be developing at other US Department of Energy (DOE) sites. The need to ship single and multiple specimens to offsite laboratories is anticipated because it is predicted that onsite laboratories will be overwhelmed by an increasing number and size (volume) of samples. Potentially, the specimen size could range from 250 mL to greater than 50 L. Presently, no certified Type-B packagings are available for transport of high-activity liquid radioactive specimens in sizes to support Site missions.

  12. Synthesis of Poly(phthalazinone ether ketone) Containing Sodium Sulfonate Groups via Direct Polymerization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    1, 2-Dihydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one(DHPZ) was sulfonated in con- centrated sulfuric acid. Poly(phthalazinone ether ketone) containing pendant sodium sulfonate group was synthesized from sulfonated and pure 1,2-dihydro-4-(4-hydroxyphenyl)(2H)phthalazin- 1-one, and 4,4(-difluorodiphenylketone. The sulfonated monomer and sulfonated polymer were characterized with FT-IR and 1H-NMR.

  13. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation

    OpenAIRE

    Picchioni, F.; Tricoli,V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was found that both these properties increase as the polymer is increasingly sulfonated, with abrupt jumps occurring at a concentration of sulfonic acid groups of about 15 mol%. The most extensively sulfon...

  14. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    OpenAIRE

    Martins, Cristiane R.; Ruggeri,Giacommo; Paoli,Marco-A. De

    2003-01-01

    The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units). The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Th...

  15. Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater.

    Science.gov (United States)

    Sigoillot, J C; Nguyen, M H

    1992-01-01

    Anionic surfactants, especially alkylbenzene sulfonates, are discharged into marine areas in great quantities. Because of their poor biodegradability, linear alkylbenzene sulfonates accumulate in seawater and sediments. Bacterial communities that can degrade surfactants were selected from coastal seawater contaminated by urban sewage. All the isolated strains consisted of gram-negative, strictly aerobic rods or helical bacteria. Some of these, though isolated from coastal seawater, did not need sodium for growth and appeared to be related to the genera Alcaligenes and Pseudomonas. Complete surfactant biodegradation was achieved by three important steps: terminal oxidation of the alkyl chain, desulfonation, and aromatic-ring cleavage. Only a few strains were able to carry out the first two steps. The aromatic ring was then cleaved by other strains that possess very specific enzymatic activities. Finally, a number of strains grew on short acids that were end-of-metabolism products of the others. PMID:1599249

  16. High activity carbon sorbents for mercury capture

    Energy Technology Data Exchange (ETDEWEB)

    George G. Stavropoulos; Irene S. Diamantopoulou; George E. Skodras; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory

    2006-07-01

    High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N{sub 2} adsorption at 77K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior. 10 refs., 3 figs., 1 tab.

  17. Synthesis of naphthoxazinone derivatives using silica-bonded -sulfonic acid as catalyst under solvent-free conditions

    Indian Academy of Sciences (India)

    Khodabakhsh Niknam; Parisa Abolpour

    2015-07-01

    Silica-bonded -sulfonic acid is employed as a recyclable catalyst for the synthesis of naphthoxazinone derivatives from the reaction of -naphthol, aromatic aldehydes and urea at 150°C under solvent-free conditions. The heterogeneous catalyst was recycled for five runs after the reaction of -naphthol, benzaldehyde and urea without losing its catalytic activity.

  18. HEPATIC GENE EXPRESSION PROFILING IN PERFLUOROHEXANE SULFONATE-EXPOSED WILD-TYPE AND PPARα-NULL MICE.

    Science.gov (United States)

    Perfluorohexane sulfonate (PFHxS) is one member of a group ofperfluoroakyl acids (PFAAs) presently recognized as widespread environmental contaminants. Like other PFAAs, PFHxS is also commonly found in human serum. Although PFHxS is presumed to be an activator of peroxisome proli...

  19. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  20. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Science.gov (United States)

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  1. Tracer Diffusion of Polystyrene in Lightly Sulfonated Polystyrene

    Science.gov (United States)

    Xu, Chen; Zhou, Nancy; Burghardt, Wesley; Winey, Karen; Composto, Russell

    2005-03-01

    The tracer diffusion coefficient D^* of deuterated polystyrene (d-PS) (Mw = 65,900 g/mol) in lightly sulfonated polystyrene (P(S-SSx)) (Mw = 65,000 g/mol) as a function of sulfonation mole fraction (x) was measured by forward recoil spectrometry (FRES). For x sulfonation, according to D^* = Do exp(-0.14 Ns), where Ns is the number of sulfuric acid groups per chain. This slowing-down is attributed to an increase in the monomeric friction coefficient which increases with sulfonation. The diffusion mechanism includes both reptation and constraint release. The monomeric friction coefficient for d-PS in P(S-SSx) is compared with the coefficient for P(S-SSx) measured by rheology.

  2. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    Science.gov (United States)

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-12-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  3. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  4. Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide

    Institute of Scientific and Technical Information of China (English)

    Gabriel Morales; Juan A.Melero; Marta Paniagua; Jose Iglesias; Blanca Hernández; María Sanz

    2014-01-01

    Sulfonic acid-functionalized heterogeneous catalysts have been evaluated in the catalytic dehydra-tion of C6 monosaccharides into 5-hydroxymethylfurfural (HMF) using dimethyl sulfoxide (DMSO) as solvent. Sulfonic commercial resin Amberlyst-70 was the most active catalyst, which was as-cribed to its higher concentration of sulfonic acid sites as compared with the other catalysts, and it gave 93 mol%yield of HMF from fructose in 1 h. With glucose as the starting material, which is a much more difficult reaction, the reaction conditions (time, temperature, and catalyst loading) were optimized for Amberlyst-70 by a response surface methodology, which gave a maximum HMF yield of 33 mol%at 147°C with 23 wt%catalyst loading based on glucose and 24 h reaction time. DMSO promotes the dehydration of glucose into anhydroglucose, which acts as a reservoir of the substrate to facilitate the production of HMF by reducing side reactions. Catalyst reuse without a regeneration treatment showed a gradual but not very significant decay in catalytic activity.

  5. Composite proton exchange membrane based on sulfonated organic nanoparticles

    Science.gov (United States)

    Pitia, Emmanuel Sokiri

    As the world sets its sight into the future, energy remains a great challenge. Proton exchange membrane (PEM) fuel cell is part of the solution to the energy challenge because of its high efficiency and diverse application. The purpose of the PEM is to provide a path for proton transport and to prevent direct mixing of hydrogen and oxygen at the anode and the cathode, respectively. Hence, PEMs must have good proton conductivity, excellent chemical stability, and mechanical durability. The current state-of-the-art PEM is a perfluorosulfonate ionomer, Nafion®. Although Nafion® has many desirable properties, it has high methanol crossover and it is expensive. The objective of this research was to develop a cost effective two-phase, composite PEM wherein a dispersed conductive organic phase preferentially aligned in the transport direction controls proton transport, and a continuous hydrophobic phase provides mechanical durability to the PEM. The hypothesis that was driving this research was that one might expect better dispersion, higher surface to volume ratio and improved proton conductivity of a composite membrane if the dispersed particles were nanometer in size and had high ion exchange capacity (IEC, = [mmol sulfonic acid]/gram of polymer). In view of this, considerable efforts were employed in the synthesis of high IEC organic nanoparticles and fabrication of a composite membrane with controlled microstructure. High IEC, ~ 4.5 meq/g (in acid form, theoretical limit is 5.4 meq/g) nanoparticles were achieved by emulsion copolymerization of a quaternary alkyl ammonium (QAA) neutralized-sulfonated styrene (QAA-SS), styrene, and divinylbenzene (DVB). The effects of varying the counterion of the sulfonated styrene (SS) monomer (alkali metal and QAA cations), SS concentration, and the addition of a crosslinking agent (DVB) on the ability to stabilize the nanoparticles to higher IECs were assessed. The nanoparticles were ion exchanged to acid form. The extent of ion

  6. 一种新型触角状聚苯乙烯磺酸树脂的合成研究%Synthesis of a Novel Tentacular Sulfonated Polystyrene Resin

    Institute of Scientific and Technical Information of China (English)

    潘翠; 郑涛; 陈怡露; 魏荣卿; 张家宏; 刘晓宁

    2015-01-01

    A polystyrene resin with tentacular polystyrene chains (PS-g-LPS) was prepared from chloroacetic polystyrene microspheres (PS-acyl-Cl) via atom transfer radical polymerization(ATRP). PS-g-LPS can be efficiently sulfonated to obtain a new sulfonated polystyrene resin (vHP-SPS-Cat) with seed andtentacular sulfonated polystyrene chains. The sulfonated resin was characterized by FT-IR, elemental analyser, optical microscope and studied by catalytic esterification reaction. Experimental results show that vHP-SPS-Cat can overcoming the problem of physical diffusion of reactants and have a high homogeneous catalytic activity in the synthesis of low-molecular weight esters and biodiesels.%经氯乙酰聚苯乙烯微球(PS-acyl-Cl)的 ATRP 接枝聚合,制备了具有触角状聚苯乙烯链的聚苯乙烯树脂(PS-g-LPS),该树脂可快速、高效磺化,经磺化条件的优化,得到一新型的触角状聚苯乙烯磺酸树脂(vHP-SPS-Cat),对vHP-SPS-Cat进行了FT-IR、元素分析、光学显微镜观察及催化酯化.结果表明,vHP-SPS-Cat可克服试剂的物理扩散的阻碍,用于小分子酯或生物柴油的催化合成,而达到高效均相催化的效果.

  7. The Snail-Induced Sulfonation Pathway in Breast Cancer Metastasis

    Science.gov (United States)

    2014-09-01

    AD_________________ Award Number: W81XWH-11-1-0494   TITLE: The Snail -Induced Sulfonation... Snail -Induced Sulfonation Pathway in Breast Cancer Metastasis 5b. GRANT NUMBER W81XWH-11-1-0494 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr...provided funding for a 3-year project that has resulted in fundamental new insights into how the transcription factor Snail can control gene

  8. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  9. Prophylactic administration of non-organophosphate cholinesterase inhibitors before acute exposure to organophosphates: assessment using terbufos sulfone.

    Science.gov (United States)

    Lorke, Dietrich E; Nurulain, Syed M; Hasan, Mohamed Y; Kuča, Kamil; Petroianu, Georg A

    2014-10-01

    Poisoning with organophosphorus compounds (OPCs) poses a serious threat worldwide. OPC-induced mortality can be significantly reduced by prophylactic administration of reversible acetylcholinesterase (AChE) inhibitors. The only American Food and Drug Administration (FDA)-approved substance for such pre-treatment (to soman exposure) is presently pyridostigmine, although its efficacy is controversial. In search for more efficacious and broad-spectrum alternatives, we have assessed in vivo the mortality-reducing efficacy of a group of five compounds with known AChE inhibitory activity (pyridostigmine, physostigmine, ranitidine, tacrine and K-27), when given in equitoxic dosage (25% of LD01 ) 30 min before exposure to the OPC terbufos sulfone. Protection was quantified in rats by determining the relative risk of death (RR) using Cox analysis, with RR = 1 for animals given only terbufos sulfone, but no pre-treatment. All tested AChE inhibitors reduced terbufos sulfone-induced mortality significantly (p ≤ 0.05) as compared with the non-treatment group (RR = 1: terbufos sulfone only). Best in vivo protection from terbufos sulfone-induced mortality was achieved, when K-27 was given before terbufos sulfone exposure (RR = 0.06), which was significantly (P ≤ 0.05) superior to the pre-treatment with all other tested compounds, for example tacrine (RR = 0.21), pyridostigmine (RR = 0.28), physostigmine (RR = 0.29) and ranitidine (RR = 0.33). The differences in efficacy between tacrine, pyridostigmine, physostigmine and ranitidine were not statistically significant. Prophylactic administration of an oxime (such as K-27) in case of imminent OPC exposure may be a viable option.

  10. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  11. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure.

    Science.gov (United States)

    Lu, Weigang; Yuan, Daqiang; Sculley, Julian; Zhao, Dan; Krishna, Rajamani; Zhou, Hong-Cai

    2011-11-16

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO(3)H) and its lithium salt (PPN-6-SO(3)Li) exhibit significant increases in isosteric heats of CO(2) adsorption and CO(2)-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO(2)/N(2) ratio at 295 K and 1 bar revealed that the sulfonate-grafted PPN-6 networks show exceptionally high adsorption selectivity for CO(2) over N(2) (155 and 414 for PPN-6-SO(3)H and PPN-6-SO(3)Li, respectively). Since these PPNs also possess ultrahigh physicochemical stability, practical applications in postcombustion capture of CO(2) lie well within the realm of possibility.

  12. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Science.gov (United States)

    Mai, Zhensheng; Zhang, Huamin; Li, Xianfeng; Bi, Cheng; Dai, Hua

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test.

  13. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Directory of Open Access Journals (Sweden)

    Beatrice Muriithi

    2016-01-01

    Full Text Available The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes.

  14. Production of high specific activity silicon-32

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R. [Los Alamos National Lab., NM (United States); Brzezinski, M.A. [Univ. of California, Santa Barbara, CA (United States). Marine Biotechnology Center

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  15. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  16. Amitriptyline, clomipramine, and doxepin adsorption onto sodium polystyrene sulfonate

    Science.gov (United States)

    2014-01-01

    Purpose of the study Comparative in vitro studies were carried out to determine the adsorption characteristics of 3 drugs on activated charcoal (AC) and sodium polystyrene sulfonate (SPS). Activated charcoal (AC) has been long used as gastric decontamination agent for tricyclic antidepressants (TCA). Methods Solutions containing drugs (amitriptyline, clomipramine, or doxepin) and variable amount of AC or SPS were incubated for 30 minutes. Results At pH 1.2 the adsorbent: drug mass ratio varied from 2 : 1 to 40 : 1 for AC, and from 0.4 : 1 to 8 : 1 for SPS. UV–VIS spectrophotometer was used for the determination of free drug concentrations. The qmax of amitriptyline was 0.055 mg/mg AC and 0.574 mg/mg SPS, qmax of clomipramine was 0.053 mg/mg AC and 0.572 mg/mg SPS, and qmax of doxepin was 0.045 mg/mg AC and 0.556 mg/mg SPS. The results of adsorption experiments with SPS revealed higher values for the qmax parameters in comparison with AC. Conclusion In vitro gastric decontamination experiments for antidepressant amitriptyline, clomipramine, and doxepin showed that SPS has higher qmax values than the corresponding experiments with AC. Therefore, we suggest SPS is a better gastric decontaminating agent for the management of acute TCA intoxication. PMID:24450391

  17. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna

    Institute of Scientific and Technical Information of China (English)

    Guang-hua Lu; Jian-chao Liu; Li-sha Sun; Lu-jin Yuan

    2015-01-01

    In order to study toxicological effects of perfluorononanoic acid (PFNA), perfluorooctane sulfonate (PFOS), and their mixtures (PFNA/PFOS) on Daphnia magna (D. magna), a suite of comprehensive toxicity tests were conducted, including a 48-h acute toxicity test, a 21-day chronic test, a feeding experiment, and a biomarker assay. D. magna were exposed to aqueous solutions of PFNA and PFOS (alone and in combination) at concentrations ranging from 0.008 to 5 mg/L. The survival, growth, and reproduction of D. magna were monitored over a 21-day life cycle. The biomarkers, including acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT) activities, were determined after seven days of exposure. PFOS was more toxic than PFNA based on the results of the acute toxicity test. Perfluorinated compounds (PFCs) inhibited both growth and reproduction of D. magna during the testing period. The ingestion rates and the biomarkers, including AChE, SOD, and CAT activities, were significantly inhibited by PFCs in most cases. Moreover, the combined effects related to the growth and reproduction showed the antagonistic effects of PFCs.

  18. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna

    Directory of Open Access Journals (Sweden)

    Guang-hua LU

    2015-01-01

    Full Text Available In order to study toxicological effects of perfluorononanoic acid (PFNA, perfluorooctane sulfonate (PFOS, and their mixtures (PFNA/PFOS on Daphnia magna (D. magna, a suite of comprehensive toxicity tests were conducted, including a 48-hour acute toxicity test, a 21-day chronic test, a feeding experiment, and a biomarker assay. D. magna were exposed to aqueous solutions of PFNA and PFOS (alone and in combination at concentrations ranging from 0.008 to 5 mg/L. The survival, growth, and reproduction of D. magna were monitored over a 21-day life cycle. The biomarkers, including acetylcholinesterase (AChE, superoxide dismutase (SOD, and catalase (CAT activities, were determined after seven days of exposure. PFOS was more toxic than PFNA based on the results of the acute toxicity test. Perfluorinated compounds (PFCs inhibited both growth and reproduction of D. magna during the testing period. The ingestion rates and the biomarkers, including AChE, SOD, and CAT activities, were significantly inhibited by PFCs in most cases. Moreover, the combined effects related to the growth and reproduction showed the antagonistic effects of PFCs.

  19. Properties of Polymer Electrolyte Membranes Prepared by Blending of Sulfonated Polystyrene-Lignosulfonate

    Directory of Open Access Journals (Sweden)

    Siang Tandi Gonggo

    2012-11-01

    Full Text Available Electrolyte polymer membrane widely used in PEMFC and DMFC is a perfluorosulfonated membrane such as Nafion. This membrane material exhibits good chemical stability and proton conductivity, but it is very expensive and difficult to recycle. It has high cross-over methanol in DMFC that causes the decrease efficiency and performance of fuel cell, so that the electrolyte polymer membrane with low cross-over methanol has been needed to substitute Nafion membrane. One of the materials used as a polymer electrolyte membrane is polyblends of a sulfonated polystyrene-lignosulfonate (SPS-LS. These polyblends have been prepared by casting polymer solution and characterized as a polyelectrolyte membrane for DMFC. SPS was prepared by sulfonation of polystyrene with acetyl sulfate used as a sulfonating agent. The membranes of SPS-LS were characterized by analysis of functional groups, mechanical properties, and methanol permeability. The maximum mechanical properties of the SPS-LS membrane were observed in LS ratio of 7.5%. However, the methanol permeability of membrane increases as the increase of LS ratio in SPS-LS membranes. The properties of membranes, especially the mechanical property and methanol permeability close to that of Nafion® 117 membrane, so the SPS-LS membrane is highly potential used as the electrolyte membrane for direct methanol fuel cell.

  20. Sulfonated polystyrene-type plasma-polymerized membranes for miniature direct methanol fuel cells

    Science.gov (United States)

    Roualdes, Stéphanie; Topala, Ionut; Mahdjoub, Habiba; Rouessac, Vincent; Sistat, Philippe; Durand, Jean

    Sulfonated polystyrene-type membranes were synthesized by plasma polymerization of a mixture of styrene and trifluoromethane sulfonic acid monomers in a low-frequency after-glow discharge plasma reactor. Such a deposition process enables the preservation of the monomers structure, which was confirmed by mass spectrometry analysis. The synthesized plasma-polymerized membranes are dense and uniform with a few microns thickness. Their structure determined by Fourier-transform infra-red spectroscopy and X-ray photoelectron spectroscopy is very rich in sulfonic acid groups (up to 5%) and stable up to 120 °C. Even if their intrinsic proton conductivity is low (10 -1 mS cm -1), directly related to their disorganized and highly cross-linked structure, plasma-polymerized membranes present a proton conduction ability similar to Nafion ® because of their low thickness. Due to their highly cross-linked structure, these membranes enable a reduction of the methanol crossover in a factor 10 by comparison with Nafion ®. Thus, the integration of plasma-polymerized films in miniaturized direct methanol fuel cells as proton-exchange membranes seems promising.

  1. Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors.

    Science.gov (United States)

    Bao, Yueping; Niu, Junfeng; Xu, Zesheng; Gao, Ding; Shi, Jianghong; Sun, Xiaomin; Huang, Qingguo

    2014-11-15

    In this study, alum (Al2(SO4)3⋅18H2O), ferric chloride (FeCl3⋅6H2O) and polyaluminium chloride (PACl) were used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water. The influencing factors, including pH and natural organic matter (NOM), were investigated. A positive correlation was found between the size of the flocs and the removal efficiency of PFOX (X=S and A). The removal ratios of PFOS and PFOA were 32% and ∼12%, respectively, when 50 mg/L of FeCl3⋅6H2O was added as the coagulant at the initial pH. Coagulation achieved high removal ratios for PFOX under acidic conditions (∼47.6% and 94.7% for PFOA and PFOS at pH 4, respectively). In addition, increasing NOM concentrations decreased the removal rates of PFOX because of the existence of competitive adsorption between NOM molecules and PFOX on the surface of the coagulants and flocs. The combination of adsorption by powdered activated carbon (PAC) and coagulation increased the removal ratios up to >90% for PFOX at the initial concentration of 1mg/L, implying that the adsorption enhanced coagulation. Meantime, the experiments with natural water showed that coagulation is a feasible method to remove PFOS and PFOA from surface water.

  2. Structural and magnetic characterization of copper sulfonated phthalocyanine grafted onto treated polyethylene

    Science.gov (United States)

    Reznickova, A.; Kolska, Z.; Orendac, M.; Cizmar, E.; Sajdl, P.; Svorcik, V.

    2016-08-01

    This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with bCuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.

  3. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Terbufos-sulfone exacerbates cardiac lesions in diabetic rats: a sub-acute toxicity study.

    Science.gov (United States)

    Nurulain, Syed M; Shafiullah, Mohamed; Yasin, Javed; Adem, Abdu; Kaabi, Juma Al; Tariq, Saeed; Adeghate, Ernest; Ojha, Shreesh

    2016-06-01

    Organophosphorus compounds (OPCs) have a wide range of applications, from agriculture to warfare. Exposure to these brings forward a varied kind of health issues globally. Terbufos is one of the leading OPCs used worldwide. The present study investigates the cardiac effect of no observable dose of a metabolite of terbufos, terbufos-sulfone (TS), under non-diabetic and streptozotocin-induced diabetic condition. One hundred nanomoles per rat (1/20 of LD50) was administered intraperitoneally to adult male Wister rats daily for fifteen days. The left ventricle was collected for ultrastructural changes by transmission electron microscopy. The blood samples were collected for biochemical tests including RBC acetylcholinesterase, creatinine kinase (CK), lactate dehydrogenase (LDH), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, ALT, AST, and GGT. The study revealed about 10 % inhibition of RBC-AChE in two weeks of TS treatment in non-diabetic rats whereas RBC-AChE activity was significantly decreased in diabetic TS treated rats. CK, LDH, and triglycerides were significantly higher in diabetic TS treated rats. Electron microscopy of the heart showed derangement and lesions of the mitochondria of cardiomyocytes in the TS treated groups. The present study concludes that a non-lethal dose of TS causes cardiac lesions which exacerbate under diabetic condition. Biochemical tests confirmed the ultrastructural changes. It is concluded that a non-lethal dose of TS may be a risk factor for a cardiovascular disease, which may be fatal under diabetic condition.

  5. Nanoscale Morphology of Sulfonated Polystyrene Ionomers

    Science.gov (United States)

    Zhou, Nancy C.; Winey, Karen I.

    2007-03-01

    We have applied our scanning transmission electron microscopy (STEM) methods to investigate the size, shape and spatial distribution of the ionic, nanoscale aggregates in poly(styrene-ran-styrene sulfonate) (P(S-SSx)) ionomers. This analytical electron microscopy method minimizes phase contrast that can obscure nano-scale features and accentuates differences in atomic number. We recently reported quantitative agreement between STEM and X-ray scattering results in a Cu-neutralized poly(styrene-ran-methacrylic acid) (SMAA) ionomer with respect to the size of the ionic aggregates and their number density. For this study, P(S-SSx) ionomers were prepared by solution neutralizing with metal acetates, solution casting, and annealing. Initial STEM results from P(S-SS0.019) fully neutralized with Zn indicate a uniform distribution of monodisperse spherical aggregates. Combining direct imaging and X-ray scattering of P(S-SSx) ionomers, we will investigate the effect of cation type and level of neutralization.

  6. Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose.

    Science.gov (United States)

    Zhou, Lipeng; Liu, Zhen; Shi, Meiting; Du, Shanshan; Su, Yunlai; Yang, Xiaomei; Xu, Jie

    2013-10-15

    Sulfonated hierarchical H-USY zeolite was prepared and characterized by X-ray diffraction, N2 physisorption, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectroscopy, temperature-programmed desorption of ammonia, and acid-base titration. It was proved that sulfonic group was successfully anchored onto the hierarchical H-USY zeolite. The acidity of the hierarchical H-USY was remarkably improved. Sulfonated hierarchical H-USY zeolite was efficient for the hydrolysis of hemicellulose and cellulose. The yield of TRS for hydrolysis of hemicellulose reached 78.0% at 140 °C for 9h. For hydrolysis of α-cellulose, 60.8% conversion with 22.4% yield of glucose was obtained. Even for microcrystalline cellulose, 43.7% conversion with 15.1% yield of glucose can be obtained. These results are much higher than those obtained over hierarchical H-USY zeolite, indicating that both the acidity and the pore structure determine the activity of zeolite as catalyst in the hydrolysis of biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 磺化聚芳醚酮砜的热降解动力学%The Thermal Degradation Kinetics of Sulfonated Poly(Aryl Ether Ketone Sulfone)

    Institute of Scientific and Technical Information of China (English)

    王哲; 杨鑫; 吴清海; 倪宏哲; 周杰

    2011-01-01

    The thermal behaviors of sulfonated poly(aryl ether ketone sulfone)(SPAEKS) as a proton exchange membrane materials was researched by therrnogravimetry analysis (TGA). The thermal degradation kinetics of SPAEKS before sulfonic acid groups completely splitting off was investigated at different heating rates in N2 by Kissinger method and Flynn-Wall-Ozawa method. The activation energy E, pre-exponential factor A, reaction order n and correlation coefficient r of SPAEKS with different degrees of sulfonation (DS) were calculated by Kissinger method(E,lnA,n and r of SPAEKS-4 are 149.16 kJ/mol, 23.93, 2.6 and 0.9887, respectively). The activation energy E of SPAEKS with different DS was calculated by Flynn-Wall-Ozawa method (E of SPAEKS-4 is 140.73 kJ/mol ), which is lower than that was calculation by Kissinger method in the same DS. The calculated activation energy of SPAEKS by above two methods increases with the increasment of DS.%通过热重分析仪(TGA)对作为质子交换膜材料使用的磺化聚芳醚酮砜(SPAEKS)进行了热性能研究.采用不同的升温速率,分别用Kissinger方法和Flynn-Wall-Ozawa方法研究了不同磺化度的SPAEKS在氮气氛围下磺酸基团完全脱落前的热降解动力学.研究表明,通过Kissinger方法计算得到SPAEKS的活化能E、指前因子A、反应级数η、相关系数r(磺化度0.8的SPAEKS-4,E=149.16 kJ/mol,InA=23.93,n=2.6,r=0.9887).通过Flynn-Wall-Ozawa方法计算得到SPAEKS的平均活化能E(SPAEKS-4的活化能为140.73 kJ/mol),而且所求活化能在相同磺化度下略低于用Kissinger方法所求,但活化能都随着磺化度的增加而增大.

  8. High Energy Activation Data Library (HEAD-2009)

    CERN Document Server

    Korovin, Yury A; Konobeyev, Alexander Yu; Stankovskiy, Alexey Yu; Mashnik, Stepan G

    2010-01-01

    A proton activation data library for 682 nuclides from 1-H to 210-Po in the energy range from 150 MeV up to 1 GeV was developed. To calculate proton activation data, the MCNPX 2.6.0 and CASCADE/INPE codes were chosen. Different intranuclear cascade, preequilibrium, and equilibrium nuclear reaction models and their combinations were used. The optimum calculation models have been chosen on the basis of statistical correlations for calculated and experimental proton data taken from the EXFOR library of experimental nuclear data. All the data are written in ENDF-6 format. The library is called HEPAD-2008 (High-Energy Proton Activation Data). A revision of IEAF-2005 neutron activation data library has been performed: A set of nuclides for which the cross-section data can be (and were) updated using more modern and improved models is specified, and the corresponding calculations have been made in the present work. The new version of the library is called IEAF-2009. The HEPAD-2008 and IEAF-2009 are merged to the fin...

  9. A cell-based screen reveals that the albendazole metabolite, albendazole sulfone, targets Wolbachia.

    Science.gov (United States)

    Serbus, Laura R; Landmann, Frederic; Bray, Walter M; White, Pamela M; Ruybal, Jordan; Lokey, R Scott; Debec, Alain; Sullivan, William

    2012-09-01

    Wolbachia endosymbionts carried by filarial nematodes give rise to the neglected diseases African river blindness and lymphatic filariasis afflicting millions worldwide. Here we identify new Wolbachia-disrupting compounds by conducting high-throughput cell-based chemical screens using a Wolbachia-infected, fluorescently labeled Drosophila cell line. This screen yielded several Wolbachia-disrupting compounds including three that resembled Albendazole, a widely used anthelmintic drug that targets nematode microtubules. Follow-up studies demonstrate that a common Albendazole metabolite, Albendazole sulfone, reduces intracellular Wolbachia titer both in Drosophila melanogaster and Brugia malayi, the nematode responsible for lymphatic filariasis. Significantly, Albendazole sulfone does not disrupt Drosophila microtubule organization, suggesting that this compound reduces titer through direct targeting of Wolbachia. Accordingly, both DNA staining and FtsZ immunofluorescence demonstrates that Albendazole sulfone treatment induces Wolbachia elongation, a phenotype indicative of binary fission defects. This suggests that the efficacy of Albendazole in treating filarial nematode-based diseases is attributable to dual targeting of nematode microtubules and their Wolbachia endosymbionts.

  10. A polyvinyl alcohol/p-sulfonate phenolic resin composite proton conducting membrane

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chien-Shun; Lin, Fan-Yen; Chu, Peter P. [Deparment of Chemistry, National Central University, Chung-Li 32054 (Taiwan); Chen, Chih-Yuan [Material Research Laboratory, Industrial Technology Research Institute (ITRI), Hsin-Chu (Taiwan)

    2006-10-06

    Membranes composed of poly(vinyl alcohol) (PVA) and a proton source polymer, sulfonated phenolic resin (s-Ph) displayed good proton conductivity of the order of 10{sup -2}Scm{sup -1} at ambient temperatures. Upon cross-linking above 110{sup o}C, covalent links between the sulfonate groups of the phenolic resin and the hydroxyl groups of the PVA were established. Although this sacrificed certain sulfonate groups, the conductivity value was still preserved at the 10{sup -2}Scm{sup -1} level. In sharp contrast to Nafion, the current membrane (both before and after cross-linking) was also effective in reducing the methanol uptake where the swelling ratio decreased with increase of methanol concentration. Although both the methanol permeation and the proton conductivity were lower compared to Nafion, the conductivity/permeability ratio of 0.97 for the PVA/s-Ph is higher than that determined for Nafion. The results suggested the effectiveness of proton transport in the polymer-complex structure and the possibility that a high proton conductivity can be realized with less water. (author)

  11. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    Directory of Open Access Journals (Sweden)

    Martins Cristiane R.

    2003-01-01

    Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.

  12. Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors.

    Science.gov (United States)

    El-Gamal, Mohammed I; Semreen, Mohammad H; Foster, Paul A; Potter, Barry V L

    2016-06-15

    A series of new arylamide derivatives possessing terminal sulfonate or sulfamate moieties was designed and synthesized. The target compounds were tested for in vitro inhibitory effects against the steroid sulfatase (STS) enzyme in a cell-free assay system. The free sulfamate derivative 1j was the most active. It inhibited the enzymatic activity by 72.0% and 55.7% at 20μM and 10μM, respectively. Compound 1j was further tested for STS inhibition in JEG-3 placental carcinoma cells with high STS enzyme activity. It inhibited 93.9% of the enzyme activity in JEG-3 placental carcinoma cells at 20μM with an efficacy near to that of the well-established drug STX64 as reference. At 10μM, 1j inhibited 86.1% of the STS activity of JEG-3. Its IC50 value against the STS enzyme in JEG-3 cells was 0.421μM. Thus, 1j represents an attractive new non-steroidal lead for further optimization.

  13. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  14. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  15. Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-leiden CETP mice

    NARCIS (Netherlands)

    Bijland, S.; Rensen, P.C.N.; Pieterman, E.J.; Maas, A.C.E.; Hoorn, J.W. van der; Erk, M.J. van; Havekes, L.M.; Dijk, K.W. van; Chang, S.C.; Ehresman, D.J.; Butenhoff, J.L.; Princen, H.M.G.

    2011-01-01

    Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) are stable perfluoroalkyl sulfonate (PFAS) surfactants, and PFHxS and PFOS are frequently detected in human biomonitoring studies. Some epidemiological studies have shown modest positive correla

  16. Miscibility of Polystyrene and Lighted Sulfonated Polystyrene Blends

    Science.gov (United States)

    Zhou, N. C.; Burghardt, W. R.; Composto, R. J.

    2005-03-01

    The blend miscibility of deuterated polystyrene (dPS) and lighted sulfonated poly(styrene-ran-sulfonated polystyrene) (P (S-SS)) has been examined by forward recoil spectrometry (FRES). Equilibrium coexistence compositions were determined for dPS:P(S-SSx) blends where x is the mole percent of sulfonation.At x = 0.2%, the blends are fully miscible at 150°C to 190°C, while at x = 2.6% the system fully immiscible at the same temperatures. Intermediate levels of sulfonation (0.7, 1.0 and 1.2%) are partially miscible and exhibit an upper critical solution temperature (UCST). This behavior is attributed to the dilution of repulsive intra-molecular interaction between the ionic and non-ionic groups in the copolymer due to favorable interactions with the non-ionic group of the homopolymer PS. Estimates using the Flory-Huggins and the copolymer effect theories found a large ( 20) positive monomer-monomer interaction parameter between styrene and styrene sulfonate. This large interaction parameter might drive phase separation within a compositionally disperse random copolymers sample.

  17. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles.

    Science.gov (United States)

    Supreeyasunthorn, Phenpimuk; Boontanon, Suwanna K; Boontanon, Narin

    2016-01-01

    The goals of this study were to determine the concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in textiles and to determine PFOS and PFOA contamination in textile washing water. Quantification analysis was performed by high performance liquid chromatography coupled with tandem mass spectrometry. Analysis of 32 textile samples by methanol extraction revealed that the average concentrations of PFOS and PFOA were 0.18 µg m(-2) (0.02 to 0.61 µg m(-2)) and 2.74 µg m(-2) (0.31 to 14.14 µg m(-2)), respectively. Although the average concentration of PFOS found in textile samples was below European Union (EU) Commission regulations (textile samples had PFOA concentrations exceeding 1 µg m(-2). Thus, based on these results, the concentration of PFOA in products should also be regulated. Experiments on PFOS and PFOA leaching into washing water were conducted. The maximum concentrations of PFOS and PFOA were measured after the first washing; the concentrations gradually decreased with each subsequent washing. PFOS and PFOA migrated from textiles and were released into the environment, with disappearance percentages of 29.8% for PFOS and 99% for PFOA. The data presented in this study showed that textiles could be a significant direct and indirect source of PFOS and PFOA exposure for both humans and the environment.

  18. Syntheses, crystal structures and antioxidant study of Zn(II) complexes with morin-5'-sulfonic acid (MSA).

    Science.gov (United States)

    Pieniążek, Elżbieta; Kalembkiewicz, Jan; Dranka, Maciej; Woźnicka, Elżbieta

    2014-12-01

    The study of modified synthetic procedure of water soluble morin-5'-sulfonic acid sodium salt (NaMSA) involving less aggressive chemicals and carried out at mild conditions was described. The NaMSA salt is a convenient source of anionic morin-5'-sulfonic ligand (MSA) in ion exchange reactions. The coordination ability of MSA ligand towards the zinc cations was investigated in aqueous solution and in solid state. Novel zinc complexes of morin-5'-sulfonate were obtained by a reaction of Zn(NO3)2 with morin-5'-sulfonate in water. Resulting compounds were characterized by single-crystal X-ray diffraction analysis, as well as spectral and thermal methods. The coordination interaction, hydrogen bond and π-π stacking lead to the formation of a 1D chain or 3D coordination polymers. The antioxidant activity of the Zn(II)-MSA complexes was evaluated by means of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. In this work, we have shown that the studied compounds are more effective free radical scavengers than the natural flavonoids like plain morin.

  19. A Facile Synthesis of Mesoporous Sulfonated Carbon and Its Structural Properties.

    Science.gov (United States)

    Prabhu, Azhagapillai; Al Shoaibi, Ahmed; Srinivasakannan, C

    2016-01-01

    Mesoporous sulfonated carbons (SC) have been synthesized using tetraethyl orthosilicate (TEOS) as a silica source and sucrose as carbon source. The synthesized SC samples were carbonized in N₂flow at various high temperatures and then passing high purity air at room temperature. In this study, we extended the idea to deposit more oxygen functional groups into the surface of SC being high micropores for the favorable adsorption applications. The resulting materials were characterized by using XRD, BET surface area, TPD, TEM, TGA and FTIR techniques. Mesoporous SC materials with controllable pore diameters are expected to be significant to future research concerning the improvement of catalysis, supercapacitors, fuel cells and adsorption.

  20. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s.

    Science.gov (United States)

    Jones, Gavin O; Yuen, Alexander; Wojtecki, Rudy J; Hedrick, James L; García, Jeannette M

    2016-07-12

    It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.

  1. Rational design of sulfonated A3 adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain.

    Science.gov (United States)

    Paoletta, Silvia; Tosh, Dilip K; Finley, Amanda; Gizewski, Elizabeth T; Moss, Steven M; Gao, Zhan-Guo; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A

    2013-07-25

    (N)-Methanocarba(bicyclo[3.1.0]hexane)adenosine derivatives were probed for sites of charged sulfonate substitution, which precludes diffusion across biological membranes, e.g., blood-brain barrier. Molecular modeling predicted that sulfonate groups on C2-phenylethynyl substituents would provide high affinity at both mouse (m) and human (h) A3 adenosine receptors (ARs), while a N(6)-p-sulfophenylethyl substituent would determine higher hA3AR vs mA3AR affinity. These modeling predictions, based on steric fitting of the binding cavity and crucial interactions with key residues, were confirmed by binding/efficacy studies of synthesized sulfonates. N(6)-3-Chlorobenzyl-2-(3-sulfophenylethynyl) derivative 7 (MRS5841) bound selectively to h/m A3ARs (Ki(hA3AR) = 1.9 nM) as agonist, while corresponding p-sulfo isomer 6 (MRS5701) displayed mixed A1/A3AR agonism. Both nucleosides administered ip reduced mouse chronic neuropathic pain that was ascribed to either A3AR or A1/A3AR using A3AR genetic deletion. Thus, rational design methods based on A3AR homology models successfully predicted sites for sulfonate incorporation, for delineating adenosine's CNS vs peripheral actions.

  2. Julia Olefination as a General Route to Phenyl (alpha-Fluoro)vinyl Sulfones.

    Science.gov (United States)

    He, Maggie; Ghosh, Arun K; Zajc, Barbara

    2008-04-01

    Mild and efficient synthesis of phenyl (alpha-fluoro)vinyl sulfones via condensation of aldehydes and a ketone with a novel benzothiazolyl based bis-sulfone reagent is reported and this proceeds with moderate to good Z-stereoselectivity.

  3. Concrete with Highly Active Rice Husk Ash

    Institute of Scientific and Technical Information of China (English)

    FENG Qing-ge; LIN Qing-yu; YU Qi-jun; ZHAO San-ying; YANG Lu-feng; Shuichi Sugita

    2004-01-01

    The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.

  4. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  5. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines.

    Science.gov (United States)

    Saidi, Ourida; Marafie, Jameel; Ledger, Araminta E W; Liu, Po Man; Mahon, Mary F; Kociok-Köhn, Gabriele; Whittlesey, Michael K; Frost, Christopher G

    2011-12-07

    A selective catalytic meta sulfonation of 2-phenylpyridines was found to occur in the presence of (arene)ruthenium(II) complexes upon reaction with sulfonyl chlorides. The 2-pyridyl group facilitates the formation of a stable Ru-C(aryl) σ bond that induces a strong para-directing effect. Electrophilic aromatic substitution proceeds with the sulfonyl chloride to furnish a sulfone at the position meta to the chelating group. This new catalytic process offers access to atypical regioselectivity for reactions involving chelation-assisted cyclometalation.

  6. Conjugate Additions of Secondary Amines and Water to Allenyl Perfluoroalkyl Sulfones

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Jin; LIN Yun; LIU Jin-Tao

    2006-01-01

    Preparation of allenyl perfluoroalkyl sulfones from perfluoroalkyl sulfinyl chlorides and their reactions with secondary amines and water were studied. At room temperature secondary amines reacted readily with allenyl perfluoroalkyl sulfones to give the corresponding enamine adducts, which underwent rearrangement to afford conjugate enamines in refluxing toluene. Good diastereoslectivities were observed in the addition of diethylamine to γ-ethyl-γ-methylallenyl perfluoroalkyl sulfones. In refluxing acetonitrile, water could also undergo the similar addition with allenyl perfluoroalkyl sulfones.

  7. Miscibility of Methylmethacrylate-co-methacrylic Acid Polymer with Magnesium, Zinc, and Manganese Sulfonated Polystyrene Ionomers

    OpenAIRE

    ALKAN, Cemil; YURTSEVEN, Nebahat; ARAS, Leyla

    2005-01-01

    The miscibility of methyl methacrylate-co-methacrylic acid polymer (MMA-MAA) with metal neutralized sulfonated polystyrene ionomers was investigated by viscometry, differential scanning calorimetry (DSC), and Fourier transform infrared radiation spectroscopy (FTIR) techniques. Polystyrene (PS) was sulfonated by acetic anhydride and sulfuric acid and the sulfonation degree was found to be 2.6 mole percent, and 2.6 mole percent sulfonated polystyrene was neutralized by Mg, Zn, and Mn sa...

  8. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  9. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  10. Enchansing the Ionic Purity of Hydrophilic Channels by Blending Fully Sulfonated Graft Copolymers with PVDF Homopolymer

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Ching-Ching Yang, Ami; Jankova Atanasova, Katja

    2013-01-01

    The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated...

  11. 40 CFR 721.9620 - Aromatic sulfonic acid compound with amine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic sulfonic acid compound with... Specific Chemical Substances § 721.9620 Aromatic sulfonic acid compound with amine. (a) Chemical substance... aromatic sulfonic acid compound with amine (PMN P-93-832) is subject to reporting under this section...

  12. Chemical Agent Performance of Sulfonated Ionomeric Membranes for Chem/Bio Applications

    Science.gov (United States)

    2008-12-01

    Polyisobutylene ( PIB ) Chemically Modified IB Sulfonic Acid Counter-ion (Ba, Mg, Ca, Zn, Cs)Block Copolymer Morphology Sulfonic acid...Mauritz, K., 2000: Diffusion of Alcohols Through Sulfonated PS/ PIB /PS Block Copolymers Using FTIR-ATR Spectroscopy, Polymer Materials: Engineering

  13. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  14. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium salt...

  15. Survey of sulfonated polyimide membrane as a good candidate for nafion substitution in fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Akbarian-Feizi, Leila; Mehdipour-Ataei, Shahram; Yeganeh, Hamid [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran)

    2010-09-15

    Studies in fuel cell membranes show that modification of polyimides by introduction of aliphatic linkages in the structure of sulfonated copolyimides, synthesis of branched/crosslinked sulfonated polyimides, and semi and fully interpenetrating polymer networks of sulfonated polyimides restrain suitable potential for Nafion substitution. (author)

  16. Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Ming; Tang, Wang-Rung; Wen, Ten-Chin [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101 (Taiwan)

    2007-02-10

    Polyaniline (PANI) can be doped with poly(styrene sulfonic acid) (PSS) via doping-dedoping-redoping process. The specific characteristics of PANI doped with PSS (PANI-PSS) were checked by UV-vis spectroscopy, cyclic voltammetry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). PANI-PSS was found to have spatial structure with minimum degradation products. Platinum can be potentiostatically deposited in a spatial layer of the PANI-PSS as evidenced by electron dispersive element analysis (EDS) and Auger electron spectroscopy (AES). The electrochemical measurements demonstrated that PANI-PSS-Pt exhibited a much higher electrocatalytic activity for methanol oxidation than PANI-Pt. (author)

  17. Preparation of TiO2/Ag binary nanocomposite as high-activity visible-light-driven photocatalyst via graft polymerization

    Science.gov (United States)

    Tae Park, Jung; Soo Lee, Chang; Hun Park, Cheol; Hak Kim, Jong

    2017-10-01

    We report the synthesis of a TiO2/Ag binary nanocomposite with high activity for visible-light-driven photocatalysts using graft copolymerization: (1) conversion of terminal OH groups on the surface of TiO2 nanoparticles to Cl groups, (2) graft polymerization from TiO2-Cl via ATRP with ionically charged poly(styrene sulfonic acid), (3) ion exchange process with an AgNO3 solution following sintering. TiO2/Ag binary nanocomposite showed enhanced photocatalytic performance for the degradation of methyl orange under visible light illumination. The improved photocatalytic performance of the TiO2/Ag binary nanocomposite was due to the plasmonic effect, recombination rate of electron-hole pairs that was suppressed by Ag nanoparticles.

  18. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  19. Metabolic Activity of Bacteria at High Pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2008-12-01

    Over the last 20 years, there has been increasing evidence for the presence of a large number of microbes in the oceanic subsurface. Such a habitat has a very low energy input because it is deprived of light. A few meters below the sediment surface, conditions are already anoxic in most cases, sulfate reduction and/or methanogenesis becoming thus the primary respiratory reactions of organic matter. Neither the fate of methanogenesis, nor the fate of Dissimilatory Metal-Reduction (DMR) has been investigated so far as a function of pressure. For this reason, we measured experimentally the pressure limits of microbial anaerobic energetic metabolism. In practice, we measured in situ the kinetics of selenite respiration by the bacterial model Shewanella oneidensis MR-1 under high hydrostatic pressure (HHP) between 0 and 150 MPa at 30°C. MR-1 stationary-phase cells were used in Luria-Bertani (LB) medium amended with lactate as an additional electron donor and sodium selenite as an electron acceptor. In situ measurements were performed by X- ray Absorption Near-Edge Structure (XANES) spectroscopy in both a diamond-anvil cell and an autoclave. A red precipitate of amorphous Se(0) was virtually observed at any pressure to 150 MPa. A progressive reduction of selenite Se(IV) into selenium Se(0) was also observed in the evolution of XANES spectra with time. All kinetics between 0.1 and 150 MPa can be adjusted to a first order kinetic law. MR-1 respires all available selenite up to 60 MPa. Above 60 MPa, the respiration yield decreases linearly as a function of pressure and reaches 0 at 155 ±5 MPa. This indicates that selenite respiration by Shewanella oneidensis MR-1 stops at about 155 MPa, whereas its growth is arrested at 50 MPa. Hence, the present results show that the respiration of selenium by the strain MR-1 occurs efficiently up to 60 MPa and 30°C, i.e. from the surface of a continental sediment to an equivalent depth of about 2 km, or beneath a 5-km water column and

  20. Effects of linear alkylbenzene sulfonate(LAS) on the activities of superoxide dismutase and glutathione peroxidase in Spinibarbus sinensis%直链十二烷基苯磺酸钠对中华倒刺鲃SOD和GSH-Px的活性影响

    Institute of Scientific and Technical Information of China (English)

    杨帆; 孙翰昌

    2009-01-01

    To study the effects of anionic surfactants on antioxidant enzyme activities in fish, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined in Spinibarbus sinensis after a 10 day exposure to three concentrations (0.01, 0.2 and 4.0 mg/L) of linear alkylbenzene sulfonate (LAS). The results showed that, investigation of SOD and GSH-Px in plasma and liver indicated that LAS exposure resulted in changes of the enzyme activities. Induction of the two enzymes in all tested tissues occurred in the initial exposure days, and then the enzyme activities decreased with the increase of LAS concentration (0.2 mg/L and 4.0 mg/L) and extension of exposure time(4?6?8? 10 d) , which suggested that the enzyme activities correlated to the LAS concentrations and the exposure times.%以中华倒刺鲃(Spinibarbus sinensis)暴露于不同浓度的直链十二烷基苯磺酸钠(LAS)中10 d,研究阴离子表面活性剂对鱼类抗氧化酶的影响.结果表明,亚致死浓度(4.9 mg/L)LAS暴露可导致中华倒刺鲃超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性发生变化.当LAS质量浓度为0.01 mg/L时,所有受检组织(血液、肝脏)的SOD和GSH-Px活性在暴露初期均受到不同程度的诱导,但LAS浓度为0.2 mg/L和4.0 mg/L和暴露时间超过4 d时,酶活性均呈明显的下降趋势,提示LAS暴露所引起的酶活性变化与暴露浓度和暴露时间有一定的相关性.

  1. Neurotoxicity of perfluorooctane sulfonate to hippocampal cells in adult mice.

    Directory of Open Access Journals (Sweden)

    Yan Long

    Full Text Available Perfluorooctane sulfonate (PFOS is a ubiquitous pollutant and found in the environment and in biota. The neurotoxicity of PFOS has received much concern among its various toxic effects when given during developing period of brain. However, little is known about the neurotoxic effects and potential mechanisms of PFOS in the mature brain. Our study demonstrated the neurotoxicity and the potential mechanisms of PFOS in the hippocampus of adult mice for the first time. The impairments of spatial learning and memory were observed by water maze studies after exposure to PFOS for three months. Significant apoptosis was found in hippocampal cells after PFOS exposure, accompanied with a increase of glutamate in the hippocampus and decreases of dopamine (DA and 3,4-dihydrophenylacetic acid (DOPAC in Caudate Putamen in the 10.75 mg/kg PFOS group. By two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE analysis, seven related proteins in the hippocampus that responded to PFOS exposure were identified, among which, Mib1 protein (an E3 ubiquitin-protein ligase, Herc5 (hect domain and RLD 5 isoform 2 and Tyro3 (TYRO3 protein tyrosine kinase 3 were found down-regulated, while Sdha (Succinate dehydrogenase flavoprotein subunit, Gzma (Isoform HF1 of Granzyme A precursor, Plau (Urokinase-type plasminogen activator precursor and Lig4 (DNA ligase 4 were found up-regulated in the 10.75 mg/kg PFOS-treated group compare with control group. Furthermore, we also found that (i increased expression of caspase-3 protein and decreased expression of Bcl-2, Bcl-XL and survivin proteins, (ii the increased glutamate release in the hippocampus. All these might contribute to the dysfunction of hippocampus which finally account for the impairments of spatial learning and memory in adult mice.

  2. Synthesis and properties of poly(sulfone-arylate) copolymers

    NARCIS (Netherlands)

    Stephen, Ranimol; Gibon, Cécile M.; Weber, Martin; Gaymans, Reinoud J.

    2009-01-01

    Poly(sulfone-arylate) was synthesized in a reaction between dihydroxy polysulfone prepolymers and either diphenyl terephthalate or terephthaloyl chloride. The dihydroxy polysulfone prepolymers had molecular weights of 2000 and 4000 g/mol. The polymerization with diphenyl terephthalate was carried ou

  3. Sodium dimercaptopropane sulfonate as antidote against non-metallic pesticides

    Institute of Scientific and Technical Information of China (English)

    Zhi-kang CHEN; Zhong-qiu LU

    2004-01-01

    @@ INTRODUCTION With the advent of World War II, dimercaptol was first developed in England as an effective antidote against arsenical agents. In 1950' s, scientists from the Soviet Union developed a water-soluble compound, sodium dimercaptopropane sulfonate (Na-DMPS) named as Unithiol (or Unitiol), which was able to chelate heavy metals and metalloids.

  4. Intrinsic and Ionic Conduction in Humidity-Sensitive Sulfonated Polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Tong, H.D.; Marcelis, A.T.M.; Rijn, van C.J.M.

    2014-01-01

    The influence of humidity on the conductivity of sulfonated polyaniline (SPANI) and polyaniline (PANI) is investigated with electrochemical impedance spectroscopy (EIS). Separation of intrinsic (q) and ionic charge (i) mobility was observed using combination of ac and dc impedance measurements at

  5. Response of weeping willows to linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Yu, X.; Trapp, Stefan; Zhou, P.

    2006-01-01

    Linear alkylbenzene sulfonate (LAS) is the most commonly used anionic surfactant in laundry detergents and cleaning agents. LAS compounds are found in surface waters and soils. The short-term acute toxicity of LAS to weeping willows (Salix babylonica L.) was investigated. Willow cuttings were grown...

  6. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  7. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.

    1982-02-10

    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  8. Wetting behavior of lightly sulfonated polystyrene ionomers on silica surfaces.

    Science.gov (United States)

    Zhai, Xiaowen; Weiss, R A

    2008-11-18

    The wetting/dewetting behavior of thin films of lightly sulfonated low molecular weight polystyrene (SPS) ionomers spin-coated onto silica surfaces were studied using atomic force microscopy (AFM), contact angle measurements, and electron microscopy. The effects of the sulfonation level, the choice of the cation, the solvent used to spin-coat the films, and the molecular weight of the ionomer were investigated. Small angle X-ray scattering was used to determine the bulk microstructure of the films. The addition of the sulfonate groups suppressed the dewetting behavior of the PS above its glass transition temperature, e.g. no dewetting occurred even after 240 h of annealing at 120 degrees C. Increasing the sulfonation level led to more homogeneous and smoother surfaces. The choice of the cation used affected the wetting properties, but not in a predictable manner. When tetrahydrofuran (THF) or a THF/methanol mixed solvent was used for spin-casting, a submicron-textured surface morphology was produced, which may be a consequence of spinodal decomposition of the film surface during casting. Upon annealing for long times, the particles coalesced into a coherent, nonwetted film.

  9. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  10. Coadsorption of IgG and BSA onto sulfonated polystyrene latex: II. Colloidal stability and immunoreactivity.

    Science.gov (United States)

    Peula, J M; Hidalgo-Alvarez, R; de las Nieves, F J

    1995-01-01

    The present work deals with the study of the colloidal stability and immunoreactivity of sulfonated polystyrene latex particles covered by different amounts of m-BSA and IgG/a-CRP. These proteins have been previously adsorbed onto a sulfonated latex by sequential and competitive coadsorption experiments and it was possible to obtain latex-protein particles with different degrees of coverage by each protein. The latex particles, fully or partially covered by each protein (termed latex-protein complexes), were resuspended under several conditions (different pH and ionic strength values) and their colloidal stability, vs the addition of the electrolyte was studied using turbidity measurements. This stability appeared at a high degree of coverage by BSA and at a pH in which the BSA was negatively charged. At a high degree of coverage by IgG, the latex particles were unstable at all pHs. As a final part of this work, the immunoreactivity of several complexes was studied following the changes in the turbidity after the addition of CRP antigen. Only the complexes which were colloidally stable gave detectable reactivity. However, the complexes with a relatively low degree of coverage by IgG/a-CRP gave good immunoreactivity. Therefore, the latex-protein complex properties depended on the percentage of BSA or IgG adsorbed and on the electric state of the proteins at the redispersion pH. Under specific incubation conditions, sulfonated latex covered by significant IgG/BSA percentages was obtained, which showed a high colloidal stability and good immunoreactivity.

  11. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    Science.gov (United States)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  12. SEPARATION OF CHOLESTEROL ESTERS BY SILVER ION CHROMATOGRAPHY USING HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHY OR SOLID-PHASE EXTRACTION COLUMNS PACKED WITH A BONDED SULFONIC-ACID PHASE

    NARCIS (Netherlands)

    HOVING, EB; MUSKIET, FAJ; CHRISTIE, WW

    1991-01-01

    Two methods for the separation of cholesterol esters, based on the number of double bonds in their fatty acid moieties, are presented. Silver ion chromatography, usually performed on thin-layer chromatographic plates, was made suitable for high-performance liquid chromatography (HPLC) and solid-phas

  13. Coexistence of Write Once Read Many Memory and Memristor in blend of Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate and Polyvinyl Alcohol

    Science.gov (United States)

    Nguyen, Viet Cuong; Lee, Pooi See

    2016-12-01

    In this work, the coexistence of Write Once Read Many Memory (WORM) and memristor can be achieved in a single device of Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) and Polyvinyl Alcohol (PVA) blend organic memory system. In memristor mode, the bistable resistance states of the device can be cycled for more than 1000 times. Once a large negative bias of ‑8V was applied to the device, it was switched to permanent high resistance state that cannot be restored back to lower resistance states. The mechanism of the memristor effect can be attributed to the charge trapping behaviour in PVA while the WORM effect can be explained as the electrochemical characteristic of PEDOT: PSS which harnesses the percolative conduction pathways. The results may facilitate multipurpose memory device with active tunability.

  14. Determination of petroleum sulfonates in crude oil by column-switching anion-exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    Liang Zhao; Xu Long Cao; Hong Yan Wang; Xia Liu; Sheng Xiang Jiang

    2008-01-01

    A column-switching anion-exchange chromatography method was described for the separation and determination of petroleum monosulfonates (PMS)and petroleum disulfonates (PDS)in crude oil that was simply diluted with the dichloromethane/methanol (60140).The high performance liquid chromatography (HPLC)system consisted of a clean-up column and an analytical column,which were connected with two six-port switching valves.Detection of petroleum sulfonates was available and repeatable.This method has been successfully applied to determine PMS and PDS in crude oil samples from Shengli oil field.

  15. sp³ -linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst.

    Science.gov (United States)

    Suganuma, Satoshi; Nakajima, Kiyotaka; Kitano, Masaaki; Hayashi, Shigenobu; Hara, Michikazu

    2012-09-01

    SO₃H-bearing amorphous carbon prepared from polyvinyl chloride (PVC) is studied as a heterogeneous Brønsted acid catalyst. Sulfonation of partially carbonized PVC produces amorphous carbon consisting of small SO₃H-bearing carbon sheets linked by sp³ -based aliphatic hydrocarbons. This carbon material exhibits much higher catalytic performance in the hydrolysis of cellobiose than conventional heterogeneous Brønsted acid catalysts with SO₃H groups, including SO₃H-bearing amorphous carbon derived from cellulose. This can be attributed to a high density of SO₃H groups and the fast diffusion of reactants and products enabled by a flexible carbon network.

  16. ANALYSIS OF SULFONATES IN AQUEOUS SAMPLES BY ION-PAIR LC/ESI-MS/MS WITH IN-SOURCE CID FOR ADDUCT PEAK ELIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    OUYANG,S.; VAIRAVAMURTHY,M.A.

    1999-06-13

    Determination of low-molecular-weight organic sulfonates (e.g. taurine and cysteic acid) in aqueous solutions is important in many applications of biological, environmental and pharmaceutical sciences. These compounds are difficult to be determined by commonly used reversed-phase liquid chromatographic separation combined with UV-Visible detection because of their high solubility and the lack chromophoric moieties. Here the authors report a method combining ion-pair liquid chromatography and electrospray ionization tandem mass spectrometry (IPLC/ESI-MS/MS)for determining sulfonates. The ability of low-molecular-weight sulfonates to form ion-pairs with quaternary ammonium cations in aqueous solutions allowed LC separation with a C{sub 18} column. Detection of the sulfonates was accomplished with ESI-MS that lends a universal mode of mass detection for polar, water soluble compounds. An in-source collision induced dissociation (CID) was applied to eliminate the adduct peaks in mass spectra. Characteristic marker ions showed in the second stage mass spectra lent a method for identifying sulfonates.

  17. Surface Modification Approach to TiO2 Nanofluids with High Particle Concentration, Low Viscosity, and Electrochemical Activity.

    Science.gov (United States)

    Sen, Sujat; Govindarajan, Vijay; Pelliccione, Christopher J; Wang, Jie; Miller, Dean J; Timofeeva, Elena V

    2015-09-23

    This study presents a new approach to the formulation of functional nanofluids with high solid loading and low viscosity while retaining the surface activity of nanoparticles, in particular, their electrochemical response. The proposed methodology can be applied to a variety of functional nanomaterials and enables exploration of nanofluids as a medium for industrial applications beyond heat transfer fluids, taking advantage of both liquid behavior and functionality of dispersed nanoparticles. The highest particle concentration achievable with pristine 25 nm titania (TiO2) nanoparticles in aqueous electrolytes (pH 11) is 20 wt %, which is limited by particle aggregation and high viscosity. We have developed a scalable one-step surface modification procedure for functionalizing those TiO2 nanoparticles with a monolayer coverage of propyl sulfonate groups, which provides steric and charge-based separation of particles in suspension. Stable nanofluids with TiO2 loadings up to 50 wt % and low viscosity are successfully prepared from surface-modified TiO2 nanoparticles in the same electrolytes. Viscosity and thermal conductivity of the resulting nanofluids are evaluated and compared to nanofluids prepared from pristine nanoparticles. Furthermore, it is demonstrated that the surface-modified titania nanoparticles retain more than 78% of their electrochemical response as compared to that of the pristine material. Potential applications of the proposed nanofluids include, but are not limited to, electrochemical energy storage and catalysis, including photo- and electrocatalysis.

  18. Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Sarikhani, Kaveh [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Majedi, Fatemeh S. [Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Khanbabaei, Ghader [Polymer Science and Technology Division, Research Institute of Petroleum Industry, Tehran (Iran)

    2010-05-01

    In the present study, polyelectrolyte membranes based on partially sulfonated poly(ether ether ketone) (sPEEK) with various degrees of sulfonation are prepared. The optimum degree of sulfonation is determined according to the transport properties and hydrolytic stability of the membranes. Subsequently, various amounts of the organically modified montmorillonite (MMT) are introduced into the sPEEK matrices via the solution intercalation technique. The proton conductivity and methanol permeability measurements of the fabricated composite membranes reveal a high proton to methanol selectivity, even at elevated temperatures. Membrane based on sPEEK and 1 wt% of MMT, as the optimum nanoclay composition, exhibits a high selectivity and power density at the concentrated methanol feed. Moreover, it is found that the optimum nanocomposite membrane not only provides higher performance compared to the neat sPEEK and Nafion {sup registered} 117 membranes, but also exhibits a high open circuit voltage (OCV) at the elevated methanol concentration. Owing to the high proton conductivity, reduced methanol permeability, high power density, convenient processability and low cost, sPEEK/MMT nanocomposite membranes could be considered as the alternative membranes for moderate temperature direct methanol fuel cell applications. (author)

  19. Covalently anchored sulfonic acid on silica gel (SiO2-R-SO3H) as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Mahdavinia; Mohammad A.Bigdeli; Yaser Saeidi Hayeniaz

    2009-01-01

    A highly efficient one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions catalyzed by sulfonic acid covalently anchored onto the surface of silica gel is reported.All types of aldehydes,including aromatic,unsaturated,and heterocyclic,are used.The silica gel/sulfonic acid catalyst (SiO2-R-SO3H) is completely heterogeneous and can be recycled.

  20. 磺酸咔咯及其镓(Ⅲ)配合物与DNA的相互作用和光核酸酶活性%DNA Binding and Photonuclease Activity of Sulfonated Corrole and Its Gallium(Ⅲ) Complex

    Institute of Scientific and Technical Information of China (English)

    黄俊腾; 张阳; 王湘利; 计亮年; 刘海洋

    2013-01-01

    The interactions between 2,17-bis(sodiumsulphonato)-5,10,15-tris(pentafluorophenyl)-corrole (1) and its gallium complex (1-Ga) with calf thymus DNA (ct-DNA) had been studied by UV-Vis absorption spectroscopy,fluorescence spectroscopy,circular dichroism spectroscopy and viscosity experiments.Results revealed that 1 and 1-Ga bind to ct-DNA via an outside(groove) binding mode and the DNA binding ability follows an order of 1Ga>1.Agarose gel electrophoresis experiments showed 1 and 1-Ga display good photonuclease activity with 1-Ga having a better DNA photocleavage performance and hydroxyl radical is the reactive species involved in the photocleavage process.%本文用紫外-可见光谱、荧光光谱、圆二色光谱和粘度法研究了2,17-二(磺酸钠基)-5,10,15-三(五氟苯基)咔咯(1)及其镓配合物(1-Ga)与小牛胸腺DNA(ct-DNA)的相互作用.结果表明1和1-Ga通过外部结合的方式与ct-DNA相互作用,且结合能力1-Ga比1大.琼脂糖凝胶电泳实验显示1和1-Ga均具较好的光核酸酶活性,1-Ga光断裂DNA效果比1好,其光断裂机理与羟基自由基的产生有关.

  1. Recombinant human insulin. VIII. Isolation of fusion protein--S-sulfonate, biotechnological precursor of human insulin, from the biomass of transformed Escherichia coli cells.

    Science.gov (United States)

    Tikhonov, R V; Pechenov, S E; Belacheu, I A; Yakimov, S A; Klyushnichenko, V E; Boldireva, E F; Korobko, V G; Tunes, H; Thiemann, J E; Vilela, L; Wulfson, A N

    2001-02-01

    Various methods have been investigated for the isolation and purification of fusion proteins of precursors of human insulin in the form of S-sulfonates, from the biomass of transformed Escherichia coli cells. Fusion proteins were prepared with different sizes and structures of the leader peptide and the poly-His position (inserted for purification by metal chelate affinity chromatography). The fusion proteins contained an IgG-binding B domain of protein A from Staphylococcus aureus at the N-terminus and an Arg residue between the leader peptide of the molecule and the proinsulin sequence, for trypsin cleavage of the leader peptide. Six residues of Cys in proinsulin allow the chemical modification of the protein as a (Cys-S-SO(-)(3))(6) derivative (S-sulfonate), which increases its polyelectrolytic properties and improves the efficiency of its isolation. Various methods of oxidative sulfitolysis were compared with catalysis by sodium tetrathionate or cystine and Cu2+ or Ni2+ ions. An optimum scheme for the isolation and purification of S-sulfonated fusion proteins was developed by the combination of metal-chelating affinity and ion-exchange chromatography. Highly purified (95%) S-sulfonated fusion protein was recovered which was 85% of the fusion protein contained in the biomass of E. coli cells. Folding of fusion protein S-sulfonate occurred with high yield (up to 90-95%). We found that the fusion protein-S-sulfonate has proinsulin-like secondary structure. This structure causes highly efficient fusion protein folding. Copyright 2001 Academic Press.

  2. Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations.

    Science.gov (United States)

    Chavkin, Charles; Sud, Sumit; Jin, Wenzhen; Stewart, Jeremy; Zjawiony, Jordan K; Siebert, Daniel J; Toth, Beth Ann; Hufeisen, Sandra J; Roth, Bryan L

    2004-03-01

    The diterpene salvinorin A from Salvia divinorum has recently been reported to be a high-affinity and selective kappa-opioid receptor agonist (Roth et al., 2002). Salvinorin A and selected derivatives were found to be potent and efficacious agonists in several measures of agonist activity using cloned human kappa-opioid receptors expressed in human embryonic kidney-293 cells. Thus, salvinorin A, salvinorinyl-2-propionate, and salvinorinyl-2-heptanoate were found to be either full (salvinorin A) or partial (2-propionate, 2-heptanoate) agonists for inhibition of forskolin-stimulated cAMP production. Additional studies of agonist potency and efficacy of salvinorin A, performed by cotransfecting either the chimeric G proteins Gaq-i5 or the universal G protein Ga16 and quantification of agonist-evoked intracellular calcium mobilization, affirmed that salvinorin A was a potent and effective kappa-opioid agonist. Results from structure-function studies suggested that the nature of the substituent at the 2-position of salvinorin A was critical for kappa-opioid receptor binding and activation. Because issues of receptor reserve complicate estimates of agonist efficacy and potency, we also examined the agonist actions of salvinorin A by measuring potassium conductance through G protein-gated K(+) channels coexpressed in Xenopus oocytes, a system in which receptor reserve is minimal. Salvinorin A was found to be a full agonist, being significantly more efficacious than (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U50488) or (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593) (two standard kappa-opioid agonists) and similar in efficacy to dynorphin A (the naturally occurring peptide ligand for kappa-opioid receptors). Salvinorin A thus represents the first known naturally occurring non-nitrogenous full agonist at kappa-opioid receptors.

  3. Isotopic Measurements of Organic Sulfonates From The Murchison Meteorite

    Science.gov (United States)

    Cooper, G. W.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Organic sulfonates and phosphonates have been extracted from the Murchison meteorite for stable isotope measurements. Preliminary stable isotope measurements of individual alkyl sulfonates, R-SO3H (R=C(sub n)H(sub 2n+l)), are shown. These compounds were found in aqueous extracts of Murchison. Both groups show trends similar to other homologous series of organic compounds indigenous to Murchison. Molecular abundances decrease with increasing carbon number, and all possible isomers at each carbon number (through C-4) are present. Carbon isotope measurements of the sulfonates show a decrease in the C-13/C-12 ratio with increasing carbon number. The overall objectives of this project are to obtain dime element carbon, hydrogen, and sulfur - intramolecular isotopic analyses of individual sulfonates, and isotopic measurement of carbon and hydrogen of the phosphonates as a group. The Murchison meteorite is the best characterized carbonaceous chondrite with respect to organic chemistry. The finding of organic sulfonates and phosphonates in Murchison is of interest because they are the first well-characterized series of sulfur and phosphorus containing organic compounds found in meteorites. Also, meteorites, comets, and interplanetary dust particles may have been involved in chemical evolution on the early Earth. Because of the critical role of organic phosphorus and sulfur in all living systems, it is particularly interesting to see examples of abiotic syntheses of these classes of compounds. The study of the isotopic composition of the sulfonates and phosphonates can yield insight into their possible interstellar origin as well as their mechanisms of synthesis in the early solar system. Previous isotopic analyses of other classes of organic compounds indigenous to meteorites, e.g., amino acids, carboxylic acids, and hydrocarbons indicate the possibility that interstellar molecules were incorporated into meteorite parent bodies. In these compounds the ratios of heavy to

  4. Cyclic Oligomers of Phenolphthalein Polyarylene Ether Sulfone (Ketone):Preparation Through Cyclo-depolymerisation of Corresponding Polymers

    Institute of Scientific and Technical Information of China (English)

    Hong Hua WANG; Jin Ying DING; Tian Lu CHEN

    2004-01-01

    Cyclic oligomers of phenolphthalein polyarylene ether sulfone(ketone) were prepared through cyclo-depolymerisation of corresponding polymers using CsF as the catalyst in dipolar aprotic solvent DMAc and DMF, and a family of macrocycles containing from dimer up to at least heptamer were confirmed by GPC, HPLC and MALDI-TOF-MS. The yields of cyclics get as high as 86.3% and 87.9% respectively.

  5. Ag nanoparticle/melamine sulfonic acid supported on silica gel as an efficient catalytic system for synthesis of dihydropyrimidinthiones

    Directory of Open Access Journals (Sweden)

    Parya Nasehi

    2014-07-01

    Full Text Available 3,4-Dihydropyrimidin-2(1H-thiones were synthesized in the presence of Ag nanoparticle/melamine sulfonic acid (MSA supported on silica gel. The reactionwas carried out at 110 oC for 20 min under solvent free conditions. This method hassome advantages such as good yield, mild reaction conditions, ease of operation and work up, short reaction time and high product purity.

  6. Preconcentration of Rare Earth Elements with 8-Hydroxyquinoline-5-sulfonic Acid Chelated Cellulose Filter Prior to Determination by Inductively Coupled Plasma Atomic Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    8-Hydroxyquinoline-5-sulfonic acid,covalently bound to filter cellulose,was used for preconcentrating trace rare earth element(REE) ions from complex matrices and matrix separation,respectively.Multi-REE ions were preconcentrated on the column filled with 8-hydroxyquinoline-5-sulfonic acid cellulose filter and analysed by ICP-AES after being eluted with dilute HNO3.In the given pH range,alkali and alkaline earth metal ions can be separated as matrix elements;a high concentration factor is obtained and the eluates can be measured without interference.The usefulness of the method is shown by the control analyses of standard reference materials.

  7. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  8. Highly active thermally stable nanoporous gold catalyst

    Science.gov (United States)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  9. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern

    2016-12-20

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  10. Steady-state inhibition model for the biodegradation of sulfonated amines in a packed bed reactor.

    Science.gov (United States)

    Juárez-Ramírez, Cleotilde; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Ramos-Monroy, Oswaldo; Santoyo-Tepole, Fortunata; Poggi-Varaldo, Héctor

    2015-05-25

    Aromatic amines are important industrial products having in their molecular structure one or more aromatic rings. These are used as precursors for the synthesis of dyes, adhesives, pesticides, rubber, fertilizers and surfactants. The aromatic amines are common constituents of industrial effluents, generated mostly by the degradation of azo dyes. Several of them are a threat to human health because they can by toxic, allergenic, mutagenic or carcinogenic. The most common are benzenesulfonic amines, such as 4-ABS (4-aminobenzene sulfonic acid) and naphthalene sulfonic amines, such as 4-ANS (4-amino naphthalene sulfonic acid). Sometimes, the mixtures of toxic compounds are more toxic or inhibitory than the individual compounds, even for microorganisms capable of degrading them. Therefore, the aim of this study was to evaluate the degradation of the mixture 4-ANS plus 4-ABS by a bacterial community immobilized in fragments of volcanic stone, using a packed bed continuous reactor. In this reactor, the amines loading rates were varied from 5.5 up to 69 mg L(-1) h(-1). The removal of the amines was determined by high-performance liquid chromatography and chemical oxygen demand. With this information, we have studied the substrate inhibition of the removal rate of the aromatic amines during the degradation of the mixture of sulfonated aromatic amines by the immobilized microorganisms. Experimental results were fitted to parabolic, hyperbolic and linear inhibition models. The model that best characterizes the inhibition of the specific degradation rate in the biofilm reactor was a parabolic model with values of RXM=58.15±7.95 mg (10(9) cells h)(-1), Ks=0.73±0.31 mg L(-1), Sm=89.14±5.43 mg L(-1) and the exponent m=5. From the microbial community obtained, six cultivable bacterial strains were isolated and identified by sequencing their 16S rDNA genes. The strains belong to the genera Variovorax, Pseudomonas, Bacillus, Arthrobacter, Nocardioides and Microbacterium. This

  11. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin

    OpenAIRE

    2013-01-01

    A facile and sustainable approach has been successfully devised to fabricate ultrafine (100-500 nm) highly porous activated carbon fibers (ACFs) by electrospinning of aqueous solutions of predominantly alkali lignin (low sulfonate content) followed by simultaneous carbonization and activation at 850 °C under N2. Incorporating a polyethylene oxide (PEO) carrier with only up to one ninth of lignin not only enabled efficient electrospinning into fibers but also retained fibrous structures during...

  12. 二苯砜-3磺酸钾的合成及表征%SYNTHESIS AND CHARACTERIZATION OF POTASSIUM-DIPHENYL SULFONE SULFONATE

    Institute of Scientific and Technical Information of China (English)

    弋冰; 王德义; 李泽军

    2001-01-01

    Potassium-diphenyl sulfone sulfonate,a kind of effective flame retardant,was synthesized by two steps from benzene,benzenesulfony chloride and chlorosulfonic acid.The structure of the product was analyzed by MS,FT-IR and 1HNMR techniques.

  13. Dual-mode fluorescence switching induced by self-assembly of well-defined poly(arylene ether sulfone)s containing pyrene and amide moieties.

    Science.gov (United States)

    Park, Jeyoung; Kim, Jisung; Seo, Myungeun; Lee, Jinhee; Kim, Sang Youl

    2012-11-04

    A new class of fluorescent organogelators, pyrene-containing poly(arylene ether sulfone)s, showed two fluorescence switching modes in different gelation solvents. The THF gel exhibited excimer emission due to dimerization of the pyrene groups. In contrast, excimer emission was quenched after gelation in MC because of stacking among the pyrene groups.

  14. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    Directory of Open Access Journals (Sweden)

    L. A. C. MOTTA

    Full Text Available Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase in the sulfonated polystyrene content decreased the elasticity modulus of the mortar and, despite higher porosity, there was a reduction of water absorption by capillarity. In relation to mortar without admixture, the modified mortar showed an increase in water retention and consistency index, and a large increase in flexural strength and bond tensile strength. The significant increase of bond tensile strength (214% with admixture 1% highlights the potential of the produced material as an adhesive mortar.

  15. Proton conductive membranes based on doped sulfonated polytriazole

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, M.; Brandao, L.; Mendes, A. [Laboratorio de Engenharia de Processos, Ambiente e Energia (LEPAE), Faculdade de Engenharia da Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Ponce, M.L.; Nunes, S.P. [GKSS Research Centre Geesthacht GmbH, Max Planck Str. 1, D-21502, Geesthacht (Germany)

    2010-11-15

    This work reports the preparation and characterization of proton conducting sulfonated polytriazole membranes doped with three different agents: 1H-benzimidazole-2-sulfonic acid, benzimidazole and phosphoric acid. The modified membranes were characterized by scanning electron microscopy (SEM), infrared spectra, thermogravimetric analysis (TGA), dynamical mechanical thermal analysis (DMTA) and electrochemical impedance spectroscopy (EIS). The addition of doping agents resulted in a decrease of the glass transition temperature. For membranes doped with 85 wt.% phosphoric acid solution proton conductivity increased up to 2.10{sup -3} S cm{sup -1} at 120 C and at 5% relative humidity. The performance of the phosphoric acid doped membranes was evaluated in a fuel cell set-up at 120 C and 2.5% relative humidity. (author)

  16. Preparation of sulfonated cation exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.

    1980-01-01

    It was established that the reaction of petroleum asphaltite sulfonation is determined in the first step by the chemical reaction rate, and in the last --- by diffusion factors. The kinetic constants were found for each reaction step. Sulfonated cation exchangers were obtained having the characteristics: specific volume of the swollen cation exchanger 3.30 mL/g, bulk density of the air-dry product 0.58 g/mL., moisture content 23.4%, swelling in water 41.6%, mechanical strength 80.0%, static exchange capacity with respect to 0.1N NaOH solution 2.76 mg equiv/g, dynamic exchange capacity with respect to 0.0035N CaC1/sub 2/ solution for a specific load of 10 L/L.h 465 mg equiv/L.

  17. Dynamics and Morphology of Sulfonated Polystyrene Ionomers by Dielectric Spectroscopy

    Science.gov (United States)

    Castagna, Alicia; Wang, Wenqin; Winey, Karen I.; Runt, James

    2009-03-01

    The dynamics of sulfonated polystyrene (SPS) ionomers, in both the acid and neutralized forms, were investigated using broadband dielectric spectroscopy. The influences of acid content, counterion type (Zn, Na and Cs), degree of neutralization, and microphase separated morphology on segmental and local dynamics, as well as on Maxwell -- Wagner -- Sillars interfacial polarization, were examined. Ionomers prepared from SPS containing 1.9 mol% sulfonic acid species exhibit a broader segmental process indicative of a considerably broader distribution of local environments, as compared to those in unneutralized SPS. Moreover, multiple segmental relaxations were identified in the dielectric spectra of Zn and Na neutralized SPS (1.9 mol%) ionomers, likely indicating two distinct environments arising from ion clustering. A combination of STEM imaging and X-ray scattering confirmed the presence of monodisperse spherical ionic aggregates that were homogeneously distributed in the polymer matrix.

  18. New Fluorinated and Sulfonated Block Copolymers Final Report

    Science.gov (United States)

    2009-04-23

    serves as a plasticizer even in the hydrophobic FI domain. Similar glass transition reduction effects observed in other ionomer systems have been...Sulfonated Ionomer : Thermal Annealing and Solvent Effects.” American Physical Society National Meeting. Los Angeles, CA. March 21, 2005. 4. Akinbode...optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block-copolymer ionomers of fluorinated poly

  19. Regioselective synthesis of chiral dimethyl-bis(ethylenedithiotetrathiafulvalene sulfones

    Directory of Open Access Journals (Sweden)

    Flavia Pop

    2015-07-01

    Full Text Available Enantiopure (R,R and (S,S-dimethyl-bis(ethylenedithiotetrathiafulvalene monosulfones have been synthesized by the aerial oxidation of the chiral dithiolates generated from the propionitrile-protected precursors. Both enantiomers crystallize in the orthorhombic chiral space group P212121. They show a boat-type conformation of the TTF moiety, a rather rigid dithiin sulfone ring and the methyl groups in a bisequatorial conformation. Cyclic voltammetry measurements indicate fully reversible oxidation in radical cation and dication species.

  20. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    of the anaerobic digestion process should be seriously taken into consideration when wastewater from a surfactant producing industry is to be treated biologically or enter a municipal wastewater treatment plant that employs anaerobic technology. The upper allowable biomass specific LAS concentration should be 14......Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...

  1. Anaerobic degradation of linear alkylbenzene sulfonate in fluidized bed reactor

    OpenAIRE

    2010-01-01

    An anaerobic fluidized bed reactor was used to assess the degradation of the surfactant linear alkylbenzene sulfonate (LAS). The reactor was inoculated with sludge from an UASB reactor treating swine wastewater and was fed with a synthetic substrate supplemented with LAS. Sand was used as support material for biomass immobilization. The reactor was kept in a controlled temperature chamber (30±1 ºC) and operated with a hydraulic retention time (HRT) of 18 h. The LAS concentration was gradually...

  2. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti, E-mail: jchutiaiasst@gmail.com

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  3. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, Natasja; Ham, Louis G.J. van der; Euverink, Gert-Jan W.; Haan, André B. de

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  4. Sulfonate-containing Copolymers Prepared by Semi-Continuous Emulsion Copolymerizaiton of Styrene and Sodium Styrene Sulfonate

    Institute of Scientific and Technical Information of China (English)

    Shiming HUANG; Wei XIE; Chengyou KAN; Yajie LI; Deshan LIU

    2005-01-01

    @@ 1Introduction Soap-free emulsion copolymerization of styrene (St) and sodium sulfonate styrene (NaSS) could yield homodisperse sulfonate-containing particles with clean surface. But the incorporation of NaSS could never be increased beyond 2.6 % by weight in the conventional batch and seeded emulsion copolymerization in the absence of emulsifier because large amounts of soluble polyelectrolyte would unstablize the reaction system if excessive amount of NaSS was used[1]. In our work, semi-continuous copolymerizations were carried out in the presence of mixed emulsifiers, and a new method to purify the latex polymer was developed. The influences of the NaSS mole ratio in the total monomers and the monomer addition time on the S content in the purified copolymer were investigated by elemental analysis.

  5. 磺化改性聚四氟乙烯纤维固相萃取-高效液相色谱联用测定奶制品中的三聚氰胺%Sulfonation Modification of the Polytetrafluoroethene Fiber for Solid Extraction Coupled with High-performance Liquid Chromatography for Determination of Trace Melamine in Milk Preparations

    Institute of Scientific and Technical Information of China (English)

    张毅; 韩晓燕; 赵培莉; 郭炜毅; 张政朴

    2011-01-01

    A preconcentration column packed with home-made sulfonated glycidyl methacrylate ( GMA) -grafted-polytetrafluoroethylene( PTFE) polymer( PTFE-g-GMA-SO3 H) fiber, coupled with high-performance liquid chromatography ( HPLC) and flow injection, fiber was developed for trace melamine determination in the samples. The on-line determination method using the fiber as adsorbent for trace melamine in two milk sample was demonstrated. The conditions for preconcentration and elution of melamine were optimized. In addition, analytical performance of trace melamine determination was acquired in this article. The enrichment factor for melamine was 300 and the detection limits was 1. 13 × 10 -2 mg/L. The relative standard derivation was 7. 6% (n = 9) when the melamine concentration was 0.2 mg/L, and the recovery of samples was 98% and 102. 5% , respectively.%采用新型同相萃取材料磺化的甲基丙烯酸缩水甘油酯接枝聚四氟乙烯(PTFE-g-GMA-SO3H)纤维填充微柱预富集和流动注射(FI)与高效液相色谱(HPLC)联用测定样品中痕苗的三聚氰胺.建立了以该纤维作为吸附剂在线测定奶制品中三聚氰胺的新方法.对三聚氰胺的富集与洗脱条件进行了优化,并得出三聚氰胺的分析特性:该方法对三聚氰胺的检出限为1.13×10-2mg/L,富集倍数为300,RSD为7.6%(n=9,三聚氰胺质量浓度为0.2 mg/L).该方法应用于2种奶制品中的痕量三聚氰胺的测定,样品加标回收率分别为98%和102.5%.

  6. SYNTHESIS AND BIOLOGICAL ACTIVITIES OF NEW 5-HT2A SELECTIVE LIGANDSN-SUBSTITUTED-PIPERIDINYL4-PHENYLTHIOETHER AND SULFONE DERIVATIVES%新型5-HT2A选择性配体N-取代哌啶-4-苯硫醚和砜类衍生物的合成及其生物活性

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    目的为寻找新型的5-HT2A受体选择性配体,设计合成了一系列二芳烷基哌啶类化合物的含硫衍生物。方法以2,3-二甲氧基硫酚为原料,经烃化、氧化和水解等反应合成3个N-取代哌啶-4-苯硫醚和砜类化合物,所有目标化合物结构均经元素分析、1HNMR谱、质谱和红外光谱确证,并测定其对5-HT2A,5-HT2C,5-HT6和5-HT7受体及其他一些中枢神经递质受体的体外亲和力。结果 3个目标化合物(2a-2c)及5个中间体均为新化合物。体外受体竞争结合试验结果表明2a-2c均有较高的5-HT2A受体选择性。结论此类化合物对5-HT2A受体的选择性较高,值得进一步研究。%AIM A series of 4-piperidinylthioether and sulfone derivatives of 4-[1-hydroxy-1-(2,3-dimethoxyphenyl) methyl]-N-2-(4-fluorophenylethyl) piperidine (MDL 100907) were synthesized in order to find new 5-HT2A selective ligands. METHODS Title compounds 2a-2c were synthesized from 2,3-dimethoxythiophenol and tested for their affinities to 5-HT2A, 5-HT2C, 5-HT6 and 5-HT7 receptors and some other nervous transmitter receptors in vitro. RESULTS Compounds 2a-2c are new compounds. The results of the binding assay demonstrated that they have relatively high selectivity for 5-HT2A receptor in vitro. CONCLUSION Some sulfur containing analogues of MDL 100907 showed selective affinity to 5-HT2A receptor and are worth further study.

  7. Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud Nasef, Mohamed, E-mail: mahmoudeithar@fkkksa.utm.m [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Saidi, Hamdani [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Mohd Dahlan, Khairul Zaman [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2011-01-15

    Graft copolymerization of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films was investigated to find out a simple preparation process for sulfonic acid proton exchange membranes with respect to monomer concentration, absorbed dose, temperature, film thickness and storage time. The reaction order of the monomer concentration and absorbed dose of grafting was found to be 2.84 and 1.20, respectively. The overall activation energy for graft copolymerization reaction was calculated to be 11.36 kJ/mol. The initial rate of grafting was found to decrease with an increase in the film thickness. The trapped radicals in the irradiated PVDF films remained effective in initiating the reaction without considerable loss in grafting level up to 180 days, when stored under -60 {sup o}C. The presence and distribution of polystyrene sulfonate grafts in the obtained membranes were observed by Fourier transform infrared (FTIR) spectroscopic analysis, scanning optical microscope and scanning transmission electron microscopy (STEM) coupled with X-ray energy dispersive (EDX), respectively.

  8. Effects of sodium tanshinone II A sulfonate on hemodynamics and cardiac function in patients with senile pulmonary heart disease

    Institute of Scientific and Technical Information of China (English)

    Yin-Hong Liu; Yong Zhang; Yang Zhang; Tao Xue; Cai-Ping Tang; Xiao-Ming Wang

    2016-01-01

    Objective:To investigate the effects of sodium tanshinone II A sulfonate on hemodynamics and cardiac function in patients with senile pulmonary heart disease.Methods:A total of 110 cases that had been diagnosed with senile pulmonary heart disease in our hospital during January 2013 to July 2015 were selected as research objects. In accordance with the random number table, they were randomly divided into observation group and control group, with 55 cases each. Conventional therapy was given to the control group, while observation group received extra sodium tanshinone II A sulfonate administration on a conventional therapy basis. Hemodynamic indexes and cardiac function were compared between the two groups.Results:After treatment, whole blood viscosity, fibrinogen and plasma viscosity were significantly decreased in observation group compared with before treatment (P<0.05), which were also significantly lower compared with control group (P<0.05); the post-treatment levels of PASP, PEP/RVET and VA/VE notably declined in both groups compared with before treatment (P<0.05), and all these post-treatment indexes in observation group were even lower compared with control group (P<0.05).Conclusions:Using sodium tanshinone II A sulfonate to treat senile pulmonary heart disease can actively and effectively improve hemodynamics and cardiac function, which is worthy of clinical promotion.

  9. Proton Conduction in Sulfonated Organic-Inorganic Hybrid Monoliths with Hierarchical Pore Structure.

    Science.gov (United States)

    von der Lehr, Martin; Seidler, Christopher F; Taffa, Dereje H; Wark, Michael; Smarsly, Bernd M; Marschall, Roland

    2016-09-28

    Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups.

  10. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  11. Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    FDU-15-SO3H,a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer,has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture.FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading.It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1.FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid,which simulated the feedstock with a high content of free fatty acids.The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid.This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.

  12. Design, synthesis and physical properties of poly(styrene–butadiene–styrene)/poly(thiourea-azo-sulfone) blends

    Indian Academy of Sciences (India)

    Ayesha Kausar

    2014-06-01

    A new aromatic azo-polymer, poly(thiourea-azo-sulfone), has been synthesized using 1-(4-thiocarbamoylaminophenylsulfonylphenyl)thiourea and diazonium salt solution. Conducting and thermally stable rubbery blends of poly(styrene-block-butadiene-block-styrene) (SBS) triblock copolymer and poly(thiourea-azo-sulfone) (PTAS) were produced by solution blending technique. PTAS possessed fine solubility in polar solvents and high molar mass 63 × 103 g moL-1. Microscopic analysis on SBS/PTAS blends revealed good adhesion between the two polymers without macro phase separation. Electrical conductivity measurement recommended that blending of SBS with 60% PTAS was sufficiently conducting 1.43 S cm-1. A relationship between PTAS loading and thermal stability of blends was observed. With the increasing PTAS content, 10% gravimetric loss was increased from 481 to 497 °C, while glass transition improved from 123 to 136 °C (better than neat SBS but lower than PTAS). The blends also established higher tensile strength (52.40–59.96 MPa) relative to SBS. Fine balance of properties renders new SBS/PTAS, potential engineering plastics for a number of aerospace relevance.

  13. Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application

    Science.gov (United States)

    Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon

    2016-10-01

    Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).

  14. New sulfonated polystyrene and styrene-ethylene/butylene-styrene block copolymers for applications in electrodialysis.

    Science.gov (United States)

    Müller, Franciélli; Ferreira, Carlos A; Franco, Lourdes; Puiggalí, Jordi; Alemán, Carlos; Armelin, Elaine

    2012-09-27

    In this study we prepared blends of polystyrene (PS) and high-impact polystyrene (HIPS) with poly(styrene-ethylene-butylene) (SEBS) triblock copolymer. After sulfonation, blends were used to fabricate ion-exchange membranes by solvent-casting and subsequent thermal treatment to obtain homogeneous packing densities. The morphology and structure of the blends were investigated by scanning electron microscopy, atomic force microscopy, and FTIR spectroscopy. Furthermore, the thermal transitions and stability of all the blends were characterized using calorimetric techniques and compared with those of the individual polymers. Analyses of the physical properties (i.e., ionic conductivity, ion-exchange capacity, water uptake, dimensional stability, mechanical properties, etc.) showed that the performance of the PS-containing membranes is, in general, higher than that of the HIPS containing one. Furthermore, the highest sulfonation degree was also found for the PS/SEBS membranes. The capabilities of the membranes were tested by investigating the extraction of Na(+) by electrodyalisis. Comparison of the percentage of extracted ions indicates that the incorporation of SEBS results in a significant improvement with respect to membranes made of individual polymers.

  15. Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: Surface and thermal characterization.

    Science.gov (United States)

    George, Michael; Mussone, Paolo G; Bressler, David C

    2015-12-10

    The aim of this study was to characterize the surface, morphological, and thermal properties of hemp fibers treated with two commercially available, inexpensive, and water soluble sulfonic acid derivatives. Specifically, the cellulosic component of the fibers were targeted, because cellulose is not easily removed during chemical treatment. These acids have the potential to selectively transform the surfaces of natural fibers for composite applications. The proposed method proceeds in the absence of conventional organic solvents and high reaction temperatures. Surface chemical composition and signature were measured using gravimetric analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). XPS data from the treated hemp fibers were characterized by measuring the reduction in O/C ratio and an increase in abundance of the C-C-O signature. FTIR confirmed the reaction with the emergence of peaks characteristic of disubstituted benzene and amino groups. Grafting of the sulfonic derivatives resulted in lower surface polarity. Thermogravimetric analysis revealed that treated fibers were characterized by lower percent degradation between 200 and 300 °C, and a higher initial degradation temperature.

  16. A STUDY OF THE HEAT OF HYDRATION OF SULFONIC ACID RESINS

    Institute of Scientific and Technical Information of China (English)

    XURongnan; JIJunyan; 等

    1992-01-01

    The heat of hydration of dry sulfonic acid resin in different comcentrations of sulfuric acid has been determined. The heat of hydration of the resin in H2O is 143.4J/g(resin). The greater the concentration of sulfuric acid,the less the heat will be released.The hydrate formed from three sulfonic acid groups and one water molecule is the most stable one of all the hydrates of sulfonic acid resin and water.

  17. Active control system for high speed windmills

    Science.gov (United States)

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  18. Detergency stability and particle characterization of phosphate-free spray dried detergent powders incorporated with palm C16 methyl ester sulfonate (C16MES).

    Science.gov (United States)

    Siwayanan, Parthiban; Aziz, Ramlan; Bakar, Nooh Abu; Ya, Hamdan; Jokiman, Ropien; Chelliapan, Shreeshivadasan

    2014-01-01

    Phosphate-free spray dried detergent powders (SDDP) comprising binary anionic surfactants of palm C16 methyl ester sulfonate (C16MES) and linear alkyl benzene sulfonic acid (LABSA) were produced using a 5 kg/h-capacity co-current pilot spray dryer (CSD). Six phosphate-free detergent (PFD) formulations comprising C16MES/LABSA in various ratios under pH 7-8 were studied. Three PFD formulations having C16MES/LABSA in respective ratios of 0:100 (control), 20:80 and 40:60 ratios were selected for further evaluation based on their optimum detergent slurry concentrations. The resulting SDDP from these formulations were analysed for its detergency stability (over nine months of storage period) and particle characteristics. C16MES/LABSA of 40:60 ratio was selected as the ideal PFD formulation since its resulting SDDP has consistent detergency stability (variation of 2.3% in detergency/active over nine months storage period), excellent bulk density (0.37 kg/L), fine particle size at 50% cumulative volume percentage (D50 of 60.48 μm), high coefficient of particle size uniformity (D60/D10 of 3.86) and large spread of equivalent particle diameters. In terms of surface morphology, the SDDP of the ideal formulation were found to have regular hollow particles with smooth spherical surfaces. Although SDDP of the ideal formulation have excellent characteristics, but in terms of flowability, these powders were classified as slightly less free flowing (Hausner ratio of 1.27 and Carr's index of 21.3).

  19. Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor.

    Science.gov (United States)

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Wadood, Abdul; Rahim, Fazal; Al Muqarrabin, Laode Muhammad Ramadhan; Zaki, Hamizah Mohd; Ahmat, Norizan; Nasir, Abdul; Khan, Fahad

    2016-10-01

    Novel series of disulfide and sulfone hybrid analogs (1-20) were synthesized and characterized through EI-MS and (1)H NMR and evaluated for β-glucuronidase inhibitory potential. All synthesized analogs except 13 and 15 showed excellent β-glucuronidase inhibitory potential with IC50 value ranging in between 2.20-88.16μM as compared to standard d-saccharic acid 1,4 lactone (48.4±1.25μM). Analogs 19, 16, 4, 1, 17, 6, 10, 3, 18, 2, 11, 14 and 5 showed many fold potent activity against β-glucuronidase inhibitor. Structure activity relationship showed that substitution of electron withdrawing groups at ortho as well as para position on phenyl ring increase potency. Electron withdrawing groups at meta position on phenyl ring showed slightly low potency as compared to ortho and para position. The binding interactions were confirmed through molecular docking studies.

  20. Successful treatment of high azo dye concentration wastewater using combined anaerobic/aerobic granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR): simultaneous adsorption and biodegradation processes.

    Science.gov (United States)

    Hosseini Koupaie, E; Alavi Moghaddam, M R; Hashemi, S H

    2013-01-01

    The application of a granular activated carbon-sequencing batch biofilm reactor (GAC-SBBR) for treatment of wastewater containing 1,000 mg/L Acid Red 18 (AR18) was investigated in this research. The treatment system consisted of a sequencing batch reactor equipped with moving GAC as biofilm support. Each treatment cycle consisted of two successive anaerobic (14 h) and aerobic (8 h) reaction phases. Removal of more than 91% chemical oxygen demand (COD) and 97% AR18 was achieved in this study. Investigation of dye decolorization kinetics showed that the dye removal was stimulated by the adsorption capacity of the GAC at the beginning of the anaerobic phase and then progressed following a first-order reaction. Based on COD analysis results, at least 77.8% of the dye total metabolites were mineralized during the applied treatment system. High-performance liquid chromatography analysis revealed that more than 97% of 1-naphthyalamine-4-sulfonate as one of the main sulfonated aromatic constituents of AR18 was removed during the aerobic reaction phase. According to the scanning electron microscopic analysis, the microbial biofilms grew in most cavities and pores of the GAC, but not on the external surfaces of the GAC.

  1. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    Science.gov (United States)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  2. The Use of Heterogeneous Catalysts of Chitosan Sulfonate Bead on the Esterification Reaction of Oleic Acid and Methanol

    Science.gov (United States)

    Chamidy, H. N.; Riniati

    2017-05-01

    Biodiesel is one of the ester compounds with physical properties closer to a biodiesel which can be produced by the esterification reaction between methanol and oleic acid (one of major components present in Palm Fatty Acid Distillate, PFAD). The purpose of this study was to obtain an optimum condition of esterification reaction by using chitosan sulfonate bead as heterogeneous catalysts. Chitosan sulfonate bead was made from chitosan undergo sulfonation process using acidic reagents cross-linked with sulfosalicylic and glutaraldehyde with a high enough value of ion exchange capacity. The stage of esterification reactions was carried by varying the amount of catalyst being added (4, 6, 8, 10, 12% by oleic acid), the operating temperature was varied of 40, 50 and 60 °C, and the reaction time of 1, 2, 3, 4 and 5 hours. Conversion determination of the products was done by analysing the free fatty acids content in each sample. Having obtained from the optimum amount of catalyst being added, temperature, and time, it was found that the catalyst was at 8%, 50 °C, during 5 hours in operation. The maximum conversion of oleic acid into biodiesel was 73.12%.

  3. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO 2 nanoparticles

    Science.gov (United States)

    Luo, Ming-Liang; Zhao, Jian-Qing; Tang, Wu; Pu, Chun-Sheng

    2005-08-01

    Membrane fouling is one of the major obstacles for reaching the ultimate goal, which realizes high flux over a prolonged period of ultrafiltration (UF) operation. In this paper, TiO 2 nanoparticles of a quantum size (40 nm or less) in anatase crystal structure were prepared from the controlled hydrolysis of titanium tetraisopropoxide and characterized by X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). The hydrophilic modification of poly(ether sulfone) UF membrane was performed by self-assembly of the hydroxyl group of TiO 2 nanoparticle surface and the sulfone group and ether bond in poly(ether sulfone) structure through coordination and hydrogen bond interaction, which was ascertained by X-ray photoelectron spectroscopy (XPS). The morphology and hydrophilicity were characterized by scanning electron microscopy (SEM) and contact angle test, respectively. The composite UF membrane was also characterized in terms of separation behavior for polyethylene glycol-5000 solute. The experimental results show that the composite UF membrane has good separation performance and offers a strong potential for possible use as a new type of anti-fouling UF membrane.

  4. Sulfonated phenolic material and its use in post primary oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pardue, J. E.; Stapp, P. R.

    1984-09-04

    Sulfonated phenolic compounds as well as sulfomethylated phenolic compounds, surfactant systems containing such compound and the use of such surfactant systems in post primary oil recovery are disclosed.

  5. Quinone-mediated decolorization of sulfonated azo dyes by cells and cell extracts from Sphingomonas xenophaga

    Institute of Scientific and Technical Information of China (English)

    JIAO Ling; LU Hong; ZHOU Jiti; WANG Jing

    2009-01-01

    The effects of various quinone compounds on the decolorization rates of sulfonated azo dyes by Sphingomonas xenophaga QYY were investigated. The results showed that anthraquinone-2-sulfonate (AQS) was the most effective redox mediator and AQS reduction was the rate-limited step of AQS-mediated decolorization of sulfonated azo dyes. Based on AQS biological toxicity tests, it was assumed that AQS might enter the cells to kill them. In the cytoplasmic extracts from strain QYY, AQS effectively increased decolorization rates of sulfonated azo dyes than other quinone compounds. In addition, we found a NADH/FMN-dependent AQS reductase using nondenaturing polyacrylamide gel electrophoresis (Native-PAGE).

  6. Improved Performance of Sulfonated Polyarylene Ethers for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    D. Xing; J. Kerres; F. Sch(o)nberger

    2005-01-01

    @@ 1Introduction The proton exchange membrane (PEM) is one of key components in fuel cell system. Its properties are very important in determining PEMFC performance. The membranes presently used in fuel cell are perfluorosulfonic polymers, such as Nafion(R) from Dupont. Although they have high proton conductivity and excellent chemical stability, their too high production cast and methanol permeability lead to failure of fuel cell application. Therefore, various partially fluorinated and non-fluorinated polymer electrolytes are under development for PEMFC application since one decade. In the middle of non-fluorinated polymer electrolytes, sulfonated poly(arylene ether)s display high thermal stability, good mechanical properties and exceptional resistance to oxidation and acid catalyzed hydrolysis. They have been regarded as well-suited proton exchange membrane candidates for fuel cells.

  7. Dynamic interfacial behavior of decyl methylnaphthalene sulfonate surfactants for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Zhongkui; Ba Yan; Li Zongshi; Qiao Weihong; Cheng Luebai [State Key Lab. of Fine Chemicals, Dalian Univ. of Technology, Dalian (China)

    2004-10-01

    The high purity decyl methylnaphthalene sulfonate (DMNS) was synthesized, the purity was determined by HPLC and the structure was confirmed by IR, UV and ESI-MS. Dynamic interfacial tensions (DIT) between DMNS flooding systems and crude oil were measured and the effects of sodium carbonate concentration, surfactant concentration and sodium chloride concentration on the DIT behaviors were investigated. It's found that the surfactant concentration, alkali concentration and the salinity have obvious influences on DIT behaviors. DMNS possessed outstanding capacity and efficiency of lowering the DIT between oil and water. The minimum dynamic interfacial tension could reach 6.35 x 10{sup -6} mNm{sup -1} at a low concentration for added surfactant. DMNS might be used in Enhanced Oil Recovery with low costs and high efficiency. (orig.)

  8. Hydronium 4-oxo-1,4-dihydropyridine-3-sulfonate dihydrate

    Directory of Open Access Journals (Sweden)

    Zhi-Biao Zhu

    2009-11-01

    Full Text Available 2-Hydroxypyridine when treated with concentrated sulfuric acid is sulfonated at the 3-position to yield the title hydrated salt, H3O+·C5H4NO3S−·2H2O. In the crystal structure, the cations, anions and uncoordinated water molecules are linked by extensive O—H...O and N—H...O hydrogen bonds into a three-dimensional network. The crystal studied is a non-merohedral twin with a twin component of 36%.

  9. Properties of sulfonated cation-exchangers made from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.

    1982-01-10

    The use of ion-exchangers in radiochemical technology is accompanied by changes of their properties under the influence of ionizing radiation. The rate of development of these processes depends on the nature and structure of the matrix and on the nature and amount of ionic groups. We have proposed a method of synthesis of ion-exchangers resistant to ..gamma.. radiation from petroleum asphaltites. Continuing these investigations, we prepared cation-exchangers by sulfonation of a mixture of petroleum asphaltites and acid asphalt. An investigation of their radiation resistance is described in this paper.

  10. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    it is important to investigate the effect of these xenobiotic compounds on an anaerobic environment. The inhibitory effect of Linear Alkylbenzene Sulfonates (LAS) on the acetogenic and methanogenic step of the anaerobic digestion process was studied. LAS inhibit both acetogenesis from propionate...... of the anaerobic digestion process should be seriously taken into consideration when wastewater from a surfactant producing industry is to be treated biologically or enter a municipal wastewater treatment plant that employs anaerobic technology. The upper allowable biomass specific LAS concentration should be 14...

  11. Catalytically highly active top gold atom on palladium nanocluster.

    Science.gov (United States)

    Zhang, Haijun; Watanabe, Tatsuya; Okumura, Mitsutaka; Haruta, Masatake; Toshima, Naoki

    2011-10-23

    Catalysis using gold is emerging as an important field of research in connection with 'green' chemistry. Several hypotheses have been presented to explain the markedly high activities of Au catalysts. So far, the origin of the catalytic activities of supported Au catalysts can be assigned to the perimeter interfaces between Au nanoclusters and the support. However, the genesis of the catalytic activities of colloidal Au-based bimetallic nanoclusters is unclear. Moreover, it is still a challenge to synthesize Au-based colloidal catalysts with high activity. Here we now present the 'crown-jewel' concept (Supplementary Fig. S1) for preparation of catalytically highly Au-based colloidal catalysts. Au-Pd colloidal catalysts containing an abundance of top (vertex or corner) Au atoms were synthesized according to the strategy on a large scale. Our results indicate that the genesis of the high activity of the catalysts could be ascribed to the presence of negatively charged top Au atoms.

  12. Identification of highly active flocculant proteins in bovine blood.

    Science.gov (United States)

    Piazza, George J; Nuñez, Alberto; Garcia, Rafael A

    2012-03-01

    Synthetic polymeric flocculants are used extensively for wastewater remediation, soil stabilization, and reduction in water leakage from unlined canals. Sources of highly active, inexpensive, renewable flocculants are needed to replace synthetic flocculants. High kaolin flocculant activity was documented for bovine blood (BB) and blood plasma with several anticoagulant treatments. BB serum also had high flocculant activity. To address the hypothesis that some blood proteins have strong flocculating activity, the BB proteins were separated by SEC. Then, the major proteins of the flocculant-active fractions were separated by SDS-PAGE. Identity of the major protein components was determined by tryptic digestion and peptide analysis by MALDI TOF MS. The sequence of selected peptides was confirmed using TOF/TOF-MS/MS fragmentation. Hemoglobin dimer (subunits α and β) was identified as the major protein component of the active fraction in BB; its high flocculation activity was confirmed by testing a commercial sample of hemoglobin. In the same manner, three proteins from blood plasma (fibrinogen, γ-globulin, α-2-macroglobulin) were found to be highly active flocculants, but bovine serum albumin, α-globulin, and β-globulin were not flocculants. On a mass basis, hemoglobin, γ-globulin, α-2-macroglobulin were as effective as anionic polyacrylamide (PAM), a widely used synthetic flocculant. The blood proteins acted faster than PAM, and unlike PAM, the blood proteins flocculants did not require calcium salts for their activity.

  13. Theoretical stusy of the reaction between 2,2',4' - trihydroxyazobenzene-5-sulfonic acid and zirconium

    Science.gov (United States)

    Fletcher, Mary H.

    1960-01-01

    Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.

  14. Mineralization of Linear Alkylbenzene Sulfonate by a Four-Member Aerobic Bacterial Consortium

    Science.gov (United States)

    Jiménez, Luis; Breen, Alec; Thomas, Nikki; Federle, Thomas W.; Sayler, Gary S.

    1991-01-01

    A bacterial consortium capable of linear alkylbenzene sulfonate (LAS) mineralization under aerobic conditions was isolated from a chemostat inoculated with activated sludge. The consortium, designated KJB, consisted of four members, all of which were gram-negative, rod-shaped bacteria that grew in pairs and short chains. Three isolates had biochemical properties characteristic of Pseudomonas spp.; the fourth showed characteristics of the Aeromonas spp. Cell suspensions were grown together in minimal medium with [14C]LAS as the only carbon source. After 13 days of incubation, more than 25% of the [14C]LAS was mineralized to 14CO2 by the consortium. Pure bacterial cultures and combinations lacking any one member of the KJB bacterial consortium did not mineralize LAS. Three isolates carried out primary biodegradation of the surfactant, and one did not. This study shows that the four bacteria complemented each other and synergistically mineralized LAS, indicating catabolic cooperation among the four consortium members. PMID:16348496

  15. MICROBIAL FUEL CELL BASED POLYSTYRENE SULFONATED MEMBRANE AS PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. Mulijani

    2016-09-01

    Full Text Available Microbial fuel cell (MFC represents a major bioelectrochemical system that converts biomass spontaneously into electricity through the activity of microorganisms. The MFC consists of anode and cathode compartments. Microorganisms in MFC liberate electrons while the electron donor is consumed. The produced electron is transmitted to the anode surface, but the generated protons must pass through the proton exchange membrane (PEM to reach the cathode compartment. PEM, as a key factor, affects electricity generation in MFCs. The study attempted to investigate if the sulfonated polystyrene (SPS membrane can be used as a PEM in the application on MFC. SPS membrane has been characterized using Fourier transform infrared spectrophotometer (FTIR, scanning electron microscope (SEM and conductivity. The result of the conductivity (σ revealed that the membrane has a promising application for MFC.

  16. Selective Preparation of Furfural from Xylose over Sulfonic Acid Functionalized Mesoporous Sba-15 Materials

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2011-04-01

    Full Text Available Sulfonic acid functionalized mesoporous SBA-15 materials were prepared using the co-condensation and grafting methods, respectively, and their catalytic performance in the dehydration of xylose to furfural was examined. SBA-15-SO3H(C prepared by the co-condensation method showed 92–95% xylose conversion and 74% furfural selectivity, and 68–70% furfural yield under the given reaction conditions. The deactivation and regeneration of the SBA-15-SO3H(C catalyst for the dehydration of xylose was also investigated. The results indicate that the used and regeneration catalysts retained the SBA-15 mesoporous structure, and the S content of SBA-15-SO3H(C almost did not change. The deactivation of the catalysts is proposed to be associated with the accumulation of byproducts, which is caused by the loss reaction of furfural. After regeneration by H2O2, the catalytic activity of the catalyst almost recovered.

  17. Combined photochemical and biological processes for the treatment of linear alkylbenzene sulfonate in water.

    Science.gov (United States)

    Mehrvar, Mehrab; Tabrizi, Gelareh Bankian

    2006-01-01

    In this study, the effects of photochemical pre-treatment (pilot-plant UV/H2O2 process) of linear alkylbenzene sulfonate (LAS) on its subsequent biological treatment were examined. It was observed that the photochemical pre-treatment of the LAS solution did not increase its biodegradability. Moreover, the effects of acclimated microorganisms on the biodegradability of the LAS solution were also studied. It was observed that the acclimated activated sludge increased the biodegradation of the LAS solution. However, due to the presence of some intermediates in the effluent of the photoreactor, the biodegradability of this effluent was less than the biodegradability of the untreated LAS solution with the same concentration of the LAS in the effluent of the photoreactor.

  18. Dielectric properties of poly (1,4-phenylene ether-ether-sulfone)

    CERN Document Server

    Spasevska, H

    2002-01-01

    Dielectric properties of Poly (1,4-phenylene ether-ether-sulfone) are obtained from dielectric spectroscopy of the polymer pellet. The values of relative dielectric constant epsilon', dielectric losses epsilon sup , dielectric dissipation factor tan delta and complex impedance are obtained at temperature of 75 sup o C. The temperature dependence of these parameters is investigated for three frequencies (8x10 sup 4 Hz; 8x10 sup 5 Hz; 8x10 sup 6 Hz) of applied electric field. The specific conductivity sigma, which depends on temperature, is related to the ohmic resistance R, at temperature in the interval from 66 to 83 sup o C. Fitting the experimental data, the value of the activation energy U is obtained. (Original)

  19. Social capital and physical activity among Croatian high school students.

    Science.gov (United States)

    Novak, D; Doubova, S V; Kawachi, I

    2016-06-01

    To examine factors associated with regular physical activity in Croatian adolescents. A cross-sectional survey among high school students was carried out in the 2013/14 school year. A survey was conducted among 33 high schools in Zagreb City, Croatia. Participants were students aged 17-18 years. The dependent variables were regular moderate to vigorous physical activity (MVPA) and overall physical activity measured by the short version of International Physical Activity Questionnaire and defined as 60 min or more of daily physical activity. The independent variables included family, neighborhood, and high school social capital. Other study covariates included: socio-economic status, self-rated health, psychological distress and nutritional status. The associations between physical activity and social capital variables were assessed separately for boys and girls through multiple logistic regression and inverse probability weighting in order to correct for missing data bias. A total of 1689 boys and 1739 girls responded to the survey. A higher percentage of boys reported performing regular vigorous and moderate physical activity (59.4%) and overall physical activity (83.4%), comparing with the girls (35.4% and 70%, respectively). For boys, high family social capital and high informal social control were associated with increased odds of regular MVPA (1.49, 95%CI: 1.18 - 1.90 and 1.26, 95%CI: 1.02 - 1.56, respectively), compared to those with low social capital. For girls, high informal social control was associated with regular overall physical activity (OR 1.38, 95% CI: 1.09 - 1.76). High social capital is associated with regular MVPA in boys and regular overall activity in girls. Intervention and policies that leverage community social capital might serve as an avenue for promotion of physical activity in youth. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  20. High temperature resistant nanofiber by bubbfil-spinning

    Directory of Open Access Journals (Sweden)

    Li Ya

    2015-01-01

    Full Text Available Heat-resisting nanofibers have many potential applications in various industries, and the bubbfil spinning is the best candidate for mass-production of such materials. Polyether sulfone/zirconia solution with a bi-solvent system is used in the experiment. Experimental result reveals that polyether sulfone/zirconia nanofibers have higher resistance to high temperature than pure polyether sulfone fibers, and can be used as high-temperature-resistant filtration materials.

  1. Modeling high adsorption capacity and kinetics of organic macromolecules on super-powdered activated carbon.

    Science.gov (United States)

    Matsui, Yoshihiko; Ando, Naoya; Yoshida, Tomoaki; Kurotobi, Ryuji; Matsushita, Taku; Ohno, Koichi

    2011-02-01

    The capacity to adsorb natural organic matter (NOM) and polystyrene sulfonates (PSSs) on small particle-size activated carbon (super-powdered activated carbon, SPAC) is higher than that on larger particle-size activated carbon (powdered-activated carbon, PAC). Increased adsorption capacity is likely attributable to the larger external surface area because the NOM and PSS molecules do not completely penetrate the adsorbent particle; they preferentially adsorb near the outer surface of the particle. In this study, we propose a new isotherm equation, the Shell Adsorption Model (SAM), to explain the higher adsorption capacity on smaller adsorbent particles and to describe quantitatively adsorption isotherms of activated carbons of different particle sizes: PAC and SPAC. The SAM was verified with the experimental data of PSS adsorption kinetics as well as equilibrium. SAM successfully characterized PSS adsorption isotherm data for SPACs and PAC simultaneously with the same model parameters. When SAM was incorporated into an adsorption kinetic model, kinetic decay curves for PSSs adsorbing onto activated carbons of different particle sizes could be simultaneously described with a single kinetics parameter value. On the other hand, when SAM was not incorporated into such an adsorption kinetic model and instead isotherms were described by the Freundlich model, the kinetic decay curves were not well described. The success of the SAM further supports the adsorption mechanism of PSSs preferentially adsorbing near the outer surface of activated carbon particles.

  2. Sulfonation of Tyrosine as a Method to Improve Biodistribution of Peptide-Based Radiotracers: Novel (18)F-Labelled Cyclic RGD Analogues.

    Science.gov (United States)

    Haskali, Mohammad Baqir; Denoyer, Delphine; Noonan, Wayne; Cullinane, Carleen; Rangger, Christine; Pouliot, Normand; Haubner, Roland; Roselt, Peter D; Hicks, Rodney J; Hutton, Craig A

    2017-02-13

    The labeling of peptides with positron emitting radionuclides has long held the promise of a wide range of PET agents possessing high affinity and selectivity. Not surprisingly, controlling the biodistribution of these agents has proven to be a major challenge in their successful application. Modification of peptide hydrophilicity in order to increase renal clearance has been a common endeavor to improve overall biodistribution. Herein, we examine the effect of site-specific sulfonation of tyrosine moieties in cyclic(RGDyK) peptides as a means to enhance their hydrophilicity and improve their biodistribution. The novel sulfonated cyclic(RGDyK) peptides were conjugated directly to 4-nitrophenyl 2-[18F]fluoropropionate and the biodistribution of the radiolabeled peptides was compared with that of their non-sulfonated, clinically relevant counterparts, [18F]GalactoRGD and [18F]FPPRGD2. Site-specific sulfonation of the tyrosine residues was shown to increase hydrophilicity and improve biodistribution of the RGD peptides, despite contributing just 79 Da towards the MW, compared with 189 Da for both the 'Galacto' and mini-PEG moieties, suggesting this may be a broadly applicable approach to enhancing biodistribution of radiolabelled peptides.

  3. Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates.

    Science.gov (United States)

    Zhong, Peishan; Fu, Xiuzhu; Chung, Tai-Shung; Weber, Martin; Maletzko, Christian

    2013-07-02

    This study investigates a new approach to fabricate thin-film composite (TFC) hollow fiber membranes via interfacial polymerization for forward osmosis (FO) applications. Different degrees of sulfonation of polyphenylenesulfone (PPSU) were adopted as membrane substrates to investigate their impact on water flux. It has been established that the degree of sulfonation plays a role in both creating a macrovoid-free structure and inducing hydrophilicity to bring about higher water fluxes. The fabricated membranes exhibit extremely high water fluxes of 30.6 and 82.0 LMH against a pure water feed using 2.0 M NaCl as the draw solution tested under FO and pressure retarded osmosis (PRO) modes, respectively, while maintaining low salt reverse fluxes below 12.7 gMH. The structural parameter (S) displays remarkable decreases of up to 4.5 times as the membrane substrate is switched from a nonsulfonated to sulfonated one. In addition, the newly developed TFC-FO membranes containing 1.5 mol % sPPSU in the substrate achieves a water flux of 22 LMH in seawater desalination using a 3.5 wt % NaCl model solution and 2.0 M NaCl as the draw solution under the PRO mode. To the best of our knowledge, this value is the highest ever reported for seawater desalination using flat and hollow fiber FO membranes. The use of sulfonated materials in the FO process opens up a frontier for sustainable and efficient production of potable water.

  4. Palladium-Catalyzed Synthesis of (Hetero)Aryl Alkyl Sulfones from (Hetero)Aryl Boronic Acids, Unactivated Alkyl Halides, and Potassium Metabisulfite.

    Science.gov (United States)

    Shavnya, Andre; Hesp, Kevin D; Mascitti, Vincent; Smith, Aaron C

    2015-11-09

    A palladium-catalyzed one-step synthesis of (hetero)aryl alkyl sulfones from (hetero)arylboronic acids, potassium metabisulfite, and unactivated or activated alkylhalides is described. This transformation is of broad scope, occurs under mild conditions, and employs readily available reactants. A stoichiometric experiment has led to the isolation of a catalytically active dimeric palladium sulfinate complex, which was characterized by X-ray diffraction analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PENGARUH SUHU DAN LAMA PROSES SULFONASI DALAM PROSES PRODUKSI METHYL ESTER SULFONIC ACID (MESA MENGGUNAKAN SINGLE TUBE FALLING FILM REACTOR (STFR

    Directory of Open Access Journals (Sweden)

    Siti Mujdalipah

    2013-03-01

    /cm menjadi 3 dyne/cm.Kata kunci: EOR, MESA, olein sawit, sulfonasi, STFR ABSTRACT Methyl Ester Sulfonic Acid (MESA is an intermediate product of Methyl Etser Sulfonate (MES. MES has manyapplications for personal care products, washing and cleaning products, and Enhanced Oil Recovery (EOR. MESA production using SO3 in Single Tube Falling Film Reactor (STFR is a common practice. This study was aimed to getthe best condition of methyl esters (ME sulfonation process from palm olein using SO3 gas in STFR. The study wasdone in three stages which were production activities, analysis, and data processing. Research activities consisted ofproduction process of methyl esters from palm olein and studying of temperature and sulfonation time effects towardME sulfonation process using STFR. Analysis stage include analysis of physico chemical properties of palm olein,analysis of physico chemical properties of methyl esters, and analysis of physico chemical properties of MESA. Tostudy the effect of temperature and sulfonation time toward ME sulfonation process, temperatures of 70, 90, and 110

  6. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was foun

  7. APPLICATION OF THE SULFONATE ESTER GROUP AS A LINKER FOR SOLID PHASE ORGANIC SYNTHESIS

    Institute of Scientific and Technical Information of China (English)

    SUN Weimin; LUO Juntao; HUANG Wenqiang; ZHU Xiaoxia

    2001-01-01

    A use of Sulfonate ester as a linker in synthesis of ω-aminoalkanols was reported. Diols were tethered onto polystyryl sulfonyl chloride resin, yielding sulfonate resins (2). After cleaved by diethyl amine, diisopropylamine and propylamine respectively, three ω-aminoalkanols were obtained.

  8. Sulfonated polyetherketone (SPEK-C) films investigated by positron annihilation lifetime spectroscopy and atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Htwe Htwe Yin; YIN Ze-Jie; TANG Shi-Biao; HUANG Huan; ZHU Da-Ming

    2005-01-01

    The characterization of sulfonated polyetherketone (SPEK-C) films was investigated by using positron annihilation lifetime spectroscopy (PALS) and atomic force microscopy (AFM). It was found that free volume radius and intensity depend on the variation of sulfonation degree and solvent evaporation time of the films. Pore size and distribution determined from PALS and AFM measurements showed reasonable agreement.

  9. APPLICATION OF THE SULFONATE ESTER GROUP AS A LINKER FOR SOLID PHASE ORGANIC SYNTHESIS

    Institute of Scientific and Technical Information of China (English)

    SUNWeimin; ZHUXiaoxia; 等

    2001-01-01

    A use of sulfonate ester as a linker in synthesis of w-aminoalkanols was reporte.Diols were tethered onto polystyryl sulfonyl chloride resin,yielding sulfonate resins(2).After cleaved by diethyl amine,diisopropylamine and propylamine respectively,three w-aminoalkanlos were obtained.

  10. Coating of Sulfonic Silica onto Magnetite from Marina Beach Iron sand, Semarang, Indonesia

    Science.gov (United States)

    Azmiyawati, C.; Suyati, L.; Taslimah; Anggraeni, R. D.

    2017-02-01

    The mineral iron oxide is the main component of sand iron that are abundant in nature. Mineral iron oxide not yet widely applied into more useful products. The main component of iron ore is magnetite. Magnetite can be used as a basic ingredient in the manufacture of magnetite-modified silica adsorbent sulfonate. In this research, the adsorbent made from sulfonic functionalized silica-coated magnetic particle has been successfully produced, with the magnetite was obtained from iron sand at Marina Beach, Semarang Indonesia. This adsorbent was then used as a metal ion preconcentration media. From the research that it was found that the sulfonic has been bound to the silica marked by the emergence of element S on EDX. Whilst, the evidence that silica has coated on the magnetite could be seen from the SEM images which showed the morphology of sulfonic functionalized silica-coated magnetic particles were larger than the sulfonic functionalized silica without magnetite. From the DSC results showed that the addition of magnetite on sulfonic functionalized silica did not change the heat resistance of the sulfonic functionalized silica. Based on the XRD patterns show that magnetite sulfonate silica was formed.

  11. Cationic and radical intermediates in the acid photorelease from aryl sulfonates and phosphates.

    Science.gov (United States)

    Terpolilli, Marco; Merli, Daniele; Protti, Stefano; Dichiarante, Valentina; Fagnoni, Maurizio; Albini, Angelo

    2011-01-01

    The irradiation of a series of phenyl sulfonates and phosphates leads to the quantitative release of acidity with a reasonable quantum yield (≈0.2). Products characterization, ion chromatography analysis and potentiometric titration are consistent with the intervening of two different paths in this reaction, viz. cationic with phosphates and (mainly) radical with sulfonates.

  12. Colonic necrosis due to calcium polystyrene sulfonate (Kalimate) not suspended in sorbitol.

    Science.gov (United States)

    Castillo-Cejas, María Dolores; de-Torres-Ramírez, Inés; Alonso-Cotoner, Carmen

    2013-04-01

    Cation-exchange resins are used in the management of hyperkalemia, particularly in patients with end-stage renal disease. These resins were associated with gastrointestinal tract lesions, especially sodium polystyrene sulfonate (Kayexalate) mixed with sorbitol. We present a case of colonic necrosis after the administration of calcium polystyrene sulfonate (Kalimate) not suspended in sorbitol.

  13. Colonic necrosis due to calcium polystyrene sulfonate (Kalimate) not suspended in sorbitol

    OpenAIRE

    María Dolores Castillo-Cejas; Inés de Torres-Ramírez; Carmen Alonso-Cotoner

    2013-01-01

    Cation-exchange resins are used in the management of hyperkalemia, particularly in patients with end-stage renal disease. These resins were associated with gastrointestinal tract lesions, especially sodium polystyrene sulfonate (Kayexalate) mixed with sorbitol. We present a case of colonic necrosis after the administration of calcium polystyrene sulfonate (Kalimate) not suspended in sorbitol.

  14. 78 FR 62443 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Final...

    Science.gov (United States)

    2013-10-22

    ... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AJ95 Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl... new use rule (SNUR) for perfluoroalkyl sulfonate (PFAS) chemical substances to add PFAS chemical.... EPA is also finalizing a SNUR for long-chain perfluoroalkyl carboxylate (LCPFAC) chemical...

  15. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was foun

  16. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Science.gov (United States)

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737)...

  17. Colonic necrosis due to calcium polystyrene sulfonate (Kalimate not suspended in sorbitol

    Directory of Open Access Journals (Sweden)

    María Dolores Castillo-Cejas

    2013-04-01

    Full Text Available Cation-exchange resins are used in the management of hyperkalemia, particularly in patients with end-stage renal disease. These resins were associated with gastrointestinal tract lesions, especially sodium polystyrene sulfonate (Kayexalate mixed with sorbitol. We present a case of colonic necrosis after the administration of calcium polystyrene sulfonate (Kalimate not suspended in sorbitol.

  18. Julia Olefination as a General Route to Phenyl (α-Fluoro)vinyl Sulfones

    Science.gov (United States)

    He, Maggie; Ghosh, Arun K.; Zajc, Barbara

    2009-01-01

    Mild and efficient synthesis of phenyl (α-fluoro)vinyl sulfones via condensation of aldehydes and a ketone with a novel benzothiazolyl based bis-sulfone reagent is reported and this proceeds with moderate to good Z-stereoselectivity. PMID:19888442

  19. Mass spectrometric composition and structural studies of petroleum sulfonates and petroleum sulfonate components for utilization in tertiary petroleum production

    Energy Technology Data Exchange (ETDEWEB)

    Belafi, L.; Decsy, Z.; Kerenyi, E.; Lukacs, J.

    1984-01-01

    A separation and mass spectrometric analytical method was developed for the separation and characterization of the monosulfonate fractions of petroleum sulfonate products. The technique is based on distillation and preparative column and thin-layer chromatography. The structure and carbon number distributions of monosulfonate fractions transformed to metilesters were measured based on their low resolution molecular mass spectra. The conditions of an actual petroleum container were simulated and the measurement of the effluent composition during its discharge revealed no change in the composition of monosulfonates.

  20. The coordination structure of the extracted nickel(ii) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and 2-ethylhexyl 4-pyridinecarboxylate ester.

    Science.gov (United States)

    Li, Jiyuan; Hu, Huiping; Zhu, Shan; Hu, Fang; Wang, Yongxi

    2017-01-24

    In this paper, a synergist complex of Ni(ii) with naphthalene-2-sulfonic acid (HNS) and n-hexyl 4-pyridinecarboxylate ester (L(I)), which are corresponding short chain analogues of active synergistic extractants dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC, L(II)), was prepared and characterized by Nuclear Magnetic Resonance ((1)H-NMR), elemental analyses, Fourier Transform Infrared Spectroscopy (FT-IR) and Electrospray Ionization Mass Spectrometry (ESI-MS) spectroscopic studies. Single crystals of the nickel synergist complex have been grown from a methanol/water (10/1) solution and analyzed by single crystal X-ray diffraction. The crystal structure of the nickel synergist complex shows that Ni(ii) is coordinated by four water molecules and two monodentate L(I) ligands and there is no direct interaction of the Ni(ii) with sulfonic oxygen atoms of naphthalene-2-sulfonic acid anions, while hydrogen-bonded interactions of the coordinated water molecules with sulfonic oxygen atoms of naphthalene-2-sulphate anions were observed. In addition, in order to provide parallels to solvent extraction, the extracted Ni(ii) complex with HDNNS and 4PC is also prepared and studied using FT-IR and ESI-MS technology. Compared with their corresponding free ligand, similar shifts assigned to the stretching vibration of the pyridine ring and S[double bond, length as m-dash]O in both the nickel synergist complex and the extracted Ni(ii) complex suggest that in the non-polar organic phase, Ni(ii) is also coordinated by L(II) ligands, while the sulfonic oxygen atoms of dinonylnaphthalene sulfonate anions not directly bonded to Ni(ii) form hydrogen bonds with water molecules (coordinated with Ni(ii) or/and solubilized in the non-polar organic phase). For the ESI-MS spectrum of the extracted Ni(ii) complex in non-polar organic phase, there exists a peak at m/z values of 1058.76, which indicates that the extracted Ni(ii) complex in the non

  1. Polyaniline synthesized with functionalized sulfonic acids for blends manufacture

    Directory of Open Access Journals (Sweden)

    Mara Joelma Raupp Cardoso

    2007-12-01

    Full Text Available Polyaniline (PAni, an electronic conductive polymer, has poor mechanical properties, such as low tensile, compressive and flexural strength that render PAni a non-ideal material to be processed for practical applications. Desired properties of polyaniline can be enhanced by mixing it with a polymer that has good mechanical properties. In this work, PAni was synthesised using functionalized sulfonic acids like camphorsulfonic acid (CSA and dodecilbenzene sulfonic acid (DBSA in order to promote PAni doping and improve its solubility, making possible conductive blends manufacture. The different forms of PAni were characterized by infra-red spectroscopy, thermal analysis, scanning electron microscopy and conductivity measurements. A conductive blend composed of PAni/DBSA and lower density polyethylene (LDPE was obtained via solubilization method and its thermal, morphological and electrical properties were investigated. Concentrations as low as 5 wt. (% of PAni was able to lead to electrical conductivities of PAni/LDPE blends in the range of 10-3 S.cm-1, showing great potential to be used in antistatic packing, electromagnetic shielding, anti-corrosion shielding or as a semiconductor.

  2. Sulfonated Poly(styrene) Chains Grafted on Magnetic Nanoparticles

    Science.gov (United States)

    Jiao, Yang; Yevelev, Anton; Parra, Javier; Akcora, Pinar; Stevens Institute of Technology Team

    2014-03-01

    Iron oxide nanoparticles functionalized with poly(styrene) (PS) chains at various grafting densities and loadings present stable and ordered nanostructures for tuning the mechanical and conductive properties in polymer composites. Strings, spherical and anisotropic clusters and well-dispersed particles are achieved with PS-grafted Fe3O4 nanoparticles in PS matrices upon varying the system parameters. In this work, we report the effect of sulfonic group locations on the aggregation state of polymer-grafted nanoparticles. Structures formed by the random and diblock copolymers of PS-poly(styrene sulfonate) (PSS) grafted particles will be discussed with small-angle x-ray scattering (SAXS) measurements in solution and melts. The conformational changes in PS-grafted chains and ion-containing grafts will be also presented in small-angle neutron-scattering (SANS) results to understand the role of polymer on the assembly of particles at the low grafting density. We acknowledge support by NSF-CAREER-DMR (#1048865).

  3. Anisotropic Ionic Conductivity of Lithium-Doped Sulfonated PBI.

    Science.gov (United States)

    Spry, R. J.; Arnold, F. E.; Dean, D. R.; Alexander, M. D., Jr.; Bai, S. J.; Dang, T. D.; Price, G. E.; Solomon, J. S.

    1997-03-01

    We report the conductivity study results of lithium-doped sulfonated PBI, a conjugated rigid rod polymer, poly[(1,7-dihydrobenzo[1,2-d:4,5-d']dimidazole-2,6-diyl)-2-(2-sulfo)-p- phenylene], derivatized with pendants of propane sulfonate Li^+ ionomer. The DC four-probe conductivity parallel to the surface of cast films was as large as 8.3× 10-3 S/cm. Similar measurements in an eight-probe configuration showed no difference between bulk and surface conductivity. The ionic nature of the conductivity was indicated by constant voltage depletion experiments and by secondary ion mass spectroscopy measurements of the residues near the electrodes. Both the AC and DC two-probe conductivities measured transverse to the sample surface were ~ 10-8 S/cm. Electron microscopy indicated that the films has a layered structure parallel to the surfaces. This structural anisotropy was confirmed by refractive index values obtained from wave-guide experiments. The polymer morphology was also investigated by X-ray scattering.

  4. Photocatalytic treatment of linear alkylbenzene sulfonate (LAS) in water.

    Science.gov (United States)

    Mehrvar, Mehrab; Venhuis, Sarah Hatfield

    2005-01-01

    The photocatalytic degradation of aqueous linear alkylbenzene sulfonate (LAS) was studied. Two different photocatalysts, Degussa P25 TiO2 and Hombikat UV 100 TiO2, were used to degrade aqueous linear alkylbenzene sulfonate in slurry batch photoreactors. For a 100 mg/L LAS solution based on first-order rate constants, the optimum photocatalyst loading for Degussa P25 TiO2 was 4.0 g/L, while for Hombikat UV 100 TiO2 it was 2.0 g/L. The photoactivity of Degussa P25 TiO2 it was higher than that of Hombikat UV 100 TiO2 for the treatment of LAS. A mixture of both photocatalysts did not improve the LAS degradation rates in batch experiments. Combination of Degussa P25 TiO2 and 600 mg/L H2O2 along with irradiation with UV light at either 254 or 365 nm did not improve the LAS degradation rates over the photocatalytic or photolytic processes individually.

  5. Development and application of environmental friendly experimental sulfonation apparatus%环保型实验磺化装置的开发及应用

    Institute of Scientific and Technical Information of China (English)

    张广良; 杨效益; 郭朝华

    2011-01-01

    An environmental friendly experimental sulfonation apparatus was developed with liquid sulfur trioxide as raw material. This apparatus was used to sulfate linear alkylbenzene and alpha-olefin, and the neutralization value, colour, the content of active matter and unsulfated matter of products were determined by national standard, and the results were compared with physical-chemical indexes of nation standard industrial linear alkylbenzene sulfonic acid (GB/T 8447-2008) and sodium alpha-olefin sulfonate (GB/T 20200-2006 ), respectively. The results show that all indexes achieve the national standard except for the colour of alpha-olefin sulfonate, thus it is proved that this apparatus can be successfully used to synthesize new products and improve sulfonation process.%开发了以液体SO3为原料的环保型实验磺化装置,应用该装置对直链烷基苯和α-烯烃进行磺化,采用国标方法对磺化产物的中和值、色泽、有效物及未磺化物含量进行测定,并将测定结果分别与工业直链烷基苯磺酸( GB/T 8447-2008)和α-烯基磺酸钠( GB/T 20200-2006)产品的理化指标相比较,结果表明,除α-烯基磺酸钠产品色泽值略高外,其他各项指标均达到相应的国标要求,从而证明了该装置在合成磺化产品以及改进磺化工艺中的可行件.

  6. High disease activity is related to low levels of physical activity in patients with ankylosing spondylitis.

    Science.gov (United States)

    Fongen, Camilla; Halvorsen, Silje; Dagfinrud, Hanne

    2013-12-01

    This study aims to compare physical activity (PA) level and exercise habits in patients with ankylosing spondylitis (AS) who have high disease activity with those who have low disease activity and, further, to compare both groups with population controls. Cross-sectional study design was used. The participants include 149 patients (mean age 49.3 (SD 11.1), 61% men, 54% high disease activity) and 133 controls (mean age 52.7 (SD11.3), 58% men). PA was reported with the International PA Questionnaire-Long and results were presented as weekly energy expenditure (metabolic equivalent, MET) in different intensities, domains, and proportion reaching health enhancing physical activity (HEPA). Types of PA were registered in a structured interview. The AS Disease Activity Score was used to assess patients' disease activity. Patients with high disease activity reported significantly lower total weekly energy expenditure (MET) than patients with low disease activity and controls (p = 0.02, p = 0.01, respectively) and lower amounts of walking (p < 0.01, p = 0.02, respectively) and vigorous activity (p = 0.06, p = 0.06, respectively). Only 41% of the patients with high disease activity reached HEPA compared to 61% of the patients with low disease activity (p = 0.02). Patients in general participated less in leisure PA performed outdoor and with higher intensities (MET ≥ 6) than controls.AS patients with high disease activity had lower weekly energy expenditure in PA than patients with low disease activity and controls, and were less likely to reach HEPA than patients with low disease activity. For optimal management, health professionals should focus on physical activity in their consultations with AS patients, especially those with high disease activity.

  7. Synthesis and detection of N-sulfonated oversulfated chondroitin sulfate in marketplace heparin.

    Science.gov (United States)

    Mans, Daniel J; Ye, Hongping; Dunn, Jamie D; Kolinski, Richard E; Long, Dianna S; Phatak, Nisarga L; Ghasriani, Houman; Buhse, Lucinda F; Kauffman, John F; Keire, David A

    2015-12-01

    N-sulfonated oversulfated chondroitin sulfate (NS-OSCS), recently reported as a potential threat to the heparin supply, was prepared along with its intermediate derivatives. All compounds were spiked into marketplace heparin and subjected to United States Pharmacopeia (USP) identification assays for heparin (proton nuclear magnetic resonance [(1)H NMR], chromatographic identity, % galactosamine [%GalN], anti-factor IIa potency, and anti-factor Xa/IIa ratio). The U.S. Food and Drug Administration (FDA) strong-anionic exchange high-performance liquid chromatography (SAX-HPLC) method resolved NS-OSCS from heparin and OSCS and had a limit of detection of 0.26% (w/w) NS-OSCS. The %GalN test was sensitive to the presence of NS-OSCS in heparin. Therefore, current USP heparin monograph tests (i.e., SAX-HPLC and %GalN) detect the presence of NS-OSCS in heparin.

  8. Interactions between halloysite nanotubes and poly(styrene sulfonate) in solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Heon; Ryu, Jung Ju; Shin, Joo Huei; Lee, Hoik; Sohn, Dae Won [Dept. of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul (Korea, Republic of); Kim, Ick Soo [Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano (Japan)

    2017-01-15

    The interaction between halloysite nanotubes (HNT) and poly(styrene sulfonate) (PSS) in aqueous solution was investigated by dynamic light scattering. Dynamic behavior of HNT/PSS was observed with different salt, HNT, and PSS concentrations. The HNT colloids were stabilized by PSS over a wide range of HNT concentrations, and HNT suspension in dilute solution formed stable HNT/PSS particles. On the other hand, HNT particles aggregated as sediments at higher concentrations due to strong attraction among HNT rods, and HNT aggregates were stabilized by additional PSS. The interactions between HNT and PSS are described by the van der Waals–London force (VDWL). The stabilization process of HNT/PSS particles in salt solution was proposed by comparing the hydrodynamic radii and apparent intensities of samples. The results demonstrate that electrostatic, steric, and depletion stabilization processes are responsible for the stable dispersion of HNT even at high concentration.

  9. Pulsed-field capillary electrophoresis: optimizing separation parameters with model mixtures of sulfonated polystyrenes.

    Science.gov (United States)

    Sudor, J; Novotny, M V

    1994-07-01

    The electrophoretic transport of high molecular weight charged solutes, both flexible and stiff polymers, has been studied by capillary electrophoresis under constant-field and pulsed-field conditions. Sulfonated polystyrenes were used as model solutes in different entangled polymer solutions. First, changes of the end-to-end distance vectors of flexible polymers were examined through the mobility/potential-gradient curves. Under pulsed-field conditions, the influence of different pulse shapes, frequencies, and amplitudes of forward and backward pulses on the electrophoretic mobilities of model solutes was studied. Resolution of the mixture components was strongly affected by changes in frequency of both sine-wave and square-wave pulses. The experimental results obtained under pulse-field conditions are roughly in agreement with the existing theories of electrophoretic transport.

  10. Fabrication and morphology of spongelike polymer material based on cross-linked sulfonated polystyrene particles.

    Science.gov (United States)

    Ji, Xiang; Wang, Mozhen; Xu, Dezhi; Ge, Xuewu; Liu, Huarong; Tang, Tao

    2012-04-03

    A novel spongelike polymer material has been fabricated by γ-ray induced polymerization of methylmethacrylate (MMA) in an emulsion containing cross-linked sulfonated polystyrene (CSP) particles. Scanning electron microscopy (SEM) images reveal that the spongelike structure is made up of interlinked nanosized PMMA particles with micrometer-sized CSP-PMMA particles embedded inside. The nitrogen adsorption isotherm discloses that the spongelike material has a high specific surface area of 29 m(2)/g and a narrow pore size distribution of 60-120 nm. The formation mechanism is discussed in this paper, which indicates that the key steps to form the spongelike material include a Pickering emulsion stabilized by the CSP particles, followed by the swelling process of MMA into these particles. This approach offers a more convenient alternative to prepare polymeric spongelike material without any etching procedure.

  11. Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDH structure

    Science.gov (United States)

    von Hoessle, F.; Plank, J.; Leroux, F.

    2015-05-01

    A series of sulfonated melamine formaldehyde (SMF) polycondensates possessing different anionic charge amounts and molecular weights was synthesized and incorporated into a hydrocalumite type layered double hydroxide structure using the rehydration method. For this purpose, tricalcium aluminate was dispersed in water and hydrated in the presence of these polymers. Defined inorganic-organic hybrid materials were obtained as reaction products. All SMF polymers tested intercalated readily into the hydrocalumite structure, independent of their different molecular weights (chain lengths) and anionic charge amounts. X-ray diffraction revealed typical patterns for weakly ordered, highly polymer loaded LDH materials which was confirmed via elemental analysis and thermogravimetry. IR spectroscopy suggests that the SMF polymers are interleaved between the [Ca2Al(OH)6]+ main sheets via electrostatic interaction, and that no chemical bond between the host matrix and the guest anion is formed. The SMF polymers well ensconced within the LDH structure exhibit significantly slower thermal degradation.

  12. High Resolution Screening of biologically active compounds and metabolites

    NARCIS (Netherlands)

    Kool, J.

    2007-01-01

    High Resolution Screening of biologically active compounds and metabolites Jeroen Kool Biotransformation enzymes play a crucial role in the metabolism of both endogenous compounds and xenobiotics. Usually, the detoxication of these compounds by biotransformation enzymes results in harmless metab

  13. Composite films of carbon black nanoparticles and sulfonated-polythiophene as flexible counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Li, Chun-Ting; Lee, Chi-Ta; Li, Sie-Rong; Lee, Chuan-Pei; Chiu, I.-Ting; Vittal, R.; Wu, Nae-Lih; Sun, Shih-Sheng; Ho, Kuo-Chuan

    2016-01-01

    A composite film based on carbon black nanoparticles and sulfonated-poly(thiophene-3-[2-(2-methoxyethoxy)ethoxy]-2,5-diyl) (CB-NPs/s-PT) is formed on a flexible titanium foil for the use as the electro-catalytic counter electrode (CE) of dye-sensitized solar cells (DSSCs). The CB-NPs provide the large amount of electro-catalytic active sites for the composite film, and the s-PT polymer serves as a conductive binder to enhance the inter-particle linkage among CB-NPs and to improve the adhesion between the composite film and the flexible substrate. The flexible CB-NPs/s-PT composite film is designed to possess good electro-catalytic ability for I-/I3- redox couple by providing large active sites and rapid reduction kinetic rate constant of I3- . The cell with a CB-NPs/s-PT CE exhibits a good cell efficiency (η) of 9.02 ± 0.01% at 100 mW cm-2, while the cell with a platinum CE shows an η of only 8.36 ± 0.02% under the same conditions. At weak light illuminations (20-80 mW cm-2), a DSSC with CB-NPs/s-PT CE still exhibits η's of 7.20 ± 0.04-9.08 ± 0.02%. The low-cost CB-NPs/s-PT CE not only renders high cell efficiency to its DSSC but also shows a great potential to replace the expensive platinum; moreover it is suitable for large-scale production or for indoor applications.

  14. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Science.gov (United States)

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

  15. Improved oral absorption of cilostazol via sulfonate salt formation with mesylate and besylate

    Directory of Open Access Journals (Sweden)

    Seo JH

    2015-07-01

    Full Text Available Jae Hong Seo, Jung Bae Park, Woong-Kee Choi, Sunhwa Park, Yun Jin Sung, Euichaul Oh, Soo Kyung Bae College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea Objective: Cilostazol is a Biopharmaceutical Classification System class II drug with low solubility and high permeability, so its oral absorption is variable and incomplete. The aim of this study was to prepare two sulfonate salts of cilostazol to increase the dissolution and hence the oral bioavailability of cilostazol.Methods: Cilostazol mesylate and cilostazol besylate were synthesized from cilostazol by acid addition reaction with methane sulfonic acid and benzene sulfonic acid, respectively. The salt preparations were characterized by nuclear magnetic resonance spectroscopy. The water contents, hygroscopicity, stress stability, and photostability of the two cilostazol salts were also determined. The dissolution profiles in various pH conditions and pharmacokinetic studies in rats were compared with those of cilostazol-free base.Results: The two cilostazol salts exhibited good physicochemical properties, such as nonhygroscopicity, stress stability, and photostability, which make it suitable for the preparation of pharmaceutical formulations. Both cilostazol mesylate and cilostazol besylate showed significantly improved dissolution rate and extent of drug release in the pH range 1.2–6.8 compared to the cilostazol-free base. In addition, after oral administration to rats, cilostazol mesylate and cilostazol besylate showed increases in Cmax and AUCt of approximately 3.65- and 2.87-fold and 3.88- and 2.94-fold, respectively, compared to cilostazol-free base.Conclusion: This study showed that two novel salts of cilostazol, such as cilostazol mesylate and cilostazol besylate, could be used to enhance its oral absorption. The findings warrant further preclinical and clinical studies on cilostazol mesylate and

  16. Murine erythrocytes contain high levels of lysophospholipase activity

    NARCIS (Netherlands)

    Kamp, J.A.F. op den; Roelofsen, B.; Sanderink, G.; Middelkoop, E.; Hamer, R.

    1984-01-01

    Murine erythrocytes were found to be unique in the high levels of lysophospholipase activity in the cytosol of these cells. The specific activity of the enzyme in the cytosol of the murine cells is 10-times higher than in the cytosol of rabbit erythrocytes and approximately three orders of magnitude

  17. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Hyung Kyu Kim

    2015-12-01

    Full Text Available This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES proton exchange membranes (PEMs for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa and low water swelling (λ < 15 even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  18. The physical activity climate in Minnesota middle and high schools.

    Science.gov (United States)

    Samuelson, Anne; Lytle, Leslie; Pasch, Keryn; Farbakhsh, Kian; Moe, Stacey; Sirard, John Ronald

    2010-11-01

    This article describes policies, practices, and facilities that form the physical activity climate in Minneapolis/St. Paul, Minnesota metro area middle and high schools and examines how the physical activity climate varies by school characteristics, including public/private, school location and grade level. Surveys examining school physical activity practices, policies and environment were administered to principals and physical education department heads from 115 middle and high schools participating in the Transdisciplinary Research on Energetics and Cancer-Identifying Determinants of Eating and Activity (TREC-IDEA) study. While some supportive practices were highly prevalent in the schools studied (such as prohibiting substitution of other classes for physical education); other practices were less common (such as providing opportunity for intramural (noncompetitive) sports). Public schools vs. private schools and schools with a larger school enrollment were more likely to have a school climate supportive of physical activity. Although schools reported elements of positive physical activity climates, discrepancies exist by school characteristics. Of note, public schools were more than twice as likely as private schools to have supportive physical activity environments. Establishing more consistent physical activity expectations and funding at the state and national level is necessary to increase regular school physical activity.

  19. Reactivity of 4'-substituted 2,4-dinitrodiphenyl sulfides and sulfones during alkaline hydrolysis in aqueous dioxane

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.V.

    1986-01-10

    This paper studies the kinetics of alkaline hydrolysis of 4'-substituted 2,4-dinitrodiphenyl sulfides (I), 2,4-dinitrodiphenyl sulfones (II), and 1-substituted 2,4-dinitrobenzenes (III) in a 40% dioxane-water solution. Analysis of the results obtained are presented and it is shown that in its character, the influence of the substituents in carrying out the alkaline hydrolysis reaction in 40% dioxane for the reaction series (I) obeys the general patterns of activated nucleophilic substitution, with the exception of 2,4-dinitro-4'-methylthiodiphenyl sulfide.

  20. Individual extraction constants of some univalent anions in the two-phase water-phenyltrifluoromethyl sulfone system.

    Science.gov (United States)

    Makrlík, Emanuel; Selucký, Pavel; Vaňura, Petr

    2011-12-01

    From extraction experiments and g-activity measurements, the extraction constants corresponding to the general equilibrium Cs+(aq) + A- (aq) Cs+(org) + A- (org) taking place in the two-phase water-phenyltrifluoromethyl sulfone (FS 13) system (A-= I-, ClO4-, MnO4-, Br-3, I-3, picrate, tetraphenylborate (BPh-4); aq = aqueous phase, org = FS 13 phase) were evaluated. Furthermore, the individual extraction constants of these 7 anions in the mentioned two-phase system were calculated; they were found to increase in the series of I-< ClO4- < Br-3 < MnO4-, picrate < I-3 < BPh-4.