WorldWideScience

Sample records for high actin concentrations

  1. Concentration profiles of actin-binding molecules in lamellipodia

    Science.gov (United States)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  2. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Palancar, G. G.; Lefer, B. L.; Hall, S. R.; Shaw, W. J.; Corr, C. A.; Herndon, S. C.; Slusser, J. R.; Madronich, S.

    2013-01-24

    Ultraviolet (UV) actinic fluxes (AF) measured with three Scanning Actinic Flux Spectroradiometers (SAFS) are compared with the Tropospheric Ultraviolet-Visible (TUV) model v.5 in order to assess the effects of aerosols and NO2 concentrations on the radiation. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measurements are typically smaller by up to 25 % in the morning, 10% at noon, and 40% in the afternoon, than actinic flux modeled for clean, cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68%, NO2 for 25%, and residual uncertainties for 7% of these AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the actinic flux perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols caused enhanced AF above the PBL and reduced AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA<0.7) reductions in AF are computed in the free troposphere as well as in the PBL. Finally, additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the actinic flux.

  3. Actin evolution in ciliates (Protist, Alveolata) is characterized by high diversity and three duplication events.

    Science.gov (United States)

    Yi, Zhenzhen; Huang, Lijuan; Yang, Ran; Lin, Xiaofeng; Song, Weibo

    2016-03-01

    Ciliates possess two distinct nuclear genomes and unique genomic features, including highly fragmented chromosomes and extensive chromosomal rearrangements. Recent transcriptomic surveys have revealed that ciliates have several multi-copy genes providing an ideal template to study gene family evolution. Nonetheless, this process remains little studied in ciliated protozoa and consequently, the evolutionary patterns that govern it are not well understood. In this study, we focused on obtaining fine-scale information relative to ciliate species divergence for the first time. A total of 230 actin gene sequences were derived from this study, among which 217 were from four closely related Pseudokeronopsis species and 13 from other hypotrichous ciliates. Our investigation shows that: (1) At least three duplication events occurred in ciliates: diversification of three actin genes (Actin I, II, III) happened after the divergence of ciliate classes but before that of subclasses. And several recent and genus-specific duplications were followed within Actin I (Sterkiella, Oxytricha, Uroleptus, etc.), Actin II (Sterkiella), respectively. (2) Within the genus Pseudokeronopsis, Actin I gene duplication events happened after P. carnea and P. erythrina diverged. In contrast, in the morphologically similar species P. flava and P. rubra, the duplication event preceded diversification of the two species. The Actin II gene duplication events preceded divergence of the genus Pseudokeronopsis. (3) Phylogenetic analyses revealed that actin is suitable for resolving ciliate classes, but may not be used to infer lower taxon relationships.

  4. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    Science.gov (United States)

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  5. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    Science.gov (United States)

    Dyche Mullins, R.; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  6. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    Science.gov (United States)

    Palancar, G. G.; Lefer, B. L.; Hall, S. R.; Shaw, W. J.; Corr, C. A.; Herndon, S. C.; Slusser, J. R.; Madronich, S.

    2013-01-01

    Urban air pollution absorbs and scatters solar ultraviolet (UV) radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between actinic fluxes (AF) in the wavelength range 330-420 nm measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV) model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

  7. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    Directory of Open Access Journals (Sweden)

    C. A. Corr

    2013-01-01

    Full Text Available Urban air pollution absorbs and scatters solar ultraviolet (UV radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between actinic fluxes (AF in the wavelength range 330–420 nm measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95, enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6 reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

  8. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations

    Directory of Open Access Journals (Sweden)

    C. A. Corr

    2012-08-01

    Full Text Available Urban air pollution absorbs and scatters solar ultraviolet (UV radiation, and thus has a potentially large effect on tropospheric photochemical rates. We present the first detailed comparison between UV actinic fluxes (AF measured in highly polluted conditions and simulated with the Tropospheric Ultraviolet-Visible (TUV model. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite and from the NSF/NCAR C-130 aircraft. At the surface, measured AF values are typically smaller than the model by up to 25% in the morning, 10% at noon, and 40% in the afternoon, for pollution-free and cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 67% and NO2 for 25% of AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the AF perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA at UV wavelengths. Typically, aerosols enhance AF above the PBL and reduce AF near the surface. However, for highly scattering aerosols (SSA > 0.95, enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA < 0.6 reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the AF.

  9. Imaging actinic keratosis by high-definition optical coherence tomography. Histomorphologic correlation

    DEFF Research Database (Denmark)

    Boone, Marc A L M; Norrenberg, Sarah; Jemec, Gregor B E;

    2013-01-01

    transversal and axial directions, enable to visualize individual cells up to a depth of around 570 μm filling the imaging gap between conventional optical coherence tomography and reflectance confocal microscopy. We sought to determine the feasibility of detecting and grading of actinic keratosis...... by this technique using criteria defined for reflectance confocal microscopy compared to histology. In this pilot study, skin lesions of 17 patients with a histologically proven actinic keratosis were imaged by high-definition optical coherence tomography just before excision and images analysed qualitatively...... of photodamage. Using features already suggested by reflectance confocal microscopy, the study implies that high-definition optical coherence tomography facilitates in vivo diagnosis of actinic keratosis and allows the grading of different actinic keratosis lesions for increased clinical utility....

  10. Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration.

    Science.gov (United States)

    Tiago, Teresa; Marques-da-Silva, Dorinda; Samhan-Arias, Alejandro K; Aureliano, Manuel; Gutierrez-Merino, Carlos

    2011-03-01

    Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.

  11. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    Science.gov (United States)

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  12. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    Science.gov (United States)

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  13. Cyclase-associated Protein (CAP) Acts Directly on F-actin to Accelerate Cofilin-mediated Actin Severing across the Range of Physiological pH*

    Science.gov (United States)

    Normoyle, Kieran P. M.; Brieher, William M.

    2012-01-01

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization. PMID:22904322

  14. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding

    Science.gov (United States)

    Avery, Adam W.; Crain, Jonathan; Thomas, David D.; Hays, Thomas S.

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  15. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  16. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro

    Directory of Open Access Journals (Sweden)

    Zhimei Lv

    2016-01-01

    Full Text Available Fyn, a member of the Src family of tyrosine kinases, is a key regulator in cytoskeletal remodeling in a variety of cell types. Recent studies have demonstrated that Fyn is responsible for nephrin tyrosine phosphorylation, which will result in polymerization of actin filaments and podocyte damage. Thus detailed involvement of Fyn in podocytes is to be elucidated. In this study, we investigated the potential role of Fyn/ROCK signaling and its interactions with paxillin. Our results presented that high glucose led to filamentous actin (F-actin rearrangement in podocytes, accompanied by paxillin phosphorylation and increased cell motility, during which Fyn and ROCK were markedly activated. Gene knockdown of Fyn by siRNA showed a reversal effect on high glucose-induced podocyte damage and ROCK activation; however, inhibition of ROCK had no significant effects on Fyn phosphorylation. These observations demonstrate that in vitro Fyn mediates high glucose-induced actin cytoskeleton remodeling of podocytes via promoting ROCK activation and paxillin phosphorylation.

  17. High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP.

    Science.gov (United States)

    Johnston, Adam B; Collins, Agnieszka; Goode, Bruce L

    2015-11-01

    Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favour actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed-end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of cellular disassembly mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks.

  18. High Speed Depolymerization at Actin Filament Ends Jointly Catalyzed by Twinfilin and Srv2/CAP

    Science.gov (United States)

    Johnston, Adam B.; Collins, Agnieszka; Goode, Bruce L.

    2015-01-01

    Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favor actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete 1,2. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks. PMID:26458246

  19. EUV actinic blank inspection tool with a high magnification review mode

    Science.gov (United States)

    Suzuki, Tomohiro; Miyai, Hiroki; Takehisa, Kiwamu; Kusunose, Haruhiko; Yamane, Takeshi; Terasawa, Tsuneo; Watanabe, Hidehiro; Inoue, Soichi; Mori, Ichiro

    2012-06-01

    Because the realization of defect-free Extreme Ultra-violet Lithography (EUVL) mask blanks is uncertain, the defect mitigation techniques are becoming quite important. One mitigation technique, "Pattern shift", is a technique that places a device pattern to cover multilayer (ML) defects underneath the absorber pattern in such a way that the ML defects are not printed onto wafers. This mitigation method requires the defect coordinate accuracy of down to tens of nanometers. Consequently, there is a strong demand for a Blank Inspection tool that is capable of providing such defect coordinate accuracy. To meet such requirement, we have started to develop a high accuracy defect locating function as an optional feature to our EUV Actinic Blank Inspection (ABI) system which is currently being developed aiming at HVM hp16 nm-11 nm node. Since a 26x Schwarzschild optics is used in this inspection tool, it is quite difficult to pinpoint defect location with high accuracy. Therefore we have decided to realize a high magnification review optics of 600x or higher by adding two mirrors to the Schwarzschild optics. One of the additional two mirrors is retractable so that the magnification can be switched according to the purpose of inspections. The high magnification review mode locates defect coordinates accurately with respect to the fiducial position. We set the accuracy target at 20 nm so that the mitigation technique can be implemented successfully. The optical configuration proposed in this paper allows both a high speed inspection for HVM and a high accuracy defect locating function to be achieved on one inspection system.

  20. High-efficiency solar concentrator

    Science.gov (United States)

    Lansing, F. L.; Dorman, J.

    1980-01-01

    A new type of solar concentrator is presented using liquid lenses and simple translational tracking mechanism. The concentrator achieves a 100:1 nominal concentration ratio and is compared in performance with a flat-plate collector having two sheets of glazing and non-selective coating. The results of the thermal analysis show that higher temperatures can be obtained with the concentrator than is possible with the non-concentrator flat-plate type. Furthermore, the thermal efficiency far exceeds that of the comparative flat-plate type for all operating conditions.

  1. The role of actin turnover in retrograde actin network flow in neuronal growth cones.

    Directory of Open Access Journals (Sweden)

    David Van Goor

    Full Text Available The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.

  2. Hyper-mobility of water around actin filaments revealed using pulse-field gradient spin-echo {sup 1}H NMR and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wazawa, Tetsuichi [Department of Materials Processing, Graduate School of Tohoku University, 6-6-02 Aobayama, Aoba-Ku, Sendai, Miyagi 980-8579 (Japan); CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Sagawa, Takashi; Ogawa, Tsubasa; Morimoto, Nobuyuki [Department of Materials Processing, Graduate School of Tohoku University, 6-6-02 Aobayama, Aoba-Ku, Sendai, Miyagi 980-8579 (Japan); Kodama, Takao [Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Suzuki, Makoto, E-mail: msuzuki@material.tohoku.ac.jp [Department of Materials Processing, Graduate School of Tohoku University, 6-6-02 Aobayama, Aoba-Ku, Sendai, Miyagi 980-8579 (Japan); CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2011-01-28

    Research highlights: {yields} Translationally hyper-mobile water has been detected around actin filaments. {yields} Translationally hyper-mobile water is formed upon polymerization of actin. {yields} Low water viscosity was found around F-actin using fluorescence anisotropy. {yields} Formation of hyper-mobile water may explain endothermic actin polymerization. -- Abstract: This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo {sup 1}H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by {approx}5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.

  3. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin.

    Science.gov (United States)

    Winkelman, Jonathan D; Bilancia, Colleen G; Peifer, Mark; Kovar, David R

    2014-03-18

    Filopodia are exploratory finger-like projections composed of multiple long, straight, parallel-bundled actin filaments that protrude from the leading edge of migrating cells. Drosophila melanogaster Enabled (Ena) is a member of the Ena/vasodilator-stimulated phosphoprotein protein family, which facilitates the assembly of filopodial actin filaments that are bundled by Fascin. However, the mechanism by which Ena and Fascin promote the assembly of uniformly thick F-actin bundles that are capable of producing coordinated protrusive forces without buckling is not well understood. We used multicolor evanescent wave fluorescence microscopy imaging to follow individual Ena molecules on both single and Fascin-bundled F-actin in vitro. Individual Ena tetramers increase the elongation rate approximately two- to threefold and inhibit capping protein by remaining processively associated with the barbed end for an average of ∼10 s in solution, for ∼60 s when immobilized on a surface, and for ∼110 s when multiple Ena tetramers are clustered on a surface. Ena also can gather and simultaneously elongate multiple barbed ends. Collectively, these properties could facilitate the recruitment of Fascin and initiate filopodia formation. Remarkably, we found that Ena's actin-assembly properties are tunable on Fascin-bundled filaments, facilitating the formation of filopodia-like F-actin networks without tapered barbed ends. Ena-associated trailing barbed ends in Fascin-bundled actin filaments have approximately twofold more frequent and approximately fivefold longer processive runs, allowing them to catch up with leading barbed ends efficiently. Therefore, Fascin and Ena cooperate to extend and maintain robust filopodia of uniform thickness with aligned barbed ends by a unique mechanistic cycle.

  4. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  5. Thermal unfolding and aggregation of actin.

    Science.gov (United States)

    Levitsky, Dmitrii I; Pivovarova, Anastasiya V; Mikhailova, Valeria V; Nikolaeva, Olga P

    2008-09-01

    Actin is one of the most abundant proteins in nature. It is found in all eukaryotes and plays a fundamental role in many diverse and dynamic cellular processes. Also, actin is one of the most ubiquitous proteins because actin-like proteins have recently been identified in bacteria. Actin filament (F-actin) is a highly dynamic structure that can exist in different conformational states, and transitions between these states may be important in cytoskeletal dynamics and cell motility. These transitions can be modulated by various factors causing the stabilization or destabilization of actin filaments. In this review, we look at actin stabilization and destabilization as expressed by changes in the thermal stability of actin; specifically, we summarize and analyze the existing data on the thermal unfolding of actin as measured by differential scanning calorimetry. We also analyze in vitro data on the heat-induced aggregation of actin, the process that normally accompanies actin thermal denaturation. In this respect, we focus on the effects of small heat shock proteins, which can prevent the aggregation of thermally denatured actin with no effect on actin thermal unfolding. As a result, we have proposed a mechanism describing the thermal denaturation and aggregation of F-actin. This mechanism explains some of the special features of the thermal unfolding of actin filaments, including the effects of their stabilization and destabilization; it can also explain how small heat shock proteins protect the actin cytoskeleton from damage caused by the accumulation of large insoluble aggregates under heat shock conditions.

  6. Decavanadate binding to a high affinity site near the myosin catalytic centre inhibits F-actin-stimulated myosin ATPase activity.

    Science.gov (United States)

    Tiago, Teresa; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2004-05-11

    Decameric vanadate (V(10)) inhibits the actin-stimulated myosin ATPase activity, noncompetitively with actin or with ATP upon interaction with a high-affinity binding site (K(i) = 0.27 +/- 0.05 microM) in myosin subfragment-1 (S1). The binding of V(10) to S1 can be monitored from titration with V(10) of the fluorescence of S1 labeled at Cys-707 and Cys-697 with N-iodo-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) or 5-(iodoacetamido) fluorescein, which showed the presence of only one V(10) binding site per monomer with a dissociation constant of 0.16-0.7 microM, indicating that S1 labeling with these dyes produced only a small distortion of the V(10) binding site. The large quenching of AEDANS-labeled S1 fluorescence produced by V(10) indicated that the V(10) binding site is close to Cys-697 and 707. Fluorescence studies demonstrated the following: (i) the binding of V(10) to S1 is not competitive either with actin or with ADP.V(1) or ADP.AlF(4); (ii) the affinity of V(10) for the complex S1/ADP.V(1) and S1/ADP.AlF(4) is 2- and 3-fold lower than for S1; and (iii) it is competitive with the S1 "back door" ligand P(1)P(5)-diadenosine pentaphosphate. A local conformational change in S1 upon binding of V(10) is supported by (i) a decrease of the efficiency of fluorescence energy transfer between eosin-labeled F-actin and fluorescein-labeled S1, and (ii) slower reassociation between S1 and F-actin after ATP hydrolysis. The results are consistent with binding of V(10) to the Walker A motif of ABC ATPases, which in S1 corresponds to conserved regions of the P-loop which form part of the phosphate tube.

  7. Design and development of a high-concentration photovoltaic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, R C

    1982-04-01

    The design and development of a high concentration photovoltaic concentrator module is discussed. The design concept described herein incorporates a curved groove domed Fresnel lens, a high concentration etched multiple vertical junction (EMVJ) solar cell and a passively cooled direct-bonded copper cell mount all packaged in a plastic module. Two seven inch diameter 1200x domed Fresnel lenses were fabricated using single point diamond turning technology. Testing at both GE and Sandia confirmed optical transmission efficiencies of over 83%. Samples of the latest available EMVJ cells were mounted and installed, with a domed Fresnel lens, into a prototype module. Subsequent testing demonstrated net lens-cell efficiencies of 10 to 13%. As a result of this program, salient conclusions have been formulated as to this technology.

  8. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    Science.gov (United States)

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  9. GROWTH AND MORPHOLOGY OF POLYMER-ACTIN COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Hyuck Joon Kwon; Kazuhiro Shikinaka; Akira Kakugo; Hidemitsu Furukawa; Yoshihito Osada; Jian Ping Gong

    2007-01-01

    F-actins are semi-flexible polyelectrolytes and can be assembled into large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase behavior and the growth of polymer-actin complexes in terms of its longitudinal and lateral sizes. Our results show that formation of polymer-actin complexes is cooperative, and morphology and growth of polymer-actin complexes depend on polycation species and concentrations of polycation and salt in a constant actin concentration. We found that the longitudinal growth and lateral growth of polymer-actin complexes are dominated by different factors. This induces the structural polymorphism of polymer-actin complexes. Major factors to influence the polymorphism of polymer-actin complexes in polyelectrolyte system have been discussed. Our results indicate that the semi-flexible polyelectrolyte nature of F-actins is important for controlling the morphology and growth of actin architectures in cell.

  10. Fascin regulates nuclear actin during Drosophila oogenesis.

    Science.gov (United States)

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  11. LL-37 induces polymerization and bundling of actin and affects actin structure.

    Directory of Open Access Journals (Sweden)

    Asaf Sol

    Full Text Available Actin exists as a monomer (G-actin which can be polymerized to filaments F-actin that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl(2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.

  12. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I

    2007-11-01

    Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.

  13. Producing a highly concentrated coal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mokudzu, K.; Atsudzima, T.; Kiyedzuka, Y.

    1983-06-03

    Coal from wet and dry grinding is loaded into a mixer with a mixer arm with the acquisition of a highly concentrated suspension. Foamers (for instance, alkylbenzolsulfonate) and foam stabilizers (for instance diethanolamide of lauric acid) are added in a ratio of 10 to (2 to 5). The high fluidity of the suspension is maintained by injecting air into the suspension and an 80 percent concentration of the suspension is achieved.

  14. Actin cytoskeleton-dependent pathways for ADMA-induced NF-κB activation and TGF-β high expression in human renal glomerular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Liyan Wang; Dongliang Zhang; Junfang Zheng; Yiduo Feng; Yu Zhang; Wenhu Liu

    2012-01-01

    Asymmetric dimethylarginine (ADMA),an endogenous nitric oxide synthase inhibitor,is considered to be an independent risk factor in the progression of chronic kidney diseases (CKD).It can induce kidney fibrosis by increasing transforming growth factor (TGF)-β1 expression,but its molecular mechanism is unclear.The aim of the present study was to investigate the role of actin cytoskeleton in ADMA-induced TGF-β1 high expression in human renal glomerular endothelial cells (HRGECs).The structure of stress fibers was visualized by immunofluorescence,nuclear factor-κB (NF-κB) DNA-binding activity was assessed by an electrophoretic mobility shift assay and TGF-β1 expression was assessed by western blot analysis.Results showed that ADMA induced the assembly of stress fibers,DNA binding of NF-κB,and increasing expression of TGF-β1.When the dynamics of actin cytoskeleton was perturbed by the actin-depolymerizing agent cytochalasin D and the actin-stabilizing agent jasplakinolide,or ablation of stress fiber bundles by the nicotineamide adenine dinucleotide phosphate oxidase inhibitor apocynin and p38 mitogen-activated protein kinase inhibitor SB203580,ADMA-induced DNA binding of NF-κB and TGF-β1 expression were inhibited.These results revealed an actin cytoskeleton-dependent mechanism in ADMA-induced NF-κB activation and TGF-β1 high expression in HRGECs.The specific targeting of the actin cytoskeleton may be a useful strategy to prevent ADMA-activated kidney fibrosis in CKD.

  15. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    that low free water availability contributes to cellulase inhibition. Of the hydrolytic enzymes involved, those acting on the cellulose substrate, that is, exo- and endoglucanases, were the most inhibited. The β -glucosidases were shown to be less sensitive to high monosaccharide concentrations except...

  16. Regulation of Actin Dynamics in Pollen Tubes: Control of Actin Polymer Level

    Institute of Scientific and Technical Information of China (English)

    Naizhi Chen; Xiaolu Qu; Youjun Wu; Shanjin Huang

    2009-01-01

    Actin cytoskeleton undergoes rapid reorganization In response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions inplant cell biology. The pollen tube is a well characterized actin-based call morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and un-expected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.

  17. Nuclear Actin in Development and Transcriptional Reprogramming.

    Science.gov (United States)

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  18. High-dimensional entanglement concentration of twisted photon pairs High-dimensional entanglement concentration

    Science.gov (United States)

    Chen, L. X.; Wu, Q. P.

    2012-10-01

    Recently, Dada et al. reported on the experimental entanglement concentration and violation of generalized Bell inequalities with orbital angular momentum (OAM) [Nat. Phys. 7, 677 (2011)]. Here we demonstrate that the high-dimensional entanglement concentration can be performed in arbitrary OAM subspaces with selectivity. Instead of violating the generalized Bell inequalities, the working principle of present entanglement concentration is visualized by the biphoton OAM Klyshko picture, and its good performance is confirmed and quantified through the experimental Shannon dimensionalities after concentration.

  19. Structural Differences Explain Diverse Functions of Plasmodium Actins

    Science.gov (United States)

    Vahokoski, Juha; Martinez, Silvia Muñico; Ignatev, Alexander; Lepper, Simone; Frischknecht, Friedrich; Sidén-Kiamos, Inga; Sachse, Carsten; Kursula, Inari

    2014-01-01

    Actins are highly conserved proteins and key players in central processes in all eukaryotic cells. The two actins of the malaria parasite are among the most divergent eukaryotic actins and also differ from each other more than isoforms in any other species. Microfilaments have not been directly observed in Plasmodium and are presumed to be short and highly dynamic. We show that actin I cannot complement actin II in male gametogenesis, suggesting critical structural differences. Cryo-EM reveals that Plasmodium actin I has a unique filament structure, whereas actin II filaments resemble canonical F-actin. Both Plasmodium actins hydrolyze ATP more efficiently than α-actin, and unlike any other actin, both parasite actins rapidly form short oligomers induced by ADP. Crystal structures of both isoforms pinpoint several structural changes in the monomers causing the unique polymerization properties. Inserting the canonical D-loop to Plasmodium actin I leads to the formation of long filaments in vitro. In vivo, this chimera restores gametogenesis in parasites lacking actin II, suggesting that stable filaments are required for exflagellation. Together, these data underline the divergence of eukaryotic actins and demonstrate how structural differences in the monomers translate into filaments with different properties, implying that even eukaryotic actins have faced different evolutionary pressures and followed different paths for developing their polymerization properties. PMID:24743229

  20. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  1. Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose.

    Directory of Open Access Journals (Sweden)

    Simone Köhler

    Full Text Available In many in vitro experiments Brownian motion hampers quantitative data analysis. Therefore, additives are widely used to increase the solvent viscosity. For this purpose, methylcellulose (MC has been proven highly effective as already small concentrations can significantly slow down diffusive processes. Beside this advantage, it has already been reported that high MC concentrations can alter the microstructure of polymer solutions such as filamentous actin. However, it remains to be shown to what extent the mechanical properties of a composite actin/MC gel depend on the MC concentration. In particular, significant alterations might occur even if the microstructure seems unaffected. Indeed, we find that the viscoelastic response of entangled F-actin solutions depends sensitively on the amount of MC added. At concentrations higher than 0.2% (w/v MC, actin filaments are reorganized into bundles which drastically changes the viscoelastic response. At small MC concentrations the impact of MC is more subtle: the two constituents, actin and MC, contribute in an additive way to the mechanical response of the composite material. As a consequence, the effect of methylcellulose on actin solutions has to be considered very carefully when MC is used in biochemical experiments.

  2. The unusual dynamics of parasite actin result from isodesmic polymerization.

    Science.gov (United States)

    Skillman, Kristen M; Ma, Christopher I; Fremont, Daved H; Diraviyam, Karthikeyan; Cooper, John A; Sept, David; Sibley, L David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

  3. The actin multigene family of Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Wagner Erika

    2007-03-01

    Full Text Available Abstract Background A Paramecium tetraurelia pilot genome project, the subsequent sequencing of a Megabase chromosome as well as the Paramecium genome project aimed at gaining insight into the genome of Paramecium. These cells display a most elaborate membrane trafficking system, with distinct, predictable pathways in which actin could participate. Previously we had localized actin in Paramecium; however, none of the efforts so far could proof the occurrence of actin in the cleavage furrow of a dividing cell, despite the fact that actin is unequivocally involved in cell division. This gave a first hint that Paramecium may possess actin isoforms with unusual characteristics. The genome project gave us the chance to search the whole Paramecium genome, and, thus, to identify and characterize probably all actin isoforms in Paramecium. Results The ciliated protozoan, P. tetraurelia, contains an actin multigene family with at least 30 members encoding actin, actin-related and actin-like proteins. They group into twelve subfamilies; a large subfamily with 10 genes, seven pairs and one trio with > 82% amino acid identity, as well as three single genes. The different subfamilies are very distinct from each other. In comparison to actins in other organisms, P. tetraurelia actins are highly divergent, with identities topping 80% and falling to 30%. We analyzed their structure on nucleotide level regarding the number and position of introns. On amino acid level, we scanned the sequences for the presence of actin consensus regions, for amino acids of the intermonomer interface in filaments, for residues contributing to ATP binding, and for known binding sites for myosin and actin-specific drugs. Several of those characteristics are lacking in several subfamilies. The divergence of P. tetraurelia actins and actin-related proteins between different P. tetraurelia subfamilies as well as with sequences of other organisms is well represented in a phylogenetic

  4. Implications of oxidovanadium(IV) binding to actin.

    Science.gov (United States)

    Ramos, Susana; Almeida, Rui M; Moura, José J G; Aureliano, Manuel

    2011-06-01

    Oxidovanadium(IV), a cationic species (VO(2+)) of vanadium(IV), binds to several proteins, including actin. Upon titration with oxidovanadium(IV), approximately 100% quenching of the intrinsic fluorescence of monomeric actin purified from rabbit skeletal muscle (G-actin) was observed, with a V(50) of 131 μM, whereas for the polymerized form of actin (F-actin) 75% of quenching was obtained and a V(50) value of 320 μM. Stern-Volmer plots were used to estimate an oxidovanadium(IV)-actin dissociation constant, with K(d) of 8.2 μM and 64.1 μM VOSO(4), for G-actin and F-actin, respectively. These studies reveal the presence of a high affinity binding site for oxidovanadium(IV) in actin, producing local conformational changes near the tryptophans most accessible to water in the three-dimensional structure of actin. The actin conformational changes, also confirmed by (1)H NMR, are accompanied by changes in G-actin hydrophobic surface, but not in F-actin. The (1)H NMR spectra of G-actin treated with oxidovanadium(IV) clearly indicates changes in the resonances ascribed to methyl group and aliphatic regions as well as to aromatics and peptide-bond amide region. In parallel, it was verified that oxidovanadium(IV) prevents the G-actin polymerization into F-actin. In the 0-200 μM range, VOSO(4) inhibits 40% of the extent of polymerization with an IC(50) of 15.1 μM, whereas 500 μM VOSO(4) totally suppresses actin polymerization. The data strongly suggest that oxidovanadium(IV) binds to actin at specific binding sites preventing actin polymerization. By affecting actin structure and function, oxidovanadium(IV) might be responsible for many cellular effects described for vanadium.

  5. Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity.

    Science.gov (United States)

    Bertling, Enni; Englund, Jonas; Minkeviciene, Rimante; Koskinen, Mikko; Segerstråle, Mikael; Castrén, Eero; Taira, Tomi; Hotulainen, Pirta

    2016-05-11

    Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for

  6. Actin gene family in Branchiostoma belched

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  7. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  8. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    CERN Document Server

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  9. State transitions of actin cortices in vitro and in vivo

    Science.gov (United States)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  10. Dynamic Actin Gene Family Evolution in Primates

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2013-01-01

    Full Text Available Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.

  11. Actin-dependent mechanisms in AMPA receptor trafficking

    Directory of Open Access Journals (Sweden)

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  12. Actin: Structure, Function, Dynamics, and Interactions with Bacterial Toxins.

    Science.gov (United States)

    Kühn, Sonja; Mannherz, Hans Georg

    Actin is one of the most abundant proteins in any eukaryotic cell and an indispensable component of the cytoskeleton. In mammalian organisms, six highly conserved actin isoforms can be distinguished, which differ by only a few amino acids. In non-muscle cells, actin polymerizes into actin filaments that form actin structures essential for cell shape stabilization, and participates in a number of motile activities like intracellular vesicle transport, cytokinesis, and also cell locomotion. Here, we describe the structure of monomeric and polymeric actin, the polymerization kinetics, and its regulation by actin-binding proteins. Probably due to its conserved nature and abundance, actin and its regulating factors have emerged as prefered targets of bacterial toxins and effectors, which subvert the host actin cytoskeleton to serve bacterial needs.

  13. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    Science.gov (United States)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  14. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner.

    Science.gov (United States)

    Yokota, Etsuo; Tominaga, Motoki; Mabuchi, Issei; Tsuji, Yasunori; Staiger, Christopher J; Oiwa, Kazuhiro; Shimmen, Teruo

    2005-10-01

    From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).

  15. Physical chemistry of highly concentrated emulsions.

    Science.gov (United States)

    Foudazi, Reza; Qavi, Sahar; Masalova, Irina; Malkin, Alexander Ya

    2015-06-01

    This review explores the physics underlying the rheology of highly concentrated emulsions (HCEs) to determine the relationship between elasticity and HCE stability, and to consider whether it is possible to describe all physicochemical properties of HCEs on the basis of a unique physical approach. We define HCEs as emulsions with a volume fraction above the maximum closest packing fraction of monodisperse spheres, φm=0.74, even if droplets are not of polyhedron shape. The solid-like rheological behavior of HCEs is characterized by yield stress and elasticity, properties which depend on droplet polydispersity and which are affected by caging at volume fractions about the jamming concentration, φj. A bimodal size distribution in HCEs diminishes caging and facilitates droplet movement, resulting in HCEs with negligible yield stress and no plateau in storage modulus. Thermodynamic forces automatically move HCEs toward the lowest free energy state, but since interdroplet forces create local minimums - points beyond which free energy temporarily increases before it reaches the global minimum of the system - the free energy of HCEs will settle at a local minimum unless additional energy is added. Several attempts have been undertaken to predict the elasticity of HCEs. In many cases, the elastic modulus of HCEs is higher than the one predicted from classical models, which only take into account spatial repulsion (or simply interfacial energy). Improved models based on free energy calculation should be developed to consider the disjoining pressure and interfacial rheology in addition to spatial repulsion. The disjoining pressure and interfacial viscoelasticity, which result in the deviation of elasticity from the classical model, can be regarded as parameters for quantifying the stability of HCEs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dissociative mechanism of F-actin thermal denaturation.

    Science.gov (United States)

    Mikhailova, V V; Kurganov, B I; Pivovarova, A V; Levitsky, D I

    2006-11-01

    We have applied differential scanning calorimetry to investigate thermal unfolding of F-actin. It has been shown that the thermal stability of F-actin strongly depends on ADP concentration. The transition temperature, T(m), increases with increasing ADP concentration up to 1 mM. The T(m) value also depends on the concentration of F-actin: it increases by almost 3 degrees C as the F-actin concentration is increased from 0.5 to 2.0 mg/ml. Similar dependence of the T(m) value on protein concentration was demonstrated for F-actin stabilized by phalloidin, whereas it was much less pronounced in the presence of AlF4(-). However, T(m) was independent of protein concentration in the case of monomeric G-actin. The results suggest that at least two reversible stages precede irreversible thermal denaturation of F-actin; one of them is dissociation of ADP from actin subunits, and another is dissociation of subunits from the ends of actin filaments. The model explains why unfolding of F-actin depends on both ADP and protein concentration.

  17. A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein.

    Science.gov (United States)

    Mattila, Pieta K; Quintero-Monzon, Omar; Kugler, Jamie; Moseley, James B; Almo, Steven C; Lappalainen, Pekka; Goode, Bruce L

    2004-11-01

    Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (Kd 0.02 microM) compared with ATP-G-actin (Kd 1.9 microM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer addition specifically to barbed ends of filaments, in contrast to profilin, which blocks monomer addition to pointed ends of filaments. The actin-binding domain of CAP is more extensive than previously suggested and includes a recently solved beta-sheet structure in the C-terminus of CAP and adjacent sequences. Using site-directed mutagenesis, we define evolutionarily conserved residues that mediate binding to ADP-G-actin and demonstrate that these activities are required for CAP function in vivo in directing actin organization and polarized cell growth. Together, our data suggest that in vivo CAP competes with cofilin for binding ADP-actin monomers, allows rapid nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin to take the handoff of ATP-actin and facilitate barbed end assembly.

  18. A High-affinity Interaction with ADP-Actin Monomers Underlies the Mechanism and In Vivo Function of Srv2/cyclase-associated ProteinD⃞

    OpenAIRE

    Mattila, Pieta K.; Quintero-Monzon, Omar; Kugler, Jamie; Moseley, James B.; Almo, Steven C.; Lappalainen, Pekka; Goode, Bruce L

    2004-01-01

    Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (Kd 0.02 μM) compared with ATP-G-actin (Kd 1.9 μM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer additi...

  19. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells.

    Science.gov (United States)

    Lucas, Eliana P; Khanal, Ichha; Gaspar, Pedro; Fletcher, Georgina C; Polesello, Cedric; Tapon, Nicolas; Thompson, Barry J

    2013-06-10

    Collective migration of Drosophila border cells depends on a dynamic actin cytoskeleton that is highly polarized such that it concentrates around the outer rim of the migrating cluster of cells. How the actin cytoskeleton becomes polarized in these cells to enable collective movement remains unknown. Here we show that the Hippo signaling pathway links determinants of cell polarity to polarization of the actin cytoskeleton in border cells. Upstream Hippo pathway components localize to contacts between border cells inside the cluster and signal through the Hippo and Warts kinases to polarize actin and promote border cell migration. Phosphorylation of the transcriptional coactivator Yorkie (Yki)/YAP by Warts does not mediate the function of this pathway in promoting border cell migration, but rather provides negative feedback to limit the speed of migration. Instead, Warts phosphorylates and inhibits the actin regulator Ena to activate F-actin Capping protein activity on inner membranes and thereby restricts F-actin polymerization mainly to the outer rim of the migrating cluster.

  20. Daylight photodynamic therapy - Experience and safety in treatment of actinic keratoses of the face and scalp in low latitude and high brightness region*

    Science.gov (United States)

    Galvão, Luiz Eduardo Garcia; Gonçalves, Heitor de Sá; Botelho, Karine Paschoal; Caldas, Juliana Chagas

    2017-01-01

    Daylight photodynamic therapy has been used in countries with high latitudes during the summer for actinic keratoses treatment with reports of similar efficacy to conventional photodynamic therapy. We evaluate its safety in 20 patients in the city of Fortaleza, a local with low latitude and high brightness. Sixteen patients did not report any discomfort due to the procedure. Daylight photodynamic therapy is an easy application method with great tolerability by the patient and has the possibility of being performed throughout the year in these regions. It can mean a promising tool in the control of skin cancer. PMID:28225978

  1. Release of muscle α-actin into serum after intensive exercise

    Directory of Open Access Journals (Sweden)

    A Martínez-Amat

    2010-12-01

    Full Text Available Purpose: To study the effects of high-level matches on serum alpha actin and other muscle damage markers in teams of rugby and handball players. Methods: Blood samples were drawn from 23 sportsmen: 13 rugby players and 10 handball players. One sample was drawn with the player at rest before the match and one immediately after the match. Immunoassays were used to determine troponin I, troponin T, LDH, and myoglobin concentrations. Western blot and densitometry were used to measure α-actin concentrations. Muscle injury was defined by a total CK value of > 500 IU/L (Rosalki method. Results: Mean pre- and post-match serum alpha-actin values were, respectively, 7.16 and 26.47 μg/ml in the handball group and 1.24 and 20.04 μg/ml in the rugby team. CPK, LDH and myoglobin but not troponin 1 levels also significantly differed between these time points. According to these results, large amounts of α-actin are released into peripheral blood immediately after intense physical effort. Possible cross-interference between skeletal and cardiac muscle damage can be discriminated by the combined use of α-actin and troponin I. Conclusion: The significant increase in alpha-actin after a high-level match may be a reliable marker for the early diagnosis and hence more effective treatment of muscle injury.

  2. High-Temperature, High-Concentration Solar Thermoelectric Generators

    Science.gov (United States)

    Warren, Emily; Baranowski, Lauryn; Olsen, Michele; Ndione, Paul; Netter, Judy; Goodrich, Alan; Gray, Matthew; Parilla, Philip; Ginley, David; Toberer, Eric

    2014-03-01

    Solar thermoelectric generators (STEGs) powered with concentrated solar energy have potential for use as primary energy converters or as topping-cycles for more conventional concentrated solar power (CSP) technologies. Modeling based on current record modules from JPL suggests thermoelectric efficiencies of 18 % could be experimentally expected with a temperature gradient of 1000 - 100°C. Integrating these state-of-the-art TEGs with a concentrating solar receiver requires simultaneous optimization of optical, thermal, and thermoelectric systems. This talk will discuss the modeling, design, and experimental testing of STEG devices under concentrated sunlight. We have developed a model that combines thermal circuit modeling with optical ray tracing to design selective absorber coatings and cavities to minimize radiation losses from the system. We have fabricated selective absorber coatings and demonstrated that these selective absorber films can minimize blackbody radiation losses at high temperature and are stable after thermal cycling to 1000°C. On-sun testing of STEG devices and thermal simulators is ongoing and preliminary results will be discussed.

  3. Production of high concentrations of yeast

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-10

    A microbe is aerobically cultured using O/sub 2/ or a gas rich in O/sub 2/. The grown cells are washed, concentrated and a portion of the cells used as a seed culture. Thus, Saccharomyces cerevisiae (bakers' yeast) was cultured in a jar fermentor by flow down system maintaining the dissolved O/sub 2/ at 2-5 mg/L; volume of the initial medium containing 30% glucose was 350 mL and the initial washed cell concentration was 50 g dry cells/L. After 12 hours of cultivation, the volume of the medium increased to 750 mL and the cell concentration rose to 102 g dry cells/L; the yield was 49% with respect to glucose. The cells were washed and the cultivation was repeated by use of the washed cells; cell concentration reached 105 g dry cells/L.

  4. Fluorescence studies of the carboxyl-terminal domain of smooth muscle calponin effects of F-actin and salts.

    Science.gov (United States)

    Bartegi, A; Roustan, C; Kassab, R; Fattoum, A

    1999-06-01

    The fluorescence parameters of the environment-sensitive acrylodan, selectively attached to Cys273 in the C-terminal domain of smooth muscle calponin, were studied in the presence of F-actin and using varying salt concentrations. The formation of the F-actin acrylodan labeled calponin complex at 75 mm NaCl resulted in a 21-nm blue shift of the maximum emission wavelength from 496 nm to 474 nm and a twofold increase of the fluorescent quantum yield at 460 nm. These spectral changes were observed at the low ionic strengths ( 110 mm) where the binding stoichiometry is a 1 : 2 ratio of calponin : actin monomers. On the basis of previous three-dimensional reconstruction and chemical crosslinking of the F-actin-calponin complex, the actin effect is shown to derive from the low ionic strength interaction of calponin with the bottom of subdomain-1 of an upper actin monomer in F-actin and not from its further association with the subdomain-1 of the adjacent lower monomer which occurs at the high ionic strength. Remarkably, the F-actin-dependent fluorescence change of acrylodan is qualitatively but not quantitatively similar to that earlier reported for the complexes of calponin and Ca2+-calmodulin or Ca2+-caltropin. As the three calponin ligands bind to the same segment of the protein, encompassing residues 145-182, the acrylodan can be considered as a sensitive probe of the functioning of this critical region. A distance of 29 A was measured by fluorescence resonance energy transfer between Cys273 of calponin and Cys374 of actin in the 1 : 1 F-actin-calponin complex suggesting that the F-actin effect was allosteric reflecting a global conformational change in the C-terminal domain of calponin.

  5. Transient state model of actin-based motility

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of th...

  6. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  7. Actin Rings of Power.

    Science.gov (United States)

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles.

  8. A Continuum Model of Actin Waves in Dictyostelium discoideum

    Science.gov (United States)

    Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.

    2013-01-01

    Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312

  9. Actin as a potential target for decavanadate.

    Science.gov (United States)

    Ramos, Susana; Moura, José J G; Aureliano, Manuel

    2010-12-01

    ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

  10. Polyclonal hypergammaglobulinemia and high smooth-muscle autoantibody titers with specificity against filamentous actin: consider visceral leishmaniasis, not just autoimmune hepatitis.

    Science.gov (United States)

    Makaritsis, Konstantinos P; Gatselis, Nikolaos K; Ioannou, Maria; Petinaki, Efthimia; Dalekos, George N

    2009-07-01

    Visceral leishmaniasis (VL) remains a public health problem in most countries bordering the Mediterranean basin. Its diagnosis is challenging and often delayed, as the main clinical picture is often indistinguishable from that of other infectious and non-infectious diseases. Herein, we report two unusual cases of VL that presented with several characteristics of autoimmune hepatitis (AIH). Neither patient had a history of fever, only generalized symptoms accompanied by polyclonal hypergammaglobulinemia, cytopenias, signs of portal hypertension, elevated transaminases, and high titers of antinuclear and smooth-muscle autoantibodies (SMA) with reactivity against filamentous actin (F-actin), which has been recognized as specific to AIH. A clinical diagnosis of AIH was considered, but a bone marrow biopsy was performed before a liver biopsy to exclude a primary bone marrow disease. The biopsy led to the diagnosis of VL. The diagnosis was further confirmed by IgG antibodies against Leishmania spp. using ELISA and PCR-based assays. Treatment with amphotericin in the first case and pentamidine in the second (because of a severe reaction to amphotericin) was effective. From the clinical point of view, it should be emphasized that, in cases with high titers of anti-F-actin AIH-specific SMA accompanied by polyclonal hypergammaglobulinemia, the possibility of AIH should be cautiously differentiated from VL; this distinction is of paramount importance because initiation of immunosuppression for AIH treatment would be detrimental to a patient with underlying leishmaniasis. Therefore, in such cases and in areas where the disease is still present, it seems rational to exclude VL before starting any immunosuppressive therapy.

  11. Plant actin controls membrane permeability.

    Science.gov (United States)

    Hohenberger, Petra; Eing, Christian; Straessner, Ralf; Durst, Steffen; Frey, Wolfgang; Nick, Peter

    2011-09-01

    The biological effects of electric pulses with low rise time, high field strength, and durations in the nanosecond range (nsPEFs) have attracted considerable biotechnological and medical interest. However, the cellular mechanisms causing membrane permeabilization by nanosecond pulsed electric fields are still far from being understood. We investigated the role of actin filaments for membrane permeability in plant cells using cell lines where different degrees of actin bundling had been introduced by genetic engineering. We demonstrate that stabilization of actin increases the stability of the plasma membrane against electric permeabilization recorded by penetration of Trypan Blue into the cytoplasm. By use of a cell line expressing the actin bundling WLIM domain under control of an inducible promotor we can activate membrane stabilization by the glucocorticoid analog dexamethasone. By total internal reflection fluorescence microscopy we can visualize a subset of the cytoskeleton that is directly adjacent to the plasma membrane. We conclude that this submembrane cytoskeleton stabilizes the plasma membrane against permeabilization through electric pulses. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Actinic lichen nitidus

    Directory of Open Access Journals (Sweden)

    Loretta Davis

    2010-01-01

    Full Text Available We present the case of a 29-year-old black female with an initial clinical and histopathologic diagnosis of actinic lichen nitidus. Three years later, she presented with scattered hyperpigmented macules with oval pink/viol­aceous plaques bilaterally on her forearms and on her neck, clinically consistent with actinic lichen planus. She was treated with topical steroids at each visit, with subsequent resolution of her lesions. In this report, we discuss the spectrum of actinic lichenoid dermatoses and of disease that presents even in the same patient.

  13. Erbium laser resurfacing for actinic cheilitis.

    Science.gov (United States)

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA).

  14. Effects of latrunculin B on the actin cytoskeleton and hyphal growth in Phytophthora infestans.

    Science.gov (United States)

    Ketelaar, Tijs; Meijer, Harold J G; Spiekerman, Marjolein; Weide, Rob; Govers, Francine

    2012-12-01

    The actin cytoskeleton is conserved in all eukaryotes, but its functions vary among different organisms. In oomycetes, the function of the actin cytoskeleton has received relatively little attention. We have performed a bioinformatics study and show that oomycete actin genes fall within a distinct clade that is divergent from plant, fungal and vertebrate actin genes. To obtain a better understanding of the functions of the actin cytoskeleton in hyphal growth of oomycetes, we studied the actin organization in Phytophthora infestans hyphae and the consequences of treatment with the actin depolymerising drug latrunculin B (latB). This revealed that latB treatment causes a concentration dependent inhibition of colony expansion and aberrant hyphal growth. The most obvious aberrations observed upon treatment with 0.1 μM latB were increased hyphal branching and irregular tube diameters whereas at higher concentrations latB (0.5 and 1 μM) tips of expanding hyphae changed into balloon-like shapes. This aberrant growth correlated with changes in the organization of the actin cytoskeleton. In untreated hyphae, staining with fluorescently tagged phalloidin revealed two populations of actin filaments: long, axially oriented actin filament cables and cortical actin filament plaques. Two hyphal subtypes were recognized, one containing only plaques and the other containing both cables and plaques. In the latter, some hyphae had an apical zone without actin filament plaques. Upon latB treatment, the proportion of hyphae without actin filament cables increased and there were more hyphae with a short apical zone without actin filament plaques. In general, actin filament plaques were more resilient against actin depolymerisation than actin filament cables. Besides disturbing hyphal growth and actin organization, actin depolymerisation also affected the positioning of nuclei. In the presence of latB, the distance between nuclei and the hyphal tip decreased, suggesting that the actin

  15. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Hidemi; Matsuura, Yoshiyuki, E-mail: matsuura.yoshiyuki@d.mbox.nagoya-u.ac.jp

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  16. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.

    Science.gov (United States)

    Mavrakis, Manos; Azou-Gros, Yannick; Tsai, Feng-Ching; Alvarado, José; Bertin, Aurélie; Iv, Francois; Kress, Alla; Brasselet, Sophie; Koenderink, Gijsje H; Lecuit, Thomas

    2014-04-01

    Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.

  17. β-actin as a loading control for plasma-based Western blot analysis of major depressive disorder patients.

    Science.gov (United States)

    Zhang, Rufang; Yang, Deyu; Zhou, Chanjuan; Cheng, Ke; Liu, Zhao; Chen, Liang; Fang, Liang; Xie, Peng

    2012-08-15

    Western blot analysis is a commonly used technique for determining specific protein levels in clinical samples. For normalization of protein levels in Western blot, a suitable loading control is required. On account of its relatively high and constant expression, β-actin has been widely employed in Western blot of cell cultures and tissue extracts. However, β-actin's presence in human plasma and this protein's putative role as a plasma-based loading control for Western blot analysis remain unknown. In this study, an enzyme-linked immunosorbent assay was used to determine the concentration of β-actin in human plasma, which is 6.29±0.54 ng/ml. In addition, the linearity of β-actin immunostaining and loaded protein amount was evaluated by Western blot, and a fine linearity (R²=0.974±0.012) was observed. Furthermore, the expression of plasma β-actin in major depressive disorder subjects and healthy controls was compared. The data revealed no statistically significant difference between these two groups. Moreover, the total coefficient of variation for β-actin expression in the two groups was 9.2±1.2%. These findings demonstrate that β-actin is present in human plasma and may possibly be used as a suitable loading control for plasma-based Western blot analysis in major depressive disorder. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Factors Impeding Enzymatic Wheat Gluten Hydrolysis at High Solid Concentrations

    NARCIS (Netherlands)

    Hardt, N.A.; Janssen, A.E.M.; Boom, R.M.; Goot, van der A.J.

    2014-01-01

    Enzymatic wheat gluten hydrolysis at high solid concentrations is advantageous from an environmental and economic point of view. However, increased wheat gluten concentrations result in a concentration effect with a decreased hydrolysis rate at constant enzyme-to-substrate ratios and a decreased

  19. Drosophila pupal macrophages--a versatile tool for combined ex vivo and in vivo imaging of actin dynamics at high resolution.

    Science.gov (United States)

    Sander, Moritz; Squarr, Anna Julia; Risse, Benjamin; Jiang, Xiaoyi; Bogdan, Sven

    2013-01-01

    Molecular understanding of actin dynamics requires a genetically traceable model system that allows live cell imaging together with high-resolution microscopy techniques. Here, we used Drosophila pupal macrophages that combine many advantages of cultured cells with a genetic in vivo model system. Using structured illumination microscopy together with advanced spinning disk confocal microscopy we show that these cells provide a powerful system for single gene analysis. It allows forward genetic screens to characterize the regulatory network controlling cell shape and directed cell migration in a physiological context. We knocked down components regulating lamellipodia formation, including WAVE, single subunits of Arp2/3 complex and CPA, one of the two capping protein subunits and demonstrate the advantages of this model system by imaging mutant macrophages ex vivo as well as in vivo upon laser-induced wounding.

  20. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    Science.gov (United States)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  1. Histones bundle F-actin filaments and affect actin structure.

    Science.gov (United States)

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  2. Prokaryotic expression and characterization of a pea actin isoform (PEAcl) fused to GFP

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shaobin; REN Dongtao; XU Xiaojing; LIU Guoqin

    2004-01-01

    Actins widely exist in eukaryotic cells and play important roles in many living activities. As there are many kinds of actin isoforms in plant cells, it is difficult to purify each actin isoform in sufficient quantities for analyzing its physicochemical properties. In the present study, a pea(Pisum Sativum L.) actin isoform (PEAc1) fused to His-tag at its amino terminus and GFP (green fluorescent protein) at its Carboxyl terminus were expressed in E. Coli in inclusion bodies. The fusion protein (PEAc1-GFP) was highly purified with the yield of above 2 mg/L culture by dissolving inclusions in 8 mol/L urea, renaturing by dialysis in a gradient of urea, and affinity binding to Ni-resin. The purified mono meric PEAc1-GFP could efficiently bind on Dnase Ⅰ and inhibit the latter's enzyme activity. PEAc1-GFP could polymerize into green fluorescent filamentous structures (F-PEAc1-GFP), which could be labeled by TRITC-phalloidin, a specific agent for observing microfilaments. The PEAc1-GFP polymerization curve was identical with that of chicken skeletal muscle actin. The critical concentration for PEAc1-GFP to polymerize into filaments is 0.24 μmol/L. The F-PEAc1-GFP could stimulate myosin Mg-ATPase activity in a protein concentration dependant manner (about 4 folds at1 mg/mL F-PEAc1-GFP). The results above show that the PEAcl fused to GFP retained the assembly characteristic of actin, indicating that gene fusion, prokaryotic expression,denaturation and renaturation, and affinity chromatography is a useful strategy for obtaining plant actin isoform proteins in a large amount.

  3. Fabrication and tolerances of optics for high concentration photovoltaics

    OpenAIRE

    Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos; Ahmadpanaih, Hamed; Mendes Lopes, Joao; Zamora Herranz, Pablo

    2014-01-01

    High Concentration Photovoltaics (HCPV) require an optical system with high efficiency, low cost and large tolerance. We describe the particularities of the HCPV applications, which constrain the optics design and the manufacturing techonologies.

  4. Cooperative regulation of myosin-S1 binding to actin filaments by a continuous flexible Tm-Tn chain.

    Science.gov (United States)

    Mijailovich, Srboljub M; Kayser-Herold, Oliver; Li, Xiaochuan; Griffiths, Hugh; Geeves, Michael A

    2012-12-01

    The regulation of striated muscle contraction involves cooperative interactions between actin filaments, myosin-S1 (S1), tropomyosin (Tm), troponin (Tn), and calcium. These interactions are modeled by treating overlapping tropomyosins as a continuous flexible chain (CFC), weakly confined by electrostatic interactions with actin. The CFC is displaced locally in opposite directions on the actin surface by the binding of either S1 or Troponin I (TnI) to actin. The apparent rate constants for myosin and TnI binding to and detachment from actin are then intrinsically coupled via the CFC model to the presence of neighboring bound S1s and TnIs. Monte Carlo simulations at prescribed values of the CFC stiffness, the CFC's degree of azimuthal confinement, and the angular displacements caused by the bound proteins were able to predict the stopped-flow transients of S1 binding to regulated F-actin. The transients collected over a large range of calcium concentrations could be well described by adjusting a single calcium-dependent parameter, the rate constant of TnI detachment from actin, k(-I). The resulting equilibrium constant K(B) ≡ 1/K(I) varied sigmoidally with the free calcium, increasing from 0.12 at low calcium (pCa >7) to 12 at high calcium (pCa Hill coefficient of ~2.15. The similarity of the curves for excess-actin and excess-myosin data confirms their allosteric relationship. The spatially explicit calculations confirmed variable sizes for the cooperative units and clustering of bound myosins at low calcium concentrations. Moreover, inclusion of negative cooperativity between myosin units predicted the observed slowing of myosin binding at excess-myosin concentrations.

  5. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator.

    Science.gov (United States)

    Mouilleron, Stéphane; Langer, Carola A; Guettler, Sebastian; McDonald, Neil Q; Treisman, Richard

    2011-06-14

    Subcellular localization of the actin-binding transcriptional coactivator MRTF-A is controlled by its interaction with monomeric actin (G-actin). Signal-induced decreases in G-actin concentration reduce MRTF-A nuclear export, leading to its nuclear accumulation, whereas artificial increases in G-actin concentration in resting cells block MRTF-A nuclear import, retaining it in the cytoplasm. This regulation is dependent on three actin-binding RPEL motifs in the regulatory domain of MRTF-A. We describe the structures of pentavalent and trivalent G-actin•RPEL domain complexes. In the pentavalent complex, each RPEL motif and the two intervening spacer sequences bound an actin monomer, forming a compact assembly. In contrast, the trivalent complex lacked the C-terminal spacer- and RPEL-actins, both of which bound only weakly in the pentavalent complex. Cytoplasmic localization of MRTF-A in unstimulated fibroblasts also required binding of G-actin to the spacer sequences. The bipartite MRTF-A nuclear localization sequence was buried in the pentameric assembly, explaining how increases in G-actin concentration prevent nuclear import of MRTF-A. Analyses of the pentavalent and trivalent complexes show how actin loads onto the RPEL domain and reveal a molecular mechanism by which actin can control the activity of one of its binding partners.

  6. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  7. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.

    Science.gov (United States)

    Ramos, Susana; Manuel, Miguel; Tiago, Teresa; Duarte, Rui; Martins, Jorge; Gutiérrez-Merino, Carlos; Moura, José J G; Aureliano, Manuel

    2006-11-01

    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

  8. The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip

    KAUST Repository

    Lin, Ran

    2012-03-01

    Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (C CD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and C CD. © 2012 IEEE.

  9. Unconventional actins and actin-binding proteins in human protozoan parasites.

    Science.gov (United States)

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  10. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  11. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Hiroshi [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan); Matsumori, Haruka [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Kalendova, Alzbeta; Hozak, Pavel [Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague (Czech Republic); Goldberg, Ilya G. [Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224 (United States); Nakao, Mitsuyoshi [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Saitoh, Noriko [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Harata, Masahiko, E-mail: mharata@biochem.tohoku.ac.jp [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan)

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation.

  12. Interaction of calponin with actin and its functional implications.

    Science.gov (United States)

    Kołakowski, J; Makuch, R; Stepkowski, D; Dabrowska, R

    1995-01-01

    Titration of F-actin with calponin causes the formation of two types of complexes. One, at saturation, contains a lower ratio of calponin to actin (0.5:1) and is insoluble at physiological ionic strength. The another is soluble, with a higher ratio of calponin to actin (1:1). Electron microscopy revealed that the former complex consists of paracrystalline bundles of actin filaments, whereas the latter consists of separate filaments. Ca(2+)-calmodulin causes dissociation of bundles with simultaneous increase in the number of separate calponin-containing filaments. Further increase in the calmodulin concentration results in full release of calponin from actin filaments. In motility assays, calponin, when added together with ATP to actin filaments complexed with immobilized myosin, evoked a decrease in both the number and velocity of moving actin filaments. Addition of calponin to actin filaments before their binding to myosin resulted in a formation of actin filament bundles which were dissociated by ATP. Images Figure 2 PMID:7864810

  13. Directed actin assembly and motility.

    Science.gov (United States)

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  14. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide......-swath synthetic aperture radar (SAR) scenes. The analysis is confined to the high-concentration Arctic sea ice, where the ice cover is near 100%. During winter the results indicate that the variability of the SSM/I concentration estimates is larger than the true variability of ice concentration. Results from...... a trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found...

  15. High Stokes shift perylene dyes for luminescent solar concentrators.

    Science.gov (United States)

    Sanguineti, Alessandro; Sassi, Mauro; Turrisi, Riccardo; Ruffo, Riccardo; Vaccaro, Gianfranco; Meinardi, Francesco; Beverina, Luca

    2013-02-25

    Highly efficient plastic based single layer Luminescent Solar Concentrators (LSCs) require the design of luminophores having complete spectral separation between absorption and emission spectra (large Stokes shift). We describe the design, synthesis and characterization of a new perylene dye possessing Stokes shift as high as 300 meV, fluorescent quantum yield in the LSC slab of 70% and high chemical and photochemical stability.

  16. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    OpenAIRE

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hai...

  17. Applications of nonimaging optics for very high solar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    O`Gallagher, J.; Winston, R.

    1997-12-31

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy.

  18. Electron beam treatment of exhaust gas with high NOx concentration

    Science.gov (United States)

    Licki, Janusz; Chmielewski, Andrzej G.; Pawelec, Andrzej; Zimek, Zbigniew; Witman, Sylwia

    2014-05-01

    Simulated exhaust gases with a high NOx concentration, ranging from 200 to 1700 ppmv, were irradiated by an electron beam from an accelerator. In the first part of this study, only exhaust gases were treated. Low NOx removal efficiencies were obtained for high NOx concentrations, even with high irradiation doses applied. In the second part of study, gaseous ammonia or/and vapor ethanol were added to the exhaust gas before its inlet to the plasma reactor. These additions significantly enhanced the NOx removal efficiency. The synergistic effect of high SO2 concentration on NOx removal was observed. The combination of electron beam treatment with the introduction of the above additions and with the performance of irradiation under optimal parameters ensured high NOx removal efficiency without the application of a solid-state catalyst.

  19. [Reasons of high concentration ammonium in Yellow River, China].

    Science.gov (United States)

    Zhang, Xue-qing; Xia, Xing-hui; Yang, Zhi-feng

    2007-07-01

    Ammonium nitrogen contamination is one of the major problems of the Yellow River in China. The speciation, concentration and sources of nitrogen compounds as well as the water environment conditions of the Yellow River had been analyzed to study the reasons for the fact that the ammonium nitrogen concentration was above the water quality standard. In addition, laboratory experiments had been carried out to investigate the effects of suspended sediment (SS) on nitrification rate. The results indicated that the presence of SS could accelerate the nitrification process, therefore, the effects of SS on nitrification rate was not the reason for the high level of ammonium nitrogen in the river. The excessive and continuous input of nitrogen contaminants to the river was the fundamental reason for the high concentration of ammonium nitrogen. Organic and ammonium nitrogen with high concentration inhibitted the nitrification processes. When the initial NH4+ -N concentrations were 10.1, 18.4 and 28.2 mg/L, nitrification efficiencies were 17.4%, 13.0% and 2.5%, respectively. When the initial organic nitrogen concentrations were 5.5 and 8.6 mg/L, the maximum concentrations of ammonium nitrogen produced by the oxidation of organic nitrogen would reach 0.47 and 1.69 mg/L and they would last for 2 days and 6 days, respectively. The oxygen-consuming organics and toxic substance existing in the river water could inhibit the activity of nitrifying bacteria, and thus lead to the accumulation of ammonium nitrogen. In addition, the high pH value of river water resulted in the high concentration of nonionic ammonium nitrogen which would reduce the activity of nitrifying bacteria and decrease the nitrification rates. Besides, low river runoff, low SS content and low activity of nitrifying bacteria resulted in the high level of ammonium nitrogen of the river in the low water season.

  20. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  1. High Black Carbon (BC) Concentrations along Indian National Highways

    Science.gov (United States)

    Kumar, S.; Singh, A. K.; Singh, R. P.

    2015-12-01

    Abstract:Black carbon (BC), the optically absorbing component of carbonaceous aerosol, has direct influence on radiation budget and global warming. Vehicular pollution is one of the main sources for poor air quality and also atmospheric pollution. The number of diesel vehicles has increased on the Indian National Highways during day and night; these vehicles are used for the transport of goods from one city to another city and also used for public transport. A smoke plume from the vehicles is a common feature on the highways. We have made measurements of BC mass concentrations along the Indian National Highways using a potable Aethalometer installed in a moving car. We have carried out measurements along Varanasi to Kanpur (NH-2), Varanasi to Durgapur (NH-2), Varanasi to Singrauli (SH-5A) and Varanasi to Ghazipur (NH-29). We have found high concentration of BC along highways, the average BC mass concentrations vary in the range 20 - 40 µg/m3 and found high BC mass concentrations up to 600 μg/m3. Along the highways high BC concentrations were characteristics of the presence of industrial area, power plants, brick kilns and slow or standing vehicles. The effect of increasing BC concentrations along the National Highways and its impact on the vegetation and human health will be presented. Key Words: Black Carbon; Aethalometer; mass concentration; Indian National Highways.

  2. Interaction of Phalloidin with Actin

    Science.gov (United States)

    Lengsfeld, Anneliese M.; Löw, Irmentraut; Wieland, Theodor; Dancker, Peter; Hasselbach, Wilhelm

    1974-01-01

    Phalloidin, a toxic bicyclic peptide of rapid action from the toadstool, Amanita phalloides, gives rise to polymerization of G-actin to filamentous structures (Ph-actin) in a medium of low ionic strength. Ph-actin closely resembles the microfilaments found in liver membrane fractions (Ph-filaments) after in vivo or in vitro poisoning. Both phalloidin induced filaments are resistant to 0.6 M KI in contrast to F-actin, and become decorated by heavy meromyosin. After preincubation with cytochalasin B significantly fewer actin filaments are observed. Images PMID:4368830

  3. The actin-interacting protein AIP1 is essential for actin organization and plant development

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Voigt, B.; Menzel, D.; Hussey, P.J.

    2004-01-01

    Cell division, growth, and cytoplasmic organization require a dynamic actin cytoskeleton. The filamentous actin (F-actin) network is regulated by actin binding proteins that modulate actin dynamics. These actin binding proteins often have cooperative interactions [1 and 2]. In particular, actin inte

  4. WH2 domain: a small, versatile adapter for actin monomers.

    Science.gov (United States)

    Paunola, Eija; Mattila, Pieta K; Lappalainen, Pekka

    2002-02-20

    The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.

  5. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Khaitlina, Sofia Yu; Levitsky, Dmitrii I

    2010-09-01

    Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations. © 2010 The Authors Journal compilation © 2010 FEBS.

  6. Actinic cheilitis: A review

    Directory of Open Access Journals (Sweden)

    Elangovan Somasundaram

    2015-01-01

    Full Text Available Actinic cheilitis (AC is a chronic inflammatory disorder of the lips that is caused by prolonged exposure to sunlight in susceptible individuals. It affects the vermilion region of the lower lip almost exclusively. UV-B rays with a wavelength of 290-320 nm are held responsible for the sunlight-induced damage. The exact mechanism of the development of AC is unclear. It is considered to be potentially malignant.

  7. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    Science.gov (United States)

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection.

  8. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C......Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.4...

  9. Actin in Mung Bean Mitochondria and Implications for Its Function[W][OA

    Science.gov (United States)

    Lo, Yih-Shan; Cheng, Ning; Hsiao, Lin-June; Annamalai, Arunachalam; Jauh, Guang-Yuh; Wen, Tuan-Nan; Dai, Hwa; Chiang, Kwen-Sheng

    2011-01-01

    Here, a large fraction of plant mitochondrial actin was found to be resistant to protease and high-salt treatments, suggesting it was protected by mitochondrial membranes. A portion of this actin became sensitive to protease or high-salt treatment after removal of the mitochondrial outer membrane, indicating that some actin is located inside the mitochondrial outer membrane. The import of an actin–green fluorescent protein (GFP) fusion protein into the mitochondria in a transgenic plant, actin:GFP, was visualized in living cells and demonstrated by flow cytometry and immunoblot analyses. Polymerized actin was found in mitochondria of actin:GFP plants and in mung bean (Vigna radiata). Notably, actin associated with mitochondria purified from early-developing cotyledons during seed germination was sensitive to high-salt and protease treatments. With cotyledon ageing, mitochondrial actin became more resistant to both treatments. The progressive import of actin into cotyledon mitochondria appeared to occur in concert with the conversion of quiescent mitochondria into active forms during seed germination. The binding of actin to mitochondrial DNA (mtDNA) was demonstrated by liquid chromatography–tandem mass spectrometry analysis. Porin and ADP/ATP carrier proteins were also found in mtDNA-protein complexes. Treatment with an actin depolymerization reagent reduced the mitochondrial membrane potential and triggered the release of cytochrome C. The potential function of mitochondrial actin and a possible actin import pathway are discussed. PMID:21984697

  10. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot.

    Science.gov (United States)

    Chen, Te-San; Chen, Ting-Chien; Yeh, Kuei-Jyum C; Chao, How-Ran; Liaw, Ean-Tun; Hsieh, Chi-Ying; Chen, Kuan-Chung; Hsieh, Lien-Te; Yeh, Yi-Lung

    2010-07-15

    Environmental estrogenic chemicals interrupt endocrine systems and generate reproductive abnormalities in wildlife, especially natural and synthetic estrogenic steroid hormones such as 17beta-estradiol (E2), estrone (E1), estriol (E3), 17alpha-ethynylestradiol (EE2), and diethylstilbestrol (DES). Concentrated animal feedlot operations (CAFOs) are of particular concern since large amounts of naturally excreted estrogens are discharged into aquatic environments. This study investigated E2, E1, E3, EE2, and DES with high performance liquid chromatography/tandem mass (HPLC-MS/MS) analyses along Wulo Creek in southern Taiwan, near a concentrated livestock feedlot containing 1,030,000 broiler chickens, 934,000 laying hens, 85,000 pigs, and 1500 cattle. Sampling was performed from December 2008 to May 2009, in which 54 samples were collected. Experimental results indicate that concentrations of EE2 were lower than the limit of detection (LOD), and concentrations of DES were only detected twice. Concentrations ranged from 7.4 to 1267 ng/L for E1, from not detected (ND) to 313.6 ng/L for E2, and from ND to 210 ng/L for E3. E1 had the highest average mass fraction (72.2 + or - 3.6%), which was significantly higher than E3 (16.2 + or - 1.7%) and E2 (11.5 + or - 2.6%). Additionally, the mean E2 equivalent quotient (EEQ) ranged from 17.3 to 137.9 ng-E2/L. Despite having a markedly lower concentration than E1, E2 more significantly contributed (52.4 + or - 6.0%) EEQ than E1 (19.7 + or - 3.5%). Moreover, the concentrations of E2, E1, and E3 upstream were significantly higher than concentrations downstream, suggesting a high attenuation effect and fast degradation in the study water. Most concentrations in winter season were higher than those of spring season due to the low dilution effect and low microbial activity in the winter season. Based on the results of this study, we recommend further treatment of the wastewater discharge from the feedlot.

  11. Biodegradation dynamics of high catechol concentrations by Aspergillus awamori.

    Science.gov (United States)

    Stanchev, Veselin; Stoilova, Ivanka; Krastanov, Albert

    2008-06-15

    The biodegradation process of high catechol concentrations by Aspergillus awamori was investigated. The values of the kinetic constants for a model of specific growth rate at different initial conditions were determined. At 1.0 g/L catechol concentration, the biodegradation process proceeded in the conditions of substrate limitation. At higher catechol concentrations (2.0 and 3.0 g/L) a presence of substrate inhibition was established. The dynamics of the specific catechol degradation rate was studied and the values of catechol and biomass concentrations, maximizing the specific catechol degradation rate, were estimated analytically. The specified ratio catechol/biomass could serve as a starting base for determination of the initial conditions for a batch process, for specifying the moment of feeding for a fed-batch process, and for monitoring and control of a continuous process by the aim of time-optimal control.

  12. High shear treatment of concentrates and drying conditions influence the solubility of milk protein concentrate powders.

    Science.gov (United States)

    Augustin, Mary Ann; Sanguansri, Peerasak; Williams, Roderick; Andrews, Helen

    2012-11-01

    The solubility of milk protein concentrate (MPC) powders was influenced by the method used for preparing the concentrate, drying conditions, and the type of dryer used. Increasing total solids of the ultrafiltered concentrates (23% total solids, TS) by diafiltration to 25% TS or evaporation to 31% TS decreased the solubility of MPC powders (80-83% protein, w/w dry basis), with ultrafiltration followed by evaporation to higher total solids having the greater detrimental effect on solubility. High shear treatment (homogenisation at 350/100 bar, microfluidisation at 800 bar or ultrasonication at 24 kHz, 600 watts) of ultrafiltered and diafiltered milk protein concentrates prior to spray drying increased the nitrogen solubility of MPC powders (82% protein, w/w dry basis). Of the treatments applied, microfluidisation was the most effective for increasing nitrogen solubility of MPC powders after manufacture and during storage. Manufacture of MPC powders (91% protein, w/w dry basis) prepared on two different pilot-scale dryers (single stage or two stage) from milk protein concentrates (20% TS) resulted in powders with different nitrogen solubility and an altered response to the effects of microfluidisation. Microfluidisation (400, 800 and 1200 bar) of the concentrate prior to drying resulted in increased long term solubility of MPC powders that were prepared on a single stage dryer but not those produced on a two stage spray dryer. This work demonstrates that microfluidisation can be used as a physical intervention for improving MPC powder solubility. Interactions between the method of preparation and treatment of concentrate prior to drying, the drying conditions and dryer type all influence MPC solubility characteristics.

  13. A morphometric analysis of adrenocortical actin localized by immunoelectron microscopy: the effect of adrenocorticotropin.

    Science.gov (United States)

    Loesser, K E; Malamed, S

    1987-10-01

    The localization of actin and the effect of ACTH on its concentration was examined in freshly isolated rat adrenocortical cells. Lowicryl K4M-embedded cells were used for the immunoelectron localization of actin; gold was used as a label for immunoreactive sites. Actin was at least 4 times as concentrated at the cortical cytoplasm as in the lipid droplets and at least 5 times as concentrated in the microvilli as in the lipid droplets. ACTH stimulation approximately doubled the concentration of actin in the cortical cytoplasm and increased by 50% the concentration of actin in the microvilli. The microvillar contribution to the cell surface area was 40% higher in ACTH-stimulated cells than it was in unstimulated cells. These results provide quantitative evidence suggesting that actin and the microvilli participate in steroid secretion by the adrenocortical cell.

  14. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  15. Validation of a diagnostic algorithm for the discrimination of actinic keratosis from normal skin and squamous cell carcinoma by means of high-definition optical coherence tomography.

    Science.gov (United States)

    Marneffe, Alice; Suppa, Mariano; Miyamoto, Makiko; Del Marmol, Véronique; Boone, Marc

    2016-09-01

    Actinic keratoses (AKs) commonly arise on sun-damaged skin. Visible lesions are often associated with subclinical lesions on surrounding skin, giving rise to field cancerization. To avoid multiple biopsies to diagnose subclinical/early invasive lesions, there is an increasing interest in non-invasive diagnostic tools, such as high-definition optical coherence tomography (HD-OCT). We previously developed a HD-OCT-based diagnostic algorithm for the discrimination of AK from squamous cell carcinoma (SCC) and normal skin. The aim of this study was to test the applicability of HD-OCT for non-invasive discrimination of AK from SCC and normal skin using this algorithm. Three-dimensional (3D) HD-OCT images of histopathologically proven AKs and SCCs and images of normal skin were collected. All images were shown in a random sequence to three independent observers with different experience in HD-OCT, blinded to the clinical and histopathological data and with different experience with HD-OCT. Observers classified each image as AK, SCC or normal skin based on the diagnostic algorithm. A total of 106 (38 AKs, 16 SCCs and 52 normal skin sites) HD-OCT images from 71 patients were included. Sensitivity and specificity for the most experienced observer were 81.6% and 92.6% for AK diagnosis and 93.8% and 98.9% for SCC diagnosis. A moderate interobserver agreement was demonstrated. HD-OCT represents a promising technology for the non-invasive diagnosis of AKs. Thanks to its high potential in discriminating SCC from AK, HD-OCT could be used as a relevant tool for second-level examination, increasing diagnostic confidence and sparing patients unnecessary excisions.

  16. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  17. Optimization of Scatterer Concentration in High-Gain Scattering Media

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiu-Gao; ZHU He-Yuan; SUN Die-Chi; DU Ge-Guo; LI Fu-Ming

    2001-01-01

    We report the scatterer concentration-dependent behaviour of laser action in high-gain scattering media. Amodified model of a random laser is proposed to explain the experimental results in good agreement. We mayuse this modified model to design and optimize the random laser system. A further detailed model is needed toquantitatively analyse the far-field distribution of random laser action.

  18. [Toxic effects of high concentrations of ammonia on Euglena gracilis].

    Science.gov (United States)

    Liu, Yan; Shi, Xiao-Rong; Cui, Yi-Bin; Li, Mei

    2013-11-01

    Ammonia is among the common contaminants in aquatic environments. The present study aimed at evaluation of the toxicity of ammonia at high concentration by detecting its effects on the growth, pigment contents, antioxidant enzyme activities, and DNA damage (comet assay) of a unicellular microalga, Euglena gracilis. Ammonia restrained the growth of E. gracilis, while at higher concentrations, ammonia showed notable inhibition effect, the growth at 2 000 mg x L(-1) was restrained to 55.7% compared with that of the control; The contents of photosynthetic pigments and protein went up with increasing ammonia dosage and decreased when the ammonia concentration was above 1000 mg x L(-1); In addition, there was an obvious increase in SOD and POD activities, at higher concentration (2 000 mg x L(-1)), activities of SOD and POD increased by 30.7% and 49.4% compared with those of the control, indicating that ammonia could promote activities of antioxidant enzymes in E. gracilis; The degree of DNA damage observed in the comet assay increased with increasing ammonia concentration, which suggested that high dose of ammonia may have potential mutagenicity on E. gracilis.

  19. High-efficiency organic solar concentrators for photovoltaics.

    Science.gov (United States)

    Currie, Michael J; Mapel, Jonathan K; Heidel, Timothy D; Goffri, Shalom; Baldo, Marc A

    2008-07-11

    The cost of photovoltaic power can be reduced with organic solar concentrators. These are planar waveguides with a thin-film organic coating on the face and inorganic solar cells attached to the edges. Light is absorbed by the coating and reemitted into waveguide modes for collection by the solar cells. We report single- and tandem-waveguide organic solar concentrators with quantum efficiencies exceeding 50% and projected power conversion efficiencies as high as 6.8%. The exploitation of near-field energy transfer, solid-state solvation, and phosphorescence enables 10-fold increases in the power obtained from photovoltaic cells, without the need for solar tracking.

  20. Bioleaching of marmatite in high concentration of iron

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 吴伯增; 覃文庆; 蓝卓越

    2002-01-01

    Bioleaching of marmatite with a culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans in high concentration of iron was studied, the results show that the zinc leaching rate of the mixed culture is faster than that of the sole Thiobacillus ferrooxidans, the increasing iron concentration in leaching solution enhances the zinc leaching rate. The SEM analysis indicates that the chemical leaching residues is covered with porous solid layer of elemental sulfur, while elemental sulfur is not found in the bacterial leaching residues. The primary role of bacteria in bioleaching of sphalerite is to oxidize the chemical leaching products of ferrous ion and elemental sulfur, thus the indirect mechanism prevails in the bioleaching of marmatite.

  1. High concentration of calcium ions in Golgi apparatus

    Institute of Scientific and Technical Information of China (English)

    XUESHAOBAI; M.ROBERTNICOUD; 等

    1994-01-01

    The interphase NIH3T3 cells were vitally fluorescentstained with calcium indicator fluo-3 and Glogi probe C6-NBD-ceramide,and then the single cells were examined by laser scanning confocal microscopy(LSCFM) for subcellular distributions of Ca2+ and the location of Golgi apparatus.In these cells,the intracellular Ca2+ were found to be highly concentrated in the Golgi apparatus.The changes of distribution of cytosolic high Ca2+ region and the Golgi apparatus coincided with the cell cycle phase.In calcium free medium,when the plasma membrane of the cells which had been loaded with fluo-3/AM were permeated by digitonin,the fluorescence of the Golgi region decreased far less than that of the cytosol.Our results indicated that the Glogi lumen retained significantly high concentration of free calcium.

  2. Review of silicon solar cells for high concentrations

    Science.gov (United States)

    Schwartz, R. J.

    1982-06-01

    The factors that limit the performance of high concentration silicon solar cells are reviewed. The design of a conventional high concentration cell is discussed, together with the present state of the art. Unconventional cell designs that have been proposed to overcome the limitations of the conventional design are reviewed and compared. The current status of unconventional cells is reviewed. Among the unconventional cells discussed are the interdigitated back-contact cell, the double-sided cell, the polka dot cell, and the V-groove cell. It is noted that all the designs for unconventional cells require long diffusion lengths for high efficiency operation, even though the demands in this respect are less for those cells with the optical path longer than the diffusion path.

  3. Recent advances into vanadyl, vanadate and decavanadate interactions with actin.

    Science.gov (United States)

    Ramos, S; Moura, J J G; Aureliano, M

    2012-01-01

    Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can

  4. The excluded volume effect induced by poly(ethylene glycol) modulates the motility of actin filaments interacting with myosin.

    Science.gov (United States)

    Munakata, Shinsuke; Hatori, Kuniyuki

    2013-11-01

    To examine the motility of actomyosin complexes in the presence of high concentrations of polymers, we investigated the effect of poly(ethylene glycol) on the sliding velocities of actin filaments and regulated thin filaments on myosin molecules in the presence of ATP. Increased concentrations and relative molecular masses of poly(ethylene glycol) decreased the sliding velocities of actin and regulated thin filaments. The decreased ratio of velocity in regulated thin filaments at - log[Ca(2+) ] of 4 was higher than that of actin filaments. Furthermore, in the absence of Ca(2+) , regulated thin filaments were moderately motile in the presence of poly(ethylene glycol). The excluded volume change (∆V), defined as the change in water volume surrounding actomyosin during the interactions, was estimated by determining the relationship between osmotic pressure exerted by poly(ethylene glycol) and the decreased ratio of the velocities in the presence and absence of poly(ethylene glycol). The ∆V increased up to 3.7 × 10(5) Å(3) as the Mr range of poly(ethylene glycol) was increased up to 20,000. Moreover, the ∆V for regulated thin filaments was approximately two-fold higher than that of actin filaments. This finding suggests that differences in the conformation of filaments according to whether troponin-tropomyosin complexes lie on actin filaments alter the ∆V during interactions of actomyosin complexes and influence motility. © 2013 FEBS.

  5. Humoral immune response against contractile proteins (actin and myosin) during cardiovascular disease.

    Science.gov (United States)

    De Scheerder, I K; De Buyzere, M; Delanghe, J; Maas, A; Clement, D L; Wieme, R

    1991-08-01

    Sensitive and highly specific ELISA assays were developed to determine humoral immune response against actin and myosin in 122 patients suffering from various cardiovascular diseases: acute viral myocarditis (n = 10, MYO), acute myocardial infarction (n = 28, AMI), valve surgery (n = 35, VALVE), coronary bypass surgery (n = 35, CABG), and peripheral vascular surgery (n = 14, VASC). Anti-actin and anti-myosin antibodies were determined on admission and serially during a period of 90 days. Anti-actin and anti-myosin immune response (IgG, IgM) was expressed comparing absorbance of the patients' serum with a reference serum. In the different patient groups significantly (P less than 0.01) higher anti-actin and anti-myosin antibody concentrations were found on admission compared with age-matched control groups. During follow-up, all patient groups except the vascular surgery group showed a significant immune response against actin and myosin, with an immune response ratio (peak/admission) for AMA IgG and IgM respectively of 2.12 and 2.40 in the VALVE group, 1.30 and 1.99 in the CABG group, 1.42 and 1.48 in the AMI group and 1.66 and 1.25 in the MYO group; and for AAA IgG and IgM respectively of 1.57 and 3.00 in the VALVE group, 1.54 and 1.64 in the CABG group, 1.25 and 1.07 in the AMI group, and 1.42 and 1.42 in the MYO group. A significant correlation between pre-cardiac injury and peak post-cardiac injury anti-myosin and anti-actin autoantibody levels could be demonstrated suggesting that pre-injury sensitization to these antigens plays an important role in evoking post-cardiac injury immune response.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Decomposition of high concentration SF6 using an electron beam

    Science.gov (United States)

    Son, Youn-Suk; Lee, Sung-Joo; Choi, Chang Yong; Park, Jun-Hyeong; Kim, Tak-Hyun; Jung, In-Ha

    2016-07-01

    In this study, high concentration SF6 (2-10%) was decomposed using an electron beam irradiation. Various influential factors were investigated to improve the destruction and removal efficiency (DRE) of SF6. The initial concentrations of SF6, absorbed doses, SF6/H2 ratios and retention times were the main factors of concern. As a result, the DRE increased as the adsorbed dose and retention time increased. The DRE of SF6 also increased up to 20% approximately when H2 was added to the reaction mixture. On the other hand, the DRE of SF6 decreased as initial concentrations of SF6 increased. Finally, the main by-product formed from SF6 decomposition by the electron beam was HF.

  7. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes

    Directory of Open Access Journals (Sweden)

    Aharon eOren

    2013-11-01

    Full Text Available Extremely halophilic microorganisms that accumulate KCl for osmotic balance (the Halobacteriaceae, Salinibacter have a large excess of acidic amino acids in their proteins. This minireview explores the occurrence of acidic proteomes in halophiles of different physiology and phylogenetic affiliation. For fermentative bacteria of the order Halanaerobiales, known to accumulate KCl, an acidic proteome was predicted. However, this is not confirmed by genome analysis. The reported excess of acidic amino acids is due to a high content of Gln and Asn, which yield Glu and Asp upon acid hydrolysis. The closely related Halorhodospira halophila and Halorhodospira halochloris use different strategies to cope with high salt. The first has an acidic proteome and accumulates high KCl concentrations at high salt concentrations; the second does not accumulate KCl and lacks an acidic proteome. Acidic proteomes can be predicted from the genomes of some moderately halophilic aerobes that accumulate organic osmotic solutes (Halomonas elongata, Chromohalobacter salexigens and some marine bacteria. Based on the information on cultured species it is possible to understand the pI profiles predicted from metagenomic data from hypersaline environments.

  8. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    Science.gov (United States)

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  9. EFFECTS OF ESTETROL ON MIGRATION AND INVASION IN T47-D BREAST CANCER CELLS THROUGH THE ACTIN CYTOSKELETON

    Directory of Open Access Journals (Sweden)

    Maria Silvia eGiretti

    2014-05-01

    Full Text Available Estetrol (E4 is a natural human estrogen present at high concentrations during pregnancy. Due to its high oral bioavailability and long plasma half-life, E4 is particularly suitable for therapeutic applications. E4 acts as a selective estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system, while antagonizing the actions of estradiol in the breast. We tested the effects of E4 on its own or in the presence of 17β-estradiol (E2 on T47-D estrogen receptor (ER positive breast cancer cell migration and invasion of three-dimensional matrices. E4 administration to T47-D cells weakly stimulated migration and invasion. However, E4 decreased the extent of movement and invasion induced by E2. Breast cancer cell movement requires a remodeling of the actin cytoskeleton. During exposure to E4, a weak, concentration-dependent, redistribution of actin fibers towards the cell membrane was observed. However, when E4 was added to E2, a inhibition of actin remodeling induced by E2 was seen. Estrogens stimulate ER+ breast cancer cell movement through the ezrin-radixin-moesin (ERM family of actin regulatory proteins, inducing actin and cell membrane remodeling. E4 was a weak inducer of moesin phosphorylation on Thr558, which accounts for its functional activation. In co-treatment with E2, E4 blocked the activation of this actin controller in a concentration-related fashion. These effects were obtained through recruitment of ERα. In conclusion, E4 acted as a weak estrogen on breast cancer cell cytoskeleton remodeling and movement. However, when E2 was present, E4 counteracted the stimulatory actions of E2. This contributes to the emerging hypothesis that E4 may be a naturally occurring estrogen receptor modulator in the breast.

  10. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    Energy Technology Data Exchange (ETDEWEB)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-07-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  11. Particle sedimentation monitoring in high-concentration slurries

    Science.gov (United States)

    Nagasawa, Yoshihiro; Kato, Zenji; Tanaka, Satoshi

    2016-11-01

    In this study, the sedimentation states of particles in high-concentration slurries were elucidated by monitoring their internal states. We prepared transparent high-concentration silica slurries by adjusting the refractive index of the aqueous glycerol liquid in which the particles were dispersed to match that of the silica particles. In addition, a fluorescent dye was dissolved in the liquid. Then, we directly observed the individual and flocculated particles in the slurries during sedimentation by confocal laser scanning fluorescent microscopy. The particles were found to sediment very slowly while exhibiting fluctuating motion. The particle sedimentation rate in the high-concentration slurry with the aqueous glycerol solution (η =0.068 Pa. s ) and a particle volume fraction on the order of 0.3 was determined to be 1.58 ± 0.66 μ m. min-1 on the basis of the obtained image sequences for 24.9 h. In-situ observation provides a large amount of information about the sedimentation behavior of particles in condensed matter.

  12. Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations

    Science.gov (United States)

    Liu, Chao-Xuan; Choi, Jin-Woo

    2012-01-01

    The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were dispersed uniformly through the polymer matrix, which presented a major improvement over prior techniques. The dispersion procedure was optimized via extended experimentation, which is discussed in detail. PMID:28348312

  13. Feasibility Study on High Concentrating Photovoltaic Power Towers

    Science.gov (United States)

    Frohberger, Dirk; Jaus, Joachim; Wiesenfarth, Maike; Schramek, Philipp; Bett, Andreas W.

    2010-10-01

    This paper presents an analysis on the concept of high concentrating PV power towers. A feasibility study is conducted in order to evaluate the future potential of this technology. Objective of the analysis is to provide an improved basis for establishing research and development priorities for the PV power tower concept. Performance assessments and cost calculations for a 1 MW prototype PV tower power are derived. Based on the assumption of a highly homogeneously illuminated receiver, levelized costs of electricity of 0.29 €/kWh have been calculated for a prototype PV tower power.

  14. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.

    Science.gov (United States)

    Olshina, Maya A; Wong, Wilson; Baum, Jake

    2012-05-01

    Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.

  15. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations.

    Science.gov (United States)

    Yu, Qing; Wang, Hong-Zhu; Li, Yan; Shao, Jian-Chun; Liang, Xiao-Min; Jeppesen, Erik; Wang, Hai-Jun

    2015-10-15

    Eutrophication of lakes leading to loss of submersed macrophytes and higher turbidity is a worldwide phenomenon, attributed to excessive loading of phosphorus (P). However, recently, the role of nitrogen (N) for macrophyte recession has received increasing attention. Due to the close relationship between N and P loading, disentanglement of the specific effects of these two nutrients is often difficult, and some controversy still exists as to the effects of N. We studied the effects of N on submersed macrophytes represented by Vallisneria natans (Lour.) Hara in pots positioned at three depths (0.4 m, 0.8 m, and 1.2 m to form a gradient of underwater light conditions) in 10 large ponds having moderate concentrations of P (TP 0.03 ± 0.04 mg L(-1)) and five targeted concentrations of total nitrogen (TN) (0.5, 2, 10, 20, and 100 mg L(-1)), there were two ponds for each treatment. To study the potential shading effects of other primary producers, we also measured the biomass of phytoplankton (ChlaPhyt) and periphyton (ChlaPeri) expressed as chlorophyll a. We found that leaf length, leaf mass, and root length of macrophytes declined with increasing concentrations of TN and ammonium, while shoot number and root mass did not. All the measured growth indices of macrophytes declined significantly with ChlaPhyt, while none were significantly related to ChlaPeri. Neither ChlaPhyt nor ChlaPeri were, however, significantly negatively related to the various N concentrations. Our results indicate that shading by phytoplankton unrelated to the variation in N loading and perhaps toxic stress exerted by high nitrogen were responsible for the decline in macrophyte growth.

  16. Ring closure in actin polymers

    Science.gov (United States)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  17. Wet oxidation of real coke wastewater containing high thiocyanate concentration.

    Science.gov (United States)

    Oulego, Paula; Collado, Sergio; Garrido, Laura; Laca, Adriana; Rendueles, Manuel; Díaz, Mario

    2014-01-01

    Coke wastewaters, in particular those with high thiocyanate concentrations, represent an important environmental problem because of their very low biodegradability. In this work, the treatment by wet oxidation of real coke wastewaters containing concentrations of thiocyanate above 17 mM has been studied in a 1-L semi-batch reactor at temperatures between 453 and 493 K, with total oxygen pressures in the range of 2.0-8.0 MPa. A positive effect of the matrix of real coke wastewater was observed, resulting in faster thiocyanate degradation than was obtained with synthetic wastewaters. Besides, the effect of oxygen concentration and temperature on thiocyanate wet oxidation was more noticeable in real effluents than in synthetic wastewaters containing only thiocyanate. It was also observed that the degree of mineralization of the matrix organic compounds was higher when the initial thiocyanate concentration increased. Taking into account the experimental data, kinetic models were obtained, and a mechanism implying free radicals was proposed for thiocyanate oxidation in the matrix considered. In all cases, sulphate, carbonates and ammonium were identified as the main reaction products of thiocyanate wet oxidation.

  18. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    critical for the pulse behavior of the actin network, including the autocatalytic assembly of F-actin, the negative feedback of F-actin on Las17, and the autocatalytic self-assembly of Las17. These feedback mechanisms are also studied by a simple ordinary differential equation (ODE) model. Finally, we develop a partial differential equation (PDE) model that is more realistic than the ODE model and more computationally efficient than the stochastic model. We use the PDE model to explore the rich spectrum of behaviors of the actin network beyond pulses, such as oscillations and permanent patches. The predictions of the PDE model are of high interest for suggesting future experiments that can test the model.

  19. Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens.

    Science.gov (United States)

    Yamashita, Hiroko; Sato, Yoshikatsu; Kanegae, Takeshi; Kagawa, Takatoshi; Wada, Masamitsu; Kadota, Akeo

    2011-02-01

    Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.

  20. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds.

    Science.gov (United States)

    Yanagisawa, Mitsunori; Kawai, Shigeyuki; Murata, Kousaku

    2013-01-01

    Bioethanol has attracted attention as an alternative to petroleum-derived fuel. Seaweeds have been proposed as some of the most promising raw materials for bioethanol production because they have several advantages over lignocellulosic biomass. However, because seaweeds contain low contents of glucans, i.e., polysaccharides composed of glucose, the conversion of only the glucans from seaweed is not sufficient to produce high concentrations of ethanol. Therefore, it is also necessary to produce ethanol from other specific carbohydrate components of seaweeds, including sulfated polysaccharides, mannitol, alginate, agar and carrageenan. This review summarizes the current state of research on the production of ethanol from seaweed carbohydrates for which the conversion of carbohydrates to sugars is a key step and makes comparisons with the production of ethanol from lignocellulosic biomass. This review provides valuable information necessary for the production of high concentrations of ethanol from seaweeds.

  1. Viscoelastic properties of actin-coated membranes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  2. Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium discoideum and characterization of its interaction with actin.

    Science.gov (United States)

    Gottwald, U; Brokamp, R; Karakesisoglou, I; Schleicher, M; Noegel, A A

    1996-02-01

    In search for novel actin binding proteins in Dictyostelium discoideum we have isolated a cDNA clone coding for a protein of approximately 50 kDa that is highly homologous to the class of adenylyl cyclase-associated proteins (CAP). In Saccharomyces cerevisiae the amino-terminal part of CAP is involved in the regulation of the adenylyl cyclase whereas the loss of the carboxyl-terminal domain results in morphological and nutritional defects. To study the interaction of Dictyostelium CAP with actin, the complete protein and its amino-terminal and carboxyl-terminal domains were expressed in Escherichia coli and used in actin binding assays. CAP sequestered actin in a Ca2+ independent way. This activity was localized to the carboxyl-terminal domain. CAP and its carboxyl-terminal domain led to a fluorescence enhancement of pyrene-labeled G-actin up to 50% indicating a direct interaction, whereas the amino-terminal domain did not enhance. In polymerization as well as in viscometric assays the ability of the carboxyl-terminal domain to sequester actin and to prevent F-actin formation was approximately two times higher than that of intact CAP. The sequestering activity of full length CAP could be inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), whereas the activity of the carboxyl-terminal domain alone was not influenced, suggesting that the amino-terminal half of the protein is required for the PIP2 modulation of the CAP function. In profilin-minus cells the CAP concentration is increased by approximately 73%, indicating that CAP may compensate some profilin functions in vivo. In migrating D. discoideum cells CAP was enriched at anterior and posterior plasma membrane regions. Only a weak staining of the cytoplasm was observed. In chemotactically stimulated cells the protein was very prominent in leading fronts. The data suggest an involvement of D. discoideum CAP in microfilament reorganization near the plasma membrane in a PIP2-regulated manner.

  3. The actin family protein ARP6 contributes to the structure and the function of the nucleolus.

    Science.gov (United States)

    Kitamura, Hiroshi; Matsumori, Haruka; Kalendova, Alzbeta; Hozak, Pavel; Goldberg, Ilya G; Nakao, Mitsuyoshi; Saitoh, Noriko; Harata, Masahiko

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis.

  4. Soluble expression and characterization of a GFP-fused pea actin isoform(PEAc1)

    Institute of Scientific and Technical Information of China (English)

    Ai Xiao LIU; Shao Bin ZHANG; Xiao Jing XU; Dong Tao REN; Guo Qin LIU

    2004-01-01

    A pea actin isoform PEAc1 with green fluorescent protein (GFP) fusion to its C-terminus and His-tag to its Nterminus, was expressed in prokaryotic cells in soluble form, and highly purified with Ni-Chelating SepharoseTM Fast Flow column. The purified fusion protein (PEAc1-GFP) efficiently inhibited DNase I activities before polymerization,and activated the myosin Mg-ATPase activities after polymerization. The PEAc 1-GFP also polymerized into green fluorescent filamentous structures with a critical concentration of 0.75 μM. These filamentous structures were labeled by TRITC-phalloidin, a specific agent for staining actin microfilaments, and identified as having 9 nm diameters by negative staining. These results indicated that PEAc1 preserved the essential characteristics of actin even with His-tag and GFP fusion, suggesting a promising potential to use GFP fusion protein in obtainning soluble plant actin isoform to analyze its physical and biochemical properties in vitro. The PEAc 1-GFP was also expressed in tobacco BY2 cells,which offers a new pathway for further studying its distribution and function in vivo.

  5. Modulation of cargo release from dense core granules by size and actin network.

    Science.gov (United States)

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection.

  6. Actin binding proteins and spermiogenesis

    Science.gov (United States)

    Mruk, Dolores D

    2011-01-01

    Drebrin E, an actin-binding protein lacking intrinsic activity in the regulation of actin dynamics (e.g., polymerization, capping, nucleation, branching, cross-linking, bundling and severing), is known to recruit actin regulatory proteins to a specific cellular site. Herein, we critically evaluate recent findings in the field which illustrate that drebrin E works together with two other actin-binding proteins, namely Arp3 (actin-related protein 3, a component of the Arp2/3 complex that simultaneously controls actin nucleation for polymerization and branching of actin filaments) and Eps8 (epidermal growth factor receptor pathway substrate 8 that controls capping of the barbed ends of actin filaments, as well as actin filament bundling) to regulate the homeostasis of F-actin filament bundles at the ectoplasmic specialization (ES), a testis-specific atypical adherens junction (AJ) in the seminiferous epithelium. This is mediated by the strict temporal and spatial expression of these three actin-binding proteins at the apical and basal ES at the Sertoli cell-spermatid (step 8–19) and Sertoli-Sertoli cell interface, respectively, during the seminiferous epithelial cycle of spermatogenesis. In this Commentary, we put forth a possible model by which drebrin E may be acting as a platform upon which proteins (e.g., Arp3) that are needed to alter the conformation of actin filament bundles at the ES can be recruited to the site, thus facilitating changes in cell shape and cell position in the epithelium during spermiogenesis and spermiation. In short, drebrin E may be acting as a “logistic” distribution center to manage different regulatory proteins at the apical ES, thereby regulating the dynamics of actin filament bundles and modulating the plasticity of the apical ES. This would allow adhesion to be altered continuously throughout the epithelial cycle to accommodate spermatid movement in the seminiferous epithelium during spermiogenesis and spermiation. We also

  7. Chronic Diarrhea Associated with High Teriflunomide Blood Concentration

    OpenAIRE

    Duquette, André; Frenette, Anne Julie; Doré, Maxime

    2016-01-01

    Objective To report the case of a patient treated with leflunomide that presented with chronic diarrhea associated with high teriflunomide blood concentration. Case Summary An 84-year-old woman taking leflunomide 20 mg once daily for the past 2 years to treat rheumatoid arthritis (RA) was investigated for severe chronic diarrhea that had been worsening for the past 5 months. The patient’s general condition progressively deteriorated and included electrolyte imbalances and a transient loss of ...

  8. Effect of high soil copper concentration on mycorrhizal grapevines

    Science.gov (United States)

    Nogales, Amaia; Santos, Erika S.; Viegas, Wanda; Aran, Diego; Pereira, Sofia H.; Vidigal, Patricia; Lopes, Carlos M.; Abreu, M. Manuela

    2017-04-01

    Repeated application of Copper (Cu) based fungicides in vineyards since the end of the 19th century has led to a significant increase in the concentration of this chemical element in many viticultural soils. Although Cu is an essential micronutrient for most organisms, it can be toxic for the development and survival of plants and soil (micro)organisms at high concentrations and eventually lead to yield loses in viticulture, as it negatively affects key physiological and biogeochemical processes. However, some soil microorganisms, including arbuscular mycorrhizal fungi (AMF), have developed adaptive mechanisms for persistence in environments with supra-optimal levels of essential elements or in the presence of harmful ones, as well as for increasing plant tolerance to such abiotic stress conditions. The objective of this work was to evaluate the effect of a high total soil concentration of Cu on microbial soil activity as well as on the development of mycorrhizal and non-mycorrhizal grapevines. A microcosm assay was set up under greenhouse and controlled conditions. Touriga Nacional grapevine variety plants grafted onto 1103P rootstocks were inoculated either with the AMF Rhizophagus irregularis or Funneliformis mosseae, or were left as non-inoculated controls. After three months, they were transplanted to containers filled with 4 kg of a sandy soil (pH: 7.0; electrical conductivity: 0.08 mS/cm; [organic C]: 5.6 g/kg; [N-NO3]: 1.1 mg/kg; [N-NH4]: 2.5 mg/kg; [extractable K]: 45.1 mg/kg; [extractable P]: 52.3 mg/kg), collected near to a vineyard in Pegões (Portugal). Two treatments were carried out: with and without Cu application. The soil with high Cu concentration was prepared by adding 300 mg Cu/kg (in the form of an aqueous solution of CuSO4·5H2O) followed by an incubation during four weeks in plastic bags at room temperature in dark. Physico-chemical soil characteristics (pH, electrical conductivity and nutrients concentration in available fraction), soil

  9. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  10. Effect of temperature on the mechanism of actin polymerization.

    Science.gov (United States)

    Zimmerle, C T; Frieden, C

    1986-10-21

    The rate of the Mg2+-induced polymerization of rabbit skeletal muscle G-actin has been measured as as function of temperature at pH 8 by using various concentrations of Mg2+, Ca2+, and G-actin. A polymerization mechanism similar to that proposed at this pH [Frieden, C. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6513-6517] was found to fit the data from 10 to 35 degrees C. From the kinetic data, no evidence for actin filament fragmentation was found at any temperature. Dimer formation is the most temperature-sensitive step, with the ratio of forward and reverse rate constants changing 4 orders of magnitude from 10 to 35 degrees C. Over this temperature change, all other ratios of forward and reverse rate constants change 7-fold or less, and the critical concentration remains nearly constant. The reversible Mg2+-induced isomerization of G-actin monomer occurs to a greater extent with increasing temperature, measured either by using N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled actin or by simulation of the full-time course of the polymerization reaction. This is partially due to Mg2+ binding becoming tighter, and Ca2+ binding becoming weaker, with increasing temperature. Elongation rates from the filament-pointed end, determined by using actin nucleated by plasma gelsolin, show a temperature dependence slightly larger than that expected for a diffusion-limited reaction.

  11. Actin network architecture and elasticity in lamellipodia of melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Frank [Medical Data Services/Biostatistics, Boehringer Ingelheim Pharma GmbH and Co KG, D-88397 Biberach, Baden-Wuerttemberg (Germany); Ananthakrishnan, Revathi [Laboratory of Cell and Computational Biology, Section of Molecular and Cellular Biology, University of California at Davis, Davis, CA 95616 (United States); Eckel, Stefanie [Institute of Stochastics, Ulm University, D-89069 Ulm (Germany); Schmidt, Hendrik [France Telecom R and D RESA/NET/NSO, F-92131 Issy les Moulineaux, Cedex 9, France (France); Kaes, Josef [Division of Soft Matter Physics, Department of Physics, University of Leipzig, D-04103 Leipzig (Germany); Svitkina, Tatyana [Department of Biology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Schmidt, Volker [Institute of Stochastics, Ulm University, D-89069 Ulm (Germany); Beil, Michael [Department of Internal Medicine I, University Hospital, D-89070 Ulm (Germany)

    2007-11-15

    Cell migration is an essential element in the immune response on the one hand and in cancer metastasis on the other hand. The architecture of the actin network in lamellipodia determines the elasticity of the leading edge and contributes to the regulation of migration. We have implemented a new method for the analysis of actin network morphology in the lamellipodia of B16F1 mouse melanoma cells. This method is based on fitting multi-layer geometrical models to electron microscopy images of lamellipodial actin networks. The chosen model and F-actin concentrations are thereby deterministic parameters. Using this approach, we identified distinct structural features of actin networks in lamellipodia. The mesh size which defines the elasticity of the lamellipodium was determined as 34 and 78 nm for a two-layer network at a total actin concentration of 9.6 mg ml{sup -1}. These data lead to estimates of the low frequency elastic shear moduli which differ by more than a magnitude between the two layers. These findings indicate an anisotropic shear modulus of the lamellipodium with the stiffer layer being the dominant structure against deformations in the lamellipodial plane and the softer layer contributing significantly at lower indentations perpendicular to the lamellipodial plane. This combination creates a material that is optimal for pushing forward as well as squeezing through narrow spaces.

  12. High manganese concentrations in rocks at Gale crater, Mars

    Science.gov (United States)

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  13. Shock initiation studies on high concentration hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Stephen A [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Gibson, L. Lee [Los Alamos National Laboratory; Bartram, Brian D. [Los Alamos National Laboratory

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  14. Shock initiation studies on high concentration hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Stephen A [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Gibson, L. Lee [Los Alamos National Laboratory; Bartram, Brian D. [Los Alamos National Laboratory

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  15. Viruses that ride on the coat-tails of actin nucleation.

    Science.gov (United States)

    Newsome, Timothy P; Marzook, N Bishara

    2015-10-01

    Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport.

  16. Microrheology and micromechanics of actin-coated membranes

    Science.gov (United States)

    Bourdieu, Laurent

    2002-03-01

    To study the interaction between cytoskeletal filaments and the plasma membrane, we designed composite membranes obtained by self-assembly of actin filaments on the outer leaflet of giant unilamellar fluid vesicles. Their rich dynamics is studied by micromanipulation with optical tweezers and by single particle tracking experiments. We first show that microrheology study can be carried out on such an individual microscopic object by measuring the thermally excited position fluctuations of a probed bead bound biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin filaments network first induces a finite 2D shear modulus of the order of 1 microN/m. Moreover, these membranes exhibit a clear viscoelastic behavior at high frequency: above a few tens of Hz, both the shear and the bending moduli exhibit the same frequency dependence, a power law of exponent 0.75. These results are consistent in the framework of our model with previous measurements on actin solutions. We show moreover that these complexes exhibit typical mechanical features of a solid shell. For example, a buckling instability is observed when a localized force of the order of 0.5 picoNewton is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability. This instability is a striking example of the coupling between in-plane stretch and shear and out-of-plane bending, which takes place for curves shells when it becomes more favorable energetically to concentrate the in-plane stress due to the bending within a narrow ring, centered on the force application point.

  17. Actin purification from a gel of rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  18. Disease causing mutations of troponin alter regulated actin state distributions.

    Science.gov (United States)

    Chalovich, Joseph M

    2012-12-01

    Striated muscle contraction is regulated primarily through the action of tropomyosin and troponin that are bound to actin. Activation requires Ca(2+) binding to troponin and/or binding of high affinity myosin complexes to actin. Mutations within components of the regulatory complex may lead to familial cardiomyopathies and myopathies. In several cases examined, either physiological or pathological changes in troponin alter the distribution among states of actin-tropomyosin-troponin that differ in their abilities to stimulate myosin ATPase activity. These observations open possibilities for managing disorders of the troponin complex. Furthermore, analyses of mutant forms of troponin give insights into the regulation of striated muscle contraction.

  19. Actin cytoskeleton: putting a CAP on actin polymerization.

    Science.gov (United States)

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  20. A unique profilin-actin interface is important for malaria parasite motility.

    Directory of Open Access Journals (Sweden)

    Catherine A Moreau

    2017-05-01

    Full Text Available Profilin is an actin monomer binding protein that provides ATP-actin for incorporation into actin filaments. In contrast to higher eukaryotic cells with their large filamentous actin structures, apicomplexan parasites typically contain only short and highly dynamic microfilaments. In apicomplexans, profilin appears to be the main monomer-sequestering protein. Compared to classical profilins, apicomplexan profilins contain an additional arm-like β-hairpin motif, which we show here to be critically involved in actin binding. Through comparative analysis using two profilin mutants, we reveal this motif to be implicated in gliding motility of Plasmodium berghei sporozoites, the rapidly migrating forms of a rodent malaria parasite transmitted by mosquitoes. Force measurements on migrating sporozoites and molecular dynamics simulations indicate that the interaction between actin and profilin fine-tunes gliding motility. Our data suggest that evolutionary pressure to achieve efficient high-speed gliding has resulted in a unique profilin-actin interface in these parasites.

  1. Source identification of high glyme concentrations in the Oder River.

    Science.gov (United States)

    Stepien, D K; Püttmann, W

    2014-05-01

    The objective of the following study was to identify the source of high concentrations of glycol diethers (diglyme, triglyme, and tetraglyme) in the Oder River. Altogether four sampling campaigns were conducted and over 50 surface samples collected. During the first two samplings of the Oder River in the Oderbruch region (km 626-690), glymes were detected at concentrations reaching 0.065 μg L(-1) (diglyme), 0.54 μg L(-1) (triglyme) and 1.7 μg L(-1) (tetraglyme). The subsequent sampling of the Oder River, from the area close to the source to the Poland-Germany border (about 500 km) helped to identify the possible area of the dominating glyme entry into the river between km 310 and km 331. During that sampling, the maximum concentration of triglyme was 0.46 μg L(-1) and tetraglyme 2.2 μg L(-1); diglyme was not detected. The final sampling focused on the previously identified area of glyme entry, as well as on tributaries of the Oder River. Samples from Czarna Woda stream and Kaczawa River contained even higher concentrations of diglyme, triglyme, and tetraglyme, reaching 5.2 μg L(-1), 13 μg L(-1) and 81 μg L(-1), respectively. Finally, three water samples were analyzed from a wastewater treatment plant receiving influents from a Copper Smelter and Refinery; diglyme, triglyme, and tetraglyme were present at a maximum concentration of 1700 μg L(-1), 13,000 μg L(-1), and 190,000 μg L(-1), respectively. Further research helped to identify the source of glymes in the wastewater. The gas desulfurization process Solinox uses a mixture of glymes (Genosorb(®)1900) as a physical absorption medium to remove sulfur dioxide from off-gases from the power plant. The wastewater generated from the process and from the maintenance of the equipment is initially directed to the wastewater treatment plant where it undergoes mechanical and chemical treatment processes before being discharged to the tributaries of the Oder River. Although monoglyme was

  2. Visualization of endothelial actin cytoskeleton in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Alessia Fraccaroli

    Full Text Available Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs, orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs, enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.

  3. Nodularin Exposure Induces SOD1 Phosphorylation and Disrupts SOD1 Co-localization with Actin Filaments

    Directory of Open Access Journals (Sweden)

    Kari E. Fladmark

    2012-12-01

    Full Text Available Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS, which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1, without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized.

  4. Scale dependence of mechanics and dynamics of active gels with increasing motor concentration

    CERN Document Server

    Sonn-Segev, Adar; Roichman, Yael

    2016-01-01

    The cytoskeleton protein actin assembles into large bundles when supporting stresses in the cell, but grows into a fine branched network to induce cell motion. Such self-organization processes are studied in artificial networks of cytoskeleton proteins with thick actin bundles and large motor protein aggregates to enable optical observation. The effect of motor aggregate size on the cytoskeleton mechanical properties is studied here in networks comprised of much smaller motor assemblies. Large motor protein clusters are known to increase the stiffness of actin based networks by introducing tension and additional cross-linking cites. We find that these effects are universal to actin gels regardless of actin bundle thickness and motor aggregate size and are relevant, therefore, to a wide range of cytoskeleton based cellular processes. In contrast, motor induced active fluctuations depend significantly on motor assembly size, featuring unique non-Gaussian statistics at high concentrations of small assemblies.

  5. [Photodynamic therapy for actinic cheilitis].

    Science.gov (United States)

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  6. Actin-based dynamics during spermatogenesis and its significance

    Institute of Scientific and Technical Information of China (English)

    XIAO Xiang; YANG Wan-xi

    2007-01-01

    Actin can be found in all kinds ofeukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and,at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.

  7. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    Science.gov (United States)

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  8. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    Science.gov (United States)

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  9. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.

    2016-05-13

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  10. Rheological properties of highly concentrated protein-stabilized emulsions.

    Science.gov (United States)

    Dimitrova, Tatiana D; Leal-Calderon, Fernando

    2004-05-20

    We prepared concentrated quasi monodisperse hexadecane-in-water emulsions stabilized by various proteins and investigated their rheological properties. Some protein-stabilized emulsions possess remarkably high elasticity and at the same time they are considerably fragile--they exhibit coalescence at yield strain and practically do not flow. The elastic storage modulus G' and the loss modulus G" of the emulsions were determined for different oil volume fractions above the random close packing. Surprisingly, the dimensionless elastic moduli G'/(sigma/a), sigma being the interfacial tension, and a being the mean drop radius, obtained for emulsions stabilized by different proteins do not collapse on a single master curve. They are almost always substantially higher than the corresponding values obtained for equivalent Sodium Dodecyl Sulfate (SDS)-stabilized emulsions. The unusually high elasticity cannot be attributed to a specificity of the continuous phase, because the osmotic equation of state of our emulsions is found identical to the one obtained for samples stabilized by classical surfactants. In parallel, we mimicked the thin films that separate the droplets in the concentrated emulsion and found that the protein adsorption layers contain a substantial number of sticky surface aggregates. These severely obstruct local rearrangements of individual drops in respect to their neighbors which leads to coalescence at yield strain. Furthermore, we found that G'/(sigma/a) is correlated (for a given oil volume fraction) to the dilatational elastic modulus, of the protein layer adsorbed on the droplets. The intrinsic elasticity of the protein layers, together with the blocked local rearrangements are considered as the main factors determining the unusual bulk elasticity of the studied emulsions.

  11. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?

    Science.gov (United States)

    Chislock, Michael F; Sarnelle, Orlando; Jernigan, Lauren M; Wilson, Alan E

    2013-04-15

    Toxin-producing cyanobacteria have frequently been hypothesized to limit the ability of herbivorous zooplankton (such as Daphnia) to control phytoplankton biomass by inhibiting feeding, and in extreme cases, causing zooplankton mortality. Using limnocorral experiments in hyper-eutrophic ponds located in Alabama and Michigan (U.S.A.), we tested the hypothesis that high levels of cyanobacteria and microcystin, a class of hepatotoxins produced by several cyanobacterial genera, prevent Daphnia from strongly reducing phytoplankton abundance. At the start of the first experiment (Michigan), phytoplankton communities were dominated by toxic Microcystis and Anabaena (∼96% of total phytoplankton biomass), and concentrations of microcystin were ∼3 μg L⁻¹. Two weeks after adding Daphnia pulicaria from a nearby eutrophic lake, microcystin levels increased to ∼6.5 μg L⁻¹, yet Daphnia populations increased exponentially (r = 0.24 day⁻¹). By the third week, Daphnia had suppressed phytoplankton biomass by ∼74% relative to the no Daphnia controls and maintained reduced phytoplankton biomass until the conclusion of the five-week experiment. In the second experiment (Alabama), microcystin concentrations were greater than 100 μg L⁻¹, yet a mixture of three D. pulicaria clones from eutrophic lakes in southern MI increased and again reduced phytoplankton biomass, in this case by over 80%. The ability of Daphnia to increase in abundance and suppress phytoplankton biomass, despite high initial levels of cyanobacteria and microcystin, indicates that the latter does not prevent strong control of phytoplankton biomass by Daphnia genotypes that are adapted to environments with abundant cyanobacteria and associated cyanotoxins.

  12. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Directory of Open Access Journals (Sweden)

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  13. Progresses in studies of nuclear actin

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiaojuan; ZENG Xianlu; SONG Zhaoxia; HAO Shui

    2004-01-01

    Actin is a protein abundant in cells. Recently, it has been proved to be universally existent in the nuclei of many cell types. Actin and actin-binding proteins, as well as actin-related proteins, are necessary for the mediation of the conformation and function of nuclear actin, including the transformation of actin between unpolymerized and polymerized, chroinatin remodeling, regulation of gene expression and RNA processing as well as RNA transportation. In this paper, we summarized the progresses in the research of nu clear actin.

  14. Magnetic manipulation of actin orientation, polymerization, and gliding on myosin using superparamagnetic iron oxide particles.

    Science.gov (United States)

    Chen, Yun; Guzik, Stephanie; Sumner, James P; Moreland, John; Koretsky, Alan P

    2011-02-11

    The actin cytoskeleton controls cell shape, motility, as well as intracellular molecular trafficking. The ability to remotely manipulate actin is therefore highly desirable as a tool to probe and manipulate biological processes at the molecular level. We demonstrate actin manipulation by labeling actin filaments with superparamagnetic iron oxide particles (IOPs) and applying a uniform magnetic field to affect actin orientation, polymerization and gliding on myosin. We show for the first time magnetic manipulation of magnetizable actin filaments at the molecular level while gliding on a bed of myosin molecules and during polymerization. A model for the magnetic alignment and guiding mechanism is proposed based on the torque from the induced molecular anisotropy due to interactions between neighboring IOPs distributed along magnetically labeled actin molecules.

  15. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, Ralf, E-mail: ralf.leutz@leopil.com [Leutz Optics and Illumination UG (haftungsbeschränkt), Marburg (Germany)

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  16. Design philosophy and construction of a high concentration compound parabolic concentrator

    CSIR Research Space (South Africa)

    Roos, TH

    2010-09-01

    Full Text Available A compound parabolic concentrator (CPC) with a concentration ratio of 16:1 is under development at CSIR for volumetric receiver and solar fuels development. The ideal shape has been approximated by 6 and 12 facets in the longitudinal...

  17. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    Science.gov (United States)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  18. High-performance deployable structures for the support of high-concentration ratio solar array modules

    Science.gov (United States)

    Mobrem, M.

    1985-01-01

    A study conducted on high-performance deployable structures for the support of high-concentration ratio solar array modules is discussed. Serious consideration is being given to the use of high-concentration ratio solar array modules or applications such as space stations. These concentrator solar array designs offer the potential of reduced cost, reduced electrical complexity, higher power per unit area, and improved survivability. Arrays of concentrators, such as the miniaturized Cassegrainian concentrator modules, present a serious challenge to the structural design because their mass per unit area (5.7 kg/square meters) is higher than that of flexible solar array blankets, and the requirement for accurate orientation towards the Sun (plus or minus 0.5 degree) requires structures with improved accuracy potentials. In addition, use on a space station requires relatively high structural natural frequencies to avoid deleterious interactions with control systems and other large structural components. The objective here is to identify and evaluate conceptual designs of structures suitable for deploying and accurately supporting high-concentration ratio solar array modules.

  19. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Wang, Hong X; Konopka, James B

    2013-11-26

    Invasive growth of the fungal pathogen Candida albicans into tissues promotes disseminated infections in humans. The plasma membrane is essential for pathogenesis because this important barrier mediates morphogenesis and invasive growth, as well as secretion of virulence factors, cell wall synthesis, nutrient import, and other processes. Previous studies showed that the Sur7 tetraspan protein that localizes to MCC (membrane compartment occupied by Can1)/eisosome subdomains of the plasma membrane regulates a broad range of key functions, including cell wall synthesis, morphogenesis, and resistance to copper. Therefore, a distinct tetraspan protein found in MCC/eisosomes, Nce102, was investigated. Nce102 belongs to the MARVEL domain protein family, which is implicated in regulating membrane structure and function. Deletion of NCE102 did not cause the broad defects seen in sur7Δ cells. Instead, the nce102Δ mutant displayed a unique phenotype in that it was defective in forming hyphae and invading low concentrations of agar but could invade well in higher agar concentrations. This phenotype was likely due to a defect in actin organization that was observed by phalloidin staining. In support of this, the invasive growth defect of a bni1Δ mutant that mislocalizes actin due to lack of the Bni1 formin was also reversed at high agar concentrations. This suggests that a denser matrix provides a signal that compensates for the actin defects. The nce102Δ mutant displayed decreased virulence and formed abnormal hyphae in mice. These studies identify novel ways that Nce102 and the physical environment surrounding C. albicans regulate morphogenesis and pathogenesis. The plasma membrane promotes virulence of the human fungal pathogen Candida albicans by acting as a protective barrier around the cell and mediating dynamic activities, such as morphogenesis, cell wall synthesis, secretion of virulence factors, and nutrient uptake. To better understand how the plasma membrane

  20. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    Energy Technology Data Exchange (ETDEWEB)

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  1. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    Science.gov (United States)

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  2. Management of actinic cheilitis using ingenol mebutate gel: A report of seven cases.

    Science.gov (United States)

    Flórez, Ángeles; Batalla, Ana; de la Torre, Carlos

    2017-03-01

    Actinic cheilitis (AC) can precede the development of squamous cell carcinoma of the lip, a location with high risk of invasiveness and metastasis. We communicate the good results that we obtained when treating seven patients suffering from AC with ingenol mebutate (IM) 0,015% concentration gel on three consecutive days. Three patients achieved complete clearance and four significant improvement. IM is a topical field treatment approved for actinic keratosis. To our knowledge, reported experience in the management of AC with IM is very limited. Local skin responses grade 3 were the main adverse event observed and they resolved in all patients without specific therapy within 1 to 2 weeks. IM is characterized by its rapid clinical effect, its favorable safety profile and its dosing period of only 3 days, shorter than with other field therapies. All these facts make it an attractive new therapy for AC, with need for further study.

  3. Effect of cytochalasins on F-actin and morphology of Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Mills, J W; Falsig Pedersen, S; Walmod, P S

    2000-01-01

    that, in intact cells, different cytochalasins can have varying effects on cell morphology and F-actin content and organization. To examine this problem in more detail, we analyzed the effects of cytochalasins on the cell morphology of and F-actin content and organization in Ehrlich ascites tumor (EAT......) cells. After a 3-min exposure to 0.5 microM cytochalasin D, B, or E, F-actin content was equally reduced in all cases and this correlated with a reduction in the amount of cortical F-actin associated with the EAT cell membrane. However, only with CE was cell morphology markedly altered......, with the appearance of numerous blebs. At 10 microM, blebbing was present in all conditions and the organization of cortical F-actin was disrupted. F-actin content, however, was not further reduced by this higher concentration and in CD it was identical to control levels. Exposure of EAT cells to similar...

  4. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Youliang Shen

    2014-01-01

    Full Text Available Carbon nanofibers modified graphite fibers (CNFs/GF composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  5. An Automatic High Efficient Method for Dish Concentrator Alignment

    OpenAIRE

    Yong Wang; Song Li; Jinshan Xu; Yijiang Wang; Xu Cheng; Changgui Gu; Shengyong Chen; Bin Wan

    2014-01-01

    Alignment of dish concentrator is a key factor to the performance of solar energy system. We propose a new method for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our...

  6. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    Science.gov (United States)

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  7. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  8. Nucleus-associated actin in Amoeba proteus.

    Science.gov (United States)

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  9. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  10. An Automatic High Efficient Method for Dish Concentrator Alignment

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2014-01-01

    for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our method.

  11. The Role of Actin-Capping Protein and Src signalling in tissue growth and apoptosis during Drosophila wing development

    OpenAIRE

    Jezowska, Barbara Zofia

    2012-01-01

    Dissertation presented to obtain the Ph.D degree in Developmental Biology The actin cytoskeleton controls numerous cellular processes, including cell morphology and polarity, endocytosis, intracellular trafficking, contractility and cell division. Actin filament growth, stability and disassembly are controlled by a plethora of actin-binding proteins. Among them Capping Protein is a highly conserved αβ heterodimer, which binds the barbed ends of actin filaments, inhibiting addit...

  12. Effects of actin-binding proteins on the thermal stability of monomeric actin.

    Science.gov (United States)

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Kremneva, Elena V; Lappalainen, Pekka; Levitsky, Dmitrii I

    2013-01-08

    Differential scanning calorimetry (DSC) was applied to investigate the thermal unfolding of rabbit skeletal muscle G-actin in its complexes with actin-binding proteins, cofilin, twinfilin, and profilin. The results show that the effects of these proteins on the thermal stability of G-actin depend on the nucleotide, ATP or ADP, bound in the nucleotide-binding cleft between actin subdomains 2 and 4. Interestingly, cofilin binding stabilizes both ATP-G-actin and ADP-G-actin, whereas twinfilin increases the thermal stability of the ADP-G-actin but not that of the ATP-G-actin. By contrast, profilin strongly decreases the thermal stability of the ATP-G-actin but has no appreciable effect on the ADP-G-actin. Comparison of these DSC results with literature data reveals a relationship between the effects of actin-binding proteins on the thermal unfolding of G-actin, stabilization or destabilization, and their effects on the rate of nucleotide exchange in the nucleotide-binding cleft, decrease or increase. These results suggest that the thermal stability of G-actin depends, at least partially, on the conformation of the nucleotide-binding cleft: the actin molecule is more stable when the cleft is closed, while an opening of the cleft leads to significant destabilization of G-actin. Thus, DSC studies of the thermal unfolding of G-actin can provide new valuable information about the conformational changes induced by actin-binding proteins in the actin molecule.

  13. Comparative genome analysis of cortactin and HSI : the significance of the F-actin binding repeat domain

    NARCIS (Netherlands)

    van Rossum, AGSH; Schuuring-Scholtes, E; Seggelen, VV; Kluin, PM; Schuuring, E

    2005-01-01

    Background: In human carcinomas, overexpression of cortactin correlates with poor prognosis. Cortactin is an F-actin-binding protein involved in cytoskeletal rearrangements and cell migration by promoting actin-related protein (Arp)2/3 mediated actin polymerization. It shares a high amino acid seque

  14. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    Science.gov (United States)

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  15. Starch source in high concentrate rations does not affect rumen pH, histamine and lipopolysaccharide concentrations in dairy cows

    NARCIS (Netherlands)

    Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakom, C.; Everts, H.; Hendriks, W.H.

    2012-01-01

    The replacement of ground corn by cassava meal on rumen pH, lipopolysaccharide (LPS) and histamine concentrations under typical Thai feeding conditions (high concentrate diets and rice straw as the sole source of roughage) was investigated. Four rumen-fistulated crossbred Holstein, non-pregnant, dry

  16. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    Science.gov (United States)

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  17. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  18. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    Energy Technology Data Exchange (ETDEWEB)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  19. LPWCO method for the treatment of high concentrated organic wastewater

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on wet air oxidation (WAO) and Fenton reagent, thispaper raises a new low pressure wet catalytic oxidation(LPWCO)which requires low pressure for the treatment of highlyconcentrated and refractory organic wastewater. Compared withgeneral wet air oxidation, the pressure of the treatment(0.1-0.6MPa) is only one of tens to percentage of latter(3.5-10MPa). Inaddition, its temperature is no more than 180℃.Compared withFenton reagent, while H2O2/COD(weight ratio) less than 1.2, theremoval of COD in the treatment is over twenty percents more thanFenton's even the value of COD is more than 14000mg/L. In thispaper, we study the effect factor of COD removal and the mechanismof this treatment. The existence of synergistic effect (catalytic oxidation and carbonization) for COD removal in H2SO4-Fenton reagent system under the condition of applied pressure and heating (0.1-0.6MPa, 104-165℃) was verified. The best condition of this disposal are as follows:H2O2/COD(weight ratio)=0.2-1.0, Fe2+ 0.6×10-3 mol, H2SO4 0.5mol, COD>1×104mg/L, the operating pressure is 0.1-0.6MPa and temperature is 104-165℃. This method suit to dispose the high-concentrated refractory wastewater, especially to the wastewater containing H2SO produced in the manufacture of pesticide, dyestuff and petrochemical works.

  20. In vivo imaging and characterization of actin microridges.

    Directory of Open Access Journals (Sweden)

    Pui-ying Lam

    Full Text Available Actin microridges form labyrinth like patterns on superficial epithelial cells across animal species. This highly organized assembly has been implicated in mucus retention and in the mechanical structure of mucosal surfaces, however the mechanisms that regulate actin microridges remain largely unknown. Here we characterize the composition and dynamics of actin microridges on the surface of zebrafish larvae using live imaging. Microridges contain phospho-tyrosine, cortactin and VASP, but not focal adhesion kinase. Time-lapse imaging reveals dynamic changes in the length and branching of microridges in intact animals. Transient perturbation of the microridge pattern occurs before cell division with rapid re-assembly during and after cytokinesis. Microridge assembly is maintained with constitutive activation of Rho or inhibition of myosin II activity. However, expression of dominant negative RhoA or Rac alters microridge organization, with an increase in distance between microridges. Latrunculin A treatment and photoconversion experiments suggest that the F-actin filaments are actively treadmilling in microridges. Accordingly, inhibition of Arp2/3 or PI3K signaling impairs microridge structure and length. Taken together, actin microridges in zebrafish represent a tractable in vivo model to probe pattern formation and dissect Arp2/3-mediated actin dynamics in vivo.

  1. High Oxygen Concentrations Adversely Affect the Performance of Pulmonary Surfactant.

    Science.gov (United States)

    Smallwood, Craig D; Boloori-Zadeh, Parnian; Silva, Maricris R; Gouldstone, Andrew

    2017-08-01

    Although effective in the neonatal population, exogenous pulmonary surfactant has not demonstrated a benefit in pediatric and adult subjects with hypoxic lung injury despite a sound physiologic rationale. Importantly, neonatal surfactant replacement therapy is administered in conjunction with low fractional FIO2 while pediatric/adult therapy is administered with high FIO2 . We suspected a connection between FIO2 and surfactant performance. Therefore, we sought to assess a possible mechanism by which the activity of pulmonary surfactant is adversely affected by direct oxygen exposure in in vitro experiments. The mechanical performance of pulmonary surfactant was evaluated using 2 methods. First, Langmuir-Wilhelmy balance was utilized to study the reduction in surface area (δA) of surfactant to achieve a low bound value of surface tension after repeated compression and expansion cycles. Second, dynamic light scattering was utilized to measure the size of pulmonary surfactant particles in aqueous suspension. For both experiments, comparisons were made between surfactant exposed to 21% and 100% oxygen. The δA of surfactant was 21.1 ± 2.0% and 35.8 ± 2.0% during exposure to 21% and 100% oxygen, respectively (P = .02). Furthermore, dynamic light-scattering experiments revealed a micelle diameter of 336.0 ± 12.5 μm and 280.2 ± 11.0 μm in 21% and 100% oxygen, respectively (P < .001), corresponding to a ∼16% decrease in micelle diameter following exposure to 100% oxygen. The characteristics of pulmonary surfactant were adversely affected by short-term exposure to oxygen. Specifically, surface tension studies revealed that short-term exposure of surfactant film to high concentrations of oxygen expedited the frangibility of pulmonary surfactant, as shown with the δA. This suggests that reductions in pulmonary compliance and associated adverse effects could begin to take effect in a very short period of time. If these findings can be demonstrated in vivo, a role for

  2. ASP-56, a new actin sequestering protein from pig platelets with homology to CAP, an adenylate cyclase-associated protein from yeast.

    Science.gov (United States)

    Gieselmann, R; Mann, K

    1992-02-24

    A new 56 kDa actin-binding protein (ASP-56) was isolated from pig platelet lysate. In falling ball viscosimetry it caused a reduction in viscosity that could be attributed to a decrease in the concentration of polymeric actin. Fluorescence measurements with NBD-labelled actin showed reduction of polymeric actin, too. These results could be explained by sequestering of actin in a non-polymerizable 1:1 ASP-56/actin complex. Sequencing of about 20 tryptic peptides of ASP-56 and comparison with known sequences revealed about 60% homology to the adenylate cyclase-associated protein (CAP) from yeast.

  3. High-Efficiency Organic Solar Concentrators for Photovoltaics

    National Research Council Canada - National Science Library

    Michael J. Currie; Jonathan K. Mapel; Timothy D. Heidel; Shalom Goffri; Marc A. Baldo

    2008-01-01

    The cost of photovoltaic power can be reduced with organic solar concentrators. These are planar waveguides with a thin-film organic coating on the face and inorganic solar cells attached to the edges...

  4. Cytoskeletal actin gates a Cl- channel in neocortical astrocytes.

    Science.gov (United States)

    Lascola, C D; Nelson, D J; Kraig, R P

    1998-03-01

    Increases in astroglial Cl- conductance accompany changes in cell morphology and disassembly of cytoskeletal actin, but Cl- channels underlying these conductance increases have not been described. We characterize an outwardly rectifying Cl- channel in rodent neocortical cultured astrocytes and describe how cell shape and cytoskeletal actin modulate channel gating. In inside-out patch-clamp recordings from cultured astrocytes, outwardly rectifying Cl- channels either were spontaneously active or inducible in quiescent patches by depolarizing voltage steps. Average single-channel conductance was 36 pS between -60 and -80 mV and was 75 pS between 60 and 80 mV in symmetrical (150 mM NaCl) solutions. The permeability ratio (PNa/PCl) was 0.14 at lower ionic strength but increased at higher salt concentrations. Both ATP and 4, 4-diisothiocyanostilbene-2,2'-disulfonic acid produced a flicker block, whereas Zn2+ produced complete inhibition of channel activity. The frequency of observing both spontaneous and inducible Cl- channel activity was markedly higher in stellate than in flat, polygonally shaped astrocytes. In addition, cytoskeletal actin modulated channel open-state probability (PO) and conductance at negative membrane potentials, controlling the degree of outward rectification. Direct application of phalloidin, which stabilizes actin, preserved low PO and promoted lower conductance levels at negative potentials. Lower PO also was induced by direct application of polymerized actin. The actions of phalloidin and actin were reversed by coapplication of gelsolin and cytochalasin D, respectively. These results provide the first report of an outwardly rectifying Cl- channel in neocortical astrocytes and demonstrate how changes in cell shape and cytoskeletal actin may control Cl- conductance in these cells.

  5. Cytoskeletal Actin Gates a Cl− Channel in Neocortical Astrocytes

    Science.gov (United States)

    Lascola, Christopher D.; Nelson, Deborah J.; Kraig, Richard P.

    2009-01-01

    Increases in astroglial Cl− conductance accompany changes in cell morphology and disassembly of cytoskeletal actin, but Cl− channels underlying these conductance increases have not been described. We characterize an outwardly rectifying Cl− channel in rodent neocortical cultured astrocytes and describe how cell shape and cytoskeletal actin modulate channel gating. In inside-out patch-clamp recordings from cultured astrocytes, outwardly rectifying Cl− channels either were spontaneously active or inducible in quiescent patches by depolarizing voltage steps. Average single-channel conductance was 36 pS between −60 and −80 mV and was 75 pS between 60 and 80 mV in symmetrical (150 mm NaCl) solutions. The permeability ratio (PNa/PCl) was 0.14 at lower ionic strength but increased at higher salt concentrations. Both ATP and 4,4-diisothiocyanostilbene-2,2′-disulfonic acid produced a flicker block, whereas Zn2+ produced complete inhibition of channel activity. The frequency of observing both spontaneous and inducible Cl− channel activity was markedly higher in stellate than in flat, polygonally shaped astrocytes. In addition, cytoskeletal actin modulated channel open-state probability (PO) and conductance at negative membrane potentials, controlling the degree of outward rectification. Direct application of phalloidin, which stabilizes actin, preserved low PO and promoted lower conductance levels at negative potentials. Lower PO also was induced by direct application of polymerized actin. The actions of phalloidin and actin were reversed by coapplication of gelsolin and cytochalasin D, respectively. These results provide the first report of an outwardly rectifying Cl− channel in neocortical astrocytes and demonstrate how changes in cell shape and cytoskeletal actin may control Cl− conductance in these cells. PMID:9464993

  6. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  7. Stochastic dynamics of actin filaments in guard cells regulating chloroplast localization during stomatal movement.

    Science.gov (United States)

    Wang, Xiu-Ling; Gao, Xin-Qi; Wang, Xue-Chen

    2011-08-01

    Actin filaments and chloroplasts in guard cells play roles in stomatal function. However, detailed actin dynamics vary, and the roles that they play in chloroplast localization during stomatal movement remain to be determined. We examined the dynamics of actin filaments and chloroplast localization in transgenic tobacco expressing green fluorescent protein (GFP)-mouse talin in guard cells by time-lapse imaging. Actin filaments showed sliding, bundling and branching dynamics in moving guard cells. During stomatal movement, long filaments can be severed into small fragments, which can form longer filaments by end-joining activities. With chloroplast movement, actin filaments near chloroplasts showed severing and elongation activity in guard cells during stomatal movement. Cytochalasin B treatment abolished elongation, bundling and branching activities of actin filaments in guard cells, and these changes of actin filaments, and as a result, more chloroplasts were localized at the centre of guard cells. However, chloroplast turning to avoid high light, and sliding of actin fragments near the chloroplast, was unaffected following cytochalasin B treatment in guard cells. We suggest that the sliding dynamics of actin may play roles in chloroplast turning in guard cells. Our results indicate that the stochastic dynamics of actin filaments in guard cells regulate chloroplast localization during stomatal movement.

  8. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  9. Highly Sensitive Cadmium Concentration Sensor Using Long Period Grating

    Directory of Open Access Journals (Sweden)

    A. S. Lalasangi

    2011-08-01

    Full Text Available In this paper we have proposed a simple and effective Long Period Grating chemical sensor for detecting the traces of Cadmium (Cd++ in drinking water at ppm level. Long Period gratings (LPG were fabricated by point-by-point technique with CO2 laser. We have characterized the LPG concentration sensor sensitivity for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm by injecting white Light source and observed transmitted spectra using Optical Spectrum Analyzer (OSA. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm when surrounding medium gradually changed from water to 0.04 ppm of cadmium concentrations. A comparative study has been done using sophisticated spectroscopic atomic absorption spectrometer (AAS and Inductively Coupled Plasma (ICP instruments. The spectral sensitivity enhancement was done by modifying grating surface with gold nanoparticles.

  10. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Directory of Open Access Journals (Sweden)

    Su Deng

    2015-08-01

    Full Text Available The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia, which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  11. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Science.gov (United States)

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  12. Methods and devices for high-throughput dielectrophoretic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A. (San Francisco, CA); Cummings, Eric B. (Livermore, CA); Fiechtner, Gregory J. (Germantown, MD); Fintschenko, Yolanda (Livermore, CA); McGraw, Gregory J. (Ann Arbor, MI); Salmi, Allen (Escalon, CA)

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  13. Methods and devices for high-throughput dielectrophoretic concentration

    Science.gov (United States)

    Simmons, Blake A.; Cummings, Eric B.; Fiechtner, Gregory J.; Fintschenko, Yolanda; McGraw, Gregory J.; Salmi, Allen

    2010-02-23

    Disclosed herein are methods and devices for assaying and concentrating analytes in a fluid sample using dielectrophoresis. As disclosed, the methods and devices utilize substrates having a plurality of pores through which analytes can be selectively prevented from passing, or inhibited, on application of an appropriate electric field waveform. The pores of the substrate produce nonuniform electric field having local extrema located near the pores. These nonuniform fields drive dielectrophoresis, which produces the inhibition. Arrangements of electrodes and porous substrates support continuous, bulk, multi-dimensional, and staged selective concentration.

  14. Directional Transport of a Bead Bound to Lamellipodial Surface Is Driven by Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Daisuke Nobezawa

    2017-01-01

    Full Text Available The force driving the retrograde flow of actin cytoskeleton is important in the cellular activities involving cell movement (e.g., growth cone motility in axon guidance, wound healing, or cancer metastasis. However, relative importance of the forces generated by actin polymerization and myosin II in this process remains elusive. We have investigated the retrograde movement of the poly-D-lysine-coated bead attached with the optical trap to the edge of lamellipodium of Swiss 3T3 fibroblasts. The velocity of the attached bead drastically decreased by submicromolar concentration of cytochalasin D, latrunculin A, or jasplakinolide, indicating the involvement of actin turnover. On the other hand, the velocity decreased only slightly in the presence of 50 μM (−-blebbistatin and Y-27632. Comparative fluorescence microscopy of the distribution of actin filaments and that of myosin II revealed that the inhibition of actin turnover by cytochalasin D, latrunculin A, or jasplakinolide greatly diminished the actin filament network. On the other hand, inhibition of myosin II activity by (−-blebbistatin or Y-27632 little affected the actin network but diminished stress fibers. Based on these results, we conclude that the actin polymerization/depolymerization plays the major role in the retrograde movement, while the myosin II activity is involved in the maintenance of the dynamic turnover of actin in lamellipodium.

  15. Antenna Mechanism of Length Control of Actin Cables.

    Directory of Open Access Journals (Sweden)

    Lishibanya Mohapatra

    2015-06-01

    Full Text Available Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.

  16. High Quantum Efficiency and High Concentration Erbium-Doped Silica Glasses Fabricated by Sintering Nanoporous Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method was used to prepare erbium-doped high silica (SiO2%>96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6×103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

  17. Actinic cheilitis in dental practice.

    Science.gov (United States)

    Savage, N W; McKay, C; Faulkner, C

    2010-06-01

    Actinic cheilitis is a potentially premalignant condition involving predominantly the vermilion of the lower lip. The aim of the current paper was to review the clinical presentation of actinic cheilitis and demonstrate the development of management plans using a series of cases. These are designed to provide immediate treatment where required but also to address the medium and long-term requirements of the patient. The authors suggest that the clinical examination of lips and the assessment of actinic cheilitis and other lip pathology become a regular part of the routine soft tissue examination undertaken as a part of the periodic examination of dental patients. Early recognition of actinic cheilitis can allow the development of strategies for individual patients that prevent progression. These are based on past sun exposure, future lifestyle changes and the daily use of emollient sunscreens, broad-brimmed hats and avoidance of sun exposure during the middle of the day. This is a service that is not undertaken as a matter of routine in general medical practice as patients are not seen with the regularity of dental patients and generally not under the ideal examination conditions available in the dental surgery.

  18. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    Science.gov (United States)

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  19. Regulation of retinoschisin secretion in Weri-Rb1 cells by the F-actin and microtubule cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Eiko Kitamura

    Full Text Available Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS, an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process.

  20. Cloning and Characterization of an Abalone (Haliotis discus hannai) Actin Gene

    Institute of Scientific and Technical Information of China (English)

    MA Hongming; XU Wei; MAI Kangsen; LIUFU Zhiguo; CHEN Hong

    2004-01-01

    An actin encoding gene was cloned by using RT-PCR, 3' RACE and 5' RACE from abalone Haliotis discus hannai. The full length of the gene is 1532 base pairs, which contains a long 3' untranslated region of 307 base pairs and 79 base pairs of 5' untranslated sequence. The open reading frame encodes 376 amino acid residues. Sequence comparison with those of human and other mollusks showed high conservation among species at amino acid level. The identities was 96%, 97% and 96% respectively compared with Aplysia californica, Biomphalaria glabrata and Homo sapience β-actin. It is also indicated that this actin is more similar to the human cytoplasmic actin(β-actin)than to human muscle actin.

  1. Xenopus oocyte wound healing as a model system for analysis of microtubule-actin interactions.

    Science.gov (United States)

    Zhang, Tong; Mandato, Craig A

    2007-01-01

    Microtubule-actin interactions are fundamental to many cellular processes such as cytokinesis and cellular locomotion. Investigating the mechanism of microtubule-actin interactions is the key to understand the cellular morphogenesis and related pathological processes. The abundance and highly dynamic nature of microtubules and F-actin raise a serious challenge when trying to distinguish between the real and fortuitous interactions within a cell. Xenopus oocyte wound model represents an ideal system to study microtubule-actin interactions as well as microtubule-dependent control of the actin polymerization. Here, we describe a series of cytoskeleton specific treatments in Xenopus oocyte wound healing experiments and use confocal fluorescence microscopy to analyze fixed oocytes to examine microtubule-actin interactions.

  2. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    Science.gov (United States)

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.

  3. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    Science.gov (United States)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  4. High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations.

    LENUS (Irish Health Repository)

    McNally, P

    2012-02-01

    BACKGROUND: Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated. METHODS: This was a cross-sectional case-control study. BAL fluid was collected from individuals with CF (n=31) and healthy controls (n=7). Interleukin-8 (IL-8), pepsin, neutrophil numbers and neutrophil elastase activity levels were measured in all samples. Clinical, microbiological and lung function data were collected from medical notes. RESULTS: The pepsin concentration in BAL fluid was higher in the CF group than in controls (mean (SD) 24.4 (27.4) ng\\/ml vs 4.3 (4.0) ng\\/ml, p=0.03). Those with CF who had raised pepsin concentrations had higher levels of IL-8 in the BAL fluid than those with a concentration comparable to controls (3.7 (2.7) ng\\/ml vs 1.4 (0.9) ng\\/ml, p=0.004). Within the CF group there was a moderate positive correlation between pepsin concentration and IL-8 in BAL fluid (r=0.48, p=0.04). There was no association between BAL fluid pepsin concentrations and age, sex, body mass index z score, forced expiratory volume in 1 s or Pseudomonas aeruginosa colonisation status. CONCLUSIONS: Many children with CF have increased levels of pepsin in the BAL fluid compared with normal controls. Increased pepsin levels were associated with higher IL-8 concentrations in BAL fluid. These data suggest that aspiration of gastric contents occurs in a subset of patients with CF and is associated with more pronounced lung inflammation.

  5. Effect of Flumorph on F-Actin Dynamics in the Potato Late Blight Pathogen Phytophthora infestans.

    Science.gov (United States)

    Hua, Chenlei; Kots, Kiki; Ketelaar, Tijs; Govers, Francine; Meijer, Harold J G

    2015-04-01

    Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph.

  6. The availability of filament ends modulates actin stochastic dynamics in live plant cells

    Science.gov (United States)

    Li, Jiejie; Staiger, Benjamin H.; Henty-Ridilla, Jessica L.; Abu-Abied, Mohamad; Sadot, Einat; Blanchoin, Laurent; Staiger, Christopher J.

    2014-01-01

    A network of individual filaments that undergoes incessant remodeling through a process known as stochastic dynamics comprises the cortical actin cytoskeleton in plant epidermal cells. From images at high spatial and temporal resolution, it has been inferred that the regulation of filament barbed ends plays a central role in choreographing actin organization and turnover. How this occurs at a molecular level, whether different populations of ends exist in the array, and how individual filament behavior correlates with the overall architecture of the array are unknown. Here we develop an experimental system to modulate the levels of heterodimeric capping protein (CP) and examine the consequences for actin dynamics, architecture, and cell expansion. Significantly, we find that all phenotypes are the opposite for CP-overexpression (OX) cells compared with a previously characterized cp-knockdown line. Specifically, CP OX lines have fewer filament–filament annealing events, as well as reduced filament lengths and lifetimes. Further, cp-knockdown and OX lines demonstrate the existence of a subpopulation of filament ends sensitive to CP concentration. Finally, CP levels correlate with the biological process of axial cell expansion; for example, epidermal cells from hypocotyls with reduced CP are longer than wild-type cells, whereas CP OX lines have shorter cells. On the basis of these and other genetic studies in this model system, we hypothesize that filament length and lifetime positively correlate with the extent of axial cell expansion in dark-grown hypocotyls. PMID:24523291

  7. Daylight photodynamic therapy for actinic keratosis

    DEFF Research Database (Denmark)

    Wiegell, Stine; Wulf, H C; Szeimies, R-M

    2011-01-01

    Photodynamic therapy (PDT) is an attractive therapy for non-melanoma skin cancers including actinic keratoses (AKs) because it allows treatment of large areas; it has a high response rate and results in an excellent cosmesis. However, conventional PDT for AKs is associated with inconveniently long...... clinic visits and discomfort during therapy. In this article, we critically review daylight-mediated PDT, which is a simpler and more tolerable treatment procedure for PDT. We review the effective light dose, efficacy and safety, the need for prior application of sunscreen, and potential clinical scope...

  8. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    OpenAIRE

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of gi...

  9. High pressure inertial focusing for separating and concentrating bacteria at high throughput

    Science.gov (United States)

    Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.

    2017-08-01

    Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.

  10. New PSA high concentration solar furnace SF40

    Science.gov (United States)

    Rodriguez, Jose; Cañadas, Inmaculada; Zarza, Eduardo

    2016-05-01

    A new solar furnace has been designed and built at Plataforma Solar de Almería. In this work, its main components such as heliostat, concentrator, attenuator and test table, and the method used to align them are described. Other equipment like the auxiliary systems necessary for the solar operation, vacuum chamber and gas system are outlined too. Finally, the thermal characteristics of the focus were measured during a test campaign, where different planes along the optical axis were scanned with a radiometer, and the peak flux was obtained and is presented in the last section of this report.

  11. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  12. Lygus hesperus (Heteroptera: Miridae) tolerates high concentrations of dietary nickel

    Institute of Scientific and Technical Information of China (English)

    ROBERT S. BOYD

    2007-01-01

    Nickel hyperaccumulator plants contain unusually elevated levels of Ni (> 1 000 μg Ni/g). Some insect herbivores, including Lygus hesperus (Western tarnished plant bug), have been observed feeding on the California Ni hyperaccumulator Streptanthus polygaloides. This bug may be able to utilize S. polygaloides as a host either through its feeding behavior or by physiological tolerance of Ni. This experiment determined the Ni tolerance of L. hesperus by offering insects artificial diet amended with 0,0.4, 1, 2, 4.5,10, 20 and 40 mmol Ni/L and recording survival. Survival varied due to Ni concentration, with diets containing 10 mmol Ni/L and greater resulting in significantly lower survival compared to the control (0 mmol Ni/L) treatment. Insects tolerated diet containing as much as 4.5 mmol Ni/L, a relatively elevated Ni concentration. I conclude that L. hesperus can feed on S. polygaloides because it is Ni-tolerant, probably due to physiological mechanisms that provide it with resistance to plant chemical defenses including elemental defenses such as hyperaccumulated Ni.

  13. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Directory of Open Access Journals (Sweden)

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  14. High Energy Density Lithium Air Batteries for Oxygen Concentrators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For NASA's Exploration Medical Capabilities mission, extremely high specific energy power sources, with specific energy over 2000 Wh/kg, are urgently sought after....

  15. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    Science.gov (United States)

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  16. Celecoxib concentration predicts decrease in prostaglandin E2 concentrations in nipple aspirate fluid from high risk women

    Directory of Open Access Journals (Sweden)

    Flynn John T

    2008-02-01

    Full Text Available Abstract Background Epidemiologic studies suggest that long term low dose celecoxib use significantly lowers breast cancer risk. We previously demonstrated that 400 mg celecoxib taken twice daily for 2 weeks lowered circulating plasma and breast nipple aspirate fluid (NAF prostaglandin (PGE2 concentrations in post- but not premenopausal high risk women. We hypothesized that circulating concentrations of celecoxib influenced PGE2 response, and that plasma levels of the drug are influenced by menopausal status. To address these hypotheses, the aims of the study were to determine: 1 if circulating plasma concentrations of celecoxib correlated with the change in plasma or NAF PGE2 concentrations from baseline to end of treatment, and 2 whether menopausal status influenced circulating levels of celecoxib. Methods Matched NAF and plasma were collected from 46 high risk women who were administered celecoxib twice daily for two weeks, 20 subjects receiving 200 mg and 26 subjects 400 mg of the agent. NAF and plasma samples were collected before and 2 weeks after taking celecoxib. Results In women taking 400 mg bid celecoxib, plasma concentrations of the agent correlated inversely with the change in NAF PGE2 levels from pre- to posttreatment. Nonsignificant trends toward higher celecoxib levels were observed in post- compared to premenopausal women. There was a significant decrease in NAF but not plasma PGE2 concentrations in postmenopausal women who took 400 mg celecoxib (p = 0.03. Conclusion In high risk women taking 400 mg celecoxib twice daily, plasma concentrations of celecoxib correlated with downregulation of PGE2 production by breast tissue. Strategies synergistic with celecoxib to downregulate PGE2 are of interest, in order to minimize the celecoxib dose required to have an effect.

  17. Automated detection of actinic keratoses in clinical photographs.

    Directory of Open Access Journals (Sweden)

    Samuel C Hames

    Full Text Available BACKGROUND: Clinical diagnosis of actinic keratosis is known to have intra- and inter-observer variability, and there is currently no non-invasive and objective measure to diagnose these lesions. OBJECTIVE: The aim of this pilot study was to determine if automatically detecting and circumscribing actinic keratoses in clinical photographs is feasible. METHODS: Photographs of the face and dorsal forearms were acquired in 20 volunteers from two groups: the first with at least on actinic keratosis present on the face and each arm, the second with no actinic keratoses. The photographs were automatically analysed using colour space transforms and morphological features to detect erythema. The automated output was compared with a senior consultant dermatologist's assessment of the photographs, including the intra-observer variability. Performance was assessed by the correlation between total lesions detected by automated method and dermatologist, and whether the individual lesions detected were in the same location as the dermatologist identified lesions. Additionally, the ability to limit false positives was assessed by automatic assessment of the photographs from the no actinic keratosis group in comparison to the high actinic keratosis group. RESULTS: The correlation between the automatic and dermatologist counts was 0.62 on the face and 0.51 on the arms, compared to the dermatologist's intra-observer variation of 0.83 and 0.93 for the same. Sensitivity of automatic detection was 39.5% on the face, 53.1% on the arms. Positive predictive values were 13.9% on the face and 39.8% on the arms. Significantly more lesions (p<0.0001 were detected in the high actinic keratosis group compared to the no actinic keratosis group. CONCLUSIONS: The proposed method was inferior to assessment by the dermatologist in terms of sensitivity and positive predictive value. However, this pilot study used only a single simple feature and was still able to achieve

  18. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly.

    Science.gov (United States)

    Roth-Johnson, Elizabeth A; Vizcarra, Christina L; Bois, Justin S; Quinlan, Margot E

    2014-02-14

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.

  19. Interaction between Microtubules and the Drosophila Formin Cappuccino and Its Effect on Actin Assembly*

    Science.gov (United States)

    Roth-Johnson, Elizabeth A.; Vizcarra, Christina L.; Bois, Justin S.; Quinlan, Margot E.

    2014-01-01

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte. PMID:24362037

  20. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Directory of Open Access Journals (Sweden)

    Vedakumar Tatavarty

    Full Text Available Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow and kinetic (F-actin turn-over dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  1. Actin, RhoA, and Rab11 participation during encystment in Entamoeba invadens.

    Science.gov (United States)

    Herrera-Martínez, M; Hernández-Ramírez, V I; Lagunes-Guillén, A E; Chávez-Munguía, B; Talamás-Rohana, P

    2013-01-01

    In the genus Entamoeba, actin reorganization is necessary for cyst differentiation; however, its role is still unknown. The aim of this work was to investigate the role of actin and encystation-related proteins during Entamoeba invadens encystation. Studied proteins were actin, RhoA, a small GTPase involved through its effectors in the rearrangement of the actin cytoskeleton; Rab11, a protein involved in the transport of encystation vesicles; and enolase, as an encystment vesicles marker. Results showed a high level of polymerized actin accompanied by increased levels of RhoA-GTP during cell rounding and loss of vacuoles. Cytochalasin D, an actin polymerization inhibitor, and Y27632, an inhibitor of RhoA activity, reduced encystment in 80%. These inhibitors also blocked cell rounding, disposal of vacuoles, and the proper formation of the cysts wall. At later times, F-actin and Rab11 colocalized with enolase, suggesting that Rab11 could participate in the transport of the cyst wall components through the F-actin cytoskeleton. These results suggest that actin cytoskeleton rearrangement is playing a decisive role in determining cell morphology changes and helping with the transport of cell wall components to the cell surface during encystment of E. invadens.

  2. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  3. Differential thymosin β10 expression levels and actin filament organization in tumor cell lines with different metastatic potential

    Institute of Scientific and Technical Information of China (English)

    刘从容; 马春树; 宁钧宇; 由江峰; 廖松林; 郑杰

    2004-01-01

    Background To investigate the differential expression levels of thymosin β10 (Tβ1O) and the corresponding changes of actin filament organization in human tumor cell lines with different metastatic potential.Methods Four groups of nine human tumor cell lines with different metastatic potential were analyzed for the amount of Tβ10 mRNAs by Northern blot and for their peptide expression levels by immunohistochemistry. The filamentous actin (F-actin)was observed by staining of TRITC-phalloidin to detect changes in actin organization. Results In comparison with non-/weakly metastatic counterparts, TβIO was upregulated in highly metastatic human lung cancer, malignant melanoma and breast cancer cell lines. Staining of TRITC-phalloidin revealed less actin bundles, a fuzzy network of shorter filaments and some F-actin aggregates in the highly metastatic tumor cells. Meanwhile, the actin filaments were robust and orderly arranged in the non-/weakly metastatic cancer cell lines.Conclusion Tβ10 levels correlate positively with the metastatic capacity in human tumors currently examined. The increasing metastatic potential of tumor cells is accompanied by a loss of F-actin,poorly arranged actin skeleton organizations and presence of F-actin aggregates. There is a consistent correlation between the elevated TβIO expression and the disrupted actin skeleton.

  4. STK16 regulates actin dynamics to control Golgi organization and cell cycle

    Science.gov (United States)

    Liu, Juanjuan; Yang, Xingxing; Li, Binhua; Wang, Junjun; Wang, Wenchao; Liu, Jing; Liu, Qingsong; Zhang, Xin

    2017-01-01

    STK16 is a ubiquitously expressed, myristoylated, and palmitoylated serine/threonine protein kinase with underexplored functions. Recently, it was shown to be involved in cell division but the mechanism remains unclear. Here we found that human STK16 localizes to the Golgi complex throughout the cell cycle and plays important roles in Golgi structure regulation. STK16 knockdown or kinase inhibition disrupts actin polymers and causes fragmented Golgi in cells. In vitro assays show that STK16 directly binds to actin and regulates actin dynamics in a concentration- and kinase activity-dependent way. In addition, STK16 knockdown or kinase inhibition not only delays mitotic entry and prolongs mitosis, but also causes prometaphase and cytokinesis arrest. Therefore, we revealed STK16 as a novel actin binding protein that resides in the Golgi, which regulates actin dynamics to control Golgi structure and participate in cell cycle progression. PMID:28294156

  5. Covalent immobilization of myosin for in-vitro motility of actin

    Indian Academy of Sciences (India)

    Ellis Bagga; Sunita Kumari; Rajesh Kumar; Rakesh Kumar; R P Bajpai; Lalit M Bharadwaj

    2005-11-01

    The present study reports the covalent immobilization of myosin on glass surface and in-vitro motility of actin-myosin biomolecular motor. Myosin was immobilized on poly-L-lysine coated glass using heterobifunctional cross linker EDC and characterized by AFM. The in-vitro motility of actin was carried out on the immobilized myosin. It was observed that velocity of actin over myosin increases with increasing actin concentration (0.4-1.0 mg/ml) and was found in the range of 0.40-3.25 m/s. The motility of actin-myosin motor on artificial surfaces is of immense importance for developing nanodevices for healthcare and engineering applications.

  6. Ingenol Mebutate Topical Gel A Status Report On Clinical Use Beyond Actinic Keratosis

    Science.gov (United States)

    Del Rosso, James Q.

    2016-01-01

    Ingenol mebutate is available as a topical gel formulation approved for the treatment of actinic keratosis. Two different concentrations are available for treatment of actinic keratoses at specific anatomic sites with the advantages of short durations of therapy and limited “down time” related to visible inflammation as compared to other topical agents. Due to the various modes of action of ingenol mebutate, it has also been used for treatment of disease states other than actinic keratosis. This manuscript discusses the suggested modes of action of ingenol mebutate and reviews publications on the use of ingenol mebutate gel for cutaneous disorders other than actinic keratosis, including squamous cell carcinoma in-situ, basal cell carcinoma, actinic cheilitis, anogenital warts, and others. Author commentaries are also included with the goal of providing relevant clinical insights. PMID:28224020

  7. Determination of water quality variables, endotoxin concentration, and enterobacteriaceae concentration and identification in Southern High Plains dairy lagoons

    Science.gov (United States)

    The objectives of this study were to determine the concentration of endotoxin, determine 20 water quality variables, and identify and enumerate fungal and bacterial pathogens from United States southern High Plains dairy lagoons and control lakes during summer and winter. Water samples were collecte...

  8. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    Directory of Open Access Journals (Sweden)

    Nuria Domínguez-Iturza

    2016-01-01

    Full Text Available Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine.

  9. Actin Genes in the Mediterranean Fruit Fly, Ceratitis Capitata

    Science.gov (United States)

    Haymer, D. S.; Anleitner, J. E.; He, M.; Thanaphum, S.; Saul, S. H.; Ivy, J.; Houtchens, K.; Arcangeli, L.

    1990-01-01

    We have undertaken the study of actin gene organization and expression in the genome of the Mediterranean fruit fly (medfly), Ceratitis capitata. Actin genes have been extensively characterized previously in a wide range of eukaryotic organisms, and they have valuable properties for comparative studies. These genes are typically highly conserved in coding regions, represented in multiple copies per genome and regulated in expression during development. We have isolated a gene in the medfly using the cloned Drosophila melanogaster 5C actin gene as a probe. This medfly gene detects abundant messages present during late larval and late pupal development as well as in thoracic and leg tissue preparations from newly emerged adults. This pattern of expression is consistent with what has been seen for actin genes in other organisms. Using either the D. melanogaster 5C actin gene or the medfly gene as a probe identifies five common cross reacting Eco RI fragments in genomic DNA, but only under less than fully stringent hybridization conditions. PMID:1692797

  10. High-Performance Near-Infrared Luminescent Solar Concentrators.

    Science.gov (United States)

    Rondão, Raquel; Frias, Ana R; Correia, Sandra F H; Fu, Lianshe; de Zea Bermudez, Verónica; André, Paulo S; Ferreira, Rute A S; Carlos, Luís D

    2017-04-12

    Luminescent solar concentrators (LSCs) appear as candidates to enhance the performance of photovoltaic (PV) cells and contribute to reduce the size of PV systems, decreasing, therefore, the amount of material needed and thus the cost associated with energy conversion. One way to maximize the device performance is to explore near-infrared (NIR)-emitting centers, resonant with the maximum optical response of the most common Si-based PV cells. Nevertheless, very few examples in the literature demonstrate the feasibility of fabricating LSCs emitting in the NIR region. In this work, NIR-emitting LSCs are reported using silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (SiNc or NIR775) immobilized in an organic-inorganic tri-ureasil matrix (t-U(5000)). The photophysical properties of the SiNc dye incorporated into the tri-ureasil host closely resembled those of SiNc in tetrahydrofuran solution (an absolute emission quantum yield of ∼0.17 and a fluorescence lifetime of ∼3.6 ns). The LSC coupled to a Si-based PV device revealed an optical conversion efficiency of ∼1.5%, which is among the largest values known in the literature for NIR-emitting LSCs. The LSCs were posteriorly coupled to a Si-based commercial PV cell, and the synergy between the t-U(5000) and SiNc molecules enabled an effective increase in the external quantum efficiency of PV cells, exceeding 20% in the SiNc absorption region.

  11. An astigmatic corrected target-aligned heliostat for high concentration

    Energy Technology Data Exchange (ETDEWEB)

    Zaibel, R.; Dagan, E.; Karni, J. [Solar Research Facility, The Weizmann Institute of Science, Rehovot (Israel); Ries, Harald [Ludwig-Maximilians-Universitaet, Sektion Physik, Munich (Germany)

    1995-05-28

    Conventional heliostats suffer from astigmatism for non-normal incidence. For tangential rays the focal length is shortened while for sagittal rays it is longer than the nominal focal length. Due to this astigmatism it is impossible to produce a sharp image of the sun, and the rays will be spread over a larger area. In order to correct this the heliostat should have different curvature radii along the sagittal and tangential direction in the heliostat plane just like a non axial part of a paraboloid. In conventional heliostats, where the first axis, fixed with respect to the ground, is vertical while the second, fixed with respect to the reflector surface, is horizontal, such an astigmatism correction is not practical because the sagittal and tangential directions rotate with respect to the reflector. We suggest an alternative mount where the first axis is oriented towards the target. The second axis, perpendicular to the first and tangent to the reflector, coincides with the tangential direction. With this mounting sagittal and tangential direction are fixed with respect to the reflector during operation. Therefore a partial astigmatism compensation is possible. We calculate the optimum correction and show the performance of the heliostat. We also show predicted yearly average concentrations

  12. Microrheology of active actin networks

    Science.gov (United States)

    Larsen, Travis H.; Furst, Eric M.

    2006-03-01

    To provide insight into the viscoelastic response of non-equilibrium, entangled semi-flexible polymeric networks, we study the model system of F-actin networks in the presence of active fragments of skeletal myosin. To characterize the microrheological response of this system, polystyrene microspheres of 1μm in diameter are suspended into the three-dimensional, entangled F-actin network and diffusing wave spectroscopy is used to measure the mean-squared displacement of the particles on timescales from 100ns to 10ms. Particle motion is a result of both random thermal forces and the dissipation of actin filament fluctuations caused by the interactions of the suspended motor proteins with the network. Upon addition of myosin, we observe an increase in the MSD of the tracer particles and a shift in the scaling--dependence with respect to lag time from t^3/4 to t^x, where 3/4 motor proteins cause the filaments to develop an apparent decreased persistence length at length scales longer than the crossover length. Finally, we demonstrate that the addition of the cross-linking protein, α-actinin, suppresses this ``active'' scaling behavior, while maintaining elevated probe particle diffusivity relative to the control.

  13. Emulsifier development for high-concentrated reverse emulsions

    OpenAIRE

    Kovalenko, I. L.; V.P. Kuprin

    2016-01-01

    The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifie...

  14. High urinary phthalate concentration associated with delayed pubarche in girls

    DEFF Research Database (Denmark)

    Frederiksen, H; Sørensen, K; Mouritsen, A;

    2012-01-01

    Phthalates are a group of chemicals present in numerous consumer products. They have anti-androgenic properties in experimental studies and are suspected to be involved in human male reproductive health problems. A few studies have shown associations between phthalate exposure and changes...... and controls. We demonstrated that delayed pubarche, but not thelarche, was associated with high phthalate excretion in urine samples from 725 healthy school girls, which may suggest anti-androgenic actions of phthalates in our study group of girls....

  15. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  16. High plasma uric acid concentration: causes and consequences

    Directory of Open Access Journals (Sweden)

    de Oliveira Erick

    2012-04-01

    Full Text Available Abstract High plasma uric acid (UA is a precipitating factor for gout and renal calculi as well as a strong risk factor for Metabolic Syndrome and cardiovascular disease. The main causes for higher plasma UA are either lower excretion, higher synthesis or both. Higher waist circumference and the BMI are associated with higher insulin resistance and leptin production, and both reduce uric acid excretion. The synthesis of fatty acids (tryglicerides in the liver is associated with the de novo synthesis of purine, accelerating UA production. The role played by diet on hyperuricemia has not yet been fully clarified, but high intake of fructose-rich industrialized food and high alcohol intake (particularly beer seem to influence uricemia. It is not known whether UA would be a causal factor or an antioxidant protective response. Most authors do not consider the UA as a risk factor, but presenting antioxidant function. UA contributes to > 50% of the antioxidant capacity of the blood. There is still no consensus if UA is a protective or a risk factor, however, it seems that acute elevation is a protective factor, whereas chronic elevation a risk for disease.

  17. Keeping it all together: auxin-actin crosstalk in plant development.

    Science.gov (United States)

    Zhu, Jinsheng; Geisler, Markus

    2015-08-01

    Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.

  18. Peroxynitrite induces F-actin depolymerization and blockade of myosin ATPase stimulation.

    Science.gov (United States)

    Tiago, Teresa; Ramos, Susana; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2006-03-31

    Treatment of F-actin with the peroxynitrite-releasing agent 3-morpholinosydnonimine (SIN-1) produced a dose-dependent F-actin depolymerization. This is due to released peroxynitrite because it is not produced by 'decomposed SIN-1', and it is prevented by superoxide dismutase concentrations efficiently preventing peroxynitrite formation. F-actin depolymerization has been found to be very sensitive to peroxynitrite, as exposure to fluxes as low as 50-100nM peroxynitrite leads to nearly 50% depolymerization in about 1h. G-actin polymerization is also impaired by peroxynitrite although with nearly 2-fold lower sensitivity. Exposure of F-actin to submicromolar fluxes of peroxynitrite produced cysteine oxidation and also a blockade of the ability of actin to stimulate myosin ATPase activity. Our results suggest that an imbalance of the F-actin/G-actin equilibrium can account for the observed structural and functional impairment of myofibrils under the peroxynitrite-mediated oxidative stress reported for some pathophysiological conditions.

  19. Design requirements for high-efficiency high concentration ratio space solar cells

    Science.gov (United States)

    Rauschenbach, H.; Patterson, R.

    1980-01-01

    A miniaturized Cassegrainian concentrator system concept was developed for low cost, multikilowatt space solar arrays. The system imposes some requirements on solar cells which are new and different from those imposed for conventional applications. The solar cells require a circular active area of approximately 4 mm in diameter. High reliability contacts are required on both front and back surfaces. The back area must be metallurgically bonded to a heat sink. The cell should be designed to achieve the highest practical efficiency at 100 AMO suns and at 80 C. The cell design must minimize losses due to nonuniform illumination intensity and nonnormal light incidence. The primary radiation concern is the omnidirectional proton environment.

  20. Characterization of blood donors with high haemoglobin concentration

    DEFF Research Database (Denmark)

    Magnussen, K; Hasselbalch, H C; Ullum, H;

    2013-01-01

    Background and Objectives  The literature contains little on the prevalence and causes of high predonation haemoglobin levels among blood donors. This study aimed to characterize and develop an algorithm to manage would-be donors with polycythaemia. Materials and Methods  Between November 2009......, erythropoietin, ferritin, platelet count and leucocyte count, JAK2 V617 and JAK2 exon12 analysis, as well as other routine measurements. Results  Among 46 such donors, 39 had a history of smoking, which contributes to erythrocytosis. Two had PV, five had severe hypertension, one of them because of renal artery...

  1. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    Science.gov (United States)

    2012-05-23

    REPORT DATE 23 MAY 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Waste to Energy Potential - A High...and fermentative bacteria break down organic carbon to VFAs Acetogens break down VFAs to CH3CO2 − and H2 + Acetoclastic methanogens break...s -999999 999999 7 481 su -999999 999999 0 .. -999999 999999 HCA8 pti Flo$&-tdgc Tan.\\ feed su -999999 999999 0 .. -999999 999999 A-l>o -999999

  2. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  3. From pollen actin to crop male sterility

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.

  4. The design of MACs (minimal actin cortices).

    Science.gov (United States)

    Vogel, Sven K; Heinemann, Fabian; Chwastek, Grzegorz; Schwille, Petra

    2013-11-01

    The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how their interaction regulates actin cell cortex remodeling and cell shape changes. Because of the vital importance of actin, myosin motors and the cell membrane, selective in vivo experiments and manipulations are often difficult to perform or not feasible. Thus, the intelligent design of minimal in vitro systems for actin-myosin-membrane interactions could pave a way for investigating actin cell cortex mechanics in a detailed and quantitative manner. Here, we present and discuss the design of several bottom-up in vitro systems accomplishing the coupling of actin filaments to artificial membranes, where key parameters such as actin densities and membrane properties can be varied in a controlled manner. Insights gained from these in vitro systems may help to uncover fundamental principles of how exactly actin-myosin-membrane interactions govern actin cortex remodeling and membrane properties for cell shape changes.

  5. Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila

    OpenAIRE

    1996-01-01

    Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and pre...

  6. The integrin-actin connection, an eternal love affair

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Fässler, Reinhard

    2003-01-01

    Integrin receptors connect the extracellular matrix to the actin cytoskeleton. This interaction can be viewed as a cyclical liaison, which develops again and again at new adhesion sites only to cease at sites of de-adhesion. Recent work has demonstrated that multidomain proteins play crucial roles...... in the integrin-actin connection by providing a high degree of regulation adjusted to the needs of the cell. In this review we present several examples of this paradigm and with special emphasis on the ILK-PINCH-parvin complex, which amply demonstrates how structural and signalling functions are linked together....

  7. Recent testing of secondary concentrators at NREL`s high-flux solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, D.; Winston, R.; O`Gallagher, J. [Univ. of Chicago, IL (United States); Bingham, C.; Lewandowski, A.; Pitts, R.; Scholl, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    Several tests have been completed on new secondary concentrators at the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL). The first test measured the power from the exit of a High-Index secondary that achieves an average concentration of 50,000 suns. The second concentrator tested pumped an Nd:YAG laser crystal. The concentrator designs are presented, along with data from on-sun testing at the HFSF.

  8. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    Science.gov (United States)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-06-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process.

  9. EXPERIMENTAL INVESTIGATIONS ON DIFFUSION CHARACTERISTICS OF HIGH CONCENTRATION JET FLOW IN NEAR REGION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The diffusion characteristics of the high concentration jet flowissued from a round nozzle above the free surface into moving waterbody were experimentally investigated. By means of flow visualization technique, the diffusion behavior of the high concentration jet was observed and analysed, Concentration distribution in the near region was obtained by sampling and quantitative measurements. Experimental results indicate that the diffusion mechanics of the high concentration jet flow are greatly influenced by initial momentum, buoyancy, turbulent structure, ambient current and boundary conditions, showing complicated flow patterns and concentration distribution characteristics that are different from previous results for submerged jets.

  10. Emulsifier development for high-concentrated reverse emulsions

    Directory of Open Access Journals (Sweden)

    I.L. Kovalenko

    2016-05-01

    Full Text Available The reverse emulsions have found broad application in ore mining industry as matrixes of emulsion explosive substances and boring washing waters. The defining characteristic of reverse emulsions of industrial explosive substances is the high stability and immunity to crystallization. Aim: The aim of this work is to assess the mechanism of emulsifiers effect like SMO and some PIBSA-derivatives, that are most abundantly used in world practice, and also to develop an effective domestic emulsifier of reverse emulsions. Materials and methods: Using the semi-dynamic method with use of the reverse stalagmometer it was determined the decreasing in interfacial tension on “water / diesel fuel” border in the presence of 0.5 wt % sorbitan monooleate of various producers. Emulsions with use of the chosen emulsifiers using the dynamic mixer on the basis of monosolution of ammonium nitrate and diesel fuel have been produced. The emulsions have the following composition, wt %: ammonium nitrate – 76.8; water – 15.6; diesel fuel – 6.0; emulsifier – 1.6. Results: By the researches results of the interfacial tension “surfactant water / solution in diesel fuel”, the stability of emulsions using monosolution of ammonium nitrate and the IR spectrums of SMO of various producers it is established that presence in product of impurity of oleic acid, di- and trioleates leads to decreasing in interphase activity, increasing of emulsifier oil solubility and decreasing the resistance of emulsions to crystallization. On the basis of the spectral data analysis it is suggested about possibility of specific interaction on the mechanism of “spectral resonance” between emulsifiers of the PIBSA-MEA, LZX type and crystals nucleus of NH4NO3 ammonium nitrate in dispersed phase of emulsion. Amidation of vegetable oils by monoethanol amine is implemented at the reduced temperatures (90…100 °C. It was proved the availability mainly of fatty acids amides in product

  11. 5DFRXXL region of long myosin light chain kinase causes F-actin bundle formation

    Institute of Scientific and Technical Information of China (English)

    YANG Chunxiang; WEI Dongmei; CHEN Chen; YU Weiping; ZHU Minsheng

    2005-01-01

    Long myosin light chain kinase (L-MLCK) contains five DFRXXL motifs with ability to bind F-actin. Binding stoichiometry data indicated that each DFRXXL motif might bind each G-actin, but its biological significance remained unknown. We hypothesized that L-MLCK might act as an F-actin bundle peptides by its multiple binding sites of 5DFRXXL motifs to actin. In order to characterize F-actin-bundle formation properties of 5DFRXXL region of long myosin light chain kinase, we expressed and purified 5DFRXXL peptides tagged with HA in vitro. The properties of 5DFRXXL peptides binding to myofilaments or F-actin were analyzed by binding stoichiometries assays. The results indicated that 5DFRXXL peptides bound to myofilaments or F-actin with high affinity. KD values of 5DFRXXL binding to myofilaments and F-actin were 0.45 and 0.41 μmol/L, re- spectively. Cross-linking assay demonstrated that 5DFRXXL peptides could bundle F-actin efficiently. Typical F-actin bundles were observed morphologically through determina- tion of confocal and electron microscopy after adding 5DFRXXL peptides. After transfection of pEGFP-5DFRXXL plasmid into eukaryocyte, spike structure was observed around cell membrane edge. We guess that such structure formation may be attributable to F-actin over-bundle forma- tion caused by 5DFRXXL peptides. Therefore, we suppose that L-MLCK may be a new bundling protein and somehow play a certain role in organization of cell skeleton besides mediating cell contraction by it kinase activity.

  12. Experimental Study of Sorbitol Production by Zymomonas mobilis in High Sucrose Concentration

    OpenAIRE

    Rui Sérgio dos Santos Ferreira da Silva; João Batista Buzato; Maria Antonia Pedrine Colabone Celligoi; Marcos Roberto de Oliveira

    2004-01-01

    The sorbitol presents several industrial applications and its conventional production is of high cost and low yield. Sorbitol production by Zymomonas mobilis production has attracted attention as both production cost and environmental impact are low. The sorbitol plays an osmo-protective rule so that its production is promoted by high sugar concentrations. This work has evaluated the effect of high sucrose concentration in the sorbitol production. The raise of sucrose concentration from 100 t...

  13. TIRF microscopy analysis of human Cof1, Cof2, and ADF effects on actin filament severing and turnover.

    Science.gov (United States)

    Chin, Samantha M; Jansen, Silvia; Goode, Bruce L

    2016-04-24

    Dynamic remodeling and turnover of cellular actin networks requires actin filament severing by actin-depolymerizing factor (ADF)/Cofilin proteins. Mammals express three different ADF/Cofilins (Cof1, Cof2, and ADF), and genetic studies suggest that in vivo they perform both overlapping and unique functions. To gain mechanistic insights into their different roles, we directly compared their G-actin and F-actin binding affinities, and quantified the actin filament severing activities of human Cof1, Cof2, and ADF using in vitro total internal reflection fluorescence microscopy. All three ADF/Cofilins had similar affinities for G-actin and F-actin. However, Cof2 and ADF severed filaments much more efficiently than Cof1 at both lower and higher concentrations and using either muscle or platelet actin. Furthermore, Cof2 and ADF were more effective than Cof1 in promoting "enhanced disassembly" when combined with actin disassembly co-factors Coronin-1B and actin-interacting protein 1 (AIP1), and these differences were observed on both preformed and actively growing filaments. To probe the mechanism underlying these differences, we used multi-wavelength total internal reflection fluorescence microscopy to directly observe Cy3-Cof1 and Cy3-Cof2 interacting with actin filaments in real time during severing. Cof1 and Cof2 each bound to filaments with similar kinetics, yet Cof2 induced severing much more rapidly than Cof1, decreasing the time interval between initial binding on a filament and severing at the same location. These differences in ADF/Cofilin activities and mechanisms may be used in cells to tune filament turnover rates, which can vary widely for different actin structures.

  14. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells.

    Science.gov (United States)

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-09-30

    Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.

  15. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    Science.gov (United States)

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  16. Structure and stability of self-assembled actin-lysozyme complexes in salty water.

    Science.gov (United States)

    Sanders, Lori K; Guáqueta, Camilo; Angelini, Thomas E; Lee, Jae-Wook; Slimmer, Scott C; Luijten, Erik; Wong, Gerard C L

    2005-09-02

    Interactions between actin, an anionic polyelectrolyte, and lysozyme, a cationic globular protein, have been examined using a combination of synchrotron small-angle x-ray scattering and molecular dynamics simulations. Lysozyme initially bridges pairs of actin filaments, which relax into hexagonally coordinated columnar complexes comprised of actin held together by incommensurate one-dimensional close-packed arrays of lysozyme macroions. These complexes are found to be stable even in the presence of significant concentrations of monovalent salt, which is quantitatively explained from a redistribution of salt between the condensed and the aqueous phases.

  17. Pharmacological treatment of actinic keratosis

    Directory of Open Access Journals (Sweden)

    Ewa Zwierzyńska

    2016-09-01

    Full Text Available Actinic keratosis (AK is a disease characterized by hyperkeratotic lesions on skin damaged by ultraviolet. radiation. These lesions may progress to squamous cell or basal cell carcinoma. Currently pharmacotherapy and different surgical procedures are used in AK therapy. The most common treatment options are 5-fluorouracil, imiquimod, diclofenac, ingenol mebutate, and first and third generation retinoids (retinol, adapalene, tazarotene. Furthermore, research is being carried out in order to test new medications including nicotinamide, resiquimod, piroxicam, potassium dobesilate and oleogel based on a triterpene extract (betulin, betulinic acid. Recently, the preventive effect of acetylsalicylic acid and celecoxib has also been investigated.

  18. Packaging of actin into Ebola virus VLPs

    Directory of Open Access Journals (Sweden)

    Harty Ronald N

    2005-12-01

    Full Text Available Abstract The actin cytoskeleton has been implicated in playing an important role assembly and budding of several RNA virus families including retroviruses and paramyxoviruses. In this report, we sought to determine whether actin is incorporated into Ebola VLPs, and thus may play a role in assembly and/or budding of Ebola virus. Our results indicated that actin and Ebola virus VP40 strongly co-localized in transfected cells as determined by confocal microscopy. In addition, actin was packaged into budding VP40 VLPs as determined by a functional budding assay and protease protection assay. Co-expression of a membrane-anchored form of Ebola virus GP enhanced the release of both VP40 and actin in VLPs. Lastly, disruption of the actin cytoskeleton with latrunculin-A suggests that actin may play a functional role in budding of VP40/GP VLPs. These data suggest that VP40 may interact with cellular actin, and that actin may play a role in assembly and/or budding of Ebola VLPs.

  19. Bioinformatics study of the mangrove actin genes

    Science.gov (United States)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  20. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2014-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, an...

  1. High catechin concentrations detected in Withania somnifera (ashwagandha by high performance liquid chromatography analysis

    Directory of Open Access Journals (Sweden)

    Sulaiman Siti

    2011-08-01

    Full Text Available Abstract Background Withania somnifera is an important medicinal plant traditionally used in the treatment of many diseases. The present study was carried out to characterize the phenolic acids, flavonoids and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH scavenging activities in methanolic extracts of W. somnifera fruits, roots and leaves (WSFEt, WSREt and WSLEt. Methods WSFEt, WSREt and WSLEt was prepared by using 80% aqueous methanol and total polyphenols, flavonoids as well as DPPH radical scavenging activities were determined by spectrophotometric methods and phenolic acid profiles were determined by HPLC methods. Results High concentrations of both phenolics and flavonoids were detected in all parts of the plant with the former ranging between 17.80 ± 5.80 and 32.58 ± 3.16 mg/g (dry weight and the latter ranging between 15.49 ± 1.02 and 31.58 ± 5.07 mg/g. All of the three different plant parts showed strong DPPH radical scavenging activities (59.16 ± 1.20 to 91.84 ± 0.38%. Eight polyphenols (gallic, syringic, benzoic, p-coumaric and vanillic acids as well as catechin, kaempferol and naringenin have been identified by HPLC in parts of the plant as well. Among all the polyphenols, catechin was detected in the highest concentration (13.01 ± 8.93 to 30.61 ± 11.41 mg/g. Conclusion The results indicating that W. somnifera is a plant with strong therapeutic properties thus further supporting its traditional claims. All major parts of W. somnifera such as the roots, fruits and leaves provide potential benefits for human health because of its high content of polyphenols and antioxidant activities with the leaves containing the highest amounts of polyphenols specially catechin with strong antioxidant properties.

  2. High throughput, high resolution enzymatic lithography process: effect of crystallite size, moisture, and enzyme concentration.

    Science.gov (United States)

    Mao, Zhantong; Ganesh, Manoj; Bucaro, Michael; Smolianski, Igor; Gross, Richard A; Lyons, Alan M

    2014-12-08

    By bringing enzymes into contact with predefined regions of a surface, a polymer film can be selectively degraded to form desired patterns that find a variety of applications in biotechnology and electronics. This so-called "enzymatic lithography" is an environmentally friendly process as it does not require actinic radiation or synthetic chemicals to develop the patterns. A significant challenge to using enzymatic lithography has been the need to restrict the mobility of the enzyme in order to maintain control of feature sizes. Previous approaches have resulted in low throughput and were limited to polymer films only a few nanometers thick. In this paper, we demonstrate an enzymatic lithography system based on Candida antartica lipase B (CALB) and poly(ε-caprolactone) (PCL) that can resolve fine-scale features, (Lithography (PPL) tool was developed to deposit an aqueous solution of CALB onto a spin-cast PCL film. Immobilization of the enzyme on the polymer surface was monitored using fluorescence microscopy by labeling CALB with FITC. The crystallite size in the PCL films was systematically varied; small crystallites resulted in significantly faster etch rates (20 nm/min) and the ability to resolve smaller features (as fine as 1 μm). The effect of printing conditions and relative humidity during incubation is also presented. Patterns formed in the PCL film were transferred to an underlying copper foil demonstrating a "Green" approach to the fabrication of printed circuit boards.

  3. 葡萄糖转运蛋白4及其下游信号分子在高糖刺激下肾小球系膜细胞中的作用%Effects of high glucose and insulin on expression of glucose transporter 4, Cbl-associated protein and cytoskeleton protein F-actin in rat glomerular mesangial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    杜新; 黄颂敏; 唐万欣; 柳飞; 赖学莉

    2009-01-01

    )GLUT4、CAP和F-actin是糖尿病肾病发生发展的重要影响因子之一.%Objective To investigate the effects of high glucose and insulin on the expression of glucose transporter 4 (GLUT4), Cbl-associated protein (CAP) and cytoskeleton protein F-actin of glomerular mesangial cells (GMCs), in order to explore the function of GLUT4, Cbl-associated protein and F-actin in the pathogenesis and development of diabetic nephropathy (DN). Methods Cultured 1097 rat glomerular mesangial cells were divided into 8 groups: control, 10-9 mol/L insulin, 10-8 mol/L insulin, 10-6 mol/L insulin, high glucose (30 mmol/L), mannitol (25 mmol/L mannitol+5 mmol/L glucose), high glucose plus 10-6 mol/L insulin, high glucose plus 10-9 mol/L insulin. Expression of CAP mRNA and GLUT4 was measured by RT-PCR and immunohistochemistry method. F-actin was stained by rhodamine-pholloidin and the fluorescent intensity was calculated by image analysis system. Results The expression of GLUT4 mRNA and protein, CAP mRNA was found in normal giomerular mesangial cells (control), and there was no significant difference in 10-9 mol/L insulin group. The expression of GLUT4 mRNA (P<0.05) and protein (P<0.01), CAP mRNA (P<0.01) level was decreased in high glucose group compared with that of control group, but there was no significant difference in mannitol group. The expression of GLUT4 and CAP mRNA up-regulated with the increase of concentration of insulin. The expressions of GLUT4 mRNA in 10-8 mol/L insulin and 10-6 mol/L insulin groups were 2.06-fold and 2.66-fold of 10-9 mol/L insulin group, of GLUT4 protein were 1.93-fold and 2.83-fold of control, and of CAP mRNA were 1.91-fold and 2.15-fold of control, respectively. The expressions of GLUT4 mRNA, GLUT4 protein, CAP mRNA in high glucose plus insulin group were 2.15-fold, 2.08-fold, 2.14-fold of high glucose group respectively. High glucose decreased the fluorescent intensity of F-actin to 44.5% (P<0.01). 10-8 mol/L insulin and 10-6 mol/L insulin groups

  4. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing

    Science.gov (United States)

    Kim, Dong-Hwee; Khatau, Shyam B.; Feng, Yunfeng; Walcott, Sam; Sun, Sean X.; Longmore, Gregory D.; Wirtz, Denis

    2012-01-01

    The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional focal adhesions in morphology, subcellular organization, movements, turnover dynamics, and response to biochemical stimuli. Actin cap associated focal adhesions (ACAFAs) dominate cell mechanosensing over a wide range of matrix stiffness, an ACAFA-specific function regulated by actomyosin contractility in the actin cap, while conventional focal adhesions are restrictively involved in mechanosensing for extremely soft substrates. These results establish the perinuclear actin cap and associated ACAFAs as major mediators of cellular mechanosensing and a critical element of the physical pathway that transduce mechanical cues all the way to the nucleus. PMID:22870384

  5. EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Nitesh Kumar

    2014-09-01

    Full Text Available Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.

  6. Regulation of levels of actin threonine phosphorylation during life cycle of Physarum polycephalum.

    Science.gov (United States)

    Shirai, Yuki; Sasaki, Narie; Kishi, Yoshiro; Izumi, Akiko; Itoh, Kie; Sameshima, Masazumi; Kobayashi, Tetsuyuki; Murakami-Murofushi, Kimiko

    2006-02-01

    Under various environmental stresses, the true slime mold Physarum polycephalum converts into dormant forms, such as microcysts, sclerotia, and spores, which can survive in adverse environments for a considerable period of time. In drought-induced sclerotia, actin is threonine phosphorylated, which blocks its ability to polymerize into filaments. It is known that fragmin and actin-fragmin kinase (AFK) mediate this phosphorylation event. In this work, we demonstrate that high levels of actin threonine phosphorylation are also found in other dormant cells, including microcysts and spores. As the threonine phosphorylation of actin in microcysts and sclerotia were induced by drought stress but not by other stresses, we suggest that drought stress is essential for actin phosphorylation in both cell types. Although characteristic filamentous actin structures (dot- or rod-like structures) were observed in microcysts, sclerotia, and spores, actin phosphorylation was not required for the formation of these structures. Prior to the formation of both microcysts and sclerotia, AFK mRNA expression was activated transiently, whereas fragmin mRNA levels decreased. Our results suggest that drought stress and AFK might be involved in the threonine phosphorylation of actin. Copyright (c) 2005 Wiley-Liss, Inc.

  7. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  8. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator

    Science.gov (United States)

    Wong, Wayne A.

    2001-01-01

    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  9. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  10. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  11. Quantitation of liquid-crystalline ordering in F-actin solutions.

    Science.gov (United States)

    Coppin, C M; Leavis, P C

    1992-09-01

    Actin filaments (F-actin) are important determinants of cellular shape and motility. These functions depend on the collective organization of numerous filaments with respect to both position and orientation in the cytoplasm. Much of the orientational organization arises spontaneously through liquid crystal formation in concentrated F-actin solutions. In studying this phenomenon, we found that solutions of purified F-actin undergo a continuous phase transition, from the isotropic state to a liquid crystalline state, when either the mean filament length or the actin concentration is increased above its respective threshold value. The phase diagram representing the threshold filament lengths and concentrations at which the phase transition occurs is consistent with that predicted by Flory's theory on solutions of noninteracting, rigid cylinders (Flory, 1956b). However, in contrast to other predictions based on this model, we found no evidence for the coexistence of isotropic and anisotropic phases. Furthermore, the phase transition proved to be temperature dependent, which suggests the existence of orientation-dependent interfilament interactions or of a temperature-dependent filament flexibility. We developed a simple method for growing undistorted fluorescent acrylodan-labeled F-actin liquid crystals; and we derived a simple theoretical treatment by which polarization-of-fluorescence measurements could be used to quantitate, for the first time, the degree of spontaneous filament ordering (nematic order parameter) in these F-actin liquid crystals. This order parameter was found to increase monotonically with both filament length and concentration. Actin liquid crystals can readily become distorted by a process known as "texturing." Zigzaging and helicoidal liquid crystalline textures which persisted in the absence of ATP were observed through the polarizing microscope. Possible texturing mechanisms are discussed.

  12. Dynamics of actin evolution in dinoflagellates.

    Science.gov (United States)

    Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F

    2011-04-01

    Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop

  13. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    Science.gov (United States)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  14. αT-Catenin Is a Constitutive Actin-binding α-Catenin That Directly Couples the Cadherin·Catenin Complex to Actin Filaments.

    Science.gov (United States)

    Wickline, Emily D; Dale, Ian W; Merkel, Chelsea D; Heier, Jonathon A; Stolz, Donna B; Kwiatkowski, Adam V

    2016-07-22

    α-Catenin is the primary link between the cadherin·catenin complex and the actin cytoskeleton. Mammalian αE-catenin is allosterically regulated: the monomer binds the β-catenin·cadherin complex, whereas the homodimer does not bind β-catenin but interacts with F-actin. As part of the cadherin·catenin complex, αE-catenin requires force to bind F-actin strongly. It is not known whether these properties are conserved across the mammalian α-catenin family. Here we show that αT (testes)-catenin, a protein unique to amniotes that is expressed predominantly in the heart, is a constitutive actin-binding α-catenin. We demonstrate that αT-catenin is primarily a monomer in solution and that αT-catenin monomer binds F-actin in cosedimentation assays as strongly as αE-catenin homodimer. The β-catenin·αT-catenin heterocomplex also binds F-actin with high affinity unlike the β-catenin·αE-catenin complex, indicating that αT-catenin can directly link the cadherin·catenin complex to the actin cytoskeleton. Finally, we show that a mutation in αT-catenin linked to arrhythmogenic right ventricular cardiomyopathy, V94D, promotes homodimerization, blocks β-catenin binding, and in cardiomyocytes disrupts localization at cell-cell contacts. Together, our data demonstrate that αT-catenin is a constitutively active actin-binding protein that can physically couple the cadherin·catenin complex to F-actin in the absence of tension. We speculate that these properties are optimized to meet the demands of cardiomyocyte adhesion.

  15. Vitamin C at high concentrations induces cytotoxicity in malignant melanoma but promotes tumor growth at low concentrations.

    Science.gov (United States)

    Yang, Guang; Yan, Yao; Ma, Younan; Yang, Yixin

    2017-08-01

    Vitamin C has been used in complementary and alternative medicine for cancers regardless of its ineffectiveness in clinical trials and the paradoxical effects antioxidants have on cancer. Vitamin C was found to induce cytotoxicity against cancers. However, the mechanisms of action have not been fully elucidated, and the effects of vitamin C on human malignant melanoma have not been examined. This study revealed that vitamin C at millimolar concentrations significantly reduced the cell viability as well as invasiveness, and induced apoptosis in human malignant melanoma cells. Vitamin C displayed stronger cytotoxicity against the Vemurafenib-resistance cell line A2058 compared with SK-MEL-28. In contrast, vitamin C at micromolar concentrations promoted cell growth, migration and cell cycle progression, and protected against mitochondrial stress. Vemurafenib paradoxically activated the RAS-RAF-MEK-ERK signaling pathway in the Vemurafenib-resistant A2058, however, vitamin C abolished the activations. Vitamin C displayed synergistic cytotoxicity with Vemurafenib against the Vemurafenib-resistant A2058. In vivo assay suggested that lower dosage (equivalent to 0.5 g/70 kg) of vitamin C administered orally increased the melanoma growth. Therefore, vitamin C may exert pro- or anti-melanoma effect depending on concentration. The combination of vitamin C at high dosage and Vemurafenib is promising in overcoming the action of drug resistance. © 2017 Wiley Periodicals, Inc.

  16. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    CERN Document Server

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  17. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Science.gov (United States)

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin.

  18. Actin filament attachments for sustained motility in vitro are maintained by filament bundling.

    Directory of Open Access Journals (Sweden)

    Xiaohua Hu

    Full Text Available We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+ generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+ abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+, Lys-Lys(2+, or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+ buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.

  19. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.

    Science.gov (United States)

    Higashida, Chiharu; Kiuchi, Tai; Akiba, Yushi; Mizuno, Hiroaki; Maruoka, Masahiro; Narumiya, Shuh; Mizuno, Kensaku; Watanabe, Naoki

    2013-04-01

    Physical force evokes rearrangement of the actin cytoskeleton. Signalling pathways such as tyrosine kinases, stretch-activated Ca(2+) channels and Rho GTPases are involved in force sensing. However, how signals are transduced to actin assembly remains obscure. Here we show mechanosensitive actin polymerization by formins (formin homology proteins). Cells overexpressing mDia1 increased the amount of F-actin on release of cell tension. Fluorescence single-molecule speckle microscopy revealed rapid induction of processive actin assembly by mDia1 on cell cortex deformation. mDia1 lacking the Rho-binding domain and other formins exhibited mechanosensitive actin nucleation, suggesting Rho-independent activation. Mechanosensitive actin nucleation by mDia1 required neither Ca(2+) nor kinase signalling. Overexpressing LIM kinase abrogated the induction of processive mDia1. Furthermore, s-FDAPplus (sequential fluorescence decay after photoactivation) analysis revealed a rapid actin monomer increase on cell cortex deformation. Our direct visualization of the molecular behaviour reveals a mechanosensitive actin filament regeneration mechanism in which G-actin released by actin remodelling plays a pivotal role.

  20. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  1. Load fluctuations drive actin network growth

    CERN Document Server

    Shaevitz, Joshua W

    2007-01-01

    The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors, which trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin--propelled microspheres using three--dimensional laser tracking, we find that beads adhered to the growing network move via an object--fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuati...

  2. A method for rapidly screening functionality of actin mutants and tagged actins

    Directory of Open Access Journals (Sweden)

    Rommelaere Heidi

    2004-01-01

    Full Text Available Recombinant production and biochemical analysis of actin mutants has been hampered by the fact that actin has an absolute requirement for the eukaryotic chaperone CCT to reach its native state. We therefore have developed a method to rapidly screen the folding capacity and functionality of actin variants, by combining in vitro expression of labelled actin with analysis on native gels, band shift assays or copolymerization tests. Additionally, we monitor, using immuno-fluorescence, incorporation of actin variants in cytoskeletal structures in transfected cells. We illustrate the method by two examples. In one we show that tagged versions of actin do not always behave native-like and in the other we study some of the molecular defects of three &bgr;-actin mutants that have been associated with diseases.

  3. Quantitation of low concentrations of polysorbates in high protein concentration formulations by solid phase extraction and cobalt-thiocyanate derivatization.

    Science.gov (United States)

    Kim, Justin; Qiu, Jinshu

    2014-01-02

    A spectrophotometric method was developed to quantify low polysorbate (PS) levels in biopharmaceutical formulations containing high protein concentrations. In the method, Oasis HLB solid phase extraction (SPE) cartridge was used to extract PS from high protein concentration formulations. After loading a sample, the cartridge was washed with 4M guanidine HCl and 10% (v/v) methanol, and the retained PS was eluted by acetonitrile. Following the evaporation of acetonitrile, aqueous cobalt-thiocyanate reagent was added to react with the polyoxyethylene oxide chain of polysorbates to form a blue colored PS-cobaltothiocyante complex. This colored complex was then extracted into methylene chloride and measured spectrophotometrically at 620 nm. The method performance was evaluated on three products containing 30-40 mg L(-1) PS-20 and PS-80 in ≤70 g L(-1) protein formulations. The method was specific (no matrix interference identified in three types of protein formulations), sensitive (quantitation limit of 10 mg L(-1) PS) and robust with good precision (relative standard deviation ≤6.4%) and accuracy (spike recoveries from 95% to 101%). The linear range of the method for both PS-20 and PS-80 was 10 to 80 mg L(-1) PS. By diluting samples with 6M guanidine HCl and/or using different methylene chloride volumes to extract the colored complexes of standards and samples, the method could accurately and precisely quantify 40 mg L(-1) PS in up to 300 g L(-1) protein formulations.

  4. Phosphorylated filamin A regulates actin-linked caveolae dynamics.

    Science.gov (United States)

    Muriel, Olivia; Echarri, Asier; Hellriegel, Christian; Pavón, Dácil M; Beccari, Leonardo; Del Pozo, Miguel A

    2011-08-15

    Caveolae are relatively stable membrane invaginations that compartmentalize signaling, regulate lipid metabolism and mediate viral entry. Caveolae are closely associated with actin fibers and internalize in response to diverse stimuli. Loss of cell adhesion is known to induce rapid and robust caveolae internalization and trafficking toward a Rab11-positive recycling endosome; however, pathways governing this process are poorly understood. Here, we report that filamin A is required to maintain the F-actin-dependent linear distribution of caveolin-1. High spatiotemporal resolution particle tracking of caveolin-1-GFP vesicles by total internal reflection fluorescence (TIRF) microscopy revealed that FLNa is required for the F-actin-dependent arrest of caveolin-1 vesicles in a confined area and their stable anchorage to the plasma membrane. The linear distribution and anchorage of caveolin-1 vesicles are both required for proper caveolin-1 inwards trafficking. De-adhesion-triggered caveolae inward trafficking towards a recycling endosome is impaired in FLNa-depleted HeLa and FLNa-deficient M2-melanoma cells. Inwards trafficking of caveolin-1 requires both the ability of FLNa to bind actin and cycling PKCα-dependent phosphorylation of FLNa on Ser2152 after cell detachment. © 2011. Published by The Company of Biologists Ltd

  5. Actin dynamics shape microglia effector functions.

    Science.gov (United States)

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

  6. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  7. Design, Fabrication and Test of a High Efficiency Refractive Secondary Concentrator for Solar Applications

    Science.gov (United States)

    Wong, Wayne A.; Geng, Steven M.; Castle, Charles H.; Macosko, Robert P.

    2000-01-01

    Common to many of the space applications that utilize solar thermal energy such as electric power conversion, thermal propulsion, and furnaces, is a need for highly efficient, solar concentration systems. An effort is underway to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the effort at the NASA Glenn Research Center to evaluate the performance of a prototype single crystal sapphire refractive secondary concentrator and to compare the performance with analytical models. The effort involves the design and fabrication of a secondary concentrator, design and fabrication of a calorimeter and its support hardware, calibration of the calorimeter, testing of the secondary concentrator in NASA Glenn's Tank 6 solar thermal vacuum facility, and comparing the test results with predictions. Test results indicate an average throughput efficiency of 87%. It is anticipated that reduction of a known reflection loss with an anti-reflective coating would result in a secondary concentrator throughput efficiency of approximately 93%.

  8. A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis.

    Directory of Open Access Journals (Sweden)

    Marcus J Taylor

    Full Text Available Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20-30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission.

  9. Spatial localisation of actin filaments across developmental stages of the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Fiona Angrisano

    Full Text Available Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell. Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and ookinetes of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu.

  10. Osmotic Force-Controlled Microrheometry of Entangled Actin Networks

    Science.gov (United States)

    Uhde, Jorg; Feneberg, Wolfgang; Ter-Oganessian, N.; Sackmann, Erich; Boulbitch, Alexei

    2005-05-01

    In studying a magnetic bead’s creep response to force pulses in an entangled actin network we have found a novel regime where the bead motion obeys a power law x(t)˜t1/2 over two decades in time. It is flanked by a short-time regime with x(t)˜t3/4 and a viscous with x(t)˜t. In the intermediate regime the creep compliance depends on the actin concentration c as c-β with β≈1.1±0.3. We explain this behavior in terms of osmotic restoring force generated by the piling up of filaments in front of the moving bead. A model based on this concept predicts intermediate x(t)˜t1/2 and long-time regimes x(t)˜t in which the compliance varies as c-4/3, in agreement with experiment.

  11. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O' Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  12. Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration

    OpenAIRE

    Thiele, Uwe; Archer, Andrew J.; Plapp, Mathis

    2012-01-01

    In this paper we propose several models that describe the dynamics of liquid films which are covered by a high concentration layer of insoluble surfactant. First, we briefly review the 'classical' hydrodynamic form of the coupled evolution equations for the film height and surfactant concentration that are well established for small concentrations. Then we re-formulate the basic model as a gradient dynamics based on an underlying free energy functional that accounts for wettability and capill...

  13. Incomplete Ion Dissociation Underlies the Weakened Attraction between DNA Helices at High Spermidine Concentrations

    OpenAIRE

    Yang,Jie; Rau, Donald C

    2005-01-01

    We have investigated the salt sensitivity of the hexagonal-to-cholesteric phase transition of spermidine-condensed DNA. This transition precedes the resolubilization of precipitated DNA that occurs at high spermidine concentration. The sensitivity of the critical spermidine concentration at the transition point to the anion species and the NaCl concentration indicates that ion pairing of this trivalent ion underlies this unusual transition. Osmotic pressure measurements of spermidine salt sol...

  14. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin.

    Science.gov (United States)

    Schmidt von Braun, Serena; Schleiff, Enrico

    2008-04-01

    Chloroplasts accumulate in response to low light, whereas high light induces an actin-dependent avoidance movement. This is a long known process, but its molecular base is barely understood. Only recently first components of the blue light perceiving signal cascade initiating this process were described. Among these, a protein was identified by the analysis of a deletion mutant in the corresponding gene resulting in a chloroplast unusual positioning phenotype. The protein was termed CHUP1 and initial results suggested chloroplast localization. We demonstrate that the protein is indeed exclusively and directly targeted to the chloroplast surface. The analysis of the deletion mutant of CHUP1 using microarray analysis shows an influence on the expression of genes found to be up-regulated, but not on genes found to be down-regulated upon high light exposure in wild-type. Analyzing a putative role of CHUP1 as a linker between chloroplasts and the cytoskeleton, we demonstrate an interaction with actin, which is independent on the filamentation status of actin. Moreover, binding of CHUP1 to profilin -- an actin modifying protein -- could be shown and an enhancing effect of CHUP1 on the interaction of profilin to actin is demonstrated. Therefore, a role of CHUP1 in bridging chloroplasts to actin filaments and a regulatory function in actin polymerization can be discussed.

  15. Effect of digestion time on anaerobic digestion with high ammonia concentration

    Science.gov (United States)

    Oktavitri, Nur Indradewi; Purnobasuki, Hery; Kuncoro, Eko Prasetyo; Purnamasari, Indah; Semma Hadinnata, P.

    2016-03-01

    Anaerobic digestion was developed to treat high concentration organic compound efficiently in certain Digestion Time (DT). High ammonia concentration could influenced removal organic compound in digestion. This bench scale study investigated the effect of digestion time on anaerobic batch reactor with high ammonia concentration. Total Ammonia Nitrogen (TAN) concentration was adjusted 4000 and 5000 mg/1, Digestion time was ranged from 0-26 d, operation temperature was ranged from 28-29°C, inoculum was collected from slaughter house sludge. The degradation of Chemical Oxygen Demand (COD) correlated with digestion time. The concentration of TAN from synthetic wastewater contain 5000 mg/1 of TAN more fluctuated than those use 4000 mg/1 of TAN. However, the biogas production from wastewater contained 4000 mg/1 of TAN gradually increased until 24 d of DT. The reactor contain 5000 mg/1 of TAN only growth until 12 d and steady state at over 12 d of digestion time.

  16. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations.

    Science.gov (United States)

    Hernández, Ismaél Gatica; Gomez, Federico José Vicente; Cerutti, Soledad; Arana, María Verónica; Silva, María Fernanda

    2015-09-01

    Since the discovery of melatonin in plants, several roles have been described for different species, organs, and developmental stages. Arabidopsis thaliana, being a model plant species, is adequate to contribute to the elucidation of the role of melatonin in plants. In this work, melatonin was monitored daily by UHPLC-MS/MS in leaves, in order to study its diurnal accumulation as well as the effects of natural and artificial light treatments on its concentration. Furthermore, the effects of exogenous application of melatonin to assess its role in seed viability after heat stress and as a regulator of growth and development of vegetative tissues were evaluated. Our results indicate that melatonin contents in Arabidopsis were higher in plants growing under natural radiation when compared to those growing under artificial conditions, and its levels were not diurnally-regulated. Exogenous melatonin applications prolonged seed viability after heat stress conditions. In addition, melatonin applications retarded leaf senescence. Its effects as growth promoter were dose and tissue-dependent; stimulating root growth at low concentrations and decreasing leaf area at high doses.

  17. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach.

    Science.gov (United States)

    Williamson, Curtis B; Nevers, Douglas R; Hanrath, Tobias; Robinson, Richard D

    2015-12-23

    Realizing the promise of nanoparticle-based technologies demands more efficient, robust synthesis methods (i.e., process intensification) that consistently produce large quantities of high-quality nanoparticles (NPs). We explored NP synthesis via the heat-up method in a regime of previously unexplored high concentrations near the solubility limit of the precursors. We discovered that in this highly concentrated and viscous regime the NP synthesis parameters are less sensitive to experimental variability and thereby provide a robust, scalable, and size-focusing NP synthesis. Specifically, we synthesize high-quality metal sulfide NPs (200 g) relative to the current field of large-scale (0.1-5 g yields) and laboratory-scale (<0.1 g) efforts. Compared to conventional synthesis methods (hot injection with dilute precursor concentration) characterized by rapid growth and low yield, our highly concentrated NP system supplies remarkably controlled growth rates and a 10-fold increase in NP volumetric production capacity (86 g/L). The controlled growth, high yield, and robust nature of highly concentrated solutions can facilitate large-scale nanomanufacturing of NPs by relaxing the synthesis requirements to achieve monodisperse products. Mechanistically, our investigation of the thermal and rheological properties and growth rates reveals that this high concentration regime has reduced mass diffusion (a 5-fold increase in solution viscosity), is stable to thermal perturbations (∼64% increase in heat capacity), and is resistant to Ostwald ripening.

  18. Expression patterns of ubiquitin, heat shock protein 70, alpha-actin and beta-actin over the molt cycle in the abdominal muscle of marine shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cesar, Jose Renato O; Yang, Jinzeng

    2007-05-01

    Crustacean muscle growth is discontinuous due to molt cycle. To characterize molt-related gene expression patterns, we studied the mRNA levels of molecular chaperone-ubiquitin and heat shock protein 70 (Hsp 70) in comparison with muscle protein alpha-actin and beta-actin in marine shrimp Litopenaeus vannamei. Total RNA from abdominal muscle was isolated from 3-month-old animals in six different molt stages. The mRNA levels of target genes were detected by reverse-transcriptase-multiplex PCR and expressed as the ratio to elongation factor-1alpha. Ubiquitin mRNA levels were relatively steady over all stages of the molt cycle. Hsp70 levels were not detectable in early postmolt and late premolt stages, but showed a progressive increase from late postmolt to intermolt stages. Expression levels of alpha-actin gene were lower during postmolt, reached a plateau in intermolt and remained relatively high in premolt stage. Levels of beta-actin increased progressively from postmolt to intermolt, reaching a maximum value in premolt. Therefore, the mRNAs encoding for ubiquitin and Hsp 70 in abdominal muscle did not increase significantly in premolt stages, which is typically associated with claw muscle degradation. Muscle structural alpha-actin and cytoskeletal beta-actin were increased during intermolt and premolt stages, suggesting high muscle growth during these stages in the abdominal muscle of the L. vannamei.

  19. High-concentration-gradient dispersion in porous media : experiments, analysis and approximations

    NARCIS (Netherlands)

    R.J. Schotting; H. Moser; S.M. Hassanizadeh

    1997-01-01

    textabstractVarious experimental and theoretical studies have shown that Fick's law, based on the assumption of a linear relation between solute dispersive mass flux and concentration gradient, is not valid when high concentration gradients are encountered in a porous medium. The value of the macrod

  20. Critical phenomena in ethylbenzene oxidation in acetic acid solution at high cobalt(II) concentrations

    NARCIS (Netherlands)

    Gavrichkov, AA; Zakharov, [No Value

    2005-01-01

    Critical phenomena in ethylbenzene oxidation in an acetic acid solution at high cobalt(ill) concentrations (from 0.01 to 0.2 mol L-1) were studied at 60-90 degrees C by the gasometric (O-2 absorption), spectrophotometric (Co-III accumulation), and chemiluminescence (relative concentration of radical

  1. Whey protein particles modulate mechanical properties of gels at high protein concentrations

    NARCIS (Netherlands)

    Saglam, D.; Venema, P.; Vries, de R.J.; Berg, van den L.; Linden, van der E.

    2014-01-01

    We have studied the influence of dense whey protein particles on the mechanical properties of whey protein isolate (WPI) gels at high protein concentrations (16–22% (w/w)). Incorporation of dense whey protein particles in the gel, while keeping the total protein concentration constant, leads to a co

  2. Rheology of dilute acid hydrolyzed corn stover at high solids concentration

    Science.gov (United States)

    M.R. Ehrhardt; T.O. Monz; T.W. Root; R.K. Connelly; Tim Scott; D.J. Klingenberg

    2010-01-01

    The rheological properties of acid hydrolyzed corn stover at high solids concentration (20–35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction...

  3. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs

    NARCIS (Netherlands)

    Faust, L.; Temmink, B.G.; Zwijnenburg, A.; Kemperman, A.J.B.; Rijnaarts, H.

    2014-01-01

    High-loaded membrane bioreactors (HL-MBRs), i.e. MBRs which are operated at extremely short sludge and hydraulic retention times, can be applied to flocculate and concentrate sewage organic matter. The concentrated organics can be used for energy recovery, or for the production of more valuable

  4. A High-Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications

    Science.gov (United States)

    Piszczor, Michael F., Jr.; Macosko, Robert P.

    2000-01-01

    A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.

  5. Investigating cold gelation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making.

    Science.gov (United States)

    Lu, Y; McMahon, D J; Vollmer, A H

    2016-07-01

    Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient for cheese making, contains ~20% casein with ~70% of serum proteins removed by microfiltration and diafiltration of skim milk, followed by vacuum evaporation. Our objective was to investigate cold gelation properties of recombined concentrated milk (RCM) by mixing thawed frozen HC-MCC and cream under different casein levels, pH, and protein-to-fat ratios, and with addition of sodium citrate or calcium. The HC-MCC was recombined with cream using low shear at 50°C for 30 min, and rheological measurements were conducted. Cold-gelling temperature [the temperature at which storage modulus (G')=loss modulus (G″)] was linearly correlated with casein levels from 8.6 to 11.5% (R(2)=0.71), pH from 6.6 to 7.0 (R(2)=0.96), and addition of sodium citrate from 0 to 0.36mmol/g of casein (R(2)=0.80). At pH 7.0, gelation occurred at 12, 26, and 38°C with 9, 10, and 11% casein, respectively. At pH 6.6, 6.8, and 7.0, RCM with 12% casein gelled at a mean temperature of 12, 26, and 37°C, respectively. Adding calcium chloride at 0.17mmol/g of casein significantly increased cold-gelling temperature from 18 to ≥50°C, whereas no significant change was observed at levels up to 0.12mmol/g of casein. Different protein to fat ratios ranging from 0.8 to 1.2 did not significantly influence gelling temperature. In transmission electron micrographs of RCM with 12% casein, casein micelles were nonspherical and partially dissociated into small protein strands. Upon addition of calcium chloride at 0.21mmol/g of casein, casein micelles were more spherical and retained colloidal structure with the presence of aggregated casein micelles. These gelation processes of RCM with or without addition of trisodium citrate were both reversible. We propose that cold gelation of RCM occurs when protein strands that have been partially released from the casein micelles entangle, restrict their mobility, and form a fine

  6. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.

    Directory of Open Access Journals (Sweden)

    Manisha Menon

    Full Text Available Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.

  7. Potassium double tungstate waveguides with high ytterbium concentration for optical amplification

    NARCIS (Netherlands)

    Yong, Yean-Sheng

    2017-01-01

    In this thesis, the research work concerning high ytterbium concentration potassium double tungstate waveguides catered for optical amplification purpose is presented. The scope of the research work includes the investigation of spectroscopic and optical gain properties in epitaxy layers with

  8. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie N.

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high......-resolution estimates of greenhouse gas fluxes across the soil-atmosphere interface, these high-resolution methods include microsensors for quantification of spatiotemporal concentration dynamics in O2 and N2O at micrometer scales, fiber-optic optodes for long-term continuous point measurements of O2 concentrations...... and peat soils are highly heterogeneous, containing a mosaic of dynamic macropore systems created by both macrofauna and flora leading to distinct spatial and temporal variations in gas concentration on a scale of millimeters and minutes. Applications of these new methodologies allow measurements...

  9. Dynamic reorganization of the actin cytoskeleton [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gaëlle Letort

    2015-10-01

    Full Text Available Cellular processes, including morphogenesis, polarization, and motility, rely on a variety of actin-based structures. Although the biochemical composition and filament organization of these structures are different, they often emerge from a common origin. This is possible because the actin structures are highly dynamic. Indeed, they assemble, grow, and disassemble in a time scale of a second to a minute. Therefore, the reorganization of a given actin structure can promote the formation of another. Here, we discuss such transitions and illustrate them with computer simulations.

  10. Concentration influences on recovery in a high gradient magnetic separation axial filter

    Energy Technology Data Exchange (ETDEWEB)

    Murariu, V.; Rezlescu, N.; Rotariu, O.; Badescu, V. [Inst. of Technical Physics, Iasi (Romania)

    1998-05-01

    The buildup differential equations for the case of a single wire in high gradient magnetic filtration (HGMF)-axial configuration taking into account the suspension concentration are solved. A new equation for the deposit contour surface at different moments and for different suspension concentrations are obtained. The existence of a particulate suspension concentration, for which the radial extension velocity of deposit is maximum, is evidenced. The recovery for an ordered ferromagnetic matrix is calculated. The influence of the solid particle concentration from suspension on the filtration efficiency is presented.

  11. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  12. Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration.

    Directory of Open Access Journals (Sweden)

    Oliver Hoeller

    2016-02-01

    Full Text Available For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3 to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well.

  13. Scanning coherent scattering methods for actinic EUV mask inspection

    Science.gov (United States)

    Ekinci, Y.; Helfenstein, P.; Rajeev, R.; Mochi, I.; Mohacsi, I.; Gobrecht, J.; Yoshitake, S.

    2016-10-01

    Actinic mask inspection for EUV lithography with targeted specifications of resolution, sensitivity, and throughput remains a big hurdle for the successful insertion of EUVL into high volume manufacturing and effective solutions are needed to address this. We present a method for actinic mask inspection based on scanning coherent scattering microscopy. In this method, the mask is scanned with an EUV beam of relatively small spot size and the scattered light is recorded with a pixel detector. Customized algorithms reconstruct the aerial image by iteratively solving the phaseproblem using over-determined diffraction data gathered by scanning across the specimen with a finite illumination. This approach provides both phase and amplitude of actinic aerial images of the mask with high resolution without the need to use high NA (numerical aperture) lenses. Futher, we describe a reflective mode EUV mask scanning lensless imaging tool (RESCAN), which was installed at the XIL-II beamline and later at the SIM beamline of the Swiss Light Source and show reconstructed aerial images down to 10 nm (on-wafer) resolution. As a complementary method, the a-priori knowledge of the sample is employed to identify potential defect sites by analyzing the diffraction patterns. In this method, the recorded diffraction patterns are compared with the die or database data (i.e. previously measured or calculated diffraction data from the defect-free mask layout respectively) and their difference is interpreted as the defect signal. Dynamic software filtering helps to suppress the strong diffraction from defect-free structures and allows registration of faint defects with high sensitivity. Here, we discuss the basic principles of these Fourier domain techniques and its potential for actinic mask inspection with high signal-to-noise ratio and high throughput.

  14. Subcutaneous absorption kinetics of two highly concentrated preparations of recombinant human growth hormone

    DEFF Research Database (Denmark)

    Laursen, Torben; Jørgensen, Jens Otto Lunde; Susgaard, Søren;

    1993-01-01

    Abstract OBJECTIVE: The relative bioavailability of two highly concentrated (12 IU/ml) formulations of biosynthetic human growth hormone (GH) administered subcutaneously was compared. DESIGN: A randomized, crossover study. Conventional GH therapy was withdrawn 72 hours before each study period. T....... CONCLUSIONS: There is no significant difference between the absorption kinetics and short-term metabolic effects of these two highly concentrated formulations of biosynthetic GH. The two formulations are bioequivalent....

  15. Incomplete ion dissociation underlies the weakened attraction between DNA helices at high spermidine concentrations.

    Science.gov (United States)

    Yang, Jie; Rau, Donald C

    2005-09-01

    We have investigated the salt sensitivity of the hexagonal-to-cholesteric phase transition of spermidine-condensed DNA. This transition precedes the resolubilization of precipitated DNA that occurs at high spermidine concentration. The sensitivity of the critical spermidine concentration at the transition point to the anion species and the NaCl concentration indicates that ion pairing of this trivalent ion underlies this unusual transition. Osmotic pressure measurements of spermidine salt solutions are consistent with this interpretation. Spermidine salts are not fully dissociated at higher concentrations. The competition for DNA binding among the fully charged trivalent ion and the lesser charged complex species at higher concentrations significantly weakens attraction between DNA helices in the condensed state. This is contrary to the suggestion that the binding of spermidine at higher concentrations causes DNA overcharging and consequent electrostatic repulsion.

  16. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis.

    Science.gov (United States)

    Zhang, Kun; Shao, Huanhuan; Cao, Qinghua; He, Ming-Xiong; Wu, Bo; Feng, Hong

    2015-02-01

    The ethanologenic bacterium Zymomonas mobilis is usually tolerant to high concentrations of glucose. The addition of sorbitol decreases the lag phase and increases ethanol yield and productivity of the bacteria in high glucose concentrations. The molecular mechanisms of adaptation to high glucose concentrations and the effect of sorbitol are still unclear. In this study, microarray analysis was used to study the global transcriptional adaptation responses of Z. mobilis to high glucose concentrations. A total of 235 genes were differentially expressed when 220 g/L glucose was added with or without 10 mM sorbitol. These genes are involved in diverse aspects of cell metabolism and regulation, including membrane transporters, nitrogen metabolism, and plasmid-encoded genes. However, most differentially expressed genes were downregulated when sorbitol was added. Notably, the transcription of almost all genes involved in the Entner-Doudoroff and ethanol production pathways was not significantly affected. In addition, a prophage and a nitrogen-fixation cluster were significantly induced. These results revealed that Z. mobilis cells responded to high glucose concentrations by regulating the transcriptional levels of genes related to membrane channels and transporters, stress response mechanisms, and metabolic pathways. These data provide insight into the intracellular adaptation responses to high glucose concentrations and reveal strategies to engineer efficient ethanol fermentation in Z. mobilis.

  17. Cloning and sequence analysis of β-actin gene from Aedes albopictus (Diptera: Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Weijie Wang; Xiaobang Hu; Donghui Zhang; Jianhua Jiao; Yan Sun; Lei Ma; Changliang Zhu

    2007-01-01

    Objective: To obtain the complete β-actin gene from Aedes albopictus. Methods: Total RNA was extracted from C6/36 cells. Degenerate primers were designed based on the β-actin sequences of An. gambiae, Ae. aegypti, Cx. pipiens pallens and D.melanogaster. By RT-PCR, the product was amplified, purified, cloned into the pGT vector and sequenced. The β-actin sequence was aligned and phylogenetically analyzed by the BLAST program and the CLUSTAL W program. Results: A sequence of 1132 bp including an open reading frame of 1131 bp was obtained (GenBank DQ657949). The deduced protein had 376 amino acids.Aligned to SWISS-PROT, it exhibited a high level of identity with β-actins from Anopheles, Drosophila and Culex at the amino acid sequence level. Phylogenetic analysis indicated that Ae. albopictus β-actin was much more homologous with invertebrate β-actin than with vertebrate β-actin. Conclusion: The gene may be used as the internal control in the experiments of Ae. albopictus.

  18. AIP1 acts with cofilin to control actin dynamics during epithelial morphogenesis.

    Science.gov (United States)

    Chu, Dandan; Pan, Hanshuang; Wan, Ping; Wu, Jing; Luo, Jun; Zhu, Hong; Chen, Jiong

    2012-10-01

    During epithelial morphogenesis, cells not only maintain tight adhesion for epithelial integrity but also allow dynamic intercellular movement to take place within cell sheets. How these seemingly opposing processes are coordinated is not well understood. Here, we report that the actin disassembly factors AIP1 and cofilin are required for remodeling of adherens junctions (AJs) during ommatidial precluster formation in Drosophila eye epithelium, a highly stereotyped cell rearrangement process which we describe in detail in our live imaging study. AIP1 is enriched together with F-actin in the apical region of preclusters, whereas cofilin displays a diffuse and uniform localization pattern. Cofilin overexpression completely rescues AJ remodeling defects caused by AIP1 loss of function, and cofilin physically interacts with AIP1. Pharmacological reduction of actin turnover results in similar AJ remodeling defects and decreased turnover of E-cadherin, which also results from AIP1 deficiency, whereas an F-actin-destabilizing drug affects AJ maintenance and epithelial integrity. Together with other data on actin polymerization, our results suggest that AIP1 enhances cofilin-mediated actin disassembly in the apical region of precluster cells to promote remodeling of AJs and thus intercellular movement, but also that robust actin polymerization promotes AJ general adhesion and integrity during the remodeling process.

  19. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L.

    Science.gov (United States)

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-05-01

    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  20. EXPERIMENTAL INVESTIGATIONS ON DIFFUSION CHARACTERISTICS OF HIGH CONCENTRATION JETS IN ENVIRONMENTAL CURRENTS

    Institute of Scientific and Technical Information of China (English)

    张燕; 王道增; 樊靖郁

    2002-01-01

    By means of flow visualization and quantitative measurement, the diffusionpattern and concentration distribution characteristics of high concentration jets verticallydischarged into shallow moving waterbody were experimentally investigated in waterchannel. The interactions between the high concentration jets and environmental flowconditions were analysed, and the formulae of impinging point coordinate and transversespread angle are gained from data analysis. Experimental results indicate that the jets showcomplicated flow patterns and diffusion characteristics in near region, which are differentfrom common submerged jets, and spread downstream in the manner of density currents.

  1. Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis.

    Science.gov (United States)

    Conte, Ianina L; Hellen, Nicola; Bierings, Ruben; Mashanov, Gregory I; Manneville, Jean-Baptiste; Kiskin, Nikolai I; Hannah, Matthew J; Molloy, Justin E; Carter, Tom

    2016-02-01

    Weibel-Palade body (WPB)-actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A-MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP-actin interactions can also occur. To evaluate the specific contribution of MyRIP-actin and MyRIP-MyoVa binding in WPB trafficking and Ca(2+)-driven exocytosis, we used EGFP-MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy. We now show that the ability of MyRIP to restrict WPB movement depends upon its actin-binding rather than its MyoVa-binding properties. We also show that, although the role of MyRIP in Ca(2+)-driven exocytosis requires both MyoVa- and actin-binding potential, it is the latter that plays a dominant role. In view of these results and together with the analysis of actin disruption or stabilisation experiments, we propose that the role of MyRIP in regulating WPB trafficking and exocytosis is mediated largely through its interaction with actin rather than with MyoVa.

  2. Nano-assembly of nanodiamonds by conjugation to actin filaments.

    Science.gov (United States)

    Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J

    2016-03-01

    Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed.

  3. Importance of a Lys113-Glu195 intermonomer ionic bond in F-actin stabilization and regulation by yeast formins Bni1p and Bnr1p.

    Science.gov (United States)

    Wen, Kuo-Kuang; McKane, Melissa; Rubenstein, Peter A

    2013-06-28

    Proper actin cytoskeletal function requires actin's ability to generate a stable filament and requires that this reaction be regulated by actin-binding proteins via allosteric effects on the actin. A proposed ionic interaction in the actin filament interior between Lys(113) of one monomer and Glu(195) of a monomer in the apposing strand potentially fosters cross-strand stabilization and allosteric communication between the filament interior and exterior. We interrupted the potential interaction by creating either K113E or E195K actin. By combining the two, we also reversed the interaction with a K113E/E195K (E/K) mutant. In all cases, we isolated viable cells expressing only the mutant actin. Either single mutant cell displays significantly decreased growth in YPD medium. This deficit is rescued in the double mutant. All three mutants display abnormal phalloidin cytoskeletal staining. K113E actin exhibits a critical concentration of polymerization 4 times higher than WT actin, nucleates more poorly, and forms shorter filaments. Restoration of the ionic bond, E/K, eliminates most of these problems. E195K actin behaves much more like WT actin, indicating accommodation of the neighboring lysines. Both Bni1 and Bnr1 formin FH1-FH2 fragment accelerate polymerization of WT, E/K, and to a lesser extent E195K actin. Bni1p FH1-FH2 dramatically inhibits K113E actin polymerization, consistent with barbed end capping. However, Bnr1p FH1-FH2 restores K113E actin polymerization, forming single filaments. In summary, the proposed ionic interaction plays an important role in filament stabilization and in the propagation of allosteric changes affecting formin regulation in an isoform-specific fashion.

  4. Actin Nanobodies Uncover the Mystery of Actin Filament Dynamics in Toxoplasma gondii.

    Science.gov (United States)

    Tardieux, Isabelle

    2017-08-01

    While the intracellular parasite Toxoplasma relies on a divergent actomyosin motor to support unique speeds in directional movement, the dynamics and architecture of parasite actin filaments remain a much-discussed issue. Using actin chromobodies, Periz et al. started to unveil how networks of dynamic F-actin connect Toxoplasma progeny and expand in the replicative vacuole. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Self-organized gels in DNA/F-actin mixtures without crosslinkers: networks of induced nematic domains with tunable density.

    Science.gov (United States)

    Lai, Ghee Hwee; Butler, John C; Zribi, Olena V; Smalyukh, Ivan I; Angelini, Thomas E; Purdy, Kirstin R; Golestanian, Ramin; Wong, Gerard C L

    2008-11-21

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as d(actin) proportional, variantrho(DNA)(-1/2). Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  6. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    Science.gov (United States)

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  7. Plasma Actin, Gelsolin and Orosomucoid Levels after Eccentric Exercise.

    Science.gov (United States)

    Tékus, Éva; Váczi, Márk; Horváth-Szalai, Zoltán; Ludány, Andrea; Kőszegi, Tamás; Wilhelm, Márta

    2017-02-01

    The present study investigated the acute effect of eccentric exercise on blood plasma actin, gelsolin (GSN) and orosomucoid (AGP) levels in untrained and moderately trained individuals, and their correlation with exercise induced muscle damage (EIMD) markers (CK, intensity of muscle soreness and maximal voluntary contraction torque deficit). Healthy physical education students (6 untrained, 12 moderately trained) participated in this research. Actin, GSN, AGP and CK levels were measured in blood plasma at baseline, immediately, 1 h, 6 h and 24 h post-exercise comprising 90 eccentric quadriceps contractions performed on a dynamometer. There was significant time main effect for GSN, AGP, CK and significant difference was found between baseline and the lowest value of post-exercise GSN (p exercise AGP (p exercise and CK activity at 6 h, p exercise, p eccentric exercise do not seem sensitive to training status. The plasma actin level is used as an indicator of injury, however, our results suggest that it is not an accurate marker of EIMD, while plasma GSN concentrations show a better relationship with EIMD and the post-exercise inflammatory process. The elevated plasma AGP and the correlation between GSN and AGP seem to be promising for assessment of exercise-induced muscle injury.

  8. Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes.

    Science.gov (United States)

    Nicchia, Grazia Paola; Rossi, Andrea; Mola, Maria Grazia; Procino, Giuseppe; Frigeri, Antonio; Svelto, Maria

    2008-12-01

    Aquaporin-4 (AQP4) is constitutively concentrated in the plasma membrane of the perivascular glial processes, and its expression is altered in certain pathological conditions associated with brain edema or altered glial migration. When astrocytes are grown in culture, they lose their characteristic star-like shape and AQP4 continuous plasma membrane localization observed in vivo. In this study, we differentiated primary astrocyte cultures with cAMP and lovastatin, both able to induce glial stellation through a reorganization of F-actin cytoskeleton, and obtained AQP4 selectively localized on the cell plasma membrane associated with an increase in the plasma membrane water transport level, but only cAMP induced an increase in AQP4 total protein expression. Phosphorylation experiments indicated that AQP4 in astrocytes is neither phosphorylated nor a substrate of PKA. Depolymerization of F-actin cytoskeleton performed by cytochalasin-D suggested that F-actin cytoskeleton plays a primary role for AQP4 plasma membrane localization and during cell adhesion. Finally, AQP4 knockdown does not compromise the ability of astrocytes to stellate in the presence of cAMP, indicating that astrocyte stellation is independent of AQP4. Copyright 2008 Wiley-Liss, Inc.

  9. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea

    Directory of Open Access Journals (Sweden)

    Ligia Cristina Kalb Souza

    2013-08-01

    Full Text Available Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major, insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis and plants (Phytomonas serpens. A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.

  10. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  11. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  12. Trace element concentrations and gastrointestinal parasites of Arctic terns breeding in the Canadian High Arctic.

    Science.gov (United States)

    Provencher, J F; Braune, B M; Gilchrist, H G; Forbes, M R; Mallory, M L

    2014-04-01

    Baseline data on trace element concentrations are lacking for many species of Arctic marine birds. We measured essential and non-essential element concentrations in Arctic tern (Sterna paradisaea) liver tissue and brain tissue (mercury only) from Canada's High Arctic, and recorded the presence/absence of gastrointestinal parasites during four different phases of the breeding season. Arctic terns from northern Canada had similar trace element concentrations to other seabird species feeding at the same trophic level in the same region. Concentrations of bismuth, selenium, lead and mercury in Arctic terns were high compared to published threshold values for birds. Selenium and mercury concentrations were also higher in Arctic terns from northern Canada than bird species sampled in other Arctic areas. Selenium, mercury and arsenic concentrations varied across the time periods examined, suggesting potential regional differences in the exposure of biota to these elements. For unknown reasons, selenium concentrations were significantly higher in birds with gastrointestinal parasites as compared to those without parasites, while bismuth concentrations were higher in Arctic terns not infected with gastrointestinal parasites.

  13. High serum uric acid concentration predicts poor survival in patients with breast cancer.

    Science.gov (United States)

    Yue, Cai-Feng; Feng, Pin-Ning; Yao, Zhen-Rong; Yu, Xue-Gao; Lin, Wen-Bin; Qian, Yuan-Min; Guo, Yun-Miao; Li, Lai-Sheng; Liu, Min

    2017-08-26

    Uric acid is a product of purine metabolism. Recently, uric acid has gained much attraction in cancer. In this study, we aim to investigate the clinicopathological and prognostic significance of serum uric acid concentration in breast cancer patients. A total of 443 female patients with histopathologically diagnosed breast cancer were included. After a mean follow-up time of 56months, survival was analysed using the Kaplan-Meier method. To further evaluate the prognostic significance of uric acid concentrations, univariate and multivariate Cox regression analyses were applied. Of the clinicopathological parameters, uric acid concentration was associated with age, body mass index, ER status and PR status. Univariate analysis identified that patients with increased uric acid concentration had a significantly inferior overall survival (HR 2.13, 95% CI 1.15-3.94, p=0.016). In multivariate analysis, we found that high uric acid concentration is an independent prognostic factor predicting death, but insufficient to predict local relapse or distant metastasis. Kaplan-Meier analysis indicated that high uric acid concentration is related to the poor overall survival (p=0.013). High uric acid concentration predicts poor survival in patients with breast cancer, and might serve as a potential marker for appropriate management of breast cancer patients. Copyright © 2017. Published by Elsevier B.V.

  14. [When and why treat actinic keratoses?].

    Science.gov (United States)

    Wulf, Hans Christian

    2014-02-03

    Actinic keratoses (AK) are small, inflamed, hyperkeratotic, sunprovoked lesions which may progress to squamous cell carcinoma (SCC). There are two main reasons for treating AK: one is as prophylaxis against SCC, the other is because of cosmetic discomfort, with clothes getting caught in the hyperkeratotic AK. Visible AK and neighbouring invisible AK should be treated. As AK are provoked by UV radiation, protection against UV is essential. This paper comments on a Cochrane review: "Interventions for actinic keratosis" and treatments avaliable in Denmark.

  15. Actin: its cumbersome pilgrimage through cellular compartments.

    Science.gov (United States)

    Schleicher, Michael; Jockusch, Brigitte M

    2008-06-01

    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days' knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin.

  16. Mammalian and malaria parasite cyclase-associated proteins catalyze nucleotide exchange on G-actin through a conserved mechanism.

    Science.gov (United States)

    Makkonen, Maarit; Bertling, Enni; Chebotareva, Natalia A; Baum, Jake; Lappalainen, Pekka

    2013-01-11

    Cyclase-associated proteins (CAPs) are among the most highly conserved regulators of actin dynamics, being present in organisms from mammals to apicomplexan parasites. Yeast, plant, and mammalian CAPs are large multidomain proteins, which catalyze nucleotide exchange on actin monomers from ADP to ATP and recycle actin monomers from actin-depolymerizing factor (ADF)/cofilin for new rounds of filament assembly. However, the mechanism by which CAPs promote nucleotide exchange is not known. Furthermore, how apicomplexan CAPs, which lack many domains present in yeast and mammalian CAPs, contribute to actin dynamics is not understood. We show that, like yeast Srv2/CAP, mouse CAP1 interacts with ADF/cofilin and ADP-G-actin through its N-terminal α-helical and C-terminal β-strand domains, respectively. However, in the variation to yeast Srv2/CAP, mouse CAP1 has two adjacent profilin-binding sites, and it interacts with ATP-actin monomers with high affinity through its WH2 domain. Importantly, we revealed that the C-terminal β-sheet domain of mouse CAP1 is essential and sufficient for catalyzing nucleotide exchange on actin monomers, although the adjacent WH2 domain is not required for this function. Supporting these data, we show that the malaria parasite Plasmodium falciparum CAP, which is entirely composed of the β-sheet domain, efficiently promotes nucleotide exchange on actin monomers. Collectively, this study provides evidence that catalyzing nucleotide exchange on actin monomers via the β-sheet domain is the most highly conserved function of CAPs from mammals to apicomplexan parasites. Other functions, including interactions with profilin and ADF/cofilin, evolved in more complex organisms to adjust the specific role of CAPs in actin dynamics.

  17. Introduction of impermeable actin-staining molecules to mammalian cells by optoporation.

    Science.gov (United States)

    Dhakal, Kamal; Black, Bryan; Mohanty, Samarendra

    2014-10-15

    The selective insertion of foreign materials, such as fluorescent markers or plasmids, into living cells has been a challenging problem in cell biology due to the cell membrane's selective permeability. However, it is often necessary that researchers insert such materials into cells for various dynamical and/or drug delivery studies. This problem becomes even more challenging if the study is to be limited to specific cells within a larger population, since other transfection methods, such as viral transfection and lipofection, are not realizable with a high degree of spatial selectivity. Here, we have used a focused femtosecond laser beam to create a small transient hole in the cellular membrane (optoporation) in order to inject nanomolar concentrations of rhodamine phalloidin (an impermeable dye molecule for staining filamentous actin) into targeted living mammalian cells (both HEK and primary cortical neurons). Following optoporation, the dye bound to the intracellular actin network and rise in fluorescence intensity was observed. Theoretical dynamics of the dye's diffusion is discussed, and numerical simulations of diffusion time constants are found to match well with experimental values.

  18. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    Science.gov (United States)

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  19. Sarcomeric pattern formation by actin cluster coalescence.

    Directory of Open Access Journals (Sweden)

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  20. Effect of Actin Filament on Deformation-Induced Ca2+ Response in Osteoblast-Like Cells

    Science.gov (United States)

    Adachi, Taiji; Murai, Takayuki; Hoshiai, Sodai; Tomita, Yoshihiro

    Under the influence of mechanical environment, bone structure is formed and maintained by adaptive remodeling that involves osteoclastic resorption and osteoblastic formation. In the mechanotransduction system in osteoblasts, it is believed that intracellular calcium plays a fundamental role and cytoskeletal actin filament is a crucial component for the signal transduction process. To clarify the role of actin filament in deformation-induced Ca2+ signaling, osteoblast-like cells (MC3T3-E1) with different actin filament densities controlled by cytochalasin D were subjected to tensile strain in vitro. The change in intracellular Ca2+ concentration labeled by fluo-3 was observed using a confocal laser-scanning microscope. As a result, the disruption of the actin filament was found to significantly suppress the deformation-induced Ca2+ response that was regulated according to the degree of actin filament organization. This result indicates that the actin filament is indispensable for the quantitative regulation of Ca2+ signaling in response to a mechanical stimulus in osteoblasts.

  1. Molecular mechanism of Ena/VASP-mediated actin-filament elongation.

    Science.gov (United States)

    Breitsprecher, Dennis; Kiesewetter, Antje K; Linkner, Joern; Vinzenz, Marlene; Stradal, Theresia E B; Small, John Victor; Curth, Ute; Dickinson, Richard B; Faix, Jan

    2011-02-01

    Ena/VASP proteins are implicated in a variety of fundamental cellular processes including axon guidance and cell migration. In vitro, they enhance elongation of actin filaments, but at rates differing in nearly an order of magnitude according to species, raising questions about the molecular determinants of rate control. Chimeras from fast and slow elongating VASP proteins were generated and their ability to promote actin polymerization and to bind G-actin was assessed. By in vitro TIRF microscopy as well as thermodynamic and kinetic analyses, we show that the velocity of VASP-mediated filament elongation depends on G-actin recruitment by the WASP homology 2 motif. Comparison of the experimentally observed elongation rates with a quantitative mathematical model moreover revealed that Ena/VASP-mediated filament elongation displays a saturation dependence on the actin monomer concentration, implying that Ena/VASP proteins, independent of species, are fully saturated with actin in vivo and generally act as potent filament elongators. Moreover, our data showed that spontaneous addition of monomers does not occur during processive VASP-mediated filament elongation on surfaces, suggesting that most filament formation in cells is actively controlled.

  2. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing

    OpenAIRE

    2012-01-01

    The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional focal adhesions in morphology, subcellular organization, movements, turnover dynamics, and response to b...

  3. Ingenol mebutate gel treatment for actinic cheilitis: report of four cases.

    Science.gov (United States)

    Barrado Solís, Nerea; Molés Poveda, Paula; Lloret Ruiz, César; Pont Sanjuan, Virginia; Velasco Pastor, Manel; Quecedo Estébanez, Esther; Miquel Miquel, Javier

    2015-01-01

    Actinic cheilitis (AC) are premalignant lesions that have an increased risk of malignant transformation. Their treatment, therefore, is essential to prevent carcinogenesis. However, optimal therapy is not well established and different modalities yield variable results. Ingenol mebutate gel has recently been approved by the US Food and Drug Administration for topical treatment of actinic keratosis, with high clearance rates. On the basis of these findings, we report our experience with this drug for the treatment of AC.

  4. An incidence of very high phosphate concentrations in the waters around Andaman Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, C.V.G.; Murty, P.S.N.; Sankaranarayanan, V.N.

    at stations close to coasts; 2) vertical distribution of phosphates in 200 metre column does not appear to correspond to any regular accepted pattern and 3) all the phosphates having the abnormally high phosphate concentration were found to be highly turbid...

  5. The "Le Chatelier's principle"-governed response of actin filaments to osmotic stress.

    Science.gov (United States)

    Ito, Tadanao; Yamazaki, Masahito

    2006-07-13

    Actin filaments inhibit osmotic stress-driven water flow across a semipermeable membrane in proportion to the filament concentration (Ito, T.; Zaner, K. S.; Stossel, T. P. Biophys. J. 1987, 51, 745). When the filaments are cross-linked by F-actin binding protein, filamin A, this flow is stopped completely (Ito, T.; Suzuki, A.; Stossel, T. P. Biophys. J. 1992, 61, 1301). No conventional theory accurately accounts for these results. Here, this response is analyzed by formulating the entropy of the system under osmotic stress. Results demonstrate that the response of the actin filaments to osmotic stress is governed by the Le Chatelier's principle, which states that an external interaction that disturbs the equilibrium brings about processes in the body that tend to reduce the effects of this interaction. In the present case, disrupting equilibrium by osmotic stress brings about a reaction that decreases the chemical potential of water in the F-actin solution, reducing the effect of the applied osmotic disturbance. This decrease in the chemical potential of the water in the F-actin solution is caused by an increase in the chemical potential of F-actin, which is induced by isothermal absorption of heat by F-actin aided by work done by osmotic stress. As a result, F-actin has an inhibitory effect on the osmotic stress-driven water flow, and can even completely stop the flow when it is cross-linked. This is the first report demonstrating that the Le Chatelier's principle applies to the reaction of biopolymers against equilibrium disturbances such as osmotic stress.

  6. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin ...

  7. Influence of Mechanical Activation on Acid Leaching Dephosphorization of High-phosphorus Iron Ore Concentrates

    Institute of Scientific and Technical Information of China (English)

    De-qing ZHU; Hao WANG; Jian PAN; Cong-cong YANG

    2016-01-01

    High pressure roll grinding (HPRG)and ball milling were compared to investigate the influence of me-chanical activation on the acid leaching dephosphorization of a high-phosphorus iron ore concentrate,which was man-ufactured through magnetizing roasting-magnetic separation of high-phosphorus oolitic iron ores.The results indica-ted that when high-phosphorus iron ore concentrates containing 54·92 mass% iron and 0·76 mass% phosphorus were directly processed through acid leaching,iron ore concentrates containing 55·74 mass% iron and 0·33 mass%phosphorus with an iron recovery of 84·64% and dephosphorization of 63·79% were obtained.When high-phosphor-us iron ore concentrates activated by ball milling were processed by acid leaching,iron ore concentrates containing 56·03 mass% iron and 0·21 mass% phosphorus with an iron recovery of 85·65% and dephosphorization of 77·49%were obtained.Meanwhile,when high-phosphorus iron ore concentrates activated by HPRG were processed by acid leaching,iron ore concentrates containing 58·02 mass% iron and 0·10 mass% phosphorus were obtained,with the iron recovery reaching 88·42% and the dephosphorization rate reaching 88·99%.Mechanistic studies demonstrated that ball milling can reduce the particle size,demonstrating a prominent reunion phenomenon.In contrast,HPRG pretreatment contributes to the formation of more cracks within the particles and selective dissociation of iron and P bearing minerals,which can provide the favorable kinetic conditions to accelerate the solid-liquid reaction rate.As such,the crystal structure is destroyed and the surface energy of mineral particles is strengthened by mechanical ac-tivation,further strengthening the dephosphorization.

  8. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach

    KAUST Repository

    Williamson, Curtis B.

    2015-12-23

    © 2015 American Chemical Society. Realizing the promise of nanoparticle-based technologies demands more efficient, robust synthesis methods (i.e., process intensification) that consistently produce large quantities of high-quality nanoparticles (NPs). We explored NP synthesis via the heat-up method in a regime of previously unexplored high concentrations near the solubility limit of the precursors. We discovered that in this highly concentrated and viscous regime the NP synthesis parameters are less sensitive to experimental variability and thereby provide a robust, scalable, and size-focusing NP synthesis. Specifically, we synthesize high-quality metal sulfide NPs (<7% relative standard deviation for Cu2-xS and CdS), and demonstrate a 10-1000-fold increase in Cu2-xS NP production (>200 g) relative to the current field of large-scale (0.1-5 g yields) and laboratory-scale (<0.1 g) efforts. Compared to conventional synthesis methods (hot injection with dilute precursor concentration) characterized by rapid growth and low yield, our highly concentrated NP system supplies remarkably controlled growth rates and a 10-fold increase in NP volumetric production capacity (86 g/L). The controlled growth, high yield, and robust nature of highly concentrated solutions can facilitate large-scale nanomanufacturing of NPs by relaxing the synthesis requirements to achieve monodisperse products. Mechanistically, our investigation of the thermal and rheological properties and growth rates reveals that this high concentration regime has reduced mass diffusion (a 5-fold increase in solution viscosity), is stable to thermal perturbations (64% increase in heat capacity), and is resistant to Ostwald ripening.

  9. Design and Evaluation of the Highly Concentrated Human IgG Formulation Using Cyclodextrin Polypseudorotaxane Hydrogels.

    Science.gov (United States)

    Higashi, Taishi; Tajima, Anna; Ohshita, Naoko; Hirotsu, Tatsunori; Abu Hashim, Irhan Ibrahim; Motoyama, Keiichi; Koyama, Sawako; Iibuchi, Ruriko; Mieda, Shiuhei; Handa, Kenji; Kimoto, Tomoaki; Arima, Hidetoshi

    2015-12-01

    To achieve the potent therapeutic effects of human immunoglobulin G (IgG), highly concentrated formulations are required. However, the stabilization for highly concentrated human IgG is laborious work. In the present study, to investigate the potentials of polypseudorotaxane (PPRX) hydrogels consisting of polyethylene glycol (PEG) and α- or γ-cyclodextrin (α- or γ-CyD) as pharmaceutical materials for highly concentrated human IgG, we designed the PPRX hydrogels including human IgG and evaluated their pharmaceutical properties. The α- and γ-CyDs formed PPRX hydrogels with PEG (M.W. 20,000) even in the presence of highly concentrated human IgG (>100 mg/mL). According to the results of (1)H-NMR, powder X-ray diffraction, and Raman microscopy, the formation of human IgG/CyD PPRX hydrogels was based on physical cross-linking arising from their columnar structures. The release profiles of human IgG from the hydrogels were in accordance with the non-Fickian diffusion model. Importantly, the stabilities of human IgG included into the hydrogels against thermal and shaking stresses were markedly improved. These findings suggest that PEG/CyD PPRX hydrogels are useful to prepare the formulation for highly concentrated human IgG.

  10. Computational defect review for actinic mask inspections

    Science.gov (United States)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram

    2013-04-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The limitation of 1.35 NA posed by water-based lithography has led to the application of various resolution enhancement techniques (RET), for example, use of strong phase-shifting masks, aggressive OPC and sub-resolution assist features, customized illuminators, etc. The adoption of these RET techniques combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for a mask inspection engineer. Inspecting masks under their actinic-aerial image conditions would detect defects that are more likely to print under those exposure conditions. However, this also makes reviewing such defects in their low-contrast aerial images very challenging. On the other hand, inspecting masks under higher resolution inspection optics would allow for better viewing of defects post-inspection. However, such inspections generally would also detect many more defects, including printable and nuisance, thereby making it difficult to judge which are of real concern for printability on wafer. Often, an inspection engineer may choose to use Aerial and/or high resolution inspection modes depending on where in the process flow the mask is and the specific device-layer characteristics of the mask. Hence, a comprehensive approach is needed in handling defects both post-aerial and post-high resolution inspections. This analysis system is designed for the Applied Materials Aera™ mask inspection platform, all data reported was collected using the Aera.

  11. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    Science.gov (United States)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  12. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto (IBS); (BBRI); (UPENN-MED)

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  13. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    Science.gov (United States)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  14. High Concentrating GaAs Cell Operation Using Optical Waveguide Solar Energy System

    Science.gov (United States)

    Nakamura, T.; Case, J. A.; Timmons, M. L.

    2004-01-01

    This paper discusses the result of the concentrating photovoltaic (CPV) cell experiments conducted with the Optical Waveguide (OW) Solar Energy System. The high concentration GaAs cells developed by Research Triangle Institute (RTI) were combined with the OW system in a "fiber-on-cell" configuration. The sell performance was tested up to the solar concentration of 327. Detailed V-I characteristics, power density and efficiency data were collected. It was shown that the CPV cells combined with the OW solar energy system will be an effective electric power generation device.

  15. Photorespiration and carbon concentrating mechanisms: two adaptations to high O2, low CO2 conditions.

    Science.gov (United States)

    Moroney, James V; Jungnick, Nadine; Dimario, Robert J; Longstreth, David J

    2013-11-01

    This review presents an overview of the two ways that cyanobacteria, algae, and plants have adapted to high O2 and low CO2 concentrations in the environment. First, the process of photorespiration enables photosynthetic organisms to recycle phosphoglycolate formed by the oxygenase reaction catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Second, there are a number of carbon concentrating mechanisms that increase the CO2 concentration around Rubisco which increases the carboxylase reaction enhancing CO2 fixation. This review also presents possibilities for the beneficial modification of these processes with the goal of improving future crop yields.

  16. High Voltage Solar Concentrator Experiment with Implications for Future Space Missions - S6a-35

    Science.gov (United States)

    George, I. S. Mehdi P. J.; O'Neill, M.; Matson, R.; Borckschmidt, A.

    2004-12-01

    This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005-meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the "direct drive" of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.

  17. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    M. Orikawa

    2013-10-01

    Full Text Available Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS dewatered sludge. The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic carbon (POC and dissolved organic carbon (DOC. The hydrothermal treatment was investigated under 10-60 min of treatment time, 180-200 °C of temperature, 10-22 %-TS of sewage sludge concentration. The results showed that the DOC in each conditions increased through hydrothermal treatment. The highest DOC obtained was 67 % of total carbon concentration, when the temperature was 180 °C, treatment time was 60 min and sewage sludge concentration was 10 %-TS. Furthermore, the viscosity of treated sewage sludge was decreased by hydrothermal treatment. In batch anaerobic digestion test, methane gas production was confirmed. In addition, this study evaluated the energy balance of this system. Thus, the results of this study indicated that the possibility of application of hydrothermal treatment to high concentrated sewage sludge for anaerobic digestion process. Keywords: anaerobic reaction, hydrothermal treatment, sewage sludge, solubilization

  18. High concentrations of myeloperoxidase in the equine uterus as an indicator of endometritis.

    Science.gov (United States)

    Parrilla-Hernandez, Sonia; Ponthier, Jérôme; Franck, Thierry Y; Serteyn, Didier D; Deleuze, Stéfan C

    2014-04-15

    Intraluminal fluid and excessive abnormal hyperedema are regularly used for the diagnosis of endometritis in the mare, which is routinely confirmed by the presence of neutrophils on endometrial smears. Studies show a relation between neutrophils and myeloperoxidase (MPO), an enzyme contained in and released by neutrophils during degranulation or after cell lysis. This enzyme has been found in many fluids and tissues, and associated with different inflammatory pathologies in the horse. The aims of this study were to assess the presence and concentration of MPO in the equine uterus, and to investigate its relation with neutrophils, and other clinical signs of endometritis. Mares (n = 51) were evaluated for the presence of intraluminal fluid and excessive endometrial edema before breeding, and a small volume lavage and cytology samples were obtained. From 69 cycles, supernatant of the uterine flushes was analyzed with a specific equine MPO ELISA assay to measure MPO concentration. Cytology samples were used for the diagnosis of endometritis. Myeloperoxidase was present in the uterus of all estrus mares in highly variable concentrations. Myeloperoxidase concentrations were significantly (P < 0.05) higher in samples with positive cytologies and in the presence of intraluminal fluid. Occasionally, some samples with negative cytologies showed high MPO concentration, but the opposite was never observed. Cycles presenting hyperedema weren't associated with high concentration of MPO, intraluminal fluid, or positive cytology, making it a poor diagnostic tool of endometritis.

  19. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  20. Dendritic cell podosome dynamics does not depend on the F-actin regulator SWAP-70.

    Directory of Open Access Journals (Sweden)

    Anne Götz

    Full Text Available In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.

  1. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse.

    Science.gov (United States)

    Pérez-Martínez, Manuel; Gordón-Alonso, Mónica; Cabrero, José Román; Barrero-Villar, Marta; Rey, Mercedes; Mittelbrunn, María; Lamana, Amalia; Morlino, Giulia; Calabia, Carmen; Yamazaki, Hiroyuki; Shirao, Tomoaki; Vázquez, Jesús; González-Amaro, Roberto; Veiga, Esteban; Sánchez-Madrid, Francisco

    2010-04-01

    The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.

  2. Actinic inspection of multilayer defects on EUV masks

    Energy Technology Data Exchange (ETDEWEB)

    Barty, A; Liu, Y; Gullikson, E; Taylor, J S; Wood, O

    2005-03-24

    The production of defect-free mask blanks, and the development of techniques for inspecting and qualifying EUV mask blanks, remains a key challenge for EUV lithography. In order to ensure a reliable supply of defect-free mask blanks, it is necessary to develop techniques to reliably and accurately detect defects on un-patterned mask blanks. These inspection tools must be able to accurately detect all critical defects whilst simultaneously having the minimum possible false-positive detection rate. There continues to be improvement in high-speed non-actinic mask blank inspection tools, and it is anticipated that these tools can and will be used by industry to qualify EUV mask blanks. However, the outstanding question remains one of validating that non-actinic inspection techniques are capable of detecting all printable EUV defects. To qualify the performance of non-actinic inspection tools, a unique dual-mode EUV mask inspection system has been installed at the Advanced Light Source (ALS) synchrotron at Lawrence Berkeley National Laboratory. In high-speed inspection mode, whole mask blanks are scanned for defects using 13.5-nm wavelength light to identify and map all locations on the mask that scatter a significant amount of EUV light. In imaging, or defect review mode, a zone plate is placed in the reflected beam path to image a region of interest onto a CCD detector with an effective resolution on the mask of 100-nm or better. Combining the capabilities of the two inspection tools into one system provides the unique capability to determine the coordinates of native defects that can be used to compare actinic defect inspection with visible light defect inspection tools under commercial development, and to provide data for comparing scattering models for EUV mask defects.

  3. Reduction of Temperature in Concentrator Photovoltaic Module Using Coating with High Thermal Emissivity and Conductivity

    Directory of Open Access Journals (Sweden)

    Nakamura Satoshi

    2016-01-01

    Full Text Available The temperature of solar cells considerably increases under light-concentrating operations, and the conversion efficiency of solar cells decreases with increasing temperature. It is very important to reduce the cell temperature in concentrator photovoltaic modules. The thermal radiation layers with high thermal emissivity and thermal conductivity was coated on the aluminum samples which is used for the chassis of concentrator photovoltaic and the effect was evaluated under the conditions with wind. The temperature of sample with coating showed lower temperature than that without coating. In the condition with wind, the coated sample with high thermal emissivity and high thermal conductivity showed the lowest temperature due to the effect of thermal radiation and thermal conduction.

  4. Experimental Study of Sorbitol Production by Zymomonas mobilis in High Sucrose Concentration

    Directory of Open Access Journals (Sweden)

    Rui Sérgio dos Santos Ferreira da Silva

    2004-01-01

    Full Text Available The sorbitol presents several industrial applications and its conventional production is of high cost and low yield. Sorbitol production by Zymomonas mobilis production has attracted attention as both production cost and environmental impact are low. The sorbitol plays an osmo-protective rule so that its production is promoted by high sugar concentrations. This work has evaluated the effect of high sucrose concentration in the sorbitol production. The raise of sucrose concentration from 100 to 300g/ L caused an increase in the sorbitol production from 4,979 to 20,633g/l. Statistic analysis showed that 95,5% in the variation in sorbitol production can be explained.

  5. The ability of Typha domingensis to accumulate and tolerate high concentrations of Cr, Ni, and Zn.

    Science.gov (United States)

    Mufarrege, M M; Hadad, H R; Di Luca, G A; Maine, M A

    2015-01-01

    The tolerance and removal efficiency of Typha domingensis exposed to high concentrations of Cr, Ni, and Zn in single and combined treatments were studied. Sediment and two plants were disposed in each plastic reactor. The treatments were 100 and 500 mg L(-1) of Cr, Ni, and Zn (single solutions); 100 mg L(-1) Cr + Ni + Zn (multi-metal solutions) and 500 mg L(-1) Cr + Ni + Zn (multi-metal solutions); and a control. Even though the concentrations studied were extremely high, simulating an accidental metal dump, the three metals were efficiently removed from water. The highest removal was registered for Cr. The presence of other metals favored Cr and did not favor Ni and Zn removal from water. After 25 days, senescence and chlorosis of plants were observed in Ni and Comb500 treatments, while Cr and Zn only caused growth inhibition. T. domingensis accumulated high metal concentrations in tissues. The roots showed higher metal concentration than submerged parts of leaves. Cr translocation to aerial parts was enhanced by the presence of Ni and Zn. Our results demonstrate that in the case of an accidental dump of high Cr, Ni, and Zn concentrations, a wetland system dominated by T. domingensis is able to retain metals, and the macrophyte is able to tolerate them the time necessary to remove them from water. Thus, the environment will be preserved since the wetland would act as a cushion.

  6. Apoptosis Induced by High Concentrations of Nicotinamide in Tobacco Suspension Cells

    Institute of Scientific and Technical Information of China (English)

    张贵友; 朱瑞宇; 戴尧仁

    2004-01-01

    As an inhibitor of poly(ADP-ribose) polymerase (PARP), nicotinamide has a restraining effect on apoptosis at certain low concentrations. In our present study, apoptosis induced by high concentrations of nicotinamide was observed in tobacco suspension cells. When cells were preincubated with 250 mmol/L nicotinamide for 24 h, the hallmarks of apoptosis were detected, including DNA fragments increasing in size by multiples of 180-200 bp, the condensation and peripheral distribution of nuclear chromatin, and a positive reaction to the TUNEL assay. At the same time, the degradation of PARP and the reduction in the potential of the inner membrane of mitochondria appeared in apoptotic cells induced by high concentrations of nicotinamide. This result indicates that apoptosis induced by high concentrations of nicotinamide is associated with caspase-3-like activity and with the opening of mitochondrial permeability pores. These results partially support the hypothesis that high concentrations of PARP inhibitor could force cells to enter an apoptotic pathway by delay of DNA repair in replicating cells.

  7. Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions

    Science.gov (United States)

    Aubert, Alice H.; Thrun, Michael C.; Breuer, Lutz; Ultsch, Alfred

    2016-01-01

    High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale. PMID:27572284

  8. Experimental studies on resistance characteristics of high concentration red mud in pipeline transport

    Institute of Scientific and Technical Information of China (English)

    WANG Xing; QU Yuan-yuan; HU Wei-wei; CHEN Jie; ZHAO Xue-yi; WU Miao

    2008-01-01

    Red mud will flow in paste form under high pressure during pipeline transport. It belongs to a two-phase flow of materials with high viscosity and a high concentration of non-sedimentation, homogeneous solid-liquids. In pipeline transport, its resistance char-acteristics will be influenced by such factors as grain size, velocity, concentration, density,grain composition and pipe diameter etc.. With the independently developed small-sized tube-type pressure resistance test facility, studied the resistance characteristics of red mud concerning the three influencing factors, paste concentration, velocity and pipe diameter,which attract the most attention in projects. The fine grain size of the red mud is d50=13.02 μm. According to the experimental results, the pressure loss in transport will in-crease along with the increase of velocity and will fall along with the increase of pipe di-ameter. A 1% difference in paste concentration will result in a 50%~100% difference in pipeline resistance loss. These experimental data is hoped to be direct guidance to the design of high concentration and viscous material pipeline transport system.

  9. Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions.

    Science.gov (United States)

    Aubert, Alice H; Thrun, Michael C; Breuer, Lutz; Ultsch, Alfred

    2016-08-30

    High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale.

  10. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting agen

  11. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    Science.gov (United States)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  12. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  13. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A. (UPENN); (Duke); (MRCLMB); (FSU); (Jikei-Med)

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are

  14. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  15. During capacitation in bull spermatozoa, actin and PLC-ζ undergo dynamic interactions.

    Science.gov (United States)

    Mejía-Flores, Itzayana; Chiquete-Félix, Natalia; Palma-Lara, Icela; Uribe-Carvajal, Salvador; de Lourdes Juárez-Mosqueda, María

    2017-09-20

    The migration pattern of sperm-specific phospholipase C-ζ (PLC-ζ) was followed and the role of this migration in actin cytoskeleton dynamics was determined. We investigated whether PLC-ζ exits sperm, opening the possibility that PLC-ζ is the 'spermatozoidal activator factor' (SOAF). As capacitation progresses, the highly dynamic actin cytoskeleton bound different proteins to regulate their location and activity. PLC-ζ participation at the start of fertilization was established. In non-capacitated spermatozoa, PLC-ζ is in the perinuclear theca (PT) and in the flagellum, therefore it was decided to determine whether bovine sperm actin interacts with PLC-ζ to direct its relocation as it progresses from non-capacitated (NC) to capacitated (C) and to acrosome-reacted (AR) spermatozoa. PLC-ζ interacted with actin in NC spermatozoa (100%), PLC-ζ levels decreased in C spermatozoa to 32% and in AR spermatozoa to 57% (P PLC-ζ interaction was twice as high in G-actin (P PLC-ζ was partially released from the cell. It was concluded that actin cytoskeleton dynamics control the migration of PLC-ζ during capacitation and leads to its partial release at AR spermatozoa. It is suggested that liberated PLC-ζ could reach the egg and favour fertilization.

  16. High-concentration zeta potential measurements using light-scattering techniques.

    Science.gov (United States)

    Kaszuba, Michael; Corbett, Jason; Watson, Fraser Mcneil; Jones, Andrew

    2010-09-28

    Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent. Therefore, depending upon the size and optical properties of the particles, many samples will be too concentrated and will require dilution. The ability to measure samples at or close to their neat concentration would be desirable as it would minimize any changes in the zeta potential of the sample owing to dilution. However, the ability to measure turbid samples using light-scattering techniques presents a number of challenges. This paper discusses electrophoretic mobility measurements made on turbid samples at high concentration using a novel cell with reduced path length. Results are presented on two different sample types, titanium dioxide and a polyurethane dispersion, as a function of sample concentration. For both of the sample types studied, the electrophoretic mobility results show a gradual decrease as the sample concentration increases and the possible reasons for these observations are discussed. Further, a comparison of the data against theoretical models is presented and discussed. Conclusions and recommendations are made from the zeta potential values obtained at high concentrations.

  17. High Iridium concentration of alkaline rocks of Deccan and implications to K/T boundary

    Indian Academy of Sciences (India)

    P N Shukla; N Bhandari; Anirban Das; A D Shukla; J S Ray

    2001-06-01

    We report here an unusually high concentration of iridium in some alkali basalts and alkaline rocks of Deccan region having an age of about 65Ma, similar to the age of the Cretaceous-Tertiary boundary. The alkali basalts of Anjar, in the western periphery of Deccan province, have irid-ium concentration as high as 178pg/g whereas the alkaline rocks and basalts associated with the Amba Dongar carbonatite complex have concentrations ranging between 8 and 80 pg/g. Some of these values are more than an order of magnitude higher than the concentration in the tholeiiticbasalts of Deccan, indicating the significance of alkaline magmatism in the iridium inventory at the Cretaceous-Tertiary boundary. Despite higher concentration, their contribution to the global inventory of iridium in the Cretaceous-Tertiary boundary clays remains small. The concentration of iridium in uorites from Amba Dongar was found to be < 30 pg/g indicating that iridium is not incorporated during their formation in hydrothermal activity.

  18. Potential risk of mitomycin Cat high concentrations on peripheral nerve structure

    Institute of Scientific and Technical Information of China (English)

    Tao Sui; Jinhong Zhang; Shihao Du; Changhui Su; Jun Que; Xiaojian Cao

    2014-01-01

    Although the local application of mitomycin C may prevent epidural adhesion after laminectomy, mitomycin C can induce neurotoxicity in optic and acoustic nerves at high concentrations. To determine the safe concentration range for mitomycin C, cotton pads soaked with mitomycin C at different concentrations (0.1, 0.3, 0.5, and 0.7 mg/mL) were immediately applied for 5 minutes to the operation area of rats that had undergone laminectomy at L1. Rat sciatic nerves, instead of dorsal nerves, were used in this study. The results showed that mitomycin C at 0.1-0.5 mg/mL did not damage the structure and function of the sciatic nerve, while at 0.7 mg/mL, mitomycin C signiifcantly reduced the thickness of the sciatic nerve myelin sheath compared with lower concen-trations, though no functional change was found. These experimental ifndings indicate that the local application of mitomycin C at low concentrations is safe to prevent scar adhesion following laminectomy, but that mitomycin C at high concentrations (>0.7 mg/mL) has potential safety risks to peripheral nerve structures.

  19. Vitamin E Concentrations in Adults with HIV/AIDS on Highly Active Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Daniella J. Itinoseki Kaio

    2014-09-01

    Full Text Available HIV/AIDS patients are probably more predisposed to vitamin E deficiency, considering that they are more exposed to oxidative stress. Additionally, there are an extensive number of drugs in the highly active antiretroviral therapy (HAART regimens that may interfere with vitamin E concentrations. The objective of this study was to compare serum concentrations of alpha-tocopherol in 182 HIV/AIDS patients receiving different HAART regimens. The patients were divided into three groups according to regimen: nucleoside analog reverse-transcriptase inhibitors (NRTIs + non-nucleoside analog reverse-transcriptase inhibitors (NNRTIs; NRTIs + protease inhibitors + ritonavir; NRTIs + other classes. Alpha-tocopherol was assessed by high-performance liquid chromatography. Multiple linear regression analysis was used to evaluate the effects of HAART regimen, time of use, and compliance with the regimen on alpha-tocopherol concentrations. Alpha-tocopherol concentrations were on average 4.12 μmol/L lower for the NRTIs + other classes regimen when compared to the NRTIs + NNRTIs regimen (p = 0.037. A positive association (p < 0.001 was observed between alpha-tocopherol and cholesterol concentrations, a finding due, in part, to the relationship between liposoluble vitamins and lipid profile. This study demonstrated differences in alpha-tocopherol concentrations between patients using different HAART regimens, especially regimens involving the use of new drugs. Long-term prospective cohort studies are needed to monitor vitamin E status in HIV/AIDS patients since the beginning of treatment.

  20. Characterization of high-milk-protein powders upon rehydration under various salt concentrations.

    Science.gov (United States)

    Hussain, R; Gaiani, C; Aberkane, L; Scher, J

    2011-01-01

    Rehydration of native micellar casein and native whey isolate protein powders was followed in different ionic environments. Solutions of NaCl and CaCl2 in the concentration range of 0 to 12% (wt%) were used as rehydration media. The rehydration profiles obtained were interpreted in terms of wetting, swelling, and dispersion stages by using a turbidity method. Two behaviors were observed depending on the salt concentration. For native micellar casein powder, a significant change was observed between 3 and 6% NaCl and between 0.75 and 1.5% CaCl2. The first behavior (low salt concentration) presents a typical rehydration profile: quick wetting, swelling, and long dispersion stage. The dispersion stage of the second behavior (high salt concentration) was significantly shortened, indicating a strong modification of the protein backbone. The rehydration of whey protein powder was less influenced by salts. At low salt concentrations, a typical profile for whey powders was observed: wetting with lump formation and no swelling followed by a quick dispersion. At high CaCl2 concentrations, no turbidity stabilization was observed, indicating a possible protein unfolding and denaturation. Additionally, the changes in secondary structures of the 2 proteins upon salt increase were followed by Fourier transform infrared spectroscopy and confirmed the different profiles observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments.

    Science.gov (United States)

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.

  2. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration.

    Science.gov (United States)

    Wang, Qi; Liu, Yongdong; Zhang, Chun; Guo, Fangxia; Feng, Cui; Li, Xiunan; Shi, Hong; Su, Zhiguo

    2017-05-01

    Protein refolding from inclusion bodies (IBs) often encounters a problem of low recovery at high protein concentration. In this study, we demonstrated that high hydrostatic pressure (HHP) could simultaneously achieve high refolding concentration and high refolding yield for IBs of recombinant human ciliary neurotrophic factor (rhCNTF), a potential therapeutic for neurodegenerative diseases. The use of dilution refolding obtained 18% recovery at 3 mg/mL, even in the presence of 4 M urea. In contrast, HHP refolding could efficiently increase the recovery up to almost 100% even at 4 mg/mL. It was found that in the dilution, hydrophobic aggregates were the off-path products and their amount increased with the protein concentration. However, HHP could effectively minimize the formation of hydrophobic aggregates, leading to almost complete conversion of the rhCNTF IBs to the correct configuration. The stable operation range of concentration is 0.5-4.0 mg/mL, in which the refolding yield was almost 100%. Compared with the literatures where HHP failed to increase the refolding yield beyond 90%, the reason could be attributed to the structural difference that rhCNTF has no disulfide bond and is a monomeric protein. After purification by one-step of anionic chromatography, the purity of rhCNTF reached 95% with total process recovery of 54.1%. The purified rhCNTF showed similar structure and in vitro bioactivity to the native species. The whole process featured integration of solubilization/refolding, a high refolding yield of 100%, a high concentration of 4 mg/mL, and a simple chromatography to ensure a high productivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. High Frequency Measurements of Methane Concentrations and Carbon Isotopes at a Marsh and Landfill

    Science.gov (United States)

    Mortazavi, B.; Wilson, B.; Chanton, J.; Eller, K.; Dong, F.; Baer, D. S.; Gupta, M.; Dzwonkowski, B.

    2012-12-01

    High frequency measurements of methane concentrations and carbon isotopes can help constrain the source strengths of methane emitted to the atmosphere. We report here methane concentrations and 13C values measured at 0.5 Hz with cavity enhanced laser absorption spectrometers (Los Gatos Research) deployed at a saltmarsh in Alabama and a landfill in Florida. Methane concentrations and 13C at the saltmarsh were monitored over a 2.5 day time period at 2 m, 0.5 m above the ground as well as from the outflow of a flow-through (2 L) chamber placed on the Spartina alterniflora dominated marsh. A typical measurement cycle included regular samples from two tanks of known methane concentrations and isotopic values and from ambient air samples. Over the 2.5-day measurement period methane concentrations and isotopic ratios at 2 m averaged 1.85 ppm and -43.57‰ (±0.34, 1 SE), respectively. The concentration and isotopic values from the chamber outflow varied from 1.92 to 5.81 ppm and -38.5 to -59.3‰, respectively. Methane flux from the marsh ranged from undetectable to 3.6 mgC m-2hr-1, with high fluxes measured during low tide. The 13δCH4 of the emitted CH4 from the marsh, determined from a mass balance equation using the chamber inflow and outflow concentration and isotopic values ranged from -62.1 to -93.9‰ and averaged -77‰ (±1.25, 1SE). At the landfill ambient methane concentrations and 13C ratios measured over multiple days varied from 4.25 to 11.91 ppm and from -58.81 to -45.12‰, respectively. At higher methane concentrations the δ13C of CH4 was more depleted consistent with previously observed relationship at this site made by more traditional techniques. Over a 30-minute measurement period CH4 concentrations at the landfill could vary by as much as 15 ppm. The high frequency continuous optical measurements with field-deployed instruments provide us with an unprecedented temporal resolution of CH4 concentrations and isotopic ratios. These measurements will

  4. Lysozyme refolding at high concentration by dilution and size-exclusion chromatography

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This study of renaturation by dilution and size exclusion chromatography (SEC) addition of urea to improve yield as well as the initial and final protein concentrations showed that although urea decreased the rate of lysozyme refolding, it could suppress protein aggregation to sustain the pathway of correct refolding at high protein concentration; and that there existed an optimum urea concentration in renaturation buffer. Under the above conditions, lysozyme was successfully refolded from initial concentration of up to 40 mg/mL by dilution and 100 mg/mL by SEC, with the yield of the former being more than 40% and that of the latter being 34.8%. Especially, under the condition of 30 min interval time, i.e. τ>2(tR2-tR1), the efficiency was increased by 25% and the renaturation buffer could be recycled for SEC refolding in continuous operation of downstream process.

  5. Potential of membrane distillation for production of high quality fruit juice concentrate.

    Science.gov (United States)

    Onsekizoglu Bagci, Pelin

    2015-01-01

    Fruit juices are generally concentrated in order to improve the stability during storage and to reduce handling, packaging, and transportation costs. Thermal evaporation is the most widely used technique in industrial fruit juice concentrate production. In addition to high energy consumption, a large part of the characteristics determining the quality of the fresh juice including aroma, color, vitamins, and antioxidants undergoes remarkable alterations through the use of high operation temperatures. Increasing consumer demand for minimally or naturally processed stable products able to retain as much possible the uniqueness of the fresh fruit has engendered a growing interest for development of nonthermal approaches for fruit juice concentration. Among them, membrane distillation (MD) and its variants have attracted much attention for allowing very high concentrations to be reached under atmospheric pressure and temperatures near ambient temperature. This review will provide an overview of the current status and recent developments in the use of MD for concentration of fruit juices. In addition to the most basic concepts of MD variants, crucial suggestions for membrane selection and operating parameters will be presented. Challenges and future trends for industrial adaptation taking into account the possibility of integrating MD with other existing processes will be discussed.

  6. Investigating DOC export dynamics using high-frequency instream concentration measurements

    Science.gov (United States)

    Oosterwoud, Marieke; Keller, Toralf; Musolff, Andreas; Frei, Sven; Park, Ji-Hyung; Fleckenstein, Jan H.

    2014-05-01

    Being able to monitor DOC concentrations using in-situ high frequency measurements makes it possible to better understand concentration-discharge behavior under different hydrological conditions. We developed a UV-Vis probe setup for modified/adapted use under field conditions. The quasi mobile probe setup allows a more flexible probe deployment. New or existing monitoring sites can easily be equipped for quasi-continuous monitoring or measurements can be performed at changing locations, without the need for additional infrastructure. We were able to gather high frequency data on DOC dynamics for one year in two streams in the Harz mountains in Germany. It proved that obtaining accurate DOC concentrations from the UV-Vis probes required frequent maintenance and probe calibration. The advantage of the setup over standard monitoring protocols becomes evident when comparing net exports over a year. In addition to mass improved balance calculations the high-frequency measurements can reveal intricate hysteretic relationships between discharge and concentrations that can provide valuable insights into the hydrologic dynamics and mechanisms that govern the delivery of DOC to the receiving waters. Measurements with similar probes from two additional catchments in Southern Germany and South Korea will be used to illustrate different discharge-concentration relationships and what can be learned from them about the hydrologic mechanisms that control the dynamics of DOC export.

  7. Performance of solmacs, a high PV solar concentrator with efficient optics

    Science.gov (United States)

    Thibert, T.; Hellin, M.-L.; Loicq, J.; Mazy, E.; Jacques, L.; Verstraeten, D.; Gillis, J.-M.; Languy, F.; Emmerechts, C.; Beeckman, E.; Habraken, S.; Lecat, J.-H.

    2012-10-01

    A new solar panel with high concentration photovoltaic technology (x700) has been designed, prototyped and tested in the SOLMACS project. The quality of concentrating optics is a key factor for high module efficiency. Therefore new dedicated PMMA Fresnel lenses were studied and produced by injection molding. Lens design, material and production process were optimized to achieve a high optical yield of 86%. Thorough lens performance assessment in optical laboratory was completed with lifetime UV aging tests. Another important aspect is the thermal control of the hot spot created under the solar cell that receives the concentrated flux of 700 Suns. A dedicated heat spreader was developed to achieve passive thermal control with minimum mass and cost. This was supported by thermal models and tests at both cell and module level. 35% triple junction cells were implemented in the module. Micro-assembly technologies were used for the cell packaging and electrical connections. In support to the research, a continuous solar simulator was designed and built to assess the system performance, both at component and module level. The concentrator developments were integrated in a prototype and tested both indoor with the simulator and outdoor on the CSL solar test platform. The overall efficiency of the PV concentrator module is 28.5%.

  8. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Directory of Open Access Journals (Sweden)

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  9. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  10. The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms.

    Directory of Open Access Journals (Sweden)

    Jayabalan M Joseph

    Full Text Available Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps. To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group. According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8 as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes.

  11. Plant villins:Versatile actin regulatory proteins

    Institute of Scientific and Technical Information of China (English)

    Shanjin Huang; Xiaolu Qu; Ruihui Zhang

    2015-01-01

    Regulation of actin dynamics is a central theme in cel biology that is important for different aspects of cel physiology. Vil in, a member of the vil in/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Vil ins contain six gelsolin homology domains (G1–G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant vil ins are expressed widely, implying that plant vil ins play a more general role in regulating actin dynamics. Some plant vil ins have a defined role in modifying actin dynamics in the pol en tube;most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant vil ins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cel s. In this review, we focus on discussing the biochemical activities and modes of regulation of plant vil ins. Here, we present current understand-ing of the functions of plant vil ins. Final y, we highlight some of the key unanswered questions regarding the functions and regulation of plant vil ins for future research.

  12. Inhibition effects of high calcium concentration on anaerobic biological treatment of MSW leachate.

    Science.gov (United States)

    Xia, Yi; He, Pin-Jing; Pu, Hong-Xia; Lü, Fan; Shao, Li-Ming; Zhang, Hua

    2016-04-01

    With the increasing use of municipal solid waste incineration (MSWI) and more stringent limits on landfilling of organic waste, more MSWI bottom ash is being landfilled, and the proportion of inorganic wastes in landfills is increasing, causing the increased Ca concentrations in landfill leachate. In this research, the inhibition effect of Ca concentration on the anaerobic treatment of landfill leachate was studied using a biochemical methane potential experiment. Slight inhibition of methane production occurred when the addition of Ca concentration was less than 2000 mg/L. When the addition of Ca concentration was between 6000 and 8000 mg/L, methane production was significantly reduced (to 29.4-34.8 % of that produced by the BLK reactor), and the lag phase was increased from 8.55 to 16.32 d. Moreover, when the dosage of Ca concentration increased from zero to 8000 mg/L, reductions in solution Ca concentration increased from 929 to 2611 mg/L, and the proportion of Ca in the residual sludge increased from 22.58 to 46.87 %. Based on the results, when the dosage of Ca concentration was less than 4000 mg/L, the formation of Ca precipitates on the surface of sludge appeared to prevent mass transfer and was the dominant reason for the reduction in methane production and sludge biomass. At higher Ca concentrations (6000-8000 mg/L), the severe inhibition of methane production appeared to be caused by the toxic effect of highly concentrated Ca on sludge as well as mass transfer blockage.

  13. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  14. Self-assembling semicrystalline polymer into highly ordered, microscopic concentric rings by evaporation.

    Science.gov (United States)

    Byun, Myunghwan; Hong, Suck Won; Zhu, Lei; Lin, Zhiqun

    2008-04-01

    A drop of semicrystalline polymer, poly(ethylene oxide) (PEO), solution was placed in a restricted geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Upon solvent evaporation from the sphere-on-flat geometry, microscopic concentric rings of PEO with appropriate high molecular weight were produced via controlled, repetitive pinning ("stick") and depinning ("slip") cycles of the contact line. The evaporation-induced concentric rings of PEO exhibited a fibrillar-like surface morphology. Subsequent isothermal crystallization of rings at 40 and 58 degrees C led to the formation of multilayer of flat-on lamellae (i.e., spiral morphology). In between adjacent spirals, depletion zones were developed during crystallization, as revealed by AFM measurements. The present highly ordered, concentric PEO rings may serve as a platform to study cell adhesion and motility, neuron guidance, cell mechanotransduction, and other biological processes.

  15. Chlorinated pesticides (2,4-D and DDT) biodegradation at high concentrations using immobilized Pseudomonas fluorescens.

    Science.gov (United States)

    Santacruz, Germán; Bandala, Erick R; Torres, Luis G

    2005-01-01

    Degradation of two chlorinated pesticides (2,4-D and DDT) using a 54-mL glass column packed with tezontle (a low-cost basaltic scoria) was tested. Bacteria were cultured in YPG (yeast, peptone, and glucose) liquid medium at 32 degrees C. The rich medium was pumped during 24 h through the column to inoculate it. Later, the wasted medium was discharged and the pesticide added. Optical densities, TOC, and pesticide concentration were determined. Pesticide removals for 2,4-D (with initial concentration between 100 and 500 mg/L) were about 99%. DDT removal (at initial concentration of up to 150 mg/L) was as high as 55-99%. TOC removals for 2,4-D was in the 36-87% interval, whereas for DDT they were as high as 36-78%.

  16. A method for analyzing on-line video images of crystallization at high-solid concentrations

    Institute of Scientific and Technical Information of China (English)

    Jian Wan; Cai Y.Ma; Xue Z.Wang

    2008-01-01

    Recent research has demonstrated that on-line video imaging is a very promising technique for monitoring crystallization processes. The bottleneck in applying the technique for real-time closed-loop control is considered as image analysis that needs to be robust, fast and able to handle varied image qualities due to temporal variations of operating conditions such as mixing and solid concentrations. Image analysis at high-solid concentrations turns out to be extremely challenging because crystals tend to overlap or attach to each other and the boundaries between the crystals are usually ambiguous. This paper presents an image segmentation algorithm that can effectively deal with images taken at high-solid concentrations. The method segments crystals attached to each other along the mostly related concave points on the contours of crystal blocks. The detailed procedure is introduced with application to crystallization of L-glutamic acid in a hot-stage reactor.

  17. Highly concentrated phenolic wastewater treatment by heterogeneous and homogeneous photocatalysis: mechanism study by FTIR-ATR.

    Science.gov (United States)

    Araña, J; Tello-Rendón, E; Doña-Rodríguez, J M; Campo, C V; Herrera-Melidán, J A; González-Díaz; Pérez-Peña, J

    2001-01-01

    The degradation of high phenol concentrations (1 g/L) in water solutions by TiO2 photocatalysis and the photo-Fenton reaction has been studied. From the obtained data it may be suggested that degradation of phenol by TiO2-UV takes place onto the catalyst surface by means of peroxo-compounds formation. At low phenol concentrations other mechanism, the insertion of OH. radicals, may be favored. On the other hand, highly concentrated phenol aqueous solutions treatment by the photo-Fenton reaction gives rise to the formation of polyphenolic polymers. These seem to reduce the process rate. Degradation intermediates have been identified by HPLC and FTIR. The FTIR study of the catalyst surface has shown infrared bands attributable to different chemisorbed peroxo-compounds, formates, ortho-formates and carboxylates that can inactivate the catalyst.

  18. Platelet derived growth factor (PDGF) contained in Platelet Rich Plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton.

    Science.gov (United States)

    Casati, Lavinia; Celotti, Fabio; Negri-Cesi, Paola; Sacchi, Maria Cristina; Castano, Paolo; Colciago, Alessandra

    2014-01-01

    Platelet-rich plasma (PRP) is a platelet concentrate in a small volume of plasma. It is highly enriched in growth factors able to stimulate the migration and growth of bone-forming cells. PRP is often used in clinical applications, as dental surgery and fracture healing. Platelet derived growth factor (PDGF), is highly concentrated in PRP and it was shown in our previous studies to provide the chemotactic stimulus to SaOS-2 osteoblasts to move in a microchemotaxis assay. Aim of the present studies is to analyze the effects of a PRP pretreatment (short time course: 30-150 min) of SaOS-2 cells with PRP on the organization of actin cytoskeleton, the main effector of cell mobility. The results indicate that a pretreatment with PRP increases chemokinesis and chemotaxis and concomitantly induces the organization of actin microfilaments, visualized by immunocytochemistry, in a directionally elongated phenotype, which is characteristic of the cells able to move. PRP also produces a transient increase in the expression of PGDF α receptor. This reorganization is blocked by the immunoneutralization of PDGF demonstrating the responsibility of this growth factor in triggering the mechanisms responsible for cellular movements.

  19. High School and Employment Experiences of Vocational and Nonvocational Concentrators of the Idaho High School Graduating Class of 1983.

    Science.gov (United States)

    Riesenberg, Lou E.; Stenberg, Laurie A.

    1992-01-01

    Five years after graduation, responses from 519 nonvocational and 212 vocational Idaho graduates and 317 of their employers found no differences in satisfaction with curriculum; 40% nonvocational and 33% vocational jobs not related to high school plans; 89% nonvocational, 80% vocational concentrators satisfied with jobs; and no significant…

  20. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition

    Directory of Open Access Journals (Sweden)

    Dan Luo

    2017-06-01

    Full Text Available To understand the effects of niacin on the ruminal microbial ecology of cattle under high-concentrate diet condition, Illumina MiSeq sequencing technology was used. Three cattle with rumen cannula were used in a 3 × 3 Latin-square design trial. Three diets were fed to these cattle during 3 periods for 3 days, respectively: high-forage diet (HF; forage-to-concentrate ratio = 80:20, high-concentrate diet (HC; forage-to-concentrate ratio = 20:80, and HC supplemented with 800 mg/kg niacin (HCN. Ruminal pH was measured before feeding and every 2 h after initiating feeding. Ruminal fluid was sampled at the end of each period for microbial DNA extraction. Overall, our findings revealed that subacute ruminal acidosis (SARA was induced and the α-diversity of ruminal bacterial community decreased in the cattle of HC group. Adding niacin in HC could relieve the symptoms of SARA in the cattle but the ruminal pH value and the Shannon index of ruminal bacterial community of HCN group were still lower than those of HF group. Whatever the diet was, the ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes and Proteobacteria. High-concentrate diet significantly increased the abundance of Prevotella, and decreased the abundance of Paraprevotella, Sporobacter, Ruminococcus and Treponema than HF. Compared with HC, HCN had a trend to decrease the percentage of Prevotella, and to increase the abundance of Succiniclasticum, Acetivibrio and Treponema. Increasing concentrate ratio could decrease ruminal pH value, and change the ruminal microbial composition. Adding niacin in HC could increase the ruminal pH value, alter the ruminal microbial composition.

  1. 509-45-1: A C. annuum Pepper germplasm containing high concentrations of capsinoids

    Science.gov (United States)

    This publication reports the public release of pepper (Capsicum annuum) germplasm ‘509-45-1’. Pepper germplasm 509-45-1 is a small-fruited, non-pungent single plant selection from PI 645509. Fruit of ‘509-45-1’ contain high concentrations of capsinoids [capsiate ((4-hydroxy-3-methoxybenzyl (E)-8...

  2. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  3. Low-Frequency Dielectric Dispersion of Highly Concentrated Spherical Particles in an Electrolyte Solution

    Institute of Scientific and Technical Information of China (English)

    倪福生; 顾国庆; 陈康民

    2002-01-01

    We deal with the problem of calculating the effective dielectric dispersion and electrical conductivity of colloidaldispersions. A comparison of the theoretical calculation of first principles with the experimental data of Schwanshows that our technique proposed here is no longer restricted to dilute solutions and is very effective for studyingthe dielectric properties of colloids with highly concentrated charged spherical particles in an electrolyte solution.

  4. Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations

    NARCIS (Netherlands)

    Härdin, H.M.; Zagaris, A.; Krab, K.; Westerhoff, H.V.

    2009-01-01

    Much of enzyme kinetics builds on simplifications enabled by the quasi-steady-state approximation and is highly useful when the concentration of the enzyme is much lower than that of its substrate. However, in vivo, this condition is often violated. In the present study, we show that, under conditio

  5. Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2016-01-01

    A continuum model is established for numerical studies of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle...

  6. Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, N.J.

    1998-10-21

    This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

  7. Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments.

    Science.gov (United States)

    Wan, Yongshan; Wan, Lei; Li, Yuncong; Doering, Peter

    2017-05-15

    Understanding anthropogenic and hydro-climatic influences on nutrient concentrations and export from highly managed catchments often necessitates trend detection using long-term monitoring data. This study analyzed the temporal trend (1979-2014) of total nitrogen (TN) and total phosphorus (TP) concentrations and export from four adjacent coastal basins in south Florida where land and water resources are highly managed through an intricate canal network. The method of integrated seasonal-trend decomposition using LOESS (LOcally weighted regrESSion) was employed for trend detection. The results indicated that long-term trends in TN and TP concentrations (increasing/decreasing) varied with basins and nutrient species, reflecting the influence of basin specific land and water management practices. These long-term trends were intervened by short-term highs driven by high rainfall and discharges and lows associated with regional droughts. Seasonal variations in TP were more apparent than for TN. Nutrient export exhibited a chemostatic behavior for TN from all the basins, largely due to the biogenic nature of organic N associated with the ubiquity of organic materials in the managed canal network. Varying degrees of chemodynamic export was present for TP, reflecting complex biogeochemical responses to the legacy of long-term fertilization, low soil P holding capacity, and intensive stormwater management. The anthropogenic and hydro-climatic influences on nutrient concentration and export behavior had great implications in nutrient loading abatement strategies for aquatic ecosystem restoration of the downstream receiving waterbody. Published by Elsevier Ltd.

  8. Interculturalism in Italian Primary Schools with a High Concentration of Immigrant Students

    Science.gov (United States)

    Catarci, Marco

    2013-01-01

    The present article focuses on quantitative research carried out on a statistically representative sample of Italian primary schools with a high concentration of immigrant students. Research data show that schools with a higher number of immigrant students offer a greater number and a wider variety of intercultural initiatives. The presence of…

  9. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic enzymes

  10. Transient Dynamics of Fluoride-Based High Concentration Erbium/Cerium Co-Doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    S. S-H. Yam; Y. Akasaka; Y. Kubota; R. Huang; D. L. Harris; J. Pan

    2003-01-01

    We designed and evaluated a fluoride-based high concentration erbium/ cerium co-doped fiber amplifier. It is suitable for Metropolitan Area Networks due to faster transient, flatter (unfiltered) gain, smaller footprint and gain excursion than its silica-based counterpart.

  11. Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations

    NARCIS (Netherlands)

    Härdin, H.M.; Zagaris, A.; Krab, K.; Westerhoff, H.V.

    2009-01-01

    Much of enzyme kinetics builds on simplifications enabled by the quasi-steady-state approximation and is highly useful when the concentration of the enzyme is much lower than that of its substrate. However, in vivo, this condition is often violated. In the present study, we show that, under

  12. Coherence and anticoherence resonance in high-concentration erbium-doped fiber laser

    OpenAIRE

    Sergeyev, Sergey; O'Mahoney, Kieran; Popov, Sergei; Friberg, Ari T.

    2010-01-01

    We report an experimental study of low-frequency (~10 kHz) self-pulsing of the output intensity in a high- concentration erbium-doped fiber laser. We suggest that the fast intensity fluctuations caused by multimode and polarization instabilities play the role of an external noise source, leading to low-frequency auto-oscillations through a coherence resonance scenario.

  13. Low powdered activated carbon concentrations to improve MBR sludge filterability at high salinity and low temperature

    NARCIS (Netherlands)

    Remy, M.J.J.; Temmink, B.G.; Brink, van den P.; Rulkens, W.H.

    2011-01-01

    Previous research has demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactor (MBRs). This effect was related to stronger flocs which are less sensitive to shear. Low temperature and high salt concentration ar

  14. Mapping the Life Satisfaction of Adolescents in Hong Kong Secondary Schools with High Ethnic Concentration

    Science.gov (United States)

    Yuen, Yuet Mui Celeste; Lee, Moosung

    2016-01-01

    The present study aims to map the life satisfaction of adolescents from ethnic minority/immigrant backgrounds in schools with high concentrations of co-ethnic peers by comparing them with their mainstream counterparts in Hong Kong. The life satisfaction of 1,522 students was measured by the validated Multidimensional Students' Life Satisfaction…

  15. [Some properties of complexes formed by small heat shock proteins with denatured actin].

    Science.gov (United States)

    Pivovarova, A V; Chebotareva, N A; Guseev, N B; Levitskiĭ, D I

    2008-01-01

    We applied different methods to analyze the effects of the recombinant wild-type small heat shock protein with an apparent molecular mass of 27 kD (Hsp27-wt) and its S15,78,82D mutant (Hsp27-3D), which mimics the naturally occurring phosphorylation of this protein, on the thermal denaturation and aggregation of F-actin. It has been shown that, at the weight ratio of Hsp27/actin equal to 1/4, both Hsp27-wt and Hsp27-3D do not affect the thermal unfolding of F-actin but effectively prevent the aggregation of F-actin by forming soluble complexes with denatured actin. The formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. It is known that Hsp27-wt forms high-molecular-mass oligomers, whereas Hsp27-3D forms small dimers or tetramers. However, the complexes formed by Hsp27-wt and Hsp27-3D with denatured actin did not differ in their size, as measured by dynamic light scattering, and demonstrated the same hydrodynamic radius of 17-18 nm. On the other hand, the sedimentation coefficients of these complexes were distributed within the range 10-45 S in the case of Hsp27-3D and 18-60 S in the case of Hsp27-wt. Thus, the ability of Hsp27 to form soluble complexes with denatured actin does not significantly depend on the initial oligomeric state of Hsp27.

  16. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules.

    Science.gov (United States)

    Chun, Jong T; Limatola, Nunzia; Vasilev, Filip; Santella, Luigia

    2014-08-01

    We previously demonstrated that many aspects of the intracellular Ca(2+) increase in fertilized eggs of starfish are significantly influenced by the state of the actin cytoskeleton. In addition, the actin cytoskeleton appeared to play comprehensive roles in modulating cortical granules exocytosis and sperm entry during the early phase of fertilization. In the present communication, we have extended our work to sea urchin which is believed to have bifurcated from the common ancestor in the phylogenetic tree some 500 million years ago. To corroborate our earlier findings in starfish, we have tested how the early events of fertilization in sea urchin eggs are influenced by four different actin-binding drugs that promote either depolymerization or stabilization of actin filaments. We found that all the actin drugs commonly blocked sperm entry in high doses and significantly reduced the speed of the Ca(2+) wave. At low doses, however, cytochalasin B and phalloidin increased the rate of polyspermy. Overall, certain aspects of Ca(2+) signaling in these eggs were in line with the morphological changes induced by the actin drugs. That is, the time interval between the cortical flash and the first Ca(2+) spot at the sperm interaction site (the latent period) was significantly prolonged in the eggs pretreated with cytochalasin B or latrunculin A, whereas the Ca(2+) decay kinetics after the peak was specifically attenuated in the eggs pretreated with jasplakinolide or phalloidin. In addition, the sperm interacting with the eggs pretreated with actin drugs often generated multiple Ca(2+) waves, but tended to fail to enter the egg. Thus, our results indicated that generation of massive Ca(2+) waves is neither indicative of sperm entry nor sufficient for cortical granules exocytosis in the inseminated sea urchin eggs, whereas the structure and functionality of the actin cytoskeleton are the major determining factors in the two processes.

  17. The impact of tropomyosins on actin filament assembly is isoform specific.

    Science.gov (United States)

    Janco, Miro; Bonello, Teresa T; Byun, Alex; Coster, Adelle C F; Lebhar, Helene; Dedova, Irina; Gunning, Peter W; Böcking, Till

    2016-07-01

    Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules.

  18. Differential remodeling of actin cytoskeleton architecture by profilin isoforms leads to distinct effects on cell migration and invasion.

    Science.gov (United States)

    Mouneimne, Ghassan; Hansen, Scott D; Selfors, Laura M; Petrak, Lara; Hickey, Michele M; Gallegos, Lisa L; Simpson, Kaylene J; Lim, James; Gertler, Frank B; Hartwig, John H; Mullins, R Dyche; Brugge, Joan S

    2012-11-13

    Dynamic actin cytoskeletal reorganization is integral to cell motility. Profilins are well-characterized regulators of actin polymerization; however, functional differences among coexpressed profilin isoforms are not well defined. Here, we demonstrate that profilin-1 and profilin-2 differentially regulate membrane protrusion, motility, and invasion; these processes are promoted by profilin-1 and suppressed by profilin-2. Compared to profilin-1, profilin-2 preferentially drives actin polymerization by the Ena/VASP protein, EVL. Profilin-2 and EVL suppress protrusive activity and cell motility by an actomyosin contractility-dependent mechanism. Importantly, EVL or profilin-2 downregulation enhances invasion in vitro and in vivo. In human breast cancer, lower EVL expression correlates with high invasiveness and poor patient outcome. We propose that profilin-2/EVL-mediated actin polymerization enhances actin bundling and suppresses breast cancer cell invasion.

  19. Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation.

    Science.gov (United States)

    Guo, Lihao; Zhang, Jian; Hu, Fengxian; Dy Ryu, Dewey; Bao, Jie

    2013-10-01

    Consolidated bioprocessing (CBP) of Jerusalem artichoke tuber (Jat) for ethanol production is one of the most promising options for an alternate biofuel technology development. The technical barriers include the weak saccharolytic enzyme (inulinase) activity of the fermentation strain, and the well mixing of the high viscous fermentation slurry at the highly concentrated Jat loading. In this study, Saccharomyces cerevisiae DQ1 was found to produce relatively large amount of inulinase for hydrolysis of inulin in Jat, and the helical ribbon stirring bioreactor used provided well mixing performance under the high Jat loading. Even a highly concentrated Jat loading up to 35% (w/w) in the helical ribbon bioreactor for CBP was allowed. The results obtained from this study have demonstrated a feasibility of developing a CBP process technology in the helical ribbon bioreactor for ethanol production at a high yield 128.7 g/L and the theoretical yield 73.5%, respectively. This level of ethanol yield from Jat is relatively higher than others reported so far. The results of this study could provide a practical CBP process technology in the helical ribbon bioreactor for economically sustainable alternate biofuel production using highly concentrated inulin containing biomass feedstock such as Jat, at least 35%. Copyright © 2013 Wiley Periodicals, Inc.

  20. Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization.

    Science.gov (United States)

    Hubberstey, Andrew V; Mottillo, Emilio P

    2002-04-01

    Many extracellular signals elicit changes in the actin cytoskeleton, which are mediated through an array of signaling proteins and pathways. One family of proteins that plays a role in regulating actin remodeling in response to cellular signals are the cyclase-associated proteins (CAPs). CAPs are highly conserved monomeric actin binding proteins present in a wide range of organisms including yeast, fly, plants, and mammals. The original CAP was isolated as a component of the Saccharomyces cerevisiae adenylyl cyclase complex that serves as an effector of Ras during nutritional signaling. CAPs are multifunctional molecules that contain domains involved in actin binding, adenylyl cyclase association in yeast, SH3 binding, and oligomerization. Genetic studies in yeast have implicated CAPs in vesicle trafficking and endocytosis. CAPs play a developmental role in multicellular organisms, and studies of Drosophila have illuminated the importance of the actin cytoskeleton during eye development and in establishing oocyte polarity. This review will highlight the critical structural and functional domains of CAPs, describe recent studies that have implied important roles for these proteins in linking cell signaling with actin polymerization, and highlight their roles in vesicle trafficking and development.

  1. Pathway of actin filament branch formation by Arp2/3 complex.

    Science.gov (United States)

    Beltzner, Christopher C; Pollard, Thomas D

    2008-03-14

    A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA. Simulations of a mathematical model based on the kinetic parameters determined in this study and elsewhere account for the full time course of actin polymerization in the presence of Arp2/3 complex and Wsp1-VCA and show that an activation step, postulated to follow binding of a ternary complex of Arp2/3 complex, a bound nucleation-promoting factor, and an actin monomer to an actin filament, has a rate constant at least 0.15 s(-1). Kinetic parameters determined in this study constrain the process of actin filament branch formation during cellular motility to one main pathway.

  2. Rho-GTPase effector ROCK phosphorylates cofilin in actin-meditated cytokinesis during mouse oocyte meiosis.

    Science.gov (United States)

    Duan, Xing; Liu, Jun; Dai, Xiao-Xin; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Zhen-Bo; Wang, Qiang; Sun, Shao-Chen

    2014-02-01

    During oocyte meiosis, a spindle forms in the central cytoplasm and migrates to the cortex. Subsequently, the oocyte extrudes a small body and forms a highly polarized egg; this process is regulated primarily by actin. ROCK is a Rho-GTPase effector that is involved in various cellular functions, such as stress fiber formation, cell migration, tumor cell invasion, and cell motility. In this study, we investigated possible roles for ROCK in mouse oocyte meiosis. ROCK was localized around spindles after germinal vesicle breakdown and was colocalized with cytoplasmic actin and mitochondria. Disrupting ROCK activity by RNAi or an inhibitor resulted in cell cycle progression and polar body extrusion failure. Time-lapse microscopy showed that this may have been due to spindle migration and cytokinesis defects, as chromosomes segregated but failed to extrude a polar body and then realigned. Actin expression at oocyte membranes and in cytoplasm was significantly decreased after these treatments. Actin caps were also disrupted, which was confirmed by a failure to form cortical granule-free domains. The mitochondrial distribution was also disrupted, which indicated that mitochondria were involved in the ROCK-mediated actin assembly. In addition, the phosphorylation levels of Cofilin, a downstream molecule of ROCK, decreased after disrupting ROCK activity. Thus, our results indicated that a ROCK-Cofilin-actin pathway regulated meiotic spindle migration and cytokinesis during mouse oocyte maturation.

  3. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    Science.gov (United States)

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  4. The molecular interaction of a protein in highly concentrated solution investigated by Raman spectroscopy.

    Science.gov (United States)

    Ota, Chikashi; Noguchi, Shintaro; Tsumoto, Kouhei

    2015-04-01

    We used Raman spectroscopy to investigate the structure and interactions of lysozyme molecules in solution over a wide range of concentrations (2.5-300 mg ml(-1)). No changes in the amide-I band were observed as the concentration was increased, but the width of the Trp band at 1555 cm(-1) and the ratios of the intensities of the Tyr bands at 856 and 837 cm(-1), the Trp bands at 870 and 877 cm(-1), and the bands at 2940 (CH stretching) and 3420 cm(-1) (OH stretching) changed as the concentration was changed. These results reveal that although the distance between lysozyme molecules changed by more than an order of magnitude over the tested concentration range, the secondary structure of the protein did not change. The changes in the molecular interactions occurred in a stepwise process as the order of magnitude of the distance between molecules changed. These results suggest that Raman bands can be used as markers to investigate the behavior of high-concentration solutions of proteins and that the use of Raman spectroscopy will lead to progress in our understanding not only of the basic science of protein behavior under concentrated (i.e., crowded) conditions but also of practical processes involving proteins, such as in the field of biopharmaceuticals. © 2014 Wiley Periodicals, Inc.

  5. Rapid estimation of concentration of aromatic classes in middistillate fuels by high-performance liquid chromatography

    Science.gov (United States)

    Otterson, D. A.; Seng, G. T.

    1985-01-01

    An high performance liquid chromatography (HPLC) method to estimate four aromatic classes in middistillate fuels is presented. Average refractive indices are used in a correlation to obtain the concentrations of each of the aromatic classes from HPLC data. The aromatic class concentrations can be obtained in about 15 min when the concentration of the aromatic group is known. Seven fuels with a wide range of compositions were used to test the method. Relative errors in the concentration of the two major aromatic classes were not over 10 percent. Absolute errors of the minor classes were all less than 0.3 percent. The data show that errors in group-type analyses using sulfuric acid derived standards are greater for fuels containing high concentrations of polycyclic aromatics. Corrections are based on the change in refractive index of the aromatic fraction which can occur when sulfuric acid and the fuel react. These corrections improved both the precision and the accuracy of the group-type results.

  6. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted...... on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling...... microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending...

  7. Effects of exposure to high concentrations of waterborne Tl on K and Tl concentrations in Chironomus riparius larvae.

    Science.gov (United States)

    Belowitz, Ryan; Leonard, Erin M; O'Donnell, Michael J

    2014-11-01

    Thallium (Tl) is a non-essential metal which is released into the environment primarily as the result of anthropogenic activities such as fossil fuel burning and smelting of ores. The ionic radius of monovalent Tl⁺ is similar to that of K⁺ and Tl⁺ may thus interfere with K⁺-dependent processes. We determined that the acute (48 h) lethal concentration where 50% of the organisms do not survive (LC₅₀) of Tl for 4th instar Chironomus riparius larvae was 723 μmol L⁻¹. Accumulation of Tl by the whole animal was saturable, with a maximum accumulation (Jmax) of 4637 μmol kg⁻¹ wet mass, and K(D) of 670 μmol Tl l⁻¹. Tl accumulation by the gut appeared saturable at the lowest four Tl concentrations, with a Jmax of 2560 μmol kg⁻¹ wet mass and a K(D) of 54.5 μmol Tl l⁻¹. The saturable accumulation at the gut may be indicative of a limited capacity for intracellular detoxification, such as storage in lysosomes or complexation with metal-binding proteins. Tl accumulation by the hemolymph was found to be linear and Tl concentrations in the hemolymph were ~75% of the exposure concentration at Tl exposures >26.9 μmol L⁻¹. There was not a significant decrease in whole animal, gut or hemolymph K during exposure to waterborne Tl at any of the concentrations tested (up to 1500 μmol L⁻¹). The avoidance of hypokalemia by C. riparius larvae may contribute to survival during acute waterborne exposures to Tl. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effects of prior acute exercise on circulating cytokine concentration responses to a high-fat meal.

    Science.gov (United States)

    Brandauer, Josef; Landers-Ramos, Rian Q; Jenkins, Nathan T; Spangenburg, Espen E; Hagberg, James M; Prior, Steven J

    2013-08-01

    High-fat meal consumption alters the circulating cytokine profile and contributes to cardiometabolic diseases. A prior bout of exercise can ameliorate the triglyceride response to a high-fat meal, but the interactive effects of exercise and high-fat meals on cytokines that mediate cardiometabolic risk are not fully understood. We investigated the effects of prior exercise on the responses of circulating tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8, leptin, retinol-binding protein 4 (RBP4), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), placental growth factor (PlGF), and soluble fms-like tyrosine kinase-1 (sFlt-1) to a high-fat meal. Ten healthy men were studied before and 4 h after ingestion of a high-fat meal either with or without ∼50 min of endurance exercise at 70% of VO2 max on the preceding day. In response to the high-fat meal, lower leptin and higher VEGF, bFGF, IL-6, and IL-8 concentrations were evident (P exercise (P exercise and the high-fat meal on sFlt-1 (P exercise and 218% with prior exercise (P exercise does not affect all high-fat meal-induced changes in circulating cytokines, but does affect fasting or postprandial concentrations of IL-6, leptin, and sFlt-1. These data may reflect a salutary effect of prior exercise on metabolic responses to a high-fat meal.

  9. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand

    2013-01-01

    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1. Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  10. Design and Optimization of Fresnel Lens for High Concentration Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Lei Jing

    2014-01-01

    Full Text Available A practical optimization design is proposed, in which the solar direct light spectrum and multijunction cell response range are taken into account in combination, particularly for the Fresnel concentrators with a high concentration and a small aspect ratio. In addition, the change of refractive index due to temperature variation in outdoor operation conditions is also considered in the design stage. The calculation results show that this novel Fresnel lens achieves an enhancement of energy efficiency of about 10% compared with conventional Fresnel lens for a given solar spectrum, solar cell response, and corrected sunshine hours of different ambient temperature intervals.

  11. Optimal Dearsenification Parameters of Gold Sulfide Concentrate with a High As Content

    Institute of Scientific and Technical Information of China (English)

    Yaozhong LAN; Rose W. Smith

    2005-01-01

    The gold sulfide concentrate with a high As content in Liangshan District, Sichuan Province, China, is a potentially important resource. This paper describes experiments of dearsenification of gold concentrate in a weakly reduced atmosphere in a rotary pipe furnace. The results showed that the optimal parameters were a temperature range of 650~700℃, 15%~16% CO2 of gas and a reaction time of 30~40 min. The removal rate of arsenic and sulfur was over 95% and 25%~28%, respectively. With further oxidization and roasting, residue sulfur in the roasted materials was dropped to below 4%, and the cyanide leaching recovery of gold was over 92%.

  12. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  13. High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne.

    Science.gov (United States)

    Rasmussen, Susanne; Parsons, Anthony J; Bassett, Shalome; Christensen, Michael J; Hume, David E; Johnson, Linda J; Johnson, Richard D; Simpson, Wayne R; Stacke, Christina; Voisey, Christine R; Xue, Hong; Newman, Jonathan A

    2007-01-01

    The relationship between cool-season grasses and fungal endophytes is widely regarded as mutualistic, but there is growing uncertainty about whether changes in resource supply and environment benefit both organisms to a similar extent. Here, we infected two perennial ryegrass (Lolium perenne) cultivars (AberDove, Fennema) that differ in carbohydrate content with three strains of Neotyphodium lolii (AR1, AR37, common strain) that differ intrinsically in alkaloid profile. We grew endophyte-free and infected plants under high and low nitrogen (N) supply and used quantitative PCR (qPCR) to estimate endophyte concentrations in harvested leaf tissues. Endophyte concentration was reduced by 40% under high N supply, and by 50% in the higher sugar cultivar. These two effects were additive (together resulting in 75% reduction). Alkaloid production was also reduced under both increased N supply and high sugar cultivar, and for three of the four alkaloids quantified, concentrations were linearly related to endophyte concentration. The results stress the need for wider quantification of fungal endophytes in the grassland-foliar endophyte context, and have implications for how introducing new cultivars, novel endophytes or increasing N inputs affect the role of endophytes in grassland ecosystems.

  14. Hyperproduction of Alcohol Using Yeast Fermentation in Highly Concentrated Molasses Medium

    Institute of Scientific and Technical Information of China (English)

    顾燕松; 周政懋; 乔敏; 周全; 陈国强

    2001-01-01

    Cane molasses, a major byproduct in the sugar industry, is generally consumed for alcohol production. However, the alcohol production process needs to overcome three major challenges including increasing the productivity of alcohol fermentation, lowering the energy consumption for alcohol conversion and decreasing the environmental pollution caused by the alcoholic yeast fermentation process. To meet these challenges, a screening process was conducted using 13 high osmotic tolerant yeast strains. Among the strains, a Saccharomyces cerevisiae strain 1912 was found to produce high alcohol concentrations during fermentation with high starting molasses concentrations such as 50% (W/V) molasses. In the test, 13.6% (V/V) alcohol was produced in the molasses fermentation broth after 72 h of incubation with an initial Yunnan molasses concentration of 50% in a 5 L fermentor. 15.0% (V/V) alcohol was obtained after 48 h of fermentation in shaking flasks containing 30% (W/V) initial total sugar concentration in diluted molasses. The performance of this strain in the shaking flasks was successfully scaled up to a 5-L fermentor vessel. Strain 1912 seems to be a better alcohol producer than the currently used alcohol production strain 2. 1190.

  15. Aggregation of normal and sickle hemoglobin in high concentration phosphate buffer.

    Science.gov (United States)

    Chen, Kejing; Ballas, Samir K; Hantgan, Roy R; Kim-Shapiro, Daniel B

    2004-12-01

    Sickle cell disease is caused by a mutant form of hemoglobin, hemoglobin S, that polymerizes under hypoxic conditions. The extent and mechanism of polymerization are thus the subject of many studies of the pathophysiology of the disease and potential treatment strategies. To facilitate such studies, a model system using high concentration phosphate buffer (1.5 M-1.8 M) has been developed. To properly interpret results from studies using this model it is important to understand the similarities and differences in hemoglobin S polymerization in the model compared to polymerization under physiological conditions. In this article, we show that hemoglobin S and normal adult hemoglobin, hemoglobin A, aggregate in high concentration phosphate buffer even when the concentration of hemoglobin is below the solubility defined for polymerization. This phenomenon was not observed using 0.05 M phosphate buffer or in another model system we studied that uses dextran to enhance polymerization. We have used static light scattering, dynamic light scattering, and differential interference contrast microscopy to confirm aggregation of deoxygenated and oxygenated hemoglobins below their solubility and have shown that this aggregation is not observable using turbidity measurements, a common technique for assessing polymerization. We have also shown that the aggregation increases with increasing temperature in the range of 15 degrees -37 degrees C and that it increases as the concentration of phosphate increases. These studies contribute to the working knowledge of how to properly apply studies of hemoglobin S polymerization that are conducted using the high phosphate model.

  16. Quality evaluation of moluodan concentrated pill using high-performance liquid chromatography fingerprinting coupled with chemometrics.

    Science.gov (United States)

    Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong

    2016-12-01

    In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill.

  17. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  18. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.; Burgos, Patricia V.; Villanueva, Carolina I. [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); González, Carlos B., E-mail: cbgonzal@uach.cl [Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200 (Chile); Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-11-29

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. The AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.

  19. The Effects of High Concentrations of Vitamin C on Cancer Cells

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2013-09-01

    Full Text Available The effect of high doses of vitamin C for the treatment of cancer has been controversial. Our previous studies, and studies by others, have reported that vitamin C at concentrations of 0.25–1.0 mM induced a dose- and time-dependent inhibition of proliferation in acute myeloid leukemia (AML cell lines and in leukemic cells from peripheral blood specimens obtained from patients with AML. Treatment of cells with high doses of vitamin C resulted in an immediate increase in intracellular total glutathione content and glutathione-S transferase activity that was accompanied by the uptake of cysteine. These results suggest a new role for high concentrations of vitamin C in modulation of intracellular sulfur containing compounds, such as glutathione and cysteine. This review, discussing biochemical pharmacologic studies, including pharmacogenomic and pharmacoproteomic studies, presents the different pharmacological effects of vitamin C currently under investigation.

  20. Influence of a High-Pressure Comminution Technology on Concentrate Yields in Copper Ore Flotation Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2014-10-01

    Full Text Available The article concerns the issues of flotation process effectiveness in relationship to the operating conditions of a high-pressure comminution process course. Experimental programme covering a flotation laboratory batch tests was a verification technique of a high-pressure crushing operations course. The most favorable values of flotation concentrate weight recoveries were obtained for the pressing force 6 kN and 4% of the feed moisture. It was also determined the model of the concentrate weight recovery as a function of pressing force in the press and feed moisture content. This model was the basis for the optimization of effects of copper ore flotation processes preceded in high-pressure crushing operation in roller presses.

  1. Fabrication of High Contrast Gratings for the Spectrum Splitting Dispersive Element in a Concentrated Photovoltaic System.

    Science.gov (United States)

    Yao, Yuhan; Liu, He; Wu, Wei

    2015-07-18

    High contrast gratings are designed and fabricated and its application is proposed in a parallel spectrum splitting dispersive element that can improve the solar conversion efficiency of a concentrated photovoltaic system. The proposed system will also lower the solar cell cost in the concentrated photovoltaic system by replacing the expensive tandem solar cells with the cost-effective single junction solar cells. The structures and the parameters of high contrast gratings for the dispersive elements were numerically optimized. The large-area fabrication of high contrast gratings was experimentally demonstrated using nanoimprint lithography and dry etching. The quality of grating material and the performance of the fabricated device were both experimentally characterized. By analyzing the measurement results, the possible side effects from the fabrication processes are discussed and several methods that have the potential to improve the fabrication processes are proposed, which can help to increase the optical efficiency of the fabricated devices.

  2. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  3. Microstructural Changes in High-Protein Nutrition Bars Formulated with Extruded or Toasted Milk Protein Concentrate.

    Science.gov (United States)

    Banach, J C; Clark, S; Lamsal, B P

    2016-02-01

    Milk protein concentrates with more than 80% protein (that is, MPC80) are underutilized as the primary protein source in high-protein nutrition bars as they impart crumbliness and cause hardening during storage. High-protein nutrition bar texture changes are often associated with internal protein aggregations and macronutrient phase separation. These changes were investigated in model high-protein nutrition bars formulated with MPC80 and physically modified MPC80s. High-protein nutrition bars formulated with extruded MPC80s hardened slower than those formulated with toasted or unmodified MPC80. Extruded MPC80 had reduced free sulfhydryl group exposure, whereas measurable increases were seen in the toasted MPC80. High-protein nutrition bar textural performance may be related to the number of exposed free sulfhydryl groups in MPC80. Protein aggregations resulting from ingredient modification and high-protein nutrition bar storage were studied with sodium dodecyl sulfate polyacrylamide gel electrophoresis. Disulfide-based protein aggregations and changes in free sulfhydryl concentration were not consistently relatable to high-protein nutrition bar texture change. However, the high-protein nutrition bars formulated with extruded MPC80 were less prone to phase separations, as depicted by confocal laser scanning microscopy, and underwent less texture change during storage than those formulated with toasted or unmodified MPC80.

  4. Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification.

    Science.gov (United States)

    Chongcharoen, Rotsaman; Smith, Thomas J; Flint, Kenneth P; Dalton, Howard

    2005-08-01

    Formaldehyde is a highly toxic chemical common in industrial effluents, and it is also an intermediate in bacterial metabolism of one-carbon growth substrates, although its role as a bacterial growth substrate per se has not been extensively reported. This study investigated two highly formaldehyde-resistant formaldehyde utilizers, strains BIP and ROS1; the former strain has been used for industrial remediation of formaldehyde-containing effluents. The two strains were shown by means of 16S rRNA characterization to be closely related members of the genus Methylobacterium. Both strains were able to use formaldehyde, methanol and a range of multicarbon compounds as their principal growth substrate. Growth on formaldehyde was possible up to a concentration of at least 58 mM, and survival at up to 100 mM was possible after stepwise acclimatization by growth at increasing concentrations of formaldehyde. At such high concentrations of formaldehyde, the cultures underwent a period of formaldehyde removal without growth before the formaldehyde concentration fell below 60 mM, and growth could resume. Two-dimensional electrophoresis and MS characterization of formaldehyde-induced proteins in strain BIP revealed that the pathways of formaldehyde metabolism, and adaptations to methylotrophic growth, were very similar to those seen in the well-characterized methanol-utilizing methylotroph Methylobacterium extorquens AM1. Thus, it appears that many of the changes in protein expression that allow strain BIP to grow using high formaldehyde concentrations are associated with expression of the same enzymes used by M. extorquens AM1 to process formaldehyde as a metabolic intermediate during growth on methanol.

  5. Circulating adiponectin concentration and body composition are altered in response to high-intensity interval training.

    Science.gov (United States)

    Shing, Cecilia M; Webb, Jessica J; Driller, Matthew W; Williams, Andrew D; Fell, James W

    2013-08-01

    Adiponectin influences metabolic adaptations that would prove beneficial to endurance athletes, and yet to date there is little known about the response of adiponectin concentrations to exercise, and, in particular, the response of this hormone to training in an athlete population. This study aimed to determine the response of plasma adiponectin concentrations to acute exercise after 2 different training programs and to determine the influence of the training on body composition. Seven state-level representative rowers (age: 19 ± 1.2 years [mean ± SD], height: 1.77 ± 0.10 m, body mass: 74.0 ± 10.7 kg, VO2peak 62.1 ± 7.0 ml·kg·min) participated in the double-blind, randomized crossover investigation. Rowers performed an incremental graded exercise test before and after completing 4 weeks of high-intensity interval ergometer training and 4 weeks of traditional ergometer rowing training. Rowers' body composition was assessed at baseline and after each training program. Significant increases in plasma adiponectin concentration occurred in response to maximal exercise after completion of the high-intensity interval training (p = 0.016) but not after traditional ergometer rowing training (p = 0.69). The high-intensity interval training also resulted in significant increases in mean 4-minute power output (p = 0.002) and VO2peak (p = 0.05), and a decrease in body fat percentage (p = 0.022). Mean 4-minute power output, VO2peak, and body fat percentage were not significantly different after 4 weeks of traditional ergometer rowing training (p > 0.05). Four weeks of high-intensity interval training is associated with an increase in adiponectin concentration in response to maximal exercise and a reduction in body fat percentage. The potential for changes in adiponectin concentration to reflect positive training adaptations and athlete performance level should be further explored.

  6. Serum POP concentrations are highly predictive of inner blubber concentrations at two extremes of body condition in northern elephant seals.

    Science.gov (United States)

    Peterson, Michael G; Peterson, Sarah H; Debier, Cathy; Covaci, Adrian; Dirtu, Alin C; Malarvannan, Govindan; Crocker, Daniel E; Costa, Daniel P

    2016-11-01

    Long-lived, upper trophic level marine mammals are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Internal tissues may accumulate and mobilize POP compounds at different rates related to the body condition of the animal and the chemical characteristics of individual POP compounds; however, collection of samples from multiple tissues is a major challenge to ecotoxicology studies of free-ranging marine mammals and the ability to predict POP concentrations in one tissue from another tissue remains rare. Northern elephant seals (Mirounga angustirostris) forage on mesopelagic fish and squid for months at a time in the northeastern Pacific Ocean, interspersed with two periods of fasting on land, which results in dramatic seasonal fluctuations in body condition. Using northern elephant seals, we examined commonly studied tissues in mammalian toxicology to describe relationships and determine predictive equations among tissues for a suite of POP compounds, including ΣDDTs, ΣPCBs, Σchlordanes, and ΣPBDEs. We collected paired blubber (inner and outer) and blood serum samples from adult female and male seals in 2012 and 2013 at Año Nuevo State Reserve (California, USA). For females (N = 24), we sampled the same seals before (late in molting fast) and after (early in breeding fast) their approximately seven month foraging trip. For males, we sampled different seals before (N = 14) and after (N = 15) their approximately four month foraging trip. We observed strong relationships among tissues for many, but not all compounds. Serum POP concentrations were strong predictors of inner blubber POP concentrations for both females and males, while serum was a more consistent predictor of outer blubber for males than females. The ability to estimate POP blubber concentrations from serum, or vice versa, has the potential to enhance toxicological assessment and physiological modeling. Furthermore, predictive equations may illuminate commonalities or

  7. Non-Straub type actin from molluscan catch muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shelud' ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.; Vyatchin, Ilya G.

    2016-05-27

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for the extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.

  8. Lidar detection of high concentrations of ozone and aerosol transported from northeastern Asia over Saga, Japan

    Science.gov (United States)

    Uchino, Osamu; Sakai, Tetsu; Izumi, Toshiharu; Nagai, Tomohiro; Morino, Isamu; Yamazaki, Akihiro; Deushi, Makoto; Yumimoto, Keiya; Maki, Takashi; Tanaka, Taichu Y.; Akaho, Taiga; Okumura, Hiroshi; Arai, Kohei; Nakatsuru, Takahiro; Matsunaga, Tsuneo; Yokota, Tatsuya

    2017-02-01

    To validate products of the Greenhouse gases Observing SATellite (GOSAT), we observed vertical profiles of aerosols, thin cirrus clouds, and tropospheric ozone with a mobile-lidar system that consisted of a two-wavelength (532 and 1064 nm) polarization lidar and a tropospheric ozone differential absorption lidar (DIAL). We used these lidars to make continuous measurements over Saga (33.24° N, 130.29° E) during 20-31 March 2015. High ozone and high aerosol concentrations were observed almost simultaneously in the altitude range 0.5-1.5 km from 03:00 to 20:00 Japan Standard Time (JST) on 22 March 2015. The maximum ozone volume mixing ratio was ˜ 110 ppbv. The maxima of the aerosol extinction coefficient and optical depth at 532 nm were 1.2 km-1 and 2.1, respectively. Backward trajectory analysis and the simulations by the Model of Aerosol Species IN the Global AtmospheRe (MASINGAR) mk-2 and the Meteorological Research Institute Chemistry-Climate Model, version 2 (MRI-CCM2), indicated that mineral dust particles from the Gobi Desert and an air mass with high ozone and aerosol (mainly sulfate) concentrations that originated from the North China Plain could have been transported over the measurement site within about 2 days. These high ozone and aerosol concentrations impacted surface air quality substantially in the afternoon of 22 March 2015. After some modifications of its physical and chemical parameters, MRI-CCM2 approximately reproduced the high ozone volume mixing ratio. MASINGAR mk-2 successfully predicted high aerosol concentrations, but the predicted peak aerosol optical thickness was about one-third of the observed value.

  9. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Lori K.; Xian, Wujing; Guaqueta, Camilo; Strohman, Michael J.; Vrasich, Chuck R.; Luijten, Erik; Wong, Gerard C.L. (UIUC)

    2008-07-11

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  10. Control of Electrostatic Interactions Between F-Actin And Genetically Modified Lysozyme in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, L.K.; Xian, W.; Guaqueta, C.; Strohman, M.; Vrasich, C.R.; Luijten, E.; Wong, G.C.L.

    2009-06-04

    The aim for deterministic control of the interactions between macroions in aqueous media has motivated widespread experimental and theoretical work. Although it has been well established that like-charged macromolecules can aggregate under the influence of oppositely charged condensing agents, the specific conditions for the stability of such aggregates can only be determined empirically. We examine these conditions, which involve an interplay of electrostatic and osmotic effects, by using a well defined model system composed of F-actin, an anionic rod-like polyelectrolyte, and lysozyme, a cationic globular protein with a charge that can be genetically modified. The structure and stability of actin-lysozyme complexes for different lysozyme charge mutants and salt concentrations are examined by using synchrotron x-ray scattering and molecular dynamics simulations. We provide evidence that supports a structural transition from columnar arrangements of F-actin held together by arrays of lysozyme at the threefold interstitial sites of the actin sublattice to marginally stable complexes in which lysozyme resides at twofold bridging sites between actin. The reduced stability arises from strongly reduced partitioning of salt between the complex and the surrounding solution. Changes in the stability of actin-lysozyme complexes are of biomedical interest because their formation has been reported to contribute to the persistence of airway infections in cystic fibrosis by sequestering antimicrobials such as lysozyme. We present x-ray microscopy results that argue for the existence of actin-lysozyme complexes in cystic fibrosis sputum and demonstrate that, for a wide range of salt conditions, charge-reduced lysozyme is not sequestered in ordered complexes while retaining its bacterial killing activity.

  11. An order of magnitude faster AIP1-associated actin disruption than nucleation by the Arp2/3 complex in lamellipodia.

    Directory of Open Access Journals (Sweden)

    Takahiro Tsuji

    Full Text Available The mechanism of lamellipod actin turnover is still under debate. To clarify the intracellular behavior of the recently-identified actin disruption mechanism, we examined kinetics of AIP1 using fluorescent single-molecule speckle microscopy. AIP1 is thought to cap cofilin-generated actin barbed ends. Here we demonstrate a reduction in actin-associated AIP1 in lamellipodia of cells overexpressing LIM-kinase. Moreover, actin-associated AIP1 was rapidly abolished by jasplakinolide, which concurrently blocked the F-actin-cofilin interaction. Jasplakinolide also slowed dissociation of AIP1, which is analogous to the effect of this drug on capping protein. These findings provide in vivo evidence of the association of AIP1 with barbed ends generated by cofilin-catalyzed filament disruption. Single-molecule observation found distribution of F-actin-associated AIP1 throughout lamellipodia, and revealed even faster dissociation of AIP1 than capping protein. The estimated overall AIP1-associated actin disruption rate, 1.8 microM/s, was one order of magnitude faster than Arp2/3 complex-catalyzed actin nucleation in lamellipodia. This rate does not suffice the filament severing rate predicted in our previous high frequency filament severing-annealing hypothesis. Our data together with recent biochemical studies imply barbed end-preferred frequent filament disruption. Frequent generation of AIP1-associated barbed ends and subsequent release of AIP1 may be the mechanism that facilitates previously observed ubiquitous actin polymerization throughout lamellipodia.

  12. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    Science.gov (United States)

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  13. Material and Optical Design Rules for High Performance Luminescent Solar Concentrators

    Science.gov (United States)

    Bronstein, Noah Dylan

    This dissertation will highlight a path to achieve high photovoltaic conversion efficiency in luminescent solar concentrators, devices which absorb sunlight with a luminescent dye and then re-emit it into a waveguide where it is ultimately collected by a photovoltaic cell. Luminescent concentrators have been studied for more than three decades as potential low-cost but not high efficiency photovoltaics. Astute application of the blackbody radiation law indicates that photonic design is necessary to achieve high efficiency: a reflective filter must be used to trap luminescence at all angles while allowing higher energy photons to pass through. In addition, recent advances in the synthesis of colloidal nanomaterials have created the possibility for lumophores with broad absorption spectra, narrow-bandwidth emission, high luminescence quantum yield, tunable Stokes shifts and tunable Stokes ratios. Together, these factors allow luminescent solar concentrators to achieve the optical characteristics necessary for high efficiency. We have fabricated and tested the first generation of these devices. Our experiments demonstrate that the application of carefully matched photonic mirrors and luminescent quantum dots can allow luminescent concentration factors to reach record values while maintaining high photon collection efficiency. Finally, the photonic mirror dramatically mitigates the negative impact of scattering in the waveguide, allowing efficient photon collection over distances much longer than the scattering length of the waveguide. After demonstrating the possibility for high performance, we theoretically explore the efficacy of luminescent concentrators with dielectric reflectors as the high-bandgap top-junctions in two-junction devices. Simple thermodynamic calculations indicate that this approach can be nearly as good as a traditional vertically stacked tandem. The major barriers to such a device are the optical design of narrow-bandwidth, angle

  14. Effect of Temperature on Chinese Rice Wine Brewing with High Concentration Presteamed Whole Sticky Rice

    Directory of Open Access Journals (Sweden)

    Dengfeng Liu

    2014-01-01

    Full Text Available Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines.

  15. Study of dopant concentrations on thermal induced mode instability in high power fiber amplifiers

    CERN Document Server

    Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01

    Dependence of mode instabilities (MI) on ytterbium dopant concentrations in high power fiber amplifiers has been investigated. It is theoretically shown that, by only varying the fiber length to maintain the same total small-signal pump absorption, the MI threshold is independent of dopant concentration. MI thresholds of gain fibers with ytterbium dopant concentration of 5.93X10^25/m3 and 1.02X10^26/m3 have been measured, which exhibit similar thresholds and agree with theoretical results. The result indicates that heavy doping of active fiber can be adopted to suppress nonlinear effects without decreasing MI threshold, which provides a method of maximizing the power output of fiber laser, taking into account the stimulated Brillouin scattering, stimulated Raman Scattering, and MI thresholds simultaneously.

  16. Determination of Ge content in high concentration Ge-doped Czochralski Si single crystals by FTIR

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhongwei; ZHANG Weilian; NIU Xinhuan

    2005-01-01

    SiGe single crystals with different Ge concentrations were measured by Fourier transform infrared (FTIR) spectroscopy at room temperature (RT) and 10 K. A new peak appears at the wave number of 710 cm-1 and the spectroscopy becomes clearer with an increase in Ge content. The absorption strength and wave sharp of the 710 cm-1 peak are independent of temperature. The relation of the absorption coefficient amax, the band width of half maximum (BWHM) W1/2 of the 710 cm-1 peak, and the Ge concentration is determined with the Ge content obtained by SEM-EDX. The conversion factor is k = 1.211 at 10 K. Therefore, the Ge content in high concentration Ge doped CZ-Si single crystals can be determined by FTIR.

  17. Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration

    CERN Document Server

    Thiele, Uwe; Plapp, Mathis

    2012-01-01

    In this paper we propose several models that describe the dynamics of liquid films which are covered by a high concentration layer of insoluble surfactant. First, we briefly review the 'classical' hydrodynamic form of the coupled evolution equations for the film height and surfactant concentration that are well established for small concentrations. Then we re-formulate the basic model as a gradient dynamics based on an underlying free energy functional that accounts for wettability and capillarity. Based on this re-formulation in the framework of nonequilibrium thermodynamics, we propose extensions of the basic hydrodynamic model that account for (i) nonlinear equations of state, (ii) surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv) substrate-mediated condensation. In passing, we discuss important differences to most of the models found in the literature.

  18. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  19. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation