WorldWideScience

Sample records for high accuracy refraction

  1. Accuracy of the WASCA aberrometer refraction compared to manifest refraction in myopia.

    Science.gov (United States)

    Reinstein, Dan Z; Archer, Timothy J; Couch, Darren

    2006-03-01

    To evaluate the accuracy of myopic refraction by a single measurement using the Wavefront Supported Custom Ablation (WASCA) aberrometer (Carl Zeiss Meditec AG, Jena, Germany). We retrospectively compared the refractive errors obtained by manifest refraction and wavefront refraction (WASCA) in 50 eyes of 25 consecutive myopic patients undergoing laser refractive surgery. The sphere ranged from -1.00 to -8.25 diopters (D) and cylinder from 0 to -3.75 D. WASCA measurements under cycloplegia were made and WASCA refractions calculated for a 6-mm analysis zone using the Seidel method within the WASCA. We used the manifest refraction as our best estimate of the true refractive error, therefore accuracy was defined as the difference between manifest refraction and that of the WASCA. Correlation coefficients and mean vector errors between manifest and WASCA refraction were calculated. High correlation was shown between manifest and WASCA refractions, with correlation coefficients (R2) of 0.97, 0.85, and 0.79 for M, J180, and J45, respectively. Mean power vector error (standard deviation) was 0.22 D (0.39), +0.03 D (0.21), and +0.03 D (0.13) for M, J180, and J45, respectively. Total dioptric power vector error was 0.43 D with 74% eyes within 0.50 D. When measuring normal myopic eyes, the concordance between manifest and WASCA refractions was found on average to be high; however, outlier measurements occurred.

  2. Accuracy of refractive outcomes in myopic and hyperopic laser in situ keratomileusis: Manifest versus aberrometric refraction.

    Science.gov (United States)

    Reinstein, Dan Z; Morral, Merce; Gobbe, Marine; Archer, Timothy J

    2012-11-01

    To compare the achieved refractive accuracy of laser in situ keratomileusis (LASIK) performed based on manifest refraction with the predicted accuracy that would have been achieved using WASCA aberrometric refraction with and without Seidel correction factor for sphere. London Vision Clinic, London, United Kingdom. Comparative case series. Myopic eyes and hyperopic eyes had LASIK based on manifest refraction. Two aberrometric refractions were obtained preoperatively: Seidel, which includes spherical aberration in the sphere calculation, and non-Seidel. Bland-Altman plots were used to show the agreement between aberrometric and manifest refractions. Predicted LASIK outcomes had aberrometric refraction been used were modeled by shifting the postoperative manifest refraction by the vector difference between the preoperative manifest and aberrometric refractions. This study included 869 myopic eyes and 413 hyperopic eyes. The mean differences (manifest minus aberrometric) in spherical equivalent were +0.03 diopters (D) ± 0.48 (SD) (Seidel aberrometric) and +0.45 ± 0.42 D (non-Seidel aberrometric) for myopia and -0.20 ± 0.39 D and +0.39 ± 0.34 D, respectively, for hyperopia. The mean differences in cylinder magnitude were -0.10 ± 0.27 D and 0.00 ± 0.25 D, respectively. The percentage of eyes within ±0.50 D of the attempted correction was 81% (manifest), 70% (Seidel), and 67% (non-Seidel) for myopia and 71% (manifest), 61% (Seidel), and 64% (non-Seidel) for hyperopia. The achieved refractive accuracy by manifest refraction was better than the predicted accuracy had Seidel or non-Seidel aberrometric refractions been used for surgical planning. Using the Seidel method improved the accuracy in myopic eyes but not in hyperopic eyes. Dr. Reinstein is a consultant to Carl Zeiss Meditec AG and has a proprietary interest in the Artemis technology (Arcscan Inc., Morrison, Colorado, USA) through patents administered by the Cornell Center for Technology Enterprise and

  3. Seismic refraction analysis with high accuracy based on traveltime modeling; Basu keisan wo base to shita kussekiho jishin tansa kaiseki no koseidoka

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H.; Hayashi, K. [OYO Corp., Tokyo (Japan)

    1996-05-01

    For the purpose of enhancing the efficiency of analytical processes so that those not equipped with high skill may perform a certain level of analysis and that analysis precision may be improved, some analytical techniques based on path calculation were examined. As the result, a flow of work has become feasible, wherein an early model is constructed by use of a tomography-assisted analysis to be accomplished automatedly and the result is then converted into a layer system with the velocity and thickness to be automatically corrected for the determination of the ultimate velocity layer section. Following this flow of work, almost all the parts of the work may be accomplished automatically once the travel time curve is completed. Furthermore, the calculated travel time obtained by this method can be easily compared with the observed travel time creating an opportunity to show the high reliability of this method, for this to be accepted as a standard for evaluating the accuracy of exploration. It has also been found that this method may be applied to more complicated structures which fail to satisfy the conditions for a structure to be treated by other methods such as `Hagiwara`s method.` 3 refs., 5 figs.

  4. Hybrid high refractive index polymer coatings

    Science.gov (United States)

    Wang, Yubao; Flaim, Tony; Mercado, Ramil; Fowler, Shelly; Holmes, Douglas; Planje, Curtis

    2005-04-01

    Thermally curable hybrid high refractive index polymer solutions have been developed. These solutions are stable up to 6 months under room temperature storage conditions and can be easily spin-coated onto a desired substrate. When cured at elevated temperature, the hybrid polymer coating decomposes to form a metal oxide-rich film that has a high refractive index. The resulting films have refractive indices higher than 1.90 in the entire visible region and achieve film thicknesses of 300-900 nm depending on the level of metal oxide loading, cure temperature being used, and number of coatings. The formed films show greater than 90% internal transmission in the visible wavelength (400-700 nm). These hybrid high refractive index films are mechanically robust, are stable upon exposure to both heat and UV radiation, and are currently being investigated for microlithographic patterning potential.

  5. Modification of Low Refractive Index Polycarbonate for High Refractive Index Applications

    Directory of Open Access Journals (Sweden)

    Gunjan Suri

    2009-01-01

    Full Text Available Polycarbonates and polythiourethanes are the most popular materials in use today, for optical applications. Polycarbonates are of two types which fall in the category of low refractive index and medium refractive index. The present paper describes the conversion of low refractive index polycarbonates into high refractive index material by the use of a high refractive index monomer, polythiol, as an additive. Novel polycarbonates, where the properties of refractive index and Abbe number can be tailor made, have been obtained. Thermal studies and refractive index determination indicate the formation of a new polymer with improved properties and suitable for optical applications.

  6. Self-refraction accuracy with adjustable spectacles among children in Ghana.

    Science.gov (United States)

    Ilechie, Alex Azuka; Abokyi, Samuel; Owusu-Ansah, Andrew; Boadi-Kusi, Samuel Bert; Denkyira, Andrew Kofi; Abraham, Carl Halladay

    2015-04-01

    To determine the accuracy of self-refraction (SR) in myopic teenagers, we compared visual and refractive outcomes of self-refracting spectacles (FocusSpecs) with those obtained using cycloplegic subjective refraction (CSR) as a gold standard. A total of 203 eligible schoolchildren (mean [±SD] age, 13.8 [±1.0] years; 59.1% were female) completed an examination consisting of SR with FocusSpecs adjustable spectacles, visual acuity with the logMAR (logarithm of the minimum angle of resolution) chart, cycloplegic retinoscopy, and CSR. Examiners were masked to the SR findings. Wilcoxon signed rank test and paired Student t test were used to compare measures across refraction methods (95% confidence intervals [CIs]). The mean (±SD) spherical equivalent refractive error measured by CSR and SR was -1.22 (±0.49) diopters (D) and -1.66 (±0.73) D, respectively, a statistically significant difference of -0.44 D (p refraction offers acceptable visual and refractive results for young people in a rural setting in Ghana, although myopic inaccuracy in the more negative direction occurred in some children.

  7. Optical glass with tightest refractive index and dispersion tolerances for high-end optical designs

    Science.gov (United States)

    Jedamzik, R.; Reichel, S.; Hartmann, P.

    2014-03-01

    In high end optical designs the quality of the optical system not only depends on the chosen optical glasses but also on the available refractive index and Abbe number tolerances. The primary optical design is based on datasheet values of the refractive index and Abbe number. In general the optical position of the delivered glass will deviate from the catalog values by given tolerances due to production tolerances. Therefore in many cases the final optical design needs to be modified based on real glass data. Tighter refractive index and Abbe number tolerances can greatly reduce this additional amount of work. The refractive index and Abbe number of an optical glass is a function of the chemical composition and the annealing process. Tight refractive index tolerances require not only a close control and high reliability of the melting and fine annealing process but also best possible material data. These data rely on high accuracy measurement and accurate control during mass production. Modern melting and annealing procedure do not only enable tight index tolerances but also a high homogeneity of the optical properties. Recently SCHOTT was able to introduce the tightest available refractive index and Abbe number tolerance available in the market: step 0.5 meaning a refractive index tolerance of +/- 0.0001 and an Abbe number tolerance of +/- 0.1%. This presentation describes how the refractive index depends on the glass composition and annealing process and describes the requirements to get to this tightest refractive index and Abbe number tolerance.

  8. Ionospheric refraction effects on TOPEX orbit determination accuracy using the Tracking and Data Relay Satellite System (TDRSS)

    Science.gov (United States)

    Radomski, M. S.; Doll, C. E.

    1991-01-01

    This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions

  9. A terahertz metamaterial with unnaturally high refractive index.

    Science.gov (United States)

    Choi, Muhan; Lee, Seung Hoon; Kim, Yushin; Kang, Seung Beom; Shin, Jonghwa; Kwak, Min Hwan; Kang, Kwang-Young; Lee, Yong-Hee; Park, Namkyoo; Min, Bumki

    2011-02-17

    Controlling the electromagnetic properties of materials, going beyond the limit that is attainable with naturally existing substances, has become a reality with the advent of metamaterials. The range of various structured artificial 'atoms' has promised a vast variety of otherwise unexpected physical phenomena, among which the experimental realization of a negative refractive index has been one of the main foci thus far. Expanding the refractive index into a high positive regime will complete the spectrum of achievable refractive index and provide more design flexibility for transformation optics. Naturally existing transparent materials possess small positive indices of refraction, except for a few semiconductors and insulators, such as lead sulphide or strontium titanate, that exhibit a rather high peak refractive index at mid- and far-infrared frequencies. Previous approaches using metamaterials were not successful in realizing broadband high refractive indices. A broadband high-refractive-index metamaterial structure was theoretically investigated only recently, but the proposed structure does not lend itself to easy implementation. Here we demonstrate that a broadband, extremely high index of refraction can be realized from large-area, free-standing, flexible terahertz metamaterials composed of strongly coupled unit cells. By drastically increasing the effective permittivity through strong capacitive coupling and decreasing the diamagnetic response with a thin metallic structure in the unit cell, a peak refractive index of 38.6 along with a low-frequency quasi-static value of over 20 were experimentally realized for a single-layer terahertz metamaterial, while maintaining low losses. As a natural extension of these single-layer metamaterials, we fabricated quasi-three-dimensional high-refractive-index metamaterials, and obtained a maximum bulk refractive index of 33.2 along with a value of around 8 at the quasi-static limit.

  10. Measurement of Refractive Index for High Reflectance Materials with Terahertz Time Domain Reflection Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SUN Wen-Feng; WANG Xin-Ke; ZHANG Yan

    2009-01-01

    A method to measure the refractive index for high reflectance materials in the terahertz range with terahertz time domain reflection spectroscopy is proposed. In this method, the THz waveforms reflected by a silicon wafer and high reflectance sample are measured respectively. The refractive index of the silicon wafer, measured with the THz time domain transmission spectroscopy, is used as a reference in the THz time domain reflective spectroscopy. Therefore, the complex refractive index of the sample can be obtained by resorting to the known reflective index of the silicon and the Fresnel law. To improve the accuracy of the phase shift, the Kramers-Kronig transform is adopted. This method is also verified by the index of the silicon in THz reflection spectroscopy. The bulk metal plates have been taken as the sample, and the experimentally obtained metallic refractive indexes are compared with the simple Drude model.

  11. Refractive Errors in State Junior High School Students in Bandung

    Directory of Open Access Journals (Sweden)

    Sabila Tasyakur Nikmah

    2016-12-01

    Full Text Available Background: Uncorrected refractive error is one of the avoidable causes of vision impairment in children and adults. Vision problem in children has been shown to affect their psychological and academic performance. This study aims at identifying and gaining more insights on the characteristic of the refractive errors in state junior high school students in Bandung to avoid uncorrected refractive errors. Methods: A cross-sectional study was conducted in September–November 2015 in state junior high schools in Bandung, West Java, Indonesia. Sample was selected using multistage random sampling technique. Children were examined using tumbling E examination; then students with visual acuity worse than 6/12 underwent Snellen Chart test, refractometry without pupil dilatation, correction with trial lens, then was followed by direct ophthalmoscopy. Results: From a total of 435 children who completed all the examination, 80 children (18.39% had refractive errors; consisted of 151 eyes (94.38% with myopia and 9 eyes (5.62% with astigmatism. Refractive errors were found to be more common in female children (73.7% than male children (26.3%. Among those with refractive errors, 45 children (56.3% did not use any corrective glasses before the examination. Conclusions: Routine refractive error test in vision screening examination is needed for students. It is equally important to raise more awareness toward eye disease in community.

  12. High accuracy flexural hinge development

    Science.gov (United States)

    Santos, I.; Ortiz de Zárate, I.; Migliorero, G.

    2005-07-01

    This document provides a synthesis of the technical results obtained in the frame of the HAFHA (High Accuracy Flexural Hinge Assembly) development performed by SENER (in charge of design, development, manufacturing and testing at component and mechanism levels) with EADS Astrium as subcontractor (in charge of doing an inventory of candidate applications among existing and emerging projects, establishing the requirements and perform system level testing) under ESA contract. The purpose of this project has been to develop a competitive technology for a flexural pivot, usuable in highly accurate and dynamic pointing/scanning mechanisms. Compared with other solutions (e.g. magnetic or ball bearing technologies) flexural hinges are the appropriate technology for guiding with accuracy a mobile payload over a limited angular ranges around one rotation axes.

  13. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    Science.gov (United States)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  14. Influence of spatial temperature distribution on high accuracy interferometric metrology

    Science.gov (United States)

    Gu, Yongqiang; Miao, Erlong; Yan, Feng; Zhang, Jian; Yang, Huaijiang

    2010-10-01

    We calculate the influence of temperature change on the refractive index of air, establish a model of air temperature distribution and analyze the effect of different temperature distribution on the high accuracy interferometric metrology. First, a revised Edlen formula is employed to acquire the relation between temperature and refractive index of air, followed by introducing the fixed temperature gradient distribution among the spatial grid within the optical cavity between the reference flat and the test flat of the Fizeau interferometer, accompanied by a temperature change random function within each grid. Finally, all the rays through the air layer with different incident angles are traced by Matlab program in order to obtain the final output position, angle and OPD for each ray. The influence of different temperature distribution and the length of the optical cavity in on the testing accuracy can be analyzed through the RMS value that results from repeatable rays tracing. As a result, the horizontal distribution (vertical to optical axis) has a large effect on the testing accuracy. Thus, to realize the high accuracy figure metrology, the horizontal distribution of temperature must be rigorously controlled as well as to shorten the length of the optical cavity to a large extent. The results from our simulation are of great significant for the accuracy analysis of interferometric testing and the research of manufacturing a interferometer.

  15. Directly patternable high refractive index ferroelectric sol–gel resist

    Energy Technology Data Exchange (ETDEWEB)

    Garoli, D., E-mail: denis.garoli@iit.it [Istituto Italiano di Tecnologia, Via Morego 16, 16136 Genova (Italy); Della Giustina, G. [Industrial Engineering Department, University of Padova and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2015-08-15

    The development of a ferroelectric negative tone sol–gel resist for Ultraviolet (UV) and Electron Beam (EB) lithography is presented. A new system based on Lead Zirconate Titanate (PZT, with formula PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) was synthesized by sol–gel method. The lithographic performances were investigated and several structures spanning from the micron range down to less than 50 nm have been achieved by UV and EB lithography. The system interaction with UV light and Electron beam was thoroughly characterized by FT-IT spectroscopy. The exposed PZT was annealed at high temperatures in order to study the crystalline phase evolution, the optical constants values and stability of patterned structures. After exposure and annealing, the refractive index of the material can vary from 1.68 up to 2.33 (@400 nm), while the ferroelectric behaviour seems to be maintained after high temperature annealing. These results suggest a possible application of PZT resist not only as ferroelectric but also as nanopatternable high refractive index material. Moreover, direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified and the potentiality for the preparation of high aspect ratio hollow nanostructures will be presented. - Highlights: • A new formula directly patternable PZT high refractive index resist is presented. • The gel is sensitive to both UV and electron beam exposure. • The refractive index can vary from 1.68 up to 2.33 (@400 nm). • Direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified. • High aspect ratio hollow nanostructures will be presented.

  16. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  17. Flexible photonic crystal membranes with nanoparticle high refractive index layers

    Directory of Open Access Journals (Sweden)

    Torben Karrock

    2017-01-01

    Full Text Available Flexible photonic crystal slabs with an area of 2 cm2 are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices.

  18. Refraction of high frequency noise in an arbitrary jet flow

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  19. High-refractive-index measurement with an elastomeric grating coupler

    Science.gov (United States)

    Kocabas, Askin; Ay, Feridun; Dâna, Aykutlu; Kiyat, Isa; Aydinli, Atilla

    2005-12-01

    An elastomeric grating coupler fabricated by the replica molding technique is used to measure the modal indices of a silicon-on-insulator (SOI) planar waveguide structure. Because of the van der Waals interaction between the grating mold and the waveguide, the elastomeric stamp makes conformal contact with the waveguide surface, inducing a periodic index perturbation at the contact region. The phase of the incident light is changed to match the guided modes of the waveguide. The modal and bulk indices are obtained by measuring the coupling angles. This technique serves to measure the high refractive index with a precision better than 10-3 and allows the elastomeric stamp to be removed without damaging the surface of the waveguide.

  20. Double high refractive-index contrast grating VCSEL

    Science.gov (United States)

    Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Sarzała, Robert P.; Lott, J. A.; Czyszanowski, Tomasz

    2015-03-01

    Distributed Bragg reflectors (DBRs) are typically used as the highly reflecting mirrors of vertical-cavity surface-emitting lasers (VCSELs). In order to provide optical field confinement, oxide apertures are often incorporated in the process of the selective wet oxidation of high aluminum-content DBR layers. This technology has some potential drawbacks such as difficulty in controlling the uniformity of the oxide aperture diameters across a large-diameter (≥ 6 inch) production wafers, high DBR series resistance especially for small diameters below about 5 μm despite elaborate grading and doping schemes, free carrier absorption at longer emission wavelengths in the p-doped DBRs, reduced reliability for oxide apertures placed close to the quantum wells, and low thermal conductivity for transporting heat away from the active region. A prospective alternative mirror is a high refractive index contrast grating (HCG) monolithically integrated with the VCSEL cavity. Two HCG mirrors potentially offer a very compact and simplified VCSEL design although the problems of resistance, heat dissipation, and reliability are not completely solved. We present an analysis of a double HCG 980 nm GaAs-based ultra-thin VCSEL. We analyze the optical confinement of such a structure with a total optical thickness is ~1.0λ including the optical cavity and the two opposing and parallel HCG mirrors.

  1. An evaluation of the accuracy of the ORange® (Gen II) by comparing it to the IOLMaster® in the prediction of postoperative refraction

    Science.gov (United States)

    Chen, Ming

    2012-01-01

    Purpose The aim of this study was to evaluate the accuracy of ORange® Gen II (WaveTec Vision, Aliso Viejo, CA). Setting The Surgical Suites, Honolulu, HI. Methods The prospective 28 consecutive cataract surgical cases were selected from 85 cataract surgical cases between December 16, 2010 and February 24, 2011. With the same intraocular lens implantation, the predicted spherical equivalent refraction from IOLMaster® (Carl Zeiss AG, Oberkochen, Germany) and ORange Gen II were statistically compared and verified with 1-month postoperative manifest refraction. The data were put into IBM SPSS 19 (SPSS Inc, Chicago, IL) for analysis of variance. Pearson’s correlation coefficient was also calculated to evaluate the correlation between the IOLMaster, ORange Gen II, and 1-month postoperative manifest refraction. Results There were no statistically significant differences in the mean spherical equivalent refraction from the IOLMaster, ORange Gen II, and 1-month postoperative manifest refraction (IOLMaster −0.40 diopters, P = 0.07; ORange Gen II −0.43 diopters, P = 0.16; 1-month refraction −0.41 diopters, P = 0.07). Pearson’s correlation study demonstrated that all three were positively correlated (P refraction (r = +0.6, P < 0.01). Conclusion The ORange Gen II can be considered as an alternative method for intraocular lens selection for cataract patients. PMID:22457590

  2. An evaluation of the accuracy of the ORange (Gen II) by comparing it to the IOLMaster in the prediction of postoperative refraction.

    Science.gov (United States)

    Chen, Ming

    2012-01-01

    The aim of this study was to evaluate the accuracy of ORange(®) Gen II (WaveTec Vision, Aliso Viejo, CA). The Surgical Suites, Honolulu, HI. The prospective 28 consecutive cataract surgical cases were selected from 85 cataract surgical cases between December 16, 2010 and February 24, 2011. With the same intraocular lens implantation, the predicted spherical equivalent refraction from IOLMaster(®) (Carl Zeiss AG, Oberkochen, Germany) and ORange Gen II were statistically compared and verified with 1-month postoperative manifest refraction. The data were put into IBM SPSS 19 (SPSS Inc, Chicago, IL) for analysis of variance. Pearson's correlation coefficient was also calculated to evaluate the correlation between the IOLMaster, ORange Gen II, and 1-month postoperative manifest refraction. There were no statistically significant differences in the mean spherical equivalent refraction from the IOLMaster, ORange Gen II, and 1-month postoperative manifest refraction (IOLMaster -0.40 diopters, P = 0.07; ORange Gen II -0.43 diopters, P = 0.16; 1-month refraction -0.41 diopters, P = 0.07). Pearson's correlation study demonstrated that all three were positively correlated (P refraction (r = +0.6, P < 0.01). The ORange Gen II can be considered as an alternative method for intraocular lens selection for cataract patients.

  3. Monolithic subwavelength high refractive-index-contrast grating VCSELs

    Science.gov (United States)

    Gebski, Marcin; Dems, Maciej; Lott, James A.; Czyszanowski, Tomasz

    2016-03-01

    In this paper we present optical design and simulation results of vertical-cavity surface-emitting lasers (VCSELs) that incorporate monolithic subwavelength high refractive-index-contrast grating (MHCG) mirrors - a new variety of HCG mirror that is composed of high index material surrounded only on one side by low index material. We show the impact of an MHCG mirror on the performance of 980 nm VCSELs designed for high bit rate and energy-efficient optical data communications. In our design, all or part of the all-semiconductor top coupling distributed Bragg reflector mirror is replaced by an undoped gallium-arsenide MHCG. We show how the optical field intensity distribution of the VCSEL's fundamental mode is controlled by the combination of the number of residual distributed Bragg reflector (DBR) mirror periods and the physical design of the topmost gallium-arsenide MHCG. Additionally, we numerically investigate the confinement factors of our VCSELs and show that this parameter for the MHCG DBR VCSELs may only be properly determined in two or three dimensions due to the periodic nature of the grating mirror.

  4. Resolving controversy of unusually high refractive index of a tubulin

    Science.gov (United States)

    Krivosudský, O.; Dráber, P.; Cifra, M.

    2017-02-01

    The refractive index of a tubulin is an important parameter underlying fundamental electromagnetic and biophysical properties of microtubules – protein fibers essential for several cell functions including cell division. Yet, the only experimental data available in the current literature show values of the tubulin refractive index (n=2.36\\text{--}2.90) which are much higher than what the established theories predict based on the weighted contribution of the polarizability of individual amino acids constituting the protein. To resolve this controversy, we report here modeling and rigorous experimental analysis of the refractive index of a purified tubulin dimer. Our experimental data revealed that the refractive index of the tubulin is n=1.64 at wavelength 589 nm and 25 °C, that is much closer to the values predicted by the established theories than what the earlier experimental data provide.

  5. Prevalence of refractive errors among junior high school students in ...

    African Journals Online (AJOL)

    Journal of Science and Technology (Ghana) ... Among school children, uncorrected refractive errors have a considerable impact ... Multivariate logistic regression models showed no substantial confounding effects between near work, sex, and ...

  6. Proposed design for high precision refractive index sensor using integrated planar lightwave circuit

    Science.gov (United States)

    Maru, Koichi; Fujii, Yusaku; Zhang, Shulian; Hou, Wenmei

    2009-07-01

    A high precision and compact refractive index sensor is proposed. The combination of coarse measurement utilizing the change of the angle of refraction and fine measurement utilizing the phase change is newly proposed to measure absolute refractive index precisely. The proposed method does not need expensive optical measurement equipment such as an optical spectrum analyzer. The integrated planar lightwave circuit (PLC) technology enables us to obtain a compact sensor that is preferable for the practical use. The principle, design, and some configurations for precise refractive index measurement are described.

  7. Development and characterization of high refractive index and high scattering acrylate polymer layers

    Science.gov (United States)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-04-01

    The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.

  8. High Accuracy Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.

  9. High accuracy FIONA-AFM hybrid imaging.

    Science.gov (United States)

    Fronczek, D N; Quammen, C; Wang, H; Kisker, C; Superfine, R; Taylor, R; Erie, D A; Tessmer, I

    2011-04-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.

  10. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  11. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2016-10-01

    Full Text Available A refractive index sensor based on dual-core photonic crystal fiber (PCF with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM. Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  12. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    Science.gov (United States)

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  13. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  14. Miniaturized Fiber-Optic Fabry-Perot Interferometer for Highly Sensitive Refractive Index Measurement

    Institute of Scientific and Technical Information of China (English)

    Ming Deng; Tao Zhu; Yun-Jiang Rao; Hong Li

    2008-01-01

    This paper presents a novel miniaturized fiber-optic Fabry-Peort interferometer (FPI) for highly sensitive refractive index measurement. This device was tested for the refractive indices of various liquids including acetone and ethanol at room temperature. The sensitivity for measurement of refractive index change of ethanol is 1138 nm/RIU at the wavelength of 1550 nm. In addition, the sensor fabrication is simple including only cleaving, splicing, and etching. The signal is stable with high visibility. Therefore, it provides a valuable tool in biological and chemical applications.

  15. Single-Mode Optical Waveguides on Native High-Refractive-Index Substrates

    CERN Document Server

    Grote, Richard R

    2016-01-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs) , but the conventional methods of achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. Our waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. The proposed waveguide geometry removes the need for a buried-oxide-layer in silicon photonics, as well as the InGaAsP layer in InP-based PICs and will allow for photonic integration on emerging material platforms such as diamond and SiC.

  16. Low loss two-step ion-exchanged waveguides with high surface refractive index

    Science.gov (United States)

    Hassanzadeh, Abdollah; Mittler, Silvia

    2011-07-01

    Two-step ion-exchanged waveguides with high surface refractive indices are fabricated under a variety of conditions. By modifying the conventional two-step ion exchange, the losses and the effective diffusion depth can be decreased without a significant effect on the surface refractive index. The influence of the first step, K+-Na+ ion exchange, performed time dependably on the surface refractive index change is investigated. Energy-dispersive x-ray spectroscopy is performed to establish the diffusion profiles of various ions.

  17. High quality ZnO layers with adjustable refractive indices for integrated optics applications

    OpenAIRE

    Heideman, R.G.; Lambeck, P.V.; Gardeniers, J.G.E.

    1995-01-01

    Thin ( 1 μm) crystalline ZnO films with a good optical quality and good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high refractive index ( 2.0 at λ = 632.8 nm) ZnO films resembling the single crystal form, and ZnO films with considerably lower (typical difference 0.05) refractive indices. The refractive index of the latter Zn...

  18. Computing High Accuracy Power Spectra with Pico

    CERN Document Server

    Fendt, William A

    2007-01-01

    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% of cosmic standard deviation for nearly all $\\ell$ values over a large region of parameter space. Performing a cosmological parameter analysis of current CMB and large scale structure data, we show that these power spectra give very accurate 1 and 2 dimensional parameter posteriors. We have extended Pico to allow computation of the tensor power spectrum and the matter transfer function. Pico runs about 1500 times faster than CAMB at the default accuracy and about 250,000 times faster at high accuracy. Training Pico can be...

  19. High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matched layer absorbing boundary condition.Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing.Based on the relationship,the refractive index of the material can be obtained from the detection of one of the resonant wavelengths.The resolution of refractive index of the nanometeric plasmonic sensor can reach as high as 10-6,giving the wavelength resolution of 0.01 nm.It could be applied to highly-resolution biological sensing.%A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matcted layer absorbing boundary conditition. Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the resonant wavelengths. The resolutio of refractive index of the nanometeric plasmonic sensor can reach as high as 1O-6, giving the wavelength resolution of 0.01 nm. It could be applied to highly- resolution biological sensing.

  20. Refractive index engineering of high performance coupler for compact photonic integrated circuits

    Science.gov (United States)

    Liu, Lu; Zhou, Zhiping

    2017-04-01

    High performance couplers are highly desired in many applications, but the design is limited by nearly unchangeable material refractive index. To tackle this issue, refractive index engineering method is investigated, which can be realized by subwavelength grating. Subwavelength gratings are periodical structures with pitches small enough to locally synthesize the refractive index of photonic waveguides, which allows direct control of optical profile as well as easier fabrication process. This review provides an introduction to the basics of subwavelength structures and pay special attention to the design strategies of some representative examples of subwavelength grating devices, including: edge couplers, fiber-chip grating couplers, directional couplers and multimode interference couplers. Benefited from the subwavelength grating which can engineer the refractive index as well as birefringence and dispersion, these devices show better performance when compared to their conventional counterparts.

  1. [Strength and transparency of dental porcelain consisting of high refractive germanate-glass and alumina crystal].

    Science.gov (United States)

    Kon, M

    1990-07-01

    A translucent aluminous porcelain was developed for dentistry. The effects of refractive indexes and sintering behaviors on transparency and strength of the aluminous porcelains consisting of high refractive germanate-glass (Na2O-TiO2-GeO2) and alumina crystal powders were examined. The various germanate-glass specimens with a high refractive index were made by fusion at about 1,300 degrees C. The refractive indexes of fused Na2O-TiO2-GeO2 glass specimens were 1.64-1.76, heightened with an increasing TiO2 content. The sintered aluminous porcelains were made from the mixed compacts consisting of 80 wt% germanate-glass and 20 wt% alumina at the densification temperature of 580-820 degrees C. Sintered aluminous porcelains prepared with high refractive germante-glass had a high transparency compared with the other aluminous porcelains, with almost the same transparency as a commercial feldspathic porcelain (body). Aluminous porcelains had lower transparency with different refractive index due to generation of crystals following the crystallization of glass matrix than that without crystallizing property. Bending strength value was 120 MPa, which is similar to that for the glass-alumina ceramics with the same content of alumina volume as germanate-glass aluminous porcelains. Non-crystallized aluminous porcelain had a higher strength compared with the crystallized one.

  2. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator

    Science.gov (United States)

    Wong, Wayne A.

    2001-01-01

    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  3. Negative Refraction with High Transmission in Graphene-hBN Hyper Crystal

    OpenAIRE

    Sayem, Ayed Al; Mahdy, Mahdy Rahman Chowdhury; Jahangir, Ifat; Rahman, Md. Saifur

    2015-01-01

    In this article, we have theoretically investigated the performance of graphene-hexagonal Boron Nitride hyper crystals to demonstrate all angle negative refraction.Hexagonal Boron Nitride, the latest natural hyperbolic material; can be a very strong contender to form a hyper crystal with graphene due to its excellence as a graphene-compatible substrate. Although bare hexagonal Boron Nitride can exhibit negative refraction, the transmission is generally low due to its high reflective nature. O...

  4. Negative Refraction with High Transmission in Graphene-hBN Hyper Crystal

    CERN Document Server

    Sayem, Ayed Al; Jahangir, Ifat; Rahman, Md Saifur

    2015-01-01

    In this article, we have theoretically investigated the performance of graphene-hexagonal Boron Nitride hyper crystals to demonstrate all angle negative refraction.Hexagonal Boron Nitride, the latest natural hyperbolic material; can be a very strong contender to form a hyper crystal with graphene due to its excellence as a graphene-compatible substrate. Although bare hexagonal Boron Nitride can exhibit negative refraction, the transmission is generally low due to its high reflective nature. On the other hand, due to two dimensional nature and metallic characteristics of graphene in the frequency range where hexagonal Boron Nitride behaves as a type-I hyperbolic Metamaterial, we have found that graphene-hexagonal Boron Nitride hyper-crystals exhibit all angle negative refraction with superior transmission. This has been possible because of the strong suppression of reflection from the hyper-crystal without any adverse effect on the negative refraction properties. This finding can prove very useful in applicati...

  5. Imprinting the nanostructures on the high refractive index semiconductor glass

    Science.gov (United States)

    Silvennoinen, M.; Paivasaari, K.; Kaakkunen, J. J. J.; Tikhomirov, V. K.; Lehmuskero, A.; Vahimaa, P.; Moshchalkov, V. V.

    2011-05-01

    The centimeter range one- and two-dimensional nanostructures of 70 nm pitch have been imprinted by hot pressing with a quartz, silicon or nickel mold, at 240 °C, onto the surface of Ge 20As 20Se 14Te 46 semiconductor glass. Excellent glass stability of this glass allows multiple re-pressing of the nano-structures. With increasing the Te/Se ratio in the glass formula, the refractive index reaches a value of 3.5 with an option of free electron absorption at elevated temperatures pointing out the use of such nanostructures in submicron and micron scale electronic devices/chips, moth eye structures and photonic crystals.

  6. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  7. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...

  8. High resolution seismic refraction method (development and applications); Koseido kussetsuho jishin tansa no kaihatsu to tekiyorei

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Saito, H. [OYO Corp., Tokyo (Japan)

    1998-10-01

    Described herein are measurement/analysis procedures of the high-resolution seismic refraction method. Recently, use of explosives has been limited for many explorative activities. The measurement systems and waveform processing procedures described herein can minimize use of explosives and widen applicability of non-explosive seismic sources. The seismic refraction method is now advanced, e.g., to process large quantities of high-quality data, use tomographic algorithm and include analysis of vibration-receiving points in holes, and is applicable to grounds of complicated structures, for which the conventional method is difficult to use. The new method is aided by a personal computer to give the analysis results almost automatically, thereby establishing objectivity of the explorative results and securing data quality. The high-resolution seismic refraction method, aided by the new techniques of measurement/analysis, can now give the results in a much shorter time than the conventional one. 40 refs., 22 figs.

  9. Synthesis of high refractive spiro heterocyclic derivatives through thioacetalization of multi-carbonyl compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jim Young; Maheswara, Muchchintala; Do, Jung Yun [Pusan National Univ., Busan (Korea, Republic of)

    2012-04-15

    Preparation of several new spirocyclic mercaptol derivatives is described. Thiol protection on multi-carbonyl compounds allows of high sulfur content necessary to induce high refractive index. Condensation of 1,3-dimercapto-2-propanol and cyclohexanone followed by successive oxidation and thioacetalization affords a dispiro cycle with four sulfurs. Selective S,S-protection of cyclohexane-1,4-dione is achieved with 1,3-dimercapto-2-propanol and 2,3-dimercapto-1-propanol to provide dispiro cycles with four sulfurs. Olefineoxidation of norbornene gives a useful dialdehyde intermediate which is transformed to 1,3-dithiolane for a linearly-bound-cyclic molecule. Refractive index of linearly-bound-cycles was below 1.60 and dispiro cycles exhibited high refractive index of 1.57-1.69.

  10. Analysis of lichen substances including triterpenoids by high performance liquid chromatography with a differential refractive index detector and a photodiode array detector

    Institute of Scientific and Technical Information of China (English)

    Hikari SATO; Kojiro HARA; Masashi KOMINE; Yoshikazu YAMAMOTO

    2011-01-01

    A new method for analysis of lichen triterpenoids was established using high performance liquid chromatography with the combination of a differential refractive index detector (RID) and a photodiode array detector (PDA).It is proved that this method was convenient to detect and identify aromatic and aliphatic lichen substances; it enabled quantitative analysis of substances having no or less absorption of ultraviolet rays such as triterpenoids.In addition,they can be measured in high accuracy compared with the TLC method.

  11. Visual outcomes after spectacles treatment in children with bilateral high refractive amblyopia.

    Science.gov (United States)

    Lin, Pei-Wen; Chang, Hsueh-Wen; Lai, Ing-Chou; Teng, Mei-Ching

    2016-11-01

    The aim was to investigate the visual outcomes of treatment with spectacles for bilateral high refractive amblyopia in children three to eight years of age. Children with previously untreated bilateral refractive amblyopia were enrolled. Bilateral high refractive amblyopia was defined as visual acuity (VA) being worse than 6/9 in both eyes in the presence of 5.00 D or more of hyperopia, 5.00 D or more of myopia and 2.00 D or more of astigmatism. Full myopic and astigmatic refractive errors were corrected, and the hyperopic refractive errors were corrected within 1.00 D of the full correction. All children received visual assessments at four-weekly intervals. VA, Worth four-dot test and Randot preschool stereotest were assessed at baseline and every four weeks for two years. Twenty-eight children with previously untreated bilateral high refractive amblyopia were enrolled. The mean VA at baseline was 0.39 ± 0.24 logMAR and it significantly improved to 0.21, 0.14, 0.11, 0.05 and 0.0 logMAR at four, eight, 12, 24 weeks and 18 months, respectively (all p = 0.001). The mean stereoacuity (SA) was 1,143 ± 617 arcsec at baseline and it significantly improved to 701, 532, 429, 211 and 98 arcsec at four, eight, 12, 24 weeks and 18 months, respectively (all p = 0.001). The time interval for VA achieving 6/6 was significantly shorter in the eyes of low spherical equivalent (SE) (-2.00 D +2.00 D) (3.33 ± 2.75 months versus 8.11 ± 4.56 months, p = 0.0005). All subjects had normal fusion on Worth four-dot test at baseline and all follow-up visits. Refractive correction with good spectacles compliance improves VA and SA in young children with bilateral high refractive amblyopia. Patients with greater amounts of refractive error will achieve resolution of amblyopia with a longer time. © 2016 Optometry Australia.

  12. Optimum Forward Light Scattering by Spherical and Spheroidal Dielectric Nanoparticles with High Refractive Index

    CERN Document Server

    Luk`yanchuk, Boris S; Paniagua-Dominguez, Ramon; Kuznetsov, Arseniy I

    2014-01-01

    High-refractive index dielectric nanoparticles may exhibit strong directional forward light scattering at visible and near-infrared wavelengths due to interference of simultaneously excited electric and magnetic dipole resonances. For a spherical high-index dielectric, the so-called first Kerker's condition can be realized, at which the backward scattering practically vanishes for some combination of refractive index and particle size. However, Kerker's condition for spherical particles is only possible at the tail of the scattering resonances, when the particle scatters light weakly. Here we demonstrate that significantly higher forward scattering can be realized if spheroidal particles are considered instead. For each value of refractive index exists an optimum shape of the particle, which produces minimum backscattering efficiency together with maximum forward scattering. This effect is achieved due to the overlapping of magnetic and electric dipole resonances of the spheroidal particle at the resonance fr...

  13. High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity.

    Science.gov (United States)

    Renoirt, Jean-Michel; Zhang, Chao; Debliquy, Marc; Olivier, Marie-Georges; Mégret, Patrice; Caucheteur, Christophe

    2013-11-18

    The high order cladding modes of standard single mode optical fiber appear in quasi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. In this work, we demonstrate that, in the presence of a high-refractive-index coating surrounding the fiber outer surface, the wavelength spacing between the orthogonally polarized cladding modes families can be drastically enhanced. This behavior can be advantageously exploited for refractometric sensing purposes. For this, we make use of tilted fiber Bragg gratings (TFBGs) as spectral combs to excite the orthogonally polarized cladding modes families separately. TFBGs were coated with a nanometer-scale transparent thin film characterized by a refractive index value close to 1.9, well higher than the one of pure silica. This coating brings two important assets: an ~8-fold increase in refractometric sensitivity is obtained in comparison to bare TFBGs while the sensitivity is extended to surrounding refractive index (SRI) values above 1.45.

  14. Novel high refractive index, thermally conductive additives for high brightness white LEDs

    Science.gov (United States)

    Hutchison, Richard Stephen

    In prior works the inclusion of nanoparticle fillers has typically been shown to increase the thermal conductivity or refractive index of polymer nanocomposites separately. High refractive index zirconia nanoparticles have already proved their merit in increasing the optical efficiency of encapsulated light emitting diodes. However, the thermal properties of zirconia-silicone nanocomposites have yet to be investigated. While phosphor-converted light emitting diodes are at the forefront of solid-state lighting technologies for producing white light, they are plagued by efficiency losses due to excessive heating at the semiconductor die and in and around the phosphor particles, as well as photon scattering losses in the phosphor layer. It would then be of great interest if the high refractive index nanoparticles were found to both be capable of increasing the refractive index, thus reducing the optical scattering, and also the thermal conductivity, channeling more heat away from the LED die and phosphors, mitigating efficiency losses from heat. Thermal conductance measurements on unfilled and nanoparticle loaded silicone samples were conducted to quantify the effect of the zirconia nanoparticle loading on silicone nanocomposite thermal conductivity. An increase in thermal conductivity from 0.27 W/mK to 0.49 W/mK from base silicone to silicone with 33.5 wt% zirconia nanoparticles was observed. This trend closely mirrored a basic rule of mixtures prediction, implying a further enhancement in thermal conductivity could be achieved at higher nanoparticle loadings. The optical properties of transparency and light extraction efficiency of these composites were also investigated. While overall the zirconia nanocomposite showed good transparency, there was a slight decrease at the shorter wavelengths with increasing zirconia content. For longer wavelength LEDs, such as green or red, this might not matter, but phosphor-converted white LEDs use a blue LED as the photon source

  15. Quasi-guiding modes in microfibers on high refractive index substrate

    CERN Document Server

    Wang, Kaiyang; Sun, Wenzhao; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Light confinement and amplification in micro- & nano-fiber have been intensively studied and a number of applications have been developed. However, the typical micro- & anno- fibers are usually free-standing or positioned on a substrate with lower refractive index to ensure the light confinement and guiding mode. Here we numerically and experimentally demonstrate the possibility of confining light within a microfiber on a high refractive index substrate. In contrast to the strong leaky to the substrate, we found that the radiation loss was dependent on the radius of microfiber and the refractive index contrast. Consequently, quasi-guiding modes could be formed and the light could propagate and be amplified in such systems. By fabricating tapered silica fiber and dye-doped polymer fiber and placing them on sapphire substrates, the light propagation, amplification, and laser behaviors have been experimentally studied to verify the quasi-guiding modes in microfer with higher index substrate. We believe t...

  16. Accuracy and precision of reconstruction of complex refractive index in near-field single-distance propagation-based phase-contrast tomography

    Science.gov (United States)

    Gureyev, Timur; Mohammadi, Sara; Nesterets, Yakov; Dullin, Christian; Tromba, Giuliana

    2013-10-01

    We investigate the quantitative accuracy and noise sensitivity of reconstruction of the 3D distribution of complex refractive index, n(r)=1-δ(r)+iβ(r), in samples containing materials with different refractive indices using propagation-based phase-contrast computed tomography (PB-CT). Our present study is limited to the case of parallel-beam geometry with monochromatic synchrotron radiation, but can be readily extended to cone-beam CT and partially coherent polychromatic X-rays at least in the case of weakly absorbing samples. We demonstrate that, except for regions near the interfaces between distinct materials, the distribution of imaginary part of the refractive index, β(r), can be accurately reconstructed from a single projection image per view angle using phase retrieval based on the so-called homogeneous version of the Transport of Intensity equation (TIE-Hom) in combination with conventional CT reconstruction. In contrast, the accuracy of reconstruction of δ(r) depends strongly on the choice of the "regularization" parameter in TIE-Hom. We demonstrate by means of an instructive example that for some multi-material samples, a direct application of the TIE-Hom method in PB-CT produces qualitatively incorrect results for δ(r), which can be rectified either by collecting additional projection images at each view angle, or by utilising suitable a priori information about the sample. As a separate observation, we also show that, in agreement with previous reports, it is possible to significantly improve signal-to-noise ratio by increasing the sample-to-detector distance in combination with TIE-Hom phase retrieval in PB-CT compared to conventional ("contact") CT, with the maximum achievable gain of the order of 0.3δ /β. This can lead to improved image quality and/or reduction of the X-ray dose delivered to patients in medical imaging.

  17. High quality ZnO layers with adjustable refractive indices for integrated optics applications

    NARCIS (Netherlands)

    Heideman, R.G.; Lambeck, P.V.; Gardeniers, J.G.E.

    1995-01-01

    Thin ( 1 μm) crystalline ZnO films with a good optical quality and good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high refractive

  18. Engineering high refractive index sensitivity through the internal and external composition of bimetallic nanocrystals.

    Science.gov (United States)

    Smith, Alison F; Harvey, Samantha M; Skrabalak, Sara E; Weiner, Rebecca G

    2016-10-14

    High refractive index sensitivity (RIS) of branched Au-Pd nanocrystals (NCs) is engineered through lowering the dielectric dispersion at the NC resonant wavelength with internal or external atomic % Pd. To our knowledge, these NCs display the highest ensemble RIS measurement for colloids with LSPR maximum band positions ≤900 nm, and these results are corroborated with FDTD computations.

  19. Research Advances in Detection Techniques of High Performance Liquid Chromatography-Refractive Index Detector

    Institute of Scientific and Technical Information of China (English)

    Huo; Fang; Zhang; Zhimei; Wang; Jianjun; Guo; Shijin; Zhou; Chunfeng; Fu; Shijun

    2014-01-01

    As a highly sensitive and stable detector,refractive index detector is usually used for quantitative detection of substances such as polymer,sugar and organic acid. The research reviewed the application of HPLC-RID in the fields of quantitative determination of medicine and food,in order to lay a foundation for wider use of RID.

  20. A SINGLE STEP SCHEME WITH HIGH ACCURACY FOR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    陈传淼; 胡志刚

    2001-01-01

    A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.

  1. Single-mode optical waveguides on native high-refractive-index substrates

    Science.gov (United States)

    Grote, Richard R.; Bassett, Lee C.

    2016-10-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs). However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  2. Design, Fabrication and Test of a High Efficiency Refractive Secondary Concentrator for Solar Applications

    Science.gov (United States)

    Wong, Wayne A.; Geng, Steven M.; Castle, Charles H.; Macosko, Robert P.

    2000-01-01

    Common to many of the space applications that utilize solar thermal energy such as electric power conversion, thermal propulsion, and furnaces, is a need for highly efficient, solar concentration systems. An effort is underway to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the effort at the NASA Glenn Research Center to evaluate the performance of a prototype single crystal sapphire refractive secondary concentrator and to compare the performance with analytical models. The effort involves the design and fabrication of a secondary concentrator, design and fabrication of a calorimeter and its support hardware, calibration of the calorimeter, testing of the secondary concentrator in NASA Glenn's Tank 6 solar thermal vacuum facility, and comparing the test results with predictions. Test results indicate an average throughput efficiency of 87%. It is anticipated that reduction of a known reflection loss with an anti-reflective coating would result in a secondary concentrator throughput efficiency of approximately 93%.

  3. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

    Science.gov (United States)

    Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.

    2015-05-01

    Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

  4. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Directory of Open Access Journals (Sweden)

    Coralie Fouquet

    Full Text Available Resolution, high signal intensity and elevated signal to noise ratio (SNR are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF, a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  5. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

  6. Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: theory and monolithic implementation.

    Science.gov (United States)

    Misiakos, K; Raptis, I; Salapatas, A; Makarona, E; Botsialas, A; Hoekman, M; Stoffer, R; Jobst, G

    2014-04-21

    Broad-band Mach-Zehnder interferometry is analytically described and experimentally demonstrated as an analytical tool capable of high accuracy refractive index measurements over a wide spectral range. Suitable photonic engineering of the interferometer sensing and reference waveguides result in sinusoidal TE and TM spectra with substantially different eigen-frequencies. This allows for the instantaneous deconvolution of multiplexed polarizations and enables large spectral shifts and noise reduction through filtering in the Fourier Transform domain. Due to enhanced sensitivity, optical systems can be designed that employ portable spectrum analyzers with nm range resolution without compromising the sensor analytical capability. Practical detection limits in the 10(-6)-10(-7) RIU range are achievable, including temperature effects. Finally, a proof of concept device is realized on a silicon microphotonic chip that monolithically integrates broad-band light sources and single mode silicon nitride waveguides. Refractive index detection limits rivaling that of ring resonators with externally coupled laser sources are demonstrated. Sensitivities of 20 μm/RIU and spectral shifts in the tens of a pm are obtained.

  7. Methodology for high accuracy contact angle measurement.

    Science.gov (United States)

    Kalantarian, A; David, R; Neumann, A W

    2009-12-15

    A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

  8. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    CERN Document Server

    Koshelev, Alexander; Piña-Hernandez, Carlos; Allen, Frances; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-01-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  9. Preparation of Hard Coating Films with High Refractive Index from Titania Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Woo; Ahn, Chi Yong; Song, Ki Chang [Konyang University, 121 Daehak-ro, Nonsan (Korea, Republic of)

    2015-12-15

    The titania (TiO{sub 2}) nanoparticles with a diameter 2-3 nm were synthesized by controlling hydrolysis of titanium tetraisopropoxide (TTIP) in acid solution. Organic-inorganic hybrid coating solutions were prepared by reacting the titania nanoparticles with 3-glycidoxypropyl trimethoxysilane (GPTMS) by the sol-gel method. The hard coating films with high refractive index were obtained by curing thermally at 120 .deg. C after spin-coating the coating solutions on the polycarbonate (PC) sheets. The coating films showed high optical transparency of 90% in the visible range and exhibited a pencil hardness of 2H. Also, the refractive index at 633 nm wavelength of coating films enhanced from 1.502 to 1.584 as the weight content of titania nanoparticles in the coating solutions increased from 4% to 25%.

  10. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    Science.gov (United States)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  11. Transparent and High Refractive Index Thermoplastic Polymer Glasses Using Evaporative Ligand Exchange of Hybrid Particle Fillers.

    Science.gov (United States)

    Wang, Zongyu; Lu, Zhao; Mahoney, Clare; Yan, Jiajun; Ferebee, Rachel; Luo, Danli; Matyjaszewski, Krzysztof; Bockstaller, Michael R

    2017-03-01

    Development of high refractive index glasses on the basis of commodity polymer thermoplastics presents an important requisite to further advancement of technologies ranging from energy efficient lighting to cost efficient photonics. This contribution presents a novel particle dispersion strategy that enables uniform dispersion of zinc oxide (ZnO) particles in a poly(methyl methacrylate) (PMMA) matrix to facilitate hybrid glasses with inorganic content exceeding 25% by weight, optical transparency in excess of 0.8/mm, and a refractive index greater than 1.64 in the visible wavelength range. The method is based on the application of evaporative ligand exchange to synthesize poly(styrene-r-acrylonitrile) (PSAN)-tethered zinc oxide (ZnO) particle fillers. Favorable filler-matrix interactions are shown to enable the synthesis of isomorphous blends with high molecular PMMA that exhibit improved thermomechanical stability compared to that of the pristine PMMA matrix. The concurrent realization of high refractive index and optical transparency in polymer glasses by modification of a thermoplastic commodity polymer could present a viable alternative to expensive specialty polymers in applications where high costs or demands for thermomechanical stability and/or UV resistance prohibit the application of specialty polymer solutions.

  12. High resolution seismic refraction method with multichannel digital data acquisition system; Digital ta channel sokutei system wo mochiita koseido kussetsuho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K. [Oyo Corp., Tokyo (Japan)

    1997-05-27

    This paper introduces a multichannel digital data acquisition system and examples of measurements with the system in seismic exploration using the high resolution seismic refraction method. The high resolution seismic refraction system performs analyses nearly automatically by using a computer after initial travel time has been read. Therefore, the system requires high-accuracy travel time data, for which a multichannel digital measuring instrument developed recently for seismic exploration using the refraction method has been used for the measurement. The specification specifies the number of channels at 144 as a maximum, a sampling time of 62.5 {mu}sec to 4 m sec, the maximum number of sampling of 80,000 samples, and gain accuracy of {plus_minus} 1%. The system was used for surveying a tunnel having a maximum soil cover of about 800 m. The traverse line length is about 6 km, the distance between vibration receiving points is 50 m, and the number of vibration receiving points is 194. Executing measurements of single point system using GPS can derive accurate velocity in the vicinity of the basic face of the tunnel construction. Results were obtained from the investigation, which can serve more for actual construction work. 10 refs., 6 figs., 1 tab.

  13. Development of a single crystal with a high index of refraction

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Shunsuke, E-mail: kurosawa@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); Kochurikhin, Vladimir V. [General Physics Institute, Moscow (Russian Federation); Yamaji, Akihiro [Institute for Materials Research, Tohoku University, Sendai (Japan); Yokota, Yuui [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); Kubo, Hidetoshi; Tanimori, Toru [Department of Physics, Kyoto University, Kyoto (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, Sendai (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan)

    2013-12-21

    Time-of-flight Positron emission tomography (TOF-PET) is one of the next-generation medical imaging methods, which requires scintillators with a very short decay time. However, the shortest scintillation decay times are typically 20–30 ns, and these values are not sufficient for TOF-PET. Cherenkov counters are used in high energy physics and they are expected to be applied in medical imaging due to their short decay time. Here, high-refractive index materials are necessary for Cherenkov radiators to reach a high light output. We measured refractive indices of Gd{sub 3}Ga{sub 5}O{sub 12} (GGG), Y{sub 3}Ga{sub 5}O{sub 12} (YGG) and Lu{sub 3}Ga{sub 5}O{sub 12} (LuGG) crystals grown by a micro-pulling-down (μ-PD) method. The GGG, YGG and LuGG crystals were found to have refractive indices of ∼2.5, ∼2.3 and ∼2.3 at 400 nm, respectively. Then we grew a 40 mm diameter GGG crystal by the Czochralski method, and the emission decay times of the GGG crystals irradiated with muons and gamma rays were 10±1ns and 10±2ns, respectively, using a photomultiplier tube (Hamamatsu R6231-100). Cherenkov light of the GGG crystal could be observed for the gamma-ray irradiation.

  14. High accuracy GNSS based navigation in GEO

    Science.gov (United States)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  15. Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

    Science.gov (United States)

    Perera, Chamanei; Cheng, Elliot; Sathian, Juna; Jaatinen, Esa; Davis, Timothy

    2016-01-01

    Summary In this paper we report the design and experimental realisation of a novel refractive index sensor based on coupling between three nanoscale stripe waveguides. The sensor is highly compact and designed to operate at a single wavelength. We demonstrate that the sensor exhibits linear response with a resolution of 6 × 10−4 RIU (refractive index unit) for a change in relative output intensity of 1%. Authors expect that the outcome of this paper will prove beneficial in highly compact, label-free and highly sensitive refractive index analysis. PMID:27335763

  16. SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED CARBON BLACK/POLY(VINYL ALCOHOL) HIGH REFRACTIVE INDEX NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Xue; Ji-bin Wang; Yu-bin Bao; Qiu-ying Li; Chi-fei Wu

    2012-01-01

    Carbon black (CB)/polymer composites with high refractive index (RI) were fabricated from poly(vinyl alcohol) (PVA) and covalently functionalized nano-CB (PVA-es-CB) by simple esterification reaction.Transmission electron microscopy showed that uniform aggregates of PVA-es-CB nanoparticles with a size smaller than 100 nm formed in the nanocomposite films.Ellipsometric measurements indicated that the PVA-es-CB/PVA composite films had a RI in the range 1.520-1.598 linearly increased with the PVA-es-CB volume content.Theoretical equation based on Lorentz-Lorenz theory provided reasonably close estimation of the refractive indices to the experimentally observed values.The hybrid films also revealed relatively good surface planarity,thermal stability and optical transparency.

  17. Refractometric sensor utilizing a vertically coupled polymeric microdisk resonator incorporating a high refractive index overlay.

    Science.gov (United States)

    Kim, Gun-Duk; Son, Geun-Sik; Lee, Hak-Soon; Kim, Ki-Do; Lee, Sang-Shin

    2009-04-01

    A refractometric sensor resorting to a vertically coupled polymeric microdisk resonator was demonstrated, estimating the refractive index (RI) of an analyte by monitoring the resonant wavelength shift in its transfer characteristics. The disk resonator was especially overlaid with a high RI TiO2 film, thereby reinforcing the interaction of the evanescent field of its guided mode with the analyte. The sensitivity of the sensor was theoretically and experimentally confirmed to be enhanced by adjusting the overlay thickness. The fabricated sensor provided the maximum sensitivity of approximately 294 nm/RIU (refractive index unit) with the 40-nm-thick overlay, which is equivalent to an improvement of 150% compared with the case without the overlay.

  18. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  19. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  20. High speed high dynamic range high accuracy measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  1. Identifying Children at Risk of High Myopia Using Population Centile Curves of Refraction.

    Science.gov (United States)

    Chen, Yanxian; Zhang, Jian; Morgan, Ian G; He, Mingguang

    2016-01-01

    To construct reference centile curves of refraction based on population-based data as an age-specific severity scale to evaluate their efficacy as a tool for identifying children at risk of developing high myopia in a longitudinal study. Data of 4218 children aged 5-15 years from the Guangzhou Refractive Error Study in Children (RESC) study, and 354 first-born twins from the Guangzhou Twin Eye Study (GTES) with annual visit were included in the analysis. Reference centile curves for refraction were constructed using a quantile regression model based on the cycloplegic refraction data from the RESC. The risk of developing high myopia (spherical equivalent ≤ -6 diopters [D]) was evaluated as a diagnostic test using the twin follow-up data. The centile curves suggested that the 3rd, 5th, and 10th percentile decreased from -0.25 D, 0.00 D and 0.25 D in 5 year-olds to -6.00 D, -5.65D and -4.63 D in 15 year-olds in the population-based data from RESC. In the GTES cohort, the 5th centile showed the most effective diagnostic value with a sensitivity of 92.9%, a specificity of 97.9% and a positive predictive value (PPV) of 65.0% in predicting high myopia onset (≤-6.00D) before the age of 15 years. The PPV was highest (87.5%) in 3rd centile but with only 50.0% sensitivity. The Mathew's correlation coefficient of 5th centile in predicting myopia of -6.0D/-5.0D/-4.0D by age of 15 was 0.77/0.51/0.30 respectively. Reference centile curves provide an age-specific estimation on a severity scale of refractive error in school-aged children. Children located under lower percentiles at young age were more likely to have high myopia at 15 years or probably in adulthood.

  2. Highly birefringent suspended-core photonic microcells for refractive-index sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong (China); The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057 (China); Jin, Wa; Ma, Jun; Jin, Wei, E-mail: eewjin@polyu.edu.hk; Yang, Fan; Ho, Hoi Lut [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Liao, Changrui; Wang, Yiping [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060 (China)

    2014-08-11

    An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

  3. A High-Efficiency Refractive Secondary Solar Concentrator for High Temperature Solar Thermal Applications

    Science.gov (United States)

    Piszczor, Michael F., Jr.; Macosko, Robert P.

    2000-01-01

    A refractive secondary solar concentrator is a non-imaging optical device that accepts focused solar energy from a primary concentrator and redirects that light, by means of refraction and total internal reflection (TIR) into a cavity where the solar energy is used for power and/or propulsion applications. This concept offers a variety of advantages compared to typical reflective secondary concentrators (or the use of no secondary at all): higher optical efficiency, minimal secondary cooling requirements, a smaller cavity aperture, a reduction of outgassing from the cavity and flux tailoring of the solar energy within the heat receiver. During the past 2 years, NASA Lewis has been aggressively developing this concept in support of the NASA Marshall Shooting Star Flight Experiment. This paper provides a brief overview of the advantages and technical challenges associated with the development of a refractive secondary concentrator and the fabrication of a working unit in support of the flight demonstration program.

  4. High accuracy in silico sulfotransferase models.

    Science.gov (United States)

    Cook, Ian; Wang, Ting; Falany, Charles N; Leyh, Thomas S

    2013-11-29

    Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.

  5. High accuracy & long timescale light curves

    Directory of Open Access Journals (Sweden)

    Hodgkin S.

    2013-04-01

    Full Text Available We present a theoretical analysis of the optical light curves (LCs for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i reflected and thermally emitted light by the planet, (ii the ellipsoidal shape of the star due to the gravitational pull of the planet, and (iii the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet's albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii. can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet's mass. As an example we presend KOI-13b (candidate exoplanet system included in the September 2011 Kepler data release. The Kepler light curve shows both primary and secondary eclipses, as well as significant out-of-eclipse light curve variations. We model the relative contributions from (i thermal emission from the companion, (ii planetary reflected light, (iii doppler beaming, and (iv ellipsoidal variations in the host-star arising from the tidal distortion of the host star by its companion. Our analysis, based on the light curve alone, enables us to constrain the mass of the KOI-13.01 companion to be MC = 8.3 ± 1.25 MJ and thus demonstrates that the transiting companion is a planet. The teqnique is useful for current and future space missions such as Kepler and PLATO.

  6. Seismic reflection and refraction methods

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    of the subsurface, but this comes at a relatively high economic cost. Thus, when selecting the appropriate geophysical survey, one must determine whether increased resolution of the survey is justified in terms of the cost of conducting and interpreting... of the time-distance segments from the respective layers when such zone, called as a blind zone, presents as an intermediate layer. Therefore, it is important to take such zones into account for proper accuracy in shallow refraction investigations...

  7. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators.

    Science.gov (United States)

    Lai, Yueh-Chun; Chen, Cheng-Kuang; Yang, Yu-Hang; Yen, Ta-Jen

    2012-01-30

    Based on Maxwell's equations and Mie theory, strong sub-wavelength artificial magnetic and electric dipole resonances can be excited within dielectric resonators, and their resonant frequencies can be tailored simply by scaling the size of the dielectric resonators. Therefore, in this work we hybridize commercially available zirconia and alumina structures to harvest their individual artificial magnetic and electric response simultaneously, presenting a negative refractive index medium (NRIM). Comparing with the conventional NRIM constructed by metallic structures, the demonstrated all-dielectric NRIM possesses low-loss and high-symmetry advantages, thus benefiting practical applications in communication components, perfect lenses, invisible cloaking and other novel electromagnetic devices.

  8. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  9. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    Science.gov (United States)

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  10. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  11. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    Energy Technology Data Exchange (ETDEWEB)

    Burkhard, Boeckem [Institute for Geodesy and Photogrammetry, ETH Zurich (Switzerland)

    1999-07-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle {delta}{beta}, is to first approximation proportional to the refraction angle: {beta}{sub IR} {nu}({beta}{sub blue} - {beta}{sub IR}) = {nu} {delta}{beta}, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of

  12. Tunable high-refractive index hybrid for solution-processed light management devices (Conference Presentation)

    Science.gov (United States)

    Bachevillier, Stefan

    2016-10-01

    After the use of highly efficient but expensive inorganic optical materials, solution-processable polymers and hybrids have drawn more and more interest. Our group have recently developed a novel polymer-based hybrid optical material from titanium oxide hydrate exhibiting an outstanding set of optical and material properties. Firstly, their low cost, processability and cross-linked states are particularly attractive for many applications. Moreover, a high refractive index can be repeatedly achieved while optical losses stays considerably low over the entire visible and near-infrared wavelength regime. Indeed, the formation of inorganic nanoparticles, usually present in nanocomposites, is avoided by a specific formulation process. Even more remarkably, the refractive index can be tuned by either changing the inorganic content, using different titanium precursors or via a low-temperature curing process. A part of our work is focused on the reliable optical characterization of these properties, in particular a microscope-based setup allowing in-situ measurement and sample mapping has been developed. Our efforts are also concentrated on various applications of these exceptional properties. This hybrid material is tailored for photonic devices, with a specific emphasis on the production of highly efficient solution processable Distributed Bragg Reflectors (DBR) and anti-reflection coatings. Furthermore, waveguides can be fabricated from thin films along with in-coupling and out-coupling structures. These light managements structures are particularly adapted to organic photovoltaic cells (OPVs) and light emitting diodes (OLEDs).

  13. All-optical on-chip sensor for high refractive index sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yazhao [Foundation for Fundamental Research on Matter, Van Vollenhovenlaan 659, 3527 JP, Utrecht (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft (Netherlands); Salemink, H. W. M., E-mail: H.Salemink@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2015-01-19

    A highly sensitive sensor design based on two-dimensional photonic crystal cavity is demonstrated. The geometric structure of the cavity is modified to gain a high quality factor, which enables a sensitive refractive index sensing. A group of slots with optimized parameters is created in the cavity. The existence of the slots enhances the light-matter interactions between confined photons and analytes. The interactions result in large wavelength shifts in the transmission spectra and are denoted by high sensitivities. Experiments show that a change in refractive index of Δn ∼ 0.12 between water and oil sample 1 causes a spectral shift of 23.5 nm, and the spectral shift between two oil samples is 5.1 nm for Δn ∼ 0.039. These results are in good agreement with simulations, which are 21.3 and 7.39 nm for the same index changes.

  14. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings.

    Science.gov (United States)

    Palmer, Guido; Gross, Simon; Fuerbach, Alexander; Lancaster, David G; Withford, Michael J

    2013-07-15

    We report the first Yb:ZBLAN and Yb:IOG10 waveguide lasers fabricated by the fs-laser direct-writing technique. Pulses from a Titanium-Sapphire laser oscillator with 5.1 MHz repetition rate were utilized to generate negative refractive index modifications in both glasses. Multiple modifications were aligned in a depressed cladding geometry to create a waveguide. For Yb:ZBLAN we demonstrate high laser slope efficiency of 84% with a maximum output power of 170 mW. By using Yb:IOG10 a laser performance of 25% slope efficiency and 72 mW output power was achieved and we measured a remarkably high refractive index change exceeding Δn = 2.3 × 10(-2).

  15. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  16. Refractive X-ray lens for high pressure experiments at SPring-8

    CERN Document Server

    Ohishi, Y; Ishii, M; Ishikawa, T; Shimomura, O

    2001-01-01

    A stacked compound refractive X-ray lens was designed to produce an efficiently focused (phi (cursive,open) Greek<0.1 mm) beam for high-pressure experiments at SPring-8. High-pressure X-ray diffraction requires an intense, high-energy and monochromatic X-ray beam in order to penetrate the absorptive window of a diamond anvil cell (DAC). Our lens, producing a focal spot of 120x275 mu m sup 2 and a peak gain of 12, is well matched to these requirements. It is composed of many plastic chips made by molding, which allows many identical chips to be made precisely. Other advantages of this lens include high throughput, simple energy tunability and easy installation.

  17. Refractive X-ray lens for high pressure experiments at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Y. E-mail: ohishi@spring8.or.jp; Baron, A.Q.R.; Ishii, M.; Ishikawa, T.; Shimomura, O

    2001-07-21

    A stacked compound refractive X-ray lens was designed to produce an efficiently focused (phi (cursive,open) Greek<0.1 mm) beam for high-pressure experiments at SPring-8. High-pressure X-ray diffraction requires an intense, high-energy and monochromatic X-ray beam in order to penetrate the absorptive window of a diamond anvil cell (DAC). Our lens, producing a focal spot of 120x275 {mu}m{sup 2} and a peak gain of 12, is well matched to these requirements. It is composed of many plastic chips made by molding, which allows many identical chips to be made precisely. Other advantages of this lens include high throughput, simple energy tunability and easy installation.

  18. Thermal Shock Behavior of Single Crystal Oxide Refractive Concentrators for High Temperatures Solar Thermal Propulsion

    Science.gov (United States)

    Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.

  19. Highly sensitive refractive index sensor based on two cascaded microfiber knots with Vernier effect

    Science.gov (United States)

    Xu, Zhilin; Sun, Qizhen; Jia, Weihua; Shum, Perry Ping; Liu, Deming

    2014-05-01

    A highly sensitive refractive index (RI) sensor based on two cascaded microfiber knots with vernier effect is proposed and demonstrated by theoretical arithmetic. Deriving from high proportional evanescent field of microfiber and sharp spectrum fringes induced by vernier effect, a slight change of ambient RI will cause large variation of effective RI and significant wavelength shift of resonant peaks, indicating high sensitivity and resolution of the proposed compound resonator. Numerical analysis demonstrates a high sensitivity of 10000nm/RIU and a resolution of 5.57×10-5 RIU at the ambient RI around 1.33 for the fiber diameter of 1μm and cavity radii of R1 = 500μm, R2 = 547.62μm

  20. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-07-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = |n real/n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  1. Metamaterial Demonstrates Both a High Refractive Index and Extremely Low Reflection in the 0.3-THz Band

    Science.gov (United States)

    Ishihara, Koki; Suzuki, Takehito

    2017-09-01

    Communication and imaging in the terahertz waveband have advanced rapidly in offering industrial applications. However, optical elements such as collimated lenses in the terahertz waveband are bulky compared with the wavelength due to the lack of naturally occurring substances with a high refractive index and low loss. It is essential to miniaturize optical elements in the terahertz waveband for industrial application. Metamaterials consisting of subwavelength structures can arbitrarily control permittivity and permeability and provide a range of refractive indices. Here, we demonstrate a metamaterial with both a high refractive index and extremely low reflection consisting of symmetrically aligned paired cut metal wires with 18,800 units on the front and back surfaces of a dielectric substrate. Measurements by terahertz time-domain spectroscopy (THz-TDS) confirm a high effective refractive index of 6.66 + j0.123, extremely low reflection power of 1.16%, and the unprecedented high figure of merit (FOM = | n real/ n imag|) of above 300 in the 0.3-THz band. Components with such specifications would enable miniature, high-performance optical elements in the terahertz waveband such as ultrathin flat antennas with high directivity. Further, the concept of the metamaterial with both a high refractive index and extremely low reflection potentially offers a wide range of attractive applications such as solid immersion lenses and cloaking devices.

  2. Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature

    CERN Document Server

    Farsi, Alessandro; Marino, Francesco; Marin, Francesco

    2011-01-01

    Increasing requirements in the sensitivity of interferometric measurements is a common feature of several research fields, from gravitational wave detection to quantum optics. This motivates refined studies of high reflectivity mirrors and of noise sources that are tightly related to their structure. In this work we present an experimental characterization of photothermal and thermo-refractive effects in high reflectivity mirrors, i.e., of the variations in the position of their effective reflection plane due to weak residual power absorption. The measurements are performed by modulating the impinging power in the range 10 Hz $\\div$ 100 kHz. The experimental results are compared with an expressly derived theoretical model in order to fully understand the phenomena and exploit them to extract useful effective thermo-mechanical parameters of the coating. The measurements are extended at cryogenic temperature, where most high sensitivity experiments are performed (or planned in future versions) and where charact...

  3. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Science.gov (United States)

    Zhang, Yichi; Liang, Xiao Ying; Liu, Shu; Lee, Jacky W. Y.; Bhaskar, Srinivasan; Lam, Dennis S. C.

    2016-01-01

    Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL) power calculation formulas for eyes with an axial length (AL) greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II) using User Group for Laser Interference Biometry (ULIB) constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE) and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.). Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice. PMID:27119018

  4. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Yichi Zhang

    2016-01-01

    Full Text Available Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL power calculation formulas for eyes with an axial length (AL greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II using User Group for Laser Interference Biometry (ULIB constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.. Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice.

  5. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    Science.gov (United States)

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-01-01

    The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

  6. Fabrication of elliptic microfibers with CO2 laser for high-sensitivity refractive index sensing.

    Science.gov (United States)

    Sun, Li-Peng; Li, Jie; Gao, Shuai; Jin, Long; Ran, Yang; Guan, Bai-Ou

    2014-06-15

    We propose a convenient method for achieving highly birefringent (HiBi) elliptic microfibers by use of the CO2-laser machining and the flame-brushing techniques. With optimization of fabrication process, a high birefringence of up to 2.10×10(-2) is experimentally obtained. Especially, within a polarization Sagnac interferometer acting as a refractive index (RI) sensor, both positive and abnormal negative sensitivity is measured, dependent on the geometrical variables of the HiBi microfiber. The maximum RI sensitivity is ∼195,348  nm/RI-unit around RI=1.35887, which is the highest among the microfiber devices as reported, to our knowledge.

  7. High-performance Refractive Index Sensor Based on Photonic Crystal Single Mode Resonant Micro-cavity

    Institute of Scientific and Technical Information of China (English)

    Shengye Huang; Junfeng Shi; Dongsheng Wang; Wei Li

    2006-01-01

    An effective refractive index sensor built with square lattice photonic crystal is proposed, which can be applicable to photonic integrated circuits. Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity. Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity. The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation. At the resonant wavelength of about 1500 nm, the resonant wavelength shifts up by 0.7 nm for each increment of △n=0.001. A transmission of more than 0.75 is observed. Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor,the transmission reduces rapidly as the disorder increases.

  8. Application of high refractive index and/or chromogenic layers to control solar and thermal radiations

    Science.gov (United States)

    Suzuki, Motofumi; Nishiura, Kensuke; Masunaka, Shoma; Muroi, Naoto; Namura, Kyoko

    2016-09-01

    In this presentation, we demonstrate that high refractive index materials such as β-FeSi2 and/or chromogenic materials such as VO2 are the key to control solar and thermal radiations. β-FeSi2 is known as an eco-friendly semiconductor and for sputtered polycrystalline β-FeSi2 thin films, we recently found that λ 0.3 in IR region, while n is higher than 5. On the other hand, another interesting optical property of β-FeSi2 is that both n and k are considerably high in visible to NIR region ( λ designed multilayers consisting of β-FeSi2/SiO2/β-FeSi2/W, where the upper β-FeSi2 layer absorbs VIS and NIR (λ <= 1.0 μm) and the bottom β-FeSi2 layer/W absorbs IR (1.0 <= λ <=2.0 μm). The optimized multilayers absorb more than 90% of solar energy and the eminence at 450 °C is lower than 10%. The perfect absorbers with high refractive index layers are useful for applications to solar selective absorbers for solar thermal power generation and spectrally selective thermal emitters for thermophotovoltaic power generation, IR heaters, radiation cooling. Replacing one of β-FeSi2 layers with a chromogenic material allows active control of solar and thermal radiation. In the presentation, we also demonstrate the active perfect absorbers including a VO2 layer in NIR region.

  9. INKJET PRINTING OF HIGH REFRACTIVE STRUCTURES BASED ON TiO2 SOL

    Directory of Open Access Journals (Sweden)

    Elena A. Eremeeva

    2016-11-01

    Full Text Available Subject of Research. The paper deals with description of novel inkjet printing method for optical elements formed by structures based on TiO2 sol. The proposed approach presents effective way to obtain such optical nano objects as diffraction structures and transparent interference patterns. Methods. TiO2 nanoparticles were synthesized by hydrolysis of titanium isopropoxide (0.36 mol in deionized water (33.3 mol under vigorous stirring and using nitric acid (0.04 mol as a protonating agent. Viscosity was determined by Brookfield HA/HB viscometer, and surface tension - by Kyowa DY-700 tensiometer. Titanium dioxide inks were deposited on commercially available microembossed PET film with a thickness of 20 µm. To print titania ink Canon Pixma IP 2840 desktop office printer was used with a drop volume of 2 pL. The thickness of an inkjet TiO2 layer after drying in the air and removal of the solvents did not exceed 500 nm with a refractive index not less than 2.08 in the entire visible range.Main Results. The synthesis of aqueous TiO2 sol was used to obtain the ink with desirable rheological characteristics: viscosity and surface tension. The required rheology was regulated by controlling parameters of sol-gel transition in the system of aqueous titanium dioxide sol and by adding ethanol that affects the charge of double electrical layer of disperse phase. The reviled ratio of titanium dioxide sol and ethanol in the system gives such values of viscosity and surface tension that make this material convenient for inkjet printing. The coatings created by sol have a high refractive index in the entire visible range (not less than 2.08. We have shown that the deposition of optical transparent microstructures with diffraction effect has an ability to be applied on the transparent surfaces. The morphology of particles and the topology of printed structures were analyzed by optic and atomic-force microscopes.Practical Relevance. We have proposed the approach

  10. Electromagnetic polarization controlled perfect switching effect with high refractive index dimers. the beam-splitter configuration

    CERN Document Server

    Barreda, Angela I; Litman, Amelie; Gonzalez, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2016-01-01

    High Refractive Index (HRI) dielectric particles smaller than the wavelength, isolated or forming a designed ensemble are ideal candidates as new multifunctional elements for building optical devices. Their directionality effects are traditionally analyzed through forward and backward measurements, even if these directions are not suitable for practical purposes. Here we present unambiguous experimental evidence in the microwave range that, for a dimer of HRI spherical particles, a perfect switching effect (perfect means off = null intensity) is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization (polarization switching). Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell equations allows generalizing our results to other frequency range ...

  11. Directional Fano Resonances at Light Scattering by a High Refractive Index Dielectric Sphere

    CERN Document Server

    Tribelsky, Michael I; Litman, Amelie; Eyraud, Christelle; Moreno, Fernando

    2016-01-01

    In this research, we report the experimental evidence of the directional Fano resonances at the scattering of a plane, linearly polarized electromagnetic wave by a homogeneous dielectric sphere with high refractive index and low losses. We observe a typical asymmetric Fano profile for the intensity scattered in, practically, any given direction, while the overall extinction cross section remains Lorentzian. The phenomenon is originated in the interference of the selectively excited electric dipolar and quadrupolar modes. The selectivity of the excitation is achieved by the proper choice of the frequency of the incident wave. Thanks to the scaling invariance of the Maxwell equations, in these experiments we mimic the scattering of the visible and near IR radiation by a nanoparticle made of common superconductor materials (Si, Ge, GaAs, GaP) by the equivalent scattering of a spherical particle of 18 mm in diameter in the microwave range. The theory developed to explain the experiments extends the conventional F...

  12. Refractive lenses as a beam diagnostics tool for high-energy synchrotron radiation

    CERN Document Server

    Weitkamp, T; Drakopoulos, M; Souvorov, A; Snigireva, I; Snigirev, A; Guenzler, F; Schrör, C; Lengeler, B

    2001-01-01

    Parabolic compound refractive lenses (CRLs) for hard X rays have been used to image the electron beam at undulator and bending-magnet beamlines at the ESRF. The measurements yield the shape and size of the synchrotron radiation source, and show that CRLs with paraboloid surface shape can be used as a beam diagnostics tool at high-energy electron storage rings. The optical resolution of the imaging setup can be as small as 4 mu m. This is smaller than typical values of the electron beam size in third-generation synchrotron sources. We report measurements at two ESRF beamlines and resolution calculations taking into account the properties of synchrotron radiation and the transmission characteristics of the CRLs used.

  13. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  14. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  15. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  16. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  17. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate

  18. Compensation of motion error in a high accuracy AFM

    Science.gov (United States)

    Cui, Yuguo; Arai, Yoshikazu; He, Gaofa; Asai, Takemi; Gao, Wei

    2008-10-01

    An atomic force microscope (AFM) system is used for large-area measurement with a spiral scanning strategy, which is composed of an air slide, an air spindle and a probe unit. The motion error which is brought from the air slide and the air spindle will increase with the increasing of the measurement area. Then the measurement accuracy will decrease. In order to achieve a high speed and high accuracy measurement, the probe scans along X-direction with constant height mode driven by the air slide, and at the same time, based on the change way of the motion error, it moves along Zdirection conducted by piezoactuator. According to the above method of error compensation, the profile measurement experiment of a micro-structured surface has been carried out. The experimental result shows that this method is effective for eliminating motion error, and it can achieve high speed and precision measurement of micro-structured surface.

  19. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures.

    Science.gov (United States)

    Lin, Xiao; Yang, Yi; Rivera, Nicholas; López, Josué J; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Zhang, Baile; Joannopoulos, John D; Soljačić, Marin

    2017-06-27

    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene-BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon-phonon-polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons and, even more surprisingly, between hybrid graphene plasmons and between hybrid phonon polaritons. Graphene-BN heterostructures thus provide a versatile platform for the design of nanometasurfaces and nanoimaging elements.

  20. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures

    CERN Document Server

    Lin, Xiao; Rivera, Nicholas; Lopez, Josue J; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Joannopoulos, John D; Soljacic, Marin

    2016-01-01

    A fundamental building block for nanophotonics is the ability to achieve negative refraction of polaritons, because this could enable the demonstration of many unique nanoscale applications such as deep-subwavelength imaging, superlens, and novel guiding. However, to achieve negative refraction of highly squeezed polaritons, such as plasmon polaritons in graphene and phonon polaritons in boron nitride (BN) with their wavelengths squeezed by a factor over 100, requires the ability to flip the sign of their group velocity at will, which is challenging. Here we reveal that the strong coupling between plasmon and phonon polaritons in graphene-BN heterostructures can be used to flip the sign of the group velocity of the resulting hybrid (plasmon-phonon-polariton) modes. We predict all-angle negative refraction between plasmon and phonon polaritons, and even more surprisingly, between hybrid graphene plasmons, and between hybrid phonon polaritons. Graphene-BN heterostructures thus provide a versatile platform for t...

  1. Refractive beam shapers for material processing with high power single mode and multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2013-02-01

    The high power multimode fiber-coupled laser sources, like solid state lasers or laser diodes as well as single mode and multimode fiber lasers, are now widely used in various industrial laser material processing technologies like metal or plastics welding, cladding, hardening, brazing, annealing. Performance of these technologies can be essentially improved by varying the irradiance profile of a laser beam with using beam shaping optics, for example, the field mapping refractive beam shapers like piShaper. Operational principle of these devices presumes transformation of laser beam irradiance distribution from Gaussian to flattop, super-Gauss, or inverse-Gauss profile with high flatness of output wave front, conserving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field. Important feature of piShaper is in capability to operate with TEM00 and multimode lasers, the beam shapers can be implemented not only as telescopic optics but also as collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation. This paper will describe some features of beam shaping of high-power laser sources, including multimode fiber coupled lasers, and ways of adaptation of beam shaping optical systems design to meet requirements of modern laser technologies. Examples of real implementations will be presented as well.

  2. Development of high refractive ZnS/PVP/PDMAA hydrogel nanocomposites for artificial cornea implants.

    Science.gov (United States)

    Zhang, Quanyuan; Su, Kai; Chan-Park, Mary B; Wu, Hong; Wang, Dongan; Xu, Rong

    2014-03-01

    A series of high refractive index (RI) ZnS/PVP/PDMAA hydrogel nanocomposites containing ZnS nanoparticles (NPs) were successfully synthesized via a simple ultraviolet-light-initiated free radical co-polymerization method. The average diameter of the ZnS NPs is ∼ 3 nm and the NPs are well dispersed and stabilized in the PVP/PDMAA hydrogel matrix up to a high content of 60 wt.% in the hydrogel nanocomposites. The equilibrium water content of ZnS/PVP/PDMAA hydrogel nanocomposites varied from 82.0 to 66.8 wt.%, while the content of mercaptoethanol-capped ZnS NPs correspondingly varied from 30 to 60 wt.%. The resulting nanocomposites are clear and transparent and their RIs were measured to be as high as 1.58-1.70 and 1.38-1.46 in the dry and hydrated states, respectively, which can be tuned by varying the ZnS NPs content. In vitro cytotoxicity assays suggested that the introduction of ZnS NPs added little cytotoxicity to the PVP/PDMAA hydrogel and all the hydrogel nanocomposites exhibited minimal cytotoxicity towards common cells. The hydrogel nanocomposites implanted in rabbit eyes can be well tolerated over 3 weeks. Hence, the high RI ZnS/PVP/PDMAA hydrogel nanocomposites with adjustable RIs developed in this work might potentially be a candidate material for artificial corneal implants.

  3. Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings

    Directory of Open Access Journals (Sweden)

    Choong Leng Ng

    2013-10-01

    Full Text Available We demonstrate a refractive index sensor based on a long period grating (LPG inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5.

  4. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  5. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Michael Korenberg

    2012-08-01

    Full Text Available In both military and civilian applications, the inertial navigation system (INS and the global positioning system (GPS are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  6. Why is a high accuracy needed in dosimetry. [Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of ..gamma.. and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control.

  7. Navigation message designing with high accuracy for NAV

    Institute of Scientific and Technical Information of China (English)

    Wang Luxiao; Huang Zhigang; Zhao Yun

    2014-01-01

    Navigation message designing with high accuracy guarantee is the key to efficient navi-gation message distribution in the global navigation satellite system (GNSS). Developing high accu-racy-aware navigation message designing algorithms is an important topic. This paper investigates the high-accuracy navigation message designing problem with the message structure unchanged. The contributions made in this paper include a heuristic that employs the concept of the estimated range deviation (ERD) to improve the existing well-known navigation message on L1 frequency (NAV) of global positioning system (GPS) for good accuracy service; a numerical analysis approximation method (NAAM) to evaluate the range error due to truncation (RET) of different navigation messages; and a basic positioning parameters designing algorithm in the limited space allocation. Based on the predicted ultra-rapid data from the ultra-rapid data from the international GPS service for geodynamic (IGU), ERDs are generated in real time for error correction. Simulations show that the algorithms developed in this paper are general and flexible, and thus are applicable to NAV improvement and other navigation message designs.

  8. Finite checkerboards of dissipative negative refractive index.

    Science.gov (United States)

    Chakrabarti, Sangeeta; Ramakrishna, S Anantha; Guenneau, S

    2006-12-25

    The electromagnetic properties of finite checkerboards consisting of alternating rectangular cells of positive refractive index (epsilon= +1, micro= +1) and negative refractive index (epsilon= -1, micro= -1) have been investigated numerically. We show that the numerical calculations have to be carried out with very fine discretization to accurately model the highly singular behaviour of these checkerboards. Our solutions show that, within the accuracy of the numerical calculations, the focusing properties of these checkerboards are reasonably robust in the presence of moderate levels of dissipation. We also show that even small systems of checkerboards can display focussing effects to some extent.

  9. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  10. Measurement of high order Kerr refractive index of major air components.

    Science.gov (United States)

    Loriot, V; Hertz, E; Faucher, O; Lavorel, B

    2009-08-03

    We measure the instantaneous electronic nonlinear refractive index of N(2), O(2) and Ar at room temperature for a 90 fs and 800 nm laser pulse. Measurements are calibrated by post-pulse molecular alignment through a polarization technique. At low intensity, quadratic coefficients n(2) are determined. At higher intensities, a strong negative contribution with a higher nonlinearity appears, which leads to an overall negative nonlinear Kerr refractive index in air above 26 TW/cm(2).

  11. Pressure Sensing in High-Refractive-Index Liquids Using Long-Period Gratings Nanocoated with Silicon Nitride

    Directory of Open Access Journals (Sweden)

    Jiahua Chen

    2010-12-01

    Full Text Available The paper presents a novel pressure sensor based on a silicon nitride (SiNx nanocoated long-period grating (LPG. The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD > 1.46 such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n > 2.2 at λ = 1,550 nm, but is also the thinnest (

  12. High reliability solid refractive index matching materials for field installable connections in FTTH network

    Science.gov (United States)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio

    2015-06-01

    We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.

  13. Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties

    Science.gov (United States)

    Fang, Caihong; Zhao, Guili; Xiao, Yanling; Zhao, Jun; Zhang, Zijun; Geng, Baoyou

    2016-11-01

    Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable. Here, we employed chloroplatinic acid as the key shape-directing agent for the first time to grow Au NBPs using a modified seed-mediated method at room temperature. H2PtCl6 was added both during the seed preparation and in growth solution. Metallic Pt, reduced from chloroplatinic acid, will deposit on the surface of the seed nanoparticles and the Au nanocrystals and thus plays a critical role for the formation of Au NBPs. Additionally, the reductant, precursor, and surfactant are all cheap and commonly used. Furthermore, the Au NBPs offer narrow size distribution, two sharp tips, and a shared basis. Au NBPs therefore show much higher refractive index sensitivities than that of the Au nanorods. The refractive index sensitivities and lager figure of merit values of Au NBPs exhibit an increase of 63% and 321% respectively compared to the corresponding values of Au nanorod sample.

  14. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    Science.gov (United States)

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  15. High-Directivity Antenna Array Based on Artificial Electromagnetic Metamaterials with Low Refractive Index

    Directory of Open Access Journals (Sweden)

    Zhigang Xiao

    2015-01-01

    Full Text Available Planar metamaterials (MTMs with low refractive index are proposed as a cover in a high-gain patch antenna array configuration. This MTMs array antenna has the following features: the number of array elements significantly decreases compared with the conventional array; the elements spacing is larger than a wave length by far; the feeding network is simpler. MTMs are made of two layers of periodic square metallic grids and placed above the feeding array. With the same aperture size, the directivity of MTMs-cover antenna array is higher than the conventional antenna array. The simulation results show that an array of 2 × 2 patch elements integrated with MTMs yields about 26 dB of directivity which is higher than that of conventional 8 × 8 patch array. Furthermore, on the condition of the same aperture size, an array patch with 4 × 4 elements integrated with the MTMs-cover has an equivalent gain compared with the conventional patch array with 16 × 16 array elements. Obviously, the former has a simpler feeding network and higher aperture efficiency. The experimental work has verified that the 2 × 2 array case and the measured results have good agreement with the simulation.

  16. High accuracy and visibility-consistent dense multiview stereo.

    Science.gov (United States)

    Vu, Hoang-Hiep; Labatut, Patrick; Pons, Jean-Philippe; Keriven, Renaud

    2012-05-01

    Since the initial comparison of Seitz et al., the accuracy of dense multiview stereovision methods has been increasing steadily. A number of limitations, however, make most of these methods not suitable to outdoor scenes taken under uncontrolled imaging conditions. The present work consists of a complete dense multiview stereo pipeline which circumvents these limitations, being able to handle large-scale scenes without sacrificing accuracy. Highly detailed reconstructions are produced within very reasonable time thanks to two key stages in our pipeline: a minimum s-t cut optimization over an adaptive domain that robustly and efficiently filters a quasidense point cloud from outliers and reconstructs an initial surface by integrating visibility constraints, followed by a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization, and adaptive resolution. The pipeline has been tested over a wide range of scenes: from classic compact objects taken in a laboratory setting, to outdoor architectural scenes, landscapes, and cultural heritage sites. The accuracy of its reconstructions has also been measured on the dense multiview benchmark proposed by Strecha et al., showing the results to compare more than favorably with the current state-of-the-art methods.

  17. Novel method for high accuracy figure measurement of optical flat

    Science.gov (United States)

    E, Kewei; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2017-01-01

    Phase Measuring Deflectometry (PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations, including test geometry, imaging pin-hole camera and digital display. In this paper, we propose a novel method that can measure optical flat surface figure to a high accuracy. We first calibrate the camera using a checker pattern shown on a LCD display at six different orientations, and the last orientation is aligned at the same position as the test optical flat. By using this method, lens distortions and the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat can be determined at the same time. To further reduce the influence of the calibration errors on measurements, a reference optical flat with a high quality surface is measured, and then the system errors in our PMD setup can be eliminated by subtracting the figure of the reference flat from the figure of the test flat. Although any expensive coordinates measuring machine, such as laser tracker and coordinates measuring machine are not applied in our measurement, our experimental results of optical flat figure from low to high order aberrations still show a good agreement with that from the Fizeau interferometer.

  18. Cryogenic Refractive Index of Heraeus Homosil Glass

    Science.gov (United States)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.343.16 m and temperature range of 120335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  19. Suppression of Air Refractive Index Variations in High-Resolution Interferometry

    Directory of Open Access Journals (Sweden)

    Zdeněk Buchta

    2011-08-01

    Full Text Available The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10−8 has been achieved.

  20. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    Directory of Open Access Journals (Sweden)

    Hsiao-Yuan Ma

    2016-03-01

    Full Text Available Organic-inorganic hybrid sols (Ti–O–Si precursor were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA to perform photo-polymerization by ultraviolet (UV irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA film is higher than that of a pure poly(Ti–O–Si precursor film, and that this poly(Ti–O–Si precursor-co-OPPEA hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n of 1.83 corresponding to a thickness of 2.59 μm.

  1. High Performance Optical Coatings Utilizing Tailored Refractive Index Nanoporous Thin Films

    Science.gov (United States)

    Poxson, David J.

    Refractive index is perhaps the most important quantity in optics. It is particularly relevant in the field of optical coatings, where the refractive index appears in virtually every optics equation as a figure of merit. Recently it has been demonstrated through control of the deposition angle during oblique-angle electron-beam deposition, nanoporous films of virtually any desired porosity may be accurately deposited. As the porosity of a nanoporous film directly relates to its effective refractive index, the refractive index value of a film may be tailored to any value between that of the bulk material and close to that of air. These two characteristics, namely; (i) tailored-refractive index and (ii) very low-refractive index values close to that of air, offer significant advantages in the design and optical performance in all optical coating applications. In this dissertation we explore optical coating applications whose performance can be greatly enhanced by utilization of a tailored- and low-refractive index nanoporous material system. One such important application is in the design and fabrication of broadband, omnidirectional antireflection (AR) coatings on solar cell devices. To harness the full spectrum of solar energy, Fresnel reflections at the surface of a photovoltaic cell must be reduced as much as possible over the relevant solar wavelength range and over a wide range of incident angles. However, the development of AR coatings embodying omni-directionality over a wide range of wavelengths is challenging. By utilizing the tailored- and low-refractive index properties of the nanoporous material system, in conjunction with a computational genetic algorithm and a predictive quantitative model for the porosity of such nanoporous films, truly optimized AR coatings can be designed and fabricated on solar cells. Here we show that these optimized AR structures demonstrate significant improvement to overall device efficiency. Traditionally, nanoporous films

  2. High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetri...

  3. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  4. Researches on High Accuracy Prediction Methods of Earth Orientation Parameters

    Science.gov (United States)

    Xu, X. Q.

    2015-09-01

    The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients

  5. Precision measurements of gas refractivity by means of a Fabry-Perot interferometer illustrated by the monitoring of radiator refractivity in the DELPHI RICH detectors

    CERN Document Server

    Filippas-Tassos, A; Fokitis, E; Maltezos, S; Patrinos, K

    2002-01-01

    With an updated, flexible, highly efficient and easily installed system we obtained accurate refractivity (n-1) values. This system is a refractometer based on a Fabry-Perot interferometer and was used to monitor the refractivity of DELPHI RICH Cherenkov radiators near the VUV region. By using a Pt-Ne spectral lamp and improved alignment and temperature control, the refractivities of C//5F//1//2 and C//4F//1 //0 have been monitored since 1996. With this light source, selected to have large coherence lengths, we can extract the refractivity at several wavelengths from one data set only. The estimated errors of the refractivity measurements are less than 1.2%, and depend on wavelength and the type of gas used. The various parameters affecting the accuracy of the refractometer are also discussed. Finally, results from special sample refractivity measurements of the liquid radiator (C//6F//1//4) in its gas phase, are presented.

  6. Researching the technology of high-accuracy camshaft measurement

    Science.gov (United States)

    Chen, Wei; Chen, Yong-Le; Wang, Hong; Liao, Hai-Yang

    1996-10-01

    This paper states the cam's data processing algorithm in detail in high accurate camshaft measurement system. It contains: 1) using minimum error of curve symmetry to seek the center position of the key slot; 2) Calculating the minimum error by cam's curve in theory to search top area; 3) According to cam's tolerance E(i) function and minimum angle error at cam top, seeking the best position of cam top and getting the best angle value and error curve. The algorithm is suitable for measuring all kinds of symmetry or asymmetry cam, and plain push-rod or spherical push-rod cam, for example, bus camshaft, car camshaft, motor camshaft, etc. Using the algorithm, high accuracy measurement can be achieved.

  7. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  8. Spatial augmented reality based high accuracy human face projection

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  9. High index of refraction via quantum interference in a three- level system of Er3+-doped yttrium aluminium garnet crystal

    Institute of Scientific and Technical Information of China (English)

    He Qiong-Yi; Wang Tie-Jun; Gao Jin-Yue

    2006-01-01

    A simple three-level system is proposed to produce high index of refraction with zero absorption in an Er3+-doped yttrium aluminium garnet (YAG) crystal, which is achieved for a probe field between the excited state 4Ⅰ13/2 and ground state 4Ⅰ15/2 by adjusting a strong coherent driving field between the upper excited state 4Ⅰ11/2 and 4Ⅰ15/2· It is found that the changes of the frequency of the coherent driving field and the concentration of Er3+ ions in the YAG crystal can maximize the index of refraction accompanied by vanishing absorption. This result could be useful for the dispersion compensation in fibre communication, laser particle acceleration, high precision magnetometry and so on.

  10. Forces from highly focused laser beams: modeling, measurement and application to refractive index measurements

    CERN Document Server

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H

    2007-01-01

    The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz-Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle - in this case, the refractive index - to be determined.

  11. High-refractive index particles in counter-propagating optical tweezers - manipulation and forces

    NARCIS (Netherlands)

    Horst, Astrid van der

    2006-01-01

    With a tightly focused single laser beam, also called optical tweezers, particles of a few nanometers up to several micrometers in size can be trapped and manipulated in 3D. The size, shape and refractive index of such colloidal particles are of influence on the optical forces exerted on them in the

  12. High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial

    OpenAIRE

    2014-01-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial i...

  13. High refractive index silicone gels for simultaneous total internal reflection fluorescence and traction force microscopy of adherent cells.

    Directory of Open Access Journals (Sweden)

    Edgar Gutierrez

    Full Text Available Substrate rigidity profoundly impacts cellular behaviors such as migration, gene expression, and cell fate. Total Internal Reflection Fluorescence (TIRF microscopy enables selective visualization of the dynamics of substrate adhesions, vesicle trafficking, and biochemical signaling at the cell-substrate interface. Here we apply high-refractive-index silicone gels to perform TIRF microscopy on substrates with a wide range of physiological elastic moduli and simultaneously measure traction forces exerted by cells on the substrate.

  14. Influence of enamel composite thickness on value, chroma and translucency of a high and a nonhigh refractive index resin composite.

    Science.gov (United States)

    Ferraris, Federico; Diamantopoulou, Sofia; Acunzo, Raffaele; Alcidi, Renato

    2014-01-01

    To evaluate the influence of thickness on the optical properties of two enamel shade composites, one with a high refractive index and one traditional. A medium value enamel shade was selected from the resin composites Enamel Plus HRi (UE2) and Enamel Plus HFO (GE2). Enamel Plus HRi is a high refractive index composite. Samples were fabricated in five different thicknesses: 0.3, 0.5, 1, 1.5 and 2 mm. Three specimens per material and thickness were fabricated. Three measurements per sample, over white, black and dentin composite background were generated with a spectrophotometer (Spectroshade Micro, MHT). Value, chroma, translucency and color differences (ΔE) of the specimens were calculated. RESULTS were analyzed by the Pearson correlation test, ANOVA and a post-hoc Tukey test. Increasing the thickness of the enamel layers decreased the translucency and the chroma of the substrate for both materials tested. For HRi the increase of the thickness resulted in an increase of the value, whereas for HFO it resulted in a reduction of the value. The two composites showed a significant difference in value for each thickness, but not in translucency and chroma. Color difference between them was perceptible in layers equal or higher than 0.5 mm. The high refractive index enamel (HRi) composite exhibits different optical behavior compared to the traditional one (HFO). HRi enamel composite behaves more like natural enamel as by increasing the thickness of the enamel layer, the value also increases.

  15. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology.

    Science.gov (United States)

    Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng

    2016-06-01

    A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  16. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-06-01

    Full Text Available A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM. When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution, when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  17. Uncorrected refractive errors

    Directory of Open Access Journals (Sweden)

    Kovin S Naidoo

    2012-01-01

    Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.

  18. Uncorrected refractive errors.

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  19. Ultra-High and Near-Zero Refractive Indices of Magnetron Sputtered Thin-Film Metamaterials Based on TixOy

    Directory of Open Access Journals (Sweden)

    Vukoman Jokanović

    2016-01-01

    Full Text Available Metamaterials based on TixOy with ultra-high and near-zero refractive indices were obtained by DC magnetron sputtering. The data on refractive indices, extinction coefficients, film thickness, and band gaps, obtained by spectroscopic ellipsometry, showed very high potential of these materials as metamaterials. Phase analysis performed by XRD revealed the presence of titanium phases with lower titanium oxidation states resulting from high concentration of oxygen vacancies, which are crucial for such extraordinary jumps and drops of refractive indices. Numerous band gaps for direct and indirect electron transitions additionally confirmed unique properties of these materials.

  20. Relationship Between Size and Refractive Index of the High Refractive Glass Beads%高折射玻璃微珠粒径与折射率关系的研究

    Institute of Scientific and Technical Information of China (English)

    薄健康; 李大海; 郭东华; 吕虎; 刘曦; 王琼华

    2011-01-01

    The phenomenon of secondary rainbow when the high refractive glass beads is illuminated by laser is used to measure the refractive index of glass beads based on Airy rainbow theory. The formula of relationship between size and refractive index glass beads indicate that measurement error of the refractive index is about 10^-3 order of magnitude with difference in radius 10 um. Simulating secondary, rainbow and measuring refractive index verify the correctness of the method of secondary rainbow, and indicate the variations in the radius of glass beads slightly affect on the position of the minimum deviation angle of glass beads. Actual measurements show that the refractive index increases as the radius decreases by a small change in the refractive index. Therefore, the measurement error of refractive index is negligible, and statistical measurement can provide a reliable evidence for the accurate measurement of the refractive index of glass beads.%利用激光照射高折射率玻璃微珠下形成的二次彩虹现象,以艾里的虹理论为基础对玻璃微珠折射率进行了测量。推导了玻璃微珠尺寸对折射率影响的计算公式,表明半径差异在10μm时,折射率的测量误差为10^-3数量级。此外,通过软件模拟计算玻璃微珠的二次彩虹现象,并对微珠的折射率进行了测量,验证了二次彩虹方法的正确性,同时也表明玻璃微珠半径的变化对最小偏向角位置的偏移影响很小。实际测量结果表明,折射率随着半径的减小而增大,但是折射率变化很小,因此,引入折射率测量误差较小。统计测量方法能为玻璃微珠折射率的准确测量提供可靠的依据。

  1. Rainbow refractometry on particles with radial refractive index gradients

    Energy Technology Data Exchange (ETDEWEB)

    Saengkaew, Sawitree [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France); Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Charinpanitkul, Tawatchai; Vanisri, Hathaichanok; Tanthapanichakoon, Wiwut [Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Biscos, Yves; Garcia, Nicolas; Lavergne, Gerard [ONERA/DMAE, Toulouse (France); Mees, Loic; Gouesbet, Gerard; Grehan, Gerard [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France)

    2007-10-15

    The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified. (orig.)

  2. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface.

    Science.gov (United States)

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Liu, Jieying; Chen, Shuqi; Tian, Jianguo

    2016-10-20

    Optical metasurfaces consisting of single-layer nanostructures have immensely promising applications in wavefront control because they can be used to arbitrarily manipulate wave phase, and polarization. However, anomalous refraction and reflection waves have not yet been simultaneously and asymmetrically generated, and the limited efficiency and bandwidth of pre-existing single-layer metasurfaces hinder their practical applications. Here, a few-layer anisotropic metasurface is presented for simultaneously generating high-efficiency broadband asymmetric anomalous refraction and reflection waves. Moreover, the normal transmission and reflection waves are low and the anomalous waves are the predominant ones, which is quite beneficial for practical applications such as beam deflectors. Our work provides an effective method of enhancing the performance of anomalous wave generation, and the asymmetric performance of the proposed metasurface shows endless possibilities in wavefront control for nanophotonics device design and optical communication applications.

  3. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  4. High performance step-down AR coatings for high refractive-index IR materials.

    Science.gov (United States)

    Dobrowolski, J A; Ho, F

    1982-01-15

    A numerical thin film synthesis program has been used to design high performance antireflection coatings of the step-down type for a number of IR window materials. In the calculations, the dispersion of the optical constants of all the materials is accounted for. Various trade offs between the width of the AR region and the maximum reflection within that width are possible. For example, an AR coating for germanium has been found in which the reflectance is zinc selenide, and zinc sulfide substrates. The experimentally measured performance of several coatings will be given.

  5. One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist

    Science.gov (United States)

    Zanchetta, E.; Della Giustina, G.; Brusatin, G.

    2014-09-01

    A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO2 micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tone behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 μm wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.

  6. Monitoring techniques for high accuracy interference fit assembly processes

    Science.gov (United States)

    Liuti, A.; Vedugo, F. Rodriguez; Paone, N.; Ungaro, C.

    2016-06-01

    In the automotive industry, there are many assembly processes that require a high geometric accuracy, in the micrometer range; generally open-loop controllers cannot meet these requirements. This results in an increased defect rate and high production costs. This paper presents an experimental study of interference fit process, aimed to evaluate the aspects which have the most impact on the uncertainty in the final positioning. The press-fitting process considered, consists in a press machine operating with a piezoelectric actuator to press a plug into a sleeve. Plug and sleeve are designed and machined to obtain a known interference fit. Differential displacement and velocity measurements of the plug with respect to the sleeve are measured by a fiber optic differential laser Doppler vibrometer. Different driving signals of the piezo actuator allow to have an insight into the differences between a linear and a pulsating press action. The paper highlights how the press-fit assembly process is characterized by two main phases: the first is an elastic deformation of the plug and sleeve, which produces a reversible displacement, the second is a sliding of the plug with respect to the sleeve, which results in an irreversible displacement and finally realizes the assembly. The simultaneous measurements of the displacement and the force have permitted to define characteristic features in the signal useful to identify the start of the irreversible movement. These indicators could be used to develop a control logic in a press assembly process.

  7. A high-accuracy DCO with hybrid architecture

    Science.gov (United States)

    Sun, Yapeng; Zhao, Huidong; Qiao, Shushan; Hei, Yong; Zhang, Fuhai

    2017-07-01

    In this paper, a novel hybrid digital-controlled oscillator (DCO) is proposed, which is used to improve the accuracy of the all-digital clock generator without reference source. The DCO with hybrid architecture consists of two parts: DCO_high and DCO_low. The DCO_high decides the coarse output frequency of DCO, and adopts the cascade structure to decrease the area. The DCO_low adopts the chain structure with three-state buffer, and decides the fine output frequency of DCO. Compared with traditional cascade DCO, the proposed hybrid DCO features higher precision with less inherent delay. Therefore the clock generator can tolerate process, voltage and temperature (PVT) variation and meet the needs of different conditions. The DCO is designed in SMIC 180 nm CMOS process with 0.021 mm2 chip area. The output frequency is adjusted from 15-120 MHz. The frequency error is less than 0.83% at 25 MHz with 1.6-1.8 V supply voltage and 0-80 °C temperature variations in TT, FF, SS corners. Project supported by the National Natural Science Foundation of China (Nos. 61306025, 61474135).

  8. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  9. Corneal refractive surgery and phakic intraocular lens for treatment of amblyopia caused by high myopia or anisometropia in children

    Institute of Scientific and Technical Information of China (English)

    Tian Chunyu; Peng Xiujun; Fan Zhengjun; Yin Zhengqin

    2014-01-01

    Objective A systematic review of literature was performed to compare various visual function parameters including the final visual acuity outcome and/or adverse events between corneal refractive surgery (CLRS) and phakic intraocular lens implantation (p-IOLi) in the treatment of refractive amblyopic children.Data sources Two reviewers independently searched the PubMed,EMBASE,and Controlled Trials Register databases for publications from 1991 to 2013.Study selection There were 25 articles,including 597 patients and 682 eyes,was included in CLRS group.Among them,21 articles reported the use of CLRS in the treatment of myopic anisometropia for 318 patients (13 photorefractive keratectomy or laser epithelial keratomileusis and eight laser in situ keratomileusis).And 11 articles had the results of CLRS in treating hyperopic anisometropic amblyopia children.Eleven articles reported the effect of p-IOLi for treating high myopia or anisometropic amblyopia,including 61 patients (75 eyes).Age,pre-and postoperation best-corrected vision acuity (BCVA),and spherical equivalent (SE) were compared in CLRS and p-IOLi groups.Results The average age of CLRS group and p-IOLi group has no statistically significant difference.The SE in CLRS group for myopic anisometropia amblyopia patients was (-10.13±2.73) diopters (D) and for hyperopic anisometropia amblyopia patients was (5.58±1.28) D.In p-IOLi group the SE was (-14.01±1.93) D.BCVA was improved significantly in both groups,and even better in p-IOLi group.Refractive errors were corrected in both groups,but there was no clinically significant difference in final SE between each group.More than one-half of the children had improved binocular fusion and stereopsis function in both groups.Conclusions Both CLRS group and p-IOLi group showed their advantage in treating refractive amblyopia in children.In comparing p-IOLi with CLRS for treatment of refractive amblyopia,no statistically significant difference in final BCVA was observed.

  10. Refractive Errors

    Science.gov (United States)

    ... does the eye focus light? In order to see clearly, light rays from an object must focus onto the ... The refractive errors are: myopia, hyperopia and astigmatism [See figures 2 and 3]. What is hyperopia (farsightedness)? Hyperopia occurs when light rays focus behind the retina (because the eye ...

  11. Refraction test

    Science.gov (United States)

    ... that measures a person's prescription for eyeglasses or contact lenses. ... can be done as part of a routine eye exam. The purpose is to determine whether you have a refractive error (a need for glasses or contact lenses). For people over age 40 who have normal ...

  12. Refractive index spectral dependence, Raman and transmission spectra of high-purity $^{28}$Si, $^{29}$Si, $^{30}$Si, and $^{nat}$Si single crystals

    CERN Document Server

    Plotnichenko, V G; Kryukova, E B; Koltashev, V V; Sokolov, V O; Dianov, E M; Gusev, A V; Gavva, V A; Kotereva, T V; Churbanov, M F

    2011-01-01

    Precise measurement of the refractive index of stable silicon isotopes $^{28}$Si, $^{29}$Si, $^{30}$Si single crystals with enrichments above 99.9 at.% and a silicon single crystal $^{nat}$Si of natural isotopic composition is performed with the Fourier-transform interference refractometry method from 1.06 to more than 80 mkm with 0.1 cm$^{-1}$ resolution and accuracy of $2 \\times 10^{-5} ... 1 \\times 10^{-4}$. The oxygen and carbon concentrations in all crystals are within $5 \\times 10^{15}$ cm$^{-3}$ and the content of metal impurities is $10^{-5} ... 10^{-6}$ at.%. The peculiar changes of the refractive index in the phonon absorption region of all silicon single crystals are shown. The coefficients of generalized Cauchy dispersion function approximating the experimental refractive index values all over the measuring range are given. The transmission and Raman spectra are also studied.

  13. High-sensitivity refractive index sensor based on large-angle tilted fiber grating with carbon nanotube deposition

    Science.gov (United States)

    Badmos, Abdulyezir A.; Sun, Qizhen; Yan, Zhijun; Arif, Raz N.; Zhang, Junxi; Rozhin, Alex; Zhang, Lin

    2016-04-01

    This paper presents a highly sensitive ambient refractive index (RI) sensor based on 81° tilted fiber grating (81°-TFG) structure UV-inscribed in standard telecom fiber (62.5μm cladding radius) with carbon nanotube (CNT) overlay deposition. The sensing mechanism is based on the ability of CNT to induce change in transmitted optical power and the high sensitivity of 81°-TFG to ambient refractive index. The thin CNT film with high refractive index enhances the cladding modes of the TFG, resulting in the significant interaction between the propagating light and the surrounding medium. Consequently, the surrounding RI change will induce not only the resonant wavelength shift but also the power intensity change of the attenuation band in the transmission spectrum. Result shows that the change in transmitted optical power produces a corresponding linear reduction in intensity with increment in RI values. The sample shows high sensitivities of 207.38nm/RIU, 241.79nm/RIU at RI range 1.344-1.374 and 113.09nm/RIU, 144.40nm/RIU at RI range 1.374-1.392 (for X-pol and Y-pol respectively). It also shows power intensity sensitivity of 65.728dBm/RIU and 45.898 (for X-pol and Y-pol respectively). The low thermal sensitivity property of the 81°-TFG offers reduction in thermal cross-sensitivity and enhances specificity of the sensor.

  14. Ultraviolet laser damage and optical properties of high-refractive-index single layers, multiple layers, and high/low index multilayer stacks

    Science.gov (United States)

    McInnes, Hazel A.; Andrew, James E.; Bazin, Nicholas J.; Morris, A. J.; Porter, K. J.

    1998-04-01

    Laser induced damage thresholds, measured using N-on-1 and R-on-1 testing, of single layer high index zirconia and hafnia coatings, derived from nitric or acetic acid stabilized sol-gel processing, are reported. Single layer acetic acid, nitric acid and base catalyzed silica sol-gel coatings have also been tested. The sol-gels were dip coated onto fused silica substrates at a rate of 3mm/s. The refractive index of the materials were measured using transmission spectra of multiple pairs of high and low refractive index materials. Absorption in the UV region was similarly measured with multiple layers of the same material and fitting to a Beer's law behavior. The high index materials used were zirconia or hafnia, the low index material was silica. The compatibility of the various combinations of high and low index materials for physical stacking without cracking, achieving high reflectivity and high damage thresholds are discussed and compared.

  15. [Peripheral refraction: cause or effect of refraction development?

    Science.gov (United States)

    Tarutta, E P; Iomdina, E N; Kvaratskheliya, N G; Milash, S V; Kruzhkova, G V

    to study peripheral refraction and the shape of the eyeball in children with different clinical refraction. Using an original method, peripheral refraction was measured at 10-12 degrees temporally and nasally from the fovea in 56 right eyes with different clinical, or axial, refraction of 20 boys and 36 girls aged 7 to 16 years (11.9±1.17 years on average). The shape of the eyeball was judged of by the ratio of its anterior-posterior axial length (AL) to horizontal diameter (HD). The incidence and value of peripheral myopic defocus in children appeared to decrease with clinical refraction increasing from high hyperopia to high myopia. This was the first time, mixed peripheral refraction was found in children, occurring more frequently in higher myopia. This mixed peripheral defocus, shown to be a transitional stage between relative peripheral myopia and relative hyperopia, indicates non-uniform stretching of posterior pole tissues in the course of refraction development and myopia progression. As ocular refraction increases from high hyperopia to high myopia, the growth of AL outpaces that of HD. Obviously, natural peripheral defocus results from changes in size and shape of the eyeball in the course of refraction development.

  16. 低仰角大气折射误差对初轨精度的影响分析%Impact of Low-Elevation Atmospheric Refraction Error on Accuracy of Initial Orbit

    Institute of Scientific and Technical Information of China (English)

    李辉芬; 席震东; 薛国虎; 戴正旭; 康德勇

    2012-01-01

    This paper proposes an approach to solve the problem of poor correction accuracy of the experiential refractive correction model used by instrumentation ships in tracking at low elevations during space rendezvous and docking missions. A fitting algorithm based on the zenith delay is incorporated to increase the range correction accuracy of low-elevation tracking by ship-borne radars and to meet orbit determination accuracy requirements of data handling of instrumentation ships. The new method reduces the exterior coincidence error of semi-major axis by 605 meters.%针对在交会对接任务中测量船使用的电波折射经验模型存在低仰角跟踪测量修正精度差的问题提出改进思路,在模型中引入基于天顶延迟的拟合算法优化修正模型,提高了船载雷达低仰角跟踪时距离的修正精度,满足了测量船数据处理的精度需求.用新方法处理数据,计算的轨道根数半长轴外符合误差平均降低了605 m,有效提高了测量船定轨精度.

  17. Thermal Mechanical Stability of Single-Crystal-Oxide Refractive Concentrators Evaluated for High-Temperature Solar-Thermal Propulsion

    Science.gov (United States)

    Jacobson, Nathan S.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.

  18. Key technologies for high-accuracy large mesh antenna reflectors

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  19. High-refractive Index Nanocomposite Films Of Polyvinyl-pyrolidone And CdS Nanoparticles By In-Situ Thermolysis

    Science.gov (United States)

    Chaudhuri, Tapas K.; Patel, Mitesh G.

    2010-12-01

    A simple and rapid process for deposition of high refractive index films of CdS/PVP nanocomposite is described. CdS/PVP films are prepared on glass substrate by dip coating a precursor film from methanolic solution of thio-organic complex of cadmium and PVP and subsequent heating at 180° C in air for 10 min. The transmission spectra of the films (thickness ˜700 nm) in the wavelength range 300 to 1000 nm showed an absorption edge near 500 nm due to CdS and high transmission of 85% beyond 500 nm. The refractive index is found to be 1.74 by Swanepoel method, which is between that of PVP (1.48) and CdS (2.5). Transmission Electron Microscopy showed that PVP matrix contains 5 to 10 nm CdS nanocrystals. X-ray and electron diffraction revealed the formation of cubic CdS nanoparticles in PVP. Fourier Transform Infrared spectroscopy of the composite showed that there is a strong interaction between CdS nanocrystals and PVP.

  20. Low-Afterglow, High-Refractive-Index Liquid Scintillators for Fast-Neutron Spectrometry and Imaging Applications

    CERN Document Server

    Lauck, Ronald; Bromberger, Benjamin; Dangendorf, Volker; Goldberg, Mark B; Mor, Ilan; Tittelmeier, Kai; Vartsky, David

    2009-01-01

    For ion and neutron spectrometry and imaging applications at a high intensity pulsed laser facility, fast liquid scintillators with very low afterglow are required. Furthermore, neutron imaging with fiber (or liquid-core) capillary arrays calls for scintillation materials with high refractive index. To this end, we have examined various combinations of established mixtures of fluors and solvents, that were enriched alternatively with nitrogen or oxygen. Dissolved molecular oxygen is known to be a highly effective quenching agent, that efficiently suppresses the population of the triplet states in the fluor, which are primarily responsible for the afterglow. For measuring the glow curves of scintillators, we have employed the time-correlated single photon counting (TCSPC) technique, characterized by high dynamic range of several orders of magnitude in light intensity. In this paper we outline the application for the fast scintillators, briefly present the scintillation mechanism in liquids, describe our specif...

  1. High Accuracy and Real-Time Gated Viewing Laser Radar

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Hua-Jun Yang; Shan-Pei Zhou

    2011-01-01

    A gated viewing laser radar has an excellent performance in underwater low light level imaging,and it also provides a viable solution to inhibit backscattering.In this paper,a gated viewing imaging system according to the demand for real-time imaging is presented,and then the simulation is used to analyze the performance of the real-time gated viewing system.The range accuracy performance is limited by the slice number,the width of gate,the delay time step,the initial delay time,as well as the system noise and atmospheric turbulence.The simulation results indicate that the highest range accuracy can be achieved when the system works with the optimal parameters.Finally,how to choose the optimal parameters has been researched.

  2. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    Science.gov (United States)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  3. Atmospheric Refraction

    CERN Document Server

    Nauenberg, Michael

    2016-01-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere which assumes that the temperature decreases at a constant lapse rate from sea level up to a height equal to eleven km, and that afterwards it remains constant. In this model, the temperature divided by the lapse rate determines the length scale in the calculations for altitudes less than this height. But daily balloon measurements across the U.S.A. reveal that in some cases the air temperature actually increases from sea level up to a height of about one km, and only after reaching a plateau, it decreases at an approximately constant lapse rate. Moreover, in three examples considered here, the temperature does not remain constant at eleven km , but continues to decreases to a minimum at about sixteen kilometers , and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this atmospheric data is compared with the results of simplified models.

  4. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    Science.gov (United States)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  5. Protecting Against Damage from Refraction of High Power Microwaves in the DIII-D Tokamak

    Directory of Open Access Journals (Sweden)

    Lohr John

    2017-01-01

    Full Text Available Several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps have been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.

  6. Protecting Against Damage from Refraction of High Power Microwaves in the DIII-D Tokamak

    Science.gov (United States)

    Lohr, John; Brambila, Rigo; Cengher, Mirela; Chen, Xi; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Prater, Ron; Torrezan, Antonio; Austin, Max; Doyle, Edward; Hu, Xing; Dormier, Calvin

    2017-07-01

    Several new protective systems are being installed on the DIII D tokamak to increase the safety margins for plasma operations with injected ECH power at densities approaching cutoff. Inadvertent overdense operation has previously resulted in reflection of an rf beam back into a launcher causing extensive arcing and melt damage on one waveguide line. Damage to microwave diagnostics, which are located on the same side of the tokamak as the ECH launchers, also has occurred. Developing a reliable microwave based interlock to protect the many vulnerable systems in DIII-D has proved to be difficult. Therefore, multiple protective steps have been taken to reduce the risk of damage in the future. Among these is a density interlock generated by the plasma control system, with setpoint determined by the ECH operators based on rf beam trajectories and plasma parameters. Also installed are enhanced video monitoring of the launchers, and an ambient light monitor on each of the waveguide systems, along with a Langmuir probe at the mouth of each launcher. Versatile rf monitors, measuring forward and reflected power in addition to the mode content of the rf beams, have been installed as the last miter bends in each waveguide line. As these systems are characterized, they are being incorporated in the interlock chains, which enable the ECH injection permits. The diagnostics most susceptible to damage from the ECH waves have also been fitted with a variety of protective devices including stripline filters, thin resonant notch filters tuned to the 110 GHz injected microwave frequency, blazed grating filters and shutters. Calculations of rf beam trajectories in the plasmas are performed using the TORAY ray tracing code with input from kinetic profile diagnostics. Using these calculations, strike points for refracted beams on the vacuum vessel are calculated, which allows evaluation of the risk of damage to sensitive diagnostics and hardware.

  7. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    CERN Document Server

    Chou, C -W; Koelemeij, J C J; Wineland, D J; Rosenband, T

    2009-01-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0->3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17, consistent with the accuracy limit of the older clock.

  8. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    Science.gov (United States)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  9. Optical Microbubble Resonators with High Refractive Index Inner Coating for Bio-Sensing Applications: An Analytical Approach

    Directory of Open Access Journals (Sweden)

    Andrea Barucci

    2016-11-01

    Full Text Available The design of Whispering Gallery Mode Resonators (WGMRs used as an optical transducer for biosensing represents the first and crucial step towards the optimization of the final device performance in terms of sensitivity and Limit of Detection (LoD. Here, we propose an analytical method for the design of an optical microbubble resonator (OMBR-based biosensor. In order to enhance the OMBR sensing performance, we consider a polymeric layer of high refractive index as an inner coating for the OMBR. The effect of this layer and other optical/geometrical parameters on the mode field distribution, sensitivity and LoD of the OMBR is assessed and discussed, both for transverse electric (TE and transverse magnetic (TM polarization. The obtained results do provide physical insights for the development of OMBR-based biosensor.

  10. High spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments

    CERN Document Server

    Kohmura, Y; Takeuchi, A; Takano, H; Suzuki, Y; Ishikawa, T; Ohigashi, T; Yokosuka, H

    2001-01-01

    A high spatial resolution X-ray microscope was constructed using an X-ray refractive lens as an objective. The spatial resolution was tested using 18 keV X-ray. A 0.4 mu m line and 0.4 mu m space tantalum test pattern was successfully resolved. Using the similar setup with the addition of a phase plate, a Zernike type phase-contrast microscopy experiment was carried out for the phase retrieval of the samples. Two-dimensional phase-contrast images were successfully taken for the first time in the hard X-ray region. Images of a gold mesh sample were analyzed and the validity of this method was indicated. An improvement of the lens, however, is required for the precise phase retrieval of the samples.

  11. Optical Microbubble Resonators with High Refractive Index Inner Coating for Bio-Sensing Applications: An Analytical Approach

    Science.gov (United States)

    Barucci, Andrea; Berneschi, Simone; Giannetti, Ambra; Baldini, Francesco; Cosci, Alessandro; Pelli, Stefano; Farnesi, Daniele; Righini, Giancarlo C.; Soria, Silvia; Nunzi Conti, Gualtiero

    2016-01-01

    The design of Whispering Gallery Mode Resonators (WGMRs) used as an optical transducer for biosensing represents the first and crucial step towards the optimization of the final device performance in terms of sensitivity and Limit of Detection (LoD). Here, we propose an analytical method for the design of an optical microbubble resonator (OMBR)-based biosensor. In order to enhance the OMBR sensing performance, we consider a polymeric layer of high refractive index as an inner coating for the OMBR. The effect of this layer and other optical/geometrical parameters on the mode field distribution, sensitivity and LoD of the OMBR is assessed and discussed, both for transverse electric (TE) and transverse magnetic (TM) polarization. The obtained results do provide physical insights for the development of OMBR-based biosensor. PMID:27898015

  12. High-resolution seismic reflection and refraction imaging across the epicentral area of the 2009, Mw 6.1 Aquila (Italy) earthquake.

    Science.gov (United States)

    Bruno, Pier Paolo G.; Villani, Fabio; Improta, Luigi; Castiello, Antonio; Pucci, Stefano; Civico, Riccardo; Pantosti, Stefania

    2017-04-01

    We present for the first time the results of high-resolution seismic reflection profiling aimed at imaging the shallow structure of Paganica and Bazzano Quaternary sub-basins across the shallow segments of the Paganica-S. Demetrio Fault, which has been indicated as the causative fault of the 6th April 2009 (Mw 6.1) L'Aquila earthquake (central Italy). The seismic data were collected along five dense and partly overlapping wide-aperture profiles, which run SW-NE for a total length of 6 km, mostly in the hanging wall of the Paganica-S. Demetrio Fault. To evaluate the optimal seismic reflection imaging strategy, we applied three different processing techniques to the dense, wide-aperture acquired data: a conventional CMP reflection processing; pre-stack depth migration (PSDM); and finally the Common-Reflection-Surface (CRS) stack technique. PSDM has proven capable of overcoming many of the typical drawbacks of CMP processing in the presence of complex subsurface velocity distributions. However, PSDM is highly sensitive to the accuracy of the background velocity model. Despite the use of an acquisition geometry effective for refraction tomography (e.g. dense wide-aperture), we were able to estimate a high-resolution background tomographic model suitable for migration purpose for Bazzano profile, whereas this was not the case for Paganica profile, due to greater structural complexity and a higher level of ambient noise. In these settings, the data-driven and velocity-independent CRS method provided a feasible alternative for seismic imaging in Paganica sub-basin. Integration of reflection seismology with refraction tomography and with new surface, paleoseismological and borehole data during interpretation provides new insights on the shallow architecture of the 2009 Mw 6.1 L'Aquila earthquake fault-system and related basins. Bazzano sub-basin is about 50-100 m deeper than Paganica sub-basin. The latter is offset by a large number of NE and SW-dipping faults affecting

  13. Sensitivity analysis for high accuracy proximity effect correction

    Science.gov (United States)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  14. Distributed High Accuracy Peer-to-Peer Localization in Mobile Multipath Environments

    CERN Document Server

    Ekambaram, Venkatesan

    2010-01-01

    In this paper we consider the problem of high accuracy localization of mobile nodes in a multipath-rich environment where sub-meter accuracies are required. We employ a peer to peer framework where the vehicles/nodes can get pairwise multipath-degraded ranging estimates in local neighborhoods together with a fixed number of anchor nodes. The challenge is to overcome the multipath-barrier with redundancy in order to provide the desired accuracies especially under severe multipath conditions when the fraction of received signals corrupted by multipath is dominating. We invoke a message passing analytical framework based on particle filtering and reveal its high accuracy localization promise through simulations.

  15. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

    DEFF Research Database (Denmark)

    Dantanarayana, Harshana G.; Abdel-Moneim, Nabil; Tang, Zhuoqi

    2014-01-01

    We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses...... is measured over the 0.4 μm–33 μm wavelength-range, probing the electronic and vibrational behavior of these glasses. We verify that a two-term Sellmeier model is unique and sufficient to describe the refractive index dispersion over the wavelength range for which the experimentally determined extinction...

  16. Iris recognition: a biometric method after refractive surgery

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Iris recognition, as a biometric method, outperforms others because of its high accuracy. Iris is the visible internal organ of human, so it is stable and very difficult to be altered. But if an eye surgery must be made to some individuals, it may be rejected by iris recognition system as imposters after the surgery, because the iris pattern was altered or damaged somewhat during surgery and cannot match the iris template stored before the surgery. In this paper, we originally discuss whether refractive surgery for vision correction (LASIK surgery) would influence the performance of iris recognition. And experiments are designed and tested on iris images captured especially for this research from patients before and after refractive surgery. Experiments showed that refractive surgery has little influence on iris recognition.

  17. High-accuracy Subdaily ERPs from the IGS

    Science.gov (United States)

    Ray, J. R.; Griffiths, J.

    2012-04-01

    Since November 2000 the International GNSS Service (IGS) has published Ultra-rapid (IGU) products for near real-time (RT) and true real-time applications. They include satellite orbits and clocks, as well as Earth rotation parameters (ERPs) for a sliding 48-hr period. The first day of each update is based on the most recent GPS and GLONASS observational data from the IGS hourly tracking network. At the time of release, these observed products have an initial latency of 3 hr. The second day of each update consists of predictions. So the predictions between about 3 and 9 hr into the second half are relevant for true RT uses. Originally updated twice daily, the IGU products since April 2004 have been issued every 6 hr, at 3, 9, 15, and 21 UTC. Up to seven Analysis Centers (ACs) contribute to the IGU combinations. Two sets of ERPs are published with each IGU update, observed values at the middle epoch of the first half and predicted values at the middle epoch of the second half. The latency of the near RT ERPs is 15 hr while the predicted ERPs, based on projections of each AC's most recent determinations, are issued 9 hr ahead of their reference epoch. While IGU ERPs are issued every 6 hr, each set represents an integrated estimate over the surrounding 24 hr. So successive values are temporally correlated with about 75% of the data being common; this fact should be taken into account in user assimilations. To evaluate the accuracy of these near RT and predicted ERPs, they have been compared to the IGS Final ERPs, available about 11 to 17 d after data collection. The IGU products improved dramatically in the earlier years but since about 2008.0 the performance has been stable and excellent. During the last three years, RMS differences for the observed IGU ERPs have been about 0.036 mas and 0.0101 ms for each polar motion component and LOD respectively. (The internal precision of the reference IGS ERPs over the same period is about 0.016 mas for polar motion and 0

  18. A study for high accuracy real-time 3D ultrasonic location system.

    Science.gov (United States)

    Zhou, Ping; Ha, Zhang; Zhou, Kangyuan

    2006-12-22

    We discussed a high accuracy real-time 3D ultrasonic location system in this article. The signal received was sampled after it passed the TGC and the logarithmic amplifier. Inside the DSP, we used the dynamic threshold tracing technique to improve the accuracy. The result was processed with Weighted Arithmetic Average. By testing the 40 kHz 3D location system, we have arrived at the accuracy of 1 cm.

  19. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  20. Development of high accuracy and resolution geoid and gravity maps

    Science.gov (United States)

    Gaposchkin, E. M.

    1986-01-01

    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  1. Influence of the Atmospheric Refraction on the Time Delay of Signals from Global Navigation Systems for Independent Navigation of High-Orbit Space Vehicles

    Science.gov (United States)

    Sharygin, G. S.; Meshcheryakov, A. A.; Korolev, D. O.

    2016-11-01

    Excess delay time of signals from global navigation systems used for coordinate-time support of high-orbit space vehicles caused by the refraction during sliding radio-wave propagation in the Earth's atmosphere is estimated. Conclusions obtained are compared with the data of experimental analysis of observable GPS signals.

  2. High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial

    Science.gov (United States)

    Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun

    2014-01-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268

  3. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    Science.gov (United States)

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.

    2016-03-02

    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.

  4. Infrared Plasmonic Refractive Index Sensor with Ultra-High Figure of Merit Based on the Optimized All-Metal Grating

    Science.gov (United States)

    Li, Ruifang; Wu, Dong; Liu, Yumin; Yu, Li; Yu, Zhongyuan; Ye, Han

    2017-01-01

    A perfect ultra-narrow band infrared metamaterial absorber based on the all-metal-grating structure is proposed. The absorber presents a perfect absorption efficiency of over 98% with an ultra-narrow bandwidth of 0.66 nm at normal incidence. This high efficient absorption is contributed to the surface plasmon resonance. Moreover, the surface plasmon resonance-induced strong surface electric field enhancement is favorable for application in biosensing system. When operated as a plasmonic refractive index sensor, the ultra-narrow band absorber has a wavelength sensitivity 2400 nm/RIU and an ultra-high figure of merit 3640, which are much better than those of most reported similar plasmonic sensors. Besides, we also comprehensively investigate the influences of structural parameters on the sensing properties. Due to the simplicity of its geometry structure and its easiness to be fabricated, the proposed high figure of merit and sensitivity sensor indicates a competitive candidate for applications in sensing or detecting fields.

  5. High accuracy magnetic field sensors with wide operation temperature range

    Science.gov (United States)

    Vasil'evskii, I. S.; Vinichenko, A. N.; Rubakin, D. I.; Bolshakova, I. A.; Kargin, N. I.

    2016-10-01

    n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic field sensors based on this structures have been fabricated and studied. We have demonstrated the successful formation of highly doped InAs thin films (∼100 nm) with the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors performance parameters have been measured in wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been found in the higher doped samples with lower electron mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to electron mobility and resistance.

  6. A High Accuracy Method for Semi-supervised Information Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Tratz, Stephen C.; Sanfilippo, Antonio P.

    2007-04-22

    Customization to specific domains of dis-course and/or user requirements is one of the greatest challenges for today’s Information Extraction (IE) systems. While demonstrably effective, both rule-based and supervised machine learning approaches to IE customization pose too high a burden on the user. Semi-supervised learning approaches may in principle offer a more resource effective solution but are still insufficiently accurate to grant realistic application. We demonstrate that this limitation can be overcome by integrating fully-supervised learning techniques within a semi-supervised IE approach, without increasing resource requirements.

  7. High sensitivity and accuracy dissolved oxygen (DO) detection by using PtOEP/poly(MMA-co-TFEMA) sensing film

    Science.gov (United States)

    Zhang, Ke; Zhang, Honglin; Wang, Ying; Tian, Yanqing; Zhao, Jiupeng; Li, Yao

    2017-01-01

    Fluorinated acrylate polymer has received great interest in recent years due to its extraordinary characteristics such as high oxygen permeability, good stability, low surface energy and refractive index. In this work, platinum octaethylporphyrin/poly(methylmethacrylate-co-trifluoroethyl methacrylate) (PtOEP/poly(MMA-co-TFEMA)) oxygen sensing film was prepared by the immobilizing of PtOEP in a poly(MMA-co-TFEMA) matrix and the technological readiness of optical properties was established based on the principle of luminescence quenching. It was found that the oxygen-sensing performance could be improved by optimizing the monomer ratio (MMA/TFEMA = 1:1), tributylphosphate(TBP, 0.05 mL) and PtOEP (5 μg) content. Under this condition, the maximum quenching ratio I0/I100 of the oxygen sensing film is obtained to be about 8.16, Stern-Volmer equation is I0/I = 1.003 + 2.663[O2] (R2 = 0.999), exhibiting a linear relationship, good photo-stability, high sensitivity and accuracy. Finally, the synthesized PtOEP/poly(MMA-co-TFEMA) sensing film was used for DO detection in different water samples.

  8. Traffic Sign Recognition with High Accuracy Using Mixture of Experts

    Directory of Open Access Journals (Sweden)

    Reza Azad

    2014-06-01

    Full Text Available Traffic signs provide the driver various information for safe and efficient navigation. Automatic recognition of traffic signs is, therefore, important for automated driving or driver assistance systems.In this paper, a new and efficient traffic sign recognition system based on extracting diverse feature set, and applying mixture of experts'architecture on the extracted featuresis proposed.In the result part, the proposed approach is evaluated on the German traffic sign recognition and Grigorescu traffic signsbenchmark and high recognition rate is achieved.Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in traffic sign recognition that is the recognition rate of 99.94% for the training set and 98.50% for the test set.In addition, experimental results have demonstrated our method robust in successful recognition of traffic signs even with variant lighting.

  9. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  10. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  11. A Highly Sensitive Fiber-Optic Fabry-Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement.

    Science.gov (United States)

    Li, Xuefeng; Shao, Yujiao; Yu, Yuan; Zhang, Yin; Wei, Shaowen

    2016-05-31

    In this study, a new type of highly sensitive fiber-optic Fabry-Perot interferometer (FFPI) is proposed with a high sensitivity on a wide refractive index (RI) measurement range based on internal reflection mirrors of micro-cavity. The sensor head consists of a single-mode fiber (SMF) with an open micro-cavity. Since light reflections of gold thin films are not affected by the RI of different measuring mediums, the sensor is designed to improve the fringe visibility of optical interference through sputtering the gold films of various thicknesses on the inner surfaces of the micro-cavity, as a semi-transparent mirror (STM) and a total-reflection mirror (TRM). Experiments have been carried out to verify the feasibility of the sensor's design. It is shown that the fabricated sensor has strong interference visibility exceeding 15 dB over a wide measurement range of RI, and the sensor sensitivity is higher than 1160 nm/RIU, and RI resolution is better than 1.0 × 10(-6) RIU.

  12. Spectroscopic investigations of dispersion-shifted fiber with thin active Bi-doped ring and high nonlinear refractive index

    Science.gov (United States)

    Zlenko, A. S.; Akhmetshin, U. G.; Bogatyrjov, V. A.; Bulatov, L. I.; Dvoyrin, V. V.; Firstov, S. V.; Dianov, E. M.

    2009-10-01

    A germanium-doped silica-core fiber with an active region in the form of a thin ring of silica doped with bismuth ions was fabricated. Bismuth doping in the ring surrounding the core allows to stabilize bismuth in silica glass, and it does not impose any restrictions on the composition of the core. The bismuth concentration in the ring is less than 0.2 wt.%. The GeO2 concentration in the core is more than 15 mol.%. A high germanium concentration in the core allows to shift the zero dispersion wavelength to 1860 nm and to obtain a high nonlinear refractive index (n2 more than 3,2*10-20 m2/W). Spectroscopic investigations were carried out in the visible and near infrared (800-1700 nm) spectral range. Despite the small concentration of bismuth, we observed the absorption and luminescence characteristic bands, confirming the presence of bismuth active centers in silica glass. Upon pumping at 1350 nm the on/off gain spectrum was measured on a 20-m fiber. The gain was observed throughout investigated range of 1430-1530 nm. The maximal gain of ~9.5 dB was obtained near 1430 nm. The results of the spectroscopic investigations of the fiber with a thin active Bi-doped ring showed prospects of the creation and application of such fiber type for laser and nonlinear optics.

  13. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  14. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  15. Combining flat crystals, bent crystals and compound refractive lenses for high-energy X-ray optics.

    Science.gov (United States)

    Shastri, S D

    2004-03-01

    Compound refractive lenses (CRLs) are effective for collimating or focusing high-energy X-ray beams (50-100 keV) and can be used in conjunction with crystal optics in a variety of configurations, as demonstrated at the 1-ID undulator beamline of the Advanced Photon Source. As a primary example, this article describes the quadrupling of the output flux when a collimating CRL, composed of cylindrical holes in aluminium, is inserted between two successive monochromators, i.e. a modest-energy-resolution premonochromator followed by a high-resolution monochromator. The premonochromator is a cryogenically cooled divergence-preserving bent double-Laue Si(111) crystal device delivering an energy width DeltaE/E approximately 10(-3), which is sufficient for most experiments. The high-resolution monochromator is a four-reflection flat Si(111) crystal system resembling two channel-cuts in a dispersive arrangement, reducing the bandwidth to less than 10(-4), as required for some applications. Tests with 67 and 81 keV photon energies show that the high-resolution monochromator, having a narrow angular acceptance of a few microradians, exhibits a fourfold throughput enhancement due to the insertion of a CRL that reduces the premonochromatized beam's vertical divergence from 29 micro rad to a few microradians. The ability to focus high-energy X-rays with CRLs having long focal lengths (tens of meters) is also shown by creating a line focus of 70-90 micro m beam height in the beamline end-station with both the modest-energy-resolution and the high-energy-resolution monochromatic X-rays.

  16. Methodology of High Accuracy and Resolution 3D Geological Model Generation and Application

    Institute of Scientific and Technical Information of China (English)

    吴键; 曹代勇; 邓爱居; 李东津; 蒋涛; 翟光华

    2004-01-01

    By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.

  17. Thai High-School Students' Misconceptions about and Models of Light Refraction through a Planar Surface

    Science.gov (United States)

    Kaewkhong, Kreetha; Mazzolini, Alex; Emarat, Narumon; Arayathanitkul, Kwan

    2010-01-01

    This article investigates the optics misconceptions of 220 year 11 Thai high-school students. These misconceptions became apparent when the students attempted to explain how an object submerged in a water tank is "seen" by an observer looking into the tank from above and at an angle. The two diagnostic questions used in the study probe…

  18. High quality ZnO layers with adjustable refractive indices for integrated optics applications

    NARCIS (Netherlands)

    Heideman, Rene; Lambeck, Paul; Gardeniers, Johannes G.E.

    1995-01-01

    Thin (approx. 1 μm) crystalline ZnO films with a good optical quality and a good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high

  19. High refractive index of melanin in shiny occipital feathers of a bird of paradise

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Heinrich; Osorio, Daniel C.; Wilts, Bodo D.

    2015-01-01

    Male Lawes's Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The barbules of the Parotia's occipi

  20. High refractive index of melanin in shiny occipital feathers of a bird of paradise

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Heinrich; Osorio, Daniel C.; Wilts, Bodo D.

    Male Lawes's Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The barbules of the Parotia's

  1. High-speed, high-accuracy large range 3D measurement

    Science.gov (United States)

    An, Yatong; Zhang, Song

    2017-05-01

    This paper presents such a high-speed, high-accuracy structured light technique that could achieve large range 3D shape measurement. The enabling method is our recently proposed system calibration that splits the calibration process into two stages. Specifically, we calibrate the intrinsic parameters at a near position with a regular size yet precisely fabricated calibration target, and then calibrate the extrinsic parameters with the assistance of an additional large range yet low accuracy low cost 3D scanner (i.e., Kinect). We developed a system that achieved 500 Hz with a resolution 2304 × 1400. The field of view (FOV) of our structured light system is 0.9 m(W) × 1.4 m(H) × 0.8 m(D). Our experimental data demonstrated that such a large range structured light system can achieve an mean error of 0.13 mm with a standard deviation of 1.18 mm by measuring a 304.8 mm diameter sphere. We further experimentally demonstrated that proposed method can simultaneously measure multiple objects or large dynamically changing objects.

  2. Composite chiral metamaterials with negative refractive index and high values of the figure of merit.

    Science.gov (United States)

    Li, Zhaofeng; Alici, Kamil Boratay; Caglayan, Humeyra; Kafesaki, Maria; Soukoulis, Costas M; Ozbay, Ekmel

    2012-03-12

    A composite chiral metamaterial (CCMM) is designed and studied both numerically and experimentally. The CCMM is constructed by the combination of a continuous metallic wires structure and a purely chiral metamaterial (CMM) that consists of conjugated Rosettes. For the CMM, only very small, useful bands of negative index can be obtained for circularly polarized waves. These bands are all above the chiral resonance frequencies because of the high value of the effective parameter of relative permittivity ε. After the addition of the continuous metallic wires, which provide negative permittivity, the high value of ε can be partially compensated. Thus, a negative index band for the left circularly polarized wave that is below the chiral resonance frequency is obtained for the CCMM. At the same time, a negative index band for the right circularly polarized wave that is above the chiral resonance frequency is also obtained. Furthermore, both negative index bands correspond to the transmission peaks and have high values of the figure of merit. Therefore, the CCMM design that is proposed here is more suitable than the CMM for the construction of chiral metamaterials with a negative index.

  3. Design Procedure and Fabrication of Reproducible Silicon Vernier Devices for High-Performance Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Benedetto Troia

    2015-06-01

    Full Text Available In this paper, we propose a generalized procedure for the design of integrated Vernier devices for high performance chemical and biochemical sensing. In particular, we demonstrate the accurate control of the most critical design and fabrication parameters of silicon-on-insulator cascade-coupled racetrack resonators operating in the second regime of the Vernier effect, around 1.55 μm. The experimental implementation of our design strategies has allowed a rigorous and reliable investigation of the influence of racetrack resonator and directional coupler dimensions as well as of waveguide process variability on the operation of Vernier devices. Figures of merit of our Vernier architectures have been measured experimentally, evidencing a high reproducibility and a very good agreement with the theoretical predictions, as also confirmed by relative errors even lower than 1%. Finally, a Vernier gain as high as 30.3, average insertion loss of 2.1 dB and extinction ratio up to 30 dB have been achieved.

  4. Design Procedure and Fabrication of Reproducible Silicon Vernier Devices for High-Performance Refractive Index Sensing

    Science.gov (United States)

    Troia, Benedetto; Khokhar, Ali Z.; Nedeljkovic, Milos; Reynolds, Scott A.; Hu, Youfang; Mashanovich, Goran Z.; Passaro, Vittorio M. N.

    2015-01-01

    In this paper, we propose a generalized procedure for the design of integrated Vernier devices for high performance chemical and biochemical sensing. In particular, we demonstrate the accurate control of the most critical design and fabrication parameters of silicon-on-insulator cascade-coupled racetrack resonators operating in the second regime of the Vernier effect, around 1.55 μm. The experimental implementation of our design strategies has allowed a rigorous and reliable investigation of the influence of racetrack resonator and directional coupler dimensions as well as of waveguide process variability on the operation of Vernier devices. Figures of merit of our Vernier architectures have been measured experimentally, evidencing a high reproducibility and a very good agreement with the theoretical predictions, as also confirmed by relative errors even lower than 1%. Finally, a Vernier gain as high as 30.3, average insertion loss of 2.1 dB and extinction ratio up to 30 dB have been achieved. PMID:26067193

  5. Design Procedure and Fabrication of Reproducible Silicon Vernier Devices for High-Performance Refractive Index Sensing.

    Science.gov (United States)

    Troia, Benedetto; Khokhar, Ali Z; Nedeljkovic, Milos; Reynolds, Scott A; Hu, Youfang; Mashanovich, Goran Z; Passaro, Vittorio M N

    2015-06-10

    In this paper, we propose a generalized procedure for the design of integrated Vernier devices for high performance chemical and biochemical sensing. In particular, we demonstrate the accurate control of the most critical design and fabrication parameters of silicon-on-insulator cascade-coupled racetrack resonators operating in the second regime of the Vernier effect, around 1.55 μm. The experimental implementation of our design strategies has allowed a rigorous and reliable investigation of the influence of racetrack resonator and directional coupler dimensions as well as of waveguide process variability on the operation of Vernier devices. Figures of merit of our Vernier architectures have been measured experimentally, evidencing a high reproducibility and a very good agreement with the theoretical predictions, as also confirmed by relative errors even lower than 1%. Finally, a Vernier gain as high as 30.3, average insertion loss of 2.1 dB and extinction ratio up to 30 dB have been achieved.

  6. Giant In-Particle Field Concentration and Fano Resonances at Light Scattering by High-Refractive Index Particles

    CERN Document Server

    Tribelsky, M I

    2015-01-01

    A detailed analytical inspection of light scattering by a particle with high refractive index m+i\\kappa and small dissipative constant \\kappa is presented. We have shown that there is a dramatic difference in the behavior of the electromagnetic field within the particle (inner problem) and the scattered field outside it (outer problem). With an increase in m at fix values of the other parameters, the field within the particle asymptotically converges to a periodic function of m. The electric and magnetic type Mie resonances of different orders overlap substantially. It may lead to a giant concentration of the electromagnetic energy within the particle. At the same time, we demonstrate that identical transformations of the solution for the outer problem allow to present each partial scattered wave as a sum of two partitions. One of them corresponds to the m-independent wave, scattered by a perfectly reflecting particle and plays the role of a background, while the other is associated with the excitation of a s...

  7. High refractive index gold nanoparticle doped Bi2O3-B2O3 glasses for THz frequencies

    Science.gov (United States)

    Singla, Shivani; Achanta, Venu Gopal; Mahendru, Nancy; Prabhu, Shriganesh S.; Falconieri, Mauro; Sharma, Gopi

    2017-10-01

    Direct incorporation of gold nanoparticles from suspensions in 30%Bi2O3:70%B2O3 glass was achieved. This method has advantage over traditional methods where a gold salt is added to the precursor mixture and gold nanoparticles are obtained with subsequent heat treatment, eventually inducing crystallization with associated scattering of light and hence resulting in reduced optical quality of material. X-ray diffraction and differential thermal analysis were carried out in order to confirm the amorphous nature of the material and thermal properties of the prepared glasses, respectively. The size of the gold nanoparticles in the prepared glass matrix was measured using scanning electron microscopy. Optical characterization of prepared glass samples in ultraviolet-visible and terahertz regions was performed using ellipsometry, UV-VIS spectrophotometry and THz-time-domain spectroscopy. Comparison was made between glasses with and without gold nanoparticles and the effect of gold nanoparticle concentration on their optical behaviour is studied. These glasses are found to have high refractive index in the THz region making them suitable for photonic applications.

  8. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    Science.gov (United States)

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-11-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  9. Thermal-Mechanical Stability of Single Crystal Oxide Refractive Concentrators for High-Temperature Solar Thermal Propulsion

    Science.gov (United States)

    Zhu, Dongming; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO2 laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  10. State of the art in high accuracy high detail DTMs derived from ALS

    Science.gov (United States)

    Pfeifer, N.; Briese, C.; Mandlburger, G.; Höfle, B.; Ressl, C.

    2009-04-01

    High-resolution Digital Terrain Models (DTMs) representing the bare Earth are a fundamental input for various applications in geomorphology. Airborne laser scanning (ALS) is established as a standard tool for deriving DTMs over large areas with unprecedented accuracy. Due to advances in sensor technology and in processing algorithms in the recent years the obtainable accuracy is still increasing. Accuracy is understood as the deviation from the elevation at one specified point to its true value. These advances may lead to a more efficient data acquisition, if reduced accuracy is targeted, but also allow data acquisition schemes with more detail becoming visible, i.e. small features of the relief. For the latter a high internal precision, i.e. repeatability, is necessary. The essential advances in the technologies are improvements in ranging through the introduction of full-waveform (FWF) laser scanning and rigorous models of strip adjustment. In FWF laser scanning the time-dependent strength of the backscattered signal is recorded. This is opposed to the analogue processing of the incoming energy and storage of one arrival time of discrete-return systems. In a simple one-echo situation, the arrival time corresponds to the maximum of the waveform. By applying a decomposition of the full waveform into single echoes, which are transformed copies of the emitted signal, it is possible to retrieve more echoes per shot. Additionally, if echoes of individual scatterers are overlapping, FWF sensors might be able to separate them, whereas discrete return systems might rather only be able to derive one collective arrival time. Finally, the overlay of two echoes does not have the maxima at the same positions as the individual echoes. Additionally, the pulse repetition rate of laser scanners has increased, which allows higher point densities and therefore higher richness of detail. These advances in data acquisition increase the precision within one ALS strip. Deficiencies in

  11. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  12. High-accuracy interferometric measurements of flatness and parallelism of a step gauge

    CSIR Research Space (South Africa)

    Kruger, OA

    2001-01-01

    Full Text Available for the calibration of step gauges to a high accuracy. A system was also developed for interferometric measurements of the flatness and parallelism of gauge block faces for use in uncertainty calculations....

  13. High Accuracy Reference Network (HARN), Points generated from coordinates supplied by NGS, Published in 1993, MARIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, was produced all or in part from Field Survey/GPS information as of 1993. It is described as 'Points generated...

  14. Optical Refractive Index Sensing Based on High-Q Bound States in the Continuum in Free-Space Coupled Photonic Crystal Slabs.

    Science.gov (United States)

    Liu, Yonghao; Zhou, Weidong; Sun, Yuze

    2017-08-11

    High sensitivity (S) and high quality factor (Q) are desirable to achieve low detection limit in label-free optical sensors. In this paper, we theoretically demonstrate that single-layer and coupled bi-layer photonic crystal slabs (PCS) possess simultaneously high S and high Q near the bound states in the continuum (BIC). We theoretically achieved S > 800 nm/RIU and Q > 10⁷ in refractive index sensing in the 1400-1600 nm telecom optical wavelength bands. We experimentally demonstrated an S of 94 nm/RIU and a Q of 1.2 × 10⁴, with a detection limit of 6 × 10(-5) refractive index unit. These sensor designs can find applications in biochemical sensing, environmental monitoring, and healthcare.

  15. Characterization of an experimental arrangement to measure position of particles in 3D with a high accuracy

    Science.gov (United States)

    Martínez González, A.; Guerrero Viramontes, J. A.; Moreno Hernández, D.

    2011-09-01

    Single particle position calculation in three dimensions (3D) with high accuracy is the very important in several branches of science. On the other hand, the use of in-line holography to study very small objects in a dynamic volume is a technique of importance for scientists and engineers across a variety of disciplines for obtaining information about size, shape, trajectory and velocity of small objects such as dust particles. However, in general for in-line holography, accurate determination of the object's position in the optical axis direction is difficult. In order to overcome this shortcoming, we proposed to use in-line holography set up to record particle images in two orthogonal forward configurations. In this study, we avoid digital holography reconstruction to calculate particle position. To determine particle position, the proposed method is based on the calculation of the size and position of the central spot size (CSS) of a particle diffraction image. The size of the CSS is calculated by using the Continuous Wavelet Transform (CWT) and Continuous Hough Transforms (CHT), an then the size of the CSS is related to a calibration curve calculated experimentally in order to determine the "z" particle position and centroid of the CSS render the "x-y" position of a particle image. The procedure proposed in this work to determine the 3D particle position is so simple since it avoids a complicated experimental set-up and several computational steps in order to obtain the 3D position of the particles. Our approach offers the following advantages: First, the mathematical accuracy, light illumination as well as particle and medium refractive indexes are used during the analysis. Second, it is not required to resolve the size of particle since we calculate only the size of CSS of a diffraction particle image pattern.

  16. Uniform Refraction in Negative Refractive Index Materials

    CERN Document Server

    Gutierrez, Cristian E

    2015-01-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, both in the near and far field cases. In the near field problem, unlike the case when both materials have positive refractive index, we show that the resulting surfaces can be neither convex nor concave.

  17. Uniform refraction in negative refractive index materials.

    Science.gov (United States)

    Gutiérrez, Cristian E; Stachura, Eric

    2015-11-01

    We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.

  18. Data supporting the high-accuracy haplotype imputation using unphased genotype data as the references

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-09-01

    Full Text Available The data presented in this article is related to the research article entitled “High-accuracy haplotype imputation using unphased genotype data as the references” which reports the unphased genotype data can be used as reference for haplotyping imputation [1]. This article reports different implementation generation pipeline, the results of performance comparison between different implementations (A, B, and C and between HiFi and three major imputation software tools. Our data showed that the performances of these three implementations are similar on accuracy, in which the accuracy of implementation-B is slightly but consistently higher than A and C. HiFi performed better on haplotype imputation accuracy and three other software performed slightly better on genotype imputation accuracy. These data may provide a strategy for choosing optimal phasing pipeline and software for different studies.

  19. Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT

    Science.gov (United States)

    Yuasa, Tetsuya; Hashimoto, Eiko; Maksimenko, Anton; Sugiyama, Hiroshi; Arai, Yoshinori; Shimao, Daisuke; Ichihara, Shu; Ando, Masami

    2008-07-01

    We discuss the recently proposed computed tomography (CT) technique based on refractive effects for biomedical use, which reconstructs the in-plane refractive-index gradient vector field in a cross-sectional plane of interest by detecting the angular deviation of the beam, refracted by a sample, from the incident beam, using the diffraction-enhanced imaging (DEI) method. The CT has advantages for delineating biological weakly absorbing soft tissues over the conventional absorption-contrast CT because of the use of phase sensitive detection. The paper aims to define the imaging scheme rigidly and to demonstrate its efficacy for non-destructive measurement of biomedical soft-tissue samples without imaging agent. We first describe the imaging principle of in-plane DEI-CT from the physico-mathematical viewpoints in detail, and investigate what physical quantities are extracted from the reconstructed images. Then, we introduce the imaging system using the synchrotron radiation as a light source, constructed at beamline BL-14B in KEK, Japan. Finally, we demonstrate the advantage of the refraction-based image for non-destructive analysis of biological sample by investigating the image of human breast cancer tumors obtained using the imaging system. Here, the refraction- and the apparent absorption-based images obtained simultaneously by the in-plane DEI-CT are compared. Also, the conventional absorption-based image obtained using micro-computed tomography (μCT) imaging system is compared with them. Thereby, it is shown that the refraction contrast much more sensitively delineates the soft tissues than the absorption contrast. In addition, the radiologic-histologic correlation study not only validates the efficacy for imaging soft tissues, but also produces the potential that the pathological inspection for the breast cancer tumors may be feasible non-destructively.

  20. Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Stefani, Alessio; Bang, Ole

    2011-01-01

    We present both experimental measurements and simulations for a simple fiber-optical liquid refractive index sensor, made using only commercially available components and without advanced postprocessing of the fiber. Despite the simplicity, we obtain the highest sensitivity experimentally...... demonstrated to date for aqueous solutions (refractive index around 1.33), which is relevant for extensions to biosensing. The sensor is based on measuring the spectral shift of peaks arising from four-wave mixing (FWM), when filling the holes of a microstructured fiber with different liquid samples...

  1. High-Order Kinetic Relaxation Schemes as High-Accuracy Poisson Solvers

    CERN Document Server

    Mendoza, M; Herrmann, H J

    2015-01-01

    We present a new approach to find accurate solutions to the Poisson equation, as obtained from the steady-state limit of a diffusion equation with strong source terms. For this purpose, we start from Boltzmann's kinetic theory and investigate the influence of higher order terms on the resulting macroscopic equations. By performing an appropriate expansion of the equilibrium distribution, we provide a method to remove the unnecessary terms up to a desired order and show that it is possible to find, with high level of accuracy, the steady-state solution of the diffusion equation for sizeable Knudsen numbers. In order to test our kinetic approach, we discretise the Boltzmann equation and solve the Poisson equation, spending up to six order of magnitude less computational time for a given precision than standard lattice Boltzmann methods.

  2. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    Science.gov (United States)

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  3. Refractive index determination as a tool for temperature measurement and process control: a new approach

    Science.gov (United States)

    Schaller, Johannes K.; Wassenberg, S.; Fiedler, Detlev K.; Stojanoff, Christo G.

    1994-11-01

    Recently a new method for temperature measurement of droplets was presented. This method determines the index of refraction of a spherical scatterer with high accuracy and utilizes the dependence of the index of refraction on the temperature to finally determine the temperature. In this paper we show that the method is likewise applicable to cylindrical scatterers with a homogeneous refractive index distribution, like liquid jets. The method can be used to optically determine the temperature of a liquid jet, or to measure other properties of the liquid that influence the index of refraction of that liquid. One such property is the concentration of one liquid in another, like that of glycerol in an aqueous solution, which was studied experimentally for assessing some properties of the proposed method. An estimation of the sensitivity of the method was gained by detecting temperature changes of a cylindrical water jet.

  4. High-accuracy absolute distance measurement by two-wavelength double heterodyne interferometry with variable synthetic wavelengths

    CERN Document Server

    Kuramoto, Yoshiyuki

    2014-01-01

    We present an absolute distance measurement interferometer based on a two wavelength interferometer and a variable synthetic wavelength technique. The wavelength scanning range was 12 GHz, realized with a phase accuracy of 1.0 m{\\lambda} by heterodyne detection at each measurement wavelength. This small wavelength scanning range enabled the use of distributed feedback laser diodes as an interferometer light source and a fast 20 ms wavelength scanning time by injection current control. We demonstrated a measurement range of up to 1.5 m and an accuracy better than 1.2 nm in comparison with a displacement measurement interferometer, corresponding to a relative accuracy of 10-9. In addition, we also proposed expanding the range of maximum measurement and compensation of refractive index of air for linear colliders.

  5. Develop Roll-to-Roll Manufacturing Process of ZrO2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C [ORNL; Compton, Brett G [ORNL; Li, Jianlin [ORNL; Jellison Jr, Gerald Earle [ORNL; Duty, Chad E [ORNL

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  6. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  7. Refractive corneal surgery - discharge

    Science.gov (United States)

    Nearsightedness surgery - discharge; Refractive surgery - discharge; LASIK - discharge; PRK - discharge ... You had refractive corneal surgery to help improve your vision. This surgery uses a laser to reshape your cornea. It corrects mild-to-moderate nearsightedness, ...

  8. Development of an automatic calibration device for high-accuracy low temperature thermometers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analysis and investigation of calibration systems for high-accuracy low temperature thermometers,a new facility for automatic calibration of high-accuracy low temperature thermometers was developed.Continuous calibration for multiple points can be made automatically with this device.According to the thermophysical characteristics of the constant-temperature block in this device,segmented Fuzzy-PID (proportional-integral-differential) algorithm was applied.The experimental results showed that the temperature fluctuation was smaller than ±0.005 K in 30 min.Therefore,this new device can fully meet the calibration requirement of high-precision low temperature thermometers.

  9. Refraction near the horizon

    Science.gov (United States)

    Schaefer, Bradley E.; Liller, William

    1990-01-01

    Variations in astronomical refraction near the horizon are examined. Sunset timings, a sextant mounted on a tripod, and a temperature profile are utilized to derive the variations in refraction data, collected from 7 locations. It is determined that the refraction ranges from 0.234 to 1.678 deg with an rms deviation of 0.16, and it is observed that the variation is larger than previously supposed. Some applications for the variation of refraction value are discussed.

  10. Study on High Accuracy Topographic Mapping via UAV-based Images

    Science.gov (United States)

    Chi, Yun-Yao; Lee, Ya-Fen; Tsai, Shang-En

    2016-10-01

    Unmanned aerial vehicle (UAV) provides a promising tool for the acquisition of such multi-temporal aerial stereo photos and high-resolution digital surface models. Recently, the flight of UAVs operates with high degrees of autonomy by the global position system and onboard digit camera and computer. The UAV-based mapping can be obtained faster and cheaper, but its accuracy is anxious. This paper aims to identify the integration ability of high accuracy topographic map via the image of quad-rotors UAV and ground control points (GCPs). The living survey data is collected in the Errn river basins area in Tainan, Taiwan. The high accuracy UAV-based topographic in the study area is calibrated by the local coordinate of GCPs using the total station with the accuracy less than 1/2000. The comparison results show the accuracy of UAV-based topographic is accepted by overlapping. The results can be a reference for the practice works of mapping survey in earth.

  11. Negative refraction in natural ferromagnetic metals

    OpenAIRE

    Engelbrecht, Sebastian; Shuvaev, Alexey Mikhailovich; Luo, Y.; Moshnyaga, V.; Pimenov, Andrei

    2010-01-01

    It is generally believed that Veselago's criterion for negative refraction cannot be fulfilled in natural materials. However, considering imaginary parts of the permittivity ({\\epsilon}) and permeability ({\\mu}) and for metals at not too high frequencies the general condition for negative refraction becomes extremely simple: Re({\\mu}) Re(n) < 0. Here we demonstrate experimentally that in such natural metals as pure Co and FeCo alloy the negative values of the refractive index are achi...

  12. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  13. Repeatability and Reproducibility of Virtual Subjective Refraction.

    Science.gov (United States)

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-10-01

    To establish the repeatability and reproducibility of a virtual refraction process using simulated retinal images. With simulation software, aberrated images corresponding with each step of the refraction process were calculated following the typical protocol of conventional subjective refraction. Fifty external examiners judged simulated retinal images until the best sphero-cylindrical refraction and the best visual acuity were achieved starting from the aberrometry data of three patients. Data analyses were performed to assess repeatability and reproducibility of the virtual refraction as a function of pupil size and aberrometric profile of different patients. SD values achieved in three components of refraction (M, J0, and J45) are lower than 0.25D in repeatability analysis. Regarding reproducibility, we found SD values lower than 0.25D in the most cases. When the results of virtual refraction with different pupil diameters (4 and 6 mm) were compared, the mean of differences (MoD) obtained were not clinically significant (less than 0.25D). Only one of the aberrometry profiles with high uncorrected astigmatism shows poor results for the M component in reproducibility and pupil size dependence analysis. In all cases, vision achieved was better than 0 logMAR. A comparison between the compensation obtained with virtual and conventional subjective refraction was made as an example of this application, showing good quality retinal images in both processes. The present study shows that virtual refraction has similar levels of precision as conventional subjective refraction. Moreover, virtual refraction has also shown that when high low order astigmatism is present, the refraction result is less precise and highly dependent on pupil size.

  14. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    Science.gov (United States)

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  15. Analysis of Accuracy of a High-speed Mobile Platform Control System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The efficient manufacture technique involves a high-speed control of platform mobile system. A linear acutor is presented in this paper. The linear acutor is constructed as a linear stepper motor. However, to sustain both high accuracy and high speed for the position and speed control, A single-stack computer system is constructed and a special control algorithm is prescribed to controled the linear actuator continuously. In this paper, the nonlinear errors resulted from the magnetic saturation and the h...

  16. High-accuracy C-14 measurements for atmospheric CO2 samples by AMS

    NARCIS (Netherlands)

    Meijer, H.A.J.; Pertuisot, M.H.; van der Plicht, J.

    2006-01-01

    In this paper, we investigate how to achieve high-accuracy radiocarbon measurements by accelerator mass spectrometry (ANIS) and present measurement series (performed on archived CO2) of (CO2)-C-14 between 1985 and 1991 for Point Barrow (Alaska) and the South Pole. We report in detail the measurement

  17. Further results on the operation of high-accuracy drift chambers

    NARCIS (Netherlands)

    Breskin, A.; Charpak, G.; Gabioud, B.; Sauli, F.; Trautner, N.

    Optimization of the working parameters in the drift chambers with adjustable electric fields permits stable operation and high accuracies. Full saturation of the drift velocity leads to remarkable improvements, namely a very linear space-time correlation for perpendicular tracks, and simple

  18. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  19. A 1-V 15 μW High-Accuracy Temperature Switch

    NARCIS (Netherlands)

    Schinkel, D.; Boer, de R.P.; Annema, A.J.; Tuijl, van A.J.M.

    2004-01-01

    A CMOS temperature switch with uncalibrated high accuracy is presented. The circuit is based on the classical CMOS bandgap reference structure, using parasitic PNPs and a PTAT multiplier. The circuit was designed in a standard digital 0.18 m CMOS process. The temperature switch has an in-designed hy

  20. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  1. Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement.

    Science.gov (United States)

    Schröter, S; Ihle, C; Elson, D W; Döbele, S; Stöckle, U; Ateschrang, A

    2016-11-01

    Medial opening wedge high tibial osteotomy (MOW HTO) is now a successful operation with a range of indications, requiring an individualised approach to the choice of intended correction. This manuscript introduces the concept of surgical accuracy as the absolute deviation of the achieved correction from the intended correction, where small values represent greater accuracy. Surgical accuracy is compared in a randomised controlled trial (RCT) between gap measurement and computer navigation groups. This was a prospective RCT conducted over 3 years of 120 consecutive patients with varus malalignment and medial compartment osteoarthritis, who underwent MOW HTO. All procedures were planned with digital software. Patients were randomly assigned into gap measurement or computer navigation groups. Coronal plane alignment was judged using the mechanical tibiofemoral angle (mTFA), before and after surgery. Absolute (positive) values were calculated for surgical accuracy in each individual case. There was no significant difference in the mean intended correction between groups. The achieved mTFA revealed a small under-correction in both groups. This was attributed to a failure to account for saw blade thickness (gap measurement) and over-compensation for weight bearing (computer navigation). Surgical accuracy was 1.7° ± 1.2° (gap measurement) compared to 2.1° ± 1.4° (computer navigation) without statistical significance. The difference in tibial slope increases of 2.7° ± 3.9° (gap measurement) and 2.1° ± 3.9° (computer navigation) had statistical significance (P osteotomy for individual cases. This work is clinically relevant because coronal surgical accuracy was not superior in either group. Therefore, the increased expense and surgical time associated with navigated MOW HTO is not supported, because meticulously conducted gap measurement yields equivalent surgical accuracy. I.

  2. Photonic crystal negative refractive optics.

    Science.gov (United States)

    Baba, Toshihiko; Abe, Hiroshi; Asatsuma, Tomohiko; Matsumoto, Takashi

    2010-03-01

    Photonic crystals (PCs) are multi-dimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the PC. The refraction angle from positive to negative, perfectly or only partially obeying Snell's law, can be tailored using photonic band theory. The negative refraction enables novel prism, collimation, and lens effects. Because PCs usually consist of two transparent media, these effects occur at absorption-free frequencies, affording significant design flexibility for free-space optics. The PC slab, a high-index membrane with a two-dimensional airhole array, must be carefully designed to avoid reflection and diffraction losses. Light focusing based on negative refraction forms a parallel image of a light source, facilitating optical couplers and condenser lenses for wavelength demultiplexing. A compact wavelength demultiplexer can be designed by combining the prism and lens effects. The collimation effect is obtainable not only inside but also outside of the PC by optimizing negative refractive condition.

  3. A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.

    Science.gov (United States)

    Zhang, Xinran; Chen, Guowen; Liao, Hongen

    2015-01-01

    Image guided surgery has been used in clinic to improve the surgery safety and accuracy. Augmented reality (AR) technique, which can provide intuitive image guidance, has been greatly evolved these years. As one promising approach of surgical AR systems, integral videography (IV) autostereoscopic image overlay has achieved accurate fusion of full parallax guidance into surgical scene. This paper describes an image enhanced high-accuracy IV overlay system. A flexible optical image enhancement system (IES) is designed to increase the resolution and quality of IV image. Furthermore, we introduce a novel IV rendering algorithm to promote the spatial accuracy with the consideration of distortion introduced by micro lens array. Preliminary experiments validated that the image accuracy and resolution are improved with the proposed methods. The resolution of the IV image could be promoted to 1 mm for a micro lens array with pitch of 2.32 mm and IES magnification value of 0.5. The relative deviation of accuracy in depth and lateral directions are -4.68 ± 0.83% and -9.01 ± 0.42%.

  4. Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive.

    Science.gov (United States)

    Potere, David

    2008-12-08

    Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth's landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration) by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE). Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters). The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world's peri-urban areas.

  5. Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry

    Science.gov (United States)

    Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki

    2015-08-01

    In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.

  6. Refractive behavior changes with six months daily wear of high and low oxygen permeability hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    W.D.H. Gillan

    2006-01-01

    Full Text Available Introduction: The investigation of myopia and soft contact lenses is not new. Many reports show  that  the  wearing  of  silicone  hydrogel lenses as opposed to conventional disposable hydrogel lenses results in little progression of myopia in the eyes wearing silicone hydrogels. Method: Six subjects wore a silicone hydro-gel lens on one eye while the other eye wore a habitual disposable hydrogel lens for six months of daily wear. Fifty measurements of refractive state in each eye were taken prior to the subjects wearing a silicone lens in one eye and a conven-tional hydrogel lens in the other eye. After six months of daily wear another fifty measurements of refractive state were taken for each subject. Results:  Although  there  is  no  statisti-cal  support  for  the  findings  of  this  study, comet stereo-pairs are used to show the chang-es in refractive state for each subject. Four of  the  six  subjects  showed  an  increase  in myopia in the eye wearing the silicone lens. Discussion:  The  increase  in  myopia in eyes wearing a silicone hydrogel lens is contrary  to  the  findings  of  other  studies.

  7. Novel myopic refractive correction with transepithelial very high-fluence collagen cross-linking applied in a customized pattern: early clinical results of a feasibility study

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2014-04-01

    Full Text Available Anastasios John Kanellopoulos LaserVision.gr Institute, Athens, Greece, and New York Medical School, New York, NY, USA Background: The purpose of this study is to report the safety and efficacy of a new application of collagen cross-linking using a novel device to achieve predictable refractive myopic changes in virgin corneas. Methods: Four cases were treated with a novel device employing very high-fluence collagen cross-linking applied in a myopic pattern. Prior to treatment, riboflavin solution was applied to the intact epithelium. The collagen cross-linking device was then engaged for a total of 12 J/cm2, to be applied transepithelially in a predetermined pattern. Cornea clarity, corneal keratometry, and corneal topography were evaluated by both Placido disc and Scheimpflug imaging, along with cornea anterior segment optical coherence tomography and endothelial cell counts. Results: An average of 2.3 diopters was achieved in the first week in all four cases treated with the very high-fluence myopic collagen cross-linking intervention. There was a slight regression to 1.44 diopters at 1 month, which remained stable at 6-month follow-up. The mean keratometry change was from 44.90 diopters to 43.46 diopters. There was no significant change in endothelial cell counts or corneal clarity. There was some mild change in epithelial thickness distribution, with the treated area showing a slight but homogeneous reduction in mean thickness from 52 µm to 44 µm. Conclusion: This report describes the novel application of very high-fluence collagen cross-linking with a predictable well defined myopic refractive (flattening corneal effect. This technique has the advantages of essentially no postoperative morbidity, immediate visual rehabilitation, and the potential for tapering until the desired result is achieved. Keywords: myopia, refractive correction, high-fluence collagen cross-linking, clinical results

  8. Two-step Structural Design of Mesh Antennas for High Beam Pointing Accuracy

    Science.gov (United States)

    Zhang, Shuxin; Du, Jingli; Wang, Wei; Zhang, Xinghua; Zong, Yali

    2017-05-01

    A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, circular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is implemented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001º of electromagnetic performance is achieved.

  9. Characterising Conical Refraction Optical Tweezers

    CERN Document Server

    McDonald, Craig; Rafailov, Edik; McGloin, David

    2014-01-01

    Conical refraction occurs when a beam of light travels through an appropriately cut biaxial crystal. By focussing the conically refracted beam through a high numerical aperture microscope objective, conical refraction optical tweezers can be created, allowing for particle manipulation in both Raman spots and in the Lloyd/Poggendorff rings. We present a thorough quantification of the trapping properties of such a beam, focussing on the trap stiffness and how this varies with trap power and trapped particle location. We show that the lower Raman spot can be thought of as a single-beam optical gradient force trap, while radiation pressure dominates in the upper Raman spot, leading to optical levitation rather than trapping. Particles in the Lloyd/Poggendorff rings experience a lower trap stiffness than particles in the lower Raman spot but benefit from rotational control.

  10. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show...

  11. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show that sel...

  12. 3D refractive index measurements of special optical fibers

    Science.gov (United States)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  13. The Impact of Ionospheric Disturbances on High Accuracy Positioning in Brazil

    Science.gov (United States)

    Yang, L.; Park, J.; Susnik, A.; Aquino, M. H.; Dodson, A.

    2013-12-01

    High positioning accuracy is a key requirement to a number of applications with a high economic impact, such as precision agriculture, surveying, geodesy, land management, off-shore operations. Global Navigation Satellite Systems (GNSS) carrier phase measurement based techniques, such as Real Time Kinematic (RTK), Network-RTK (NRTK) and Precise Point Positioning (PPP), have played an important role in providing centimetre-level positioning accuracy, and become the core of the above applications. However these techniques are especially sensitive to ionospheric perturbations, in particular scintillation. Brazil sits in one of the most affected regions of the Earth and can be regarded as a test-bed for scenarios of the severe ionospheric condition. Over the Brazilian territory, the ionosphere behaves in a considerably unpredictable way and scintillation activity is very prominent, occurring especially after sunset hours. NRTK services may not be able to provide satisfactory accuracy, or even continuous positioning during strong scintillation periods. CALIBRA (Countering GNSS high Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) started in late 2012 and is a project funded by the GSA (European GNSS Agency) and the European Commission under the Framework Program 7 to deliver improvements on carrier phase based high accuracy algorithms and their implementation in GNSS receivers, aiming to counter the adverse ionospheric effects over Brazil. As the first stage of this project, the ionospheric disturbances, which affect the applications of RTK, NRTK or PPP, are characterized. Typical problems include degraded positioning accuracy, difficulties in ambiguity fixing, NRTK network interpolation errors, long PPP convergence time etc. It will identify how GNSS observables and existing algorithms are degraded by ionosphere related phenomena, evaluating the impact on positioning techniques in terms of accuracy, integrity and availability. Through the

  14. Hybrid head-tracker being examined for the high-accuracy attack rotorcraft market

    Science.gov (United States)

    Blanton, Buddy

    2002-08-01

    The need for the helmet-mounted display (HMD) to present flight, navigation, and weapon information in the pilot's line-of-sight has continued to rise as helicopter missions increase in complexity. To obtain spatial correlation of the direction of the head line-of-sight and pilotage imagery generated from helicopter-mounted sensors, it is necessary to slave the sensors to the head motion. To accomplish this task, a head-tracking system (HTS) must be incorporated into the HMD. There are a variety of techniques that could be applied for locating the position and attitude of a helmet-mounted display. Regardless of the technology, an HTS must provide defined measurements of accuracy. System parameters include motion box size, angular range, pointing angle accuracy, pointing angle resolution, update rate, and slew rate. This paper focuses on a hybrid tracker implementation in which a combination of optical and inertial tracking using strap-down gyros is preferred. Specifically, this tracker implementation is being examined for the high-accuracy attack rotorcraft market which requires a high degree of accuracy. The performance and resultant cost of the tracker components are determined by the specific needs of the intended application. The paper will also indicate how the various requirements drive the cost, configuration, and performance of the resultant hybrid head-tracker.

  15. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies.

    Science.gov (United States)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-06-01

    Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. PubMed was searched for reports of studies that had evaluated the diagnostic accuracy of a test against a clinical reference standard, published in 12 high-impact journals in 2012. Two reviewers independently evaluated the information contained in included abstracts using 21 items deemed important based on published guidance for adequate reporting and study quality assessment. We included 103 abstracts. Crucial information on study population, setting, patient sampling, and blinding as well as confidence intervals around accuracy estimates were reported in items per abstract was 10.1 of 21 (standard deviation 2.2). The mean number of reported items was significantly lower for multiple-gate (case-control type) studies, in reports in specialty journals, and for studies with smaller sample sizes and lower abstract word counts. No significant differences were found between studies evaluating different types of tests. Many abstracts of diagnostic accuracy study reports in high-impact journals are insufficiently informative. Developing guidelines for such abstracts could help the transparency and completeness of reporting. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. About accuracy of the discrimination parameter estimation for the dual high-energy method

    Science.gov (United States)

    Osipov, S. P.; Chakhlov, S. V.; Osipov, O. S.; Shtein, A. M.; Strugovtsev, D. V.

    2015-04-01

    A set of the mathematical formulas to estimate the accuracy of discrimination parameters for two implementations of the dual high energy method - by the effective atomic number and by the level lines is given. The hardware parameters which influenced on the accuracy of the discrimination parameters are stated. The recommendations to form the structure of the high energy X-ray radiation impulses are formulated. To prove the applicability of the proposed procedure there were calculated the statistical errors of the discrimination parameters for the cargo inspection system of the Tomsk polytechnic university on base of the portable betatron MIB-9. The comparison of the experimental estimations and the theoretical ones of the discrimination parameter errors was carried out. It proved the practical applicability of the algorithm to estimate the discrimination parameter errors for the dual high energy method.

  17. High accuracy digital aging monitor based on PLL-VCO circuit

    Science.gov (United States)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  18. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  19. Negative refraction in outer space?

    OpenAIRE

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2004-01-01

    Mediums which do not support the propagation of plane waves with negative phase velocity (NPV) when viewed at rest can support NPV propagation when they are viewed in a reference frame which is uniformly translated at sufficiently high velocity. Thus, relativistic negative refraction may be exploited in astronomical scenarios.

  20. Atmospheric refraction: a history

    Science.gov (United States)

    Lehn, Waldemar H.; van der Werf, Siebren

    2005-09-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  1. High quality factor and high sensitivity photonic crystal rectangular holes slot nanobeam cavity with parabolic modulated lattice constant for refractive index sensing

    Science.gov (United States)

    Sun, Fujun; Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Tian, Huiping

    2017-09-01

    In this paper, we present a novel optical sensor based on photonic crystal slot nanobeam cavity (PCSNC) with rectangular air holes. By introducing a continuous slot and quadratically modulated hole spacing (lattice constant a) structure, the majority of the optical field is localized in the slot region, which enhances the light-matter interaction. With applying the three dimensional finite-difference time-domain (3D-FDTD) simulations, three key geometric parameters (hole width wx, slot width ws and the number of the holes N) are optimized to achieve a high sensitivity (S) while keeping a high quality (Q) factor. The highest S over 1000 nm/RIU (refractive index unit) is achieved when the slot width equals to 200 nm. The highest Q-factor of 2.15×107 is obtained when 30 holes are placed on both sides of the host waveguide with the slot width of 80 nm. Considering the transmission efficiency and the trade-off between S and Q-factor, the slot width and the number of the tapered region are chosen as 80 nm and 20, respectively. A high S approximately 835 nm/RIU and a Q-factor about 5.50×105 with small effective mode volume of 0.03(λ/nair)3 are achieved simultaneously, resulting in an ultra-high figure-of-merit (FOM) above 2.92×105. Furthermore, the active sensing region of the optimized structure occupies only about 12 μm×0.08 μm, which makes the device attractive for realizing on-chip integrated sensor arrays.

  2. High accuracy indirect optical manipulation of live cells with functionalized microtools

    Science.gov (United States)

    Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd

    2016-09-01

    Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.

  3. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  4. Results of error correction techniques applied on two high accuracy coordinate measuring machines

    Energy Technology Data Exchange (ETDEWEB)

    Pace, C.; Doiron, T.; Stieren, D.; Borchardt, B.; Veale, R. (Sandia National Labs., Albuquerque, NM (USA); National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1990-01-01

    The Primary Standards Laboratory at Sandia National Laboratories (SNL) and the Precision Engineering Division at the National Institute of Standards and Technology (NIST) are in the process of implementing software error correction on two nearly identical high-accuracy coordinate measuring machines (CMMs). Both machines are Moore Special Tool Company M-48 CMMs which are fitted with laser positioning transducers. Although both machines were manufactured to high tolerance levels, the overall volumetric accuracy was insufficient for calibrating standards to the levels both laboratories require. The error mapping procedure was developed at NIST in the mid 1970's on an earlier but similar model. The error mapping procedure was originally very complicated and did not make any assumptions about the rigidness of the machine as it moved, each of the possible error motions was measured at each point of the error map independently. A simpler mapping procedure was developed during the early 1980's which assumed rigid body motion of the machine. This method has been used to calibrate lower accuracy machines with a high degree of success and similar software correction schemes have been implemented by many CMM manufacturers. The rigid body model has not yet been used on highly repeatable CMMs such as the M48. In this report we present early mapping data for the two M48 CMMs. The SNL CMM was manufactured in 1985 and has been in service for approximately four years, whereas the NIST CMM was delivered in early 1989. 4 refs., 5 figs.

  5. RNA secondary structure modeling at consistent high accuracy using differential SHAPE.

    Science.gov (United States)

    Rice, Greggory M; Leonard, Christopher W; Weeks, Kevin M

    2014-06-01

    RNA secondary structure modeling is a challenging problem, and recent successes have raised the standards for accuracy, consistency, and tractability. Large increases in accuracy have been achieved by including data on reactivity toward chemical probes: Incorporation of 1M7 SHAPE reactivity data into an mfold-class algorithm results in median accuracies for base pair prediction that exceed 90%. However, a few RNA structures are modeled with significantly lower accuracy. Here, we show that incorporating differential reactivities from the NMIA and 1M6 reagents--which detect noncanonical and tertiary interactions--into prediction algorithms results in highly accurate secondary structure models for RNAs that were previously shown to be difficult to model. For these RNAs, 93% of accepted canonical base pairs were recovered in SHAPE-directed models. Discrepancies between accepted and modeled structures were small and appear to reflect genuine structural differences. Three-reagent SHAPE-directed modeling scales concisely to structurally complex RNAs to resolve the in-solution secondary structure analysis problem for many classes of RNA.

  6. A fast and high accuracy numerical simulation algorithm of the polymer spherulite at the mesoscale Level

    Science.gov (United States)

    Liu, Yongzhi; Geng, Tie; (Tom Turng, Lih-Sheng; Liu, Chuntai; Cao, Wei; Shen, Changyu

    2017-09-01

    In the multiscale numerical simulation of polymer crystallization during the processing period, flow and temperature of the polymer melt are simulated on the macroscale level, while nucleation and growth of the spherulite are simulated at the mesoscale level. As a part of the multiscale simulation, the meso-simulation requires a fast solving speed because the meso-simulation software must be run several times in every macro-element at each macro-step. Meanwhile, the accuracy of the calculation results is also very important. It is known that the simulation geometry of crystallization includes planar (2D) and three-dimensional space (3D). The 3D calculations are more accurate but more expensive because of the long CPU time consumed. On the contrary, 2D calculations are always much faster but lower in accuracy. To reach the desirable speed and high accuracy at the same time, an algorithm is presented, in which the Delesse law coupled with the Monte Carlo method and pixel method are employed to simulate the nucleation, growth, and impingement of the polymer spherulite at the mesoscale level. Based on this algorithm, a software is developed with the Visual C++ language, and its numerical examples’ results prove that the solving speed of this algorithm is as fast as the 2D classical simulation and the calculation accuracy is at the same level as the 3D simulation.

  7. High Accuracy Gravitational Waveforms from Black Hole Binary Inspirals Using OpenCL

    CERN Document Server

    McKennon, Justin; Khanna, Gaurav

    2012-01-01

    There is a strong need for high-accuracy and efficient modeling of extreme-mass-ratio binary black hole systems because these are strong sources of gravitational waves that would be detected by future observatories. In this article, we present sample results from our Teukolsky EMRI code: a time-domain Teukolsky equation solver (a linear, hyperbolic, partial differential equation solver using finite-differencing), that takes advantage of several mathematical and computational enhancements to efficiently generate long-duration and high-accuracy EMRI waveforms. We emphasize here the computational advances made in the context of this code. Currently there is considerable interest in making use of many-core processor architectures, such as Nvidia and AMD graphics processing units (GPUs) for scientific computing. Our code uses the Open Computing Language (OpenCL) for taking advantage of the massive parallelism offered by modern GPU architectures. We present the performance of our Teukolsky EMRI code on multiple mod...

  8. High-Resolution Seismic Reflection and Refraction Imaging of the Hayward Fault in Fremont, Alameda County, California

    Science.gov (United States)

    Everson, E. D.; Rymer, M. J.; Goldman, M. R.; Catchings, R. D.

    2007-12-01

    In July 2007, the U.S. Geological Survey acquired a 60-m-long seismic reflection and refraction profile across the main trace of the Hayward fault in Fremont Central Park, Fremont, California. The profile was designed to determine the geometry, seismic velocities, and possible structural complexities of the fault. The study was along a part of the surface rupture of the 1868 M 7.0 Hayward earthquake. We used single-element, 40-Hz vertical geophones placed at 1-m intervals along the profile with 0.5-m lateral offset from the shot points, also with 1-m intervals. Seismic sources were generated by multiple sledgehammer blows at each shot point. Data were recorded unfiltered in the field on a Geometrics Strataview RX-60 seismograph at a sampling rate of 0.5 ms for 2 s. Geophone locations were measured in 3D using differential GPS. We developed a velocity model using the Hole (1992) code to invert P-wave first arrivals of the refraction data. Seismic P-wave velocities range from about 200 m/s near the surface to approximately 800 m/s at a depth of 13 to 16 m. The velocity model was then applied to the reflection data to develop an unmigrated common depth point (CDP) stack. The reflection data indicate the presence of at least three fault strands in an approximately 20-m-wide zone. We believe the three strands define an upwardly flaring 'flower structure', with the central strand being the main strand of the Hayward fault. The three strands project to merge at a depth of about 150 m; the overall dip of the fault zone in the upper 100 m is to the northeast, at about 88 degrees.

  9. Cavity ring-down technique for measurement of reflectivity of high reflectivity mirrors with high accuracy

    Indian Academy of Sciences (India)

    G Sridhar; Sandeep K Agarwalla; Sunita Singh; L M Gantayet

    2010-12-01

    A simple, accurate and reliable method for measuring the reflectivity of laser-grade mirrors ( > 99.5 %) based on cavity ring-down (CRD) technique has been success-fully demonstrated in our laboratory using a pulsed Nd:YAG laser. A fast photomultiplier tube with an oscilloscope was used to detect and analyse the CRD signal. The cavity decay times were measured for three cavities formed by a combination of three mirror pairs. The absolute reflectivities 1, 2, 3 were determined to be 99.94%, 99.63%, 99.52% at normal incidence. The reflectivity of mirrors is measured to an accuracy of 0.01%.

  10. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of un

  11. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of

  12. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  13. Interlobate esker architecture and related hydrogeological features derived from a combination of high-resolution reflection seismics and refraction tomography, Virttaankangas, southwest Finland

    Science.gov (United States)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2017-05-01

    A novel high-resolution (2-4 m source and receiver spacing) reflection and refraction seismic survey was carried out for aquifer characterization and to confirm the existing depositional model of the interlobate esker of Virttaankangas, which is part of the Säkylänharju-Virttaankangas glaciofluvial esker-chain complex in southwest Finland. The interlobate esker complex hosting the managed aquifer recharge (MAR) plant is the source of the entire water supply for the city of Turku and its surrounding municipalities. An accurate delineation of the aquifer is therefore critical for long-term MAR planning and sustainable use of the esker resources. Moreover, an additional target was to resolve the poorly known stratigraphy of the 70-100-m-thick glacial deposits overlying a zone of fractured bedrock. Bedrock surface as well as fracture zones were confirmed through combined reflection seismic and refraction tomography results and further validated against existing borehole information. The high-resolution seismic data proved successful in accurately delineating the esker cores and revealing complex stratigraphy from fan lobes to kettle holes, providing valuable information for potential new pumping wells. This study illustrates the potential of geophysical methods for fast and cost-effective esker studies, in particular the digital-based landstreamer and its combination with geophone-based wireless recorders, where the cover sediments are reasonably thick.

  14. Interlobate esker architecture and related hydrogeological features derived from a combination of high-resolution reflection seismics and refraction tomography, Virttaankangas, southwest Finland

    Science.gov (United States)

    Maries, Georgiana; Ahokangas, Elina; Mäkinen, Joni; Pasanen, Antti; Malehmir, Alireza

    2016-12-01

    A novel high-resolution (2-4 m source and receiver spacing) reflection and refraction seismic survey was carried out for aquifer characterization and to confirm the existing depositional model of the interlobate esker of Virttaankangas, which is part of the Säkylänharju-Virttaankangas glaciofluvial esker-chain complex in southwest Finland. The interlobate esker complex hosting the managed aquifer recharge (MAR) plant is the source of the entire water supply for the city of Turku and its surrounding municipalities. An accurate delineation of the aquifer is therefore critical for long-term MAR planning and sustainable use of the esker resources. Moreover, an additional target was to resolve the poorly known stratigraphy of the 70-100-m-thick glacial deposits overlying a zone of fractured bedrock. Bedrock surface as well as fracture zones were confirmed through combined reflection seismic and refraction tomography results and further validated against existing borehole information. The high-resolution seismic data proved successful in accurately delineating the esker cores and revealing complex stratigraphy from fan lobes to kettle holes, providing valuable information for potential new pumping wells. This study illustrates the potential of geophysical methods for fast and cost-effective esker studies, in particular the digital-based landstreamer and its combination with geophone-based wireless recorders, where the cover sediments are reasonably thick.

  15. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  16. Accuracy of GPS devices for measuring high-intensity running in field-based team sports.

    Science.gov (United States)

    Rampinini, E; Alberti, G; Fiorenza, M; Riggio, M; Sassi, R; Borges, T O; Coutts, A J

    2015-01-01

    We compared the accuracy of 2 GPS systems with different sampling rates for the determination of distances covered at high-speed and metabolic power derived from a combination of running speed and acceleration. 8 participants performed 56 bouts of shuttle intermittent running wearing 2 portable GPS devices (SPI-Pro, GPS-5 Hz and MinimaxX, GPS-10 Hz). The GPS systems were compared with a radar system as a criterion measure. The variables investigated were: total distance (TD), high-speed distance (HSR>4.17 m·s(-1)), very high-speed distance (VHSR>5.56 m·s(-1)), mean power (Pmean), high metabolic power (HMP>20 W·kg(-1)) and very high metabolic power (VHMP>25 W·kg(-1)). GPS-5 Hz had low error for TD (2.8%) and Pmean (4.5%), while the errors for the other variables ranged from moderate to high (7.5-23.2%). GPS-10 Hz demonstrated a low error for TD (1.9%), HSR (4.7%), Pmean (2.4%) and HMP (4.5%), whereas the errors for VHSR (10.5%) and VHMP (6.2%) were moderate. In general, GPS accuracy increased with a higher sampling rate, but decreased with increasing speed of movement. Both systems could be used for calculating TD and Pmean, but they cannot be used interchangeably. Only GPS-10 Hz demonstrated a sufficient level of accuracy for quantifying distance covered at higher speeds or time spent at very high power. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola

    2014-05-02

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  18. Making high-accuracy null depth measurements for the LBTI exozodi survey

    Science.gov (United States)

    Mennesson, Bertrand; Defrère, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; Marion, Lindsay; Roberge, Aki; Serabyn, Eugene; Skemer, Andy J.; Stapelfeldt, Karl; Weinberger, Alycia J.; Wyatt, Mark

    2016-08-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 σ measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation ("null") levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  19. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  20. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  1. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  2. Navigation Facility for High Accuracy Offline Trajectory and Attitude Estimation in Airborne Applications

    Directory of Open Access Journals (Sweden)

    A. Renga

    2013-01-01

    Full Text Available The paper focuses on a navigation facility, relying on commercial-off-the-shelf (COTS technology, developed to generate high-accuracy attitude and trajectory measurements in postprocessing. Target performance is cm-level positioning with tenth of degree attitude accuracy. The facility is based on the concept of GPS-aided inertial navigation but comprises carrier-phase differential GPS (CDGPS processing and attitude estimation based on multiantenna GPS configurations. Expected applications of the system include: (a performance assessment of integrated navigation systems, developed for general aviation aircraft and medium size unmanned aircraft systems (UAS; (b generation of reference measurements to evaluate the flight performance of airborne sensors (e.g., radar or laser; and (c generation of reference trajectory and attitude for improving imaging quality of airborne remote sensing data. The paper describes system architecture, selected algorithms for data processing and integration, and theoretical performance evaluation. Experimental results are also presented confirming the effectiveness of the implemented approach.

  3. Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity.

    Science.gov (United States)

    Chen, Lei; Liu, Yumin; Yu, Zhongyuan; Wu, Dong; Ma, Rui; Zhang, Yang; Ye, Han

    2016-05-02

    A near-infrared plasmonic refractive index (RI) sensor with figure of merit (FOM) as high as 124.6 is proposed and investigated numerically. The RI sensing is realized by employing the linear relation between resonant wavelength and RI of the material under detecting. Based on the fillet cavity coupled with two metal-insulator-metal waveguides, transmission efficiency (T) and optical resolution (FWHM) of the RI sensor are both improved to a great extent with T = 95% and FWHM = 12nm, keeping acceptable wavelength sensitivity of 1496nm/RIU within the near-infrared region. In addition, a sensitivity as high as 3476nm/RIU is obtained by optimizing the shape and size of fillet cavity. In general, the high FOM, transmittance and sensitivity achieved by our design may get further applications in biomedical science and nanophotonic circuits.

  4. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    Science.gov (United States)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  5. Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI.

    Science.gov (United States)

    He, Sailing; Zhang, Xizhou; He, Yingran

    2013-12-16

    Electronics circuits keep shrinking in dimensions, as requested by Moore's law. In contrast, photonic waveguides and circuit elements still have lateral dimensions on the order of the wavelength. A key to make photonics have a microelectronics-like development is a drastic reduction of size. To achieve this, we need a low-loss nanoscale waveguide with a drastically reduced mode area and an ultra-high effective refractive index. For this purpose, we propose here several low-loss waveguide structures based on graphene nano-ribbons. An extremely small mode area (~10(-7)λ(0)(2), one order smaller than the smallest mode area of any waveguide that has ever been reported in the literature; here λ(0) is the operating wavelength in vacuum) and an extremely large effective refractive index (several hundreds) are achieved. As a device example, a nano-ring cavity of ultra-small size (with a diameter of ~10(-2)λ(0)) is designed. Our study paves the way for future VLSI (very-large-scale integration) optoelectronics.

  6. Preparation of Hard Coating Films with High Refractive Index from TiO{sub 2}-SnO{sub 2} Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chi Yong; Kim, Nam Woo; Song, Ki Chang [Konyang University, Nonsan (Korea, Republic of)

    2015-12-15

    TiO{sub 2}-SnO{sub 2} nanoparticles with an average diameter of 3-5 nm were synthesized by hydrolysis of titanium tetraisopropoxide (TTIP) and tin chloride to depress the photocatalytic activity of TiO{sub 2} nanoparticles. Organic-inorganic hybrid coating solutions were prepared by reacting the TiO{sub 2}-SnO{sub 2} nanoparticles with 3-glycidoxypropyl trimethoxysilane (GPTMS) by the sol-gel method. The hard coating films with high refractive index were obtained by curing thermally at 120 .deg. C after spin-coating the coating solutions on the polycarbonate (PC) sheets. The coating films from TiO{sub 2}- SnO{sub 2} nanoparticles showed an improved pencil hardness of 3H compared to 2H of the coating films from TiO{sub 2} nanoparticles. Besides, the refractive index of the coating films from TiO{sub 2}-SnO{sub 2} nanoparticles enhanced from 1.543 to 1.623 at 633 nm as the Sn/Ti molar ratio increased from 0 to 0.5.

  7. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  8. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Science.gov (United States)

    Schumann, Guy; Moller, Delwyn; Mentgen, Felix

    2015-12-01

    Digital elevation models (DEMs) are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  9. Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay

    CERN Document Server

    Mangum, Jeffrey G

    2014-01-01

    In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require sub-arcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies $\\lesssim 1^{\\prime\\prime}$ are achievable when observing at zenith angles $\\lesssim 75^\\circ$. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles $\\gtrsim 75^...

  10. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy

    Science.gov (United States)

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2013-01-01

    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  11. High-accuracy defect sizing for nozzle attachment welds using asymmetric TOFD

    Energy Technology Data Exchange (ETDEWEB)

    Bloodworth, T. [AEA Technology, Risley (United Kingdom)

    1999-09-01

    Inspection procedures for the detection, characterisation and high-accuracy sizing of defects in nozzle attachment welds in a Swedish BWR have been developed. These welds are set-on nozzle-to-pipe attachment welds between the main recirculation pipe and related piping systems. The nozzles and the main recirculation pipe are made of ferritic steel with austenitic stainless steel cladding on the inner surface. The overall wall thickness of the nozzle is 30 mm. The inspection uses an automated pulse-echo technique for the detection and length sizing of defects. Software for the display of complex geometry ultrasonic data is used to assist in data analysis. An unorthodox automated ultrasonic TOFD technique is used to measure the through-wall height of defects. This technique deploys probes on both the nozzle and main pipe surfaces. The TOFD data for this complex geometry are analysed using the CGTOFD software, to locate the origin of defect edge signals. The Qualification detection criterion for this inspection is the detection of defects 6 mm x 18 mm (height x length) or greater. The required length measurement accuracy is {+-}14 mm and the required through-wall height measurement accuracy is {+-}2.3 mm. This last requirement is very demanding. The inspection procedures for detection and sizing passed Procedure Qualification when measured against the above criteria on an `open` test specimen. Data collection and analysis personnel have subsequently passed Personnel Qualification using `blind` specimens. (Author)

  12. Uncertainty and target accuracy studies for the very high temperature reactor(VHTR) physics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Palmiotti, G.; Aliberti, G.; Salvatores, M.; Kim, T.K.

    2005-09-16

    The potential impact of nuclear data uncertainties on a number of performance parameters (core and fuel cycle) of the prismatic block-type Very High Temperature Reactor (VHTR) has been evaluated and results are presented in this report. An uncertainty analysis has been performed, based on sensitivity theory, which underlines what cross-sections, what energy range and what isotopes are responsible for the most significant uncertainties. In order to give guidelines on priorities for new evaluations or validation experiments, required accuracies on specific nuclear data have been derived, accounting for target accuracies on major design parameters. Results of an extensive analysis indicate only a limited number of relevant parameters do not meet the target accuracies assumed in this work; this does not imply that the existing nuclear cross-section data cannot be used for the feasibility and pre-conceptual assessments of the VHTR. However, the results obtained depend on the uncertainty data used, and it is suggested to focus some future evaluation work on the production of consistent, as far as possible complete and user oriented covariance data.

  13. High accuracy measurements of magnetic field integrals for the european XFEL undulator systems

    Science.gov (United States)

    Wolff-Fabris, Frederik; Viehweger, Marc; Li, Yuhui; Pflüger, Joachim

    2016-10-01

    Two high accuracy moving wire (MW) measurement systems based on stretched wire technique were built for the European XFEL (XFEL.EU). They were dedicated to monitor, tune and improve the magnetic field integrals properties during the serial production of the undulator segments, phase shifters and air coil correctors for XFEL.EU. For the magnetic tuning of phase shifters and the calibration of the air coils correctors a short portable MW measurement bench was built to measure first field integrals in short devices with magnetic length of less than about 300 mm and with an ultimate accuracy much better than 1 G cm (0.001 T mm). A long MW measurement setup was dedicated to obtain the total first and second field integrals on the 5-meters long undulator segments with accuracy of about 4 G cm (0.004 T mm) and 2000 G cm2 (20 T mm2) for the 1st and 2nd field integrals, respectively. Using these data a method was developed to compute the proper corrections for the air coils correctors used at both extremities so that zero first and second field integrals for an undulator segment are obtained. It is demonstrated that charging air coils correctors with these corrections results in near zero effect to the electron trajectory in the undulator systems and consequently no negative impact on the self-amplified spontaneous emission (SASE) process should occur.

  14. Liquid refractive index sensor based on a 2D 10-fold photonic quasicrystal

    Science.gov (United States)

    Wang, Shuai; Sun, XiaoHong; Wang, Cong; Peng, Gangding; Qi, Yongle; Wang, XiShi

    2017-09-01

    A liquid refractive index sensor is designed and optimized by using silicon-rods based on a 10-fold photonic quasicrystal without defects. The resonant mode with high Q value is chosen as the sensing wavelength in the transmission spectrum. By changing the radius of the silicon pillars, the sensor size and the refractive index of the background media, different types of sensors are designed and investigated. On the other hand, the performance of the sensor is investigated including the measurement range, sensitivity, etc. In the detection limit of spectral instruments, 0.02 nm, the sensing accuracy is 10-4 refractive index unit with a figure of merit of 1478. The measurement range is from 1.2731 to 1.4185. This will provide a new method for the design and fabrication of lab-on-chip, microfluidic optical elements and integrated optical circuits.

  15. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  16. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    Science.gov (United States)

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.

  17. A High-Performance Operational Amplifier for High-Speed High-Accuracy Switch-Capacitor Cells

    Institute of Scientific and Technical Information of China (English)

    Qi Fan; Ning Ning; Qi Yu; Da Chen

    2007-01-01

    A highspeed highaccuracy fully differenttial operational amplifier (opamp) is realized based on noMillercapacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF compensation scheme uses the positive phase shift of lefthalfplane (LHP) zero caused by the feedforward path to counteract the negative phase shift of the nondominant pole. Compared to traditional Miller compensation method, the opamp obtains high gain and wide band synchronously without the polesplitting effect while saves significant chip area due to the absence of the Miller capacitor. Simulated by the 0.35 μm CMOS RF technology, the result shows that the openloop gain of the opamp is 118 dB with the unity gainbandwidth (UGBW)of 1 GHz, and the phase margin is 61°while the settling time is 5.8 ns when achieving 0.01% accuracy. The opamp is especially suitable for the frontend sample/hold (S/H)cell and the multiplying D/A converter(MDAC) module of the highspeed highresolution pipelined A/D converters(ADCs).

  18. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  19. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  20. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  1. A small and high accuracy gyro stabilization electro-optical platform

    Science.gov (United States)

    Qiu, Haitao; Han, Yonggen; Lv, Yanhong

    2008-10-01

    A high accuracy line-of-sight (LOS) Stabilization system based on digital control technology was designed. The current feedback closed-loop system was introduced which uses the CCD graphic and resolver to constitute the position closed-loop and uses the optic fiber gyro to constitute the rate closed-loop. In order to realize zero steady-state error of angular output in counteracting disturbance from carrier, a PII2 (proportional-integral-double integral) control scheme is proposed. The hardware configuration and software system is presented. Experimental results show that the system has perfect dynamic and static performance and the technical requirements were satisfied.

  2. High Accuracy Three-dimensional Simulation of Micro Injection Moulded Parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F. S.; Hansen, Hans Nørgaard

    2011-01-01

    Micro injection moulding (μIM) is the key replication technology for high precision manufacturing of polymer micro products. Data analysis and simulations on micro-moulding experiments have been conducted during the present validation study. Detailed information about the μIM process was gathered...... and used to establish a reliable simulation methodology suitable for μIM parts. Various Simulation set-up parameters that have been considered in order to improve the simulation accuracy: injection speed profile, melt and mould temperatures, 3D mesh, material rheology, inertia effect and shrinkage...

  3. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  4. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  5. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    Science.gov (United States)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  6. Simple high-accuracy resolution program for convective modelling of discontinuities

    Science.gov (United States)

    Leonard, B. P.

    1988-01-01

    For steady multidimensional convection, the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme has several attractive properties. However, for highly convective simulation of step profiles, QUICK produces unphysical overshoots and a few oscillations, and this may cause serious problems in nonlinear flows. Fortunately, it is possible to modify the convective flux by writing the normalized convected control-volume face value as a function of the normalized adjacent upstream node value, developing criteria for monotonic resolution without sacrificing formal accuracy. This results in a nonlinear functional relationship between the normalized variables, whereas standard methods are all linear in this sense. The resulting Simple High Accuracy Resolution Program (SHARP) can be applied to steady multidimensional flows containing thin shear or mixing layers, shock waves, and other frontal phenomena. This represents a significant advance in modeling highly convective flows of engineering and geophysical importance. SHARP is based on an explicit, conservative, control-volume flux formation, equally applicable to one, two, or three dimensional elliptic, parabolic, hyperbolic, or mixed-flow regimes. Results are given for the bench-mark purely convective first-order results and the nonmonotonic predictions of second- and third-order upwinding.

  7. High-accuracy optimal finite-thrust trajectories for Moon escape

    Science.gov (United States)

    Shen, Hong-Xin; Casalino, Lorenzo

    2017-02-01

    The optimization problem of fuel-optimal trajectories from a low circular Moon orbit to a target hyperbolic excess velocity vector using finite-thrust propulsion is solved. The ability to obtain the most accurate satisfaction of necessary optimality conditions in a high-accuracy dynamic model is the main motivation of the current study. The solutions allow attaining anytime-return Earth-interface conditions from a low lunar orbit. Gravitational effects of the Sun, Earth, and Moon are included throughout the entire trajectory. Severe constraints on the fuel budget combined with high-accuracy demands on the endpoint conditions necessitate a high-fidelity solution to the trajectory optimization problem and JPL DE405 ephemeris model is used to determine the perturbing bodies' positions. The optimization problem is solved using an indirect method. The optimality of the solution is verified by an application of Pontryagin's maximum principle. More accurate and fuel-efficient trajectories are found for the same mission objectives and constraints published in other research, emphasizing the advantages of this technique. It is also shown that the thrust structure consists of three finite burns. In contrast to previous research, no singular arc is required in the optimal solutions, and all the controls appear bang-bang.

  8. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    Science.gov (United States)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  9. Simultaneous observations of structure function parameter of refractive index using a high-resolution radar and the DataHawk small airborne measurement system

    Science.gov (United States)

    Scipión, Danny E.; Lawrence, Dale A.; Milla, Marco A.; Woodman, Ronald F.; Lume, Diego A.; Balsley, Ben B.

    2016-09-01

    The SOUSY (SOUnding SYstem) radar was relocated to the Jicamarca Radio Observatory (JRO) near Lima, Peru, in 2000, where the radar controller and acquisition system were upgraded with state-of-the-art parts to take full advantage of its potential for high-resolution atmospheric sounding. Due to its broad bandwidth (4 MHz), it is able to characterize clear-air backscattering with high range resolution (37.5 m). A campaign conducted at JRO in July 2014 aimed to characterize the lower troposphere with a high temporal resolution (8.1 Hz) using the DataHawk (DH) small unmanned aircraft system, which provides in situ atmospheric measurements at scales as small as 1 m in the lower troposphere and can be GPS-guided to obtain measurements within the beam of the radar. This was a unique opportunity to make coincident observations by both systems and to directly compare their in situ and remotely sensed parameters. Because SOUSY only points vertically, it is only possible to retrieve vertical radar profiles caused by changes in the refractive index within the resolution volume. Turbulent variations due to scattering are described by the structure function parameter of refractive index Cn2. Profiles of Cn2 from the DH are obtained by combining pressure, temperature, and relative humidity measurements along the helical trajectory and integrated at the same scale as the radar range resolution. Excellent agreement is observed between the Cn2 estimates obtained from the DH and SOUSY in the overlapping measurement regime from 1200 m up to 4200 m above sea level, and this correspondence provides the first accurate calibration of the SOUSY radar for measuring Cn2.

  10. Comparison of objective refraction in darkness to cycloplegic refraction: a pilot study.

    Science.gov (United States)

    Vasudevan, Balamurali; Ciuffreda, Kenneth J; Meehan, Kelly; Grk, Dejana; Cox, Misty

    2016-03-01

    significantly different and furthermore, they were highly correlated in both the children and adults in this pilot study. Non-cycloplegic refraction in the dark may provide a reliable adjunct or alternative to conventional cycloplegic refraction in both children and young adults. © 2016 Optometry Australia.

  11. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Directory of Open Access Journals (Sweden)

    Du Yuefen

    2003-05-01

    Full Text Available Abstract Background Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. Results A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA. Fluorescent signal output was measured in real time and as an end point. Conclusions Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.

  12. Discovery and validation of urine markers of acute pediatric appendicitis using high accuracy mass spectrometry

    Science.gov (United States)

    Kentsis, Alex; Lin, Yin Yin; Kurek, Kyle; Calicchio, Monica; Wang, Yan Yan; Monigatti, Flavio; Campagne, Fabien; Lee, Richard; Horwitz, Bruce; Steen, Hanno; Bachur, Richard

    2015-01-01

    Study Objective Molecular definition of disease has been changing all aspects of medical practice, from diagnosis and screening to understanding and treatment. Acute appendicitis is among many human conditions that are complicated by the heterogeneity of clinical presentation and shortage of diagnostic markers. Here, we sought to profile the urine of patients with appendicitis with the goal of identifying new diagnostic markers. Methods Candidate markers were identified from the urine of children with histologically proven appendicitis by using high accuracy mass spectrometry proteome profiling. These systemic and local markers were used to assess the probability of appendicitis in a blinded, prospective study of children being evaluated for acute abdominal pain in our emergency department. Tests of performance of the markers were evaluated against the pathologic diagnosis and histologic grade of appendicitis. Results Test performance of 57 identified candidate markers was studied in 67 patients, with median age of 11 years, 37% of whom had appendicitis. Several exhibited favorable diagnostic performance, including calgranulin A (S100-A8), α-1-acid glycoprotein 1 (orosomucoid), and leucine-rich α-2-glycoprotein (LRG), with the ROC AUC and values of 0.84 (95 % CI 0.72-0.95), 0.84 (0.72-0.95), and 0.97 (0.93-1.0), respectively. LRG was enriched in diseased appendices and its abundance correlated with severity of appendicitis. Conclusions High accuracy mass spectrometry urine proteome profiling allowed identification of diagnostic markers of acute appendicitis. Usage of LRG and other identified biomarkers may improve the diagnostic accuracy of clinical evaluations of appendicitis. PMID:19556024

  13. SpaceNav - A high accuracy navigation system for space applications

    Science.gov (United States)

    Evers, H.-H.

    The technology of the SpaceNav-system is based on research performed by the Institute of Flight Guidance and Control at the Technical University of Braunschweig, Germany. In 1989 this institute gave the worlds first public demonstration of a fully automatic landing of an aircraft, using inertial and satellite informations exclusively. The SpaceNav device components are: Acceleration-/Gyro Sensor Package; Global Positioning System (GPS) Receiver/optional more than one; Time Reference Unit; CPU; Telemetry (optional); and Differential GPS (DGPS) Receiver (optional). The coupling of GPS receivers with inertial sensors provides an extremely accurate navigation data set in real time applications even in phases with high dynamic conditions. The update rate of this navigation information is up to 100 Hz with the same accuracy in 3D-position, velocity, acceleration, attitude and time. SpaceNav is an integrated navigation system, which operates according to the principle of combining the longterm stability and accuracy of GPS, and the high level of dynamic precision of conventional inertial navigation system (INS) strapdown systems. The system's design allows other aiding sensors e.g. GLONASS satellite navigation system, distance measuring equipment (DME), altimeter (radar and/or barometric), flux valve etc. to be connected, in order to increase the redundancy of the system. The advantage of such an upgraded system is the availability of more sensor information than necessary for a navigation solution. The resulting redundancy in range measurement allows real-time detection and identification of sensor signals that are incompatible with the other information. As a result you get Receiver Autonomous Integrity Monitoring (RAIM) as described in 'A Multi-Sensor Approach to Assuring GPS Integrity', presented by Alison Brown in the March/April 1990 issue of 'GPS World'. In this paper the author presents information about the principles of the Satellite Navigation System GPS, and

  14. Refractive index of TlGaAs

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, K.; Shiba, M.; Yamakage, M.; Kajikawa, Y. [Department of Electric and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University (Japan)

    2008-07-01

    Refractive index has been determined from reflectance measurements at 77-300 K for Tl{sub x}Ga{sub 1-x}As samples with x{<=}0.077 prepared by low-temperature molecular-beam epitaxy. A very high refractive index of around 4.5 at room temperature in the transparent wavelength region has been revealed for Tl{sub x}Ga{sub 1-x}As with x=0.077. The temperature coefficient of the refractive index was found to increase with Tl content. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Refraction of microwave signals by water vapor

    Science.gov (United States)

    Goldfinger, A. D.

    1980-01-01

    Tropospheric water vapor causes a refractive path length effect which is typically 5-10% of the 'dry' tropospheric effect and as large as several meters at elevation angles below 5 deg. The vertical water vapor profile is quite variable, and measurements of intensive atmospheric parameters such as temperature and humidity limited to the surface do not adequately predict the refractive effect. It is suggested that a water vapor refraction model that is a function of the amount of precipitable water alone can be successful at low elevation angles. From an extensive study of numerical ray tracings through radiosonde balloon data, such a model has been constructed. The model predicts the effect at all latitudes and elevation angles between 2 and 10 deg to an accuracy of better than 4% (11 cm at 3 deg elevation angle).

  16. Minimisation of the thermal load of the ablation in high-speed laser corneal refractive surgery: the 'intelligent thermal effect control' of the AMARIS platform

    Science.gov (United States)

    Brunsmann, Ulrich; Sauer, Udo; Dressler, Katharina; Triefenbach, Nico; Arba Mosquera, Samuel

    2010-03-01

    The purpose of this work was to evaluate the extent that minimisation of the thermal load of the ablation in high-speed laser corneal refractive surgery is possible. To do this, thermal load from ablations onto flat PMMA plates was recorded with an infrared thermal camera and analysed for different flying-spot sorting algorithms (from pure randomised to 36 Hz local frequency) using a 500 Hz laser system with a fluence of 500 mJ/cm2, and aspheric ablation profiles. Each ablation configuration was repeated three times. Thermal load valid for corneal ablations was modelled based upon the results from ablations onto flat PMMA plates. It was found that the thermal load of ablations onto flat PMMA plates declines steadily when the allowed local frequency decreases or when the diameter of the blocked area increases. With this laser system, a local frequency of 39 Hz dynamically controlled over a diameter of 3.865 mm seems to be optimal for avoiding corneal collagen denaturation with minimum compromise on treatment duration. Peak temperature changes of 48°C in PMMA (16°C equivalent cornea) using pure randomised flying-spot sorting algorithms were reduced to 27°C in PMMA (9°C equivalent cornea) using 36 Hz local frequency over a blocked diameter of 4.25 mm. Average temperature changes of 15°C in PMMA (5°C equivalent cornea) using pure randomised flying-spot sorting algorithms were reduced to 7°C in PMMA (2°C equivalent cornea) using 36 Hz local frequency over a blocked diameter of 4.25 mm. Hence, minimisation of the thermal load of the ablation in high-speed laser corneal refractive surgery seems feasible using 'Intelligent Thermal Effect Control'. Clinical evaluations of human eyes are needed to confirm the preliminary simulated results presented here.

  17. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?

    Science.gov (United States)

    Hastings, Gareth D; Marsack, Jason D; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A

    2017-05-01

    To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ± S.D. was -0.06 ± 0.04 with both refractions; dilated was -0.05 ± 0.04 with the objective, and -0.05 ± 0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred

  18. High accuracy of family history of melanoma in Danish melanoma cases

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-01-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor...... but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma...... probands who reported 199 cases of melanoma in relatives, of which 135 cases where in first degree relatives. We confirmed the diagnosis of melanoma in 77% of all relatives, and in 83% of first degree relatives. In 181 probands we validated the negative family history of melanoma in 748 first degree...

  19. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  20. Arithmetic Accuracy in Children From High- and Low-Income Schools

    Directory of Open Access Journals (Sweden)

    Elida V. Laski

    2016-04-01

    Full Text Available This study investigated income group differences in kindergartners’ and first graders’ (N = 161 arithmetic by examining the link between accuracy and strategy use on simple and complex addition problems. Low-income children were substantially less accurate than high-income children, in terms of both percentage of correctly solved problems and the magnitude of errors, with low-income first graders being less accurate than high-income kindergartners. Higher-income children were more likely to use sophisticated mental strategies than their lower-income peers, who used predominantly inefficient counting or inappropriate strategies. Importantly, this difference in strategies mediated the relation between income group and addition. Examining underlying strategies has implications for understanding income group differences in arithmetic and potential means of remedying it via instruction.

  1. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  2. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  3. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    Science.gov (United States)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  4. Initial development of high-accuracy CFRP panel for DATE5 antenna

    Science.gov (United States)

    Qian, Yuan; Lou, Zheng; Hao, Xufeng; Zhu, Jing; Cheng, Jingquan; Wang, Hairen; Zuo, Yingxi; Yang, Ji

    2016-07-01

    DATE5 antenna, which is a 5m telescope for terahertz exploration, will be sited at Dome A, Antarctica. It is necessary to keep high surface accuracy of the primary reflector panels so that high observing efficiency can be achieved. In antenna field, carbon fiber reinforced composite (CFRP) sandwich panels are widely used as these panels are light in weight, high in strength, low in thermal expansion, and cheap in mass fabrication. In DATE5 project, CFRP panels are important panel candidates. In the design study phase, a CFRP prototype panel of 1-meter size is initially developed for the verification purpose. This paper introduces the material arrangement in the sandwich panel, measured performance of this testing sandwich structure samples, and together with the panel forming process. For anti-icing in the South Pole region, a special CFRP heating film is embedded in the front skin of sandwich panel. The properties of some types of basic building materials are tested. Base on the results, the deformation of prototype panel with different sandwich structures and skin layers are simulated and a best structural concept is selected. The panel mold used is a high accuracy one with a surface rms error of 1.4 μm. Prototype panels are replicated from the mold. Room temperature curing resin is used to reduce the thermal deformation in the resin transfer process. In the curing, vacuum negative pressure technology is also used to increase the volume content of carbon fiber. After the measurement of the three coordinate measure machine (CMM), a prototype CFRP panel of 5.1 μm rms surface error is developed initially.

  5. Linkage analysis of quantitative refraction and refractive errors in the Beaver Dam Eye Study.

    Science.gov (United States)

    Klein, Alison P; Duggal, Priya; Lee, Kristine E; Cheng, Ching-Yu; Klein, Ronald; Bailey-Wilson, Joan E; Klein, Barbara E K

    2011-07-13

    Refraction, as measured by spherical equivalent, is the need for an external lens to focus images on the retina. While genetic factors play an important role in the development of refractive errors, few susceptibility genes have been identified. However, several regions of linkage have been reported for myopia (2q, 4q, 7q, 12q, 17q, 18p, 22q, and Xq) and for quantitative refraction (1p, 3q, 4q, 7p, 8p, and 11p). To replicate previously identified linkage peaks and to identify novel loci that influence quantitative refraction and refractive errors, linkage analysis of spherical equivalent, myopia, and hyperopia in the Beaver Dam Eye Study was performed. Nonparametric, sibling-pair, genome-wide linkage analyses of refraction (spherical equivalent adjusted for age, education, and nuclear sclerosis), myopia and hyperopia in 834 sibling pairs within 486 extended pedigrees were performed. Suggestive evidence of linkage was found for hyperopia on chromosome 3, region q26 (empiric P = 5.34 × 10(-4)), a region that had shown significant genome-wide evidence of linkage to refraction and some evidence of linkage to hyperopia. In addition, the analysis replicated previously reported genome-wide significant linkages to 22q11 of adjusted refraction and myopia (empiric P = 4.43 × 10(-3) and 1.48 × 10(-3), respectively) and to 7p15 of refraction (empiric P = 9.43 × 10(-4)). Evidence was also found of linkage to refraction on 7q36 (empiric P = 2.32 × 10(-3)), a region previously linked to high myopia. The findings provide further evidence that genes controlling refractive errors are located on 3q26, 7p15, 7p36, and 22q11.

  6. Usability and accuracy of high-resolution detectors for daily quality assurance for robotic radiosurgery

    Directory of Open Access Journals (Sweden)

    Loutfi-Krauss Britta

    2017-09-01

    Full Text Available For daily CyberKnife QA a Winston-Lutz-Test (Automated-Quality-Assurance, AQA is used to determine sub-millimeter deviations in beam delivery accuracy. This test is performed using gafchromic film, an extensive and user-dependent method requiring the use of disposables. We therefore analyzed the usability and accuracy of high-resolution detector arrays. We analyzed a liquid-filled ionization-chamber array (Octavius 1000SRS, PTW, Germany, which has a central resolution of 2.5mm. To test sufficient sensitivity, beam profiles with robot shifts of 0.1mm along the arrays' axes were measured. The detected deviation between the shifted and central profile were compared to the real robot's position. We then compared the results to the SRS-Profiler (SunNuclear, USA with 4.0mm resolution and to the Nonius (QUART, Germany, a single-line diode detector with 2.8mm resolution. Finally, AQA variance and usability were analyzed performing a number of AQA tests over time, which required the use of specially designed fixtures for each array, and the results were compared to film. Concerning sensitivity, the 1000SRS detected the beam profile shifts with a maximum difference of 0.11mm (mean deviation = 0.03mm compared to the actual robot shift. The Nonius and SRS-Profiler showed differences of up to 0.15mm and 0.69mm with mean deviation of 0.05mm and 0.18mm, respectively. Analyzing the variation of AQA results over time, the 1000SRS showed a comparable standard deviation to film (0.26mm vs. 0.18mm. The SRS-Profiler and the Nonius showed a standard deviation of 0.16mm and 0.24mm, respectively. The 1000SRS seems to provide equivalent accuracy and sensitivity to the gold standard film when performing daily AQA tests. Compared to other detectors in our study the sensitivity as well as the accuracy of the 1000SRS appears to be superior and more user-friendly. Furthermore, no significant modification of the standard AQA procedure is required when introducing 1000SRS for

  7. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  8. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  9. Accuracy of the high-throughput amplicon sequencing to identify species within the genus Aspergillus.

    Science.gov (United States)

    Lee, Seungeun; Yamamoto, Naomichi

    2015-12-01

    This study characterized the accuracy of high-throughput amplicon sequencing to identify species within the genus Aspergillus. To this end, we sequenced the internal transcribed spacer 1 (ITS1), β-tubulin (BenA), and calmodulin (CaM) gene encoding sequences as DNA markers from eight reference Aspergillus strains with known identities using 300-bp sequencing on the Illumina MiSeq platform, and compared them with the BLASTn outputs. The identifications with the sequences longer than 250 bp were accurate at the section rank, with some ambiguities observed at the species rank due to mostly cross detection of sibling species. Additionally, in silico analysis was performed to predict the identification accuracy for all species in the genus Aspergillus, where 107, 210, and 187 species were predicted to be identifiable down to the species rank based on ITS1, BenA, and CaM, respectively. Finally, air filter samples were analysed to quantify the relative abundances of Aspergillus species in outdoor air. The results were reproducible across biological duplicates both at the species and section ranks, but not strongly correlated between ITS1 and BenA, suggesting the Aspergillus detection can be taxonomically biased depending on the selection of the DNA markers and/or primers.

  10. Real-Time and High-Accuracy Arctangent Computation Using CORDIC and Fast Magnitude Estimation

    Directory of Open Access Journals (Sweden)

    Luca Pilato

    2017-03-01

    Full Text Available This paper presents an improved VLSI (Very Large Scale of Integration architecture for real-time and high-accuracy computation of trigonometric functions with fixed-point arithmetic, particularly arctangent using CORDIC (Coordinate Rotation Digital Computer and fast magnitude estimation. The standard CORDIC implementation suffers of a loss of accuracy when the magnitude of the input vector becomes small. Using a fast magnitude estimator before running the standard algorithm, a pre-processing magnification is implemented, shifting the input coordinates by a proper factor. The entire architecture does not use a multiplier, it uses only shift and add primitives as the original CORDIC, and it does not change the data path precision of the CORDIC core. A bit-true case study is presented showing a reduction of the maximum phase error from 414 LSB (angle error of 0.6355 rad to 4 LSB (angle error of 0.0061 rad, with small overheads of complexity and speed. Implementation of the new architecture in 0.18 µm CMOS technology allows for real-time and low-power processing of CORDIC and arctangent, which are key functions in many embedded DSP systems. The proposed macrocell has been verified by integration in a system-on-chip, called SENSASIP (Sensor Application Specific Instruction-set Processor, for position sensor signal processing in automotive measurement applications.

  11. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  12. Combined Scintigraphy and Tumor Marker Analysis Predicts Unfavorable Histopathology of Neuroblastic Tumors with High Accuracy.

    Directory of Open Access Journals (Sweden)

    Wolfgang Peter Fendler

    Full Text Available Our aim was to improve the prediction of unfavorable histopathology (UH in neuroblastic tumors through combined imaging and biochemical parameters.123I-MIBG SPECT and MRI was performed before surgical resection or biopsy in 47 consecutive pediatric patients with neuroblastic tumor. Semi-quantitative tumor-to-liver count-rate ratio (TLCRR, MRI tumor size and margins, urine catecholamine and NSE blood levels of neuron specific enolase (NSE were recorded. Accuracy of single and combined variables for prediction of UH was tested by ROC analysis with Bonferroni correction.34 of 47 patients had UH based on the International Neuroblastoma Pathology Classification (INPC. TLCRR and serum NSE both predicted UH with moderate accuracy. Optimal cut-off for TLCRR was 2.0, resulting in 68% sensitivity and 100% specificity (AUC-ROC 0.86, p < 0.001. Optimal cut-off for NSE was 25.8 ng/ml, resulting in 74% sensitivity and 85% specificity (AUC-ROC 0.81, p = 0.001. Combination of TLCRR/NSE criteria reduced false negative findings from 11/9 to only five, with improved sensitivity and specificity of 85% (AUC-ROC 0.85, p < 0.001.Strong 123I-MIBG uptake and high serum level of NSE were each predictive of UH. Combined analysis of both parameters improved the prediction of UH in patients with neuroblastic tumor. MRI parameters and urine catecholamine levels did not predict UH.

  13. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    KIKUCHI; Fuyuhiko; KAMATA; Shun’ichi; MATSUMOTO; Koji; HANADA; Hideo

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar,which were two small satellites of Japanese lunar mission,SELENE,were successfully performed by using Shanghai and Urumqi 25-m telescopes. When the separation angle between Rstar and Vstar was less than 0.1 deg,the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms,which was reduced by 1-2 order compared with the former VLBI results. When the separation angle was less than 0.56 deg,the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed,and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft,and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  14. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    LIU QingHui; PING JingSong; FAN QingYuan; XIA Bo; AN Tao; QIAN ZhiHan; YANG WenJun; ZHANG Hua; WANG Zhen; WANG Na; SHI Xian; KIKUCHI Fuyuhiko; HUANG Qian; KAMATA Shun'ichi; MATSUMOTO Koji; HANADA Hideo; HONG XiaoYu; YU AiLi

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar, which were two small satellites of Japanese lunar mission, SELENE, were successfully performed by using Shanghai and Urumqi 25-m telescopes.When the separation angle between Rstar and Vstar was less than 0.1 deg, the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms, which was reduced by 1-2 order compared with the former VLBI results.When the separation angle was less than 0.56 deg, the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed, and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft, and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  15. Reducing Systematic Centroid Errors Induced by Fiber Optic Faceplates in Intensified High-Accuracy Star Trackers

    Science.gov (United States)

    Xiong, Kun; Jiang, Jie

    2015-01-01

    Compared with traditional star trackers, intensified high-accuracy star trackers equipped with an image intensifier exhibit overwhelmingly superior dynamic performance. However, the multiple-fiber-optic faceplate structure in the image intensifier complicates the optoelectronic detecting system of star trackers and may cause considerable systematic centroid errors and poor attitude accuracy. All the sources of systematic centroid errors related to fiber optic faceplates (FOFPs) throughout the detection process of the optoelectronic system were analyzed. Based on the general expression of the systematic centroid error deduced in the frequency domain and the FOFP modulation transfer function, an accurate expression that described the systematic centroid error of FOFPs was obtained. Furthermore, reduction of the systematic error between the optical lens and the input FOFP of the intensifier, the one among multiple FOFPs and the one between the output FOFP of the intensifier and the imaging chip of the detecting system were discussed. Two important parametric constraints were acquired from the analysis. The correctness of the analysis on the optoelectronic detecting system was demonstrated through simulation and experiment. PMID:26016920

  16. Swing arm profilometer: high accuracy testing for large reaction-bonded silicon carbide optics with a capacitive probe

    Science.gov (United States)

    Xiong, Ling; Luo, Xiao; Hu, Hai-xiang; Zhang, Zhi-yu; Zhang, Feng; Zheng, Li-gong; Zhang, Xue-jun

    2017-08-01

    A feasible way to improve the manufacturing efficiency of large reaction-bonded silicon carbide optics is to increase the processing accuracy in the ground stage before polishing, which requires high accuracy metrology. A swing arm profilometer (SAP) has been used to measure large optics during the ground stage. A method has been developed for improving the measurement accuracy of SAP using a capacitive probe and implementing calibrations. The experimental result compared with the interferometer test shows the accuracy of 0.068 μm in root-mean-square (RMS) and maps in 37 low-order Zernike terms show accuracy of 0.048 μm RMS, which shows a powerful capability to provide a major input in high-precision grinding.

  17. [Diagnostic accuracy of the immersion high-frequency B-scan ultrasonography in chemical injured eyes].

    Science.gov (United States)

    Yang, Qinghua; Chen, Bing; Wang, Liqiang; Li, Zhaohui; Huang, Yifei

    2014-08-01

    To investigate the diagnostic accuracy of the immersion high-frequency B-scan ultrasonography, a noninvasive preoperative diagnosis method, in observing the anterior segment in chemical injured eyes. It was a retrospective study. Sixty-three ocular chemical injury patients (63 eyes), who accepted the keratoplasty or the artificial cornea transplant in PLA General Hospital from May 2011 to May 2013, were included in this study. All the injured eyes were examined by ultrasound bio-microscopy (UBM) and immersion high-frequency B-scan ultrasonography, respectively. The images were analyzed and the results were compared with the intraoperative findings. The observation of lens was the main parameter. All the 63 patients were examined with the UBM and the immersion high-frequency B-scan ultrasonography before the surgery. The findings of the cornea, anterior chamber angle, iris from UBM were consistent with those from the immersion high-frequency B-scan ultrasonography. As for the lens observation, in 32 eyes in which the lens were not detected by UBM, the lens were not detected in only 16 eyes, while 3 eyes with normal lens and 13 eyes with lens pacifications (1 eye with pyknotic lens) by immersion high-frequency B-scan ultrasonography. In 17 eyes in which the lens were found normal by UBM, there were only 14 eyes with normal lens and the rest 3 eyes' lens were found intumescent by immersion high-frequency B-scan ultrasonography. In 6 eyes in which lens were detected with suspicious by UBM, 2 eyes' lens were pyknotic and 4 eyes' lens were intumescent or clouded by immersion high-frequency B-scan ultrasonography. The findings of immersion high-frequency B-scan ultrasonography were highly consistent with the intraoperative findings. The lens could be observed accurately by immersion high-frequency B-scan ultrasonography in chemical injured eyes.

  18. High-accuracy infra-red thermography method using reflective marker arrays

    Science.gov (United States)

    Kirollos, Benjamin; Povey, Thomas

    2017-09-01

    In this paper, we describe a new method for high-accuracy infra-red (IR) thermography measurements in situations with significant spatial variation in reflected radiation from the surroundings, or significant spatial variation in surface emissivity due to viewing angle non-uniformity across the field of view. The method employs a reflective marker array (RMA) on the target surface—typically, high emissivity circular dots—and an integrated image analysis algorithm designed to require minimal human input. The new technique has two particular advantages which make it suited to high-accuracy measurements in demanding environments: (i) it allows the reflected radiation component to be calculated directly, in situ, and as a function of position, overcoming a key problem in measurement environments with non-uniform and unsteady stray radiation from the surroundings; (ii) using image analysis of the marker array (via apparent aspect ratio of the circular reflective markers), the local viewing angle of the target surface can be estimated, allowing corrections for angular variation of local emissivity to be performed without prior knowledge of the geometry. A third advantage of the technique is that allows for simple focus-stacking algorithms due to increased image entropy. The reflective marker array method is demonstrated for an isothermal, hemispherical object exposed to an external IR source arranged to give a significant non-uniform reflected radiation term. This is an example of a challenging environment, both because of the significant non-uniform reflected radiation term, and also the significant variation in target emissivity due to surface angle variation. We demonstrate that the new RMA IR technique leads to significantly lower error in evaluated surface temperature than conventional IR techniques. The method is applicable to any complex radiative environment.

  19. Design and calibration of a high-sensitivity and high-accuracy polarimeter based on liquid crystal variable retarders

    Science.gov (United States)

    Guo, Jing; Ren, De-Qing; Liu, Cheng-Chao; Zhu, Yong-Tian; Dou, Jiang-Pei; Zhang, Xi; Beck, Christian

    2017-01-01

    Polarimetry plays an important role in the measurement of solar magnetic fields. We developed a high-sensitivity and high-accuracy polarimeter (HHP) based on nematic liquid crystal variable retarders (LCVRs), which has a compact setup and no mechanical moving parts. The system design and calibration methods are discussed in detail. The azimuth error of the transmission axis of the polarizer as well as the fast axes of the two LCVRs and the quarter-wave plate were determined using dedicated procedures. Linearly and circularly polarized light were employed to evaluate the performance of the HHP. The experimental results indicate that a polarimetric sensitivity of better than \\[5.7 × {10 - 3}\\] can be achieved by using a single short-exposure image, while an accuracy on the order of 10‑5 can be reached by using a large number of short-exposure images. This makes the HHP a high-performance system that can be used with a ground-based solar telescope for high-precision solar magnetic field investigations.

  20. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  1. Uncorrected and Corrected Distance Visual Acuity, Predictability, Efficacy, and Safety after Femtosecond Laser in Situ Keratomileusis (FS-LASIK) and Refractive Lenticule extraction (ReLEx) for Moderate and High Myopia

    DEFF Research Database (Denmark)

    Vestergaard, Anders; Justesen, Birgitte Larsen; Melsen, Charlotte

    of Ophthalmology, Odense University Hospital, Denmark. Purpose: ReLEx is a relative new corneal refractive procedure, where a stromal lenticule is cut by a femtosecond laser and manually extracted. The purpose of this study was to compare uncorrected and corrected distance visual acuity (UDVA and CDVA), refractive......Title: Uncorrected and Corrected Distance Visual Acuity, Predictability, Efficacy, and Safety after Femtosecond Laser in Situ Keratomileusis (FS-LASIK) and Refractive Lenticule extraction (ReLEx) for Moderate and High Myopia. Vestergaard A., Justesen B., Melsen C., Lyhne N., Department...... and ReLEx treatments were made with a VisuMax® femto-second laser (Carl Zeiss-Meditec, Jena, Germany). In FS-LASIK, the photoablation was performed with a MEL-80 flying spot excimer laser (Carl Zeiss-Meditec, Jena, Germany). In ReLEx, lenticule diameter was 6.50 mm, whereas the FS-LASIK ablation zone...

  2. Very Low Power, Low Voltage, High Accuracy, and High Performance Current Mirror

    Institute of Scientific and Technical Information of China (English)

    Hassan Faraji Baghtash; Khalil Monfaredi; Ahmad Ayatollahi

    2011-01-01

    A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed.In this circuit,the gain boosting regulated cascode scheme is used to improve the output resistance,while using inverter as an amplifier.The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given,which verify the high performance of the proposed structure.Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ.The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of vin,min~ 0.24 V) and an output (the minimum output voltage of vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current.The current copy error is near zero at the input current of 27 μA.It consumes only 76 μW and introduces a very low output offset current of 50 pA.

  3. Simultaneous Phacoemulsification and Graft Refractive Surgery in Penetrating Keratoplasty Eyes

    Science.gov (United States)

    Feizi, Sepehr; Zare, Mohammad; Einollahi, Bahram

    2011-01-01

    Purpose. To report outcomes of graft refractive surgery (GRS) along with clear-cornea phacoemulsification and intraocular lens (IOL) implantation in penetrating keratoplasty (PKP) eyes. Methods. Fourteen eyes of 13 patients who had received PKP underwent simultaneous GRS (relaxing incisions with or without counter-quadrant compression sutures) and clear-cornea phacoemulsification with IOL implantation. To calculate IOL power, preoperative keratometry readings and the SRK-T formula were used. Results. Mean patient age and follow-up period were 50.5 ± 14.4 years and 14.6 ± 7.1 months, respectively. A significant increase was observed in best spectacle-corrected visual acuity (from 0.55 ± 0.18 logMAR to 0.33 ± 0.18 logMAR, P = 0.001). There was a significant decrease in vector keratometric astigmatism by 6.22 D (P = 0.03). Spherical equivalent refraction was reduced from −3.31 ± 3.96 D to −1.69 ± 2.38 D (P = 0.02) which did not significantly differ from the target refraction (−0.76 ± 0.14 D, P = 0.20). No complications developed and all the grafts remained clear at the final examination. Conclusion. Simultaneous phacoemulsification and GRS is a safe and effective method to address post-PKP astigmatism and lens opacity. IOL power can be calculated from preoperative keratometry readings with an acceptable accuracy. However, patients should be informed about the possibility of high refractive errors postoperatively. PMID:24527227

  4. ADFE METHOD WITH HIGH ACCURACY FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    崔霞

    2002-01-01

    Alternating direction finite element (ADFE) scheme for d-dimensional nonlinear system of parabolic integro-differential equations is studied. By using a local approximation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coefficients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence properties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2norm space estimates and O((△t)2) estimate for time variant are obtained.

  5. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space

    Science.gov (United States)

    Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; Nicol, P.; Kirschstein, S.; Hennig, T.; Engel, W.; Frerick, J.; Nieke, J.

    2010-10-01

    SLSTR is a high accuracy infrared radiometer which will be embarked in the Earth low-orbit Sentinel 3 operational GMES mission. SLSTR is an improved version of the previous AATSR and ATSR-1/2 instruments which have flown respectively on Envisat and ERS-1/2 ESA missions. SLSTR will provide data continuity with respect to these previous missions but with a substantial improvement due to its higher swaths (750 km in dual view and 1400 km in single view) which should permit global coverage of SST and LST measurements (at 1 km of spatial resolution in IR channels) with daily revisit time, useful for climatological and meteorological applications. Two more SWIR channels and a higher spatial resolution in the VIS/SWIR channels (0.5 km) are also implemented for a better clouds/aerosols screening. Two further additional channels for global scale fire monitoring are present at the same time as the other nominal channels.

  6. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-03-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibrations of tested transformers have attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and Standard Trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Labview software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  7. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-05-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibration of tested transformers has attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and standard trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Lab view software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  8. High-Accuracy Programmable Timing Generator with Wide-Range Tuning Capability

    Directory of Open Access Journals (Sweden)

    Ting-Li Chu

    2013-01-01

    Full Text Available In this paper, a high-accuracy programmable timing generator with wide-range tuning capability is proposed. With the aid of dual delay-locked loop (DLL, both of the coarse- and fine-tuning mechanisms are operated in precise closed-loop scheme to lessen the effects of the ambient variations. The timing generator can provide sub-gate resolution and instantaneous switching capability. The circuit is implemented and simulated in TSMC 0.18 μm 1P6M technology. The test chip area occupies 1.9 mm2. The reference clock cycle can be divided into 128 bins by interpolation to obtain 14 ps resolution with the clock rate at 550 MHz. The INL and DNL are within −0.21~+0.78 and −0.27~+0.43 LSB, respectively.

  9. Well-posedness of the difference schemes of the high order of accuracy for elliptic equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available It is well known the differential equation − u ″ ( t +Au( t =f( t ( −∞high order of accuracy two-step difference schemes generated by an exact difference scheme or by Taylor's decomposition on three points for the approximate solutions of this differential equation. The well-posedness of these difference schemes in the difference analogy of the smooth functions is obtained. The exact almost coercive inequality for solutions in C( τ,E of these difference schemes is established.

  10. High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon.

    Science.gov (United States)

    Häffner, H; Beier, T; Hermanspahn, N; Kluge, H J; Quint, W; Stahl, S; Verdú, J; Werth, G

    2000-12-18

    We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g(exp) = 2.001 041 596 (5). This is the most precise determination of an atomic g(J) factor so far. The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. The current theoretical value amounts to g(th) = 2.001 041 591 (7). Together experiment and theory test the bound-state QED contributions to the g(J) factor of a bound electron to a precision of 1%.

  11. Computer-aided diagnosis of breast MRI with high accuracy optical flow estimation

    Science.gov (United States)

    Meyer-Baese, Anke; Barbu, Adrian; Lobbes, Marc; Hoffmann, Sebastian; Burgeth, Bernhard; Kleefeld, Andreas; Meyer-Bäse, Uwe

    2015-05-01

    Non-mass enhancing lesions represent a challenge for the radiological reading. They are not well-defined in both morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection and classification. To enhance the discriminative properties of an automated radiological workflow, the correct preprocessing steps need to be taken. In an usual computer-aided diagnosis (CAD) system, motion compensation plays an important role. To this end, we employ a new high accuracy optical flow based motion compensation algorithm with robustification variants. An automated computer-aided diagnosis system evaluates the atypical behavior of these lesions, and additionally considers the impact of non-rigid motion compensation on a correct diagnosis.

  12. High Accuracy Speed-fed Grating Angular Acceleration Measurement System Based on FPGA

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2012-09-01

    Full Text Available Shaft angular acceleration is one of the most important parameter of rotary machines, the error of angular acceleration increased when the shaft speed up. For this problem, a new high accuracy angular acceleration measurement system is presented, the principle of measurement is self-regulating the period of speed sampling signal according to the proportion of the shaft speed up. This measurement system combined FPGA and SCM, the speed of shaft is received by the timer of SCM responding the interrupts of FPGA, and then set the parameter of frequency divider in FPGA, so as to make the period of speed sampling consistent with the proportion of the speed up. This measurement system could overcome the error when system speed up according to the experiment.

  13. High Accuracy Reference Network (HARN), Published in 2000, 1:600 (1in=50ft) scale, Brown County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of 2000....

  14. Nonlinear Negative Refraction by Difference Frequency Generation

    CERN Document Server

    Cao, Jianjun; Feng, Yaming; Wan, Wenjie

    2015-01-01

    Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here we demonstrate theoretically and experimentally a new scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin BBO slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.

  15. Nonlinear negative refraction by difference frequency generation

    Science.gov (United States)

    Cao, Jianjun; Shen, Dongyi; Feng, Yaming; Wan, Wenjie

    2016-05-01

    Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here, we demonstrate theoretically and experimentally a scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin Beta barium borate slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.

  16. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.

    Science.gov (United States)

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils.

  17. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  18. TECHNOLOGICAL PROVISION OF ACCURACY AND QUALITY PARAMETERS OF INTRICATE PROFILE PARTS AT HIGH-SPEED MULTI-COORDINATE MACHINING

    Directory of Open Access Journals (Sweden)

    V. K. Sheleg

    2009-01-01

    Full Text Available The paper considers requirements to CAM-systems for provision of high-speed multi-coordinate milling, principles of generation and recommendations on trajectory programming for high-speed machining, influence of vibration and balancing of the technological system on parameters of  the machining accuracy, characteristics of a cutting tool, types of tool coatings that is rather actual for improvement of accuracy and quality of intricate profile parts.

  19. Reflective and refractive objects for mixed reality.

    Science.gov (United States)

    Knecht, Martin; Traxler, Christoph; Winklhofer, Christoph; Wimmer, Michael

    2013-04-01

    In this paper, we present a novel rendering method which integrates reflective or refractive objects into a differential instant radiosity (DIR) framework usable for mixed-reality (MR) applications. This kind of objects are very special from the light interaction point of view, as they reflect and refract incident rays. Therefore they may cause high-frequency lighting effects known as caustics. Using instant-radiosity (IR) methods to approximate these high-frequency lighting effects would require a large amount of virtual point lights (VPLs) and is therefore not desirable due to real-time constraints. Instead, our approach combines differential instant radiosity with three other methods. One method handles more accurate reflections compared to simple cubemaps by using impostors. Another method is able to calculate two refractions in real-time, and the third method uses small quads to create caustic effects. Our proposed method replaces parts in light paths that belong to reflective or refractive objects using these three methods and thus tightly integrates into DIR. In contrast to previous methods which introduce reflective or refractive objects into MR scenarios, our method produces caustics that also emit additional indirect light. The method runs at real-time frame rates, and the results show that reflective and refractive objects with caustics improve the overall impression for MR scenarios.

  20. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

    Science.gov (United States)

    Skrotzki, Julian; Habig, Jan Christoph; Ebert, Volker

    2014-08-01

    The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg-Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of TDLAS hygrometry at the aerosol and cloud chamber aerosol interactions and dynamics in the atmosphere (AIDA)—a unique large-scale facility to study atmospheric processes. The robustness of the AI fitting algorithm has been validated for typical AIDA conditions encompassing strong transmission fluctuations

  1. Improved photomask accuracy with a high-productivity DUV laser pattern generator

    Science.gov (United States)

    Öström, Thomas; Måhlén, Jonas; Karawajczyk, Andrzej; Rosling, Mats; Carlqvist, Per; Askebjer, Per; Karlin, Tord; Sallander, Jesper; Österberg, Anders

    2006-10-01

    A strategy for sub-100 nm technology nodes is to maximize the use of high-speed deep-UV laser pattern generators, reserving e-beam tools for the most critical photomask layers. With a 248 nm excimer laser and 0.82 NA projection optics, the Sigma7500 increases the application space of laser pattern generators. A programmable spatial light modulator (SLM) is imaged with partially coherent optics to compose the photomask pattern. Image profiles are enhanced with phase shifting in the pattern generator, and features below 200 nm are reliably printed. The Sigma7500 extends the SLM-based architecture with improvements to CD uniformity and placement accuracy, resulting from an error budget-based methodology. Among these improvements is a stiffer focus stage design with digital servos, resulting in improved focus stability. Tighter climate controls and improved dose control reduce drift during mask patterning. As a result, global composite CD uniformity below 5 nm (3σ) has been demonstrated, with placement accuracy below 10 nm (3σ) across the mask. Self-calibration methods are used to optimize and monitor system performance, reducing the need to print test plates. The SLM calibration camera views programmed test patterns, making it possible to evaluate image metrics such as CD uniformity and line edge roughness. The camera is also used to characterize image placement over the optical field. A feature called ProcessEqualizer TM has been developed to correct long-range CD errors arising from process effects on production photomasks. Mask data is sized in real time to compensate for pattern-dependent errors related to local pattern density, as well as for systematic pattern-independent errors such as radial CD signatures. Corrections are made in the pixel domain in the advanced adjustments processor, which also performs global biasing, stamp distortion compensation, and corner enhancement. In the Sigma7500, the mask pattern is imaged with full edge addressability in each

  2. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  3. High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.

    Directory of Open Access Journals (Sweden)

    Olivier Marre

    2015-07-01

    Full Text Available Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.

  4. Software for teaching refraction of light with the semicircle

    Science.gov (United States)

    Mihas, Pavlos

    2016-11-01

    Software is presented for teaching elementary optics using a transparent semicircle. We demonstrate the use of the semicircle to investigate Snell’s lawand students can are presented with the difficulties involved in experiments. An Excel spreadsheet can show to students that small errors in positioning of the semicircle can result in a non-constant index of refraction. Students can study the effect of changing some of the parameters of placement of a semicircle on the accuracy of the experimental results. They can see from the analysis of data that much better results are obtained by doing regression analysis rather than by just taking the average value of the index of refraction. Measuring the critical angle also gives a method of calculating the index of refraction. Another way to measure the index of refraction is the use of the semicircle as a lens and from its focal length we can deduce the index of refraction.

  5. Refractivity estimations from an angle-of-arrival spectrum

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiao-Feng; Huang Si-Xun

    2011-01-01

    This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is simulated by the ray optics model and refractivity is expressed in the presence of an ideal tri-linear profile. The estimation of the refractivity is organized as an optimization problem and a genetic algorithm is used to search for the optimal solution from various trial refractivity profiles. Theoretical analysis demonstrates the feasibility of this method to retrieve the refractivity parameters. Simulation results indicate that this approach has a fair anti-noise ability and its accuracy performance is mainly dependent on the antenna aperture size and its positions.

  6. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  7. Structure of a Highly Active Cephalopod S-crystallin Mutant: New Molecular Evidence for Evolution from an Active Enzyme into Lens-Refractive Protein

    OpenAIRE

    Wei-Hung Tan; Shu-Chun Cheng; Yu-Tung Liu; Cheng-Guo Wu; Min-Han Lin; Chiao-Che Chen; Chao-Hsiung Lin; Chi-Yuan Chou

    2016-01-01

    Crystallins are found widely in animal lenses and have important functions due to their refractive properties. In the coleoid cephalopods, a lens with a graded refractive index provides good vision and is required for survival. Cephalopod S-crystallin is thought to have evolved from glutathione S-transferase (GST) with various homologs differentially expressed in the lens. However, there is no direct structural information that helps to delineate the mechanisms by which S-crystallin could hav...

  8. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-04-01

    Full Text Available Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a nonparametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM. The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.

  9. Refraction corrections for surveying

    Science.gov (United States)

    Lear, W. M.

    1980-01-01

    Optical measurements of range and elevation angles are distorted by refraction of Earth's atmosphere. Theoretical discussion of effect, along with equations for determining exact range and elevation corrections, is presented in report. Potentially useful in optical site surveying and related applications, analysis is easily programmed on pocket calculator. Input to equation is measured range and measured elevation; output is true range and true elevation.

  10. Conceptualization of Light Refraction

    Science.gov (United States)

    Sokolowski, Andrzej

    2013-01-01

    There have been a number of papers dealing quantitatively with light refraction. Yet the conceptualization of the phenomenon that sets the foundation for a more rigorous math analysis is minimized. The purpose of this paper is to fill that gap. (Contains 3 figures.)

  11. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    A refractive index based measurement of a property of a fluid is measured in an apparatus comprising a variable wavelength coherent light source (16), a sample chamber (12), a wavelength controller (24), a light sensor (20), a data recorder (26) and a computation apparatus (28), by - directing...

  12. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    In a method for performing a refractive index based measurement of a property of a fluid such as chemical composition or temperature by observing an apparent angular shift in an interference fringe pattern produced by back or forward scattering interferometry, ambiguities in the measurement caused...

  13. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    In a method for performing a refractive index based measurement of a property of a fluid such as chemical composition or temperature, a chirp in the local spatial frequency of interference fringes of an interference pattern is reduced by mathematical manipulation of the recorded light intensity...

  14. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D. [St. Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); DeJong, Pim A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Loeve, Martine; Tiddens, Harm A.W.M. [Erasmus MC-Sophia Children' s Hospital, Department of Radiology, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); McKone, Edward; Gallagher, Charles G. [St. Vincent' s University Hospital, Department of Respiratory Medicine and National Referral Centre for Adult Cystic Fibrosis, Dublin (Ireland)

    2012-12-15

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R{sup 2} = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  15. Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance.

    Directory of Open Access Journals (Sweden)

    Sophie Marchal

    Full Text Available Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

  16. High accuracy jog CD control on OPC pattern by advanced laser writer Sigma7500

    Science.gov (United States)

    Chin, Tomas; Wu, Wen-Bin; Shih, Chiang-Lin

    2008-10-01

    With the progress of mask writer technology, 50 KV electron beam writers always perform with better pattern fidelity and critical dimension (CD) control than traditional laser raster-scan writers because laser spot size is confined by the laser longer wavelength relative to electron beam. As far as Optical Proximity Correction (OPC) pattern fidelity is concerned, critical masks with OPC process have to choose Variable-Shape-Beam (VSB) electron beam writer presently. However, the over-aggressive OPC fragmentation induces data volume abrupt explosion, longer writing time, higher mask cost and even mask quality degradation 1. Micronic Sigma7500 laser writer introduces a novel imaging system combining partial coherent light and DUV spatial light modulation (SLM) to generate a high-quality pattern image 2. The benefit of raster-scan laser writer is high throughput with consistent writing time regardless of pattern geometry, complexity and data size. However, pattern CD accuracy still needs improvement. This study is to evaluate jog CD control capability of Sigma7500 on OPC typical line-and-space test patterns with different orientations of 0°, 90°, 45° and 135°. In addition, mask CD uniformity and OPC jog height linearity will also be demonstrated.

  17. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    Science.gov (United States)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  18. High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride

    Science.gov (United States)

    Faraji, Somayeh; Ghasemi, S. Alireza; Rostami, Samare; Rasoulkhani, Robabe; Schaefer, Bastian; Goedecker, Stefan; Amsler, Maximilian

    2017-03-01

    We investigate the accuracy and transferability of a recently developed high-dimensional neural network (NN) method for calcium fluoride, fitted to a database of ab initio density functional theory (DFT) calculations based on the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional. We call the method charge equilibration via neural network technique (CENT). Although the fitting database contains only clusters (i.e., nonperiodic structures), the NN scheme accurately describes a variety of bulk properties. In contrast to other available empirical methods the CENT potential has a much simpler functional form, nevertheless it correctly reproduces the PBE energetics of various crystalline phases both at ambient and high pressure. Surface energies and structures as well as dynamical properties derived from phonon calculations are also in good agreement with PBE results. Overall, the difference between the values obtained by the CENT potential and the PBE reference values is less than or equal to the difference between the values of local density approximation (LDA) and Born-Mayer-Huggins (BMH) with those calculated by the PBE exchange correlation functional.

  19. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  20. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jong-Seok Kim

    2016-01-01

    Full Text Available The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  1. Assessing the Accuracy of Sentinel-3 SLSTR Sea-Surface Temperature Retrievals Using High Accuracy Infrared Radiiometers on Ships of Opportunity

    Science.gov (United States)

    Minnett, P. J.; Izaguirre, M. A.; Szcszodrak, M.; Williams, E.; Reynolds, R. M.

    2015-12-01

    The assessment of errors and uncertainties in satellite-derived SSTs can be achieved by comparisons with independent measurements of skin SST of high accuracy. Such validation measurements are provided by well-calibrated infrared radiometers mounted on ships. The second generation of Marine-Atmospheric Emitted Radiance Interferometers (M-AERIs) have recently been developed and two are now deployed on cruise ships of Royal Caribbean Cruise Lines that operate in the Caribbean Sea, North Atlantic and Mediterranean Sea. In addition, two Infrared SST Autonomous Radiometers (ISARs) are mounted alternately on a vehicle transporter of NYK Lines that crosses the Pacific Ocean between Japan and the USA. Both M-AERIs and ISARs are self-calibrating radiometers having two internal blackbody cavities to provide at-sea calibration of the measured radiances, and the accuracy of the internal calibration is periodically determined by measurements of a NIST-traceable blackbody cavity in the laboratory. This provides SI-traceability for the at-sea measurements. It is anticipated that these sensors will be deployed during the next several years and will be available for the validation of the SLSTRs on Sentinel-3a and -3b.

  2. Refractive Secondary Concentrators for Solar Thermal Applications

    Science.gov (United States)

    Wong, Wayne A.; Macosko, Robert P.

    1999-01-01

    The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.

  3. Accuracy of the field triage protocol in selecting severely injured patients after high energy trauma.

    Science.gov (United States)

    van Laarhoven, J J E M; Lansink, K W W; van Heijl, M; Lichtveld, R A; Leenen, L P H

    2014-05-01

    For optimal treatment of trauma patients it is of great importance to identify patients who are at risk for severe injuries. The Dutch field triage protocol for trauma patients, the LPA (National Protocol of Ambulance Services), is designed to get the right patient, in the right time, to the right hospital. Purpose of this study was to determine diagnostic accuracy and compliance of this triage protocol. Triage criteria were categorised into physiological condition (P), mechanism of trauma (M) and injury type (I). A retrospective analysis of prospectively collected data of all high-energy trauma patients from 2008 to 2011 in the region Central Netherlands is performed. Diagnostic parameters (sensitivity, specificity, negative predictive value, positive predictive value) of the field triage protocol for selecting severely injured patients were calculated including rates of under- and overtriage. Undertriage was defined as the proportion of severely injured patients (Injury Severity Score (ISS)≥16) who were transported to a level two or three trauma care centre. Overtriage was defined as the proportion of non-severely injured patients (ISSprotocol was 89.1% (95% confidence interval (CI) 84.4-92.6) and 60.5% (95% CI 57.9-63.1), respectively. The overall rate of undertriage was 10.9% (95%CI 7.4-15.7) and the overall rate of overtriage was 39.5% (95%CI 36.9-42.1). These rates were 16.5% and 37.7%, respectively for patients with M+I-P-. Compliance to the triage protocol for patients with M+I-P- was 78.7%. Furthermore, compliance in patients with either a positive I+ or positive P+ was 91.2%. The overall rate of undertriage (10.8%) was mainly influenced by a high rate of undertriage in the group of patients with only a positive mechanism criterion, therefore showing low diagnostic accuracy in selecting severely injured patients. As a consequence these patients with severe injury are undetected using the current triage protocol. As it has been shown that severely injured

  4. Joint analysis of refraction seismic survey with multilevel hydrophone measurement (application for detecting the high velocity thin lid); Kussekiho jishin tansa data to kochu hydrophone data no fukugo kaiseki no rei

    Energy Technology Data Exchange (ETDEWEB)

    Mori, S.; Harada, T.; Hayashi, K. [OYO Corp., Tokyo (Japan)

    1996-05-01

    During a refraction seismic survey conducted at a spot where a high-speed lava layer is supposedly concealed, the distribution of lava layer was estimated, and a composite analysis involving the vibration data received via hydrophones arranged in a bore hole was accomplished using a high-speed model based on an assumed geological section. The refraction survey centered on the bore hole and was accomplished using 250m-long traverse lines extending therefrom, one to the upstream and the other to the downstream of a river, producing a total length of 500m. The hydrophones were installed in the bore hole, and the measurement was carried out in an offset VSP-like observation pattern. In the analysis, the velocities obtained by the refraction survey and velocity logging were assigned to each layer on the basis of the assumed geological section for the construction of a velocity distribution model, which served as the early model for the repetition of calculation. Calculation was repeated with help of the said model, and a geological structure, capable of explaining the travel time data collected during the refraction survey and velocity logging, was successfully estimated. 1 ref., 5 figs.

  5. Probing Superluminal Neutrinos Via Refraction

    OpenAIRE

    Stebbins, Albert

    2011-01-01

    One phenomenological explanation of superluminal propagation of neutrinos, which may have been observed by OPERA and MINOS, is that neutrinos travel faster inside of matter than in vacuum. If so neutrinos exhibit refraction inside matter and should exhibit other manifestations of refraction, such as deflection and reflection. Such refraction would be easily detectable through the momentum imparted to appropriately shaped refractive material inserted into the neutrino beam. For NuMI this could...

  6. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  7. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    Science.gov (United States)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  8. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner.

    Science.gov (United States)

    Loudon, Sjoukje E; Rook, Caitlin A; Nassif, Deborah S; Piskun, Nadya V; Hunter, David G

    2011-07-07

    Purpose. The Pediatric Vision Scanner (PVS) detects strabismus by identifying ocular fixation in both eyes simultaneously. This study was undertaken to assess the ability of the PVS to identify patients with amblyopia or strabismus, particularly anisometropic amblyopia with no measurable strabismus. Methods. The PVS test, administered from 40 cm and requiring 2.5 seconds of attention, generated a binocularity score (BIN, 0%-100%). We tested 154 patients and 48 controls between the ages of 2 and 18 years. BIN scores of amblyopic children and controls were measured, and 21 children received sequential PVS measurements to detect any changes in BIN resulting from amblyopia treatment. Results. With the pass/refer threshold set at BIN 60%, sensitivity and specificity were 96% for the detection of amblyopia or strabismus. Assuming a 5% prevalence of amblyopia or strabismus, the inferred positive and negative predictive values of the PVS were 56% and 100%, respectively. Fixation accuracy was significantly reduced in amblyopic eyes. In anisometropic amblyopia patients treated successfully, the BIN improved to 100%. Conclusions. The PVS identified children with amblyopia or strabismus with high sensitivity and specificity, while successful treatment restored normal BIN scores in amblyopic patients without strabismus. The results support the hypothesis that the PVS detects strabismus and amblyopia directly. Future strategies for screening by nonspecialists may thus be based on diagnostic detection of amblyopia and strabismus rather than the estimation of risk factors, allowing for rapid, accurate identification of children with amblyopia early in life when it is most amenable to treatment.

  9. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    Science.gov (United States)

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  10. GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model

    Directory of Open Access Journals (Sweden)

    CHEN Qiujie

    2016-04-01

    Full Text Available To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01 published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole.

  11. High Accuracy Extraction of Respiratory Sinus Arrhythmia with Statistical Processing using Normal Distribution

    Science.gov (United States)

    Numata, Takashi; Ogawa, Yutaro; Yoshida, Lui; Kotani, Kiyoshi; Jimbo, Yasuhiko

    The autonomic nervous system is important in maintaining homeostasis by mediating the opposing effects of the sympathetic and parasympathetic nervous activity on organs. Although it is known that the amplitude of RSA (Respiratory Sinus Arrhythmia) is an index of parasympathetic nervous activity, it is difficult to estimate that activity in real-time in everyday situations. It is partly caused by body motions and extrasystoles. Also, automatic recognition of the R-wave on electrocardiograms is required for real-time analysis of RSA amplitude, there is an unresolved problem of false recognition of the R-wave. In this paper, we propose a method to evaluate the amplitude of RSA accurately using statistical processing with probabilistic models. Then, we estimate parasympathetic nervous activity during body motion and isometric exercise to examine the validity of the method. As a result, using the proposed method, we demonstrate that the amplitude of RSA can be extracted with false recognition of the R-wave. In addition, an appropriate threshold for the estimate is one or five percent because waveforms of RSA amplitude do not follow the abrupt changes of the parasympathetic nervous activity evoked by isometric exercise with the threshold at ten percent. Furthermore, the method using normal distribution is found to be more appropriate than that of chi-square distribution for statistical processing. Therefore, we expect that the proposed method can evaluate parasympathetic nervous activity with high accuracy in everyday situations.

  12. Raman spectroscopic determination of the molecular constants of the hydrogen isotopologues with high accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Krasch, Bennet; Mirz, Sebastian; Groessle, Robin [Karlsruhe Institute of Technology KIT (Germany). Institute for Technical Physics (ITEP), Tritium Laboratory Karlsruhe (TLK); Collaboration: KATRIN-Collaboration

    2016-07-01

    The interest in the thermodynamic properties of gases as the chemical equilibrium is faced by the challenge of time-consuming and technical extensive experimental setups. One possible solution is the derivation of these properties from the molecular constants. The rotational and vibrational movement of diatomic molecules, as the hydrogen isotopologues, is described by the concept of the rotational anharmonic oscillator. The molecular constants are the free parameters of this concept. Molecular constants themselves can be determined by measuring the line position of rotational and/or rotational transitions e.g. with Raman spectroscopy for hydrogen as it has been done since several years. In this contribution a Raman method was development to measure the molecular constant of the hydrogen isotopologues with high accuracy to obtain reliable results. But not only the method was development but also a complete measurement uncertainty budget was set up. The uncertainty budget contains all possible sources for uncertainties from the measurement period or the analysis process as well the contribution of each single uncertainty. The method and the uncertainty budget were exemplary tested on Deuterium.

  13. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  14. Genetic susceptibility to refractive error: association of vasoactive intestinal peptide receptor 2 (VIPR2 with high myopia in Chinese.

    Directory of Open Access Journals (Sweden)

    Wai Chi Yiu

    Full Text Available Myopia is the most common ocular disease worldwide. We investigated the association of high myopia with the common single nucleotide polymorphisms (SNPs of five candidate genes - early growth response 1 (EGR1, v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS, jun oncogene (JUN, vasoactive intestinal peptide (VIP, and vasoactive intestinal peptide receptor 2 (VIPR2. We recruited 1200 unrelated Chinese subjects with 600 cases (spherical equivalent ≤-8.00 diopters and 600 controls (spherical equivalent within ±1.00 diopter. A discovery sample set was formed from 300 cases and 300 controls, and a replication sample set from the remaining samples. Tag SNPs were genotyped for the discovery sample set, and the most significant haplotypes and their constituent SNPs were followed up with the replication sample set. The allele and haplotype frequencies in cases and controls were compared by logistic regression adjusted for sex and age to give P a values, and multiple comparisons were corrected by permutation test to give P aemp values. Odd ratios (OR were calculated accordingly. In the discovery phase, EGR1, JUN and VIP did not show any significant association while FOS and VIPR2 demonstrated significant haplotype association with high myopia. In the replication phase, the haplotype association for VIPR2 was successfully replicated, but not FOS. In analysis combining both sample sets, the most significant association signals of VIPR2 were the single marker rs2071625 (P a = 0.0008, P aemp = 0.0046 and OR = 0.75 and the 4-SNP haplotype window rs2071623-rs2071625-rs2730220-rs885863 (omnibus test, P a = 9.10e-10 and P aemp = 0.0001 with one protective haplotype (GGGG: P aemp = 0.0002 and OR = 0.52 and one high-risk haplotype (GAGA: P aemp = 0.0027 and OR = 4.68. This 4-SNP haplotype window was the most significant in all sample sets examined. This is the first study to suggest a role of VIPR2 in the genetic

  15. Genetic susceptibility to refractive error: association of vasoactive intestinal peptide receptor 2 (VIPR2) with high myopia in Chinese.

    Science.gov (United States)

    Yiu, Wai Chi; Yap, Maurice K H; Fung, Wai Yan; Ng, Po Wah; Yip, Shea Ping

    2013-01-01

    Myopia is the most common ocular disease worldwide. We investigated the association of high myopia with the common single nucleotide polymorphisms (SNPs) of five candidate genes - early growth response 1 (EGR1), v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), jun oncogene (JUN), vasoactive intestinal peptide (VIP), and vasoactive intestinal peptide receptor 2 (VIPR2). We recruited 1200 unrelated Chinese subjects with 600 cases (spherical equivalent ≤-8.00 diopters) and 600 controls (spherical equivalent within ±1.00 diopter). A discovery sample set was formed from 300 cases and 300 controls, and a replication sample set from the remaining samples. Tag SNPs were genotyped for the discovery sample set, and the most significant haplotypes and their constituent SNPs were followed up with the replication sample set. The allele and haplotype frequencies in cases and controls were compared by logistic regression adjusted for sex and age to give P a values, and multiple comparisons were corrected by permutation test to give P aemp values. Odd ratios (OR) were calculated accordingly. In the discovery phase, EGR1, JUN and VIP did not show any significant association while FOS and VIPR2 demonstrated significant haplotype association with high myopia. In the replication phase, the haplotype association for VIPR2 was successfully replicated, but not FOS. In analysis combining both sample sets, the most significant association signals of VIPR2 were the single marker rs2071625 (P a = 0.0008, P aemp = 0.0046 and OR = 0.75) and the 4-SNP haplotype window rs2071623-rs2071625-rs2730220-rs885863 (omnibus test, P a = 9.10e-10 and P aemp = 0.0001) with one protective haplotype (GGGG: P aemp = 0.0002 and OR = 0.52) and one high-risk haplotype (GAGA: P aemp = 0.0027 and OR = 4.68). This 4-SNP haplotype window was the most significant in all sample sets examined. This is the first study to suggest a role of VIPR2 in the genetic

  16. Determination of Single Sugars, Including Inulin, in Plants and Feed Materials by High-Performance Liquid Chromatography and Refraction Index Detection

    Directory of Open Access Journals (Sweden)

    Kirsten Weiß

    2017-08-01

    Full Text Available The exact and reliable detection of sugar monomers and fructans provides important information for the evaluation of carbohydrate metabolism in plants and animals. Using the HPLC method; a large number of samples and single sugars; with both high sensitivity and selectivity; may be analysed. It was shown that the described method—using a Nucleosil column loaded with Pb2+ ions; a refractive index detector (RID; and HPLC-grade water as the eluent—gives precise and reproducible results regarding the detection of individual sugars in extracts of plants and feed materials. The method can be applied for the detection of sucrose; maltose; lactose; xylose; glucose; galactose; arabinose; fructose; ribose; and mannitol. Furthermore; depending on the plant material; the sugars verbascose; stachyose; and raffinose can be separated. The peaks were well resolved and the reproducibility of the analysis; with 94–108% of recovery (RC and relative standard deviation (RSD of up to 5%; was very good. The method was successfully applied to a variety of green forages and samples of sugar beet pulp silages. It is also possible to determine fructan with inulin as a standard; together with the other sugars; or alone by a different protocol and column.

  17. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2017-07-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  18. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2016-03-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  19. Triangulated Height Accuracy Analysis Based on Double -Targets Located on Vertical Line on High Slope%基于高边坡垂直特征线下双目标三角高程精度解析

    Institute of Scientific and Technical Information of China (English)

    伊晓东; 周惠成; 王贵君

    2012-01-01

    从边坡沉降监测实际数据,可以看出若采用基于高边坡垂直特征线下双目标三角高程观测,在选择了有利的观测条件,并进行差分计算后,可以有效地消除或减弱大气折光带来的误差,相对没有进行动态改正的单向观测(按0.14的经验折光系数进行修正)结果,精度提高比较明显。本方法所需设备条件简单,具有测量方便、精度高和安全实用特点。%Seeing from monitoring data used for high slope settlement, it is known that the height error caused by atmospheric refraction could be effectively eliminated or decreased when the difference is carried out in the wake of the method of triangulated height surveying based on double - targets which are located on the same vertical line. Comparing to one - way observation without dynamic correction (just choose the 0.14 experience refraction coefficient as atmospheric refraction correction) in the same condition, the observation precision is raised obviously. Only with simple surveying equipment to acquire more accuracy height result, this method has the characteristic of prosperity of convenient surveying with safety and practicality.

  20. Geometric Accuracy Investigations of SEVIRI High Resolution Visible (HRV) Level 1.5 Imagery

    National Research Council Canada - National Science Library

    Sultan Kocaman Aksakal

    2013-01-01

    .... In a joint project between the Swiss GCOS Office and ETH Zurich, geometric accuracy and temporal stability of 1-km resolution HRV channel imagery of SEVIRI have been evaluated over Switzerland...

  1. The regulatory benefits of high levels of affect perception accuracy: a process analysis of reactions to stressors in daily life.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Buchholz, Maria M; Boyd, Ryan L; Troop-Gordon, Wendy

    2012-08-01

    Individuals attuned to affective signals from the environment may possess an advantage in the emotion-regulation realm. In two studies (total n = 151), individual differences in affective perception accuracy were assessed in an objective, performance-based manner. Subsequently, the same individuals completed daily diary protocols in which daily stressor levels were reported as well as problematic states shown to be stress-reactive in previous studies. In both studies, individual differences in affect perception accuracy interacted with daily stressor levels to predict the problematic outcomes. Daily stressors precipitated problematic reactions--whether depressive feelings (study 1) or somatic symptoms (study 2)--at low levels of affect perception accuracy, but did not do so at high levels of affect perception accuracy. The findings support a regulatory view of such perceptual abilities. Implications for understanding emotion regulation processes, emotional intelligence, and individual differences in reactivity are discussed.

  2. [Accuracy of liquid-based cytology in diagnosis of high-grade squamous cervical intraepithelial neoplasia].

    Science.gov (United States)

    Li, Min; Mei, Ping; Luo, Dong-lan; Wang, Xiao-bing; Liu, Yan-hui

    2012-04-01

    To investigate factors affecting the diagnostic accuracy of cervical liquid-based cytology for high-grade squamous intraepithelial lesion (HSIL). A retrospective evaluation of cytological and histological slides was performed in 415 patients who had cytological HSIL between 2007 and 2010. Among 42 209 cases screened by ThinPrep liquid-based cytology, 415 cases (1.0%) of HSIL were eventually identified. The mean age of HSIL patients was 41.6 years, and 30-49 years were the most common age group. Among 415 cases, 325 patients had available histological diagnosis as follows: 23 (7.1%) negative, 22 (6.8%) CIN1/HPV, 223 (68.6%) CIN2/CIN3, and 57 (17.5%) squamous cell carcinoma (SCC). The positive predictive values of HSIL to predict CIN2 (or higher grade of dysplasia) and CIN1 were 86.2% (280/325) and 92.9% (302/325), respectively. Inadequate biopsy, reactive glandular cells, islet atrophy, chemo/radiotherapy and others were responsible for the cytologically false-positive diagnosis. Fifty-seven (17.5%) cases of HSIL had a histological diagnosis of SCC. The possible causes of misdiagnosis were social factors, under-recognized cytological features of poorly-differentiated SCC and absence of typical diagnostic features in cytology slides. Cytology of HSIL has a high positive predictive value for the presence of CIN2/CIN3 and SCC. Cytologists and gynecologists should be aware of the diagnostic pitfalls that may lead to the discrepancy between cytology and histology.

  3. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  4. Fiber in-line Michelson Interferometer for refractive index sensing

    Science.gov (United States)

    Liao, C. R.; Wang, D. N.; Wang, Min; Yang, Minghong; Wang, Yiping

    2013-09-01

    A fiber in-line Michelson interferometer based on open micro-cavity is demonstrated, which is fabricated by femtosecond laser micromachining and thin film coating technique. In refractive index sensing, this interferometer operates in a reflection mode of detection, exhibits compact sensor head, good mechanical reliability, wide operation range and high sensitivity of 975nm/RIU (refractive index unit) at the refractive index value of 1.484.

  5. Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration

    Science.gov (United States)

    Barreda, Ángela I.; Saleh, Hassan; Litman, Amelie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2017-01-01

    Sub-wavelength particles made from high-index dielectrics, either individual or as ensembles, are ideal candidates for multifunctional elements in optical devices. Their directionality effects are traditionally analysed through forward and backward measurements, even if these directions are not convenient for in-plane scattering practical purposes. Here we present unambiguous experimental evidence in the microwave range that for a dimer of HRI spherical particles, a perfect switching effect is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization. Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell's equations allows the generalization of our results to other frequency ranges and dimension scales, for instance, the visible and the nanometric scale.

  6. Direct Georeferencing : a New Standard in Photogrammetry for High Accuracy Mapping

    Science.gov (United States)

    Rizaldy, A.; Firdaus, W.

    2012-07-01

    Direct georeferencing is a new method in photogrammetry, especially in the digital camera era. Theoretically, this method does not require ground control points (GCP) and the Aerial Triangulation (AT), to process aerial photography into ground coordinates. Compared with the old method, this method has three main advantages: faster data processing, simple workflow and less expensive project, at the same accuracy. Direct georeferencing using two devices, GPS and IMU. GPS recording the camera coordinates (X, Y, Z), and IMU recording the camera orientation (omega, phi, kappa). Both parameters merged into Exterior Orientation (EO) parameter. This parameters required for next steps in the photogrammetric projects, such as stereocompilation, DSM generation, orthorectification and mosaic. Accuracy of this method was tested on topographic map project in Medan, Indonesia. Large-format digital camera Ultracam X from Vexcel is used, while the GPS / IMU is IGI AeroControl. 19 Independent Check Point (ICP) were used to determine the accuracy. Horizontal accuracy is 0.356 meters and vertical accuracy is 0.483 meters. Data with this accuracy can be used for 1:2.500 map scale project.

  7. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties

    Science.gov (United States)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-06-01

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (108). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system

  8. HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    王同科

    2002-01-01

    In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs fromthe high order generalized difference methods. It is proved that the method has optimal order er-ror estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.

  9. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology

    Science.gov (United States)

    Luo, Di; Cai, Feng; Wu, Zhiqiang

    2017-06-01

    When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates (Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.

  10. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  11. Highly transparent and flexible bio-based polyimide/TiO2 and ZrO2 hybrid films with tunable refractive index, Abbe number, and memory properties.

    Science.gov (United States)

    Huang, Tzu-Tien; Tsai, Chia-Liang; Tateyama, Seiji; Kaneko, Tatsuo; Liou, Guey-Sheng

    2016-07-07

    The novel bio-based polyimide (4ATA-PI) and the corresponding PI hybrids of TiO2 or ZrO2 with excellent optical properties and thermal stability have been prepared successfully. The highly transparent 4ATA-PI containing carboxylic acid groups in the backbone could provide reaction sites for organic-inorganic bonding to obtain homogeneous hybrid films. These PI hybrid films showed a tunable refractive index (1.60-1.81 for 4ATA-PI/TiO2 and 1.60-1.80 for 4ATA-PI/ZrO2), and the 4ATA-PI/ZrO2 hybrid films revealed a higher optical transparency and Abbe's number than those of the 4ATA-PI/TiO2 system due to a larger band gap of ZrO2. By introducing TiO2 and ZrO2 as the electron acceptor into the 4ATA-PI system, the hybrid materials have a lower LUMO energy level which could facilitate and stabilize the charge transfer complex. Therefore, memory devices derived from these PI hybrid films exhibited tunable memory properties from DRAM, SRAM, to WORM with a different TiO2 or ZrO2 content from 0 wt% to 50 wt% with a high ON/OFF ratio (10(8)). In addition, the different energy levels of TiO2 and ZrO2 revealed specifically unique memory characteristics, implying the potential application of the prepared 4ATA-PI/TiO2 and 4ATA-PI/ZrO2 hybrid films in highly transparent memory devices.

  12. Finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations

    Science.gov (United States)

    Abrashkevich, A. G.; Abrashkevich, D. G.; Kaschiev, M. S.; Puzynin, I. V.

    1995-01-01

    The finite element method (FEM) is applied to solve the bound state (Sturm-Liouville) problem for systems of ordinary linear second-order differential equations. The convergence, accuracy and the range of applicability of the high-order FEM approximations (up to tenth order) are studied systematically on the basis of numerical experiments for a wide set of quantum-mechanical problems. The analytical and tabular forms of giving the coefficients of differential equations are considered. The Dirichlet and Neumann boundary conditions are discussed. It is shown that the use of the FEM high-order accuracy approximations considerably increases the accuracy of the FE solutions with substantial reduction of the requirements on the computational resources. The results of the FEM calculations for various quantum-mechanical problems dealing with different types of potentials used in atomic and molecular calculations (including the hydrogen atom in a homogeneous magnetic field) are shown to be well converged and highly accurate.

  13. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    Science.gov (United States)

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (refraction system.

  14. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  15. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  16. Autotaxin activity has a high accuracy to diagnose intrahepatic cholestasis of pregnancy.

    Science.gov (United States)

    Kremer, Andreas E; Bolier, Ruth; Dixon, Peter H; Geenes, Victoria; Chambers, Jenny; Tolenaars, Dagmar; Ris-Stalpers, Carrie; Kaess, Bernhard M; Rust, Christian; van der Post, Joris A; Williamson, Catherine; Beuers, Ulrich; Oude Elferink, Ronald P J

    2015-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is defined by pruritus, elevated total fasting serum bile salts (TBS) and transaminases, and an increased risk of adverse fetal outcome. An accurate diagnostic marker is needed. Increased serum autotaxin correlates with cholestasis-associated pruritus. We aimed at unraveling the diagnostic accuracy of autotaxin in ICP. Serum samples and placental tissue were collected from 44 women with uncomplicated pregnancies and 105 with pruritus and/or elevated serum transaminases. Autotaxin serum levels were quantified enzymatically and by Western blotting, autotaxin gene expression by quantitative PCR. Serum autotaxin was increased in ICP (mean ± SD: 43.5 ± 18.2 nmol ml(-1)min(-1), n=55, ppregnancy (16.8 ± 6.7 nmol ml(-1)min(-1), n=33), pre-eclampsia complicated by HELLP-syndrome (16.8 ± 8.9 nmol ml(-1)min(-1), n=17), and pregnant controls (19.6 ± 5.7 nmol ml(-1)min(-1), n=44). Longitudinal analysis during pregnancy revealed a marked rise in serum autotaxin with onset of ICP-related pruritus. Serum autotaxin was increased in women taking oral contraceptives. Increased serum autotaxin during ICP was not associated with increased autotaxin mRNA in placenta. With a cut-off value of 27.0 nmol ml(-1)min(-1), autotaxin had an excellent sensitivity and specificity in distinguishing ICP from other pruritic disorders or pre-eclampsia/HELLP-syndrome. Serum autotaxin displayed no circadian rhythm and was not influenced by food intake. Increased serum autotaxin activity represents a highly sensitive, specific and robust diagnostic marker of ICP, distinguishing ICP from other pruritic disorders of pregnancy and pregnancy-related liver diseases. Pregnancy and oral contraception increase serum autotaxin to a much lesser extent than ICP. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. High accuracy solution of bi-directional wave propagation in continuum mechanics

    Science.gov (United States)

    Mulloth, Akhil; Sawant, Nilesh; Haider, Ijlal; Sharma, Nidhi; Sengupta, Tapan K.

    2015-10-01

    Solution of partial differential equations by numerical method is strongly affected due to numerical errors, which are caused mainly by deviation of numerical dispersion relation from the physical dispersion relation. To quantify and control such errors and obtain high accuracy solutions, we consider a class of problems which involve second derivative of unknowns with respect to time. Here, we analyse numerical metrics such as the numerical group velocity, numerical phase speed and the numerical amplification factor for different methods in solving the model bi-directional wave equation (BDWE). Such equations can be solved directly, for example, by Runge-Kutta-Nyström (RKN) method. Alternatively, the governing equation can be converted to a set of first order in time equations and then using four-stage fourth order Runge-Kutta (RK4) method for time integration. Spatial discretisation considered are the classical second and fourth order central difference schemes, along with Lele's central compact scheme for evaluating second derivatives. In another version, we have used Lele's scheme for evaluating first derivatives twice to obtain the second derivative. As BDWE represents non-dissipative, non-dispersive dynamics, we also consider the canonical problem of linearised rotating shallow water equation (LRSWE) in a new formulation involving second order derivative in time, which represents dispersive waves along with a stationary mode. The computations of LRSWE with RK4 and RKN methods for temporal discretisation and Lele's compact schemes for spatial discretisation are compared with computations performed with RK4 method for time discretisation and staggered compact scheme (SCS) for spatial discretisation by treating it as a set of three equations as reported in Rajpoot et al. (2012) [1].

  18. In-depth, high-accuracy proteomics of sea urchin tooth organic matrix

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-12-01

    Full Text Available Abstract Background The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis. Results We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins. Conclusion This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly

  19. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  20. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    Science.gov (United States)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  1. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  2. 3-D reconstruction and virtual ductoscopy of high-grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT.

    Science.gov (United States)

    Ichihara, Shu; Ando, Masami; Maksimenko, Anton; Yuasa, Tetsuya; Sugiyama, Hiroshi; Hashimoto, Eiko; Yamasaki, Katsuhito; Mori, Kensaku; Arai, Yoshinori; Endo, Tokiko

    2008-01-01

    Stereomicroscopic observations of thick sections, or three-dimensional (3-D) reconstructions from serial sections, have provided insights into histopathology. However, they generally require time-consuming and laborious procedures. Recently, we have developed a new algorithm for refraction-based X-ray computed tomography (CT). The aim of this study is to apply this emerging technology to visualize the 3-D structure of a high-grade ductal carcinomas in situ (DCIS) of the breast. The high-resolution two-dimensional images of the refraction-based CT were validated by comparing them with the sequential histological sections. Without adding any contrast medium, the new CT showed strong contrast and was able to depict the non-calcified fine structures such as duct walls and intraductal carcinoma itself, both of which were barely visible in a conventional absorption-based CT. 3-D reconstruction and virtual endoscopy revealed that the high-grade DCIS was located within the dichotomatous branches of the ducts. Multiple calcifications occurred in the necrotic core of the continuous DCIS, resulting in linear and branching (casting type) calcifications, a hallmark of high-grade DCIS on mammograms. In conclusion, refraction-based X-ray CT approaches the low-power light microscopic view of the histological sections. It provides high quality slice data for 3-D reconstruction and virtual ductosocpy.

  3. Millimeter-Wave Airborne Interferometry for High-accuracy Topography Mapping

    Science.gov (United States)

    Moller, D.; Hensley, S.; Wu, X.; Rodriguez, E.

    2011-12-01

    sensor geometry, bandwidth and number of channels needed for SWOT cal/val cannot be met within the framework of GLISTIN-A or a similar interface to UAVSAR. To address SWOT's cal/val requirements, the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) builds upon GLISTIN-A heritage and is the primary payload of the AirSWOT program. KaSPAR is a unique system with multiple temporal and cross-track baselines to fully characterize the scattering and statistics expected from SWOT, provide data for developing classification algorithms, and understanding instrument performance over the vast variety of scenes that SWOT will encounter. Furthermore a >5km swath high-accuracy WSE mapping capability provides the framework to translate traditional point or profile measurements to the spatial framework that SWOT will measure. Specific measurements from the integrated AirSWOT assembly are 1) WSE maps over a 5km swath with <3cm mean error at 100m x 100m postings (for ocean surface at 6m/s wind speed), 2) 2-D slope maps derived from WSE maps and 3) shoreline delineation at 10m resolution. These measurements will be made at resolutions exceeding that of SWOT to better characterize corrections for the spaceborne sensor.

  4. HIGH-ACCURACY BAND TO BAND REGISTRATION METHOD FOR MULTI-SPECTRAL IMAGES OF HJ-1A/B

    Institute of Scientific and Technical Information of China (English)

    Lu Hao; Liu Tuanjie; Zhao Haiqing

    2012-01-01

    Band-to-band registration accuracy is an important parameter of multispectral data.A novel band-to-band registration approach with high precision is proposed for the multi-spectral images of HJ-1A/B.Firstly,the main causes resulted in misregistration are analyzed,and a high-order polynomial model is proposed.Secondly,a phase fringe filtering technique is employed to Phase Correlation Method based on Singular Value Decomposition (SVD-PCM) for reducing the noise in phase difference matrix.Then,experiments are carried out to build nonlinear registration models,and images of green band and red band are aligned to blue band with an accuracy of 0.1 pixels,while near infrared band with an accuracy of 0.2 pixels.

  5. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Directory of Open Access Journals (Sweden)

    Alexander T Dilthey

    2016-10-01

    Full Text Available Genetic variation at the Human Leucocyte Antigen (HLA genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG framework. First, we construct a PRG for 46 (mostly HLA genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data. Of 158 alleles tested, we correctly infer 157 alleles (99.4%. We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample remain a

  6. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Science.gov (United States)

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant

  7. Velocity structure and active fault of Yanyuan-Mabian seismic zone―The result of high-resolution seismic refraction experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The authors processed the seismic refraction Pg-wave travel time data with finite difference tomography method and revealed velocity structure of the upper crust on active block boundaries and deep features of the active faults in western Sichuan Province. The following are the results of our investigation. The upper crust of Yanyuan basin and the Houlong Mountains consists of the superficial low-velocity layer and the deep uniform high-velocity layer, and between the two layers, there is a distinct, and gently west-dipping structural plane. Between model coordinates 180-240 km, P-wave velocity distribution features steeply inclined strip-like structure with strongly non-uniform high and low velocities alternately. Xichang Mesozoic basin between 240 and 300 km consists of a thick low-velocity upper layer and a high-velocity lower layer, where lateral and vertical velocity variations are very strong and the interface between the two layers fluctuates a lot. The Daliang Mountains to the east of the 300 km coordinate is a non-uniform high-velocity zone, with a superficial velocity of approximately 5 km/s. From 130 to 150 km and from 280 to 310 km, there are extremely distinct deep anomalous high-velocity bodies, which are supposed to be related with Permian magmatic activity. The Yanyuan nappe structure is composed of the superficial low-velocity nappe, the gently west-dipping detachment surface and the deep high-velocity basement, with Jinhe-Qinghe fault zone as the nappe front. Mopanshan fault is a west-dipping low-velocity zone, which extends to the top surface of the basement. Anninghe fault and Zemuhe fault are east-dipping, tabular-like, and low-velocity zones, which extend deep into the base-ment. At a great depth, Daliangshan fault separates into two segments, which are represented by drastic variation of velocity structures in a narrow strip: the west segment dips westward and the east segment dips eastward, both stretching into the basement. The east margin

  8. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    Science.gov (United States)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  9. Spectroscopy of H3+ based on a new high-accuracy global potential energy surface.

    Science.gov (United States)

    Polyansky, Oleg L; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Ovsyannikov, Roman I; Tennyson, Jonathan; Lodi, Lorenzo; Szidarovszky, Tamás; Császár, Attila G

    2012-11-13

    The molecular ion H(3)(+) is the simplest polyatomic and poly-electronic molecular system, and its spectrum constitutes an important benchmark for which precise answers can be obtained ab initio from the equations of quantum mechanics. Significant progress in the computation of the ro-vibrational spectrum of H(3)(+) is discussed. A new, global potential energy surface (PES) based on ab initio points computed with an average accuracy of 0.01 cm(-1) relative to the non-relativistic limit has recently been constructed. An analytical representation of these points is provided, exhibiting a standard deviation of 0.097 cm(-1). Problems with earlier fits are discussed. The new PES is used for the computation of transition frequencies. Recently measured lines at visible wavelengths combined with previously determined infrared ro-vibrational data show that an accuracy of the order of 0.1 cm(-1) is achieved by these computations. In order to achieve this degree of accuracy, relativistic, adiabatic and non-adiabatic effects must be properly accounted for. The accuracy of these calculations facilitates the reassignment of some measured lines, further reducing the standard deviation between experiment and theory.

  10. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S;

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  11. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies

    NARCIS (Netherlands)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-01-01

    OBJECTIVES: Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. STUDY DESIGN AND SETTING: PubMed was searched for reports of studies that had evaluated the diagnostic

  12. Refraction in adults with diabetes.

    Science.gov (United States)

    Klein, Barbara E K; Lee, Kristine E; Klein, Ronald

    2011-01-01

    To examine refraction, change in refraction, and risk factors for change in refraction in adults with type 1 and type 2 diabetes mellitus. Population-based study. Modified Early Treatment of Diabetic Retinopathy Study refractions and a standard history were obtained for all participants. Baseline and 10-year follow-up data were available. Age and education were significantly associated with refraction in persons with younger-onset diabetes (T1D) and in those with older-onset diabetes (T2D); refractions were similar for both groups. Persons of similar age with T1D were likely to be more myopic than were those with T2D (P refraction in 10 years. Those with longer duration of diabetes and proliferative retinopathy were more likely to have hyperopic shifts in refraction. In persons with T2D, there was, on average, a +0.48-D change in refraction during the 10 years, but there was little consistency in the amount of change by age at baseline. In persons of similar age, those with T1D were likely to be slightly more myopic than were those with T2D. Overall, mean refraction and the important risk factors of age and education were similar to those reported in nondiabetic populations.

  13. The effect of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players.

    Science.gov (United States)

    Lyons, Mark; Al-Nakeeb, Yahya; Hankey, Joanne; Nevill, Alan

    2013-01-01

    Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expert (13 male, 4 female) tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70%) and high-intensities (90%) set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test). Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on performance in tennis

  14. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    Science.gov (United States)

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects.

  15. Assembly and alignment of infrared refractive system

    Science.gov (United States)

    Yang, Lin; Lin, Jian-chun; Wang, Ya-jing; Chen, Fan-sheng

    2013-09-01

    Optical systems for scientific instrumentation frequently include lens or mirrors with critical mechanical requirements. Position issues of those components are inextricably bound to the efficiency of the instrument. The position referring to the lens system mainly means spacer and rotation of all elements concerned. Instrument could not be completed without the accuracy assembly even the previous design was top one. The alignment of infrared optical system always is a tough thing due to the IR material being opaque to visible light which hardly effect on the imaging ability of the system. In this paper a large-aperture IR refractive system was described in details and the alignment of this system was presented. The brief work describes the assembly and integration of the camera barrel in lab. First of all, all the mechanical elements must be manufactured with high accuracy requirements to meet alignment tolerances and minimum errors mostly could be ignored. The rotations relative to the optical axis were hardy restricted by the space between barrel and cells. The lens vertex displacements were determined through high accuracy titanium alloy spacer. So the actual shape data of the optical lenses were obtained by coordinate measuring machining (CMM) to calculate the real space between lenses after alignment1 done. All the measured results were critical for instruction of the practical assemble. Based on the properties and tolerances of the system, the camera barrel includes sets of six lenses with their respective supports and cells which are composed of two parts: the flied lens group and the relay lenses group. The first one was aligned by the geometry centering used CMM. And the relay lenses were integrated one by one after centered individually with a classical centering instrument. Then the two separate components were assembled under the monitor of the CMM with micron precision. Three parameters on the opti-mechanical elements which include decenter, tilt and

  16. High-accuracy real-time automatic thresholding for centroid tracker

    Science.gov (United States)

    Zhang, Ye; Wang, Yanjie

    2006-01-01

    Many of the video image trackers today use the centroid as the tracking point. In engineering, a target's centroid is computed from a binary image to reduce the processing time. Hence thresholding of gray level image to binary image is a decisive step in centroid tracking. How to choose the feat thresholds in clutter is still an intractability problem unsolved today. This paper introduces a high-accuracy real-time automatic thresholding method for centroid tracker. It works well for variety types of target tracking in clutter. The core of this method is to get the entire information contained in the histogram, such as the number of the peaks, their height, position and other properties in the histogram. Combine with this histogram analysis; we can get several key pairs of peaks which can include the target and the background around it and use the method of Otsu to get intensity thresholds from them. According to the thresholds, we can gain the binary image and get the centroid from it. To track the target, the paper also suggests subjoining an eyeshot-window, just like our eyes focus on a target, we will not miss it unless it is out of our eyeshot, the impression will help us to extract the target in clutter and track it and we will wait its emergence since it has been covered. To obtain the impression, the paper offers a idea comes from the method of Snakes; it give a great help for us to get a glancing size, so that we can compare the size of the object in the current frame with the former. If the change is little, we consider the object has been tracked well. Otherwise, if the change is bigger than usual, we should analyze the inflection in the histogram to find out what happened to the object. In general, what we have to do is turning the analysis into codes for the tracker to determine a feat threshold. The paper will show the steps in detail. The paper also discusses the hardware architecture which can meet the speed requirement.

  17. High-accuracy, high-resolution gravity profiles from 2 years of the Geosat Exact Repeat Mission

    Science.gov (United States)

    Sandwell, David T.; Mcadoo, David C.

    1990-01-01

    Satellite altimeter data from the first 44 repeat cycles (2 years) of the Geosat Exact Repeat Mission (EWRM) were averaged to improve accuracy, resolution and coverage of the marine gravity field. Individual 17-day repeat cycles were first edited and differentiated, resulting in the along-track vertical deflection (i.e., gravity disturbance). To increase the signal-to-noise ratio, 44 of these cycles were then averaged to form a single highly accurate vertical deflection profile. The largest contribution to the vertical deflection error is short-wavelength altimeter noise and longer-wavelength oceanographic variability; the combined noise level is typically 6 microrad. Both types of noise are reduced by averaging many repeat cycles. Over most ocean areas the uncertainty of the average profile is less than 1 microrad which corresponds to 1 mgal of along-track gravity disturbance. However, in areas of seasonal ice coverage, its uncertainty can exceed 5 microrad. To assess the resolution of individual and average Geosat gravity profiles, the cross-spectral analysis technique was applied to repeat profiles. Individual Geosat repeat cycles are coherent (greater than 0.5) for wavelengths greater than about 30 km and become increasingly incoherent at shorter wavelengths.

  18. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    Science.gov (United States)

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  19. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  20. Fiber optic liquid refractive index sensor

    Science.gov (United States)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 µm and the cladding of fiber was removed by simple chemical method. To perform this experiment a 2×2 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  1. Real-time displacement measurement with large range and high accuracy using sinusoidal phase modulating laser diode interferometer

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang; Bingjie Huang

    2007-01-01

    To resolve the conflict of large measurement range and high accuracy in the existing real-time displacement measurement laser diode (LD) interferometers, a novel real-time displacement measurement LD interferometry is proposed and its measurement principle is analyzed. By use of a new phase demodulation algorithm and a new phase compensation lgorithm of real-time phase unwrapping, the measurement accuracy is improved, and the measurement range is enlarged to a few wavelengths. In experiments, the peak-to-peak amplitude of the speaker vibration was 2361.7 nm, and the repeatability was 2.56 nm. The measurement time was less than 26μs.

  2. Negative refractive index metamaterials

    Directory of Open Access Journals (Sweden)

    Willie J. Padilla

    2006-07-01

    Full Text Available Engineered materials composed of designed inclusions can exhibit exotic and unique electromagnetic properties not inherent in the individual constituent components. These artificially structured composites, known as metamaterials, have the potential to fill critical voids in the electromagnetic spectrum where material response is limited and enable the construction of novel devices. Recently, metamaterials that display negative refractive index – a property not found in any known naturally occurring material – have drawn significant scientific interest, underscoring the remarkable potential of metamaterials to facilitate new developments in electromagnetism.

  3. Metamaterials: Beyond of Refraction

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Tung

    2009-10-01

    Full Text Available When D. R. Smith, in 2000, for the first time observed the negative refraction in a metamaterial medium, the understanding of wave-matter interaction changed forever. The word “meta” means “beyond” in Greek, and in this sense, “metamaterials” refers to “beyond conventional materials”. Metamaterials are usually artificial and have properties which do not occur in natural materials. So, what is exciting about such artificial metamaterials which is attracting so much attention of current interest for the physicists, today?

  4. High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification

    Science.gov (United States)

    Bomble, Yannick J.; Vázquez, Juana; Kállay, Mihály; Michauk, Christine; Szalay, Péter G.; Császár, Attila G.; Gauss, Jürgen; Stanton, John F.

    2006-08-01

    The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cases and the latter when extremely high accuracy is required. For a test suite of molecules that have rather precisely known enthalpies of formation {as taken from the active thermochemical tables of Ruscic and co-workers [Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38; J. Phys. Chem. A 108, 9979 (2004)]}, the largest deviations between theory and experiment are 0.52, -0.70, and 0.51kJmol-1 for the latter three methods, respectively. Some perspective is provided on this level of accuracy, and sources of remaining systematic deficiencies in the approaches are discussed.

  5. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  6. Friction compensation design based on state observer and adaptive law for high-accuracy positioning system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Friction is one of the main factors that affect the positioning accuracy of motion system. Friction compensation based on friction model is usually adopted to eliminate the nonlinear effect of friction. This paper presents a proportional-plus-derivative (PD) feedback controller with a friction compensator based on LuGre friction model. We also design a state observer to observe the unknown state of LuGre friction model, and adopt a parameter adaptive law and off-line approximation to estimate the parameters of LuGre friction model. Comparative experiments are carried out among our proposed controller, PD controller with friction compensation based on classical friction model, and PD controller without friction compensation. Experimental results demonstrate that our proposed controller can achieve better performance, especially higher positioning accuracy.

  7. The prediction of zenith range refraction from surface measurements of meteorological parameters. [mathematical models of atmospheric refraction used to improve spacecraft tracking space navigation

    Science.gov (United States)

    Berman, A. L.

    1976-01-01

    In the last two decades, increasingly sophisticated deep space missions have placed correspondingly stringent requirements on navigational accuracy. As part of the effort to increase navigational accuracy, and hence the quality of radiometric data, much effort has been expended in an attempt to understand and compute the tropospheric effect on range (and hence range rate) data. The general approach adopted has been that of computing a zenith range refraction, and then mapping this refraction to any arbitrary elevation angle via an empirically derived function of elevation. The prediction of zenith range refraction derived from surface measurements of meteorological parameters is presented. Refractivity is separated into wet (water vapor pressure) and dry (atmospheric pressure) components. The integration of dry refractivity is shown to be exact. Attempts to integrate wet refractivity directly prove ineffective; however, several empirical models developed by the author and other researchers at JPL are discussed. The best current wet refraction model is here considered to be a separate day/night model, which is proportional to surface water vapor pressure and inversely proportional to surface temperature. Methods are suggested that might improve the accuracy of the wet range refraction model.

  8. Ways to help Chinese Students in Senior High School improve language accuracy in writing

    Institute of Scientific and Technical Information of China (English)

    潘惠红

    2015-01-01

    <正>Introduction In Chinese ELT(English language teaching),as in other countries,both fluency and accuracy are considered important either in the teaching or assessment of writing.In this respect,the last decade has seen reforms in the College Entrance Examination in Guangdong Province.With two writing tasks being set as assessment,task one requires students to summarise Chinese language information into five English sentences while the

  9. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Directory of Open Access Journals (Sweden)

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  10. High-accuracy current measurement with low-cost shunts by means of dynamic error correction

    OpenAIRE

    Weßkamp, Patrick; Melbert, Joachim

    2016-01-01

    Measurement of electrical current is often performed by using shunt resistors. Thermal effects due to self-heating and ambient temperature variation limit the achievable accuracy, especially if low-cost shunt resistors with increased temperature coefficients are utilized. In this work, a compensation method is presented which takes static and dynamic temperature drift effects into account and provides a significant reduction of measurement error. A thermal model of the shunt...

  11. Negative refraction in photonic crystals

    OpenAIRE

    Baba, T.; Matsumoto, T.; Asatsuma, T.

    2008-01-01

    Photonic crystals are multidimensional periodic gratings, in which the light propagation is dominated by Bragg diffraction that appears to be refraction at the flat surfaces of the crystals. The refraction angle from positive to negative, perfectly or only partially obeying Snell’s law, can be tailored based on photonic band theory. Negative refraction enables novel prism, collimation, and lens effects. Because photonic crystals usually consist of two transparent media, these effects occur at...

  12. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  13. Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps

    Science.gov (United States)

    Zlinszky, A.; Kania, A.

    2016-06-01

    Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.

  14. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  15. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  16. Wave refraction studies off Agonda beach (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumar, V.; Pathak, M.C.; Kotnala, K.L.

    Analysis of wave refraction and longshore current has been carried out for a narrow strip off the shores of Agonda (Goa, India). Zones with high wave energy and rip currents have been demarcated. It is found from the analysis that the southern part...

  17. Causality, Nonlocality, and Negative Refraction.

    Science.gov (United States)

    Forcella, Davide; Prada, Claire; Carminati, Rémi

    2017-03-31

    The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.

  18. Colored Flag by Double Refraction.

    Science.gov (United States)

    Reid, Bill

    1994-01-01

    Describes various demonstrations that illustrate double refraction and rotation of the plane of polarization in stressed, transparent plastics, with the consequent production of colored designs. (ZWH)

  19. High-resolution seismic reflection/refraction images near the outer margin of the Chesapeake Bay impact crater, York-James Peninsula, southeastern Virginia

    Science.gov (United States)

    Catchings, R.D.; Saulter, D.E.; Powars, D.S.; Goldman, M.R.; Dingler, J.A.; Gohn, G.S.; Schindler, J.S.; Johnson, G.H.

    2001-01-01

    faults and fractures in basement are not well determined. To better determine some of the unknowns associated with the CBIC, we conducted a 350-m-long, high-resolution seismic reflection and refraction survey, referred to here as the CBIC-1 seismic survey, on the York-James Peninsula in June 1999. In particular, we attempted to: better define the outer margin of the CBIC, understand lateral variations in the stratigraphic sequence, help assess potential hazards associated with regional seismicity, and determine acquisition parameters needed for shallow-depth seismic imaging in the Chesapeake Bay area.

  20. Investigating the architecture of the Paganica Fault (2009 Mw 6.1 earthquake, central Italy) by integrating high-resolution multiscale refraction tomography and detailed geological mapping

    Science.gov (United States)

    Villani, F.; Improta, L.; Pucci, S.; Civico, R.; Bruno, P. P. G.; Pantosti, D.

    2017-01-01

    We present a 2-D subsurface image of the Paganica Fault from a high-resolution refraction tomography and detailed geological investigation carried out across part of the northwestern segment of the 20-km-long Paganica-San Demetrio fault-system, and which was responsible of the 2009 April 6 Mw 6.1 L'Aquila earthquake (central Italy). We acquired two seismic profiles crossing the Paganica basin with a dense-wide aperture configuration. More than 30 000 P wave first-arrival traveltimes were input to a non-linear tomographic inversion. The obtained 250-300 m deep 2-D Vp images illuminate the shallow portion of the Paganica Fault, and depict additional unreported splays defining a complex half-graben structure. We interpret local thickening of low-Vp (tectonic clastic wedges above a high-Vp (3800-5000 m s-1) carbonate basement. These results are condensed in a 4.2-km-long section across the Paganica basin, clearly indicating that the Paganica Fault is a mature normal fault cutting the whole upper ˜10 km of the crust. We evaluate a minimum cumulative net displacement of 650 ± 90 m and a total heave of 530 ± 65 m accomplished by the Paganica Fault, respectively. In the conservative hypothesis that the extension started during the Gelasian (1.80-2.59 Ma), we obtain a minimum long-term slip-rate of 0.30 ± 0.07 mm yr-1 and an extension-rate of 0.25 ± 0.06 mm yr-1, respectively. Considering the regional averaged extensional field of ˜1 mm yr-1 obtained from geodetic and geological analyses at 104 yr timescale, we infer that the Paganica Fault accounts for ˜20 per cent of the NE-extension affecting this zone of the central Apennines axis due to the concurrent activity of other parallel normal fault-systems nearby (e.g. the Liri, Velino-Magnola, L'Aquila-Celano and Gran Sasso fault-systems).

  1. Measurement of refractive index of single microparticles

    CERN Document Server

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H; Knoener, Gregor; Parkin, Simon; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2006-01-01

    The refractive index of single microparticles is derived from precise measurement and rigorous modeling of the stiffness of a laser trap. We demonstrate the method for particles of four different materials with diameters from 1.6 to 5.2 microns and achieve an accuracy of better than 1%. The method greatly contributes as a new characterization technique because it works best under conditions (small particle size, polydispersion) where other methods, such as absorption spectroscopy, start to fail. Particles need not be transferred to a particular fluid, which prevents particle degradation or alteration common in index matching techniques. Our results also show that advanced modeling of laser traps accurately reproduces experimental reality.

  2. Negative refraction and positive refraction are not Lorentz covariant

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, Tom G., E-mail: T.Mackay@ed.ac.u [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)] [NanoMM - Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Lakhtakia, Akhlesh, E-mail: akhlesh@psu.ed [NanoMM - Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)

    2009-12-28

    Refraction into a half-space occupied by a pseudochiral omega material moving at constant velocity was studied by directly implementing the Lorentz transformations of electric and magnetic fields. Numerical studies revealed that negative refraction, negative phase velocity and counterposition are not Lorentz-covariant phenomenons in general.

  3. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  4. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.

    Science.gov (United States)

    Kubendran, Rajkumar; Lee, Seulki; Mitra, Srinjoy; Yazicioglu, Refet Firat

    2014-04-01

    Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock. For each case, the error in determining pole parameters (resistance and capacitance) is derived and compared. An error correction algorithm is proposed for square wave demodulation which reduces the peak estimation error from 9.3% to 1.3% for a simple tissue model. Simulation results in Matlab using ideal RC values show an average accuracy of for single pole and for two pole RC networks. Measurements using ideal components for a single pole model gives an overall and readings from saline phantom solution (primarily resistive) gives an . A Figure of Merit is derived based on ability to accurately resolve multiple poles in unknown impedance with minimal measurement points per decade, for given frequency range and supply current budget. This analysis is used to arrive at an optimal tradeoff between accuracy and power. Results indicate that the algorithm is generic and can be used for any application that involves resolving poles of an unknown impedance. It can be implemented as a post-processing technique for error correction or even incorporated into wearable signal monitoring ICs.

  5. A High-accuracy Approach to Pronunciation Prediction for Out-of-vocabulary English Word

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; CHEN Gui-lin; XU Liang-xian

    2005-01-01

    Letter-to-Sound conversion is one of the fundamental issues in text-to-speech synthesis. In this paper, we address an approach to automatic prediction of word pronunciation. This approach combines example-based learning and dynamic-programming searching to predict sub-word pronunciation. Word pronunciation is formed by concatenating sub-word pronunciations. We conducted comparative experiments over a large-scale English dictionary. Experimental results show that this approach can achieve accuracy of 70.1%, which outperforms those published results.

  6. High accuracy wavelength locking of a DFB laser using tunable polarization interference filter

    Institute of Scientific and Technical Information of China (English)

    Xiyao Chen(陈曦曜); Jianping Xie(谢建平); Tianpeng Zhao(赵天鹏); Hai Ming(明海); Anting Wang(王安廷); Wencai Huang(黄文财); Liang Lü(吕亮); Lixin Xu(许立新)

    2003-01-01

    A temperature-tunable polarization interference filter (PIF) made of YVO4 crystal has been presented and applied for wavelength locking of a distributed feedback (DFB) semiconductor laser in dense wavelength-division-multiplexing (DWDM) optical communication systems. This new design offers a flexible way to monitor and then lock an operating wavelength of DFB laser to any preselected point without dead spots.The results show that the laser wavelength can be locked with accuracy better than ±0.01 nm with much relaxed requirement on temperature stability of the filter.

  7. High-accuracy mass determination of unstable cesium and barium isotopes

    CERN Document Server

    Ames, F; Beck, D; Bollen, G; De Saint-Simon, M; Jertz, R; Kluge, H J; Kohl, A; König, M; Lunney, M D; Martel, I; Moore, R B; Otto, T; Patyk, Z; Raimbault-Hartmann, H; Rouleau, G; Savard, G; Schark, E; Schwarz, S; Schweikhard, L; Stolzenberg, H; Szerypo, J

    1999-01-01

    Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\\delta \\mbox{m} \\approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.

  8. High-accuracy mass determination of neutron-rich rubidium and strontiumiIsotopes

    CERN Document Server

    Raimbault-Hartmann, H; Beck, D; Bollen, G; De Saint-Simon, M; Kluge, H J; König, M; Moore, R B; Schwarz, S; Savard, G; Szerypo, J

    2002-01-01

    The penning-trap mass spectrometer ISOLTRAP, installed at the on-line isotope separator ISOLDE at CERN, has been used to measure atomic masses of $^{88,89,90m,91,92,93,94}$Rb and $^{91- 95}$Sr. Using a resolving power of R $\\!\\scriptstyle\\approx$1 million a mass accuracy of typically 10 keV was achieved for all nuclides. Discrepancies with older data are analyzed and discussed, leading to corrections to those data. Together with the present ISOLTRAP data these corrected data have been used in the general mass adjustment.

  9. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  10. High-Accuracy Tracking Control of Robot Manipulators Using Time Delay Estimation and Terminal Sliding Mode

    Directory of Open Access Journals (Sweden)

    Maolin Jin

    2011-09-01

    Full Text Available A time delay estimation based general framework for trajectory tracking control of robot manipulators is presented. The controller consists of three elements: a time‐delay‐estimation element that cancels continuous nonlinearities of robot dynamics, an injecting element that endows desired error dynamics, and a correcting element that suppresses residual time delay estimation error caused by discontinuous nonlinearities. Terminal sliding mode is used for the correcting element to pursue fast convergence of the time delay estimation error. Implementation of proposed control is easy because calculation of robot dynamics including friction is not required. Experimental results verify high‐accuracy trajectory tracking of industrial robot manipulators.

  11. High-Accuracy Tracking Using Ultrawideband Signals for Enhanced Safety of Cyclists

    Directory of Open Access Journals (Sweden)

    Davide Dardari

    2017-01-01

    Full Text Available In this paper, an ultrawideband localization system to improve the cyclists’ safety is presented. The architectural solutions proposed consist of tags placed on bikes, whose positions have to be estimated, and anchors, acting as reference nodes, located at intersections and/or on vehicles. The peculiarities of the localization system in terms of accuracy and cost enable its adoption with enhanced risk assessment units situated on the infrastructure/vehicle, depending on the architecture chosen, as well as real-time warning to the road users. Experimental results reveal that the localization error, in both static and dynamic conditions, is below 50 cm in most of the cases.

  12. An Exploration of the Visual Refractive Status, Perceptual Abilities, and Efficiency Skills of High School Credit Recovery Students and GED/HiSet Participants

    Directory of Open Access Journals (Sweden)

    Breanne McGhee, BS

    2015-09-01

    Full Text Available Background: Vision is not often explored as a confounding variable in the case of academically at-risk individuals. While there are educational options for these at-risk students, vision anomalies are not taken into account as a possible culprit for poor academic performance. The goal of this study was to identify any significant relationships between the vision (refractive error, perceptual or information processing skills, and efficiency skills and educational performances of credit recovery and GED/HiSet students. Methods: A total of 21 participants served as subjects. The sample consisted of students enrolled or who participated previously in GED/HiSet programs and credit recovery high school programs. Research subjects participated in the survey anonymously through an online link that was provided on study recruitment flyers. The survey was created in a Google Form document format, allowing individuals only one response submission. The survey included 52 closed-ended questions that were divided into three individual sections (visual, perceptual, and educational. Results: The survey was completed by 12 credit recovery and 9 GED/HiSet students. More than 70% of both groups reported never having a full comprehensive vision exam. All 21 participants reported that a vision examination was not recommended after their reduced academic performances were noted or prior to their enrollment into their selected programs. Significance was found with visual sequential memory and visual attention (p<0.05. Almost 50% of both groups reported difficulty with visual discrimination. There was asymmetry between both groups regarding visual spatial skills, where GED/HiSet participants reported more difficulty. Both credit recovery and GED/HiSet groups reported experiencing headaches after extended periods of reading. Conclusions: The role of optometrists extends beyond the clinic into classrooms and academic settings. The results of this study showed significant

  13. Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere

    Directory of Open Access Journals (Sweden)

    H. Luce

    2007-02-01

    Full Text Available Many experimental studies have demonstrated that VHF Stratosphere-Troposphere (ST radar echo power is proportional to the generalized refractive index gradient squared M2 when using a vertically oriented beam. Because humidity is generally negligible above the tropopause, VHF ST radars can thus provide information on the static stability (quantified by the squared Brunt-Väisälä frequency N2 at stratospheric heights and this capability is useful for many scientific applications. Most studies have been performed until now at a vertical resolution of 150 m or more. In the present paper, results of comparisons between radar- and (balloon borne radiosonde-derived M2 and N2 are shown at a better vertical resolution of 50 m with the MU radar (34.85° N, 136.15° E; Japan by benefiting from the range resolution improvement provided by the multi-frequency range imaging technique, using the Capon processing method. Owing to favorable winds in the troposphere, the radiosondes did not drift horizontally more than about 30 km from the MU radar site by the time they reached an altitude of 20 km. The measurements were thus simultaneous and almost collocated. Very good agreements have been obtained between both high resolution profiles of M2, as well as profiles of N2. It is also shown that this agreement can still be improved by taking into account a frozen-in advection of the air parcels by a horizontally uniform wind. Therefore, it can be concluded that 1 the range imaging technique with the Capon method really provides substantial range resolution improvement, despite the relatively weak Signal-to-Noise Ratios (SNR over the analyzed region of the lower stratosphere, 2 the proportionality of the radar echo power to M2 at a vertical scale down to 50 m in the lower stratosphere is experimentally demonstrated, 3 the MU radar can

  14. On the performance quantification of resonant refractive index sensors

    National Research Council Canada - National Science Library

    Ian M. White; Xudong Fan

    2008-01-01

    Refractive index (RI) sensors based on optical resonance techniques are receiving a high degree of attention because of the need to develop simple, low-cost, high-throughput detection technologies for a number of applications...

  15. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  16. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    Science.gov (United States)

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  17. Axis-Exchanged Compensation and Gait Parameters Analysis for High Accuracy Indoor Pedestrian Dead Reckoning

    Directory of Open Access Journals (Sweden)

    Honghui Zhang

    2015-01-01

    Full Text Available Pedestrian dead reckoning (PDR is an effective way for navigation coupled with GNSS (Global Navigation Satellite System or weak GNSS signal environment like indoor scenario. However, indoor location with an accuracy of 1 to 2 meters determined by PDR based on MEMS-IMU is still very challenging. For one thing, heading estimation is an important problem in PDR because of the singularities. For another thing, walking distance estimation is also a critical problem for pedestrian walking with randomness. Based on the above two problems, this paper proposed axis-exchanged compensation and gait parameters analysis algorithm to improve the navigation accuracy. In detail, an axis-exchanged compensation factored quaternion algorithm is put forward first to overcome the singularities in heading estimation without increasing the amount of computation. Besides, real-time heading is updated by R-adaptive Kalman filter. Moreover, gait parameters analysis algorithm can be divided into two steps: cadence detection and step length estimation. Thus, a method of cadence classification and interval symmetry is proposed to detect the cadence accurately. Furthermore, a step length model adjusted by cadence is established for step length estimation. Compared to the traditional PDR navigation, experimental results showed that the error of navigation reduces 32.6%.

  18. Refractive Index of Fly Rhabdomeres

    NARCIS (Netherlands)

    Stavenga, D.G.

    1974-01-01

    The refractive index reported previously for the rhabdomeres of flies (1.349) has been corrected for waveguide effects. The presented correction method has yielded n1 = 1.365 ± 0.006. It is argued that an acceptable estimate for the refractive index of the inhomogeneous surroundings of fly

  19. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications.......A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing...... a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented...

  20. Brief Report: Face Configuration Accuracy and Processing Speed Among Adults with High-Functioning Autism Spectrum Disorders

    OpenAIRE

    Faja, Susan; Webb, Sara Jane; Merkle, Kristen; Aylward, Elizabeth; Dawson, Geraldine

    2008-01-01

    The present study investigates the accuracy and speed of face processing employed by high-functioning adults with autism spectrum disorders (ASDs). Two behavioral experiments measured sensitivity to distances between features and face recognition when performance depended on holistic versus featural information. Results suggest adults with ASD were less accurate, but responded as quickly as controls for both tasks. In contrast to previous findings with children, adults with ASD demonstrated a...