WorldWideScience

Sample records for high accuracy elevation

  1. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Guy Jean-Pierre Schumann

    2016-01-01

    Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  2. High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry

    Science.gov (United States)

    Schumann, Guy; Moller, Delwyn; Mentgen, Felix

    2015-12-01

    Digital elevation models (DEMs) are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.

  3. High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data

    Science.gov (United States)

    Lee, Seung-Kuk; Ryu, Joo-Hyung

    2017-01-01

    This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.

  4. Investigation of the Accuracy of Google Earth Elevation Data

    Science.gov (United States)

    El-Ashmawy, Khalid L. A.

    2016-09-01

    Digital Elevation Models (DEMs) comprise valuable source of elevation data required for many engineering applications. Contour lines, slope - aspect maps are part of their many uses. Moreover, DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally-produced relief maps. This paper proposes a method of generating DEM by using Google Earth elevation data which is easier and free. The case study consisted of three different small regions in the northern beach in Egypt. The accuracy of the Google earth derived elevation data are reported using root mean square error (RMSE), mean error (ME) and maximum absolute error (MAE). All these accuracy statistics were computed using the ground coordinates of 200 reference points for each region of the case study. The reference data was collected with total station survey. The results showed that the accuracies for the prepared DEMs are suitable for some certain engineering applications but inadequate to meet the standard required for fine/small scale DEM for very precise engineering study. The obtained accuracies for terrain with small height difference can be used for preparing large area cadastral, city planning, or land classification maps. In general, Google Earth elevation data can be used only for investigation and preliminary studies with low cost. It is strongly concluded that the users of Google Earth have to test the accuracy of elevation data by comparing with reference data before using it.

  5. Accuracy Assessment of Digital Elevation Models Using GPS

    Science.gov (United States)

    Farah, Ashraf; Talaat, Ashraf; Farrag, Farrag A.

    2008-01-01

    A Digital Elevation Model (DEM) is a digital representation of ground surface topography or terrain with different accuracies for different application fields. DEM have been applied to a wide range of civil engineering and military planning tasks. DEM is obtained using a number of techniques such as photogrammetry, digitizing, laser scanning, radar interferometry, classical survey and GPS techniques. This paper presents an assessment study of DEM using GPS (Stop&Go) and kinematic techniques comparing with classical survey. The results show that a DEM generated from (Stop&Go) GPS technique has the highest accuracy with a RMS error of 9.70 cm. The RMS error of DEM derived by kinematic GPS is 12.00 cm.

  6. Evaluation on the accuracy of digital elevation models

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    There is a growing interest in investigating the accuracy of digital elevation model (DEM). However people usually have an unbalanced view on DEM errors. They emphasize DEM sampling errors, but ignore the impact of DEM resolution and terrain roughness on the accuracy of terrain representation. This research puts forward the concept of DEM terrain representation error (Et) and then investigates the generation, factors, measurement and simulation of DEM terrain representation errors. A multi-resolution and multi-relief comparative approach is used as the major methodology in this research. The experiment reveals a quantitative relationship between the error and the variation of resolution and terrain roughness at a global level. Root mean square error (RMS Et) is regressed against surface profile curvature (V) and DEM resolution (R) at 10 resolution levels. It is found that the RMS Et may be expressed as RMS Et = (0.0061· V+ 0.0052) . R - 0.022·V +0.2415. This result may be very useful in forecasting DEM accuracy, as well as in determining the DEM resolution related to the accuracy requirement of particular application.

  7. Google Earth elevation data extraction and accuracy assessment for transportation applications.

    Science.gov (United States)

    Wang, Yinsong; Zou, Yajie; Henrickson, Kristian; Wang, Yinhai; Tang, Jinjun; Park, Byung-Jung

    2017-01-01

    Roadway elevation data is critical for a variety of transportation analyses. However, it has been challenging to obtain such data and most roadway GIS databases do not have them. This paper intends to address this need by proposing a method to extract roadway elevation data from Google Earth (GE) for transportation applications. A comprehensive accuracy assessment of the GE-extracted elevation data is conducted for the area of conterminous USA. The GE elevation data was compared with the ground truth data from nationwide GPS benchmarks and roadway monuments from six states in the conterminous USA. This study also compares the GE elevation data with the elevation raster data from the U.S. Geological Survey National Elevation Dataset (USGS NED), which is a widely used data source for extracting roadway elevation. Mean absolute error (MAE) and root mean squared error (RMSE) are used to assess the accuracy and the test results show MAE, RMSE and standard deviation of GE roadway elevation error are 1.32 meters, 2.27 meters and 2.27 meters, respectively. Finally, the proposed extraction method was implemented and validated for the following three scenarios: (1) extracting roadway elevation differentiating by directions, (2) multi-layered roadway recognition in freeway segment and (3) slope segmentation and grade calculation in freeway segment. The methodology validation results indicate that the proposed extraction method can locate the extracting route accurately, recognize multi-layered roadway section, and segment the extracted route by grade automatically. Overall, it is found that the high accuracy elevation data available from GE provide a reliable data source for various transportation applications.

  8. A geospatial framework for improving the vertical accuracy of elevation models in Florida's coastal Everglades

    Science.gov (United States)

    Cooper, H.; Zhang, C.; Sirianni, M.

    2016-12-01

    South Florida relies upon the health of the Everglades, the largest subtropical wetland in North America, as a vital source of water. Since the late 1800's, this imperiled ecosystem has been highly engineered to meet human needs of flood control and water use. The Comprehensive Everglades Restoration Plan (CERP) was initiated in 2000 to restore original water flows to the Everglades and improve overall ecosystem health, while also aiming to achieve balance with human water usage. Due to subtle changes in the Everglades terrain, better vertical accuracy elevation data are needed to model groundwater and surface water levels that are integral to monitoring the effects of restoration under impacts such as sea-level rise. The current best available elevation datasets for the coastal Everglades include High Accuracy Elevation Data (HAED) and Florida Department of Emergency Management (FDEM) Light Detection and Ranging (LiDAR). However, the horizontal resolution of the HAED data is too coarse ( 400 m) for fine scale mapping, and the LiDAR data does not contain an accuracy assessment for coastal Everglades' vegetation communities. The purpose of this study is to develop a framework for generating better vertical accuracy and horizontal resolution Digital Elevation Models in the Flamingo District of Everglades National Park. In the framework, field work is conducted to collect RTK GPS and total station elevation measurements for mangrove swamp, coastal prairies, and freshwater marsh, and the proposed accuracy assessment and elevation modeling methodology is integrated with a Geographical Information System (GIS). It is anticipated that this study will provide more accurate models of the soil substrate elevation that can be used by restoration planners to better predict the future state of the Everglades ecosystem.

  9. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  10. High accuracy flexural hinge development

    Science.gov (United States)

    Santos, I.; Ortiz de Zárate, I.; Migliorero, G.

    2005-07-01

    This document provides a synthesis of the technical results obtained in the frame of the HAFHA (High Accuracy Flexural Hinge Assembly) development performed by SENER (in charge of design, development, manufacturing and testing at component and mechanism levels) with EADS Astrium as subcontractor (in charge of doing an inventory of candidate applications among existing and emerging projects, establishing the requirements and perform system level testing) under ESA contract. The purpose of this project has been to develop a competitive technology for a flexural pivot, usuable in highly accurate and dynamic pointing/scanning mechanisms. Compared with other solutions (e.g. magnetic or ball bearing technologies) flexural hinges are the appropriate technology for guiding with accuracy a mobile payload over a limited angular ranges around one rotation axes.

  11. Assessment of Required Accuracy of Digital Elevation Data for Hydrologic Modeling

    Science.gov (United States)

    Kenward, T.; Lettenmaier, D. P.

    1997-01-01

    The effect of vertical accuracy of Digital Elevation Models (DEMs) on hydrologic models is evaluated by comparing three DEMs and resulting hydrologic model predictions applied to a 7.2 sq km USDA - ARS watershed at Mahantango Creek, PA. The high resolution (5 m) DEM was resempled to a 30 m resolution using method that constrained the spatial structure of the elevations to be comparable with the USGS and SIR-C DEMs. This resulting 30 m DEM was used as the reference product for subsequent comparisons. Spatial fields of directly derived quantities, such as elevation differences, slope, and contributing area, were compared to the reference product, as were hydrologic model output fields derived using each of the three DEMs at the common 30 m spatial resolution.

  12. Quantification of terrestrial laser scanner (TLS) elevation accuracy in oil palm plantation for IFSAR improvement

    Science.gov (United States)

    Muhadi, N. A.; Abdullah, A. F.; Kassim, M. S. M.

    2016-06-01

    In order to ensure the oil palm productivity is high, plantation site should be chosen wisely. Slope is one of the essential factors that need to be taken into consideration when doing a site selection. High quality of plantation area map with elevation information is needed for decision-making especially when dealing with hilly and steep area. Therefore, accurate digital elevation models (DEMs) are required. This research aims to increase the accuracy of Interferometric Synthetic Aperture Radar (IFSAR) by integrating Terrestrial Laser Scanner (TLS) to generate DEMs. However, the focus of this paper is to evaluate the z-value accuracy of TLS data and Real-Time Kinematic GPS (RTK-GPS) as a reference. Besides, this paper studied the importance of filtering process in developing an accurate DEMs. From this study, it has been concluded that the differences of z-values between TLS and IFSAR were small if the points were located on route and when TLS data has been filtered. This paper also concludes that laser scanner (TLS) should be set up on the route to reduce elevation error.

  13. Vertical Accuracy Comparison of Digital Elevation Model from LIDAR and Multitemporal Satellite Imagery

    Science.gov (United States)

    Octariady, J.; Hikmat, A.; Widyaningrum, E.; Mayasari, R.; Fajari, M. K.

    2017-05-01

    Digital elevation model serves to illustrate the appearance of the earth's surface. DEM can be produced from a wide variety of data sources including from radar data, LiDAR data, and stereo satellite imagery. Making the LiDAR DEM conducted using point cloud data from LiDAR sensor. Making a DEM from stereo satellite imagery can be done using same temporal or multitemporal stereo satellite imagery. How much the accuracy of DEM generated from multitemporal stereo stellite imagery and LiDAR data is not known with certainty. The study was conducted using LiDAR DEM data and multitemporal stereo satellite imagery DEM. Multitemporal stereo satellite imagery generated semi-automatically by using 3 scene stereo satellite imagery with acquisition 2013-2014. The high value given each of DEM serve as the basis for calculating high accuracy DEM respectively. The results showed the high value differences in the fraction of the meter between LiDAR DEM and multitemporal stereo satellite imagery DEM.

  14. Analysis of accuracy multi-source remote sensing techniques on high-precision digital elevation model reconstruction after Wenchuan earthquake%多源遥感技术在汶川震后高精度数字高程模型重建中的精度分析

    Institute of Scientific and Technical Information of China (English)

    沈强; 乔学军; 王琪; 杜瑞林; 谭凯

    2013-01-01

    After Wenchuan earthquake,the surface was destructed largely,especially in the epicenter area.Furthermore,many scientific activities carried out subsequently in the region also require the latest,high-precision digital elevation model as well,the reconstruction of digital elevation model is necessary.In this paper,to reconstruct of the high precision digital elevation model in the region,ALOS PRISM with the triplet stereo pairs,ALOS PALSAR radar images and ESA ENVISAT radar images will be integrated to generate a new high-resolution and high-accuracy DEM(Digital Elevation Model) on the basis of optical remote sensing,InSAR technique with integration of the global digital elevation model.The DEM has been generated at 15 m resolution.Accuracy assessment in measured elevations indicates that vertical accuracy of ALOS PRISM DEM is better than 10 meters (95% confidence level),better than 10 meters (95% confidence level) of ALOS PALSAR DEM,and The ENVSAT DEM accuracy is better than 20 meters (95% confidence level) in hills area using GPS data,which were measured in the Crustal Movement Observation Network of China project.The results reveal that ALOS PRISM can be use to produce highly accurate topographic map,ALOS PALSAR can still get high-precision digital elevation model in mountains,ENVISAT ASAR high accuracy in hill areas.Therefore,integration of optical and radar remote sensing technology entirely meets to produce high-precision,high-resolution digital elevation model,especially which is a good way in difficult areas.%汶川地震后,震中地区地表形态遭到很大破坏.在该地区开展科学研究急需高精度数字高程模型支持,重建震区数字高程模型十分必要.本文以高精度重建该地区数字高程模型为目标,综合ALOS PRISM获取的三轨立体像对、ALOS PALSAR雷达影像和欧空局发布的汶川地震ENVISAT雷达影像等资料,采用光学遥感立体测图技术、InSAR技术,并融合已有全球数字高程

  15. High Accuracy Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The ability of NICMOS to perform high accuracy polarimetry is currently hampered by an uncalibrated residual instrumental polarization at a level of 1.2-1.5%. To better quantify and characterize this residual we obtained observations of three polarimetric standard stars at three separate space-craft roll angles. Combined with archival data, these observations were used to characterize the residual instrumental polarization to enable NICMOS to reach its full polarimetric potential. Using these data, we calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, dominate the accuracy of p and theta. However, the new coefficients now enable imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15 degrees.

  16. High accuracy FIONA-AFM hybrid imaging.

    Science.gov (United States)

    Fronczek, D N; Quammen, C; Wang, H; Kisker, C; Superfine, R; Taylor, R; Erie, D A; Tessmer, I

    2011-04-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes.

  17. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  18. Assessing accuracy in varying Lidar data point densities in Digital Elevation Maps

    OpenAIRE

    Anderson, Brian C.

    2008-01-01

    This thesis discusses the production of Digital Elevation Maps (DEM) using varying density of data points from a Lidar (Laser or Light Detection And Ranging) collection. Additionally, this thesis contains information on the multiple space missions that use laser altimetry or Lidar to gather data about planet earth, the moon, asteroids, Mars and Mercury. The thesis covers the accuracy of different amounts of data used when generating a DEM in Quick Terrain Modeler software package and the ...

  19. Accident Safety Design for High Speed Elevator

    Directory of Open Access Journals (Sweden)

    Tawiwat Veeraklaew

    2012-12-01

    Full Text Available There have been many elevators exist in buildings for such a long time; however, an accident might happen as a free fall due to lacks of maintenance or some other accident such as firing. Although this situation is rarely occurred, many people are still concerned about it. The question here is how to make passengers to feel safe and confident when they are using an elevator, especially, high speed elevator. This problem is studied here in this paper as a free fall spring-mass-damper system with the stiffness and damping coefficient can be computed as minimum jerk of the system with given constraints on trajectories.

  20. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...

  1. Computing High Accuracy Power Spectra with Pico

    CERN Document Server

    Fendt, William A

    2007-01-01

    This paper presents the second release of Pico (Parameters for the Impatient COsmologist). Pico is a general purpose machine learning code which we have applied to computing the CMB power spectra and the WMAP likelihood. For this release, we have made improvements to the algorithm as well as the data sets used to train Pico, leading to a significant improvement in accuracy. For the 9 parameter nonflat case presented here Pico can on average compute the TT, TE and EE spectra to better than 1% of cosmic standard deviation for nearly all $\\ell$ values over a large region of parameter space. Performing a cosmological parameter analysis of current CMB and large scale structure data, we show that these power spectra give very accurate 1 and 2 dimensional parameter posteriors. We have extended Pico to allow computation of the tensor power spectrum and the matter transfer function. Pico runs about 1500 times faster than CAMB at the default accuracy and about 250,000 times faster at high accuracy. Training Pico can be...

  2. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment

    Directory of Open Access Journals (Sweden)

    A. J. Cook

    2012-10-01

    Full Text Available A high resolution surface topography Digital Elevation Model (DEM is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S, based on ASTER Global Digital Elevation Model (GDEM data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM, and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (增城市GPS高程拟合精度研究%The Research of Zengcheng GPS Elevation Fitting Accuracy

    Institute of Scientific and Technical Information of China (English)

    史经

    2012-01-01

    The principle of GPS elevation measurements and methods of a preliminary study,combined with the city's application of GPS height measurement of the actual,with the cubic polynomial surface fitting method,within the county to establish a mathematical model height anomaly.And method of using a regression model fitting model estimated the reliability of the final fitting out of the normal high-accuracy elevation to meet the requirements of digital aerial,fitting elevation in the southern plains to reach the fourth-level accuracy.%对GPS高程测量的原理和方法进行了初步的探讨,并结合增城市GPS高程测量的应用实际,用三次多项式曲面拟合的方法,建立了县域范围内高程异常的数学模型。并采用一元回归模型方法推估拟合模型的可靠性,最后拟合出的正常高高程满足此次数字航测精度要求,在南部平原地区拟合高程达到了四等水准精度。

  3. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  4. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...

  5. STATISTICAL EVALUATION OF FITTING ACCURACY OF GLOBAL AND LOCAL DIGITAL ELEVATION MODELS IN IRAN

    Directory of Open Access Journals (Sweden)

    F. Alidoost

    2013-09-01

    Full Text Available Digital Elevation Models (DEMs are one of the most important data for various applications such as hydrological studies, topography mapping and ortho image generation. There are well-known DEMs of the whole world that represent the terrain's surface at variable resolution and they are also freely available for 99% of the globe. However, it is necessary to assess the quality of the global DEMs for the regional scale applications.These models are evaluated by differencing with other reference DEMs or ground control points (GCPs in order to estimate the quality and accuracy parameters over different land cover types. In this paper, a comparison of ASTER GDEM ver2, SRTM DEM with more than 800 reference GCPs and also with a local elevation model over the area of Iran is presented. This study investigates DEM’s characteristics such as systematic error (bias, vertical accuracy and outliers for DEMs using both the usual (Mean error, Root Mean Square Error, Standard Deviation and the robust (Median, Normalized Median Absolute Deviation, Sample Quantiles descriptors. Also, the visual assessment tools are used to illustrate the quality of DEMs, such as normalized histograms and Q-Q plots. The results of the study confirmed that there is a negative elevation bias of approximately 5 meters of GDEM ver2. The measured RMSE and NMAD for elevation differences of GDEM-GCPs are 7.1 m and 3.2 m, respectively, while these values for SRTM and GCPs are 9.0 m and 4.4 m. On the other hand, in comparison with the local DEM, GDEM ver2 exhibits the RMSE of about 6.7 m, a little higher than the RMSE of SRTM (5.1 m.The results of height difference classification and other statistical analysis of GDEM ver2-local DEM and SRTM-local DEM reveal that SRTM is slightly more accurate than GDEM ver2. Accordingly, SRTM has no noticeable bias and shift from Local DEM and they have more consistency to each other, while GDEM ver2 has always a negative bias.

  6. What's in an elevation difference? Accuracy and corrections of satellite elevation data sets for quantification of glacier changes

    Directory of Open Access Journals (Sweden)

    C. Nuth

    2010-10-01

    Full Text Available There is an increasing number of DEMs available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes impossible and statistical error modelling is required instead. We propose a three-step methodological framework for assessing and correcting DEMs to quantify glacier elevation changes: remove DEM shifts, check for elevation-dependent biases, and check for higher-order, sensor-specific biases. An analytic, simple and robust method to co-register elevation data is presented in regions where stable terrain is either plentiful (case study New Zealand or limited (case study Svalbard. The method is exemplified using the three global elevation data sets available, SRTM, ICESat and the ASTER GDEM, and with automatically generated DEMs from satellite stereo instruments of ASTER and SPOT5-HRS. After three-dimensional co-registration, significant biases related to elevation were found in some of the stereoscopic DEMs. Biases related to the satellite acquisition geometry (along/cross track were detected at two frequencies in the automatically generated ASTER DEMs. The higher frequency bias seems to be related to satellite emph{jitter}, most effective in the back-looking pass of the satellite. The origins of the more significant lower frequency bias is uncertain. ICESat-derived elevations are found to be the most consistent globally available elevation data set available so far. Before performing regional-scale glacier elevation change studies or mosaicking DEMs from multiple individual tiles (e.g. ASTER GDEM, we recommend to co-register all elevation data to ICESat as a global vertical reference system. The proposed methodological framework is exemplified for elevation changes on the Fox, Franz Joseph, Tasman and Murchison glaciers of New Zealand and the glaciers of central Spitsbergen, Svalbard.

  7. A SINGLE STEP SCHEME WITH HIGH ACCURACY FOR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    陈传淼; 胡志刚

    2001-01-01

    A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.

  8. High strain rate behavior of pure metals at elevated temperature

    Science.gov (United States)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  9. Methodology for high accuracy contact angle measurement.

    Science.gov (United States)

    Kalantarian, A; David, R; Neumann, A W

    2009-12-15

    A new version of axisymmetric drop shape analysis (ADSA) called ADSA-NA (ADSA-no apex) was developed for measuring interfacial properties for drop configurations without an apex. ADSA-NA facilitates contact angle measurements on drops with a capillary protruding into the drop. Thus a much simpler experimental setup, not involving formation of a complete drop from below through a hole in the test surface, may be used. The contact angles of long-chained alkanes on a commercial fluoropolymer, Teflon AF 1600, were measured using the new method. A new numerical scheme was incorporated into the image processing to improve the location of the contact points of the liquid meniscus with the solid substrate to subpixel resolution. The images acquired in the experiments were also analyzed by a different drop shape technique called theoretical image fitting analysis-axisymmetric interfaces (TIFA-AI). The results were compared with literature values obtained by means of the standard ADSA for sessile drops with the apex. Comparison of the results from ADSA-NA with those from TIFA-AI and ADSA reveals that, with different numerical strategies and experimental setups, contact angles can be measured with an accuracy of less than 0.2 degrees. Contact angles and surface tensions measured from drops with no apex, i.e., by means of ADSA-NA and TIFA-AI, were considerably less scattered than those from complete drops with apex. ADSA-NA was also used to explore sources of improvement in contact angle resolution. It was found that using an accurate value of surface tension as an input enhances the accuracy of contact angle measurements.

  10. The use of LIDAR as a data source for digital elevation models – a study of the relationship between the accuracy of digital elevation models and topographical attributes in northern peatlands

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2011-06-01

    Full Text Available It is important to study the factors affecting estimates of wetness since wetness is crucial in climate change studies. The availability of digital elevation models (DEMs generated with high resolution data is increasing, and their use is expanding. LIDAR earth elevation data have been used to create several DEMs with different resolutions, using various interpolation parameters, in order to compare the models with collected surface data. The aim is to study the accuracy of DEMs in relation to topographical attributes such as slope and drainage area, which are normally used to estimate the wetness in terms of topographic wetness indices. Evaluation points were chosen from the high-resolution LIDAR dataset at a maximum distance of 10 mm from the cell center for each DEM resolution studied, 0.5, 1, 5, 10, 30 and 90 m. The interpolation method used was inverse distance weighting method with four search radii: 1, 2, 5 and 10 m. The DEM was evaluated using a quantile-quantile test and the normalized median absolute deviation. The accuracy of the estimated elevation for different slopes was tested using the DEM with 0.5 m resolution. Drainage areas were investigated at three resolutions, with coinciding evaluation points. The ability of the model to generate the drainage area at each resolution was obtained by pairwise comparison of three data subsets.

    The results show that the accuracy of the elevations obtained with the DEM model are the same for different resolutions, but vary with search radius. The accuracy of the values (NMAD of errors varies from 29.7 mm to 88.9 mm, being higher for flatter areas. It was also found that the accuracy of the drainage area is highly dependent on DEM resolution. Coarse resolution yielded larger estimates of the drainage area but lower slope values. This may lead to overestimation of wetness values when using a coarse resolution DEM.

  11. High accuracy GNSS based navigation in GEO

    Science.gov (United States)

    Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André

    2017-07-01

    Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.

  12. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase II proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  13. Compact, High Accuracy CO2 Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop a low cost, robust, highly precise and accurate CO2 monitoring system. This system will...

  14. High speed high dynamic range high accuracy measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, Craig E.; Curry, Douglas E.; Dickson, Richard W.; Xie, Zaipeng

    2016-11-29

    A measuring system includes an input that emulates a bandpass filter with no signal reflections. A directional coupler connected to the input passes the filtered input to electrically isolated measuring circuits. Each of the measuring circuits includes an amplifier that amplifies the signal through logarithmic functions. The output of the measuring system is an accurate high dynamic range measurement.

  15. High accuracy in silico sulfotransferase models.

    Science.gov (United States)

    Cook, Ian; Wang, Ting; Falany, Charles N; Leyh, Thomas S

    2013-11-29

    Predicting enzymatic behavior in silico is an integral part of our efforts to understand biology. Hundreds of millions of compounds lie in targeted in silico libraries waiting for their metabolic potential to be discovered. In silico "enzymes" capable of accurately determining whether compounds can inhibit or react is often the missing piece in this endeavor. This problem has now been solved for the cytosolic sulfotransferases (SULTs). SULTs regulate the bioactivities of thousands of compounds--endogenous metabolites, drugs and other xenobiotics--by transferring the sulfuryl moiety (SO3) from 3'-phosphoadenosine 5'-phosphosulfate to the hydroxyls and primary amines of these acceptors. SULT1A1 and 2A1 catalyze the majority of sulfation that occurs during human Phase II metabolism. Here, recent insights into the structure and dynamics of SULT binding and reactivity are incorporated into in silico models of 1A1 and 2A1 that are used to identify substrates and inhibitors in a structurally diverse set of 1,455 high value compounds: the FDA-approved small molecule drugs. The SULT1A1 models predict 76 substrates. Of these, 53 were known substrates. Of the remaining 23, 21 were tested, and all were sulfated. The SULT2A1 models predict 22 substrates, 14 of which are known substrates. Of the remaining 8, 4 were tested, and all are substrates. The models proved to be 100% accurate in identifying substrates and made no false predictions at Kd thresholds of 100 μM. In total, 23 "new" drug substrates were identified, and new linkages to drug inhibitors are predicted. It now appears to be possible to accurately predict Phase II sulfonation in silico.

  16. High accuracy & long timescale light curves

    Directory of Open Access Journals (Sweden)

    Hodgkin S.

    2013-04-01

    Full Text Available We present a theoretical analysis of the optical light curves (LCs for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i reflected and thermally emitted light by the planet, (ii the ellipsoidal shape of the star due to the gravitational pull of the planet, and (iii the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet's albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii. can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet's mass. As an example we presend KOI-13b (candidate exoplanet system included in the September 2011 Kepler data release. The Kepler light curve shows both primary and secondary eclipses, as well as significant out-of-eclipse light curve variations. We model the relative contributions from (i thermal emission from the companion, (ii planetary reflected light, (iii doppler beaming, and (iv ellipsoidal variations in the host-star arising from the tidal distortion of the host star by its companion. Our analysis, based on the light curve alone, enables us to constrain the mass of the KOI-13.01 companion to be MC = 8.3 ± 1.25 MJ and thus demonstrates that the transiting companion is a planet. The teqnique is useful for current and future space missions such as Kepler and PLATO.

  17. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  18. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    Science.gov (United States)

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  19. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    Directory of Open Access Journals (Sweden)

    Qingzhong Cai

    2016-06-01

    Full Text Available An inertial navigation system (INS has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs using common turntables, has a great application potential in future atomic gyro INSs.

  1. Heat shock response and mammal adaptation to high elevation (hypoxia)

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaolin; XU Cunshuan; WANG Xiujie; WANG Dongjie; WANG Qingshang; ZHANG Baochen

    2006-01-01

    The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2)From low elevation to high elevation (hypoxia induction):The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.

  2. Progesterone elevation does not compromise pregnancy rates in high responders

    DEFF Research Database (Denmark)

    Griesinger, Georg; Mannaerts, Bernadette; Andersen, Claus Yding

    2013-01-01

    To compare the impact of elevated P during the late follicular phase on the chance of pregnancy in low, normal, and high responders.......To compare the impact of elevated P during the late follicular phase on the chance of pregnancy in low, normal, and high responders....

  3. Plastic responses to elevated temperature in low and high elevation populations of three grassland species.

    Directory of Open Access Journals (Sweden)

    Esther R Frei

    Full Text Available Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l. of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.

  4. Mapping Topography Changes and Elevation Accuracies Using a Mobile Laser Scanner

    Directory of Open Access Journals (Sweden)

    Harri Kaartinen

    2011-03-01

    Full Text Available Laser measurements have been used in a fluvial context since 1984, but the change detection possibilities of mobile laser scanning (MLS for riverine topography have been lacking. This paper demonstrates the capability of MLS in erosion change mapping on a test site located in a 58 km-long tributary of the River Tenojoki (Tana in the sub-arctic. We used point bars and river banks as example cases, which were measured with the mobile laser scanner ROAMER mounted on a boat and on a cart. Static terrestrial laser scanner data were used as reference and we exploited a difference elevation model technique for describing erosion and deposition areas. The measurements were based on data acquisitions during the late summer in 2008 and 2009. The coefficient of determination (R2 of 0.93 and a standard deviation of error 3.4 cm were obtained as metrics for change mapping based on MLS. The root mean square error (RMSE of MLS‑based digital elevation models (DEM for non-vegetated point bars ranged between 2.3 and 7.6 cm after correction of the systematic error. For densely vegetated bank areas, the ground point determination was more difficult resulting in an RMSE between 15.7 and 28.4 cm.

  5. High Accuracy Wavelength Calibration For A Scanning Visible Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Filippo Scotti and Ronald Bell

    2010-07-29

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies ≤ 0.2Â. An automated calibration for a scanning spectrometer has been developed to achieve a high wavelength accuracy overr the visible spectrum, stable over time and environmental conditions, without the need to recalibrate after each grating movement. The method fits all relevant spectrometer paraameters using multiple calibration spectra. With a steping-motor controlled sine-drive, accuracies of ~0.025 Â have been demonstrated. With the addition of high resolution (0.075 aresec) optical encoder on the grading stage, greater precision (~0.005 Â) is possible, allowing absolute velocity measurements with ~0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  6. Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey

    Directory of Open Access Journals (Sweden)

    Stefan Erasmi

    2014-10-01

    Full Text Available Satellite remote sensing provides a powerful instrument for mapping and monitoring traces of historical settlements and infrastructure, not only in distant areas and crisis regions. It helps archaeologists to embed their findings from field surveys into the broader context of the landscape. With the start of the TanDEM-X mission, spatially explicit 3D-information is available to researchers at an unprecedented resolution worldwide. We examined different experimental TanDEM-X digital elevation models (DEM that were processed from two different imaging modes (Stripmap/High Resolution Spotlight using the operational alternating bistatic acquisition mode. The quality and accuracy of the experimental DEM products was compared to other available DEM products and a high precision archaeological field survey. The results indicate the potential of TanDEM-X Stripmap (SM data for mapping surface elements at regional scale. For the alluvial plain of Cilicia, a suspected palaeochannel could be reconstructed. At the local scale, DEM products from TanDEM-X High Resolution Spotlight (HS mode were processed at 2 m spatial resolution using a merge of two monostatic/bistatic interferograms. The absolute and relative vertical accuracy of the outcome meet the specification of high resolution elevation data (HRE standards from the National System for Geospatial Intelligence (NSG at the HRE20 level.

  7. Influence of spatial temperature distribution on high accuracy interferometric metrology

    Science.gov (United States)

    Gu, Yongqiang; Miao, Erlong; Yan, Feng; Zhang, Jian; Yang, Huaijiang

    2010-10-01

    We calculate the influence of temperature change on the refractive index of air, establish a model of air temperature distribution and analyze the effect of different temperature distribution on the high accuracy interferometric metrology. First, a revised Edlen formula is employed to acquire the relation between temperature and refractive index of air, followed by introducing the fixed temperature gradient distribution among the spatial grid within the optical cavity between the reference flat and the test flat of the Fizeau interferometer, accompanied by a temperature change random function within each grid. Finally, all the rays through the air layer with different incident angles are traced by Matlab program in order to obtain the final output position, angle and OPD for each ray. The influence of different temperature distribution and the length of the optical cavity in on the testing accuracy can be analyzed through the RMS value that results from repeatable rays tracing. As a result, the horizontal distribution (vertical to optical axis) has a large effect on the testing accuracy. Thus, to realize the high accuracy figure metrology, the horizontal distribution of temperature must be rigorously controlled as well as to shorten the length of the optical cavity to a large extent. The results from our simulation are of great significant for the accuracy analysis of interferometric testing and the research of manufacturing a interferometer.

  8. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  9. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  10. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate lligh

  11. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1998-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with realtime information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate flight

  12. DIPSY, a low-cost GPS application with high accuracy

    NARCIS (Netherlands)

    Heijden, W.F.M. van der

    1999-01-01

    To improve the control of unmanned aircraft flying out of visual range, the controller needs to be provided with real-time information about the position and behaviour of the drone during the flight. The position of the drone has to be presented with a relative high accuracy to obtain accurate

  13. Compensation of motion error in a high accuracy AFM

    Science.gov (United States)

    Cui, Yuguo; Arai, Yoshikazu; He, Gaofa; Asai, Takemi; Gao, Wei

    2008-10-01

    An atomic force microscope (AFM) system is used for large-area measurement with a spiral scanning strategy, which is composed of an air slide, an air spindle and a probe unit. The motion error which is brought from the air slide and the air spindle will increase with the increasing of the measurement area. Then the measurement accuracy will decrease. In order to achieve a high speed and high accuracy measurement, the probe scans along X-direction with constant height mode driven by the air slide, and at the same time, based on the change way of the motion error, it moves along Zdirection conducted by piezoactuator. According to the above method of error compensation, the profile measurement experiment of a micro-structured surface has been carried out. The experimental result shows that this method is effective for eliminating motion error, and it can achieve high speed and precision measurement of micro-structured surface.

  14. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  15. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Michael Korenberg

    2012-08-01

    Full Text Available In both military and civilian applications, the inertial navigation system (INS and the global positioning system (GPS are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  16. Why is a high accuracy needed in dosimetry. [Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lanzl, L.H.

    1976-01-01

    Dose and exposure intercomparisons on a national or international basis have become an important component of quality assurance in the practice of good radiotherapy. A high degree of accuracy of ..gamma.. and x radiation dosimetry is essential in our international society, where medical information is so readily exchanged and used. The value of accurate dosimetry lies mainly in the avoidance of complications in normal tissue and an optimal degree of tumor control.

  17. Navigation message designing with high accuracy for NAV

    Institute of Scientific and Technical Information of China (English)

    Wang Luxiao; Huang Zhigang; Zhao Yun

    2014-01-01

    Navigation message designing with high accuracy guarantee is the key to efficient navi-gation message distribution in the global navigation satellite system (GNSS). Developing high accu-racy-aware navigation message designing algorithms is an important topic. This paper investigates the high-accuracy navigation message designing problem with the message structure unchanged. The contributions made in this paper include a heuristic that employs the concept of the estimated range deviation (ERD) to improve the existing well-known navigation message on L1 frequency (NAV) of global positioning system (GPS) for good accuracy service; a numerical analysis approximation method (NAAM) to evaluate the range error due to truncation (RET) of different navigation messages; and a basic positioning parameters designing algorithm in the limited space allocation. Based on the predicted ultra-rapid data from the ultra-rapid data from the international GPS service for geodynamic (IGU), ERDs are generated in real time for error correction. Simulations show that the algorithms developed in this paper are general and flexible, and thus are applicable to NAV improvement and other navigation message designs.

  18. The conservation value of elevation data accuracy and model sophistication in reserve design under sea-level rise.

    Science.gov (United States)

    Zhu, Mingjian; Hoctor, Tom; Volk, Mike; Frank, Kathryn; Linhoss, Anna

    2015-10-01

    Many studies have explored the value of using more sophisticated coastal impact models and higher resolution elevation data in sea-level rise (SLR) adaptation planning. However, we know little about to what extent the improved models and data could actually lead to better conservation outcomes under SLR. This is important to know because high-resolution data are likely to not be available in some data-poor coastal areas in the world and running more complicated coastal impact models is relatively time-consuming, expensive, and requires assistance by qualified experts and technicians. We address this research question in the context of identifying conservation priorities in response to SLR. Specifically, we investigated the conservation value of using more accurate light detection and ranging (Lidar)-based digital elevation data and process-based coastal land-cover change models (Sea Level Affecting Marshes Model, SLAMM) to identify conservation priorities versus simple "bathtub" models based on the relatively coarse National Elevation Dataset (NED) in a coastal region of northeast Florida. We compared conservation outcomes identified by reserve design software (Zonation) using three different model dataset combinations (Bathtub-NED, Bathtub-Lidar, and SLAMM-Lidar). The comparisons show that the conservation priorities are significantly different with different combinations of coastal impact models and elevation dataset inputs. The research suggests that it is valuable to invest in more accurate coastal impact models and elevation datasets in SLR adaptive conservation planning because this model-dataset combination could improve conservation outcomes under SLR. Less accurate coastal impact models, including ones created using coarser Digital Elevation Model (DEM) data can still be useful when better data and models are not available or feasible, but results need to be appropriately assessed and communicated. A future research priority is to investigate how

  19. The accuracy of the functional movement screen to identify individuals with an elevated risk of musculoskeletal injury.

    Science.gov (United States)

    Krumrei, Kirk; Flanagan, Molly; Bruner, Josh; Durall, Chris

    2014-11-01

    Injuries are somewhat commonplace in highly active populations. One strategy for reducing injuries is to identify individuals with an elevated injury risk before participation so that remediative interventions can be provided. Preparticipation screenings have traditionally entailed strength and flexibility measures thought to be indicative of inflated injury risk. Some researchers, however, have suggested that functional movements/tasks should be assessed to help identify individuals with a high risk of future injury. One assessment tool used for this purpose is the Functional Movement Screen (FMS). The FMS generates a numeric score based on performance attributes during 7 dynamic tasks; this score is purported to reflect future injury risk. Expanding interest in the FMS has led researchers to investigate how accurately it can identify individuals with an increased risk of injury. Can the Functional Movement Screen accurately identify highly active individuals with an elevated risk of injury?

  20. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  1. The Reliability of Highly Elevated CA 19-9 Levels

    Directory of Open Access Journals (Sweden)

    B. R. Osswald

    1993-01-01

    Full Text Available CA 19-9 is used as a tumour marker of the upper gastrointestinal tract. However, extremely elevated CA 19-9 levels are found also in patients with benign diseases. Cholestasis was present in 97.1 % of patients with high elevated CA 19-9, independent of their primary disease. 50% of patients with non-malignant diseases and increased CA 19-9 levels showed liver cirrhosis, cholecystitis, pancreatitis and/or hepatitis. In 8.8% no explanation was found for the extremely high CA 19-9 level. The results provide evidence of different factors influencing the CA 19-9 level.

  2. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    Science.gov (United States)

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  3. High accuracy and visibility-consistent dense multiview stereo.

    Science.gov (United States)

    Vu, Hoang-Hiep; Labatut, Patrick; Pons, Jean-Philippe; Keriven, Renaud

    2012-05-01

    Since the initial comparison of Seitz et al., the accuracy of dense multiview stereovision methods has been increasing steadily. A number of limitations, however, make most of these methods not suitable to outdoor scenes taken under uncontrolled imaging conditions. The present work consists of a complete dense multiview stereo pipeline which circumvents these limitations, being able to handle large-scale scenes without sacrificing accuracy. Highly detailed reconstructions are produced within very reasonable time thanks to two key stages in our pipeline: a minimum s-t cut optimization over an adaptive domain that robustly and efficiently filters a quasidense point cloud from outliers and reconstructs an initial surface by integrating visibility constraints, followed by a mesh-based variational refinement that captures small details, smartly handling photo-consistency, regularization, and adaptive resolution. The pipeline has been tested over a wide range of scenes: from classic compact objects taken in a laboratory setting, to outdoor architectural scenes, landscapes, and cultural heritage sites. The accuracy of its reconstructions has also been measured on the dense multiview benchmark proposed by Strecha et al., showing the results to compare more than favorably with the current state-of-the-art methods.

  4. Novel method for high accuracy figure measurement of optical flat

    Science.gov (United States)

    E, Kewei; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2017-01-01

    Phase Measuring Deflectometry (PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations, including test geometry, imaging pin-hole camera and digital display. In this paper, we propose a novel method that can measure optical flat surface figure to a high accuracy. We first calibrate the camera using a checker pattern shown on a LCD display at six different orientations, and the last orientation is aligned at the same position as the test optical flat. By using this method, lens distortions and the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat can be determined at the same time. To further reduce the influence of the calibration errors on measurements, a reference optical flat with a high quality surface is measured, and then the system errors in our PMD setup can be eliminated by subtracting the figure of the reference flat from the figure of the test flat. Although any expensive coordinates measuring machine, such as laser tracker and coordinates measuring machine are not applied in our measurement, our experimental results of optical flat figure from low to high order aberrations still show a good agreement with that from the Fizeau interferometer.

  5. Air temperature variability in a high-elevation Himalayan catchment

    NARCIS (Netherlands)

    Heynen, Martin; Miles, Evan; Ragettli, Silvan; Buri, Pascal; Immerzeel, Walter W.; Pellicciotti, Francesca

    2016-01-01

    Air temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land-surface-atmosphere interaction. Despite this importance, its spatial variability is poorly

  6. Small mammal communities of high elevation central Appalachian wetlands

    Science.gov (United States)

    Karen E. Francl; Steven B. Castleberry; W. Mark Ford

    2004-01-01

    We surveyed small mammal assemblages at 20 high-elevation wetlands in West Virginia and Maryland and examined relationships among mammal capture rates, richness and evenness and landscape features at multiple spatial scales. In 24,693 trap nights we captured 1451 individuals of 12 species. Small mammal species richness increased with wetland size and was negatively...

  7. State of the art in high accuracy high detail DTMs derived from ALS

    Science.gov (United States)

    Pfeifer, N.; Briese, C.; Mandlburger, G.; Höfle, B.; Ressl, C.

    2009-04-01

    High-resolution Digital Terrain Models (DTMs) representing the bare Earth are a fundamental input for various applications in geomorphology. Airborne laser scanning (ALS) is established as a standard tool for deriving DTMs over large areas with unprecedented accuracy. Due to advances in sensor technology and in processing algorithms in the recent years the obtainable accuracy is still increasing. Accuracy is understood as the deviation from the elevation at one specified point to its true value. These advances may lead to a more efficient data acquisition, if reduced accuracy is targeted, but also allow data acquisition schemes with more detail becoming visible, i.e. small features of the relief. For the latter a high internal precision, i.e. repeatability, is necessary. The essential advances in the technologies are improvements in ranging through the introduction of full-waveform (FWF) laser scanning and rigorous models of strip adjustment. In FWF laser scanning the time-dependent strength of the backscattered signal is recorded. This is opposed to the analogue processing of the incoming energy and storage of one arrival time of discrete-return systems. In a simple one-echo situation, the arrival time corresponds to the maximum of the waveform. By applying a decomposition of the full waveform into single echoes, which are transformed copies of the emitted signal, it is possible to retrieve more echoes per shot. Additionally, if echoes of individual scatterers are overlapping, FWF sensors might be able to separate them, whereas discrete return systems might rather only be able to derive one collective arrival time. Finally, the overlay of two echoes does not have the maxima at the same positions as the individual echoes. Additionally, the pulse repetition rate of laser scanners has increased, which allows higher point densities and therefore higher richness of detail. These advances in data acquisition increase the precision within one ALS strip. Deficiencies in

  8. High Accuracy Near-infrared Imaging Polarimetry with NICMOS

    CERN Document Server

    Batcheldor, D; Hines, D C; Schmidt, G D; Axon, D J; Robinson, A; Sparks, W; Tadhunter, C

    2008-01-01

    The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetri...

  9. High-accuracy mass spectrometry for fundamental studies.

    Science.gov (United States)

    Kluge, H-Jürgen

    2010-01-01

    Mass spectrometry for fundamental studies in metrology and atomic, nuclear and particle physics requires extreme sensitivity and efficiency as well as ultimate resolving power and accuracy. An overview will be given on the global status of high-accuracy mass spectrometry for fundamental physics and metrology. Three quite different examples of modern mass spectrometric experiments in physics are presented: (i) the retardation spectrometer KATRIN at the Forschungszentrum Karlsruhe, employing electrostatic filtering in combination with magnetic-adiabatic collimation-the biggest mass spectrometer for determining the smallest mass, i.e. the mass of the electron anti-neutrino, (ii) the Experimental Cooler-Storage Ring at GSI-a mass spectrometer of medium size, relative to other accelerators, for determining medium-heavy masses and (iii) the Penning trap facility, SHIPTRAP, at GSI-the smallest mass spectrometer for determining the heaviest masses, those of super-heavy elements. Finally, a short view into the future will address the GSI project HITRAP at GSI for fundamental studies with highly-charged ions.

  10. Researches on High Accuracy Prediction Methods of Earth Orientation Parameters

    Science.gov (United States)

    Xu, X. Q.

    2015-09-01

    The Earth rotation reflects the coupling process among the solid Earth, atmosphere, oceans, mantle, and core of the Earth on multiple spatial and temporal scales. The Earth rotation can be described by the Earth's orientation parameters, which are abbreviated as EOP (mainly including two polar motion components PM_X and PM_Y, and variation in the length of day ΔLOD). The EOP is crucial in the transformation between the terrestrial and celestial reference systems, and has important applications in many areas such as the deep space exploration, satellite precise orbit determination, and astrogeodynamics. However, the EOP products obtained by the space geodetic technologies generally delay by several days to two weeks. The growing demands for modern space navigation make high-accuracy EOP prediction be a worthy topic. This thesis is composed of the following three aspects, for the purpose of improving the EOP forecast accuracy. (1) We analyze the relation between the length of the basic data series and the EOP forecast accuracy, and compare the EOP prediction accuracy for the linear autoregressive (AR) model and the nonlinear artificial neural network (ANN) method by performing the least squares (LS) extrapolations. The results show that the high precision forecast of EOP can be realized by appropriate selection of the basic data series length according to the required time span of EOP prediction: for short-term prediction, the basic data series should be shorter, while for the long-term prediction, the series should be longer. The analysis also showed that the LS+AR model is more suitable for the short-term forecasts, while the LS+ANN model shows the advantages in the medium- and long-term forecasts. (2) We develop for the first time a new method which combines the autoregressive model and Kalman filter (AR+Kalman) in short-term EOP prediction. The equations of observation and state are established using the EOP series and the autoregressive coefficients

  11. Researching the technology of high-accuracy camshaft measurement

    Science.gov (United States)

    Chen, Wei; Chen, Yong-Le; Wang, Hong; Liao, Hai-Yang

    1996-10-01

    This paper states the cam's data processing algorithm in detail in high accurate camshaft measurement system. It contains: 1) using minimum error of curve symmetry to seek the center position of the key slot; 2) Calculating the minimum error by cam's curve in theory to search top area; 3) According to cam's tolerance E(i) function and minimum angle error at cam top, seeking the best position of cam top and getting the best angle value and error curve. The algorithm is suitable for measuring all kinds of symmetry or asymmetry cam, and plain push-rod or spherical push-rod cam, for example, bus camshaft, car camshaft, motor camshaft, etc. Using the algorithm, high accuracy measurement can be achieved.

  12. Read-only high accuracy volume holographic optical correlator

    Science.gov (United States)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  13. Spatial augmented reality based high accuracy human face projection

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Li, Yufeng; Weng, Dongdong; Liu, Yue

    2015-08-01

    This paper discusses the imaging principles and the technical difficulties of spatial augmented reality based human face projection. A novel geometry correction method is proposed to realize fast, high-accuracy face model projection. Using a depth camera to reconstruct the projected object, the relative position from the rendered model to the projector can be accessed and the initial projection image is generated. Then the projected image is distorted by using Bezier interpolation to guarantee that the projected texture matches with the object surface. The proposed method is under a simple process flow and can achieve high perception registration of virtual and real object. In addition, this method has a good performance in the condition that the reconstructed model is not exactly same with the rendered virtual model which extends its application area in the spatial augmented reality based human face projection.

  14. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

    Science.gov (United States)

    Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta

    2017-02-01

    Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

  15. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  16. Monitoring techniques for high accuracy interference fit assembly processes

    Science.gov (United States)

    Liuti, A.; Vedugo, F. Rodriguez; Paone, N.; Ungaro, C.

    2016-06-01

    In the automotive industry, there are many assembly processes that require a high geometric accuracy, in the micrometer range; generally open-loop controllers cannot meet these requirements. This results in an increased defect rate and high production costs. This paper presents an experimental study of interference fit process, aimed to evaluate the aspects which have the most impact on the uncertainty in the final positioning. The press-fitting process considered, consists in a press machine operating with a piezoelectric actuator to press a plug into a sleeve. Plug and sleeve are designed and machined to obtain a known interference fit. Differential displacement and velocity measurements of the plug with respect to the sleeve are measured by a fiber optic differential laser Doppler vibrometer. Different driving signals of the piezo actuator allow to have an insight into the differences between a linear and a pulsating press action. The paper highlights how the press-fit assembly process is characterized by two main phases: the first is an elastic deformation of the plug and sleeve, which produces a reversible displacement, the second is a sliding of the plug with respect to the sleeve, which results in an irreversible displacement and finally realizes the assembly. The simultaneous measurements of the displacement and the force have permitted to define characteristic features in the signal useful to identify the start of the irreversible movement. These indicators could be used to develop a control logic in a press assembly process.

  17. A high-accuracy DCO with hybrid architecture

    Science.gov (United States)

    Sun, Yapeng; Zhao, Huidong; Qiao, Shushan; Hei, Yong; Zhang, Fuhai

    2017-07-01

    In this paper, a novel hybrid digital-controlled oscillator (DCO) is proposed, which is used to improve the accuracy of the all-digital clock generator without reference source. The DCO with hybrid architecture consists of two parts: DCO_high and DCO_low. The DCO_high decides the coarse output frequency of DCO, and adopts the cascade structure to decrease the area. The DCO_low adopts the chain structure with three-state buffer, and decides the fine output frequency of DCO. Compared with traditional cascade DCO, the proposed hybrid DCO features higher precision with less inherent delay. Therefore the clock generator can tolerate process, voltage and temperature (PVT) variation and meet the needs of different conditions. The DCO is designed in SMIC 180 nm CMOS process with 0.021 mm2 chip area. The output frequency is adjusted from 15-120 MHz. The frequency error is less than 0.83% at 25 MHz with 1.6-1.8 V supply voltage and 0-80 °C temperature variations in TT, FF, SS corners. Project supported by the National Natural Science Foundation of China (Nos. 61306025, 61474135).

  18. The Landcover Impact on the Aspect/Slope Accuracy Dependence of the SRTM-1 Elevation Data for the Humboldt Range

    OpenAIRE

    Miliaresis, George C.

    2008-01-01

    The U.S. National Landcover Dataset (NLCD) and the U.S National Elevation Dataset (NED) (bare earth elevations) were used in an attempt to assess to what extent the directional and slope dependency of the Shuttle Radar Topography Mission (SRTM) finished digital elevation model is affected by landcover. Four landcover classes: forest, shrubs, grass and snow cover, were included in the study area (Humboldt Range in NW portion of Nevada, USA). Statistics, rose diagrams, and frequency distributio...

  19. The Landcover Impact on the Aspect/Slope Accuracy Dependence of the SRTM-1 Elevation Data for the Humboldt Range

    Directory of Open Access Journals (Sweden)

    George C. Miliaresis

    2008-05-01

    Full Text Available The U.S. National Landcover Dataset (NLCD and the U.S National Elevation Dataset (NED (bare earth elevations were used in an attempt to assess to what extent the directional and slope dependency of the Shuttle Radar Topography Mission (SRTM finished digital elevation model is affected by landcover. Four landcover classes: forest, shrubs, grass and snow cover, were included in the study area (Humboldt Range in NW portion of Nevada, USA. Statistics, rose diagrams, and frequency distributions of the elevation differences (NED-SRTM per landcover class per geographic direction were used. The decomposition of elevation differences on the basis of aspect and slope terrain classes identifies a over-estimation of elevation by the SRTM instrument along E, NE and N directions (negative elevation difference that decreases linearly with slope while b underestimation is evident towards W, SW and S directions (positive elevation difference increasing with slope. The aspect/slope/landcover elevation differences modelling overcome the systematic errors evident in the SRTM dataset and revealed vegetation height information and the snow penetration capability of the SRTM instrument. The linear regression lines per landcover class might provide means of correcting the systematic error (aspect/slope dependency evident in SRTM dataset.

  20. Determination of UAV position using high accuracy navigation platform

    Directory of Open Access Journals (Sweden)

    Ireneusz Kubicki

    2016-07-01

    Full Text Available The choice of navigation system for mini UAV is very important because of its application and exploitation, particularly when the installed on it a synthetic aperture radar requires highly precise information about an object’s position. The presented exemplary solution of such a system draws attention to the possible problems associated with the use of appropriate technology, sensors, and devices or with a complete navigation system. The position and spatial orientation errors of the measurement platform influence on the obtained SAR imaging. Both, turbulences and maneuvers performed during flight cause the changes in the position of the airborne object resulting in deterioration or lack of images from SAR. Consequently, it is necessary to perform operations for reducing or eliminating the impact of the sensors’ errors on the UAV position accuracy. You need to look for compromise solutions between newer better technologies and in the field of software. Keywords: navigation systems, unmanned aerial vehicles, sensors integration

  1. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  2. Influence of Antenna Characteristics on Elevation Dependence of Building Penetration Loss for High Elevation Links

    Directory of Open Access Journals (Sweden)

    M. Kvicera

    2012-12-01

    Full Text Available Building penetration loss models presented in our previous paper [1] were valid for various scenarios, propagation conditions, frequency bands and hemispherical receiving antenna pointing towards zenith. These models had a significantly rising trend of penetration loss with increasing elevation angle of the link in common. In this paper we show that when working with non-isotropic terminal antennas, this trend relates primarily to the elevation trend of the corresponding reference level dependent on the receiving antenna radiation pattern. This is demonstrated by the results of single-input multiple-output (SIMO measurement trials performed at L-band in an office building and a brick building in the city of Prague. Further, based on the detailed analysis, a method to modify the elevation trend of a particular penetration loss model for different receiving antenna radiation patterns is derived and experimentally validated.

  3. Key technologies for high-accuracy large mesh antenna reflectors

    Science.gov (United States)

    Meguro, Akira; Harada, Satoshi; Watanabe, Mitsunobu

    2003-12-01

    Nippon Telephone and Telegram Corporation (NTT) continues to develop the modular mesh-type deployable antenna. Antenna diameter can be changed from 5 m to about 20 m by changing the number of modules used with surface accuracy better than 2.4 mm RMS (including all error factors) with sufficient deployment reliability. Key technologies are the antenna's structural design, the deployment mechanism, the design tool, the analysis tool, and modularized testing/evaluation methods. This paper describes our beam steering mechanism. Tests show that it yields a beam pointing accuracy of better than 0.1°. Based on the S-band modular mesh antenna reflector, the surface accuracy degradation factors that must be considered in designing the new antenna are partially identified. The influence of modular connection errors on surface accuracy is quantitatively estimated. Our analysis tool SPADE is extended to include the addition of joint gaps. The addition of gaps allows non-linear vibration characteristics due to gapping in deployment hinges to be calculated. We intend to design a new type of mesh antenna reflector. Our new goal is an antenna for Ku or Ka band satellite communication. For this mission, the surface shape must be 5 times more accurate than is required for an S-band antenna.

  4. Quantifying Volume of Groundwater in High Elevation Meadows

    Science.gov (United States)

    Ciruzzi, D.; Lowry, C.

    2013-12-01

    Assessing the current and future water needs of high elevation meadows is dependent on quantifying the volume of groundwater stored within the meadow sediment. As groundwater dependent ecosystems, these meadows rely on their ability to capture and store water in order to support ecologic function and base flow to streams. Previous research of these meadows simplified storage by assuming a homogenous reservoir of constant thickness. These previous storage models were able to close the water mass balance, but it is unclear if these assumptions will be successful under future anthropogenic impacts, such as increased air temperature resulting in dryer and longer growing seasons. Applying a geophysical approach, ground-penetrating radar was used at Tuolumne Meadows, CA to qualitatively and quantitatively identify the controls on volume of groundwater storage. From the geophysical results, a three-dimensional model of Tuolumne Meadows was created, which identified meadow thickness and bedrock geometry. This physical model was used in a suite of numerical models simulating high elevation meadows in order to quantify volume of groundwater stored with temporal and spatial variability. Modeling efforts tested both wet and dry water years in order to quantify the variability in the volume of groundwater storage for a range of aquifer properties. Each model was evaluated based on the seasonal depth to water in order to evaluate a particular scenario's ability to support ecological function and base flow. Depending on the simulated meadows ability or inability to support its ecosystem, each representative meadow was categorized as successful or unsuccessful. Restoration techniques to increase active storage volume were suggested at unsuccessful meadows.

  5. A NEW HIGH-RESOLUTION ELEVATION MODEL OF GREENLAND DERIVED FROM TANDEM-X

    Directory of Open Access Journals (Sweden)

    B. Wessel

    2016-06-01

    Full Text Available In this paper we present for the first time the new digital elevation model (DEM for Greenland produced by the TanDEM-X (TerraSAR add-on for digital elevation measurement mission. The new, full coverage DEM of Greenland has a resolution of 0.4 arc seconds corresponding to 12 m. It is composed of more than 7.000 interferometric synthetic aperture radar (InSAR DEM scenes. X-Band SAR penetrates the snow and ice pack by several meters depending on the structures within the snow, the acquisition parameters, and the dielectricity constant of the medium. Hence, the resulting SAR measurements do not represent the surface but the elevation of the mean phase center of the backscattered signal. Special adaptations on the nominal TanDEM-X DEM generation are conducted to maintain these characteristics and not to raise or even deform the DEM to surface reference data. For the block adjustment, only on the outer coastal regions ICESat (Ice, Cloud, and land Elevation Satellite elevations as ground control points (GCPs are used where mostly rock and surface scattering predominates. Comparisons with ICESat data and snow facies are performed. In the inner ice and snow pack, the final X-Band InSAR DEM of Greenland lies up to 10 m below the ICESat measurements. At the outer coastal regions it corresponds well with the GCPs. The resulting DEM is outstanding due to its resolution, accuracy and full coverage. It provides a high resolution dataset as basis for research on climate change in the arctic.

  6. Accuracy of EAARL lidar ground elevations using a bare-earth algorithm in marsh and beach grasses on the Chandeleur Islands, Louisiana

    Science.gov (United States)

    Doran, Kara S.; Sallenger, Asbury H.; Reynolds, Billy J.; Wright, C. Wayne

    2010-01-01

    The NASA Experimental Advanced Airborne Lidar (EAARL) is an airborne lidar (light detection and ranging) instrument designed to map coastal topography and bathymetry. The EAARL system has the capability to capture each laser-pulse return over a large signal range and can digitize the full waveform of the backscattered energy. Because of this ability to capture the full waveform, the EAARL system can map features such as coral reefs, beaches, coastal vegetation, and trees, where extreme variations in the laser backscatter are caused by different physical and optical characteristics. Post-processing of the EAARL data is accomplished using the Airborne Lidar Processing System (ALPS) (Nayegandhi and others, 2009). In ALPS, the waveform of the lidar is analyzed and split into first and last returns. The 'first returns' are indicative of vegetation-canopy height, or bare ground in the absence of vegetation, whereas 'last returns' typically represent 'bare-earth' elevations under vegetation. To test the accuracy of the first-return and bare-earth EAARL data, topographic and vegetation height surveys were conducted in the Chandeleur Islands, concurrent with an EAARL lidar survey and an aerial oblique-photographic survey from September 20 to 27, 2006. The Chandeleur Islands are a north-south-oriented chain of low-lying islands located approximately 100 kilometers east of the city of New Orleans, Louisiana. The islands are narrow north-south strips of land with marsh on the landward (west sides) and sandy beaches on their gulfward (east sides). Prior to Hurricane Katrina, which made landfall at Buras, Louisiana, as a Category 3 storm on August 29, 2005, prominent, 3- to 4-meter-high sand dunes were present in the northern Chandeleurs. The storm removed them, leaving post-storm island elevations of generally less than 2 meters above 0.0 NAVD88. This report is part of a study of the impact of Hurricane Katrina on the Chandeleur Islands using pre-storm and post-storm lidar

  7. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    Science.gov (United States)

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T; Smith, Jeremy M.; Kueppers, Lara M.

    2017-01-01

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.

  8. High Accuracy and Real-Time Gated Viewing Laser Radar

    Institute of Scientific and Technical Information of China (English)

    Dong Li; Hua-Jun Yang; Shan-Pei Zhou

    2011-01-01

    A gated viewing laser radar has an excellent performance in underwater low light level imaging,and it also provides a viable solution to inhibit backscattering.In this paper,a gated viewing imaging system according to the demand for real-time imaging is presented,and then the simulation is used to analyze the performance of the real-time gated viewing system.The range accuracy performance is limited by the slice number,the width of gate,the delay time step,the initial delay time,as well as the system noise and atmospheric turbulence.The simulation results indicate that the highest range accuracy can be achieved when the system works with the optimal parameters.Finally,how to choose the optimal parameters has been researched.

  9. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    Science.gov (United States)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  10. Effectiveness of Practices for Improving the Diagnostic Accuracy of Non-ST Elevation Myocardial Infarction in the Emergency Department: A Laboratory Medicine Best Practices Systematic Review

    Science.gov (United States)

    Layfield, Christopher; Rose, John; Alford, Aaron; Snyder, Susan R.; Apple, Fred S.; Chowdhury, Farah M.; Kontos, Michael C.; Newby, L. Kristin; Storrow, Alan B.; Tanasijevic, Milenko; Leibach, Elizabeth; Liebow, Edward B.; Christenson, Robert H.

    2016-01-01

    Objectives This article presents evidence from a systematic review of the effectiveness of four practices (assay selection, decision point cardiac troponin (cTn) threshold selection, serial testing, and point of care testing) for improving the diagnostic accuracy for Non-ST-Segment Elevation Myocardial Infarction (NSTEMI) in the Emergency Department. Design and Methods The CDC-funded Laboratory Medicine Best Practices (LMBP™) Initiative systematic review A6 Method for Laboratory Best Practices was used. Results The current guidelines (e.g., ACC/AHA) recommend using cardiac troponin assays with a 99th percentile upper reference limit (URL) diagnostic threshold to diagnose NSTEMI. The evidence in this systematic review indicates that contemporary sensitive cTn assays meet the assay profile requirements (sensitivity, specificity, PPV, and NPV) to more accurately diagnose NSTEMI than alternate tests. Additional biomarkers did not increase diagnostic effectiveness of cTn assays. Sensitivity, specificity, and negative predictive value (NPV) were consistently high and low positive predictive value (PPV) improved with serial sampling. Evidence for use of cTn point of care testing (POCT) was insufficient to make recommendations, though some evidence suggests cTn POCT may result in reduction to patient length of stay and costs. Conclusions Two best practice recommendations emerged from the systematic review and meta-analysis of literature conducted using the LMBP™ A6 Method criteria: Testing with cardiac troponin assays, using the 99th percentile URL as the clinical diagnostic threshold for the diagnosis of NSTEMI and without additional biomarkers, is recommended. Also recommended is serial cardiac troponin sampling with one sample at presentation and at least one additional sample taken a minimum of 6 hours later to identify a rise or fall in the troponin level. Testing with high-sensitivity cardiac troponin assays, at presentation and again within 6 hours, is the

  11. Design of a high linearity and high gain accuracy analog baseband circuit for DAB receiver

    Science.gov (United States)

    Li, Ma; Zhigong, Wang; Jian, Xu; Yiqiang, Wu; Junliang, Wang; Mi, Tian; Jianping, Chen

    2015-02-01

    An analog baseband circuit of high linearity and high gain accuracy for a digital audio broadcasting receiver is implemented in a 0.18-μm RFCMOS process. The circuit comprises a 3rd-order active-RC complex filter (CF) and a programmable gain amplifier (PGA). An automatic tuning circuit is also designed to tune the CF's pass band. Instead of the class-A fully differential operational amplifier (FDOPA) adopted in the conventional CF and PGA design, a class-AB FDOPA is specially employed in this circuit to achieve a higher linearity and gain accuracy for its large current swing capability with lower static current consumption. In the PGA circuit, a novel DC offset cancellation technique based on the MOS resistor is introduced to reduce the settling time significantly. A reformative switching network is proposed, which can eliminate the switch resistor's influence on the gain accuracy of the PGA. The measurement result shows the gain range of the circuit is 10-50 dB with a 1-dB step size, and the gain accuracy is less than ±0.3 dB. The OIP3 is 23.3 dBm at the gain of 10 dB. Simulation results show that the settling time is reduced from 100 to 1 ms. The image band rejection is about 40 dB. It only draws 4.5 mA current from a 1.8 V supply voltage.

  12. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    CERN Document Server

    Chou, C -W; Koelemeij, J C J; Wineland, D J; Rosenband, T

    2009-01-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6e-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser-cool the Al+ ion and detect its quantum state. The frequency of the 1S0->3P0 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0e-18. The two clocks exhibit a relative stability of 2.8e-15/ sqrt(tau), and a fractional frequency difference of -1.8e-17, consistent with the accuracy limit of the older clock.

  13. Frequency Comparison of Two High-Accuracy Al+ Optical Clocks

    Science.gov (United States)

    Chou, C. W.; Hume, D. B.; Koelemeij, J. C. J.; Wineland, D. J.; Rosenband, T.

    2010-02-01

    We have constructed an optical clock with a fractional frequency inaccuracy of 8.6×10-18, based on quantum logic spectroscopy of an Al+ ion. A simultaneously trapped Mg+ ion serves to sympathetically laser cool the Al+ ion and detect its quantum state. The frequency of the S01↔P03 clock transition is compared to that of a previously constructed Al+ optical clock with a statistical measurement uncertainty of 7.0×10-18. The two clocks exhibit a relative stability of 2.8×10-15τ-1/2, and a fractional frequency difference of -1.8×10-17, consistent with the accuracy limit of the older clock.

  14. A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data

    DEFF Research Database (Denmark)

    Ekholm, Simon

    1996-01-01

    In this paper, a new high-resolution elevation model of Greenland, including the ice sheet as well as the ice free regions, is presented. It is the first published full coverage model, computed with an average resolution of 2 km and providing an unprecedented degree of detail. The topography...... airborne laser data from the analysis and treating them as ground truth observations. The mean accuracy of the ice sheet elevations is estimated to be 12-13 m, and it is found that on surfaces of a slope between 0.2 degrees and 0.8 degrees, corresponding to approximately 50% of the ice sheet, the model...... is modeled from a wide selection of data sources, including satellite radar altimetry from Geosat and ERS 1, airborne radar altimetry and airborne laser altimetry over the ice sheet, and photogrammetric and manual map scannings in the ice free region. The ice sheet model accuracy is evaluated by omitting...

  15. Levee crest elevation profiles derived from airborne lidar-based high resolution digital elevation models in south Louisiana

    Science.gov (United States)

    Palaseanu-Lovejoy, Monica; Thatcher, Cindy A.; Barras, John A.

    2014-01-01

    This study explores the feasibility of using airborne lidar surveys to construct high-resolution digital elevation models (DEMs) and develop an automated procedure to extract levee longitudinal elevation profiles for both federal levees in Atchafalaya Basin and local levees in Lafourche Parish, south Lousiana. This approach can successfully accommodate a high degree of levee sinuosity and abrupt changes in levee orientation (direction) in planar coordinates, variations in levee geometries, and differing DEM resolutions. The federal levees investigated in Atchafalaya Basin have crest elevations between 5.3 and 12 m while the local counterparts in Lafourche Parish are between 0.76 and 2.3 m. The vertical uncertainty in the elevation data is considered when assessing federal crest elevation against the U.S. Army Corps of Engineers minimum height requirements to withstand the 100-year flood. Only approximately 5% of the crest points of the two federal levees investigated in the Atchafalaya Basin region met this requirement.

  16. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  17. Sensitivity analysis for high accuracy proximity effect correction

    Science.gov (United States)

    Thrun, Xaver; Browning, Clyde; Choi, Kang-Hoon; Figueiro, Thiago; Hohle, Christoph; Saib, Mohamed; Schiavone, Patrick; Bartha, Johann W.

    2015-10-01

    A sensitivity analysis (SA) algorithm was developed and tested to comprehend the influences of different test pattern sets on the calibration of a point spread function (PSF) model with complementary approaches. Variance-based SA is the method of choice. It allows attributing the variance of the output of a model to the sum of variance of each input of the model and their correlated factors.1 The objective of this development is increasing the accuracy of the resolved PSF model in the complementary technique through the optimization of test pattern sets. Inscale® from Aselta Nanographics is used to prepare the various pattern sets and to check the consequences of development. Fraunhofer IPMS-CNT exposed the prepared data and observed those to visualize the link of sensitivities between the PSF parameters and the test pattern. First, the SA can assess the influence of test pattern sets for the determination of PSF parameters, such as which PSF parameter is affected on the employments of certain pattern. Secondly, throughout the evaluation, the SA enhances the precision of PSF through the optimization of test patterns. Finally, the developed algorithm is able to appraise what ranges of proximity effect correction is crucial on which portion of a real application pattern in the electron beam exposure.

  18. Influence of River Bed Elevation Survey Configurations and Interpolation Methods on the Accuracy of LIDAR Dtm-Based River Flow Simulations

    Science.gov (United States)

    Santillan, J. R.; Serviano, J. L.; Makinano-Santillan, M.; Marqueso, J. T.

    2016-09-01

    In this paper, we investigated how survey configuration and the type of interpolation method can affect the accuracy of river flow simulations that utilize LIDAR DTM integrated with interpolated river bed as its main source of topographic information. Aside from determining the accuracy of the individually-generated river bed topographies, we also assessed the overall accuracy of the river flow simulations in terms of maximum flood depth and extent. Four survey configurations consisting of river bed elevation data points arranged as cross-section (XS), zig-zag (ZZ), river banks-centerline (RBCL), and river banks-centerline-zig-zag (RBCLZZ), and two interpolation methods (Inverse Distance-Weighted and Ordinary Kriging) were considered. Major results show that the choice of survey configuration, rather than the interpolation method, has significant effect on the accuracy of interpolated river bed surfaces, and subsequently on the accuracy of river flow simulations. The RMSEs of the interpolated surfaces and the model results vary from one configuration to another, and depends on how each configuration evenly collects river bed elevation data points. The large RMSEs for the RBCL configuration and the low RMSEs for the XS configuration confirm that as the data points become evenly spaced and cover more portions of the river, the resulting interpolated surface and the river flow simulation where it was used also become more accurate. The XS configuration with Ordinary Kriging (OK) as interpolation method provided the best river bed interpolation and river flow simulation results. The RBCL configuration, regardless of the interpolation algorithm used, resulted to least accurate river bed surfaces and simulation results. Based on the accuracy analysis, the use of XS configuration to collect river bed data points and applying the OK method to interpolate the river bed topography are the best methods to use to produce satisfactory river flow simulation outputs. The use of

  19. INFLUENCE OF RIVER BED ELEVATION SURVEY CONFIGURATIONS AND INTERPOLATION METHODS ON THE ACCURACY OF LIDAR DTM-BASED RIVER FLOW SIMULATIONS

    Directory of Open Access Journals (Sweden)

    J. R. Santillan

    2016-09-01

    Full Text Available In this paper, we investigated how survey configuration and the type of interpolation method can affect the accuracy of river flow simulations that utilize LIDAR DTM integrated with interpolated river bed as its main source of topographic information. Aside from determining the accuracy of the individually-generated river bed topographies, we also assessed the overall accuracy of the river flow simulations in terms of maximum flood depth and extent. Four survey configurations consisting of river bed elevation data points arranged as cross-section (XS, zig-zag (ZZ, river banks-centerline (RBCL, and river banks-centerline-zig-zag (RBCLZZ, and two interpolation methods (Inverse Distance-Weighted and Ordinary Kriging were considered. Major results show that the choice of survey configuration, rather than the interpolation method, has significant effect on the accuracy of interpolated river bed surfaces, and subsequently on the accuracy of river flow simulations. The RMSEs of the interpolated surfaces and the model results vary from one configuration to another, and depends on how each configuration evenly collects river bed elevation data points. The large RMSEs for the RBCL configuration and the low RMSEs for the XS configuration confirm that as the data points become evenly spaced and cover more portions of the river, the resulting interpolated surface and the river flow simulation where it was used also become more accurate. The XS configuration with Ordinary Kriging (OK as interpolation method provided the best river bed interpolation and river flow simulation results. The RBCL configuration, regardless of the interpolation algorithm used, resulted to least accurate river bed surfaces and simulation results. Based on the accuracy analysis, the use of XS configuration to collect river bed data points and applying the OK method to interpolate the river bed topography are the best methods to use to produce satisfactory river flow simulation outputs

  20. Distributed High Accuracy Peer-to-Peer Localization in Mobile Multipath Environments

    CERN Document Server

    Ekambaram, Venkatesan

    2010-01-01

    In this paper we consider the problem of high accuracy localization of mobile nodes in a multipath-rich environment where sub-meter accuracies are required. We employ a peer to peer framework where the vehicles/nodes can get pairwise multipath-degraded ranging estimates in local neighborhoods together with a fixed number of anchor nodes. The challenge is to overcome the multipath-barrier with redundancy in order to provide the desired accuracies especially under severe multipath conditions when the fraction of received signals corrupted by multipath is dominating. We invoke a message passing analytical framework based on particle filtering and reveal its high accuracy localization promise through simulations.

  1. Autotaxin activity has a high accuracy to diagnose intrahepatic cholestasis of pregnancy.

    Science.gov (United States)

    Kremer, Andreas E; Bolier, Ruth; Dixon, Peter H; Geenes, Victoria; Chambers, Jenny; Tolenaars, Dagmar; Ris-Stalpers, Carrie; Kaess, Bernhard M; Rust, Christian; van der Post, Joris A; Williamson, Catherine; Beuers, Ulrich; Oude Elferink, Ronald P J

    2015-04-01

    Intrahepatic cholestasis of pregnancy (ICP) is defined by pruritus, elevated total fasting serum bile salts (TBS) and transaminases, and an increased risk of adverse fetal outcome. An accurate diagnostic marker is needed. Increased serum autotaxin correlates with cholestasis-associated pruritus. We aimed at unraveling the diagnostic accuracy of autotaxin in ICP. Serum samples and placental tissue were collected from 44 women with uncomplicated pregnancies and 105 with pruritus and/or elevated serum transaminases. Autotaxin serum levels were quantified enzymatically and by Western blotting, autotaxin gene expression by quantitative PCR. Serum autotaxin was increased in ICP (mean ± SD: 43.5 ± 18.2 nmol ml(-1)min(-1), n=55, ppregnancy (16.8 ± 6.7 nmol ml(-1)min(-1), n=33), pre-eclampsia complicated by HELLP-syndrome (16.8 ± 8.9 nmol ml(-1)min(-1), n=17), and pregnant controls (19.6 ± 5.7 nmol ml(-1)min(-1), n=44). Longitudinal analysis during pregnancy revealed a marked rise in serum autotaxin with onset of ICP-related pruritus. Serum autotaxin was increased in women taking oral contraceptives. Increased serum autotaxin during ICP was not associated with increased autotaxin mRNA in placenta. With a cut-off value of 27.0 nmol ml(-1)min(-1), autotaxin had an excellent sensitivity and specificity in distinguishing ICP from other pruritic disorders or pre-eclampsia/HELLP-syndrome. Serum autotaxin displayed no circadian rhythm and was not influenced by food intake. Increased serum autotaxin activity represents a highly sensitive, specific and robust diagnostic marker of ICP, distinguishing ICP from other pruritic disorders of pregnancy and pregnancy-related liver diseases. Pregnancy and oral contraception increase serum autotaxin to a much lesser extent than ICP. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. High-accuracy Subdaily ERPs from the IGS

    Science.gov (United States)

    Ray, J. R.; Griffiths, J.

    2012-04-01

    Since November 2000 the International GNSS Service (IGS) has published Ultra-rapid (IGU) products for near real-time (RT) and true real-time applications. They include satellite orbits and clocks, as well as Earth rotation parameters (ERPs) for a sliding 48-hr period. The first day of each update is based on the most recent GPS and GLONASS observational data from the IGS hourly tracking network. At the time of release, these observed products have an initial latency of 3 hr. The second day of each update consists of predictions. So the predictions between about 3 and 9 hr into the second half are relevant for true RT uses. Originally updated twice daily, the IGU products since April 2004 have been issued every 6 hr, at 3, 9, 15, and 21 UTC. Up to seven Analysis Centers (ACs) contribute to the IGU combinations. Two sets of ERPs are published with each IGU update, observed values at the middle epoch of the first half and predicted values at the middle epoch of the second half. The latency of the near RT ERPs is 15 hr while the predicted ERPs, based on projections of each AC's most recent determinations, are issued 9 hr ahead of their reference epoch. While IGU ERPs are issued every 6 hr, each set represents an integrated estimate over the surrounding 24 hr. So successive values are temporally correlated with about 75% of the data being common; this fact should be taken into account in user assimilations. To evaluate the accuracy of these near RT and predicted ERPs, they have been compared to the IGS Final ERPs, available about 11 to 17 d after data collection. The IGU products improved dramatically in the earlier years but since about 2008.0 the performance has been stable and excellent. During the last three years, RMS differences for the observed IGU ERPs have been about 0.036 mas and 0.0101 ms for each polar motion component and LOD respectively. (The internal precision of the reference IGS ERPs over the same period is about 0.016 mas for polar motion and 0

  3. A study for high accuracy real-time 3D ultrasonic location system.

    Science.gov (United States)

    Zhou, Ping; Ha, Zhang; Zhou, Kangyuan

    2006-12-22

    We discussed a high accuracy real-time 3D ultrasonic location system in this article. The signal received was sampled after it passed the TGC and the logarithmic amplifier. Inside the DSP, we used the dynamic threshold tracing technique to improve the accuracy. The result was processed with Weighted Arithmetic Average. By testing the 40 kHz 3D location system, we have arrived at the accuracy of 1 cm.

  4. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  5. Development of high accuracy and resolution geoid and gravity maps

    Science.gov (United States)

    Gaposchkin, E. M.

    1986-01-01

    Precision satellite to satellite tracking can be used to obtain high precision and resolution maps of the geoid. A method is demonstrated to use data in a limited region to map the geopotential at the satellite altitude. An inverse method is used to downward continue the potential to the Earth surface. The method is designed for both satellites in the same low orbit.

  6. Glacier topography and elevation changes from Pléiades very high resolution stereo images

    Directory of Open Access Journals (Sweden)

    E. Berthier

    2014-09-01

    Full Text Available In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of Pléiades sub-meter stereo imagery to derive digital elevation models (DEMs of glaciers and their elevation changes. Our five validation sites are located in Iceland, the European Alps, the Central Andes, Nepal and Antarctica. For all sites, nearly simultaneous field measurements were collected to evaluate the Pléiades DEMs. For Iceland, the Pléiades DEM is also compared to a Lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs are used, but reach up to 6 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1-sigma confidence level. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better. The negative glacier-wide mass balances of the Argentière Glacier and Mer de Glace (−1.21 ± 0.16 and −1.19 ± 0.16 m.w.e. yr−1, respectively are revealed by differencing SPOT5 and Pléiades DEMs acquired in August 2003 and 2012 demonstrating the continuing rapid glacial wastage in the Mont-Blanc area.

  7. Effects of Orbit and Pointing Geometry of a Spaceborne Formation for Monostatic-Bistatic Radargrammetry on Terrain Elevation Measurement Accuracy

    Directory of Open Access Journals (Sweden)

    Alfredo Renga

    2009-01-01

    Full Text Available During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR measurements – SAR interferometry – has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes.

  8. Effects of orbit and pointing geometry of a spaceborne formation for monostatic-bistatic radargrammetry on terrain elevation measurement accuracy.

    Science.gov (United States)

    Renga, Alfredo; Moccia, Antonio

    2009-01-01

    During the last decade a methodology for the reconstruction of surface relief by Synthetic Aperture Radar (SAR) measurements - SAR interferometry - has become a standard. Different techniques developed before, such as stereo-radargrammetry, have been experienced from space only in very limiting geometries and time series, and, hence, branded as less accurate. However, novel formation flying configurations achievable by modern spacecraft allow fulfillment of SAR missions able to produce pairs of monostatic-bistatic images gathered simultaneously, with programmed looking angles. Hence it is possible to achieve large antenna separations, adequate for exploiting to the utmost the stereoscopic effect, and to make negligible time decorrelation, a strong liming factor for repeat-pass stereo-radargrammetric techniques. This paper reports on design of a monostatic-bistatic mission, in terms of orbit and pointing geometry, and taking into account present generation SAR and technology for accurate relative navigation. Performances of different methods for monostatic-bistatic stereo-radargrammetry are then evaluated, showing the possibility to determine the local surface relief with a metric accuracy over a wide range of Earth latitudes.

  9. High accuracy magnetic field sensors with wide operation temperature range

    Science.gov (United States)

    Vasil'evskii, I. S.; Vinichenko, A. N.; Rubakin, D. I.; Bolshakova, I. A.; Kargin, N. I.

    2016-10-01

    n+InAs(Si) epitaxial thin films heavily doped by silicon and Hall effect magnetic field sensors based on this structures have been fabricated and studied. We have demonstrated the successful formation of highly doped InAs thin films (∼100 nm) with the different intermediate layer arrangement and appropriate electron mobility values. Hall sensors performance parameters have been measured in wide temperature range. Obtained sensitivity varied from 1 to 40 Ω/T, while the best linearity and lower temperature coefficient have been found in the higher doped samples with lower electron mobility. We attribute this to the electron system degeneracy and decreased phonon contribution to electron mobility and resistance.

  10. A High Accuracy Method for Semi-supervised Information Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Tratz, Stephen C.; Sanfilippo, Antonio P.

    2007-04-22

    Customization to specific domains of dis-course and/or user requirements is one of the greatest challenges for today’s Information Extraction (IE) systems. While demonstrably effective, both rule-based and supervised machine learning approaches to IE customization pose too high a burden on the user. Semi-supervised learning approaches may in principle offer a more resource effective solution but are still insufficiently accurate to grant realistic application. We demonstrate that this limitation can be overcome by integrating fully-supervised learning techniques within a semi-supervised IE approach, without increasing resource requirements.

  11. Traffic Sign Recognition with High Accuracy Using Mixture of Experts

    Directory of Open Access Journals (Sweden)

    Reza Azad

    2014-06-01

    Full Text Available Traffic signs provide the driver various information for safe and efficient navigation. Automatic recognition of traffic signs is, therefore, important for automated driving or driver assistance systems.In this paper, a new and efficient traffic sign recognition system based on extracting diverse feature set, and applying mixture of experts'architecture on the extracted featuresis proposed.In the result part, the proposed approach is evaluated on the German traffic sign recognition and Grigorescu traffic signsbenchmark and high recognition rate is achieved.Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in traffic sign recognition that is the recognition rate of 99.94% for the training set and 98.50% for the test set.In addition, experimental results have demonstrated our method robust in successful recognition of traffic signs even with variant lighting.

  12. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  13. Gated viewing and high-accuracy three-dimensional laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a fast and high-accuracy three-dimensional (3-D) imaging laser radar that can achieve better than 1 mm range accuracy for half a million pixels in less than 1 s. Our technique is based on range-gating segmentation. We combine the advantages of gated viewing with our new fast...

  14. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  15. The Accuracy Analysis of GPS Elevation Transfo rmation Based on EGM 2008 Model%基于EGM2008模型的GPS高程转换的精度分析

    Institute of Scientific and Technical Information of China (English)

    王铁生; 许宝成; 李广静

    2014-01-01

    Measuring elevation of the control points with speed and precision is the most popular research in the survery-ing field today .The high-precision earth gravitational field model is widely used in transforming geodetic heights measured by GPS to orthometric heights , in order to replace labor-intensive and inefficient differential leveling . Currently , the common practice in GPS elevation transformation is obtaining the height anomalies of the control points and then calculat-ing the orthometric heights based on EGM 2008 model by using elevation data of GPS control network .In the trial calcula-tion of GPS control network in eixsting engineering projects ,the accuracy of the GPS elevation transformation method pro-posed here was analysed .The result verifies that this method can reach the fourth grade of leveling accuracy .%当今测绘领域研究较多的内容就是如何快速、高精度的测定控制点的高程。高精度的地球重力场模型被用来将GPS确定的大地高转换为正常高,以取代高劳动强度、低效率的水准测量。目前,GPS高程转换较为普遍的做法是根据已掌握的GPS控制网高程数据,应用EGM2008模型求出点位高程异常进而推算出网内各点的正常高。结合工程实例中对GPS高程控制网的试算,对上述GPS高程转换所达到的精度进行了分析,证实此方法可以达到四等水准的精度。

  16. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  17. Methodology of High Accuracy and Resolution 3D Geological Model Generation and Application

    Institute of Scientific and Technical Information of China (English)

    吴键; 曹代勇; 邓爱居; 李东津; 蒋涛; 翟光华

    2004-01-01

    By generating a high accuracy and high resolution geological model in Liuchu oil field, the technique of geological modeling is expanded and involved in primary geological study, making the sand bodies and reservoir be easily described in detail. The 3D visualization and 3D interactive editing of geological structure model are the key for modeling procedure. And a high accuracy and resolution geological model has been well applied in optimizing the production scheme.

  18. High-elevation mass loss of Greenland increasing

    DEFF Research Database (Denmark)

    Andersen, M. L.; Andersen, S. B.; Ahlstrøm, A. P.

    model. We compare the calculated mass losses between the two years integrated over the entire ice sheet, but also on a basin-by-basin level to investigate internal redistribution of mass between the basins over time. We find a ~3% mean increase in mass loss per year at the ~1600 m elevation of the flux......The Greenland Ice Sheet is losing mass at an accelerated pace. Presently, the mass loss is assumed to be distributed approximately equally between loss in the form of surface melt (surface mass balance, SMB) and solid ice discharge (iceberg calving, D) along the margins. As part of the PROMICE...

  19. Venus Express bistatic radar: High-elevation anomalous reflectivity

    Science.gov (United States)

    Simpson, Richard A.; Tyler, G. Leonard; Häusler, Bernd; Mattei, Riccardo; Pätzold, Martin

    2009-06-01

    Magellan (MGN) bistatic radar observations in 1994 confirmed earlier Pioneer Venus reports of unusual Venus surface reflectivity and emissivity at elevations above 6054 km radius. They also revealed that the anomalous values of surface dielectric constant $\\varepsilon$ near Cleopatra Patera included a large imaginary component ($\\varepsilon$ ≈ -i 100) at 13 cm wavelength, consistent with a semiconducting surface material. The MGN observations were conducted using a linearly polarized wave, canted at 45° with respect to the plane of incidence and radiated by the MGN synthetic aperture radar antenna toward the specularly reflecting region of the mean planetary surface. In 2006 similar experiments were conducted using 13 cm circularly polarized transmissions from Venus Express (VEX). The VEX signal-to-noise ratio (SNR) was lower than that of MGN, but elevated ∣$\\varepsilon$∣ has been inferred broadly over Maxwell Montes. A quasi-specular echo was detected near Cleopatra but with insufficient SNR to address the question of conductivity. An early failure of the VEX 13 cm radio system precludes further measurements with VEX.

  20. High-speed, high-accuracy large range 3D measurement

    Science.gov (United States)

    An, Yatong; Zhang, Song

    2017-05-01

    This paper presents such a high-speed, high-accuracy structured light technique that could achieve large range 3D shape measurement. The enabling method is our recently proposed system calibration that splits the calibration process into two stages. Specifically, we calibrate the intrinsic parameters at a near position with a regular size yet precisely fabricated calibration target, and then calibrate the extrinsic parameters with the assistance of an additional large range yet low accuracy low cost 3D scanner (i.e., Kinect). We developed a system that achieved 500 Hz with a resolution 2304 × 1400. The field of view (FOV) of our structured light system is 0.9 m(W) × 1.4 m(H) × 0.8 m(D). Our experimental data demonstrated that such a large range structured light system can achieve an mean error of 0.13 mm with a standard deviation of 1.18 mm by measuring a 304.8 mm diameter sphere. We further experimentally demonstrated that proposed method can simultaneously measure multiple objects or large dynamically changing objects.

  1. High-accuracy determination for optical indicatrix rotation in ferroelectric DTGS

    OpenAIRE

    O.S.Kushnir; O.A.Bevz; O.G.Vlokh

    2000-01-01

    Optical indicatrix rotation in deuterated ferroelectric triglycine sulphate is studied with the high-accuracy null-polarimetric technique. The behaviour of the effect in ferroelectric phase is referred to quadratic spontaneous electrooptics.

  2. High-accuracy interferometric measurements of flatness and parallelism of a step gauge

    CSIR Research Space (South Africa)

    Kruger, OA

    2001-01-01

    Full Text Available for the calibration of step gauges to a high accuracy. A system was also developed for interferometric measurements of the flatness and parallelism of gauge block faces for use in uncertainty calculations....

  3. High Accuracy Reference Network (HARN), Points generated from coordinates supplied by NGS, Published in 1993, MARIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, was produced all or in part from Field Survey/GPS information as of 1993. It is described as 'Points generated...

  4. Data supporting the high-accuracy haplotype imputation using unphased genotype data as the references

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-09-01

    Full Text Available The data presented in this article is related to the research article entitled “High-accuracy haplotype imputation using unphased genotype data as the references” which reports the unphased genotype data can be used as reference for haplotyping imputation [1]. This article reports different implementation generation pipeline, the results of performance comparison between different implementations (A, B, and C and between HiFi and three major imputation software tools. Our data showed that the performances of these three implementations are similar on accuracy, in which the accuracy of implementation-B is slightly but consistently higher than A and C. HiFi performed better on haplotype imputation accuracy and three other software performed slightly better on genotype imputation accuracy. These data may provide a strategy for choosing optimal phasing pipeline and software for different studies.

  5. High-Order Kinetic Relaxation Schemes as High-Accuracy Poisson Solvers

    CERN Document Server

    Mendoza, M; Herrmann, H J

    2015-01-01

    We present a new approach to find accurate solutions to the Poisson equation, as obtained from the steady-state limit of a diffusion equation with strong source terms. For this purpose, we start from Boltzmann's kinetic theory and investigate the influence of higher order terms on the resulting macroscopic equations. By performing an appropriate expansion of the equilibrium distribution, we provide a method to remove the unnecessary terms up to a desired order and show that it is possible to find, with high level of accuracy, the steady-state solution of the diffusion equation for sizeable Knudsen numbers. In order to test our kinetic approach, we discretise the Boltzmann equation and solve the Poisson equation, spending up to six order of magnitude less computational time for a given precision than standard lattice Boltzmann methods.

  6. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    Science.gov (United States)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  7. Climate-induced changes in high elevation stream nitrate dynamics

    Science.gov (United States)

    Baron, J.S.; Schmidt, T.M.; Hartman, M.D.

    2009-01-01

    Mountain terrestrial and aquatic ecosystems are responsive to external drivers of change, especially climate change and atmospheric deposition of nitrogen (N). We explored the consequences of a temperature-warming trend on stream nitrate in an alpine and subalpine watershed in the Colorado Front Range that has long been the recipient of elevated atmospheric N deposition. Mean annual stream nitrate concentrations since 2000 are higher by 50% than an earlier monitoring period of 1991-1999. Mean annual N export increased by 28% from 2.03 kg N ha-1yr-1 before 2000 to 2.84 kg N ha-1yr-1 in Loch Vale watershed since 2000. The substantial increase in N export comes as a surprise, since mean wet atmospheric N deposition from 1991 to 2006 (3.06 kg N ha-1 yr-1) did not increase. There has been a period of below average precipitation from 2000 to 2006 and a steady increase in summer and fall temperatures of 0.12??C yr-1 in both seasons since 1991. Nitrate concentrations, as well as the weathering products calcium and sulfate, were higher for the period 2000-2006 in rock glacier meltwater at the top of the watershed above the influence of alpine and subalpine vegetation and soils. We conclude the observed recent N increases in Loch Vale are the result of warmer summer and fall mean temperatures that are melting ice in glaciers and rock glaciers. This, in turn, has exposed sediments from which N produced by nitrification can be flushed. We suggest a water quality threshold may have been crossed around 2000. The phenomenon observed in Loch Vale may be indicative of N release from ice features such as rock glaciers worldwide as mountain glaciers retreat. ?? 2009 Blackwell Publishing Ltd.

  8. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    Science.gov (United States)

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  9. Alberta High School, College Elevate Learning with Rare Joint Venture

    Science.gov (United States)

    Pearson, George

    2012-01-01

    The refusal by a group of parents in Olds, Alberta, in 2003 to accept a provincial grant to renovate their high school set in motion a remarkable collaboration that spawned an innovative learning campus for an entire community and beyond. The new Olds High School, which opened in 2010, is part of a new Community Learning Campus (CLC), a joint…

  10. Alberta High School, College Elevate Learning with Rare Joint Venture

    Science.gov (United States)

    Pearson, George

    2012-01-01

    The refusal by a group of parents in Olds, Alberta, in 2003 to accept a provincial grant to renovate their high school set in motion a remarkable collaboration that spawned an innovative learning campus for an entire community and beyond. The new Olds High School, which opened in 2010, is part of a new Community Learning Campus (CLC), a joint…

  11. Development of an object-based classification model for mapping mountainous forest cover at high elevation using aerial photography

    Science.gov (United States)

    Lateb, Mustapha; Kalaitzidis, Chariton; Tompoulidou, Maria; Gitas, Ioannis

    2016-08-01

    Climate change and overall temperature increase results in changes in forest cover in high elevations. Due to the long life cycle of trees, these changes are very gradual and can be observed over long periods of time. In order to use remote sensing imagery for this purpose it needs to have very high spatial resolution and to have been acquired at least 50 years ago. At the moment, the only type of remote sensing imagery with these characteristics is historical black and white aerial photographs. This study used an aerial photograph from 1945 in order to map the forest cover at the Olympus National Park, at that date. An object-based classification (OBC) model was developed in order to classify forest and discriminate it from other types of vegetation. Due to the lack of near-infrared information, the model had to rely solely on the tone of the objects, as well as their geometric characteristics. The model functioned on three segmentation levels, using sub-/super-objects relationships and utilising vegetation density to discriminate forest and non-forest vegetation. The accuracy of the classification was assessed using 503 visually interpreted and randomly distributed points, resulting in a 92% overall accuracy. The model is using unbiased parameters that are important for differentiating between forest and non-forest vegetation and should be transferrable to other study areas of mountainous forests at high elevations.

  12. Millimeter-Wave Airborne Interferometry for High-accuracy Topography Mapping

    Science.gov (United States)

    Moller, D.; Hensley, S.; Wu, X.; Rodriguez, E.

    2011-12-01

    In April 2009, an airborne Ka-band single pass interferometric SAR (GLISTIN-A) was demonstrated as a modification to the UAVSAR system. GLISTIN-A was developed under the NASA International Polar Year program to demonstrate swath-mapping for ice-surface topography. Instrument performance confirmed swath widths over the ice between 5-7km, with height precisions ranging from 30cm-3m at a 3m x 3m posting. However processing challenges were encountered on several fronts to achieve the required accuracies including, aircraft motion sensitivity, multipath and systematic drifts. A combination of processor optimization, a modified phase-screen and motion-compensation implementations were able to minimize the impact of these systematic error sources. Funded by the NASA Earth Science Technology Office, upgrades are currently underway to improve the performance (swath >10km) and portability of GLISTIN-A. The upgraded GLISTIN-A will be compatible with the GlobalHawk making Antarctica regional mapping feasible. Beyond this, the surface water and ocean topography (SWOT) mission slated for launch in 2019, needs an airborne sensor to support pre-mission phenomenology measurements and mission calibration and valibration (cal/val). SWOT is unique and distinct from precursor ocean altimetry missions in some notable regards: 1) 100km+ of swath will provide complete ocean elevation coverage, 2) in addition the land surface water will be mapped for storage measurement and discharge estimation and 3) Ka-band single-pass interferometry will produce the 2-D water surface elevation (WSE) maps. In support of SWOT, en-route to Greenland, GLISTIN-A collected a limited amount of data over surface-water targets in North Dakota. While instructive as a preliminary validation of Ka-band interferometry over inland water bodies, further application is limited because GLISTIN-A itself was not designed to address SWOT needs. While ideal for a the ice topography mapping application, the combination of

  13. The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Vivian, E-mail: v.tong13@imperial.ac.uk [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Jiang, Jun [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Wilkinson, Angus J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britton, T. Ben [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-15

    High resolution, cross-correlation-based, electron backscatter diffraction (EBSD) measures the variation of elastic strains and lattice rotations from a reference state. Regions near grain boundaries are often of interest but overlap of patterns from the two grains could reduce accuracy of the cross-correlation analysis. To explore this concern, patterns from the interior of two grains have been mixed to simulate the interaction volume crossing a grain boundary so that the effect on the accuracy of the cross correlation results can be tested. It was found that the accuracy of HR-EBSD strain measurements performed in a FEG-SEM on zirconium remains good until the incident beam is less than 18 nm from a grain boundary. A simulated microstructure was used to measure how often pattern overlap occurs at any given EBSD step size, and a simple relation was found linking the probability of overlap with step size. - Highlights: • Pattern overlap occurs at grain boundaries and reduces HR-EBSD accuracy. • A test is devised to measure the accuracy of HR-EBSD in the presence of overlap. • High pass filters can sometimes, but not generally, improve HR-EBSD measurements. • Accuracy of HR-EBSD remains high until the reference pattern intensity is <72%. • 9% of points near a grain boundary will have significant error for 200nm step size in Zircaloy-4.

  14. Development of an automatic calibration device for high-accuracy low temperature thermometers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the analysis and investigation of calibration systems for high-accuracy low temperature thermometers,a new facility for automatic calibration of high-accuracy low temperature thermometers was developed.Continuous calibration for multiple points can be made automatically with this device.According to the thermophysical characteristics of the constant-temperature block in this device,segmented Fuzzy-PID (proportional-integral-differential) algorithm was applied.The experimental results showed that the temperature fluctuation was smaller than ±0.005 K in 30 min.Therefore,this new device can fully meet the calibration requirement of high-precision low temperature thermometers.

  15. Study on High Accuracy Topographic Mapping via UAV-based Images

    Science.gov (United States)

    Chi, Yun-Yao; Lee, Ya-Fen; Tsai, Shang-En

    2016-10-01

    Unmanned aerial vehicle (UAV) provides a promising tool for the acquisition of such multi-temporal aerial stereo photos and high-resolution digital surface models. Recently, the flight of UAVs operates with high degrees of autonomy by the global position system and onboard digit camera and computer. The UAV-based mapping can be obtained faster and cheaper, but its accuracy is anxious. This paper aims to identify the integration ability of high accuracy topographic map via the image of quad-rotors UAV and ground control points (GCPs). The living survey data is collected in the Errn river basins area in Tainan, Taiwan. The high accuracy UAV-based topographic in the study area is calibrated by the local coordinate of GCPs using the total station with the accuracy less than 1/2000. The comparison results show the accuracy of UAV-based topographic is accepted by overlapping. The results can be a reference for the practice works of mapping survey in earth.

  16. Soil properties in high-elevation ski slopes

    Science.gov (United States)

    Filippa, Gianluca; Freppaz, Michele; Letey, Stéphanie; Corti, Giuseppe; Cocco, Stefania; Zanini, Ermanno

    2010-05-01

    The development of winter sports determines an increasing impact on the high altitude ecosystems, as a consequence of increased participation and an increasing demand of high quality standards for skiable areas. The construction of a ski slope is associated with a certain impact on soil, which varies as a function of the degree of human-induced disturbance to the native substrata. In this work, we provide a description of the characteristics of alpine tundra ski-slope soils and their nutrient status, contrasted with undisturbed areas. The study site is located in the Monterosaski Resort, Aosta Valley, NW Italy (45°51' N; 7°48' E). We chose 5 sites along an altitudinal gradient between 2700 and 2200 m a.s.l.. Per each site, one plot was established on the ski slope, while a control plot was chosen under comparable topographic conditions a few meters apart. Soils were described and samples were collected and analysed for main chemical-physical properties. In addition an evaluation of N forms, organic matter fractionation and microbial biomass was carried out. Soil depth ranged between 10 to more than 70 cm, both on the ski slope and in the undisturbed areas. A true organo-mineral (A) horizon was firstly identified at 2500 m a.s.l., while a weathering horizon (Bw) was detected at 2400 m a.s.l.. However, a Bw horizon thick enough to be recognised as diagnostic for shifting soil classification order from Entisols to Inceptisols (USDA-Soil Taxonomy) was detected only below 2400 m a.s.l.. Lithic Cryorthents were predominant in the upper part of the sequence (above 2500 m a.s.l.), both in the ski slope and the undisturbed areas; Typic Cryorthents were identified between 2500 and 2400 m a.s.l., while Inceptisols were predominant between 2400 and 2200 m a.s.l.. Chemical-physical properties will be discussed focusing on the main differences between ski slope and undisturbed soils, as determined by the ski slope construction. Pedogenetic processes at high altitude are

  17. Very high-accuracy calibration of radiation pattern and gain of a near-field probe

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2014-01-01

    In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission of the Europ......In this paper, very high-accuracy calibration of the radiation pattern and gain of a near-field probe is described. An open-ended waveguide near-field probe has been used in a recent measurement of the C-band Synthetic Aperture Radar (SAR) Antenna Subsystem for the Sentinel 1 mission...

  18. Management Options for a High Elevation Forest in the Alps

    Science.gov (United States)

    Jandl, R.; Jandl, N.; Schindlbacher, A.

    2013-12-01

    We explored different management strategies for a Cembran pine forest close to the timber line with respect to maintenance of the stand structure, the sequestration of carbon in the biomass and the soil, and the economical relevance of timber production. We used the forest growth simulation model Caldis for the implementation of three management intensities (zero managment, thinning every 30 years, thinning every 50 years) under two climate scenarios (IPCC A1B and B1). The soil carbon dynamics were analyzed with the simulation model Yasso07. The ecological evaluation of our simulation data showed that the extensive management with cutting interventions every 50 years allows the maintenance of the ecosystem carbon pool. Zero managment leads to the build-up of the carbon pool because the forest stand is rather unvulnerable to disturbances (bark beetle, storm). The more intensive mangement causes a decline in the ecosystem carbon pool. The economical evaluation showed the marginal relevance of the income generated by timber production. The main challenge is the compensation for the high harvesting costs (long-distance cable logging system). Even at extremely favorable market prices for timber from Cembran pine it is impossible to extract an appropriate amount of timber to justify the temporary instalment of the harvesting system and to maintain a stand density expected for a protection forest. We conclude that timber production is not a feasible object for mountain forests close to the timber line. Even in a warmer climate the productivity situation of forests close to the timberline will not change sufficiently. Therefore it will require public subsidies and personal efforts to maintain the silvicultural intensity at a level that is required for the sustainable maintenance of protection forests.

  19. [Study on high accuracy detection of multi-component gas in oil-immerse power transformer].

    Science.gov (United States)

    Fan, Jie; Chen, Xiao; Huang, Qi-Feng; Zhou, Yu; Chen, Gang

    2013-12-01

    In order to solve the problem of low accuracy and mutual interference in multi-component gas detection, a kind of multi-component gas detection network with high accuracy was designed. A semiconductor laser with narrow bandwidth was utilized as light source and a novel long-path gas cell was also used in this system. By taking the single sine signal to modulate the spectrum of laser and using space division multiplexing (SDM) and time division multiplexing (TDM) technique, the detection of multi-component gas was achieved. The experiments indicate that the linearity relevance coefficient is 0. 99 and the measurement relative error is less than 4%. The system dynamic response time is less than 15 s, by filling a volume of multi-component gas into the gas cell gradually. The system has advantages of high accuracy and quick response, which can be used in the fault gas on-line monitoring for power transformers in real time.

  20. Analysis of Accuracy of a High-speed Mobile Platform Control System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The efficient manufacture technique involves a high-speed control of platform mobile system. A linear acutor is presented in this paper. The linear acutor is constructed as a linear stepper motor. However, to sustain both high accuracy and high speed for the position and speed control, A single-stack computer system is constructed and a special control algorithm is prescribed to controled the linear actuator continuously. In this paper, the nonlinear errors resulted from the magnetic saturation and the h...

  1. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    Science.gov (United States)

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  2. High-accuracy C-14 measurements for atmospheric CO2 samples by AMS

    NARCIS (Netherlands)

    Meijer, H.A.J.; Pertuisot, M.H.; van der Plicht, J.

    2006-01-01

    In this paper, we investigate how to achieve high-accuracy radiocarbon measurements by accelerator mass spectrometry (ANIS) and present measurement series (performed on archived CO2) of (CO2)-C-14 between 1985 and 1991 for Point Barrow (Alaska) and the South Pole. We report in detail the measurement

  3. Further results on the operation of high-accuracy drift chambers

    NARCIS (Netherlands)

    Breskin, A.; Charpak, G.; Gabioud, B.; Sauli, F.; Trautner, N.

    Optimization of the working parameters in the drift chambers with adjustable electric fields permits stable operation and high accuracies. Full saturation of the drift velocity leads to remarkable improvements, namely a very linear space-time correlation for perpendicular tracks, and simple

  4. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  5. A 1-V 15 μW High-Accuracy Temperature Switch

    NARCIS (Netherlands)

    Schinkel, D.; Boer, de R.P.; Annema, A.J.; Tuijl, van A.J.M.

    2004-01-01

    A CMOS temperature switch with uncalibrated high accuracy is presented. The circuit is based on the classical CMOS bandgap reference structure, using parasitic PNPs and a PTAT multiplier. The circuit was designed in a standard digital 0.18 m CMOS process. The temperature switch has an in-designed hy

  6. From journal to headline: the accuracy of climate science news in Danish high quality newspapers

    DEFF Research Database (Denmark)

    Vestergård, Gunver Lystbæk

    2011-01-01

    analysis to examine the accuracy of Danish high quality newspapers in quoting scientific publications from 1997 to 2009. Out of 88 articles, 46 contained inaccuracies though the majority was found to be insignificant and random. The study concludes that Danish broadsheet newspapers are ‘moderately...

  7. High-sensitivity Cardiac Troponin Elevation after Electroconvulsive Therapy: A Prospective, Observational Cohort Study.

    Science.gov (United States)

    Duma, Andreas; Pal, Swatilika; Johnston, Joshua; Helwani, Mohammad A; Bhat, Adithya; Gill, Bali; Rosenkvist, Jessica; Cartmill, Christopher; Brown, Frank; Miller, J Philip; Scott, Mitchell G; Sanchez-Conde, Francisco; Jarvis, Michael; Farber, Nuri B; Zorumski, Charles F; Conway, Charles; Nagele, Peter

    2017-04-01

    While electroconvulsive therapy is widely regarded as a lifesaving and safe procedure, evidence regarding its effects on myocardial cell injury is sparse. The objective of this investigation was to determine the incidence and magnitude of new cardiac troponin elevation after electroconvulsive therapy using a novel high-sensitivity cardiac troponin I assay. This was a prospective cohort study in adult patients undergoing electroconvulsive therapy in a single academic center (up to three electroconvulsive therapy treatments per patient). The primary outcome was new high-sensitivity cardiac troponin I elevation after electroconvulsive therapy, defined as an increase of high-sensitivity cardiac troponin I greater than 100% after electroconvulsive therapy compared to baseline with at least one value above the limit of quantification (10 ng/l). Twelve-lead electrocardiogram and high-sensitivity cardiac troponin I values were obtained before and 15 to 30 min after electroconvulsive therapy; in a subset of patients, an additional 2-h high-sensitivity cardiac troponin I value was obtained. The final study population was 100 patients and a total of 245 electroconvulsive therapy treatment sessions. Eight patients (8 of 100; 8%) experienced new high-sensitivity cardiac troponin I elevation after electroconvulsive therapy with a cumulative incidence of 3.7% (9 of 245 treatments; one patient had two high-sensitivity cardiac troponin I elevations), two of whom had a non-ST-elevation myocardial infarction (incidence 2 of 245; 0.8%). Median high-sensitivity cardiac troponin I concentrations did not increase significantly after electroconvulsive therapy. Tachycardia and/or elevated systolic blood pressure developed after approximately two thirds of electroconvulsive therapy treatments. Electroconvulsive therapy appears safe from a cardiac standpoint in a large majority of patients. A small subset of patients with preexisting cardiovascular risk factors, however, may develop new

  8. Surgical accuracy in high tibial osteotomy: coronal equivalence of computer navigation and gap measurement.

    Science.gov (United States)

    Schröter, S; Ihle, C; Elson, D W; Döbele, S; Stöckle, U; Ateschrang, A

    2016-11-01

    Medial opening wedge high tibial osteotomy (MOW HTO) is now a successful operation with a range of indications, requiring an individualised approach to the choice of intended correction. This manuscript introduces the concept of surgical accuracy as the absolute deviation of the achieved correction from the intended correction, where small values represent greater accuracy. Surgical accuracy is compared in a randomised controlled trial (RCT) between gap measurement and computer navigation groups. This was a prospective RCT conducted over 3 years of 120 consecutive patients with varus malalignment and medial compartment osteoarthritis, who underwent MOW HTO. All procedures were planned with digital software. Patients were randomly assigned into gap measurement or computer navigation groups. Coronal plane alignment was judged using the mechanical tibiofemoral angle (mTFA), before and after surgery. Absolute (positive) values were calculated for surgical accuracy in each individual case. There was no significant difference in the mean intended correction between groups. The achieved mTFA revealed a small under-correction in both groups. This was attributed to a failure to account for saw blade thickness (gap measurement) and over-compensation for weight bearing (computer navigation). Surgical accuracy was 1.7° ± 1.2° (gap measurement) compared to 2.1° ± 1.4° (computer navigation) without statistical significance. The difference in tibial slope increases of 2.7° ± 3.9° (gap measurement) and 2.1° ± 3.9° (computer navigation) had statistical significance (P osteotomy for individual cases. This work is clinically relevant because coronal surgical accuracy was not superior in either group. Therefore, the increased expense and surgical time associated with navigated MOW HTO is not supported, because meticulously conducted gap measurement yields equivalent surgical accuracy. I.

  9. High-resolution absorption cross sections of C$_{2}$H$_{6}$ at elevated temperatures

    OpenAIRE

    2015-01-01

    Infrared absorption cross sections near 3.3 $\\mu$m have been obtained for ethane, C$_{2}$H$_{6}$. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm$^{-1}$. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C$_{2}$H$_{6}$ cross sections at elevate...

  10. A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.

    Science.gov (United States)

    Zhang, Xinran; Chen, Guowen; Liao, Hongen

    2015-01-01

    Image guided surgery has been used in clinic to improve the surgery safety and accuracy. Augmented reality (AR) technique, which can provide intuitive image guidance, has been greatly evolved these years. As one promising approach of surgical AR systems, integral videography (IV) autostereoscopic image overlay has achieved accurate fusion of full parallax guidance into surgical scene. This paper describes an image enhanced high-accuracy IV overlay system. A flexible optical image enhancement system (IES) is designed to increase the resolution and quality of IV image. Furthermore, we introduce a novel IV rendering algorithm to promote the spatial accuracy with the consideration of distortion introduced by micro lens array. Preliminary experiments validated that the image accuracy and resolution are improved with the proposed methods. The resolution of the IV image could be promoted to 1 mm for a micro lens array with pitch of 2.32 mm and IES magnification value of 0.5. The relative deviation of accuracy in depth and lateral directions are -4.68 ± 0.83% and -9.01 ± 0.42%.

  11. Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive.

    Science.gov (United States)

    Potere, David

    2008-12-08

    Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth's landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration) by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE). Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters). The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world's peri-urban areas.

  12. Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry

    Science.gov (United States)

    Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki

    2015-08-01

    In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.

  13. Two-step Structural Design of Mesh Antennas for High Beam Pointing Accuracy

    Science.gov (United States)

    Zhang, Shuxin; Du, Jingli; Wang, Wei; Zhang, Xinghua; Zong, Yali

    2017-05-01

    A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, circular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is implemented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001º of electromagnetic performance is achieved.

  14. The Impact of Ionospheric Disturbances on High Accuracy Positioning in Brazil

    Science.gov (United States)

    Yang, L.; Park, J.; Susnik, A.; Aquino, M. H.; Dodson, A.

    2013-12-01

    High positioning accuracy is a key requirement to a number of applications with a high economic impact, such as precision agriculture, surveying, geodesy, land management, off-shore operations. Global Navigation Satellite Systems (GNSS) carrier phase measurement based techniques, such as Real Time Kinematic (RTK), Network-RTK (NRTK) and Precise Point Positioning (PPP), have played an important role in providing centimetre-level positioning accuracy, and become the core of the above applications. However these techniques are especially sensitive to ionospheric perturbations, in particular scintillation. Brazil sits in one of the most affected regions of the Earth and can be regarded as a test-bed for scenarios of the severe ionospheric condition. Over the Brazilian territory, the ionosphere behaves in a considerably unpredictable way and scintillation activity is very prominent, occurring especially after sunset hours. NRTK services may not be able to provide satisfactory accuracy, or even continuous positioning during strong scintillation periods. CALIBRA (Countering GNSS high Accuracy applications Limitations due to Ionospheric disturbances in BRAzil) started in late 2012 and is a project funded by the GSA (European GNSS Agency) and the European Commission under the Framework Program 7 to deliver improvements on carrier phase based high accuracy algorithms and their implementation in GNSS receivers, aiming to counter the adverse ionospheric effects over Brazil. As the first stage of this project, the ionospheric disturbances, which affect the applications of RTK, NRTK or PPP, are characterized. Typical problems include degraded positioning accuracy, difficulties in ambiguity fixing, NRTK network interpolation errors, long PPP convergence time etc. It will identify how GNSS observables and existing algorithms are degraded by ionosphere related phenomena, evaluating the impact on positioning techniques in terms of accuracy, integrity and availability. Through the

  15. Gravity modeling reveals that the "Miocene Pyrenean peneplain" developed at high elevation

    Science.gov (United States)

    Bosch, Gemma V.; Van Den Driessche, Jean; Robert, Alexandra; Babault, Julien; Le Carlier, Christian

    2016-04-01

    Geodynamics that shaped the present morphology of the western Mediterranean are mostly linked to the African-Eurasia collision and the extension related to the Mediterranean opening. The Pyrenean chain formed by the collision between the Iberian microplate and the Eurasian plate from the Eocene to the late Oligocene. This resulted in lithosphere thickening especially below the Central Pyrenees that becomes thinner eastwards. Whether the later thinning of the lithosphere in the easternmost Pyrenees involves the removal of the lithospheric mantle or not is debated. This issue joins the problematics about the origin of the high-elevation of the "Miocene Pyrenean peneplain" remnants. Indeed the most striking feature of the Pyrenean morphology is the occurrence of high-elevation, low relief erosional surfaces that are interpreted as the remnants of a Miocene single planation surface, dissected and reworked by Quaternary fluvial and glacial erosion. Two end-member interpretations have proposed to explain the high elevation of this original surface. The first considers that the Miocene Pyrenean peneplain develops near sea-level and was later uplifted, the second claims that the planation surface developed at high elevation in response to the inhibition of erosion consecutively to the progressive rise of the base-level of the Pyrenean drainage network. The first interpretation implies the return to normal crustal thickness by erosion and later uplift by removal of the lithospheric mantle. The second interpretation considers that the mean elevation of the original planation surface matches the thickness of the lithosphere below the chain, taking into account some hundred meters of isostatic rebound due to Quaternary erosion. To test these interpretations, we first restore the Miocene original planation surface by mapping and interpolating the high-elevation, low relief surfaces across the Pyrenees. We then performed 1D and 2D gravity models that we compare with recent

  16. Hybrid head-tracker being examined for the high-accuracy attack rotorcraft market

    Science.gov (United States)

    Blanton, Buddy

    2002-08-01

    The need for the helmet-mounted display (HMD) to present flight, navigation, and weapon information in the pilot's line-of-sight has continued to rise as helicopter missions increase in complexity. To obtain spatial correlation of the direction of the head line-of-sight and pilotage imagery generated from helicopter-mounted sensors, it is necessary to slave the sensors to the head motion. To accomplish this task, a head-tracking system (HTS) must be incorporated into the HMD. There are a variety of techniques that could be applied for locating the position and attitude of a helmet-mounted display. Regardless of the technology, an HTS must provide defined measurements of accuracy. System parameters include motion box size, angular range, pointing angle accuracy, pointing angle resolution, update rate, and slew rate. This paper focuses on a hybrid tracker implementation in which a combination of optical and inertial tracking using strap-down gyros is preferred. Specifically, this tracker implementation is being examined for the high-accuracy attack rotorcraft market which requires a high degree of accuracy. The performance and resultant cost of the tracker components are determined by the specific needs of the intended application. The paper will also indicate how the various requirements drive the cost, configuration, and performance of the resultant hybrid head-tracker.

  17. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies.

    Science.gov (United States)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-06-01

    Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. PubMed was searched for reports of studies that had evaluated the diagnostic accuracy of a test against a clinical reference standard, published in 12 high-impact journals in 2012. Two reviewers independently evaluated the information contained in included abstracts using 21 items deemed important based on published guidance for adequate reporting and study quality assessment. We included 103 abstracts. Crucial information on study population, setting, patient sampling, and blinding as well as confidence intervals around accuracy estimates were reported in items per abstract was 10.1 of 21 (standard deviation 2.2). The mean number of reported items was significantly lower for multiple-gate (case-control type) studies, in reports in specialty journals, and for studies with smaller sample sizes and lower abstract word counts. No significant differences were found between studies evaluating different types of tests. Many abstracts of diagnostic accuracy study reports in high-impact journals are insufficiently informative. Developing guidelines for such abstracts could help the transparency and completeness of reporting. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. About accuracy of the discrimination parameter estimation for the dual high-energy method

    Science.gov (United States)

    Osipov, S. P.; Chakhlov, S. V.; Osipov, O. S.; Shtein, A. M.; Strugovtsev, D. V.

    2015-04-01

    A set of the mathematical formulas to estimate the accuracy of discrimination parameters for two implementations of the dual high energy method - by the effective atomic number and by the level lines is given. The hardware parameters which influenced on the accuracy of the discrimination parameters are stated. The recommendations to form the structure of the high energy X-ray radiation impulses are formulated. To prove the applicability of the proposed procedure there were calculated the statistical errors of the discrimination parameters for the cargo inspection system of the Tomsk polytechnic university on base of the portable betatron MIB-9. The comparison of the experimental estimations and the theoretical ones of the discrimination parameter errors was carried out. It proved the practical applicability of the algorithm to estimate the discrimination parameter errors for the dual high energy method.

  19. High accuracy digital aging monitor based on PLL-VCO circuit

    Science.gov (United States)

    Yuejun, Zhang; Zhidi, Jiang; Pengjun, Wang; Xuelong, Zhang

    2015-01-01

    As the manufacturing process is scaled down to the nanoscale, the aging phenomenon significantly affects the reliability and lifetime of integrated circuits. Consequently, the precise measurement of digital CMOS aging is a key aspect of nanoscale aging tolerant circuit design. This paper proposes a high accuracy digital aging monitor using phase-locked loop and voltage-controlled oscillator (PLL-VCO) circuit. The proposed monitor eliminates the circuit self-aging effect for the characteristic of PLL, whose frequency has no relationship with circuit aging phenomenon. The PLL-VCO monitor is implemented in TSMC low power 65 nm CMOS technology, and its area occupies 303.28 × 298.94 μm2. After accelerating aging tests, the experimental results show that PLL-VCO monitor improves accuracy about high temperature by 2.4% and high voltage by 18.7%.

  20. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  1. United States Interagency Elevation Inventory (USIEI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Interagency Elevation Inventory displays high-accuracy topographic and bathymetric data for the United States and its territories. The project is a...

  2. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    CERN Document Server

    Smith, Donald F; Leach, Franklin E; Robinson, Errol W; Paša-Tolić, Ljiljana; Heeren, Ron M A

    2013-01-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the sub-micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for elemental formula assignment based on exact mass measurement. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissu...

  3. Results of error correction techniques applied on two high accuracy coordinate measuring machines

    Energy Technology Data Exchange (ETDEWEB)

    Pace, C.; Doiron, T.; Stieren, D.; Borchardt, B.; Veale, R. (Sandia National Labs., Albuquerque, NM (USA); National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1990-01-01

    The Primary Standards Laboratory at Sandia National Laboratories (SNL) and the Precision Engineering Division at the National Institute of Standards and Technology (NIST) are in the process of implementing software error correction on two nearly identical high-accuracy coordinate measuring machines (CMMs). Both machines are Moore Special Tool Company M-48 CMMs which are fitted with laser positioning transducers. Although both machines were manufactured to high tolerance levels, the overall volumetric accuracy was insufficient for calibrating standards to the levels both laboratories require. The error mapping procedure was developed at NIST in the mid 1970's on an earlier but similar model. The error mapping procedure was originally very complicated and did not make any assumptions about the rigidness of the machine as it moved, each of the possible error motions was measured at each point of the error map independently. A simpler mapping procedure was developed during the early 1980's which assumed rigid body motion of the machine. This method has been used to calibrate lower accuracy machines with a high degree of success and similar software correction schemes have been implemented by many CMM manufacturers. The rigid body model has not yet been used on highly repeatable CMMs such as the M48. In this report we present early mapping data for the two M48 CMMs. The SNL CMM was manufactured in 1985 and has been in service for approximately four years, whereas the NIST CMM was delivered in early 1989. 4 refs., 5 figs.

  4. RNA secondary structure modeling at consistent high accuracy using differential SHAPE.

    Science.gov (United States)

    Rice, Greggory M; Leonard, Christopher W; Weeks, Kevin M

    2014-06-01

    RNA secondary structure modeling is a challenging problem, and recent successes have raised the standards for accuracy, consistency, and tractability. Large increases in accuracy have been achieved by including data on reactivity toward chemical probes: Incorporation of 1M7 SHAPE reactivity data into an mfold-class algorithm results in median accuracies for base pair prediction that exceed 90%. However, a few RNA structures are modeled with significantly lower accuracy. Here, we show that incorporating differential reactivities from the NMIA and 1M6 reagents--which detect noncanonical and tertiary interactions--into prediction algorithms results in highly accurate secondary structure models for RNAs that were previously shown to be difficult to model. For these RNAs, 93% of accepted canonical base pairs were recovered in SHAPE-directed models. Discrepancies between accepted and modeled structures were small and appear to reflect genuine structural differences. Three-reagent SHAPE-directed modeling scales concisely to structurally complex RNAs to resolve the in-solution secondary structure analysis problem for many classes of RNA.

  5. A fast and high accuracy numerical simulation algorithm of the polymer spherulite at the mesoscale Level

    Science.gov (United States)

    Liu, Yongzhi; Geng, Tie; (Tom Turng, Lih-Sheng; Liu, Chuntai; Cao, Wei; Shen, Changyu

    2017-09-01

    In the multiscale numerical simulation of polymer crystallization during the processing period, flow and temperature of the polymer melt are simulated on the macroscale level, while nucleation and growth of the spherulite are simulated at the mesoscale level. As a part of the multiscale simulation, the meso-simulation requires a fast solving speed because the meso-simulation software must be run several times in every macro-element at each macro-step. Meanwhile, the accuracy of the calculation results is also very important. It is known that the simulation geometry of crystallization includes planar (2D) and three-dimensional space (3D). The 3D calculations are more accurate but more expensive because of the long CPU time consumed. On the contrary, 2D calculations are always much faster but lower in accuracy. To reach the desirable speed and high accuracy at the same time, an algorithm is presented, in which the Delesse law coupled with the Monte Carlo method and pixel method are employed to simulate the nucleation, growth, and impingement of the polymer spherulite at the mesoscale level. Based on this algorithm, a software is developed with the Visual C++ language, and its numerical examples’ results prove that the solving speed of this algorithm is as fast as the 2D classical simulation and the calculation accuracy is at the same level as the 3D simulation.

  6. High Accuracy Gravitational Waveforms from Black Hole Binary Inspirals Using OpenCL

    CERN Document Server

    McKennon, Justin; Khanna, Gaurav

    2012-01-01

    There is a strong need for high-accuracy and efficient modeling of extreme-mass-ratio binary black hole systems because these are strong sources of gravitational waves that would be detected by future observatories. In this article, we present sample results from our Teukolsky EMRI code: a time-domain Teukolsky equation solver (a linear, hyperbolic, partial differential equation solver using finite-differencing), that takes advantage of several mathematical and computational enhancements to efficiently generate long-duration and high-accuracy EMRI waveforms. We emphasize here the computational advances made in the context of this code. Currently there is considerable interest in making use of many-core processor architectures, such as Nvidia and AMD graphics processing units (GPUs) for scientific computing. Our code uses the Open Computing Language (OpenCL) for taking advantage of the massive parallelism offered by modern GPU architectures. We present the performance of our Teukolsky EMRI code on multiple mod...

  7. Elevated-temperature properties of one long-life high-strength gun steel

    Institute of Scientific and Technical Information of China (English)

    Maoqiu Wang; Han Dong; Qi Wang

    2004-01-01

    The hardness, tensile strength and impact toughness of one quenched and tempered steel with nominal composition of Fe0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both at room temperature and at elevated temperatures were investigated in order to develop high-strength steel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensile strength at elevated temperature in comparison with the commonly used G4335V high-strength gun steel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strength of the steel is attributed to the strong secondary hardening effect and high tempering softening resistance caused by the tempering precipitation of fine Mo-rich M2C carbides in the α-Fe matrix. The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, its room-temperature impact energy is much higher than the normal requirement of impact toughness for high strength gun steels. Therefore, the steel is suitable for production of long-life high-strength gun barrels with the combination of superior elevated-temperature strength and good impact toughness.

  8. Cavity ring-down technique for measurement of reflectivity of high reflectivity mirrors with high accuracy

    Indian Academy of Sciences (India)

    G Sridhar; Sandeep K Agarwalla; Sunita Singh; L M Gantayet

    2010-12-01

    A simple, accurate and reliable method for measuring the reflectivity of laser-grade mirrors ( > 99.5 %) based on cavity ring-down (CRD) technique has been success-fully demonstrated in our laboratory using a pulsed Nd:YAG laser. A fast photomultiplier tube with an oscilloscope was used to detect and analyse the CRD signal. The cavity decay times were measured for three cavities formed by a combination of three mirror pairs. The absolute reflectivities 1, 2, 3 were determined to be 99.94%, 99.63%, 99.52% at normal incidence. The reflectivity of mirrors is measured to an accuracy of 0.01%.

  9. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  10. High Mass Accuracy and High Mass Resolving Power FT-ICR Secondary Ion Mass Spectrometry for Biological Tissue Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kiss, Andras; Leach, Franklin E.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Heeren, Ronald M.

    2013-07-01

    Biological tissue imaging by secondary ion mass spectrometry has seen rapid development with the commercial availability of polyatomic primary ion sources. Endogenous lipids and other small bio-molecules can now be routinely mapped on the micrometer scale. Such experiments are typically performed on time-of-flight mass spectrometers for high sensitivity and high repetition rate imaging. However, such mass analyzers lack the mass resolving power to ensure separation of isobaric ions and the mass accuracy for exact mass elemental formula assignment. We have recently reported a secondary ion mass spectrometer with the combination of a C60 primary ion gun with a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) for high mass resolving power, high mass measurement accuracy and tandem mass spectrometry capabilities. In this work, high specificity and high sensitivity secondary ion FT-ICR MS was applied to chemical imaging of biological tissue. An entire rat brain tissue was measured with 150 μm spatial resolution (75 μm primary ion spot size) with mass resolving power (m/Δm50%) of 67,500 (at m/z 750) and root-mean-square measurement accuracy less than two parts-per-million for intact phospholipids, small molecules and fragments. For the first time, ultra-high mass resolving power SIMS has been demonstrated, with m/Δm50% > 3,000,000. Higher spatial resolution capabilities of the platform were tested at a spatial resolution of 20 μm. The results represent order of magnitude improvements in mass resolving power and mass measurement accuracy for SIMS imaging and the promise of the platform for ultra-high mass resolving power and high spatial resolution imaging.

  11. Accuracy of GPS devices for measuring high-intensity running in field-based team sports.

    Science.gov (United States)

    Rampinini, E; Alberti, G; Fiorenza, M; Riggio, M; Sassi, R; Borges, T O; Coutts, A J

    2015-01-01

    We compared the accuracy of 2 GPS systems with different sampling rates for the determination of distances covered at high-speed and metabolic power derived from a combination of running speed and acceleration. 8 participants performed 56 bouts of shuttle intermittent running wearing 2 portable GPS devices (SPI-Pro, GPS-5 Hz and MinimaxX, GPS-10 Hz). The GPS systems were compared with a radar system as a criterion measure. The variables investigated were: total distance (TD), high-speed distance (HSR>4.17 m·s(-1)), very high-speed distance (VHSR>5.56 m·s(-1)), mean power (Pmean), high metabolic power (HMP>20 W·kg(-1)) and very high metabolic power (VHMP>25 W·kg(-1)). GPS-5 Hz had low error for TD (2.8%) and Pmean (4.5%), while the errors for the other variables ranged from moderate to high (7.5-23.2%). GPS-10 Hz demonstrated a low error for TD (1.9%), HSR (4.7%), Pmean (2.4%) and HMP (4.5%), whereas the errors for VHSR (10.5%) and VHMP (6.2%) were moderate. In general, GPS accuracy increased with a higher sampling rate, but decreased with increasing speed of movement. Both systems could be used for calculating TD and Pmean, but they cannot be used interchangeably. Only GPS-10 Hz demonstrated a sufficient level of accuracy for quantifying distance covered at higher speeds or time spent at very high power. © Georg Thieme Verlag KG Stuttgart · New York.

  12. HYDRAULIC ACTIVE GUIDE ROLLER SYSTEM FOR HIGH-SPEED ELEVATOR BASED ON FUZZY CONTROLLER

    Institute of Scientific and Technical Information of China (English)

    FENG Yonghui; ZHANG Jianwu

    2007-01-01

    Increase of elevator speed brings about amplified vibrations of high-speed elevator. In order to reduce the horizontal vibrations of high-speed elevator, a new type of hydraulic active guide roller system based on fuzzy logic controller is developed. First the working principle of the hydraulic guide system is introduced, then the dynamic model of the horizontal vibrations for elevator cage with active guide roller system and the mathematical model of the hydraulic system are given. A fuzzy logic controller for the hydraulic system is designed to control the hydraulic actuator. To improve the control performance, preview compensation for the controller is provided. Finally, simulation and experiments are executed to verify the hydraulic active guide roller system and the control strategy. Both the simulation and experimental results indicate that the hydraulic active guide roller system can reduce the horizontal vibrations of the elevator effectively and has better effects than the passive one, and the fuzzy logic controller with preview compensation can give superior control performance.

  13. Use of remotely sensed land surface temperature as a proxy for air temperatures at high elevations: Findings from a 5000 m elevational transect across Kilimanjaro

    Science.gov (United States)

    Pepin, N. C.; Maeda, E. E.; Williams, R.

    2016-09-01

    High elevations are thought to be warming more rapidly than lower elevations, but there is a lack of air temperature observations in high mountains. This study compares instantaneous values of land surface temperature (10:30/22:30 and 01:30/13:30 local solar time) as measured by Moderate Resolution Imaging Spectroradiometer MOD11A2/MYD11A2 at 1 km resolution from the Terra and Aqua platforms, respectively, with equivalent screen-level air temperatures (in the same pixel). We use a transect of 22 in situ weather stations across Kilimanjaro ranging in elevation from 990 to 5803 m, one of the biggest elevational ranges in the world. There are substantial differences between LST and Tair, sometimes up to 20°C. During the day/night land surface temperature tends to be higher/lower than Tair. LST-Tair differences (ΔT) show large variance, particularly during the daytime, and tend to increase with elevation, particularly on the NE slope which faces the morning Sun. Differences are larger in the dry seasons (JF and JJAS) and reduce in cloudy seasons. Healthier vegetation (as measured by normalized difference vegetation index) and increased humidity lead to reduced daytime surface heating above air temperature and lower ΔT, but these relationships weaken with elevation. At high elevations transient snow cover cools LST more than Tair. The predictability of ΔT therefore reduces. It will therefore be challenging to use satellite data at high elevations as a proxy for in situ air temperatures in climate change assessments, especially for daytime Tmax. ΔT is smaller and more consistent at night, so it will be easier to use LST to monitor changes in Tmin.

  14. Making high-accuracy null depth measurements for the LBTI exozodi survey

    Science.gov (United States)

    Mennesson, Bertrand; Defrère, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; Marion, Lindsay; Roberge, Aki; Serabyn, Eugene; Skemer, Andy J.; Stapelfeldt, Karl; Weinberger, Alycia J.; Wyatt, Mark

    2016-08-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 σ measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation ("null") levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  15. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    Directory of Open Access Journals (Sweden)

    Zheng You

    2013-04-01

    Full Text Available The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  16. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  17. High-accuracy determination of the neutron flux at n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V. [Sezione di Bari, INFN, Bari (Italy); Guerrero, C.; Andriamonje, S.; Boccone, V.; Brugger, M.; Calviani, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Kadi, Y.; Losito, R.; Versaci, R.; Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Tsinganis, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); National Technical University of Athens (NTUA), Athens (Greece); Tarrio, D.; Duran, I.; Leal-Cidoncha, E.; Paradela, C. [Universidade de Santiago de Compostela, Santiago (Spain); Altstadt, S.; Goebel, K.; Langer, C.; Reifarth, R.; Schmidt, S.; Weigand, M. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (Germany); Andrzejewski, J.; Marganiec, J.; Perkowski, J. [Uniwersytet Lodzki, Lodz (Poland); Audouin, L.; Leong, L.S.; Tassan-Got, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Becares, V.; Cano-Ott, D.; Garcia, A.R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S. [Charles University, Prague (Czech Republic); Belloni, F.; Fraval, K.; Gunsing, F.; Lampoudis, C.; Papaevangelou, T. [Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E.; Chiaveri, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Commissariata l' Energie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Billowes, J.; Ware, T.; Wright, T. [University of Manchester, Manchester (United Kingdom); Bosnar, D.; Zugec, P. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Calvino, F.; Cortes, G.; Gomez-Hornillos, M.B.; Riego, A. [Universitat Politecnica de Catalunya, Barcelona (Spain); Carrapico, C.; Goncalves, I.F.; Sarmento, R.; Vaz, P. [Universidade Tecnica de Lisboa, Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Lisboa (Portugal); Cortes-Giraldo, M.A.; Praena, J.; Quesada, J.M.; Sabate-Gilarte, M. [Universidad de Sevilla, Sevilla (Spain); Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R. [National Technical University of Athens (NTUA), Athens (Greece); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P. [Paul Scherrer Institut, Villigen PSI (Switzerland); Dzysiuk, N.; Mastinu, P.F. [Laboratori Nazionali di Legnaro, INFN, Rome (Italy); Eleftheriadis, C.; Manousos, A. [Aristotle University of Thessaloniki, Thessaloniki (Greece); Ganesan, S.; Gurusamy, P.; Saxena, A. [Bhabha Atomic Research Centre (BARC), Mumbai (IN); Griesmayer, E.; Jericha, E.; Leeb, H. [Technische Universitaet Wien, Atominstitut, Wien (AT); Hernandez-Prieto, A. [European Organization for Nuclear Research (CERN), Geneva (CH); Universitat Politecnica de Catalunya, Barcelona (ES); Jenkins, D.G.; Vermeulen, M.J. [University of York, Heslington, York (GB); Kaeppeler, F. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Karlsruhe (DE); Koehler, P. [Oak Ridge National Laboratory (ORNL), Oak Ridge (US); Lederer, C. [Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE); University of Vienna, Faculty of Physics, Vienna (AT); Massimi, C.; Mingrone, F.; Vannini, G. [Universita di Bologna (IT); INFN, Sezione di Bologna, Dipartimento di Fisica, Bologna (IT); Mengoni, A.; Ventura, A. [Agenzia nazionale per le nuove tecnologie, l' energia e lo sviluppo economico sostenibile (ENEA), Bologna (IT); Milazzo, P.M. [Sezione di Trieste, INFN, Trieste (IT); Mirea, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Mondalaers, W.; Plompen, A.; Schillebeeckx, P. [Institute for Reference Materials and Measurements, European Commission JRC, Geel (BE); Pavlik, A.; Wallner, A. [University of Vienna, Faculty of Physics, Vienna (AT); Rauscher, T. [University of Basel, Department of Physics and Astronomy, Basel (CH); Roman, F. [European Organization for Nuclear Research (CERN), Geneva (CH); Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Bucharest - Magurele (RO); Rubbia, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Laboratori Nazionali del Gran Sasso dell' INFN, Assergi (AQ) (IT); Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (CH); Johann-Wolfgang-Goethe Universitaet, Frankfurt (DE)

    2013-12-15

    The neutron flux of the n{sub T}OF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the n{sub T}OF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n{sub T}OF. An unexpected anomaly in the neutron-induced fission cross section of {sup 235}U is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties. (orig.)

  18. Navigation Facility for High Accuracy Offline Trajectory and Attitude Estimation in Airborne Applications

    Directory of Open Access Journals (Sweden)

    A. Renga

    2013-01-01

    Full Text Available The paper focuses on a navigation facility, relying on commercial-off-the-shelf (COTS technology, developed to generate high-accuracy attitude and trajectory measurements in postprocessing. Target performance is cm-level positioning with tenth of degree attitude accuracy. The facility is based on the concept of GPS-aided inertial navigation but comprises carrier-phase differential GPS (CDGPS processing and attitude estimation based on multiantenna GPS configurations. Expected applications of the system include: (a performance assessment of integrated navigation systems, developed for general aviation aircraft and medium size unmanned aircraft systems (UAS; (b generation of reference measurements to evaluate the flight performance of airborne sensors (e.g., radar or laser; and (c generation of reference trajectory and attitude for improving imaging quality of airborne remote sensing data. The paper describes system architecture, selected algorithms for data processing and integration, and theoretical performance evaluation. Experimental results are also presented confirming the effectiveness of the implemented approach.

  19. Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability

    Science.gov (United States)

    High density light detection and ranging (LIDAR) imaging has been shown to be able to define yield stability areas of a field for multi-cropping. Since LIDAR imaging is expensive and not widely available, we hypothesized that medium resolution GPS elevation data which is commonly collected with var...

  20. Reestablishing natural succession on acidic mine spoils at high elevations: long-term ecological restoration

    Science.gov (United States)

    Ray W. Brown; Michael C. Amacher; Walter F. Mueggler; Janice Kotuby-Amacher

    2003-01-01

    Methods for restoring native plant communities on acidic mine spoils at high elevations were evaluated in a "demonstration area" in the New World Mining District of southern Montana. Research plots installed in 1976 were assessed for 22 years and compared with adjacent native reference plant communities. A 1.5-acre (0.61-ha) area of mine spoils was shaped and...

  1. Elevated Suicide Rates at High Altitude: Sociodemographic and Health Issues May Be to Blame

    Science.gov (United States)

    Betz, Marian E.; Valley, Morgan A.; Lowenstein, Steven R.; Hedegaard, Holly; Thomas, Deborah; Stallones, Lorann; Honigman, Benjamin

    2011-01-01

    Suicide rates are higher at high altitudes; some hypothesize that hypoxia is the cause. We examined 8,871 suicides recorded in 2006 in 15 states by the National Violent Death Reporting System, with the victim's home county altitude determined from the National Elevation Dataset through FIPS code matching. We grouped cases by altitude (low less…

  2. High-resolution absorption cross sections of C$_{2}$H$_{6}$ at elevated temperatures

    CERN Document Server

    Hargreaves, Robert J; Dulick, Michael; Bernath, Peter F

    2015-01-01

    Infrared absorption cross sections near 3.3 $\\mu$m have been obtained for ethane, C$_{2}$H$_{6}$. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm$^{-1}$. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C$_{2}$H$_{6}$ cross sections at elevated temperatures.

  3. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease

    DEFF Research Database (Denmark)

    Johannsen, Trine Holm; Kamstrup, Pia R; Andersen, Rolf V

    2008-01-01

    CONTEXT: Hepatic lipase influences metabolism of high-density lipoprotein (HDL), a risk factor for ischemic cardiovascular disease (ICD: ischemic heart disease and ischemic cerebrovascular disease). OBJECTIVE: We tested the hypothesis that genetic variation in the hepatic lipase genetic variants V.......91 (95% CI 0.89-0.94), respectively; this calculation assumes that genetically elevated HDL levels confer decreased risk similar to common HDL elevations. In contrast, when all cases and controls were combined, the observed odds ratios for ICD for these three genetic variants vs. noncarriers were 1.19 (0.......76-1.88), 1.04 (0.96-1.13), and 1.08 (0.89-1.30), respectively. Hazard/odds ratios for ICD in carriers vs. noncarriers of the four remaining hepatic lipase genetic variants did not differ consistently from 1.0. CONCLUSION: Hepatic lipase genetic variants with elevated levels of HDL cholesterol did...

  4. Exploration of High elevation liana colonies on Mt. Slamet, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    WS Hoover

    2009-12-01

    Full Text Available One hundred forty–five individual lianas were distributed on 2 East facing ridges on the second highest mountain on Java, Mt. Slamet (3418 m., Central Java, Indonesia. Twenty one colonies were observed on small flat areas on ridges. The liana species observed include: Embelia pergamacea, Toddalia asiatica, Elaeagnus latifolia, Schefflera lucida, Vaccinium laurifolium and Lonicera javanica. Diameter of each liana was measured and liana density/flat area calculated. Floristic collecting was under- taken within the elevational gradient of liana distribution. Data suggest an ecotone transition from lower to upper mon- tane forest is observed between 2200 and 2300 m, though forest types are difficult to determine due to disturbance caused by fire at the upper elevations. Observing lianas at these unusuall high elevations with near pluvial rainfall, con- tradict established scientific theory concerning global distribution and abundance of lianas.  

  5. Short-term effects of implemented high intensity shoulder elevation during computer work

    Directory of Open Access Journals (Sweden)

    Madeleine Pascal

    2009-08-01

    Full Text Available Abstract Background Work-site strength training sessions are shown effective to prevent and reduce neck-shoulder pain in computer workers, but difficult to integrate in normal working routines. A solution for avoiding neck-shoulder pain during computer work may be to implement high intensity voluntary contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction on productivity, RPE and upper trapezius activity and rest during computer work and a subsequent pause from computer work. Methods 18 female computer workers performed 2 sessions of 15 min standardized computer mouse work preceded by 1 min pause with and without prior high intensity contraction of shoulder elevation. RPE was reported, productivity (drawings per min measured, and bipolar surface electromyography (EMG recorded from the dominant upper trapezius during pauses and sessions of computer work. Repeated measure ANOVA with Bonferroni corrected post-hoc tests was applied for the statistical analyses. Results The main findings were that a high intensity shoulder elevation did not modify RPE, productivity or EMG activity of the upper trapezius during the subsequent pause and computer work. However, the high intensity contraction reduced the relative rest time of the uppermost (clavicular trapezius part during the subsequent pause from computer work (p Conclusion Since a preceding high intensity shoulder elevation did not impose a negative impact on perceived effort, productivity or upper trapezius activity during computer work, implementation of high intensity contraction during computer work to prevent neck-shoulder pain may be possible without affecting the working routines. However, the unexpected reduction in clavicular trapezius rest during a

  6. Appending High-Resolution Elevation Data to GPS Speed Traces for Vehicle Energy Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Burton, E.; Duran, A.; Gonder, J.

    2014-06-01

    Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digital elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.

  7. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy

    Science.gov (United States)

    Samango-Sprouse, Carole; Banjevic, Milena; Ryan, Allison; Sigurjonsson, Styrmir; Zimmermann, Bernhard; Hill, Matthew; Hall, Megan P.; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2013-01-01

    Objective To develop a single nucleotide polymorphism- and informatics-based non-invasive prenatal test that detects sex chromosome aneuploidies early in pregnancy. Methods Fifteen aneuploid samples, including thirteen 45,X, two 47,XXY, and one 47,XYY, along with 185 euploid controls, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex PCR assay that targeted 19,488 polymorphic loci covering chromosomes 13, 18, 21, X, and Y, and sequenced. Sequencing results were analyzed using a Bayesian-based maximum likelihood statistical method to determine copy number of interrogated chromosomes, calculating sample-specific accuracies. Results Of the samples that passed a stringent quality control metric (93%), the algorithm correctly identified copy number at all five chromosomes in all 187 samples, for 934/935 correct calls as early as 9.4 weeks of gestation. We detected 45,X with 91.7% sensitivity (CI: 61.5-99.8%) and 100% specificity (CI: 97.9-100%), and 47,XXY and 47,XYY. The average calculated accuracy was 99.78%. Conclusion This method non-invasively detected 45,X, 47,XXY, and 47,XYY fetuses from cfDNA isolated from maternal plasma with high calculated accuracies, and thus offers a non-invasive method with the potential to function as a routine screen allowing for early prenatal detection of rarely diagnosed yet commonly occurring sex aneuploidies. PMID:23712453

  8. High-accuracy defect sizing for nozzle attachment welds using asymmetric TOFD

    Energy Technology Data Exchange (ETDEWEB)

    Bloodworth, T. [AEA Technology, Risley (United Kingdom)

    1999-09-01

    Inspection procedures for the detection, characterisation and high-accuracy sizing of defects in nozzle attachment welds in a Swedish BWR have been developed. These welds are set-on nozzle-to-pipe attachment welds between the main recirculation pipe and related piping systems. The nozzles and the main recirculation pipe are made of ferritic steel with austenitic stainless steel cladding on the inner surface. The overall wall thickness of the nozzle is 30 mm. The inspection uses an automated pulse-echo technique for the detection and length sizing of defects. Software for the display of complex geometry ultrasonic data is used to assist in data analysis. An unorthodox automated ultrasonic TOFD technique is used to measure the through-wall height of defects. This technique deploys probes on both the nozzle and main pipe surfaces. The TOFD data for this complex geometry are analysed using the CGTOFD software, to locate the origin of defect edge signals. The Qualification detection criterion for this inspection is the detection of defects 6 mm x 18 mm (height x length) or greater. The required length measurement accuracy is {+-}14 mm and the required through-wall height measurement accuracy is {+-}2.3 mm. This last requirement is very demanding. The inspection procedures for detection and sizing passed Procedure Qualification when measured against the above criteria on an `open` test specimen. Data collection and analysis personnel have subsequently passed Personnel Qualification using `blind` specimens. (Author)

  9. Uncertainty and target accuracy studies for the very high temperature reactor(VHTR) physics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Taiwo, T. A.; Palmiotti, G.; Aliberti, G.; Salvatores, M.; Kim, T.K.

    2005-09-16

    The potential impact of nuclear data uncertainties on a number of performance parameters (core and fuel cycle) of the prismatic block-type Very High Temperature Reactor (VHTR) has been evaluated and results are presented in this report. An uncertainty analysis has been performed, based on sensitivity theory, which underlines what cross-sections, what energy range and what isotopes are responsible for the most significant uncertainties. In order to give guidelines on priorities for new evaluations or validation experiments, required accuracies on specific nuclear data have been derived, accounting for target accuracies on major design parameters. Results of an extensive analysis indicate only a limited number of relevant parameters do not meet the target accuracies assumed in this work; this does not imply that the existing nuclear cross-section data cannot be used for the feasibility and pre-conceptual assessments of the VHTR. However, the results obtained depend on the uncertainty data used, and it is suggested to focus some future evaluation work on the production of consistent, as far as possible complete and user oriented covariance data.

  10. High accuracy measurements of magnetic field integrals for the european XFEL undulator systems

    Science.gov (United States)

    Wolff-Fabris, Frederik; Viehweger, Marc; Li, Yuhui; Pflüger, Joachim

    2016-10-01

    Two high accuracy moving wire (MW) measurement systems based on stretched wire technique were built for the European XFEL (XFEL.EU). They were dedicated to monitor, tune and improve the magnetic field integrals properties during the serial production of the undulator segments, phase shifters and air coil correctors for XFEL.EU. For the magnetic tuning of phase shifters and the calibration of the air coils correctors a short portable MW measurement bench was built to measure first field integrals in short devices with magnetic length of less than about 300 mm and with an ultimate accuracy much better than 1 G cm (0.001 T mm). A long MW measurement setup was dedicated to obtain the total first and second field integrals on the 5-meters long undulator segments with accuracy of about 4 G cm (0.004 T mm) and 2000 G cm2 (20 T mm2) for the 1st and 2nd field integrals, respectively. Using these data a method was developed to compute the proper corrections for the air coils correctors used at both extremities so that zero first and second field integrals for an undulator segment are obtained. It is demonstrated that charging air coils correctors with these corrections results in near zero effect to the electron trajectory in the undulator systems and consequently no negative impact on the self-amplified spontaneous emission (SASE) process should occur.

  11. High-resolution elevation mapping of the McMurdo Dry Valleys, Antarctica, and surrounding regions

    Science.gov (United States)

    Fountain, Andrew G.; Fernandez-Diaz, Juan C.; Obryk, Maciej; Levy, Joseph; Gooseff, Michael; Van Horn, David J.; Morin, Paul; Shrestha, Ramesh

    2017-07-01

    We present detailed surface elevation measurements for the McMurdo Dry Valleys, Antarctica derived from aerial lidar surveys flown in the austral summer of 2014-2015 as part of an effort to understand geomorphic changes over the past decade. Lidar return density varied from 2 to > 10 returns m-2 with an average of about 5 returns m-2. Vertical and horizontal accuracies are estimated to be 7 and 3 cm, respectively. In addition to our intended targets, other ad hoc regions were also surveyed including the Pegasus flight facility and two regions on Ross Island, McMurdo Station, Scott Base (and surroundings), and the coastal margin between Cape Royds and Cape Evans. These data are included in this report and data release. The combined data are freely available at https://doi.org/10.5069/G9D50JX3" target="_blank">https://doi.org/10.5069/G9D50JX3.

  12. Combination of hand mapping and automatic mapping to reveal the Miocene high elevation Pyrenean peneplain

    Science.gov (United States)

    Bosch, Gemma V.; Babault, Julien; Van Den Driessche, Jean

    2016-04-01

    A striking feature of the morphology of the Pyrenees is the occurrence of high-elevation, low-relief surfaces, which are interpreted as remnants of a single Miocene planation surface. Whether the original surface was uplifted or developed at high altitude is debated. This "Miocene Pyrenean peneplain" has been dissected by fluvial and glacial erosion during the Quaternary. Reworking by glacial erosion also provides new smooth surfaces such as glacial cirque floors that must not be confused with the remnants of the original planation surface. The later are convex-up landforms whereas glacial cirque floors are concave-up landforms. To reveal the Miocene high-elevation Pyrenean peneplain, we combined hand mapping and automatic mapping at the scale of the whole chain. From previous mapping in literature and from our own field work, we first perform a map of both the Miocene planation surface remnants and the Quaternary glacial cirque floors. Using Digital Elevation Models, numerical parameters were extracted from this map to characterize the two types of smooth surfaces. The slope is the parameter that helps to delimitate and differentiate the smooth surfaces from the rest of the Pyrenean topography. To distinguish between the two types of smooth surfaces we used the Topographic Index (TPI). This parameter is the difference between the elevation of a point and the mean elevation. Choosing the pertinent radius according to the scale of the landform to map, and the pertinent values interval, we can differentiate the planation surface (convex-up) from the glacial cirque floors (concave-up). A sensitivity test was performed to determine the best radius and the best interval for TPI and slope values to distinguish between the two types of smooth surfaces. Finally, we used a combination of slope values, TPI values and radius to determine automatically the high-elevation, low-relief surfaces in the entire Pyrenees. We verified in the field the presence of the newly mapped high-elevation

  13. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    Science.gov (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  14. Anti-aliasing filters for deriving high-accuracy DEMs from TLS data: A case study from Freeport, Texas

    Science.gov (United States)

    Xiong, Lin.; Wang, Guoquan; Wessel, Paul

    2017-03-01

    Terrestrial laser scanning (TLS), also known as ground-based Light Detection and Ranging (LiDAR), has been frequently applied to build bare-earth digital elevation models (DEMs) for high-accuracy geomorphology studies. The point clouds acquired from TLS often achieve a spatial resolution at fingerprint (e.g., 3 cm×3 cm) to handprint (e.g., 10 cm×10 cm) level. A downsampling process has to be applied to decimate the massive point clouds and obtain manageable DEMs. It is well known that downsampling can result in aliasing that causes different signal components to become indistinguishable when the signal is reconstructed from the datasets with a lower sampling rate. Conventional DEMs are mainly the results of upsampling of sparse elevation measurements from land surveying, satellite remote sensing, and aerial photography. As a consequence, the effects of aliasing caused by downsampling have not been fully investigated in the open literature of DEMs. This study aims to investigate the spatial aliasing problem of regridding dense TLS data. The TLS data collected from the beach and dune area near Freeport, Texas in the summer of 2015 are used for this study. The core idea of the anti-aliasing procedure is to apply a low-pass spatial filter prior to conducting downsampling. This article describes the successful use of a fourth-order Butterworth low-pass spatial filter employed in the Generic Mapping Tools (GMT) software package as an anti-aliasing filter. The filter can be applied as an isotropic filter with a single cutoff wavelength or as an anisotropic filter with two different cutoff wavelengths in the X and Y directions. The cutoff wavelength for the isotropic filter is recommended to be three times the grid size of the target DEM.

  15. Effect of age on aldosterone/renin ratio (ARR) and comparison of screening accuracy of ARR plus elevated serum aldosterone concentration for primary aldosteronism screening in different age groups.

    Science.gov (United States)

    Yin, Guoshu; Zhang, Shaoling; Yan, Li; Wu, Muchao; Xu, Mingtong; Li, Feng; Cheng, Hua

    2012-08-01

    The serum aldosterone concentration (SAC)/plasma renin activity (PRA) ratio (ARR) is considered a useful screening test in the differential diagnosis of essential hypertension (EH) and primary aldosteronism (PA). The purpose of this study is to investigate the effect of age on ARR and compare the screening accuracy of ARR plus elevated SAC for PA screening in different age groups. Thirty-nine patients with PA, 274 patients with EH, and 153 healthy volunteers were recruited. Blood was sampled for SAC and PRA measuring under keeping upright posture for 1 h. Levels of SAC, PRA, and ARR were compared at different ages range for the respective three groups of subjects. The screening accuracy of ARR plus elevated SAC was compared in different age groups and PA patients served as the same positive subjects. In the EH group, logarithmically transformed ARR (Log-ARR) increased with advancing age and reached its peak in the ≥ 60 years group; in the normotensives group, Log-ARR reached its peak in the 40-49 years group and slightly declined with advancing age. In the PA group, Log-ARR was not age dependent. Screening accuracy increased when combined index of ARR and SAC was used in the ≥ 40 years group but not in the <40 years group. Although the number of EH patients with elevated ARR increased with advancing age, but the screening accuracy and cutoff values of ARR were not affected by age. Using the combined index of ARR and SAC increased the screening accuracy for the patients older than 40 years, but not necessary for the patients younger than 40 years.

  16. A High-Performance Operational Amplifier for High-Speed High-Accuracy Switch-Capacitor Cells

    Institute of Scientific and Technical Information of China (English)

    Qi Fan; Ning Ning; Qi Yu; Da Chen

    2007-01-01

    A highspeed highaccuracy fully differenttial operational amplifier (opamp) is realized based on noMillercapacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF compensation scheme uses the positive phase shift of lefthalfplane (LHP) zero caused by the feedforward path to counteract the negative phase shift of the nondominant pole. Compared to traditional Miller compensation method, the opamp obtains high gain and wide band synchronously without the polesplitting effect while saves significant chip area due to the absence of the Miller capacitor. Simulated by the 0.35 μm CMOS RF technology, the result shows that the openloop gain of the opamp is 118 dB with the unity gainbandwidth (UGBW)of 1 GHz, and the phase margin is 61°while the settling time is 5.8 ns when achieving 0.01% accuracy. The opamp is especially suitable for the frontend sample/hold (S/H)cell and the multiplying D/A converter(MDAC) module of the highspeed highresolution pipelined A/D converters(ADCs).

  17. Ultra-high accuracy optical testing: creating diffraction-limitedshort-wavelength optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman,Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli,Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-08-03

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-{angstrom} and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date.

  18. Alpinia zerumbet potentially elevates high-density lipoprotein cholesterol level in hamsters.

    Science.gov (United States)

    Lin, Li-Yun; Peng, Chiung-Chi; Liang, Yu-Jing; Yeh, Wan-Ting; Wang, Hui-Er; Yu, Tung-Hsi; Peng, Robert Y

    2008-06-25

    In folkloric plant medicines, Alpinia zerumbet (AZ) has been popularly recognized as an exellent hepatoprotector. To search for a good high-density lipoprotein cholesterol (HDL-C) elevating herbal preparation, we examined AZ for its antioxidant and hypolipidaemic bioactivities, especially its HDL-C elevating activity. AZ seeds contain 0.51% essential oils (SO), which are comprised of monoterpenoids, oxygenated monoterpenoids, sesquiterpenoids, oxygenated sesquiterpenoids, aldehydes, acid, and esters. Gas chromatography/mass spectrometry analysis indicated that most of the monoterpenes and sesquiterpenes were recoverable in pentane eluent, whilst the oxygenated monoterpenoids and sesquiterpenoids remained in ether eluent. The high contents of rutin, quercetin, and polyphenolics in ethanolic extract of AZ seeds exhibit moderate antilipoperoxidative but potent DPPH free radical scavenging bioactivities. Conclusively, both seed powder (SP) and SO are effective hypolipidaemics with amazingly potent HDL-C elevating capabilities. On the basis of hepatoprotectivity, SP is a more feasible hypolipidemic agent as well as a promising HDL-C elevating plant medicine.

  19. THE ABUNDANCE, DIVERSITY AND METABOLIC FOOTPRINT OF SOIL NEMATODES IS HIGHEST IN HIGH ELEVATION ALPINE GRASSLANDS

    Directory of Open Access Journals (Sweden)

    Alan Kergunteuil

    2016-07-01

    Full Text Available Nematodes are key components of soil biodiversity and represent valuable bio-indicators of soil food webs. Numerous community indices have been developed in order to track variations in soil ecosystem processes, but their use is mainly restricted to anthropogenic stresses. In this study, we propose to expand the use of nematodes’ derived ecological indices in order to shed light on variations of soil food webs in natural systems distributed along elevation gradients. For this purpose, we aimed at determining how elevation affects the community structure and the trophic diversity by studying the abundance, the composition and the functional diversity of nematode communities. Nematode communities were sampled every 200 m across five transects that span about 2000 m in elevation in the Alps. To understand the underlying ecological parameters driving these patterns we studied both abiotic factors (soil properties and biotic factors (trophic links, relationships with plant diversity. We found that (1 nematode abundance increases with elevation of lowland forests and alpine meadows; (2 differences in nematodes communities rely on habitat-specific functional diversity (e.g. tolerance to harsh environments, colonizer/persister status while most trophic groups are ubiquitous; and (3 the metabolic footprint of the complete nematode community increases with elevation. We thus conclude that the contribution of soil dwelling nematodes to belowground ecosystem processes, including carbon and energy flow, is stronger at high elevation. The resulting cascading effects on the soil food web structure are discussed from an ecosystem functioning perspective. Overall, this study highlights the importance of nematodes in soil ecosystems and brings insights in their enhanced role along ecological gradients.

  20. High Accuracy, Two-Dimensional Read-Out in Multiwire Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Sauli, F.

    1973-02-14

    In most applications of proportional chambers, especially in high-energy physics, separate chambers are used for measuring different coordinates. In general one coordinate is obtained by recording the pulses from the anode wires around which avalanches have grown. Several methods have been imagined for obtaining the position of an avalanche along a wire. In this article a method is proposed which leads to the same range of accuracies and may be preferred in some cases. The problem of accurate measurements for large-size chamber is also discussed.

  1. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  2. A small and high accuracy gyro stabilization electro-optical platform

    Science.gov (United States)

    Qiu, Haitao; Han, Yonggen; Lv, Yanhong

    2008-10-01

    A high accuracy line-of-sight (LOS) Stabilization system based on digital control technology was designed. The current feedback closed-loop system was introduced which uses the CCD graphic and resolver to constitute the position closed-loop and uses the optic fiber gyro to constitute the rate closed-loop. In order to realize zero steady-state error of angular output in counteracting disturbance from carrier, a PII2 (proportional-integral-double integral) control scheme is proposed. The hardware configuration and software system is presented. Experimental results show that the system has perfect dynamic and static performance and the technical requirements were satisfied.

  3. High Accuracy Three-dimensional Simulation of Micro Injection Moulded Parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F. S.; Hansen, Hans Nørgaard

    2011-01-01

    Micro injection moulding (μIM) is the key replication technology for high precision manufacturing of polymer micro products. Data analysis and simulations on micro-moulding experiments have been conducted during the present validation study. Detailed information about the μIM process was gathered...... and used to establish a reliable simulation methodology suitable for μIM parts. Various Simulation set-up parameters that have been considered in order to improve the simulation accuracy: injection speed profile, melt and mould temperatures, 3D mesh, material rheology, inertia effect and shrinkage...

  4. High-accuracy mass determination of unstable nuclei with a Penning trap mass spectrometer

    CERN Multimedia

    2002-01-01

    The mass of a nucleus is its most fundamental property. A systematic study of nuclear masses as a function of neutron and proton number allows the observation of collective and single-particle effects in nuclear structure. Accurate mass data are the most basic test of nuclear models and are essential for their improvement. This is especially important for the astrophysical study of nuclear synthesis. In order to achieve the required high accuracy, the mass of ions captured in a Penning trap is determined via their cyclotron frequency $ \

  5. An angle encoder for super-high resolution and super-high accuracy using SelfA

    Science.gov (United States)

    Watanabe, Tsukasa; Kon, Masahito; Nabeshima, Nobuo; Taniguchi, Kayoko

    2014-06-01

    Angular measurement technology at high resolution for applications such as in hard disk drive manufacturing machines, precision measurement equipment and aspherical process machines requires a rotary encoder with high accuracy, high resolution and high response speed. However, a rotary encoder has angular deviation factors during operation due to scale error or installation error. It has been assumed to be impossible to achieve accuracy below 0.1″ in angular measurement or control after the installation onto the rotating axis. Self-calibration (Lu and Trumper 2007 CIRP Ann. 56 499; Kim et al 2011 Proc. MacroScale; Probst 2008 Meas. Sci. Technol. 19 015101; Probst et al Meas. Sci. Technol. 9 1059; Tadashi and Makoto 1993 J. Robot. Mechatronics 5 448; Ralf et al 2006 Meas. Sci. Technol. 17 2811) and cross-calibration (Probst et al 1998 Meas. Sci. Technol. 9 1059; Just et al 2009 Precis. Eng. 33 530; Burnashev 2013 Quantum Electron. 43 130) technologies for a rotary encoder have been actively discussed on the basis of the principle of circular closure. This discussion prompted the development of rotary tables which achieve reliable and high accuracy angular verification. We apply these technologies for the development of a rotary encoder not only to meet the requirement of super-high accuracy but also to meet that of super-high resolution. This paper presents the development of an encoder with 221 = 2097 152 resolutions per rotation (360°), that is, corresponding to a 0.62″ signal period, achieved by the combination of a laser rotary encoder supplied by Magnescale Co., Ltd and a self-calibratable encoder (SelfA) supplied by The National Institute of Advanced Industrial Science & Technology (AIST). In addition, this paper introduces the development of a rotary encoder to guarantee ±0.03″ accuracy at any point of the interpolated signal, with respect to the encoder at the minimum resolution of 233, that is, corresponding to a 0.0015″ signal period after

  6. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    Science.gov (United States)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  7. Simple high-accuracy resolution program for convective modelling of discontinuities

    Science.gov (United States)

    Leonard, B. P.

    1988-01-01

    For steady multidimensional convection, the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme has several attractive properties. However, for highly convective simulation of step profiles, QUICK produces unphysical overshoots and a few oscillations, and this may cause serious problems in nonlinear flows. Fortunately, it is possible to modify the convective flux by writing the normalized convected control-volume face value as a function of the normalized adjacent upstream node value, developing criteria for monotonic resolution without sacrificing formal accuracy. This results in a nonlinear functional relationship between the normalized variables, whereas standard methods are all linear in this sense. The resulting Simple High Accuracy Resolution Program (SHARP) can be applied to steady multidimensional flows containing thin shear or mixing layers, shock waves, and other frontal phenomena. This represents a significant advance in modeling highly convective flows of engineering and geophysical importance. SHARP is based on an explicit, conservative, control-volume flux formation, equally applicable to one, two, or three dimensional elliptic, parabolic, hyperbolic, or mixed-flow regimes. Results are given for the bench-mark purely convective first-order results and the nonmonotonic predictions of second- and third-order upwinding.

  8. High-accuracy optimal finite-thrust trajectories for Moon escape

    Science.gov (United States)

    Shen, Hong-Xin; Casalino, Lorenzo

    2017-02-01

    The optimization problem of fuel-optimal trajectories from a low circular Moon orbit to a target hyperbolic excess velocity vector using finite-thrust propulsion is solved. The ability to obtain the most accurate satisfaction of necessary optimality conditions in a high-accuracy dynamic model is the main motivation of the current study. The solutions allow attaining anytime-return Earth-interface conditions from a low lunar orbit. Gravitational effects of the Sun, Earth, and Moon are included throughout the entire trajectory. Severe constraints on the fuel budget combined with high-accuracy demands on the endpoint conditions necessitate a high-fidelity solution to the trajectory optimization problem and JPL DE405 ephemeris model is used to determine the perturbing bodies' positions. The optimization problem is solved using an indirect method. The optimality of the solution is verified by an application of Pontryagin's maximum principle. More accurate and fuel-efficient trajectories are found for the same mission objectives and constraints published in other research, emphasizing the advantages of this technique. It is also shown that the thrust structure consists of three finite burns. In contrast to previous research, no singular arc is required in the optimal solutions, and all the controls appear bang-bang.

  9. Emergency positioning system accuracy with infrared LEDs in high-security facilities

    Science.gov (United States)

    Knoch, Sierra N.; Nelson, Charles; Walker, Owens

    2017-05-01

    Instantaneous personnel location presents a challenge in Department of Defense applications where high levels of security restrict real-time tracking of crew members. During emergency situations, command and control requires immediate accountability of all personnel. Current radio frequency (RF) based indoor positioning systems can be unsuitable due to RF leakage and electromagnetic interference with sensitively calibrated machinery on variable platforms like ships, submarines and high-security facilities. Infrared light provide a possible solution to this problem. This paper proposes and evaluates an indoor line-of-sight positioning system that is comprised of IR and high-sensitivity CMOS camera receivers. In this system the movement of the LEDs is captured by the camera, uploaded and analyzed; the highest point of power is located and plotted to create a blueprint of crewmember location. Results provided evaluate accuracy as a function of both wavelength and environmental conditions. Research will further evaluate the accuracy of the LED transmitter and CMOS camera receiver system. Transmissions in both the 780 and 850nm IR are analyzed.

  10. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Directory of Open Access Journals (Sweden)

    Du Yuefen

    2003-05-01

    Full Text Available Abstract Background Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. Results A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA. Fluorescent signal output was measured in real time and as an end point. Conclusions Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample.

  11. Discovery and validation of urine markers of acute pediatric appendicitis using high accuracy mass spectrometry

    Science.gov (United States)

    Kentsis, Alex; Lin, Yin Yin; Kurek, Kyle; Calicchio, Monica; Wang, Yan Yan; Monigatti, Flavio; Campagne, Fabien; Lee, Richard; Horwitz, Bruce; Steen, Hanno; Bachur, Richard

    2015-01-01

    Study Objective Molecular definition of disease has been changing all aspects of medical practice, from diagnosis and screening to understanding and treatment. Acute appendicitis is among many human conditions that are complicated by the heterogeneity of clinical presentation and shortage of diagnostic markers. Here, we sought to profile the urine of patients with appendicitis with the goal of identifying new diagnostic markers. Methods Candidate markers were identified from the urine of children with histologically proven appendicitis by using high accuracy mass spectrometry proteome profiling. These systemic and local markers were used to assess the probability of appendicitis in a blinded, prospective study of children being evaluated for acute abdominal pain in our emergency department. Tests of performance of the markers were evaluated against the pathologic diagnosis and histologic grade of appendicitis. Results Test performance of 57 identified candidate markers was studied in 67 patients, with median age of 11 years, 37% of whom had appendicitis. Several exhibited favorable diagnostic performance, including calgranulin A (S100-A8), α-1-acid glycoprotein 1 (orosomucoid), and leucine-rich α-2-glycoprotein (LRG), with the ROC AUC and values of 0.84 (95 % CI 0.72-0.95), 0.84 (0.72-0.95), and 0.97 (0.93-1.0), respectively. LRG was enriched in diseased appendices and its abundance correlated with severity of appendicitis. Conclusions High accuracy mass spectrometry urine proteome profiling allowed identification of diagnostic markers of acute appendicitis. Usage of LRG and other identified biomarkers may improve the diagnostic accuracy of clinical evaluations of appendicitis. PMID:19556024

  12. SpaceNav - A high accuracy navigation system for space applications

    Science.gov (United States)

    Evers, H.-H.

    The technology of the SpaceNav-system is based on research performed by the Institute of Flight Guidance and Control at the Technical University of Braunschweig, Germany. In 1989 this institute gave the worlds first public demonstration of a fully automatic landing of an aircraft, using inertial and satellite informations exclusively. The SpaceNav device components are: Acceleration-/Gyro Sensor Package; Global Positioning System (GPS) Receiver/optional more than one; Time Reference Unit; CPU; Telemetry (optional); and Differential GPS (DGPS) Receiver (optional). The coupling of GPS receivers with inertial sensors provides an extremely accurate navigation data set in real time applications even in phases with high dynamic conditions. The update rate of this navigation information is up to 100 Hz with the same accuracy in 3D-position, velocity, acceleration, attitude and time. SpaceNav is an integrated navigation system, which operates according to the principle of combining the longterm stability and accuracy of GPS, and the high level of dynamic precision of conventional inertial navigation system (INS) strapdown systems. The system's design allows other aiding sensors e.g. GLONASS satellite navigation system, distance measuring equipment (DME), altimeter (radar and/or barometric), flux valve etc. to be connected, in order to increase the redundancy of the system. The advantage of such an upgraded system is the availability of more sensor information than necessary for a navigation solution. The resulting redundancy in range measurement allows real-time detection and identification of sensor signals that are incompatible with the other information. As a result you get Receiver Autonomous Integrity Monitoring (RAIM) as described in 'A Multi-Sensor Approach to Assuring GPS Integrity', presented by Alison Brown in the March/April 1990 issue of 'GPS World'. In this paper the author presents information about the principles of the Satellite Navigation System GPS, and

  13. Using satellites to investigate the sensitivity of longwave downward radiation to water vapor at high elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-03-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  14. Digital Elevation Model Creation Using SfM on High-Altitude Snow-Covered Surfaces at Summit, Greenland

    Science.gov (United States)

    Millstein, J. D.; Hawley, R. L.

    2015-12-01

    Structure from Motion (SfM) provides a means through which a digital elevation model (DEM) can be constructed with data acquired at a relatively low cost when compared to other current alternatives. Using an Unmanned Aerial Vehicle (UAV), a large area can be efficiently covered at high spatial resolution to quantify regional topography. Structure from Motion applied to photogrammetric techniques from a UAV has proven to be a successful tool, but challenges to UAV-based SfM include high-altitude locations with few distinctive surface features and minor textural differences. In June 2015, we piloted a small UAV (Quest) in order to conduct a topographical survey of Summit Camp, Greenland using SfM. Summit Camp sits at a surface elevation of 3200 meters above sea level, and occupies a snow-covered surface. The flat, very uniform terrain proved to be a challenge when flying the UAV and processing imagery using SfM techniques. In this presentation we discuss the issues both with operating a UAV instrument platform at high-altitude in the polar regions and interpreting the resulting DEM from a snow-covered region. The final DEM of Summit Camp covers a large portion of the surface area directly impacted by camp activities. In particular, volume calculations of drifting snow gauge an estimate of the equipment hours that will be required to clear and unearth structures. Investigation of surface roughness at multiple length scales can similarly provide insight on the accuracy of the DEM when observing texturally uniform surfaces.

  15. High efficiency,high power 808nm laser array and stacked arrays optimized for elevated temperature operation

    Institute of Scientific and Technical Information of China (English)

    Crump P A; Wise D; Crum T R; DeVito M; Farmer J; Grimshaw M; Huang Z; Igl S A; Macomber S; Thiagarajan P

    2004-01-01

    Operation of 808-nm laser diode pumping at elevated temperature is crucial to many applications. Reliable operation at high power is limited by high thermal load and low catastrophic optical mirror damage (COMD) threshold at elevated temperature range. We demonstrated high efficiency and high power operation at elevated temperature with high COMD power. These results were achieved through device design optimization such as growth conditions, doping profile, and materials composition of the quantum-well and other layers. Electrical-to-optical efficiency as high as 62% was obtained through lowered threshold current, lowered series resistance and increased slope efficiency. The performance of single broad-area laser diodes scales to that of high power single bars on water-cooled copper micro-channel heatsinks or conductively-cooled CS heatsinks. No reduction in bar performance or significant spectral broadening is seen when these micro-channel coolers are assembled into 6-bar and 18-bar CW stacks for the highest power levels.

  16. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change

    DEFF Research Database (Denmark)

    Pauchard, Aníbal; Milbau, Ann; Albihn, Ann;

    2016-01-01

    Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key...... discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high......, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources....

  17. High accuracy of family history of melanoma in Danish melanoma cases

    DEFF Research Database (Denmark)

    Wadt, Karin A W; Drzewiecki, Krzysztof T; Gerdes, Anne-Marie

    2015-01-01

    The incidence of melanoma in Denmark has immensely increased over the last 10 years making Denmark a high risk country for melanoma. In the last two decades multiple public campaigns have sought to increase the awareness of melanoma. Family history of melanoma is a known major risk factor...... but previous studies have shown that self-reported family history of melanoma is highly inaccurate. These studies are 15 years old and we wanted to examine if a higher awareness of melanoma has increased the accuracy of self-reported family history of melanoma. We examined the family history of 181 melanoma...... probands who reported 199 cases of melanoma in relatives, of which 135 cases where in first degree relatives. We confirmed the diagnosis of melanoma in 77% of all relatives, and in 83% of first degree relatives. In 181 probands we validated the negative family history of melanoma in 748 first degree...

  18. High Accuracy mass Measurement of the very Short-Lived Halo Nuclide $^{11}$Li

    CERN Multimedia

    Le scornet, G

    2002-01-01

    The archetypal halo nuclide $^{11}$Li has now attracted a wealth of experimental and theoretical attention. The most outstanding property of this nuclide, its extended radius that makes it as big as $^{48}$Ca, is highly dependent on the binding energy of the two neutrons forming the halo. New generation experiments using radioactive beams with elastic proton scattering, knock-out and transfer reactions, together with $\\textit{ab initio}$ calculations require the tightening of the constraint on the binding energy. Good metrology also requires confirmation of the sole existing precision result to guard against a possible systematic deviation (or mistake). We propose a high accuracy mass determintation of $^{11}$Li, a particularly challenging task due to its very short half-life of 8.6 ms, but one perfectly suiting the MISTRAL spectrometer, now commissioned at ISOLDE. We request 15 shifts of beam time.

  19. Arithmetic Accuracy in Children From High- and Low-Income Schools

    Directory of Open Access Journals (Sweden)

    Elida V. Laski

    2016-04-01

    Full Text Available This study investigated income group differences in kindergartners’ and first graders’ (N = 161 arithmetic by examining the link between accuracy and strategy use on simple and complex addition problems. Low-income children were substantially less accurate than high-income children, in terms of both percentage of correctly solved problems and the magnitude of errors, with low-income first graders being less accurate than high-income kindergartners. Higher-income children were more likely to use sophisticated mental strategies than their lower-income peers, who used predominantly inefficient counting or inappropriate strategies. Importantly, this difference in strategies mediated the relation between income group and addition. Examining underlying strategies has implications for understanding income group differences in arithmetic and potential means of remedying it via instruction.

  20. High Accuracy Liquid Propellant Slosh Predictions Using an Integrated CFD and Controls Analysis Interface

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  1. Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions

    Science.gov (United States)

    Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob

    2012-01-01

    Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.

  2. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    Science.gov (United States)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  3. Initial development of high-accuracy CFRP panel for DATE5 antenna

    Science.gov (United States)

    Qian, Yuan; Lou, Zheng; Hao, Xufeng; Zhu, Jing; Cheng, Jingquan; Wang, Hairen; Zuo, Yingxi; Yang, Ji

    2016-07-01

    DATE5 antenna, which is a 5m telescope for terahertz exploration, will be sited at Dome A, Antarctica. It is necessary to keep high surface accuracy of the primary reflector panels so that high observing efficiency can be achieved. In antenna field, carbon fiber reinforced composite (CFRP) sandwich panels are widely used as these panels are light in weight, high in strength, low in thermal expansion, and cheap in mass fabrication. In DATE5 project, CFRP panels are important panel candidates. In the design study phase, a CFRP prototype panel of 1-meter size is initially developed for the verification purpose. This paper introduces the material arrangement in the sandwich panel, measured performance of this testing sandwich structure samples, and together with the panel forming process. For anti-icing in the South Pole region, a special CFRP heating film is embedded in the front skin of sandwich panel. The properties of some types of basic building materials are tested. Base on the results, the deformation of prototype panel with different sandwich structures and skin layers are simulated and a best structural concept is selected. The panel mold used is a high accuracy one with a surface rms error of 1.4 μm. Prototype panels are replicated from the mold. Room temperature curing resin is used to reduce the thermal deformation in the resin transfer process. In the curing, vacuum negative pressure technology is also used to increase the volume content of carbon fiber. After the measurement of the three coordinate measure machine (CMM), a prototype CFRP panel of 5.1 μm rms surface error is developed initially.

  4. Detected troponin elevation is associated with high early mortality after lung resection for cancer

    Directory of Open Access Journals (Sweden)

    Van Tornout Fillip

    2006-10-01

    Full Text Available Abstract Background Myocardial infarction can be difficult to diagnose after lung surgery. As recent diagnostic criteria emphasize serum cardiac markers (in particular serum troponin we set out to evaluate its clinical utility and to establish the long term prognostic impact of detected abnormal postoperative troponin levels after lung resection. Methods We studied a historic cohort of patients with primary lung cancer who underwent intended surgical resection. Patients were grouped according to known postoperative troponin status and survival calculated by Kaplan Meier method and compared using log rank. Parametric survival analysis was used to ascertain independent predictors of mortality. Results From 2001 to 2004, a total of 207 patients underwent lung resection for primary lung cancer of which 14 (7% were identified with elevated serum troponin levels within 30 days of surgery, with 9 (64% having classical features of myocardial infarction. The median time to follow up (interquartile range was 22 (1 to 52 months, and the one and five year survival probabilities (95% CI for patients without and with postoperative troponin elevation were 92% (85 to 96 versus 60% (31 to 80 and 61% (51 to 71 versus 18% (3 to 43 respectively (p T stage and postoperative troponin elevation remained independent predictors of mortality in the final multivariable model. The acceleration factor for death of elevated serum troponin after adjusting for tumour stage was 9.19 (95% CI 3.75 to 22.54. Conclusion Patients with detected serum troponin elevation are at high risk of early mortality with or without symptoms of myocardial infarction after lung resection.

  5. Usability and accuracy of high-resolution detectors for daily quality assurance for robotic radiosurgery

    Directory of Open Access Journals (Sweden)

    Loutfi-Krauss Britta

    2017-09-01

    Full Text Available For daily CyberKnife QA a Winston-Lutz-Test (Automated-Quality-Assurance, AQA is used to determine sub-millimeter deviations in beam delivery accuracy. This test is performed using gafchromic film, an extensive and user-dependent method requiring the use of disposables. We therefore analyzed the usability and accuracy of high-resolution detector arrays. We analyzed a liquid-filled ionization-chamber array (Octavius 1000SRS, PTW, Germany, which has a central resolution of 2.5mm. To test sufficient sensitivity, beam profiles with robot shifts of 0.1mm along the arrays' axes were measured. The detected deviation between the shifted and central profile were compared to the real robot's position. We then compared the results to the SRS-Profiler (SunNuclear, USA with 4.0mm resolution and to the Nonius (QUART, Germany, a single-line diode detector with 2.8mm resolution. Finally, AQA variance and usability were analyzed performing a number of AQA tests over time, which required the use of specially designed fixtures for each array, and the results were compared to film. Concerning sensitivity, the 1000SRS detected the beam profile shifts with a maximum difference of 0.11mm (mean deviation = 0.03mm compared to the actual robot shift. The Nonius and SRS-Profiler showed differences of up to 0.15mm and 0.69mm with mean deviation of 0.05mm and 0.18mm, respectively. Analyzing the variation of AQA results over time, the 1000SRS showed a comparable standard deviation to film (0.26mm vs. 0.18mm. The SRS-Profiler and the Nonius showed a standard deviation of 0.16mm and 0.24mm, respectively. The 1000SRS seems to provide equivalent accuracy and sensitivity to the gold standard film when performing daily AQA tests. Compared to other detectors in our study the sensitivity as well as the accuracy of the 1000SRS appears to be superior and more user-friendly. Furthermore, no significant modification of the standard AQA procedure is required when introducing 1000SRS for

  6. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.B.

    2001-01-01

    A new digital elevation model of the Greenland ice sheet and surrounding rock outcrops has been produced at 1-km postings from a comprehensive suite of satellite remote sensing and cartographic data sets. Height data over the ice sheet were mainly from ERS-1 and Geosat radar altimetry. These data...... coverage existed. The data were interpolated onto a regular grid with a spacing of similar to1 km. The accuracy of the resultant digital elevation model over the ice sheet was assessed using independent and spatially extensive measurements from an airborne laser altimeter that had an accuracy of between 10...... and 12 cm. In a comparison with the laser altimetry the digital elevation model was found to have a slope-dependent accuracy ranging from -1.04 +/-1.98 m to -0.06 +/- 14.33 m over the ice sheet for a slope range of 0.0-1.0 degrees. The mean accuracy over the whole ice sheet was -0.33 +/-6.97 m. Over...

  7. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  8. An output amplitude configurable wideband automatic gain control with high gain step accuracy

    Institute of Scientific and Technical Information of China (English)

    何晓丰; 莫太山; 马成炎; 叶甜春

    2012-01-01

    An output amplitude configurable wideband automatic gain control (AGC) with high gain step accuracy for the GNSS receiver is presented.The amplitude of an AGC is configurable in order to cooperate with baseband chips to achieve interference suppression and be compatible with different full range ADCs.And what's more,the gain-boosting technology is introduced and the circuit is improved to increase the step accuracy.A zero,which is composed by the source feedback resistance and the source capacity,is introduced to compensate for the pole.The AGC is fabricated in a 0.18 μm CMOS process.The AGC shows a 62 dB gain control range by 1 dB each step with a gain error of less than 0.2 dB.The AGC provides 3 dB bandwidth larger than 80 MHz and the overall power consumption is less than 1.8 mA,and the die area is 800 × 300μm2.

  9. Accuracy of the high-throughput amplicon sequencing to identify species within the genus Aspergillus.

    Science.gov (United States)

    Lee, Seungeun; Yamamoto, Naomichi

    2015-12-01

    This study characterized the accuracy of high-throughput amplicon sequencing to identify species within the genus Aspergillus. To this end, we sequenced the internal transcribed spacer 1 (ITS1), β-tubulin (BenA), and calmodulin (CaM) gene encoding sequences as DNA markers from eight reference Aspergillus strains with known identities using 300-bp sequencing on the Illumina MiSeq platform, and compared them with the BLASTn outputs. The identifications with the sequences longer than 250 bp were accurate at the section rank, with some ambiguities observed at the species rank due to mostly cross detection of sibling species. Additionally, in silico analysis was performed to predict the identification accuracy for all species in the genus Aspergillus, where 107, 210, and 187 species were predicted to be identifiable down to the species rank based on ITS1, BenA, and CaM, respectively. Finally, air filter samples were analysed to quantify the relative abundances of Aspergillus species in outdoor air. The results were reproducible across biological duplicates both at the species and section ranks, but not strongly correlated between ITS1 and BenA, suggesting the Aspergillus detection can be taxonomically biased depending on the selection of the DNA markers and/or primers.

  10. Real-Time and High-Accuracy Arctangent Computation Using CORDIC and Fast Magnitude Estimation

    Directory of Open Access Journals (Sweden)

    Luca Pilato

    2017-03-01

    Full Text Available This paper presents an improved VLSI (Very Large Scale of Integration architecture for real-time and high-accuracy computation of trigonometric functions with fixed-point arithmetic, particularly arctangent using CORDIC (Coordinate Rotation Digital Computer and fast magnitude estimation. The standard CORDIC implementation suffers of a loss of accuracy when the magnitude of the input vector becomes small. Using a fast magnitude estimator before running the standard algorithm, a pre-processing magnification is implemented, shifting the input coordinates by a proper factor. The entire architecture does not use a multiplier, it uses only shift and add primitives as the original CORDIC, and it does not change the data path precision of the CORDIC core. A bit-true case study is presented showing a reduction of the maximum phase error from 414 LSB (angle error of 0.6355 rad to 4 LSB (angle error of 0.0061 rad, with small overheads of complexity and speed. Implementation of the new architecture in 0.18 µm CMOS technology allows for real-time and low-power processing of CORDIC and arctangent, which are key functions in many embedded DSP systems. The proposed macrocell has been verified by integration in a system-on-chip, called SENSASIP (Sensor Application Specific Instruction-set Processor, for position sensor signal processing in automotive measurement applications.

  11. High Accuracy Mass Measurement of the Dripline Nuclides $^{12,14}$Be

    CERN Multimedia

    2002-01-01

    State-of-the art, three-body nuclear models that describe halo nuclides require the binding energy of the halo neutron(s) as a critical input parameter. In the case of $^{14}$Be, the uncertainty of this quantity is currently far too large (130 keV), inhibiting efforts at detailed theoretical description. A high accuracy, direct mass deterlnination of $^{14}$Be (as well as $^{12}$Be to obtain the two-neutron separation energy) is therefore required. The measurement can be performed with the MISTRAL spectrometer, which is presently the only possible solution due to required accuracy (10 keV) and short half-life (4.5 ms). Having achieved a 5 keV uncertainty for the mass of $^{11}$Li (8.6 ms), MISTRAL has proved the feasibility of such measurements. Since the current ISOLDE production rate of $^{14}$Be is only about 10/s, the installation of a beam cooler is underway in order to improve MISTRAL transmission. The projected improvement of an order of magnitude (in each transverse direction) will make this measureme...

  12. Combined Scintigraphy and Tumor Marker Analysis Predicts Unfavorable Histopathology of Neuroblastic Tumors with High Accuracy.

    Directory of Open Access Journals (Sweden)

    Wolfgang Peter Fendler

    Full Text Available Our aim was to improve the prediction of unfavorable histopathology (UH in neuroblastic tumors through combined imaging and biochemical parameters.123I-MIBG SPECT and MRI was performed before surgical resection or biopsy in 47 consecutive pediatric patients with neuroblastic tumor. Semi-quantitative tumor-to-liver count-rate ratio (TLCRR, MRI tumor size and margins, urine catecholamine and NSE blood levels of neuron specific enolase (NSE were recorded. Accuracy of single and combined variables for prediction of UH was tested by ROC analysis with Bonferroni correction.34 of 47 patients had UH based on the International Neuroblastoma Pathology Classification (INPC. TLCRR and serum NSE both predicted UH with moderate accuracy. Optimal cut-off for TLCRR was 2.0, resulting in 68% sensitivity and 100% specificity (AUC-ROC 0.86, p < 0.001. Optimal cut-off for NSE was 25.8 ng/ml, resulting in 74% sensitivity and 85% specificity (AUC-ROC 0.81, p = 0.001. Combination of TLCRR/NSE criteria reduced false negative findings from 11/9 to only five, with improved sensitivity and specificity of 85% (AUC-ROC 0.85, p < 0.001.Strong 123I-MIBG uptake and high serum level of NSE were each predictive of UH. Combined analysis of both parameters improved the prediction of UH in patients with neuroblastic tumor. MRI parameters and urine catecholamine levels did not predict UH.

  13. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    KIKUCHI; Fuyuhiko; KAMATA; Shun’ichi; MATSUMOTO; Koji; HANADA; Hideo

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar,which were two small satellites of Japanese lunar mission,SELENE,were successfully performed by using Shanghai and Urumqi 25-m telescopes. When the separation angle between Rstar and Vstar was less than 0.1 deg,the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms,which was reduced by 1-2 order compared with the former VLBI results. When the separation angle was less than 0.56 deg,the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed,and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft,and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  14. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes

    Institute of Scientific and Technical Information of China (English)

    LIU QingHui; PING JingSong; FAN QingYuan; XIA Bo; AN Tao; QIAN ZhiHan; YANG WenJun; ZHANG Hua; WANG Zhen; WANG Na; SHI Xian; KIKUCHI Fuyuhiko; HUANG Qian; KAMATA Shun'ichi; MATSUMOTO Koji; HANADA Hideo; HONG XiaoYu; YU AiLi

    2009-01-01

    The same-beam VLBI observations of Rstar and Vstar, which were two small satellites of Japanese lunar mission, SELENE, were successfully performed by using Shanghai and Urumqi 25-m telescopes.When the separation angle between Rstar and Vstar was less than 0.1 deg, the differential phase delay of the X-band signals between Rstar and Vstar on Shanghai-Urumqi baseline was obtained with a very small error of 0.15 mm rms, which was reduced by 1-2 order compared with the former VLBI results.When the separation angle was less than 0.56 deg, the differential phase delay of the S-band signals was also obtained with a very small error of several mm rms. The orbit determination for Rstar and Vstar was performed, and the accuracy was improved to a level of several meters by using VLBI and Doppler data. The high-accuracy same-beam differential VLBI technique is very useful in orbit determination for a spacecraft, and will be used in orbit determination for Mars missions of China Yinghuo-1 and Russia Phobos-grunt.

  15. Reducing Systematic Centroid Errors Induced by Fiber Optic Faceplates in Intensified High-Accuracy Star Trackers

    Science.gov (United States)

    Xiong, Kun; Jiang, Jie

    2015-01-01

    Compared with traditional star trackers, intensified high-accuracy star trackers equipped with an image intensifier exhibit overwhelmingly superior dynamic performance. However, the multiple-fiber-optic faceplate structure in the image intensifier complicates the optoelectronic detecting system of star trackers and may cause considerable systematic centroid errors and poor attitude accuracy. All the sources of systematic centroid errors related to fiber optic faceplates (FOFPs) throughout the detection process of the optoelectronic system were analyzed. Based on the general expression of the systematic centroid error deduced in the frequency domain and the FOFP modulation transfer function, an accurate expression that described the systematic centroid error of FOFPs was obtained. Furthermore, reduction of the systematic error between the optical lens and the input FOFP of the intensifier, the one among multiple FOFPs and the one between the output FOFP of the intensifier and the imaging chip of the detecting system were discussed. Two important parametric constraints were acquired from the analysis. The correctness of the analysis on the optoelectronic detecting system was demonstrated through simulation and experiment. PMID:26016920

  16. Swing arm profilometer: high accuracy testing for large reaction-bonded silicon carbide optics with a capacitive probe

    Science.gov (United States)

    Xiong, Ling; Luo, Xiao; Hu, Hai-xiang; Zhang, Zhi-yu; Zhang, Feng; Zheng, Li-gong; Zhang, Xue-jun

    2017-08-01

    A feasible way to improve the manufacturing efficiency of large reaction-bonded silicon carbide optics is to increase the processing accuracy in the ground stage before polishing, which requires high accuracy metrology. A swing arm profilometer (SAP) has been used to measure large optics during the ground stage. A method has been developed for improving the measurement accuracy of SAP using a capacitive probe and implementing calibrations. The experimental result compared with the interferometer test shows the accuracy of 0.068 μm in root-mean-square (RMS) and maps in 37 low-order Zernike terms show accuracy of 0.048 μm RMS, which shows a powerful capability to provide a major input in high-precision grinding.

  17. [Diagnostic accuracy of the immersion high-frequency B-scan ultrasonography in chemical injured eyes].

    Science.gov (United States)

    Yang, Qinghua; Chen, Bing; Wang, Liqiang; Li, Zhaohui; Huang, Yifei

    2014-08-01

    To investigate the diagnostic accuracy of the immersion high-frequency B-scan ultrasonography, a noninvasive preoperative diagnosis method, in observing the anterior segment in chemical injured eyes. It was a retrospective study. Sixty-three ocular chemical injury patients (63 eyes), who accepted the keratoplasty or the artificial cornea transplant in PLA General Hospital from May 2011 to May 2013, were included in this study. All the injured eyes were examined by ultrasound bio-microscopy (UBM) and immersion high-frequency B-scan ultrasonography, respectively. The images were analyzed and the results were compared with the intraoperative findings. The observation of lens was the main parameter. All the 63 patients were examined with the UBM and the immersion high-frequency B-scan ultrasonography before the surgery. The findings of the cornea, anterior chamber angle, iris from UBM were consistent with those from the immersion high-frequency B-scan ultrasonography. As for the lens observation, in 32 eyes in which the lens were not detected by UBM, the lens were not detected in only 16 eyes, while 3 eyes with normal lens and 13 eyes with lens pacifications (1 eye with pyknotic lens) by immersion high-frequency B-scan ultrasonography. In 17 eyes in which the lens were found normal by UBM, there were only 14 eyes with normal lens and the rest 3 eyes' lens were found intumescent by immersion high-frequency B-scan ultrasonography. In 6 eyes in which lens were detected with suspicious by UBM, 2 eyes' lens were pyknotic and 4 eyes' lens were intumescent or clouded by immersion high-frequency B-scan ultrasonography. The findings of immersion high-frequency B-scan ultrasonography were highly consistent with the intraoperative findings. The lens could be observed accurately by immersion high-frequency B-scan ultrasonography in chemical injured eyes.

  18. High-accuracy infra-red thermography method using reflective marker arrays

    Science.gov (United States)

    Kirollos, Benjamin; Povey, Thomas

    2017-09-01

    In this paper, we describe a new method for high-accuracy infra-red (IR) thermography measurements in situations with significant spatial variation in reflected radiation from the surroundings, or significant spatial variation in surface emissivity due to viewing angle non-uniformity across the field of view. The method employs a reflective marker array (RMA) on the target surface—typically, high emissivity circular dots—and an integrated image analysis algorithm designed to require minimal human input. The new technique has two particular advantages which make it suited to high-accuracy measurements in demanding environments: (i) it allows the reflected radiation component to be calculated directly, in situ, and as a function of position, overcoming a key problem in measurement environments with non-uniform and unsteady stray radiation from the surroundings; (ii) using image analysis of the marker array (via apparent aspect ratio of the circular reflective markers), the local viewing angle of the target surface can be estimated, allowing corrections for angular variation of local emissivity to be performed without prior knowledge of the geometry. A third advantage of the technique is that allows for simple focus-stacking algorithms due to increased image entropy. The reflective marker array method is demonstrated for an isothermal, hemispherical object exposed to an external IR source arranged to give a significant non-uniform reflected radiation term. This is an example of a challenging environment, both because of the significant non-uniform reflected radiation term, and also the significant variation in target emissivity due to surface angle variation. We demonstrate that the new RMA IR technique leads to significantly lower error in evaluated surface temperature than conventional IR techniques. The method is applicable to any complex radiative environment.

  19. Design and calibration of a high-sensitivity and high-accuracy polarimeter based on liquid crystal variable retarders

    Science.gov (United States)

    Guo, Jing; Ren, De-Qing; Liu, Cheng-Chao; Zhu, Yong-Tian; Dou, Jiang-Pei; Zhang, Xi; Beck, Christian

    2017-01-01

    Polarimetry plays an important role in the measurement of solar magnetic fields. We developed a high-sensitivity and high-accuracy polarimeter (HHP) based on nematic liquid crystal variable retarders (LCVRs), which has a compact setup and no mechanical moving parts. The system design and calibration methods are discussed in detail. The azimuth error of the transmission axis of the polarizer as well as the fast axes of the two LCVRs and the quarter-wave plate were determined using dedicated procedures. Linearly and circularly polarized light were employed to evaluate the performance of the HHP. The experimental results indicate that a polarimetric sensitivity of better than \\[5.7 × {10 - 3}\\] can be achieved by using a single short-exposure image, while an accuracy on the order of 10‑5 can be reached by using a large number of short-exposure images. This makes the HHP a high-performance system that can be used with a ground-based solar telescope for high-precision solar magnetic field investigations.

  20. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Minho Yoon

    2017-07-01

    Full Text Available Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  1. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    Science.gov (United States)

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  2. Interactions between introduced trout and larval salamanders (Ambystoma macrodactylum) in high-elevation lakes

    Science.gov (United States)

    Tyler, T.; Liss, W.J.; Ganio, L.; Larson, Gary L.; Hoffman, Robert L.; Deimling, E.; Lomnicky, G.A.

    1998-01-01

    The larval stage of the long-toed salamander (Ambystoma macrodactylum) is the top vertebrate predator in high-elevation fishless lakes in the North Cascades National Park Service Complex, Washington (U.S.A.). Although most of these high-elevation lakes were naturally fishless, trout have been stocked in many of them. We sought to determine the effects of physicochemical factors and introduced trout on abundance and behavior of A. macrodactylum larvae. Larval salamander densities were estimated by snorkeling. Snorkelers carefully searched through substrate materials within 2 m of the shoreline and recorded the number of larvae observed and if larvae were hidden in benthic substrates. Physicochemical factors were measured in each lake on the same day that snorkel surveys were conducted. In fishless lakes, larval salamander densities were positively related to total Kjeldahl-N concentration and negatively related to lake elevation. Crustacean zooplankton, especially cladocerans, were important food resources for larval A. macrodactylum. Crustacean zooplankton and cladoceran densities were positively related to total Kjeldahl-N, suggesting that increased food resources contributed to increased densities of larval A. macrodactylum. Differences in larval salamander densities between fish and fishless lakes were related to total Kjeldahl-N concentrations and the reproductive status of trout. Mean larval salamander densities for fishless lakes with total Kjeldahl-N amphibians requires an understanding of natural abiotic and biotic factors and processes influencing amphibian distribution and abundance.

  3. Nonindigenous Ants at High Elevations on Mauna Kea, Hawai'i

    Science.gov (United States)

    Wetterer, James K.; Banko, Paul C.; Laniawe, Leona P.; Slotterback, John W.; Brenner, Gregory J.

    1998-01-01

    Ant surveys were conducted at high elevations (1680-3140 m) on the western slope of Mauna Kea Volcano on the island of Hawai'i to detennine the extent of ant infestation in those highland communities and particularly to evaluate the potential threat of ants in the highlands to native Hawaiian species. Ants were surveyed at 10 long-tenn sampling sites. Ants were common on Mauna Kea up to 2000 m elevation, but densities quickly dropped off above that. Five species of ants were collected: Linepithema humile (Mayr), Cardiocondyla venustula Wheeler, Pheidole megacephala (Fabricius), Tetramorium bicarinatum (Nylander), and Monomorium pharaonis (Linnaeus). Other than L. humile, these collections on Mauna Kea are the highest recorded locales in the Hawaiian Islands.

  4. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  5. 低仰角大气折射误差对初轨精度的影响分析%Impact of Low-Elevation Atmospheric Refraction Error on Accuracy of Initial Orbit

    Institute of Scientific and Technical Information of China (English)

    李辉芬; 席震东; 薛国虎; 戴正旭; 康德勇

    2012-01-01

    This paper proposes an approach to solve the problem of poor correction accuracy of the experiential refractive correction model used by instrumentation ships in tracking at low elevations during space rendezvous and docking missions. A fitting algorithm based on the zenith delay is incorporated to increase the range correction accuracy of low-elevation tracking by ship-borne radars and to meet orbit determination accuracy requirements of data handling of instrumentation ships. The new method reduces the exterior coincidence error of semi-major axis by 605 meters.%针对在交会对接任务中测量船使用的电波折射经验模型存在低仰角跟踪测量修正精度差的问题提出改进思路,在模型中引入基于天顶延迟的拟合算法优化修正模型,提高了船载雷达低仰角跟踪时距离的修正精度,满足了测量船数据处理的精度需求.用新方法处理数据,计算的轨道根数半长轴外符合误差平均降低了605 m,有效提高了测量船定轨精度.

  6. Very Low Power, Low Voltage, High Accuracy, and High Performance Current Mirror

    Institute of Scientific and Technical Information of China (English)

    Hassan Faraji Baghtash; Khalil Monfaredi; Ahmad Ayatollahi

    2011-01-01

    A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed.In this circuit,the gain boosting regulated cascode scheme is used to improve the output resistance,while using inverter as an amplifier.The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given,which verify the high performance of the proposed structure.Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ.The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of vin,min~ 0.24 V) and an output (the minimum output voltage of vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current.The current copy error is near zero at the input current of 27 μA.It consumes only 76 μW and introduces a very low output offset current of 50 pA.

  7. Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data

    Directory of Open Access Journals (Sweden)

    H. Zwenzner

    2009-05-01

    Full Text Available Severe flood events turned out to be the most devastating catastrophes for Europe's population, economy and environment during the past decades. The total loss caused by the August 2002 flood is estimated to be 10 billion Euros for Germany alone. Due to their capability to present a synoptic view of the spatial extent of floods, remote sensing technology, and especially synthetic aperture radar (SAR systems, have been successfully applied for flood mapping and monitoring applications. However, the quality and accuracy of the flood masks and derived flood parameters always depends on the scale and the geometric precision of the original data as well as on the classification accuracy of the derived data products. The incorporation of auxiliary information such as elevation data can help to improve the plausibility and reliability of the derived flood masks as well as higher level products. This paper presents methods to improve the matching of flood masks with very high resolution digital elevation models as derived from LiDAR measurements for example. In the following, a cross section approach is presented that allows the dynamic fitting of the position of flood mask profiles according to the underlying terrain information from the DEM. This approach is tested in two study areas, using different input data sets. The first test area is part of the Elbe River (Germany where flood masks derived from Radarsat-1 and IKONOS during the 2002 flood are used in combination with a LiDAR DEM of 1 m spatial resolution. The other test data set is located on the River Severn (UK and flood masks derived from the TerraSAR-X satellite and aerial photos acquired during the 2007 flood are used in combination with a LiDAR DEM of 2 m pixel spacing. By means of these two examples the performance of the matching technique and the scaling effects are analysed and discussed. Furthermore, the systematic flood mapping capability of the different imaging systems are

  8. ADFE METHOD WITH HIGH ACCURACY FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    崔霞

    2002-01-01

    Alternating direction finite element (ADFE) scheme for d-dimensional nonlinear system of parabolic integro-differential equations is studied. By using a local approximation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coefficients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence properties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2norm space estimates and O((△t)2) estimate for time variant are obtained.

  9. SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space

    Science.gov (United States)

    Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; Nicol, P.; Kirschstein, S.; Hennig, T.; Engel, W.; Frerick, J.; Nieke, J.

    2010-10-01

    SLSTR is a high accuracy infrared radiometer which will be embarked in the Earth low-orbit Sentinel 3 operational GMES mission. SLSTR is an improved version of the previous AATSR and ATSR-1/2 instruments which have flown respectively on Envisat and ERS-1/2 ESA missions. SLSTR will provide data continuity with respect to these previous missions but with a substantial improvement due to its higher swaths (750 km in dual view and 1400 km in single view) which should permit global coverage of SST and LST measurements (at 1 km of spatial resolution in IR channels) with daily revisit time, useful for climatological and meteorological applications. Two more SWIR channels and a higher spatial resolution in the VIS/SWIR channels (0.5 km) are also implemented for a better clouds/aerosols screening. Two further additional channels for global scale fire monitoring are present at the same time as the other nominal channels.

  10. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-03-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibrations of tested transformers have attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and Standard Trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Labview software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  11. Study on Calibration System for Electronic Transformers Based on High-Accuracy PCI Card

    Directory of Open Access Journals (Sweden)

    Mingzhu Zhang

    2013-05-01

    Full Text Available With preliminary applying of Electronic Transformer (ET based on IEC 61850 standards in power grid, the calibration of tested transformers has attracted extensive research attention. This study proposes a novel Calibration System of ET (CSET based on high-accuracy card. Data acquisition of ET and standard trans-former (ST is gotten by optic Ethernet and PCI-4462 data acquisition card, respectively. Meanwhile, the synchronized sampling between ET and ST is completed on the optic/electronic pulse signal of PCI synchronization card. The signals processing and human interface are realized by Lab view software. The system proposed in the study is feasible for calibrating Electronic Voltage/Current Transformers (EVT/ECT of different voltage classes. System tests show that the precision of the system can get to 0.2°.

  12. High-Accuracy Programmable Timing Generator with Wide-Range Tuning Capability

    Directory of Open Access Journals (Sweden)

    Ting-Li Chu

    2013-01-01

    Full Text Available In this paper, a high-accuracy programmable timing generator with wide-range tuning capability is proposed. With the aid of dual delay-locked loop (DLL, both of the coarse- and fine-tuning mechanisms are operated in precise closed-loop scheme to lessen the effects of the ambient variations. The timing generator can provide sub-gate resolution and instantaneous switching capability. The circuit is implemented and simulated in TSMC 0.18 μm 1P6M technology. The test chip area occupies 1.9 mm2. The reference clock cycle can be divided into 128 bins by interpolation to obtain 14 ps resolution with the clock rate at 550 MHz. The INL and DNL are within −0.21~+0.78 and −0.27~+0.43 LSB, respectively.

  13. Well-posedness of the difference schemes of the high order of accuracy for elliptic equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available It is well known the differential equation − u ″ ( t +Au( t =f( t ( −∞high order of accuracy two-step difference schemes generated by an exact difference scheme or by Taylor's decomposition on three points for the approximate solutions of this differential equation. The well-posedness of these difference schemes in the difference analogy of the smooth functions is obtained. The exact almost coercive inequality for solutions in C( τ,E of these difference schemes is established.

  14. High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon.

    Science.gov (United States)

    Häffner, H; Beier, T; Hermanspahn, N; Kluge, H J; Quint, W; Stahl, S; Verdú, J; Werth, G

    2000-12-18

    We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g(exp) = 2.001 041 596 (5). This is the most precise determination of an atomic g(J) factor so far. The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. The current theoretical value amounts to g(th) = 2.001 041 591 (7). Together experiment and theory test the bound-state QED contributions to the g(J) factor of a bound electron to a precision of 1%.

  15. Computer-aided diagnosis of breast MRI with high accuracy optical flow estimation

    Science.gov (United States)

    Meyer-Baese, Anke; Barbu, Adrian; Lobbes, Marc; Hoffmann, Sebastian; Burgeth, Bernhard; Kleefeld, Andreas; Meyer-Bäse, Uwe

    2015-05-01

    Non-mass enhancing lesions represent a challenge for the radiological reading. They are not well-defined in both morphology (geometric shape) and kinetics (temporal enhancement) and pose a problem to lesion detection and classification. To enhance the discriminative properties of an automated radiological workflow, the correct preprocessing steps need to be taken. In an usual computer-aided diagnosis (CAD) system, motion compensation plays an important role. To this end, we employ a new high accuracy optical flow based motion compensation algorithm with robustification variants. An automated computer-aided diagnosis system evaluates the atypical behavior of these lesions, and additionally considers the impact of non-rigid motion compensation on a correct diagnosis.

  16. High Accuracy Speed-fed Grating Angular Acceleration Measurement System Based on FPGA

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2012-09-01

    Full Text Available Shaft angular acceleration is one of the most important parameter of rotary machines, the error of angular acceleration increased when the shaft speed up. For this problem, a new high accuracy angular acceleration measurement system is presented, the principle of measurement is self-regulating the period of speed sampling signal according to the proportion of the shaft speed up. This measurement system combined FPGA and SCM, the speed of shaft is received by the timer of SCM responding the interrupts of FPGA, and then set the parameter of frequency divider in FPGA, so as to make the period of speed sampling consistent with the proportion of the speed up. This measurement system could overcome the error when system speed up according to the experiment.

  17. High Accuracy Reference Network (HARN), Published in 2000, 1:600 (1in=50ft) scale, Brown County, WI.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This High Accuracy Reference Network (HARN) dataset, published at 1:600 (1in=50ft) scale, was produced all or in part from Field Survey/GPS information as of 2000....

  18. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.

    Science.gov (United States)

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils.

  19. Combining structure-from-motion derived point clouds from satellites and unmanned aircraft systems images with ground-truth data to create high-resolution digital elevation models

    Science.gov (United States)

    Palaseanu, M.; Thatcher, C.; Danielson, J.; Gesch, D. B.; Poppenga, S.; Kottermair, M.; Jalandoni, A.; Carlson, E.

    2016-12-01

    Coastal topographic and bathymetric (topobathymetric) data with high spatial resolution (1-meter or better) and high vertical accuracy are needed to assess the vulnerability of Pacific Islands to climate change impacts, including sea level rise. According to the Intergovernmental Panel on Climate Change reports, low-lying atolls in the Pacific Ocean are extremely vulnerable to king tide events, storm surge, tsunamis, and sea-level rise. The lack of coastal topobathymetric data has been identified as a critical data gap for climate vulnerability and adaptation efforts in the Republic of the Marshall Islands (RMI). For Majuro Atoll, home to the largest city of RMI, the only elevation dataset currently available is the Shuttle Radar Topography Mission data which has a 30-meter spatial resolution and 16-meter vertical accuracy (expressed as linear error at 90%). To generate high-resolution digital elevation models (DEMs) in the RMI, elevation information and photographic imagery have been collected from field surveys using GNSS/total station and unmanned aerial vehicles for Structure-from-Motion (SfM) point cloud generation. Digital Globe WorldView II imagery was processed to create SfM point clouds to fill in gaps in the point cloud derived from the higher resolution UAS photos. The combined point cloud data is filtered and classified to bare-earth and georeferenced using the GNSS data acquired on roads and along survey transects perpendicular to the coast. A total station was used to collect elevation data under tree canopies where heavy vegetation cover blocked the view of GNSS satellites. A subset of the GPS / total station data was set aside for error assessment of the resulting DEM.

  20. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  1. TECHNOLOGICAL PROVISION OF ACCURACY AND QUALITY PARAMETERS OF INTRICATE PROFILE PARTS AT HIGH-SPEED MULTI-COORDINATE MACHINING

    Directory of Open Access Journals (Sweden)

    V. K. Sheleg

    2009-01-01

    Full Text Available The paper considers requirements to CAM-systems for provision of high-speed multi-coordinate milling, principles of generation and recommendations on trajectory programming for high-speed machining, influence of vibration and balancing of the technological system on parameters of  the machining accuracy, characteristics of a cutting tool, types of tool coatings that is rather actual for improvement of accuracy and quality of intricate profile parts.

  2. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Arias, Jose A.; Tovar-Pescador, Joaquin [Department of Physics, University of Jaen (Spain); Cebecauer, Tomas [European Commission, Joint Research Centre, Ispra (Italy); GeoModel s.r.o., Bratislava (Slovakia); Institute of Geography, Slovak Academy of Sciences, Bratislava (Slovakia); Suri, Marcel [European Commission, Joint Research Centre, Ispra (Italy); GeoModel s.r.o., Bratislava (Slovakia)

    2010-09-15

    Downscaling of the Meteosat-derived solar radiation ({proportional_to}5 km grid resolution) is based on decomposing the global irradiance and correcting the systematic bias of its components using the elevation and horizon shadowing that are derived from the SRTM-3 digital elevation model (3 arc sec resolution). The procedure first applies the elevation correction based on the difference between coarse and high spatial resolution. Global irradiance is split into direct, diffuse circumsolar and diffuse isotropic components using statistical models, and then corrections due to terrain shading and sky-view fraction are applied. The effect of reflected irradiance is analysed only in the theoretical section. The method was applied in the eastern Andalusia, Spain, and the validation was carried out for 22 days on April, July and December 2006 comparing 15-min estimates of the satellite-derived solar irradiance and observations from nine ground stations. Overall, the corrections of the satellite estimates in the studied region strongly reduced the mean bias of the estimates for clear and cloudy days from roughly 2.3% to 0.4%. (author)

  3. A Seamless, High-Resolution, Coastal Digital Elevation Model (DEM) for Southern California

    Science.gov (United States)

    Barnard, Patrick L.; Hoover, Daniel

    2010-01-01

    A seamless, 3-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the 20-m elevation contour. This dataset was produced to provide critical boundary conditions (bathymetry and topography) for a modeling effort designed to predict the impacts of severe winter storms on the Southern California coast (Barnard and others, 2009). The hazards model, run in real-time or with prescribed scenarios, incorporates atmospheric information (wind and pressure fields) with a suite of state-of-the-art physical process models (tide, surge, and wave) to enable detailed prediction of water levels, run-up, wave heights, and currents. Research-grade predictions of coastal flooding, inundation, erosion, and cliff failure are also included. The DEM was constructed to define the general shape of nearshore, beach and cliff surfaces as accurately as possible, with less emphasis on the detailed variations in elevation inland of the coast and on bathymetry inside harbors. As a result this DEM should not be used for navigation purposes.

  4. Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington

    Science.gov (United States)

    Moran, P.W.; Aluru, N.; Black, R.W.; Vijayan, M.M.

    2007-01-01

    The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to enhance atmospheric deposition of contaminants. However, little is known about contaminant levels in organisms residing in these remote high elevation lakes. We measured total mercury and 28 organochlorine compounds in trout collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in trout from all lakes sampled (15 to 262 ??g/kg ww), while two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were also detected in these fish tissues (<25 ??g/kg ww). In sediments, organochlorine levels were below detection, while median total and methyl mercury were 30.4 and 0.34 ??g/ kg dry weight (ww), respectively. Using fish from two lakes, representing different contaminant loading levels (Wilcox lake: high; Skymo lake: low), we examined transcriptional response in the liver using a custom-made low-density targeted rainbow trout cDNA microarray. We detected significant differences in liver transcriptional response, including significant changes in metabolic, endocrine, and immune-related genes, in fish collected from Wilcox Lake compared to Skymo Lake. Overall, our results suggest that local urban areas contribute to the observed contaminant patterns in these high elevation lakes, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. ?? 2007 American Chemical Society.

  5. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

    Science.gov (United States)

    Skrotzki, Julian; Habig, Jan Christoph; Ebert, Volker

    2014-08-01

    The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg-Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of TDLAS hygrometry at the aerosol and cloud chamber aerosol interactions and dynamics in the atmosphere (AIDA)—a unique large-scale facility to study atmospheric processes. The robustness of the AI fitting algorithm has been validated for typical AIDA conditions encompassing strong transmission fluctuations

  6. Improved photomask accuracy with a high-productivity DUV laser pattern generator

    Science.gov (United States)

    Öström, Thomas; Måhlén, Jonas; Karawajczyk, Andrzej; Rosling, Mats; Carlqvist, Per; Askebjer, Per; Karlin, Tord; Sallander, Jesper; Österberg, Anders

    2006-10-01

    A strategy for sub-100 nm technology nodes is to maximize the use of high-speed deep-UV laser pattern generators, reserving e-beam tools for the most critical photomask layers. With a 248 nm excimer laser and 0.82 NA projection optics, the Sigma7500 increases the application space of laser pattern generators. A programmable spatial light modulator (SLM) is imaged with partially coherent optics to compose the photomask pattern. Image profiles are enhanced with phase shifting in the pattern generator, and features below 200 nm are reliably printed. The Sigma7500 extends the SLM-based architecture with improvements to CD uniformity and placement accuracy, resulting from an error budget-based methodology. Among these improvements is a stiffer focus stage design with digital servos, resulting in improved focus stability. Tighter climate controls and improved dose control reduce drift during mask patterning. As a result, global composite CD uniformity below 5 nm (3σ) has been demonstrated, with placement accuracy below 10 nm (3σ) across the mask. Self-calibration methods are used to optimize and monitor system performance, reducing the need to print test plates. The SLM calibration camera views programmed test patterns, making it possible to evaluate image metrics such as CD uniformity and line edge roughness. The camera is also used to characterize image placement over the optical field. A feature called ProcessEqualizer TM has been developed to correct long-range CD errors arising from process effects on production photomasks. Mask data is sized in real time to compensate for pattern-dependent errors related to local pattern density, as well as for systematic pattern-independent errors such as radial CD signatures. Corrections are made in the pixel domain in the advanced adjustments processor, which also performs global biasing, stamp distortion compensation, and corner enhancement. In the Sigma7500, the mask pattern is imaged with full edge addressability in each

  7. A new device for liver cancer biomarker detection with high accuracy

    Directory of Open Access Journals (Sweden)

    Shuaipeng Wang

    2015-06-01

    Full Text Available A novel cantilever array-based bio-sensor was batch-fabricated with IC compatible MEMS technology for precise liver cancer bio-marker detection. A micro-cavity was designed in the free end of the cantilever for local antibody-immobilization, thus adsorption of the cancer biomarker is localized in the micro-cavity, and the adsorption-induced k variation can be dramatically reduced with comparison to that caused by adsorption of the whole lever. The cantilever is pizeoelectrically driven into vibration which is pizeoresistively sensed by Wheatstone bridge. These structural features offer several advantages: high sensitivity, high throughput, high mass detection accuracy, and small volume. In addition, an analytical model has been established to eliminate the effect of adsorption-induced lever stiffness change and has been applied to precise mass detection of cancer biomarker AFP, the detected AFP antigen mass (7.6 pg/ml is quite close to the calculated one (5.5 pg/ml, two orders of magnitude better than the value by the fully antibody-immobilized cantilever sensor. These approaches will promote real application of the cantilever sensors in early diagnosis of cancer.

  8. High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.

    Directory of Open Access Journals (Sweden)

    Olivier Marre

    2015-07-01

    Full Text Available Motion tracking is a challenge the visual system has to solve by reading out the retinal population. It is still unclear how the information from different neurons can be combined together to estimate the position of an object. Here we recorded a large population of ganglion cells in a dense patch of salamander and guinea pig retinas while displaying a bar moving diffusively. We show that the bar's position can be reconstructed from retinal activity with a precision in the hyperacuity regime using a linear decoder acting on 100+ cells. We then took advantage of this unprecedented precision to explore the spatial structure of the retina's population code. The classical view would have suggested that the firing rates of the cells form a moving hill of activity tracking the bar's position. Instead, we found that most ganglion cells in the salamander fired sparsely and idiosyncratically, so that their neural image did not track the bar. Furthermore, ganglion cell activity spanned an area much larger than predicted by their receptive fields, with cells coding for motion far in their surround. As a result, population redundancy was high, and we could find multiple, disjoint subsets of neurons that encoded the trajectory with high precision. This organization allows for diverse collections of ganglion cells to represent high-accuracy motion information in a form easily read out by downstream neural circuits.

  9. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery

    Science.gov (United States)

    Shean, David E.; Alexandrov, Oleg; Moratto, Zachary M.; Smith, Benjamin E.; Joughin, Ian R.; Porter, Claire; Morin, Paul

    2016-06-01

    We adapted the automated, open source NASA Ames Stereo Pipeline (ASP) to generate digital elevation models (DEMs) and orthoimages from very-high-resolution (VHR) commercial imagery of the Earth. These modifications include support for rigorous and rational polynomial coefficient (RPC) sensor models, sensor geometry correction, bundle adjustment, point cloud co-registration, and significant improvements to the ASP code base. We outline a processing workflow for ∼0.5 m ground sample distance (GSD) DigitalGlobe WorldView-1 and WorldView-2 along-track stereo image data, with an overview of ASP capabilities, an evaluation of ASP correlator options, benchmark test results, and two case studies of DEM accuracy. Output DEM products are posted at ∼2 m with direct geolocation accuracy of computing environment. We are leveraging these resources to produce dense time series and regional mosaics for the Earth's polar regions.

  10. Effects of elevation change on mental stress in high-voltage transmission tower construction workers.

    Science.gov (United States)

    Hsu, Feng-Wen; Lin, Chiuhsiang Joe; Lee, Yung-Hui; Chen, Hung-Jen

    2016-09-01

    High-voltage transmission tower construction is a high-risk operation due to the construction site locations, extreme climatic factors, elevated working surfaces, and narrow working space. To comprehensively enhance our understanding of the psychophysiological phenomena of workers in extremely high tower constructions, we carried out a series of field experiments to test and compare three working surface heights in terms of frequency-domain heart rate variability (HRV) measurements. Twelve experienced male workers participated in this experiment. The dependent variables, namely, heart rate (HR), normalized low-frequency power (nLF), normalized high-frequency power (nHF), and LF-to-HF power ratio (LF/HF), were measured with the Polar RS800CX heart rate monitor. The experimental results indicated that the task workload was similar between working surface heights. Tower construction workers perceived an increased level of mental stress as working surface height increased.

  11. Corner strength enhancement of high strength cold-formed steel at normal room and elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ju CHEN; Wei-liang JIN

    2008-01-01

    In this study,the suitability of current design methods for the 0.2% proof yield strength of the comer regions for high strength cold-formed steel at norrnal room temperature was investigated.The current standard predictions are generally accurate for outer comer specimen but conservative for inner comer specimen.Based on the experimental results,an analytical model to predict the comer strength of high strength cold-formed steel at normal room temperature was also proposed.The comparison indicated that the proposed model predicted well the comer strength of high strength cold-formed steel not only at normal room temperature but also at elevated temperatures.It is shown that the predictions obtained from the proposed model agree well with the test results.Generally the comer strength enhancement of high strength cold-formed steel decreases when the temperature increases.

  12. Model Accuracy Comparison for High Resolution Insar Coherence Statistics Over Urban Areas

    Science.gov (United States)

    Zhang, Yue; Fu, Kun; Sun, Xian; Xu, Guangluan; Wang, Hongqi

    2016-06-01

    The interferometric coherence map derived from the cross-correlation of two complex registered synthetic aperture radar (SAR) images is the reflection of imaged targets. In many applications, it can act as an independent information source, or give additional information complementary to the intensity image. Specially, the statistical properties of the coherence are of great importance in land cover classification, segmentation and change detection. However, compared to the amount of work on the statistical characters of SAR intensity, there are quite fewer researches on interferometric SAR (InSAR) coherence statistics. And to our knowledge, all of the existing work that focuses on InSAR coherence statistics, models the coherence with Gaussian distribution with no discrimination on data resolutions or scene types. But the properties of coherence may be different for different data resolutions and scene types. In this paper, we investigate on the coherence statistics for high resolution data over urban areas, by making a comparison of the accuracy of several typical statistical models. Four typical land classes including buildings, trees, shadow and roads are selected as the representatives of urban areas. Firstly, several regions are selected from the coherence map manually and labelled with their corresponding classes respectively. Then we try to model the statistics of the pixel coherence for each type of region, with different models including Gaussian, Rayleigh, Weibull, Beta and Nakagami. Finally, we evaluate the model accuracy for each type of region. The experiments on TanDEM-X data show that the Beta model has a better performance than other distributions.

  13. The hydrochemistry of high-elevation lakes in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Patrick D. SHAW

    2010-08-01

    Full Text Available High-elevation lakes are sensitive to acidification from atmospheric deposition owing to their generally small catchment areas, thin soils and low bedrock weathering rates. The Georgia Basin, southwest British Columbia, Canada, receives atmospheric inputs from emissions originating in Vancouver, Victoria, and from marine traffic in the Strait of Georgia. There is growing concern on the influence of this air pollution on high-elevation systems in the region. Water chemistry and catchment characteristics were used to assess the sensitivity of 72 lakes in the Georgia Basin to acidic deposition. Twenty percent of the study lakes had pH levels less than 6, and acid neutralising capacity (ANC concentrations below 20 μeq L–1, which are key thresholds for biological sustainability. Base cation and trace metal concentrations were low, typical of the dilute nature of high-elevation lakes (median conductivity = 7.0 μS cm–1. Nonetheless, concentrations of trace metals (such as lead decreased with distance from major cities. The primary factors influencing the pH and ANC of surface waters were investigated using multiple linear regression; both ANC and pH were related to longitude and the proportion of the catchment dominated by ice and glaciers. Increasing sulphur deposition resulted in decreasing pH. The median critical load of acidity (sulphur for the study lakes was approximately 70 meq m–2 y–1; 18% of the lakes received sulphur deposition (range: 6-81 meq m–2 y–1 for the period 2005-2006 in excess of their critical load.

  14. Cloudwater studies at a high elevation site in the Vosges Mountains (France).

    Science.gov (United States)

    Herckes, Pierre; Wendling, Raymond; Sauret, Nathalie; Mirabel, Philippe; Wortham, Henri

    2002-01-01

    Cloud and rainwater samples have been collected at a high elevation site in the Vosges Mountains. An automated collection system has been used to collect bulk cloudwater and small cloudwater droplets. Bulk cloudwater concentrations were up to 10 times more concentrated than rainwater concentrations. Small clouddroplets showed generally higher concentrations than bulk cloudwater. Nevertheless, the enrichment factors depend on the compounds under study and appear to be related to the composition of the cloud condensation nuclei forming small or large clouddroplets. Principal component analysis and factor analysis were applied to the collected datasets and confirmed the influence of the cloud condensation nuclei on the composition difference between small and large cloudwater droplets.

  15. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-04-01

    Full Text Available Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a nonparametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM. The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.

  16. Enhanced summer convective rainfall at Alpine high elevations in response to climate warming

    Science.gov (United States)

    Giorgi, Filippo; Torma, Csaba; Coppola, Erika; Ban, Nikolina; Schär, Christoph; Somot, Samuel

    2016-08-01

    Global climate projections consistently indicate a future decrease in summer precipitation over the European Alps. However, topography can substantially modulate precipitation change signals. For example, the shadowing effect by topographic barriers can modify winter precipitation change patterns, and orographic convection might also play an important role. Here we analyse summer precipitation over the Alpine region in an ensemble of twenty-first-century projections with high-resolution (~12 km) regional climate models driven by recent global climate model simulations. A broad-scale summer precipitation reduction is projected by both model ensembles. However, the regional models simulate an increase in precipitation over the high Alpine elevations that is not present in the global simulations. This is associated with increased convective rainfall due to enhanced potential instability by high-elevation surface heating and moistening. The robustness of this signal, which is found also for precipitation extremes, is supported by the consistency across models and future time slices, the identification of an underlying mechanism (enhanced convection), results from a convection-resolving simulation, the statistical significance of the signal and the consistency with some observed trends. Our results challenge the picture of a ubiquitous decrease of summer precipitation over the Alps found in coarse-scale projections.

  17. Perspectives on open access high resolution digital elevation models to produce global flood hazard layers

    Science.gov (United States)

    Sampson, Christopher; Smith, Andrew; Bates, Paul; Neal, Jeffrey; Trigg, Mark

    2015-12-01

    Global flood hazard models have recently become a reality thanks to the release of open access global digital elevation models, the development of simplified and highly efficient flow algorithms, and the steady increase in computational power. In this commentary we argue that although the availability of open access global terrain data has been critical in enabling the development of such models, the relatively poor resolution and precision of these data now limit significantly our ability to estimate flood inundation and risk for the majority of the planet's surface. The difficulty of deriving an accurate 'bare-earth' terrain model due to the interaction of vegetation and urban structures with the satellite-based remote sensors means that global terrain data are often poorest in the areas where people, property (and thus vulnerability) are most concentrated. Furthermore, the current generation of open access global terrain models are over a decade old and many large floodplains, particularly those in developing countries, have undergone significant change in this time. There is therefore a pressing need for a new generation of high resolution and high vertical precision open access global digital elevation models to allow significantly improved global flood hazard models to be developed.

  18. Nature of elevated rat intestinal carbohydrase activities after high-carbohydrate diet feeding

    Energy Technology Data Exchange (ETDEWEB)

    Tsuboi, K.K.; Kwong, L.K.; Yamada, K.; Sunshine, P.; Koldovsky, O.

    1985-10-01

    Adult rats that were maintained on a low-carbohydrate intake showed rapid increase in the activities of sucrase, maltase, and lactase along the length of the small intestine when they were fed a high-starch diet. In the present study, the authors have identified these activity increases, and showed that they reflect proportional accumulations in enzyme-protein of sucrase-isomaltase, maltase-glucoamylase, and neutral lactase. It was determined that each of these enzymes exists in adult rat intestine in single immunoreactive form and accounts as a group for all sucrase, cellobiase, and most maltase and lactase activities. Dietary change from low to high carbohydrate (starch) resulted in an increase in (TH)leucine accumulation in each of the enzymes, without a change in the amount of label accumulation in total intestinal proteins. The increase in label accumulation in the brush-border carbohydrase pools was matched generally by proportional elevation in the pool concentrations of sucrase-isomaltase and lactase but not maltase. These studies suggest that the elevation of intestinal carbohydrase concentrations induced by high-carbohydrate feeding may involve selective stimulation of their synthesis.

  19. Evidence that chytrids dominate fungal communities in high-elevation soils.

    Science.gov (United States)

    Freeman, K R; Martin, A P; Karki, D; Lynch, R C; Mitter, M S; Meyer, A F; Longcore, J E; Simmons, D R; Schmidt, S K

    2009-10-27

    Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions.

  20. Melting Alpine glaciers enrich high-elevation lakes with reactive nitrogen.

    Science.gov (United States)

    Saros, Jasmine E; Rose, Kevin C; Clow, David W; Stephens, Verlin C; Nurse, Andrea B; Arnett, Heather A; Stone, Jeffery R; Williamson, Craig E; Wolfe, Alexander P

    2010-07-01

    Alpine glaciers have receded substantially over the last century in many regions of the world. Resulting changes in glacial runoff not only affect the hydrological cycle, but can also alter the physical (i.e., turbidity from glacial flour) and biogeochemical properties of downstream ecosystems. Here we compare nutrient concentrations, transparency gradients, algal biomass, and fossil diatom species richness in two sets of high-elevation lakes: those fed by snowpack melt alone (SF lakes) and those fed by both glacial and snowpack meltwaters (GSF lakes). We found that nitrate (NO(3)(-)) concentrations in the GSF lakes were 1-2 orders of magnitude higher than in SF lakes. Although nitrogen (N) limitation is common in alpine lakes, algal biomass was lower in highly N-enriched GSF lakes than in the N-poor SF lakes. Contrary to expectations, GSF lakes were more transparent than SF lakes to ultraviolet and equally transparent to photosynthetically active radiation. Sediment diatom assemblages had lower taxonomic richness in the GSF lakes, a feature that has persisted over the last century. Our results demonstrate that the presence of glaciers on alpine watersheds more strongly influences NO(3)(-)concentrations in high-elevation lake ecosystems than any other geomorphic or biogeographic characteristic.

  1. High-resolution CT of nontuberculous mycobacterium infection in adult CF patients: diagnostic accuracy

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, Sinead; Lavelle, Lisa; Kilcoyne, Aoife; McCarthy, Colin; Dodd, Jonathan D. [St. Vincent' s University Hospital, Department of Radiology, Dublin (Ireland); DeJong, Pim A. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Loeve, Martine; Tiddens, Harm A.W.M. [Erasmus MC-Sophia Children' s Hospital, Department of Radiology, Department of Pediatric Pulmonology and Allergology, Rotterdam (Netherlands); McKone, Edward; Gallagher, Charles G. [St. Vincent' s University Hospital, Department of Respiratory Medicine and National Referral Centre for Adult Cystic Fibrosis, Dublin (Ireland)

    2012-12-15

    To determine the diagnostic accuracy of high-resolution computed tomography (HRCT) for the detection of nontuberculous mycobacterium infection (NTM) in adult cystic fibrosis (CF) patients. Twenty-seven CF patients with sputum-culture-proven NTM (NTM+) underwent HRCT. An age, gender and spirometrically matched group of 27 CF patients without NTM (NTM-) was included as controls. Images were randomly and blindly analysed by two readers in consensus and scored using a modified Bhalla scoring system. Significant differences were seen between NTM (+) and NTM (-) patients in the severity of the bronchiectasis subscore [45 % (1.8/4) vs. 35 % (1.4/4), P = 0.029], collapse/consolidation subscore [33 % (1.3/3) vs. 15 % (0.6/3)], tree-in-bud/centrilobular nodules subscore [43 % (1.7/3) vs. 25 % (1.0/3), P = 0.002] and the total CT score [56 % (18.4/33) vs. 46 % (15.2/33), P = 0.002]. Binary logistic regression revealed BMI, peribronchial thickening, collapse/consolidation and tree-in-bud/centrilobular nodules to be predictors of NTM status (R{sup 2} = 0.43). Receiver-operator curve analysis of the regression model showed an area under the curve of 0.89, P < 0.0001. In adults with CF, seven or more bronchopulmonary segments showing tree-in-bud/centrilobular nodules on HRCT is highly suggestive of NTM colonisation. (orig.)

  2. Rigorous Training of Dogs Leads to High Accuracy in Human Scent Matching-To-Sample Performance.

    Directory of Open Access Journals (Sweden)

    Sophie Marchal

    Full Text Available Human scent identification is based on a matching-to-sample task in which trained dogs are required to compare a scent sample collected from an object found at a crime scene to that of a suspect. Based on dogs' greater olfactory ability to detect and process odours, this method has been used in forensic investigations to identify the odour of a suspect at a crime scene. The excellent reliability and reproducibility of the method largely depend on rigor in dog training. The present study describes the various steps of training that lead to high sensitivity scores, with dogs matching samples with 90% efficiency when the complexity of the scents presented during the task in the sample is similar to that presented in the in lineups, and specificity reaching a ceiling, with no false alarms in human scent matching-to-sample tasks. This high level of accuracy ensures reliable results in judicial human scent identification tests. Also, our data should convince law enforcement authorities to use these results as official forensic evidence when dogs are trained appropriately.

  3. High accuracy jog CD control on OPC pattern by advanced laser writer Sigma7500

    Science.gov (United States)

    Chin, Tomas; Wu, Wen-Bin; Shih, Chiang-Lin

    2008-10-01

    With the progress of mask writer technology, 50 KV electron beam writers always perform with better pattern fidelity and critical dimension (CD) control than traditional laser raster-scan writers because laser spot size is confined by the laser longer wavelength relative to electron beam. As far as Optical Proximity Correction (OPC) pattern fidelity is concerned, critical masks with OPC process have to choose Variable-Shape-Beam (VSB) electron beam writer presently. However, the over-aggressive OPC fragmentation induces data volume abrupt explosion, longer writing time, higher mask cost and even mask quality degradation 1. Micronic Sigma7500 laser writer introduces a novel imaging system combining partial coherent light and DUV spatial light modulation (SLM) to generate a high-quality pattern image 2. The benefit of raster-scan laser writer is high throughput with consistent writing time regardless of pattern geometry, complexity and data size. However, pattern CD accuracy still needs improvement. This study is to evaluate jog CD control capability of Sigma7500 on OPC typical line-and-space test patterns with different orientations of 0°, 90°, 45° and 135°. In addition, mask CD uniformity and OPC jog height linearity will also be demonstrated.

  4. High-Accuracy Ring Laser Gyroscopes: Earth Rotation Rate and Relativistic Effects

    Science.gov (United States)

    Beverini, N.; Di Virgilio, A.; Belfi, J.; Ortolan, A.; Schreiber, K. U.; Gebauer, A.; Klügel, T.

    2016-06-01

    The Gross Ring G is a square ring laser gyroscope, built as a monolithic Zerodur structure with 4 m length on all sides. It has demonstrated that a large ring laser provides a sensitivity high enough to measure the rotational rate of the Earth with a high precision of ΔΩE GINGER project is intending to take this level of sensitivity further and to improve the accuracy and the long-term stability. A monolithic structure similar to the G ring laser is not available for GINGER. Therefore the preliminary goal is the demonstration of the feasibility of a larger gyroscope structure, where the mechanical stability is obtained through an active control of the geometry. A prototype moderate size gyroscope (GP-2) has been set up in Pisa in order to test this active control of the ring geometry, while a second structure (GINGERino) has been installed inside the Gran Sasso underground laboratory in order to investigate the properties of a deep underground laboratory in view of an installation of a future GINGER apparatus. The preliminary data on these two latter instruments are presented.

  5. High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride

    Science.gov (United States)

    Faraji, Somayeh; Ghasemi, S. Alireza; Rostami, Samare; Rasoulkhani, Robabe; Schaefer, Bastian; Goedecker, Stefan; Amsler, Maximilian

    2017-03-01

    We investigate the accuracy and transferability of a recently developed high-dimensional neural network (NN) method for calcium fluoride, fitted to a database of ab initio density functional theory (DFT) calculations based on the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional. We call the method charge equilibration via neural network technique (CENT). Although the fitting database contains only clusters (i.e., nonperiodic structures), the NN scheme accurately describes a variety of bulk properties. In contrast to other available empirical methods the CENT potential has a much simpler functional form, nevertheless it correctly reproduces the PBE energetics of various crystalline phases both at ambient and high pressure. Surface energies and structures as well as dynamical properties derived from phonon calculations are also in good agreement with PBE results. Overall, the difference between the values obtained by the CENT potential and the PBE reference values is less than or equal to the difference between the values of local density approximation (LDA) and Born-Mayer-Huggins (BMH) with those calculated by the PBE exchange correlation functional.

  6. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device.

  7. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Jong-Seok Kim

    2016-01-01

    Full Text Available The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  8. Assessing the Accuracy of Sentinel-3 SLSTR Sea-Surface Temperature Retrievals Using High Accuracy Infrared Radiiometers on Ships of Opportunity

    Science.gov (United States)

    Minnett, P. J.; Izaguirre, M. A.; Szcszodrak, M.; Williams, E.; Reynolds, R. M.

    2015-12-01

    The assessment of errors and uncertainties in satellite-derived SSTs can be achieved by comparisons with independent measurements of skin SST of high accuracy. Such validation measurements are provided by well-calibrated infrared radiometers mounted on ships. The second generation of Marine-Atmospheric Emitted Radiance Interferometers (M-AERIs) have recently been developed and two are now deployed on cruise ships of Royal Caribbean Cruise Lines that operate in the Caribbean Sea, North Atlantic and Mediterranean Sea. In addition, two Infrared SST Autonomous Radiometers (ISARs) are mounted alternately on a vehicle transporter of NYK Lines that crosses the Pacific Ocean between Japan and the USA. Both M-AERIs and ISARs are self-calibrating radiometers having two internal blackbody cavities to provide at-sea calibration of the measured radiances, and the accuracy of the internal calibration is periodically determined by measurements of a NIST-traceable blackbody cavity in the laboratory. This provides SI-traceability for the at-sea measurements. It is anticipated that these sensors will be deployed during the next several years and will be available for the validation of the SLSTRs on Sentinel-3a and -3b.

  9. Accuracy of the field triage protocol in selecting severely injured patients after high energy trauma.

    Science.gov (United States)

    van Laarhoven, J J E M; Lansink, K W W; van Heijl, M; Lichtveld, R A; Leenen, L P H

    2014-05-01

    For optimal treatment of trauma patients it is of great importance to identify patients who are at risk for severe injuries. The Dutch field triage protocol for trauma patients, the LPA (National Protocol of Ambulance Services), is designed to get the right patient, in the right time, to the right hospital. Purpose of this study was to determine diagnostic accuracy and compliance of this triage protocol. Triage criteria were categorised into physiological condition (P), mechanism of trauma (M) and injury type (I). A retrospective analysis of prospectively collected data of all high-energy trauma patients from 2008 to 2011 in the region Central Netherlands is performed. Diagnostic parameters (sensitivity, specificity, negative predictive value, positive predictive value) of the field triage protocol for selecting severely injured patients were calculated including rates of under- and overtriage. Undertriage was defined as the proportion of severely injured patients (Injury Severity Score (ISS)≥16) who were transported to a level two or three trauma care centre. Overtriage was defined as the proportion of non-severely injured patients (ISSprotocol was 89.1% (95% confidence interval (CI) 84.4-92.6) and 60.5% (95% CI 57.9-63.1), respectively. The overall rate of undertriage was 10.9% (95%CI 7.4-15.7) and the overall rate of overtriage was 39.5% (95%CI 36.9-42.1). These rates were 16.5% and 37.7%, respectively for patients with M+I-P-. Compliance to the triage protocol for patients with M+I-P- was 78.7%. Furthermore, compliance in patients with either a positive I+ or positive P+ was 91.2%. The overall rate of undertriage (10.8%) was mainly influenced by a high rate of undertriage in the group of patients with only a positive mechanism criterion, therefore showing low diagnostic accuracy in selecting severely injured patients. As a consequence these patients with severe injury are undetected using the current triage protocol. As it has been shown that severely injured

  10. Elevating your elevator talk

    Science.gov (United States)

    An important and often overlooked item that every early career researcher needs to do is compose an elevator talk. The elevator talk, named because the talk should not last longer than an average elevator ride (30 to 60 seconds), is an effective method to present your research and yourself in a clea...

  11. Slow steady exhumation of the high elevation Deosai Plateau (Northern Pakistan Himalaya) since 40 Ma

    Science.gov (United States)

    van Melle, J.; van der Beek, P.; Guillot, S.; Pecher, A.; Latif, M.

    2007-12-01

    Mountain ranges of the north-western Himalaya in Pakistan show strongly contrasting relief, opposing steep, deeply incised topography with extremely high peaks such as the Karakorum Range and Nanga Parbat Haramosh Massif (NPHM), to high-altitude, low-relief areas such as the Deosai Plateau located between the Karakorum and NPHM and the Tso-Morari Massif in Eastern Ladakh. In contrast, mean elevations of the different mountain ranges are comparable, the Deosai Plateau being on average even slightly higher than the adjacent NPHM. The aim of this study is to quantify the exhumation history the Deosai Plateau, in order to understand how to build such a high-altitude, low-relief plateau and how to preserve it over million-year timescales. Here, we report the first low-temperature thermochronologic data from the Deosai Plateau, to compare its exhumation history to that of the surrounding massifs. Apatite Fission Track (AFT) ages reported in the literature from the NPHM and Karakorum are extremely young (1 km/Ma. In contrast, our AFT ages from the Deosai Plateau are 15-27 Ma; an order of magnitude older than those of the surrounding massifs. Zircon and apatite (U-Th)/He ages (measured at U of Arizona, HeDWaAZ program) range from 23-45 Ma, and 12-15 Ma, respectively. Modeling the combined AFT and He ages requires continuous and very slow long term cooling rates (around 4 ° C/Ma), consistent with an exhumation rate of about 0.15 km/Ma for typical geothermal gradients. Our data thus suggest steady slow unroofing of the Deosai Plateau since at least 40 Ma. A clear link between cooling age patterns and the geomorphology is also evident, with strongly incised, high-relief massifs showing exhumation at rates an order of magnitude faster than the low-relief plateau. AFT and ZFT ages similar to our data have been reported from the Tso Morari massif further east, characterised by similar high-elevation low-relief morphology. These morphologic zones cross the Indus and Shyok Suture

  12. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    Science.gov (United States)

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  13. Elevated exhaled nitric oxide in high-risk neonates precedes transient early but not persistent wheeze

    DEFF Research Database (Denmark)

    Chawes, Bo L K; Buchvald, Frederik; Bischoff, Anne Louise;

    2010-01-01

    Elevated fractional exhaled nitric oxide (Fe(NO)) concentration has been suggested to predict early childhood wheeze and sensitization.......Elevated fractional exhaled nitric oxide (Fe(NO)) concentration has been suggested to predict early childhood wheeze and sensitization....

  14. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    Science.gov (United States)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  15. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Science.gov (United States)

    Zhang, Yichi; Liang, Xiao Ying; Liu, Shu; Lee, Jacky W. Y.; Bhaskar, Srinivasan; Lam, Dennis S. C.

    2016-01-01

    Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL) power calculation formulas for eyes with an axial length (AL) greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II) using User Group for Laser Interference Biometry (ULIB) constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE) and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.). Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice. PMID:27119018

  16. Accuracy of Intraocular Lens Power Calculation Formulas for Highly Myopic Eyes

    Directory of Open Access Journals (Sweden)

    Yichi Zhang

    2016-01-01

    Full Text Available Purpose. To evaluate and compare the accuracy of different intraocular lens (IOL power calculation formulas for eyes with an axial length (AL greater than 26.00 mm. Methods. This study reviewed 407 eyes of 219 patients with AL longer than 26.0 mm. The refractive prediction errors of IOL power calculation formulas (SRK/T, Haigis, Holladay, Hoffer Q, and Barrett Universal II using User Group for Laser Interference Biometry (ULIB constants were evaluated and compared. Results. One hundred seventy-one eyes were enrolled. The Barrett Universal II formula had the lowest mean absolute error (MAE and SRK/T and Haigis had similar MAE, and the statistical highest MAE were seen with the Holladay and Hoffer Q formulas. The interquartile range of the Barrett Universal II formula was also the lowest among all the formulas. The Barrett Universal II formulas yielded the highest percentage of eyes within ±1.0 D and ±0.5 D of the target refraction in this study (97.24% and 79.56%, resp.. Conclusions. Barrett Universal II formula produced the lowest predictive error and the least variable predictive error compared with the SRK/T, Haigis, Holladay, and Hoffer Q formulas. For high myopic eyes, the Barrett Universal II formula may be a more suitable choice.

  17. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner.

    Science.gov (United States)

    Loudon, Sjoukje E; Rook, Caitlin A; Nassif, Deborah S; Piskun, Nadya V; Hunter, David G

    2011-07-07

    Purpose. The Pediatric Vision Scanner (PVS) detects strabismus by identifying ocular fixation in both eyes simultaneously. This study was undertaken to assess the ability of the PVS to identify patients with amblyopia or strabismus, particularly anisometropic amblyopia with no measurable strabismus. Methods. The PVS test, administered from 40 cm and requiring 2.5 seconds of attention, generated a binocularity score (BIN, 0%-100%). We tested 154 patients and 48 controls between the ages of 2 and 18 years. BIN scores of amblyopic children and controls were measured, and 21 children received sequential PVS measurements to detect any changes in BIN resulting from amblyopia treatment. Results. With the pass/refer threshold set at BIN 60%, sensitivity and specificity were 96% for the detection of amblyopia or strabismus. Assuming a 5% prevalence of amblyopia or strabismus, the inferred positive and negative predictive values of the PVS were 56% and 100%, respectively. Fixation accuracy was significantly reduced in amblyopic eyes. In anisometropic amblyopia patients treated successfully, the BIN improved to 100%. Conclusions. The PVS identified children with amblyopia or strabismus with high sensitivity and specificity, while successful treatment restored normal BIN scores in amblyopic patients without strabismus. The results support the hypothesis that the PVS detects strabismus and amblyopia directly. Future strategies for screening by nonspecialists may thus be based on diagnostic detection of amblyopia and strabismus rather than the estimation of risk factors, allowing for rapid, accurate identification of children with amblyopia early in life when it is most amenable to treatment.

  18. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    Science.gov (United States)

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  19. GRACE Data-based High Accuracy Global Static Earth's Gravity Field Model

    Directory of Open Access Journals (Sweden)

    CHEN Qiujie

    2016-04-01

    Full Text Available To recover the highly accurate static earth's gravity field by using GRACE satellite data is one of the hot topics in geodesy. Since linearization errors of dynamic approach quickly increase when extending satellite arc length, we established a modified dynamic approach for processing GRACE orbit and range-rate measurements in this paper, which treated orbit observations of the twin GRACE satellites as approximate values for linearization. Using the GRACE data spanning the period Jan. 2003 to Dec. 2010, containing satellite attitudes, orbits, range-rate, and non-conservative forces, we developed two global static gravity field models. One is the unconstrained solution called Tongji-Dyn01s complete to degree and order 180; the other one is the Tongji-Dyn01k model computed by using Kaula constraint. The comparisons between our models and those latest GRACE-only models (including the AIUB-GRACE03, the GGM05S, the ITSG-Grace2014k and the Tongji-GRACE01 published by different international groups, and the external validations with marine gravity anomalies from DTU13 product and height anomalies from GPS/levelling data, were performed in this study. The results demonstrate that the Tongji-Dyn01s has the same accuracy level with those of the latest GRACE-only models, while the Tongji-Dyn01k model is closer to the EIGEN6C2 than the other GRACE-only models as a whole.

  20. High Accuracy Extraction of Respiratory Sinus Arrhythmia with Statistical Processing using Normal Distribution

    Science.gov (United States)

    Numata, Takashi; Ogawa, Yutaro; Yoshida, Lui; Kotani, Kiyoshi; Jimbo, Yasuhiko

    The autonomic nervous system is important in maintaining homeostasis by mediating the opposing effects of the sympathetic and parasympathetic nervous activity on organs. Although it is known that the amplitude of RSA (Respiratory Sinus Arrhythmia) is an index of parasympathetic nervous activity, it is difficult to estimate that activity in real-time in everyday situations. It is partly caused by body motions and extrasystoles. Also, automatic recognition of the R-wave on electrocardiograms is required for real-time analysis of RSA amplitude, there is an unresolved problem of false recognition of the R-wave. In this paper, we propose a method to evaluate the amplitude of RSA accurately using statistical processing with probabilistic models. Then, we estimate parasympathetic nervous activity during body motion and isometric exercise to examine the validity of the method. As a result, using the proposed method, we demonstrate that the amplitude of RSA can be extracted with false recognition of the R-wave. In addition, an appropriate threshold for the estimate is one or five percent because waveforms of RSA amplitude do not follow the abrupt changes of the parasympathetic nervous activity evoked by isometric exercise with the threshold at ten percent. Furthermore, the method using normal distribution is found to be more appropriate than that of chi-square distribution for statistical processing. Therefore, we expect that the proposed method can evaluate parasympathetic nervous activity with high accuracy in everyday situations.

  1. Raman spectroscopic determination of the molecular constants of the hydrogen isotopologues with high accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Krasch, Bennet; Mirz, Sebastian; Groessle, Robin [Karlsruhe Institute of Technology KIT (Germany). Institute for Technical Physics (ITEP), Tritium Laboratory Karlsruhe (TLK); Collaboration: KATRIN-Collaboration

    2016-07-01

    The interest in the thermodynamic properties of gases as the chemical equilibrium is faced by the challenge of time-consuming and technical extensive experimental setups. One possible solution is the derivation of these properties from the molecular constants. The rotational and vibrational movement of diatomic molecules, as the hydrogen isotopologues, is described by the concept of the rotational anharmonic oscillator. The molecular constants are the free parameters of this concept. Molecular constants themselves can be determined by measuring the line position of rotational and/or rotational transitions e.g. with Raman spectroscopy for hydrogen as it has been done since several years. In this contribution a Raman method was development to measure the molecular constant of the hydrogen isotopologues with high accuracy to obtain reliable results. But not only the method was development but also a complete measurement uncertainty budget was set up. The uncertainty budget contains all possible sources for uncertainties from the measurement period or the analysis process as well the contribution of each single uncertainty. The method and the uncertainty budget were exemplary tested on Deuterium.

  2. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  3. Short-term effects of implemented high intensity shoulder elevation during computer work

    DEFF Research Database (Denmark)

    Larsen, Mette K.; Samani, Afshin; Madeleine, Pascal

    2009-01-01

    elevation. RPE was reported, productivity (drawings per min) measured, and bipolar surface electromyography (EMG) recorded from the dominant upper trapezius during pauses and sessions of computer work. Repeated measure ANOVA with Bonferroni corrected post-hoc tests was applied for the statistical analyses......BACKGROUND: Work-site strength training sessions are shown effective to prevent and reduce neck-shoulder pain in computer workers, but difficult to integrate in normal working routines. A solution for avoiding neck-shoulder pain during computer work may be to implement high intensity voluntary...... contractions during the computer work. However, it is unknown how this may influence productivity, rate of perceived exertion (RPE) as well as activity and rest of neck-shoulder muscles during computer work. The aim of this study was to investigate short-term effects of a high intensity contraction...

  4. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2017-07-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  5. Statistical downscaling of precipitation using local regression and high accuracy surface modeling method

    Science.gov (United States)

    Zhao, Na; Yue, Tianxiang; Zhou, Xun; Zhao, Mingwei; Liu, Yu; Du, Zhengping; Zhang, Lili

    2016-03-01

    Downscaling precipitation is required in local scale climate impact studies. In this paper, a statistical downscaling scheme was presented with a combination of geographically weighted regression (GWR) model and a recently developed method, high accuracy surface modeling method (HASM). This proposed method was compared with another downscaling method using the Coupled Model Intercomparison Project Phase 5 (CMIP5) database and ground-based data from 732 stations across China for the period 1976-2005. The residual which was produced by GWR was modified by comparing different interpolators including HASM, Kriging, inverse distance weighted method (IDW), and Spline. The spatial downscaling from 1° to 1-km grids for period 1976-2005 and future scenarios was achieved by using the proposed downscaling method. The prediction accuracy was assessed at two separate validation sites throughout China and Jiangxi Province on both annual and seasonal scales, with the root mean square error (RMSE), mean relative error (MRE), and mean absolute error (MAE). The results indicate that the developed model in this study outperforms the method that builds transfer function using the gauge values. There is a large improvement in the results when using a residual correction with meteorological station observations. In comparison with other three classical interpolators, HASM shows better performance in modifying the residual produced by local regression method. The success of the developed technique lies in the effective use of the datasets and the modification process of the residual by using HASM. The results from the future climate scenarios show that precipitation exhibits overall increasing trend from T1 (2011-2040) to T2 (2041-2070) and T2 to T3 (2071-2100) in RCP2.6, RCP4.5, and RCP8.5 emission scenarios. The most significant increase occurs in RCP8.5 from T2 to T3, while the lowest increase is found in RCP2.6 from T2 to T3, increased by 47.11 and 2.12 mm, respectively.

  6. Living on the edge: Space use of Eurasian red squirrels in marginal high-elevation habitat

    Science.gov (United States)

    Romeo, Claudia; Wauters, Lucas A.; Preatoni, Damiano; Tosi, Guido; Martinoli, Adriano

    2010-11-01

    In marginal habitats located at the edge of a species' range, environmental conditions are frequently extreme and individuals may be subject to different selective pressures compared to central populations. These so-called edge or marginal populations tend to have lower densities and reproductive rates than populations located in more suitable habitats, but little is known about local adaptations in spacing behavior. We studied space use and social organization in a population of Eurasian red squirrels ( Sciurus vulgaris) in a high-elevation marginal habitat of dwarf mountain pine ( Pinus mugo) and compared it with spacing patterns in high-quality Scots pine ( Pinus sylvestris) forest at lower-elevation. Home ranges and core areas were larger in the marginal habitat. In both habitats, males used larger home ranges than females, but sex differences in core area size were significant only in the edge population. Patterns of core area overlap were similar in both habitats with intra-sexual territoriality among adult females and higher degrees of inter-sexual overlap, typical for the species throughout its range. However, low densities in the edge population resulted in higher female by males overlap in spring-summer, suggesting males increased home ranges and core areas during mating season to augment access to estrus females. Thus, in the marginal habitat, with low food abundance and low population densities, linked with extreme winter conditions, squirrels, especially males, used large home ranges. Finally, squirrels responded more strongly to variation in food availability (inverse relation between home range size and seed abundance), and even to fluctuations in density (inverse relation between core area size and density of animals of the same sex), in the marginal than in the high-quality habitat, suggesting high behavioral plasticity to respond to the ecological constraints in marginal habitats.

  7. Geometric Accuracy Investigations of SEVIRI High Resolution Visible (HRV) Level 1.5 Imagery

    National Research Council Canada - National Science Library

    Sultan Kocaman Aksakal

    2013-01-01

    .... In a joint project between the Swiss GCOS Office and ETH Zurich, geometric accuracy and temporal stability of 1-km resolution HRV channel imagery of SEVIRI have been evaluated over Switzerland...

  8. The regulatory benefits of high levels of affect perception accuracy: a process analysis of reactions to stressors in daily life.

    Science.gov (United States)

    Robinson, Michael D; Moeller, Sara K; Buchholz, Maria M; Boyd, Ryan L; Troop-Gordon, Wendy

    2012-08-01

    Individuals attuned to affective signals from the environment may possess an advantage in the emotion-regulation realm. In two studies (total n = 151), individual differences in affective perception accuracy were assessed in an objective, performance-based manner. Subsequently, the same individuals completed daily diary protocols in which daily stressor levels were reported as well as problematic states shown to be stress-reactive in previous studies. In both studies, individual differences in affect perception accuracy interacted with daily stressor levels to predict the problematic outcomes. Daily stressors precipitated problematic reactions--whether depressive feelings (study 1) or somatic symptoms (study 2)--at low levels of affect perception accuracy, but did not do so at high levels of affect perception accuracy. The findings support a regulatory view of such perceptual abilities. Implications for understanding emotion regulation processes, emotional intelligence, and individual differences in reactivity are discussed.

  9. [Accuracy of liquid-based cytology in diagnosis of high-grade squamous cervical intraepithelial neoplasia].

    Science.gov (United States)

    Li, Min; Mei, Ping; Luo, Dong-lan; Wang, Xiao-bing; Liu, Yan-hui

    2012-04-01

    To investigate factors affecting the diagnostic accuracy of cervical liquid-based cytology for high-grade squamous intraepithelial lesion (HSIL). A retrospective evaluation of cytological and histological slides was performed in 415 patients who had cytological HSIL between 2007 and 2010. Among 42 209 cases screened by ThinPrep liquid-based cytology, 415 cases (1.0%) of HSIL were eventually identified. The mean age of HSIL patients was 41.6 years, and 30-49 years were the most common age group. Among 415 cases, 325 patients had available histological diagnosis as follows: 23 (7.1%) negative, 22 (6.8%) CIN1/HPV, 223 (68.6%) CIN2/CIN3, and 57 (17.5%) squamous cell carcinoma (SCC). The positive predictive values of HSIL to predict CIN2 (or higher grade of dysplasia) and CIN1 were 86.2% (280/325) and 92.9% (302/325), respectively. Inadequate biopsy, reactive glandular cells, islet atrophy, chemo/radiotherapy and others were responsible for the cytologically false-positive diagnosis. Fifty-seven (17.5%) cases of HSIL had a histological diagnosis of SCC. The possible causes of misdiagnosis were social factors, under-recognized cytological features of poorly-differentiated SCC and absence of typical diagnostic features in cytology slides. Cytology of HSIL has a high positive predictive value for the presence of CIN2/CIN3 and SCC. Cytologists and gynecologists should be aware of the diagnostic pitfalls that may lead to the discrepancy between cytology and histology.

  10. Achieving numerical accuracy and high performance using recursive tile LU factorization with partial pivoting

    KAUST Repository

    Dongarra, Jack

    2013-09-18

    The LU factorization is an important numerical algorithm for solving systems of linear equations in science and engineering and is a characteristic of many dense linear algebra computations. For example, it has become the de facto numerical algorithm implemented within the LINPACK benchmark to rank the most powerful supercomputers in the world, collected by the TOP500 website. Multicore processors continue to present challenges to the development of fast and robust numerical software due to the increasing levels of hardware parallelism and widening gap between core and memory speeds. In this context, the difficulty in developing new algorithms for the scientific community resides in the combination of two goals: achieving high performance while maintaining the accuracy of the numerical algorithm. This paper proposes a new approach for computing the LU factorization in parallel on multicore architectures, which not only improves the overall performance but also sustains the numerical quality of the standard LU factorization algorithm with partial pivoting. While the update of the trailing submatrix is computationally intensive and highly parallel, the inherently problematic portion of the LU factorization is the panel factorization due to its memory-bound characteristic as well as the atomicity of selecting the appropriate pivots. Our approach uses a parallel fine-grained recursive formulation of the panel factorization step and implements the update of the trailing submatrix with the tile algorithm. Based on conflict-free partitioning of the data and lockless synchronization mechanisms, our implementation lets the overall computation flow naturally without contention. The dynamic runtime system called QUARK is then able to schedule tasks with heterogeneous granularities and to transparently introduce algorithmic lookahead. The performance results of our implementation are competitive compared to the currently available software packages and libraries. For example

  11. High-fluence hyperthermal ion irradiation of gallium nitride surfaces at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, A.; Gerlach, J.W., E-mail: juergen.gerlach@iom-leipzig.de; Lorbeer, J.; Frost, F.; Rauschenbach, B.

    2014-10-30

    Highlights: • Irradiation of gallium nitride films with hyperthermal nitrogen ions. • Surface roughening at elevated sample temperatures was observed. • No thermal decomposition of gallium nitride films during irradiation. • Asymmetric surface diffusion processes cause local roughening. - Abstract: Wurtzitic GaN films deposited on 6H-SiC(0001) substrates by ion-beam assisted molecular-beam epitaxy were irradiated with hyperthermal nitrogen ions with different fluences at different substrate temperatures. In situ observations with reflection high energy electron diffraction showed that during the irradiation process the surface structure of the GaN films changed from two dimensional to three dimensional at elevated temperatures, but not at room temperature. Atomic force microscopy revealed an enhancement of nanometric holes and canyons upon the ion irradiation at higher temperatures. The roughness of the irradiated and heated GaN films was clearly increased by the ion irradiation in accordance with x-ray reflectivity measurements. A sole thermal decomposition of the films at the chosen temperatures could be excluded. The results are discussed taking into account temperature dependent sputtering and surface uphill adatom diffusion as a function of temperature.

  12. Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes

    Science.gov (United States)

    Fleming, Erich D.; Prufert-Bebout, Leslie

    2010-06-01

    The Bolivian Altiplano is a harsh environment for life with high solar irradiation (visible and UVR), below freezing temperatures, and some of the lowest precipitation rates on the planet. However, microbial life is visibly abundant in small isolated refugia of spring or snowmelt-fed lakes. In this study, we characterized the cyanobacterial composition of a variety of microbial mats present in three lake systems: Laguna Blanca, Laguna Verde (elevation 4300 m), and a summit lake in the Licancabur Volcano cone (elevation 5970 m). These lakes and their adjacent geothermal springs present an interesting diversity of environments within a geographically small region (5 km2). From these sites, 78 cyanobacterial cultures were isolated in addition to ˜400 cyanobacterial 16S rRNA gene sequences from environmental genomic DNA. Based on microscopy, cultivation, and molecular analyses, these communities contained many heterocytous, nitrogen-fixing cyanobacteria (e.g., Calothrix, Nostoc, Nodularia) as well as a large number of cyanobacteria belonging to the form-genus Leptolyngbya. More than a third (37%) of all taxa in this study were new species (≤96% 16S rRNA gene sequence identity), and 11% represented new and novel taxa distantly related (≤93% identity) to any known cyanobacteria. This is one of the few studies to characterize cyanobacterial communities based on both cultivation-dependent and cultivation-independent analyses.

  13. Direct Georeferencing : a New Standard in Photogrammetry for High Accuracy Mapping

    Science.gov (United States)

    Rizaldy, A.; Firdaus, W.

    2012-07-01

    Direct georeferencing is a new method in photogrammetry, especially in the digital camera era. Theoretically, this method does not require ground control points (GCP) and the Aerial Triangulation (AT), to process aerial photography into ground coordinates. Compared with the old method, this method has three main advantages: faster data processing, simple workflow and less expensive project, at the same accuracy. Direct georeferencing using two devices, GPS and IMU. GPS recording the camera coordinates (X, Y, Z), and IMU recording the camera orientation (omega, phi, kappa). Both parameters merged into Exterior Orientation (EO) parameter. This parameters required for next steps in the photogrammetric projects, such as stereocompilation, DSM generation, orthorectification and mosaic. Accuracy of this method was tested on topographic map project in Medan, Indonesia. Large-format digital camera Ultracam X from Vexcel is used, while the GPS / IMU is IGI AeroControl. 19 Independent Check Point (ICP) were used to determine the accuracy. Horizontal accuracy is 0.356 meters and vertical accuracy is 0.483 meters. Data with this accuracy can be used for 1:2.500 map scale project.

  14. HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    王同科

    2002-01-01

    In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs fromthe high order generalized difference methods. It is proved that the method has optimal order er-ror estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.

  15. Numerical simulation for accuracy of velocity analysis in small-scale high-resolution marine multichannel seismic technology

    Science.gov (United States)

    Luo, Di; Cai, Feng; Wu, Zhiqiang

    2017-06-01

    When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates (Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.

  16. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  17. Work fatigue and physiological symptoms in different occupations of high-elevation construction workers.

    Science.gov (United States)

    Chang, Fu-Lin; Sun, Yih-Min; Chuang, Kao-Hsing; Hsu, Der-Jen

    2009-07-01

    The objective of this study is to investigate whether work fatigue and physiological symptoms that high-elevation construction workers experience would be affected by the occupations. Questionnaires of demographic data and subjective fatigue symptoms as well as some physiological measurements were carried out, pre- and post-shift, on scaffolders, steel fixers, formworkers, electrician-plumbers, concreters and miscellaneous workers at a high-rise building construction site. This study found that some subjective fatigue symptoms coincide with the life style of some workers and that the extent of fatigue symptoms and physiological strains varies among different occupations of construction workers. Scaffolders, steel fixers and formworkers are categorized as physically demanding fatigue type of workers, while concreters, electrician-plumbers and miscellaneous workers as general type. The prevalence and occurrence of subjective fatigue symptoms indicate high-elevation workers have more complaints of "projection of physical impairment" than "drowsiness and dullness" and "difficulty in concentration". Some unexpected changes (i.e., post-shift measurements are greater than pre-shift ones) in some strength tests in scaffolders and concreters were consistent with the observations of how they exercised their bodies during work shift. Considerable variation of average heart rate among occupations was found, with scaffolders the highest and concreters the lowest. This study concludes that questionnaires of subjective fatigue symptoms and some physiological measurements can be used as indicators to predict the extent of strains or hazards which construction workers encounter. In terms of management program of safety and health, more attention should be paid to those physically demanding workers, such as scaffolders, workers with lower sense of safety and health, such as miscellaneous workers, and workers with older age, such as concreters.

  18. Plasma high-mobility group box 1 levels predict mortality after ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Sørensen, Morten V; Pedersen, Sune; Møgelvang, Rasmus

    2011-01-01

    We evaluated the potential association between plasma high-mobility group box 1 (HMGB1) levels and outcome in patients with ST-segment elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention.......We evaluated the potential association between plasma high-mobility group box 1 (HMGB1) levels and outcome in patients with ST-segment elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention....

  19. Finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations

    Science.gov (United States)

    Abrashkevich, A. G.; Abrashkevich, D. G.; Kaschiev, M. S.; Puzynin, I. V.

    1995-01-01

    The finite element method (FEM) is applied to solve the bound state (Sturm-Liouville) problem for systems of ordinary linear second-order differential equations. The convergence, accuracy and the range of applicability of the high-order FEM approximations (up to tenth order) are studied systematically on the basis of numerical experiments for a wide set of quantum-mechanical problems. The analytical and tabular forms of giving the coefficients of differential equations are considered. The Dirichlet and Neumann boundary conditions are discussed. It is shown that the use of the FEM high-order accuracy approximations considerably increases the accuracy of the FE solutions with substantial reduction of the requirements on the computational resources. The results of the FEM calculations for various quantum-mechanical problems dealing with different types of potentials used in atomic and molecular calculations (including the hydrogen atom in a homogeneous magnetic field) are shown to be well converged and highly accurate.

  20. Meteorological conditions associated to high sublimation amounts in semiarid high-elevation Andes decrease the performance of empirical melt models

    Science.gov (United States)

    Ayala, Alvaro; Pellicciotti, Francesca; MacDonell, Shelley; McPhee, James; Burlando, Paolo

    2015-04-01

    Empirical melt (EM) models are often preferred to surface energy balance (SEB) models to calculate melt amounts of snow and ice in hydrological modelling of high-elevation catchments. The most common reasons to support this decision are that, in comparison to SEB models, EM models require lower levels of meteorological data, complexity and computational costs. However, EM models assume that melt can be characterized by means of a few index variables only, and their results strongly depend on the transferability in space and time of the calibrated empirical parameters. In addition, they are intrinsically limited in accounting for specific process components, the complexity of which cannot be easily reconciled with the empirical nature of the model. As an example of an EM model, in this study we use the Enhanced Temperature Index (ETI) model, which calculates melt amounts using air temperature and the shortwave radiation balance as index variables. We evaluate the performance of the ETI model on dry high-elevation sites where sublimation amounts - that are not explicitly accounted for the EM model - represent a relevant percentage of total ablation (1.1 to 8.7%). We analyse a data set of four Automatic Weather Stations (AWS), which were collected during the ablation season 2013-14, at elevations between 3466 and 4775 m asl, on the glaciers El Tapado, San Francisco, Bello and El Yeso, which are located in the semiarid Andes of central Chile. We complement our analysis using data from past studies in Juncal Norte Glacier (Chile) and Haut Glacier d'Arolla (Switzerland), during the ablation seasons 2008-09 and 2006, respectively. We use the results of a SEB model, applied to each study site, along the entire season, to calibrate the ETI model. The ETI model was not designed to calculate sublimation amounts, however, results show that their ability is low also to simulate melt amounts at sites where sublimation represents larger percentages of total ablation. In fact, we

  1. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    Science.gov (United States)

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  2. Sandwich panels with high performance concrete thin plates at elevated temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    of a coupled heat and mass transfer (HMT) model to HPC thin plates to study their behaviour at elevated temperatures, predicting temperature and pore pressure distributions. The same model was applied to a sandwich structure including thin plate, stiffening rib, and insulation layer. A last simulation...... (PP) fibres for pressure release is recommended. Stress analysis showed the stiffening rib assumes the major load-carrying role. The thin plate was found largely sensitive to heat, its thermal bowing restrained by shear connectors creating high localised tensile stresses. It was suggested to anchor...... the shear connectors in the ribs. Geometric discontinuities were also found critical; therefore separation of rib and plate is advised for hazardous situations such as fire events....

  3. Elevated levels of high-molecular-weight adiponectin in type 1 diabetes

    DEFF Research Database (Denmark)

    Leth, H.; Andersen, K.K.; Frystyk, J.;

    2008-01-01

    BACKGROUND: Several studies have shown that type 1 diabetic patients have elevated total levels of the adipocyte-derived adipocytokine adiponectin. However, adiponectin circulates in three different subforms, and the high-molecular-weight (HMW) subform is believed to be the primary biologically...... active form. The effects of the medium-molecular-weight (MMW) subform and the low-molecular-weight (LMW) subform are still unresolved. PURPOSE: The objective of the study was to investigate the distribution of the three molecular subforms of adiponectin in well-characterized groups of type 1 diabetics...... with varying degrees of nephropathy as well as in healthy control subjects. STUDY POPULATION: Two hundred seven individuals were included: 58 type 1 diabetics with normoalbuminuria, 46 with microalbuminuria, 46 with macroalbuminuria, and 57 matched controls. METHODS: The HMW, MMW, and LMW subforms were...

  4. Direct Selective Laser Sintering/Melting of High Density Alumina Powder Layers at Elevated Temperatures

    Science.gov (United States)

    Deckers, J.; Meyers, S.; Kruth, J. P.; Vleugels, J.

    Direct selective laser sintering (SLS) or selective laser melting (SLM) are additive manufacturing techniques that can be used to produce three-dimensional ceramic parts directly, without the need for a sacrificial binder. In this paper, a low laser energy density is applied to SLS/SLM high density powder layers of sub-micrometer alumina at elevated temperatures (up to 800̊C). In order to achieve this, a furnace was designed and built into a commercial SLS machine. This furnace was able to produce a homogeneously heated cylindrical zone with a height of 60 mm and a diameter of 32 mm. After optimizing the layer deposition and laser scanning parameters, two ceramic parts with a density up to 85% and grain sizes as low as 5 μm were successfully produced.

  5. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  6. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  7. High accuracy solution of bi-directional wave propagation in continuum mechanics

    Science.gov (United States)

    Mulloth, Akhil; Sawant, Nilesh; Haider, Ijlal; Sharma, Nidhi; Sengupta, Tapan K.

    2015-10-01

    Solution of partial differential equations by numerical method is strongly affected due to numerical errors, which are caused mainly by deviation of numerical dispersion relation from the physical dispersion relation. To quantify and control such errors and obtain high accuracy solutions, we consider a class of problems which involve second derivative of unknowns with respect to time. Here, we analyse numerical metrics such as the numerical group velocity, numerical phase speed and the numerical amplification factor for different methods in solving the model bi-directional wave equation (BDWE). Such equations can be solved directly, for example, by Runge-Kutta-Nyström (RKN) method. Alternatively, the governing equation can be converted to a set of first order in time equations and then using four-stage fourth order Runge-Kutta (RK4) method for time integration. Spatial discretisation considered are the classical second and fourth order central difference schemes, along with Lele's central compact scheme for evaluating second derivatives. In another version, we have used Lele's scheme for evaluating first derivatives twice to obtain the second derivative. As BDWE represents non-dissipative, non-dispersive dynamics, we also consider the canonical problem of linearised rotating shallow water equation (LRSWE) in a new formulation involving second order derivative in time, which represents dispersive waves along with a stationary mode. The computations of LRSWE with RK4 and RKN methods for temporal discretisation and Lele's compact schemes for spatial discretisation are compared with computations performed with RK4 method for time discretisation and staggered compact scheme (SCS) for spatial discretisation by treating it as a set of three equations as reported in Rajpoot et al. (2012) [1].

  8. In-depth, high-accuracy proteomics of sea urchin tooth organic matrix

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-12-01

    Full Text Available Abstract Background The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis. Results We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins. Conclusion This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly

  9. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  10. The research of digital circuit system for high accuracy CCD of portable Raman spectrometer

    Science.gov (United States)

    Yin, Yu; Cui, Yongsheng; Zhang, Xiuda; Yan, Huimin

    2013-08-01

    The Raman spectrum technology is widely used for it can identify various types of molecular structure and material. The portable Raman spectrometer has become a hot direction of the spectrometer development nowadays for its convenience in handheld operation and real-time detection which is superior to traditional Raman spectrometer with heavy weight and bulky size. But there is still a gap for its measurement sensitivity between portable and traditional devices. However, portable Raman Spectrometer with Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) technology can enhance the Raman signal significantly by several orders of magnitude, giving consideration in both measurement sensitivity and mobility. This paper proposed a design and implementation of driver and digital circuit for high accuracy CCD sensor, which is core part of portable spectrometer. The main target of the whole design is to reduce the dark current generation rate and increase signal sensitivity during the long integration time, and in the weak signal environment. In this case, we use back-thinned CCD image sensor from Hamamatsu Corporation with high sensitivity, low noise and large dynamic range. In order to maximize this CCD sensor's performance and minimize the whole size of the device simultaneously to achieve the project indicators, we delicately designed a peripheral circuit for the CCD sensor. The design is mainly composed with multi-voltage circuit, sequential generation circuit, driving circuit and A/D transition parts. As the most important power supply circuit, the multi-voltage circuits with 12 independent voltages are designed with reference power supply IC and set to specified voltage value by the amplifier making up the low-pass filter, which allows the user to obtain a highly stable and accurate voltage with low noise. What's more, to make our design easy to debug, CPLD is selected to generate sequential signal. The A/D converter chip consists of a correlated

  11. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  12. Reproductive success and habitat characteristics of Golden-winged Warblers in high-elevation pasturelands

    Science.gov (United States)

    Wood, Petra; Aldinger, Kyle R.

    2016-01-01

    The Golden-winged Warbler (Vermivora chrysoptera) is one of the most rapidly declining vertebrate species in the Appalachian Mountains. It is the subject of extensive range-wide research and conservation action. However, little is known about this species' breeding ecology in high-elevation pasturelands, a breeding habitat with conservation potential considering the U.S. Natural Resource Conservation Service's Working Lands for Wildlife program targeting private lands in the Appalachian Mountains. We located 100 nests of Golden-winged Warblers in pastures in and around the Monongahela National Forest in West Virginia during 2008–2012. Daily nest survival rate (mean ± SE  =  0.962 ± 0.006), clutch size (4.5 ± 0.1), and number of young fledged per nest attempt (2.0 ± 0.2) and successful nest (4.0 ± 0.1) fell within the range of values reported in other parts of the species' range and were not significantly affected by year or the presence/absence of cattle grazing. Classification tree analysis revealed that nests were in denser vegetation (≥52%) and closer to forest edges (<36.0 m) and shrubs (<7.0 cm) than random locations within the male's territory. Successful nests had significantly more woody cover (≥9%) within 1 m than failed nests. Our results suggest that cattle grazing at 1.2–2.4 ha of forage/animal unit with periodic mowing can create and maintain these characteristics without interfering with the nesting of Golden-winged Warblers. High-elevation pasturelands may provide a refuge for remaining populations of Golden-winged Warblers in this region.

  13. Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin

    Science.gov (United States)

    Concilio, Amy L.; Loik, Michael E.; Belnap, Jayne

    2013-01-01

    Global change is likely to affect invasive species distribution, especially at range margins. In the eastern Sierra Nevada, California, USA, the invasive annual grass, Bromus tectorum, is patchily distributed and its impacts have been minimal compared with other areas of the Intermountain West. We used a series of in situ field manipulations to determine how B. tectorum might respond to changing climatic conditions and increased nitrogen deposition at the high-elevation edge of its invaded range. Over 3 years, we used snow fences to simulate changes in snowpack, irrigation to simulate increased frequency and magnitude of springtime precipitation, and added nitrogen (N) at three levels (0, 5, and 10 g m-2) to natural patches of B. tectorum growing under the two dominant shrubs, Artemisia tridentata and Purshia tridentata, and in intershrub spaces (INTR). We found that B. tectorum seedling density in April was lower following deeper snowpack possibly due to delayed emergence, yet there was no change in spikelet production or biomass accumulation at the time of harvest. Additional spring rain events increased B. tectorum biomass and spikelet production in INTR plots only. Plants were primarily limited by water in 2009, but colimited by N and water in 2011, possibly due to differences in antecedent moisture conditions at the time of treatments. The threshold at which N had an effect varied with magnitude of water additions. Frequency of rain events was more influential than magnitude in driving B. tectorum growth and fecundity responses. Our results suggest that predicted shifts from snow to rain could facilitate expansion of B. tectorum at high elevation depending on timing of rain events and level of N deposition. We found evidence for P-limitation at this site and an increase in P-availability with N additions, suggesting that stoichiometric relationships may also influence B. tectorum spread.

  14. Density and Viscosity Measurement of Diesel Fuels at Combined High Pressure and Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Carl Schaschke

    2013-07-01

    Full Text Available We report the measurement of the viscosity and density of various diesel fuels, obtained from British refineries, at elevated pressures up to 500 MPa and temperatures in the range 298 K to 373 K. The measurement and prediction procedures of fluid properties under high pressure conditions is of increasing interest in many processes and systems including enhanced oil recovery, automotive engine fuel injection, braking, and hydraulic systems. Accurate data and understanding of the fluid characteristic in terms of pressure, volume and temperature is required particularly where the fluid is composed of a complex mixture or blend of aliphatic or aromatic hydrocarbons. In this study, high pressure viscosity data was obtained using a thermostatically-controlled falling sinker-type high pressure viscometer to provide reproducible and reliable viscosity data based on terminal velocity sinker fall times. This was supported with density measurements using a micro-pVT device. Both high-pressure devices were additionally capable of illustrating the freezing points of the hydrocarbon mixtures. This work has, thus, provided data that can extend the application of mixtures of commercially available fuels and to test the validity of available predictive density and viscosity models. This included a Tait-style equation for fluid compressibility prediction. For complex diesel fuel compositions, which have many unidentified components, the approach illustrates the need to apply appropriate correlations, which require accurate knowledge or prediction of thermodynamic properties.

  15. HIGH-ACCURACY BAND TO BAND REGISTRATION METHOD FOR MULTI-SPECTRAL IMAGES OF HJ-1A/B

    Institute of Scientific and Technical Information of China (English)

    Lu Hao; Liu Tuanjie; Zhao Haiqing

    2012-01-01

    Band-to-band registration accuracy is an important parameter of multispectral data.A novel band-to-band registration approach with high precision is proposed for the multi-spectral images of HJ-1A/B.Firstly,the main causes resulted in misregistration are analyzed,and a high-order polynomial model is proposed.Secondly,a phase fringe filtering technique is employed to Phase Correlation Method based on Singular Value Decomposition (SVD-PCM) for reducing the noise in phase difference matrix.Then,experiments are carried out to build nonlinear registration models,and images of green band and red band are aligned to blue band with an accuracy of 0.1 pixels,while near infrared band with an accuracy of 0.2 pixels.

  16. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Directory of Open Access Journals (Sweden)

    Alexander T Dilthey

    2016-10-01

    Full Text Available Genetic variation at the Human Leucocyte Antigen (HLA genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG framework. First, we construct a PRG for 46 (mostly HLA genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1 and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data. Of 158 alleles tested, we correctly infer 157 alleles (99.4%. We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample remain a

  17. High-Accuracy HLA Type Inference from Whole-Genome Sequencing Data Using Population Reference Graphs.

    Science.gov (United States)

    Dilthey, Alexander T; Gourraud, Pierre-Antoine; Mentzer, Alexander J; Cereb, Nezih; Iqbal, Zamin; McVean, Gil

    2016-10-01

    Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many autoimmune and infectious disease phenotypes, is an important element of the immunological distinction between self and non-self, and shapes immune epitope repertoires. Determining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-genome sequencing data would therefore be highly desirable and enable the immunogenetic characterization of samples in currently ongoing population sequencing projects. Extensive hyperpolymorphism and sequence similarity between the HLA genes, however, pose problems for accurate read mapping and make HLA type inference from whole-genome sequencing data a challenging problem. We describe how to address these challenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for 46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized sequence variants, integrating a database of over 10,000 known allele sequences. Second, we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at G group resolution from the IMGT/HLA database at each locus, employing a simple likelihood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes (HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x 100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original validation data. We conclude that HLA*PRG for the first time achieves accuracies comparable to gold-standard reference methods from standard whole-genome sequencing data, though high computational demands (currently ~30-250 CPU hours per sample) remain a significant

  18. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    Science.gov (United States)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  19. A new high-elevation scorpion species of the genus Scorpiops Peters, 1861 (Scorpiones: Euscorpiidae: Scorpiopinae) from the Himalayas, India.

    Science.gov (United States)

    Zambre, Amod; Sanap, Rajesh V; Mirza, Zeeshan A

    2014-06-01

    A new high-elevation scorpion species of the genus Scorpiops is described from the Indian state of Himachal Pradesh. Scorpiops spitiensis sp. nov. is the second highest-elevation scorpion species in Asia and the first one from India occurring at elevations above 4200 m. The new species closely resembles Scorpiops petersii, but it can be distinguished from it based on a suit of characters, one of which is the presence of 16 trichobothria on the external aspect of the patella, which is unique to the new species.

  20. Clinical analysis of modified trabeculectomy in glaucoma surgery with high elevated intraocular pressure

    Directory of Open Access Journals (Sweden)

    Cang-Xia Zhang

    2013-10-01

    Full Text Available AIM: To make a retrospective analysis of the clinical data of modified trabeculectomy in treating glaucoma surgery with high elevated intraocular pressure retrospectively and evaluate the effect of modified trabeculectomy.METHODS:One hundred acute angle-closure glaucoma patients(100 eyeswith persistent high intraocular pressure were divided into treatment group(45 eyesand control group(55 eyes. Patients in treatment group was treated with by trabeculectomy, while those in control group received modified trabeculectomy. The modified measures include stellate ganglion block preoperative, topical anesthesia and local anesthesia with 20g/L lidocaine cotton-piece, to make scleral flap with sclerotome, to release aqueous humor outflow slowly after paracentesis of anterior chamber, and using mydriatic and cycloplegic during and after surgery.RESULTS: The incidence of operation complicationin control group was lower than that in treatment group. The differences were statistically significant(Pt=9.1535, Pt=39.8010, Pt=11.3219, PCONCLUSION: The modified trabeculectomy applied in the treatment of glaucoma with persistent high intraocular pressure can not only save the visual function of connection part to a certain extent, but also reduce the incidence of serious complications. It can obtain better intraocular pressure, shorten the average hospitalization days, decrease the expenses and increase patients satisfaction.

  1. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  2. Spectroscopy of H3+ based on a new high-accuracy global potential energy surface.

    Science.gov (United States)

    Polyansky, Oleg L; Alijah, Alexander; Zobov, Nikolai F; Mizus, Irina I; Ovsyannikov, Roman I; Tennyson, Jonathan; Lodi, Lorenzo; Szidarovszky, Tamás; Császár, Attila G

    2012-11-13

    The molecular ion H(3)(+) is the simplest polyatomic and poly-electronic molecular system, and its spectrum constitutes an important benchmark for which precise answers can be obtained ab initio from the equations of quantum mechanics. Significant progress in the computation of the ro-vibrational spectrum of H(3)(+) is discussed. A new, global potential energy surface (PES) based on ab initio points computed with an average accuracy of 0.01 cm(-1) relative to the non-relativistic limit has recently been constructed. An analytical representation of these points is provided, exhibiting a standard deviation of 0.097 cm(-1). Problems with earlier fits are discussed. The new PES is used for the computation of transition frequencies. Recently measured lines at visible wavelengths combined with previously determined infrared ro-vibrational data show that an accuracy of the order of 0.1 cm(-1) is achieved by these computations. In order to achieve this degree of accuracy, relativistic, adiabatic and non-adiabatic effects must be properly accounted for. The accuracy of these calculations facilitates the reassignment of some measured lines, further reducing the standard deviation between experiment and theory.

  3. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S;

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  4. Literature survey of high-impact journals revealed reporting weaknesses in abstracts of diagnostic accuracy studies

    NARCIS (Netherlands)

    Korevaar, Daniël A; Cohen, Jérémie F; Hooft, Lotty; Bossuyt, Patrick M M

    2015-01-01

    OBJECTIVES: Informative journal abstracts are crucial for the identification and initial appraisal of studies. We aimed to evaluate the informativeness of abstracts of diagnostic accuracy studies. STUDY DESIGN AND SETTING: PubMed was searched for reports of studies that had evaluated the diagnostic

  5. The effect of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players.

    Science.gov (United States)

    Lyons, Mark; Al-Nakeeb, Yahya; Hankey, Joanne; Nevill, Alan

    2013-01-01

    Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expert (13 male, 4 female) tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70%) and high-intensities (90%) set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test). Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on performance in tennis

  6. High-accuracy real-time automatic thresholding for centroid tracker

    Science.gov (United States)

    Zhang, Ye; Wang, Yanjie

    2006-01-01

    Many of the video image trackers today use the centroid as the tracking point. In engineering, a target's centroid is computed from a binary image to reduce the processing time. Hence thresholding of gray level image to binary image is a decisive step in centroid tracking. How to choose the feat thresholds in clutter is still an intractability problem unsolved today. This paper introduces a high-accuracy real-time automatic thresholding method for centroid tracker. It works well for variety types of target tracking in clutter. The core of this method is to get the entire information contained in the histogram, such as the number of the peaks, their height, position and other properties in the histogram. Combine with this histogram analysis; we can get several key pairs of peaks which can include the target and the background around it and use the method of Otsu to get intensity thresholds from them. According to the thresholds, we can gain the binary image and get the centroid from it. To track the target, the paper also suggests subjoining an eyeshot-window, just like our eyes focus on a target, we will not miss it unless it is out of our eyeshot, the impression will help us to extract the target in clutter and track it and we will wait its emergence since it has been covered. To obtain the impression, the paper offers a idea comes from the method of Snakes; it give a great help for us to get a glancing size, so that we can compare the size of the object in the current frame with the former. If the change is little, we consider the object has been tracked well. Otherwise, if the change is bigger than usual, we should analyze the inflection in the histogram to find out what happened to the object. In general, what we have to do is turning the analysis into codes for the tracker to determine a feat threshold. The paper will show the steps in detail. The paper also discusses the hardware architecture which can meet the speed requirement.

  7. High-accuracy, high-resolution gravity profiles from 2 years of the Geosat Exact Repeat Mission

    Science.gov (United States)

    Sandwell, David T.; Mcadoo, David C.

    1990-01-01

    Satellite altimeter data from the first 44 repeat cycles (2 years) of the Geosat Exact Repeat Mission (EWRM) were averaged to improve accuracy, resolution and coverage of the marine gravity field. Individual 17-day repeat cycles were first edited and differentiated, resulting in the along-track vertical deflection (i.e., gravity disturbance). To increase the signal-to-noise ratio, 44 of these cycles were then averaged to form a single highly accurate vertical deflection profile. The largest contribution to the vertical deflection error is short-wavelength altimeter noise and longer-wavelength oceanographic variability; the combined noise level is typically 6 microrad. Both types of noise are reduced by averaging many repeat cycles. Over most ocean areas the uncertainty of the average profile is less than 1 microrad which corresponds to 1 mgal of along-track gravity disturbance. However, in areas of seasonal ice coverage, its uncertainty can exceed 5 microrad. To assess the resolution of individual and average Geosat gravity profiles, the cross-spectral analysis technique was applied to repeat profiles. Individual Geosat repeat cycles are coherent (greater than 0.5) for wavelengths greater than about 30 km and become increasingly incoherent at shorter wavelengths.

  8. The Effects of Individual or Group Guidelines on the Calibration Accuracy and Achievement of High School Biology Students

    Science.gov (United States)

    Bol, Linda; Hacker, Douglas J.; Walck, Camilla C.; Nunnery, John A.

    2012-01-01

    A 2 x 2 factorial design was employed in a quasi-experiment to investigate the effects of guidelines in group or individual settings on the calibration accuracy and achievement of 82 high school biology students. Significant main effects indicated that calibration practice with guidelines and practice in group settings increased prediction and…

  9. Accuracy of High-Resolution MRI with Lumen Distention in Rectal Cancer Staging and Circumferential Margin Involvement Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Iannicelli, Elsa; Di Renzo, Sara [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ferri, Mario [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Pilozzi, Emanuela [Department of Clinical and Molecular Sciences, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Di Girolamo, Marco; Sapori, Alessandra [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Ziparo, Vincenzo [Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); David, Vincenzo [Radiology Institute, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy); Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, University of Rome, Sapienza, Sant' Andrea Hospital, Rome 00189 (Italy)

    2014-07-01

    To evaluate the accuracy of magnetic resonance imaging (MRI) with lumen distention for rectal cancer staging and circumferential resection margin (CRM) involvement prediction. Seventy-three patients with primary rectal cancer underwent high-resolution MRI with a phased-array coil performed using 60-80 mL room air rectal distention, 1-3 weeks before surgery. MRI results were compared to postoperative histopathological findings. The overall MRI T staging accuracy was calculated. CRM involvement prediction and the N staging, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were assessed for each T stage. The agreement between MRI and histological results was assessed using weighted-kappa statistics. The overall MRI accuracy for T staging was 93.6% (k = 0.85). The accuracy, sensitivity, specificity, PPV and NPV for each T stage were as follows: 91.8%, 86.2%, 95.5%, 92.6% and 91.3% for the group ≤ T2; 90.4%, 94.6%, 86.1%, 87.5% and 94% for T3; 98,6%, 85.7%, 100%, 100% and 98.5% for T4, respectively. The predictive CRM accuracy was 94.5% (k = 0.86); the sensitivity, specificity, PPV and NPV were 89.5%, 96.3%, 89.5%, and 96.3% respectively. The N staging accuracy was 68.49% (k = 0.4). MRI performed with rectal lumen distention has proved to be an effective technique both for rectal cancer staging and involved CRM predicting.

  10. Real-time displacement measurement with large range and high accuracy using sinusoidal phase modulating laser diode interferometer

    Institute of Scientific and Technical Information of China (English)

    Guotian He; Xiangzhao Wang; Aijun Zeng; Feng Tang; Bingjie Huang

    2007-01-01

    To resolve the conflict of large measurement range and high accuracy in the existing real-time displacement measurement laser diode (LD) interferometers, a novel real-time displacement measurement LD interferometry is proposed and its measurement principle is analyzed. By use of a new phase demodulation algorithm and a new phase compensation lgorithm of real-time phase unwrapping, the measurement accuracy is improved, and the measurement range is enlarged to a few wavelengths. In experiments, the peak-to-peak amplitude of the speaker vibration was 2361.7 nm, and the repeatability was 2.56 nm. The measurement time was less than 26μs.

  11. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia

    Science.gov (United States)

    Krauss, K.W.; Cahoon, D.R.; Allen, J.A.; Ewel, K.C.; Lynch, J.C.; Cormier, N.

    2010-01-01

    Mangroves on Pacific high islands offer a number of important ecosystem services to both natural ecological communities and human societies. High islands are subjected to constant erosion over geologic time, which establishes an important source of terrigeneous sediment for nearby marine communities. Many of these sediments are deposited in mangrove forests and offer mangroves a potentially important means for adjusting surface elevation with rising sea level. In this study, we investigated sedimentation and elevation dynamics of mangrove forests in three hydrogeomorphic settings on the islands of Kosrae and Pohnpei, Federated States of Micronesia (FSM). Surface accretion rates ranged from 2.9 to 20.8 mm y-1, and are high for naturally occurring mangroves. Although mangrove forests in Micronesian high islands appear to have a strong capacity to offset elevation losses by way of sedimentation, elevation change over 61/2 years ranged from -3.2 to 4.1 mm y-1, depending on the location. Mangrove surface elevation change also varied by hydrogeomorphic setting and river, and suggested differential, and not uniformly bleak, susceptibilities among Pacific high island mangroves to sea-level rise. Fringe, riverine, and interior settings registered elevation changes of -1.30, 0.46, and 1.56 mm y-1, respectively, with the greatest elevation deficit (-3.2 mm y-1) from a fringe zone on Pohnpei and the highest rate of elevation gain (4.1 mm y-1) from an interior zone on Kosrae. Relative to sea-level rise estimates for FSM (0.8-1.8 mm y-1) and assuming a consistent linear trend in these estimates, soil elevations in mangroves on Kosrae and Pohnpei are experiencing between an annual deficit of 4.95 mm and an annual surplus of 3.28 mm. Although natural disturbances are important in mediating elevation gain in some situations, constant allochthonous sediment deposition probably matters most on these Pacific high islands, and is especially helpful in certain hydrogeomorphic zones

  12. High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification

    Science.gov (United States)

    Bomble, Yannick J.; Vázquez, Juana; Kállay, Mihály; Michauk, Christine; Szalay, Péter G.; Császár, Attila G.; Gauss, Jürgen; Stanton, John F.

    2006-08-01

    The recently developed high-accuracy extrapolated ab initio thermochemistry method for theoretical thermochemistry, which is intimately related to other high-precision protocols such as the Weizmann-3 and focal-point approaches, is revisited. Some minor improvements in theoretical rigor are introduced which do not lead to any significant additional computational overhead, but are shown to have a negligible overall effect on the accuracy. In addition, the method is extended to completely treat electron correlation effects up to pentuple excitations. The use of an approximate treatment of quadruple and pentuple excitations is suggested; the former as a pragmatic approximation for standard cases and the latter when extremely high accuracy is required. For a test suite of molecules that have rather precisely known enthalpies of formation {as taken from the active thermochemical tables of Ruscic and co-workers [Lecture Notes in Computer Science, edited by M. Parashar (Springer, Berlin, 2002), Vol. 2536, pp. 25-38; J. Phys. Chem. A 108, 9979 (2004)]}, the largest deviations between theory and experiment are 0.52, -0.70, and 0.51kJmol-1 for the latter three methods, respectively. Some perspective is provided on this level of accuracy, and sources of remaining systematic deficiencies in the approaches are discussed.

  13. SFOL Pulse: A High Accuracy DME Pulse for Alternative Aircraft Position and Navigation

    Directory of Open Access Journals (Sweden)

    Euiho Kim

    2017-09-01

    Full Text Available In the Federal Aviation Administration’s (FAA performance based navigation strategy announced in 2016, the FAA stated that it would retain and expand the Distance Measuring Equipment (DME infrastructure to ensure resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS outage. However, the main drawback of the DME as a GNSS back up system is that it requires a significant expansion of the current DME ground infrastructure due to its poor distance measuring accuracy over 100 m. The paper introduces a method to improve DME distance measuring accuracy by using a new DME pulse shape. The proposed pulse shape was developed by using Genetic Algorithms and is less susceptible to multipath effects so that the ranging error reduces by 36.0–77.3% when compared to the Gaussian and Smoothed Concave Polygon DME pulses, depending on noise environment.

  14. Friction compensation design based on state observer and adaptive law for high-accuracy positioning system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Friction is one of the main factors that affect the positioning accuracy of motion system. Friction compensation based on friction model is usually adopted to eliminate the nonlinear effect of friction. This paper presents a proportional-plus-derivative (PD) feedback controller with a friction compensator based on LuGre friction model. We also design a state observer to observe the unknown state of LuGre friction model, and adopt a parameter adaptive law and off-line approximation to estimate the parameters of LuGre friction model. Comparative experiments are carried out among our proposed controller, PD controller with friction compensation based on classical friction model, and PD controller without friction compensation. Experimental results demonstrate that our proposed controller can achieve better performance, especially higher positioning accuracy.

  15. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1

  16. Ways to help Chinese Students in Senior High School improve language accuracy in writing

    Institute of Scientific and Technical Information of China (English)

    潘惠红

    2015-01-01

    <正>Introduction In Chinese ELT(English language teaching),as in other countries,both fluency and accuracy are considered important either in the teaching or assessment of writing.In this respect,the last decade has seen reforms in the College Entrance Examination in Guangdong Province.With two writing tasks being set as assessment,task one requires students to summarise Chinese language information into five English sentences while the

  17. A High-Accuracy Linear Conservative Difference Scheme for Rosenau-RLW Equation

    Directory of Open Access Journals (Sweden)

    Jinsong Hu

    2013-01-01

    Full Text Available We study the initial-boundary value problem for Rosenau-RLW equation. We propose a three-level linear finite difference scheme, which has the theoretical accuracy of Oτ2+h4. The scheme simulates two conservative properties of original problem well. The existence, uniqueness of difference solution, and a priori estimates in infinite norm are obtained. Furthermore, we analyze the convergence and stability of the scheme by energy method. At last, numerical experiments demonstrate the theoretical results.

  18. High-accuracy current measurement with low-cost shunts by means of dynamic error correction

    OpenAIRE

    Weßkamp, Patrick; Melbert, Joachim

    2016-01-01

    Measurement of electrical current is often performed by using shunt resistors. Thermal effects due to self-heating and ambient temperature variation limit the achievable accuracy, especially if low-cost shunt resistors with increased temperature coefficients are utilized. In this work, a compensation method is presented which takes static and dynamic temperature drift effects into account and provides a significant reduction of measurement error. A thermal model of the shunt...

  19. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  20. Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps

    Science.gov (United States)

    Zlinszky, A.; Kania, A.

    2016-06-01

    Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.

  1. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  2. THE EFFECT OF MODERATE AND HIGH-INTENSITY FATIGUE ON GROUNDSTROKE ACCURACY IN EXPERT AND NON-EXPERT TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Mark Lyons

    2013-06-01

    Full Text Available Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female and 17 non-expert (13 male, 4 female tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70% and high-intensities (90% set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test. Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA's revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player's achievement goal indicators. Future research is required to explore the effects of fatigue on

  3. Insights into the water mean transit time in a high-elevation tropical ecosystem

    Science.gov (United States)

    Mosquera, Giovanny M.; Segura, Catalina; Vaché, Kellie B.; Windhorst, David; Breuer, Lutz; Crespo, Patricio

    2016-07-01

    This study focuses on the investigation of the mean transit time (MTT) of water and its spatial variability in a tropical high-elevation ecosystem (wet Andean páramo). The study site is the Zhurucay River Ecohydrological Observatory (7.53 km2) located in southern Ecuador. A lumped parameter model considering five transit time distribution (TTD) functions was used to estimate MTTs under steady-state conditions (i.e., baseflow MTT). We used a unique data set of the δ18O isotopic composition of rainfall and streamflow water samples collected for 3 years (May 2011 to May 2014) in a nested monitoring system of streams. Linear regression between MTT and landscape (soil and vegetation cover, geology, and topography) and hydrometric (runoff coefficient and specific discharge rates) variables was used to explore controls on MTT variability, as well as mean electrical conductivity (MEC) as a possible proxy for MTT. Results revealed that the exponential TTD function best describes the hydrology of the site, indicating a relatively simple transition from rainfall water to the streams through the organic horizon of the wet páramo soils. MTT of the streams is relatively short (0.15-0.73 years, 53-264 days). Regression analysis revealed a negative correlation between the catchment's average slope and MTT (R2 = 0.78, p < 0.05). MTT showed no significant correlation with hydrometric variables, whereas MEC increases with MTT (R2 = 0.89, p < 0.001). Overall, we conclude that (1) baseflow MTT confirms that the hydrology of the ecosystem is dominated by shallow subsurface flow; (2) the interplay between the high storage capacity of the wet páramo soils and the slope of the catchments provides the ecosystem with high regulation capacity; and (3) MEC is an efficient predictor of MTT variability in this system of catchments with relatively homogeneous geology.

  4. Genetic diversity of high-elevation populations of an endangered medicinal plant.

    Science.gov (United States)

    Nag, Akshay; Ahuja, Paramvir Singh; Sharma, Ram Kumar

    2014-11-21

    Intraspecific genetic variation in natural populations governs their potential to overcome challenging ecological and environmental conditions. In addition, knowledge of this variation is critical for the conservation and management of endangered plant taxa. Found in the Himalayas, Podophyllum hexandrum is an endangered high-elevation plant species that has great medicinal importance. Here we report on the genetic diversity analysis of 24 P. hexandrum populations (209 individuals), representing the whole of the Indian Himalayas. In the present study, seven amplified fragment length polymorphism (AFLP) primer pairs generated 1677 fragments, of which 866 were found to be polymorphic. Neighbour joining clustering, principal coordinate analysis and STRUCTURE analysis clustered 209 individuals from 24 populations of the Indian Himalayan mountains into two major groups with a significant amount of gene flow (Nm = 2.13) and moderate genetic differentiation Fst(0.196), G'st(0.20). This suggests that, regardless of geographical location, all of the populations from the Indian Himalayas are intermixed and are composed broadly of two types of genetic populations. High variance partitioned within populations (80 %) suggests that most of the diversity is restricted to the within-population level. These results suggest two possibilities about the ancient population structure of P. hexandrum: either all of the populations in the geographical region of the Indian Himalayas are remnants of a once-widespread ancient population, or they originated from two types of genetic populations, which coexisted a long time ago, but subsequently separated as a result of long-distance dispersal and natural selection. High variance partitioned within the populations indicates that these populations have evolved in response to their respective environments over time, but low levels of heterozygosity suggest the presence of historical population bottlenecks.

  5. Hazard Mapping of Structurally Controlled Landslide in Southern Leyte, Philippines Using High Resolution Digital Elevation Model

    Science.gov (United States)

    Luzon, Paul Kenneth; Rochelle Montalbo, Kristina; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    The 2006 Guinsaugon landslide in St. Bernard, Southern Leyte is the largest known mass movement of soil in the Philippines. It consisted of a 15 million m3 rockslide-debris avalanche from an approximately 700 m high escarpment produced by continuous movement of the Philippine fault at approximately 2.5 cm/year. The landslide was preceded by continuous heavy rainfall totaling 571.2 mm from February 8 to 12, 2006. The catastrophic landslide killed more than 1,000 people and displaced 19,000 residents over its 6,400 km path. To investigate the present-day morphology of the scar and potential failure that may occur, an analysis of a high-resolution digital elevation model (10 m resolution Synthetic Aperture Radar images in 2013) was conducted, leading to the generation of a structurally controlled landslide hazard map of the area. Discontinuity sets that could contribute to any failure mechanism were identified using Coltop 3D software which uses a unique lower Schmidt-Lambert color scheme for any given dip and dip direction. Thus, finding main morpho-structural orientations became easier. Matterocking, a software designed for structural analysis, was used to generate possible planes that could slide due to the identified discontinuity sets. Conefall was then utilized to compute the extent to which the rock mass will run out. The results showed potential instabilities in the scarp area of the 2006 Guinsaguon landslide and in adjacent slopes because of the presence of steep discontinuities that range from 45-60°. Apart from the 2006 Guinsaugon potential landslides, conefall simulation generated farther rock mass extent in adjacent slopes. In conclusion, there is a high probability of landslides in the municipality of St. Bernard Leyte, where the 2006 Guinsaugon Landslide occurred. Concerned agencies may use maps produced from this study for disaster preparedness and to facilitate long-term recovery planning for hazardous areas.

  6. Drought increases the freezing resistance of high-elevation plants of the Central Chilean Andes.

    Science.gov (United States)

    Sierra-Almeida, Angela; Reyes-Bahamonde, Claudia; Cavieres, Lohengrin A

    2016-08-01

    Freezing temperatures and summer droughts shape plant life in Mediterranean high-elevation habitats. Thus, the impacts of climate change on plant survival for these species could be quite different to those from mesic mountains. We exposed 12 alpine species to experimental irrigation and warming in the Central Chilean Andes to assess whether irrigation decreases freezing resistance, irrigation influences freezing resistance when plants are exposed to warming, and to assess the relative importance of irrigation and temperature in controlling plant freezing resistance. Freezing resistance was determined as the freezing temperature that produced 50 % photoinactivation [lethal temperature (LT50)] and the freezing point (FP). In seven out of 12 high-Andean species, LT50 of drought-exposed plants was on average 3.5 K lower than that of irrigated plants. In contrast, most species did not show differences in FP. Warming changed the effect of irrigation on LT50. Depending on species, warming was found to have (1) no effect, (2) to increase, or (3) to decrease the irrigation effect on LT50. However, the effect size of irrigation on LT50 was greater than that of warming for almost all species. The effect of irrigation on FP was slightly changed by warming and was sometimes in disagreement with LT50 responses. Our data show that drought increases the freezing resistance of high-Andean plant species as a general plant response. Although freezing resistance increases depended on species-specific traits, our results show that warmer and moister growing seasons due to climate change will seriously threaten plant survival and persistence of these and other alpine species in dry mountains.

  7. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J;

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible to athe...

  8. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible to athe...

  9. Improved Thermal Stability Of High Resolution Positive Photoresists Via Elevated Softbake Temperatures

    Science.gov (United States)

    Aronhime, Marc T.; Gal, Chava; Silady, Shoshana; Grunwald, John J.; Johnson, Donald W.; Martin, Theodore A.; Spencer, Allen C.; Sawoska, David A.

    1989-08-01

    This paper describes the effect of elevated softbake temperatures, up to 150?°C, on the behavior of diazoquinone/novolac high resolution positive photoresists. The advantages of higher softbakes include improved thermal stablity, contrast and process latitude. For a standard g-line photoresist using a 2,1,5-diazo/THBP PAC (EPA-914-27, MacDermid Inc.), it was found that by increasing the softbake from 110° to 130°C, gamma increased from 2.4 to 3.8 and the thermal stability (the start of image rounding) increased from 120° to 130°C; while the required exposure energy increased by only about 30%. UV absorption revealed that about 90% (compared to 110°C softbake) of the diazo is retained at 130°C, and about 55% at 150°C. GPC analysis showed that resin/PAC reactions occurred to some extent at a softbake of 130°C, and extensively at 150°C. These resin/PAC interactions appear to be the source of the improved properties observed with higher softbake temperatures. Similar results were not found with 2,1,4-type resin. Several other systems were also investigated to further understand the photoresist chemistry.

  10. Diversity and succession of autotrophic microbial community in high-elevation soils along deglaciation chronosequence

    Science.gov (United States)

    Kong, W.; Liu, J.

    2016-12-01

    Global warming has resulted in substantial glacier retreats in high-elevation areas, exposing deglaciated soils to harsh environmental conditions. Autotrophic microbes are pioneering colonizers in the deglaciated soils and provide nutrients to the extreme ecosystem devoid of vegetation. However, autotrophic communities remain less studied in deglaciated soils. We explored the diversity and succession of the cbbL gene encoding the large subunit of form I RubisCO, a key CO2-fixing enzyme, using molecular methods in deglaciated soils along a 10-year deglaciation chronosequence on the Tibetan Plateau. Our results demonstrated that the abundance of all types of form I cbbL (IA/B, IC and ID) rapidly increased in young soils (0-2.5 years old) and kept stable in old soils. Soil total organic carbon (TOC) and total nitrogen (TN) gradually increased along the chronosequence and both demonstrated positive correlations with the abundance of bacteria and autotrophs, indicating that soil TOC and TN originated from autotrophs. Form IA/B autotrophs, affiliated with cyanobacteria, exhibited a substantially higher abundance than IC and ID. Cyanobacterial diversity and evenness increased in young soils (<6 years old) and then remained stable. Our findings suggest that cyabobacteria play an important role in accumulating TOC and TN in the deglaciated soils.

  11. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  12. A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the...

  13. A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the...

  14. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.

    Science.gov (United States)

    Kubendran, Rajkumar; Lee, Seulki; Mitra, Srinjoy; Yazicioglu, Refet Firat

    2014-04-01

    Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock. For each case, the error in determining pole parameters (resistance and capacitance) is derived and compared. An error correction algorithm is proposed for square wave demodulation which reduces the peak estimation error from 9.3% to 1.3% for a simple tissue model. Simulation results in Matlab using ideal RC values show an average accuracy of for single pole and for two pole RC networks. Measurements using ideal components for a single pole model gives an overall and readings from saline phantom solution (primarily resistive) gives an . A Figure of Merit is derived based on ability to accurately resolve multiple poles in unknown impedance with minimal measurement points per decade, for given frequency range and supply current budget. This analysis is used to arrive at an optimal tradeoff between accuracy and power. Results indicate that the algorithm is generic and can be used for any application that involves resolving poles of an unknown impedance. It can be implemented as a post-processing technique for error correction or even incorporated into wearable signal monitoring ICs.

  15. A High-accuracy Approach to Pronunciation Prediction for Out-of-vocabulary English Word

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; CHEN Gui-lin; XU Liang-xian

    2005-01-01

    Letter-to-Sound conversion is one of the fundamental issues in text-to-speech synthesis. In this paper, we address an approach to automatic prediction of word pronunciation. This approach combines example-based learning and dynamic-programming searching to predict sub-word pronunciation. Word pronunciation is formed by concatenating sub-word pronunciations. We conducted comparative experiments over a large-scale English dictionary. Experimental results show that this approach can achieve accuracy of 70.1%, which outperforms those published results.

  16. High accuracy wavelength locking of a DFB laser using tunable polarization interference filter

    Institute of Scientific and Technical Information of China (English)

    Xiyao Chen(陈曦曜); Jianping Xie(谢建平); Tianpeng Zhao(赵天鹏); Hai Ming(明海); Anting Wang(王安廷); Wencai Huang(黄文财); Liang Lü(吕亮); Lixin Xu(许立新)

    2003-01-01

    A temperature-tunable polarization interference filter (PIF) made of YVO4 crystal has been presented and applied for wavelength locking of a distributed feedback (DFB) semiconductor laser in dense wavelength-division-multiplexing (DWDM) optical communication systems. This new design offers a flexible way to monitor and then lock an operating wavelength of DFB laser to any preselected point without dead spots.The results show that the laser wavelength can be locked with accuracy better than ±0.01 nm with much relaxed requirement on temperature stability of the filter.

  17. High-accuracy mass determination of unstable cesium and barium isotopes

    CERN Document Server

    Ames, F; Beck, D; Bollen, G; De Saint-Simon, M; Jertz, R; Kluge, H J; Kohl, A; König, M; Lunney, M D; Martel, I; Moore, R B; Otto, T; Patyk, Z; Raimbault-Hartmann, H; Rouleau, G; Savard, G; Schark, E; Schwarz, S; Schweikhard, L; Stolzenberg, H; Szerypo, J

    1999-01-01

    Direct mass measurements of short-lived Cs and Ba isotopes have been performed with the tandem Penning trap mass spectrometer ISOLTRAP installed at the on-line isotope separator ISOLDE at CERN. Typically, a mass resolving power of 600 000 and an accuracy of $\\delta \\mbox{m} \\approx 13$ keV have been obtained. The masses of $^{123,124,126}$Ba and $^{122m}$Cs were measured for the first time. A least-squares adjustment has been performed and the experimental masses are compared with theoretical ones, particularly in the frame of a macroscopic-microscopic model.

  18. High-accuracy mass determination of neutron-rich rubidium and strontiumiIsotopes

    CERN Document Server

    Raimbault-Hartmann, H; Beck, D; Bollen, G; De Saint-Simon, M; Kluge, H J; König, M; Moore, R B; Schwarz, S; Savard, G; Szerypo, J

    2002-01-01

    The penning-trap mass spectrometer ISOLTRAP, installed at the on-line isotope separator ISOLDE at CERN, has been used to measure atomic masses of $^{88,89,90m,91,92,93,94}$Rb and $^{91- 95}$Sr. Using a resolving power of R $\\!\\scriptstyle\\approx$1 million a mass accuracy of typically 10 keV was achieved for all nuclides. Discrepancies with older data are analyzed and discussed, leading to corrections to those data. Together with the present ISOLTRAP data these corrected data have been used in the general mass adjustment.

  19. High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers

    Science.gov (United States)

    Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.

    1973-09-24

    In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.

  20. High-Accuracy Tracking Control of Robot Manipulators Using Time Delay Estimation and Terminal Sliding Mode

    Directory of Open Access Journals (Sweden)

    Maolin Jin

    2011-09-01

    Full Text Available A time delay estimation based general framework for trajectory tracking control of robot manipulators is presented. The controller consists of three elements: a time‐delay‐estimation element that cancels continuous nonlinearities of robot dynamics, an injecting element that endows desired error dynamics, and a correcting element that suppresses residual time delay estimation error caused by discontinuous nonlinearities. Terminal sliding mode is used for the correcting element to pursue fast convergence of the time delay estimation error. Implementation of proposed control is easy because calculation of robot dynamics including friction is not required. Experimental results verify high‐accuracy trajectory tracking of industrial robot manipulators.

  1. High-Accuracy Tracking Using Ultrawideband Signals for Enhanced Safety of Cyclists

    Directory of Open Access Journals (Sweden)

    Davide Dardari

    2017-01-01

    Full Text Available In this paper, an ultrawideband localization system to improve the cyclists’ safety is presented. The architectural solutions proposed consist of tags placed on bikes, whose positions have to be estimated, and anchors, acting as reference nodes, located at intersections and/or on vehicles. The peculiarities of the localization system in terms of accuracy and cost enable its adoption with enhanced risk assessment units situated on the infrastructure/vehicle, depending on the architecture chosen, as well as real-time warning to the road users. Experimental results reveal that the localization error, in both static and dynamic conditions, is below 50 cm in most of the cases.

  2. Challenges in Unmanned Aerial Vehicle Photogrammetry for Archaeological Mapping at High Elevations

    Science.gov (United States)

    Adams, J. A.; Wernke, S.

    2015-12-01

    Unmanned Aerial Vehicles (UAVs), especially multi-rotor vehicles, are becoming ubiquitous and their appeal for generating photogrammetry-based maps has grown. The options are many and costs have plummeted in last five years; however, many challenges persist with their deployment. We mapped the archaeological site Maw­chu Llacta, a settlement in the southern highlands of Peru (Figure 1). Mawchu Llacta is a planned colonial town built over a major Inka-era center in the high-elevation grasslands at ~4,000m asl. The "general resettlement of Indians" was a massive forced resettlement program, for which very little local-level documentation exists. Mawachu Llacta's excellently preserved architecture includes >500 buildings and hundreds of walls spread across ~13h posed significant mapping challenges. Many environmental factors impact UAV deployment. The air pressure at 4,100 m asl is dramatically lower than at sea level. The dry season diurnal temperature differentials can vary from 7°C to 22°C daily. High and hot conditions frequently occur from late morning to early afternoon. Reaching Mawchu Llacta requires hiking 4km with 400m of vertical gain over steep and rocky terrain. There is also no on-site power or secure storage. Thus, the UAV must be packable. FAA regulations govern US UAV deployments, but regulations were less stringent in Peru. However, ITAR exemptions and Peruvian customs requirements were required. The Peruvian government has established an importation and approval process that entails leaving the UAV at customs, while obtaining the necessary government approvals, both of which can be problematic. We have deployed the Aurora Flight Sciences Skate fixed wing ßUAV, an in-house fixed wing UAV based on the Skywalker X-5 flying wing, and a tethered 9 m3 capacity latex meteorological weather balloon. Development of an autonomous blimp/balloon has been ruled-out. A 3DR Solo is being assessed for excavation mapping.

  3. A high-fidelity multiresolution digital elevation model for Earth systems

    Science.gov (United States)

    Duan, Xinqiao; Li, Lin; Zhu, Haihong; Ying, Shen

    2017-01-01

    The impact of topography on Earth systems variability is well recognised. As numerical simulations evolved to incorporate broader scales and finer processes, accurately assimilating or transforming the topography to produce more exact land-atmosphere-ocean interactions, has proven to be quite challenging. Numerical schemes of Earth systems often use empirical parameterisation at sub-grid scale with downscaling to express topographic endogenous processes, or rely on insecure point interpolation to induce topographic forcing, which creates bias and input uncertainties. Digital elevation model (DEM) generalisation provides more sophisticated systematic topographic transformation, but existing methods are often difficult to be incorporated because of unwarranted grid quality. Meanwhile, approaches over discrete sets often employ heuristic approximation, which are generally not best performed. Based on DEM generalisation, this article proposes a high-fidelity multiresolution DEM with guaranteed grid quality for Earth systems. The generalised DEM surface is initially approximated as a triangulated irregular network (TIN) via selected feature points and possible input features. The TIN surface is then optimised through an energy-minimised centroidal Voronoi tessellation (CVT). By devising a robust discrete curvature as density function and exact geometry clipping as energy reference, the developed curvature CVT (cCVT) converges, the generalised surface evolves to a further approximation to the original DEM surface, and the points with the dual triangles become spatially equalised with the curvature distribution, exhibiting a quasi-uniform high-quality and adaptive variable resolution. The cCVT model was then evaluated on real lidar-derived DEM datasets and compared to the classical heuristic model. The experimental results show that the cCVT multiresolution model outperforms classical heuristic DEM generalisations in terms of both surface approximation precision and

  4. The influence of snowmobile trails on coyote movements during winter in high-elevation landscapes.

    Directory of Open Access Journals (Sweden)

    Eric M Gese

    Full Text Available Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis remains controversial due to the concern of coyote (Canis latrans use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep, radio-collared coyotes persisted at high elevations (>2,500 m year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13% for a mean distance of 149 m (random: 59 m. Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced

  5. Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels.

    Science.gov (United States)

    Raja Gopal Reddy, Mooli; Pavan Kumar, Chodisetti; Mahesh, Malleswarapu; Sravan Kumar, Manchiryala; Mullapudi Venkata, Surekha; Putcha, Uday Kumar; Vajreswari, Ayyalasomayajula; Jeyakumar, Shanmugam M

    2016-03-01

    Vitamin A and its metabolites are known to regulate lipid metabolism. However so far, no study has assessed, whether vitamin A deficiency per se aggravates or attenuates the development of non-alcoholic fatty liver disease (NAFLD). Therefore, here, we tested the impact of vitamin A deficiency on the development of NAFLD. Male weanling Wistar rats were fed one of the following diets; control, vitamin A-deficient (VAD), high fructose (HFr) and VAD with HFr (VADHFr) of AIN93G composition, for 16weeks, except half of the VAD diet-fed rats were shifted to HFr diet (VAD(s)HFr), at the end of 8(th) week. Animals fed on VAD diet with HFr displayed hypotriglyceridemia (33.5mg/dL) with attenuated hepatic triglyceride accumulation (8.2mg/g), compared with HFr diet (89.5mg/dL and 20.6mg/g respectively). These changes could be partly explained by the decreased activity of glycerol 3-phosphate dehydrogenase (GPDH) and the down-regulation of stearoyl CoA desaturase 1 (SCD1), both at gene and protein levels, the key determinants of triglyceride biosynthesis. On the other hand, n-3 long chain polyunsaturated fatty acid, docosahexaenoic acid and its active metabolite; resolvin D1 (RvD1) levels were elevated in the liver and plasma of VAD diet-fed groups, which was negatively associated with triglyceride levels. All these factors confer vitamin A deficiency-mediated protection against the development of hepatic steatosis, which was also evident from the group shifted from VAD to HFr diet. Vitamin A deficiency attenuates high fructose-induced hepatic steatosis, by regulating triglyceride synthesis, possibly through GPDH, SCD1 and RvD1. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Glacial erosion of high-elevation low-relief summits on passive continental margins constrained by cosmogenic nuclides

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, David Lundbek; Knudsen, Mads Faurschou

    We present a new, extensive in-situ cosmogenic 10Be and 26Al dataset from high-elevation low-relief summits along Sognefjorden in Norway. Contrary to previous studies of high-elevation low-relief summits in cold regions, we find only limited cosmogenic nuclide inheritance in bedrock surfaces......, indicating that warm-based ice eroded the summits during the last glacial period. From the isotope concentrations we model denudation histories using a recently developed Monte Carlo Markov Chain inversion model (Knudsen et al, 2015). The model relies on the benthic d18O curve (Lisiecki and Raymo, 2005...

  7. Affine-Invariant Geometric Constraints-Based High Accuracy Simultaneous Localization and Mapping

    Directory of Open Access Journals (Sweden)

    Gangchen Hua

    2017-01-01

    Full Text Available In this study we describe a new appearance-based loop-closure detection method for online incremental simultaneous localization and mapping (SLAM using affine-invariant-based geometric constraints. Unlike other pure bag-of-words-based approaches, our proposed method uses geometric constraints as a supplement to improve accuracy. By establishing an affine-invariant hypothesis, the proposed method excludes incorrect visual words and calculates the dispersion of correctly matched visual words to improve the accuracy of the likelihood calculation. In addition, camera’s intrinsic parameters and distortion coefficients are adequate for this method. 3D measuring is not necessary. We use the mechanism of Long-Term Memory and Working Memory (WM to manage the memory. Only a limited size of the WM is used for loop-closure detection; therefore the proposed method is suitable for large-scale real-time SLAM. We tested our method using the CityCenter and Lip6Indoor datasets. Our proposed method results can effectively correct the typical false-positive localization of previous methods, thus gaining better recall ratios and better precision.

  8. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    Science.gov (United States)

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  9. Axis-Exchanged Compensation and Gait Parameters Analysis for High Accuracy Indoor Pedestrian Dead Reckoning

    Directory of Open Access Journals (Sweden)

    Honghui Zhang

    2015-01-01

    Full Text Available Pedestrian dead reckoning (PDR is an effective way for navigation coupled with GNSS (Global Navigation Satellite System or weak GNSS signal environment like indoor scenario. However, indoor location with an accuracy of 1 to 2 meters determined by PDR based on MEMS-IMU is still very challenging. For one thing, heading estimation is an important problem in PDR because of the singularities. For another thing, walking distance estimation is also a critical problem for pedestrian walking with randomness. Based on the above two problems, this paper proposed axis-exchanged compensation and gait parameters analysis algorithm to improve the navigation accuracy. In detail, an axis-exchanged compensation factored quaternion algorithm is put forward first to overcome the singularities in heading estimation without increasing the amount of computation. Besides, real-time heading is updated by R-adaptive Kalman filter. Moreover, gait parameters analysis algorithm can be divided into two steps: cadence detection and step length estimation. Thus, a method of cadence classification and interval symmetry is proposed to detect the cadence accurately. Furthermore, a step length model adjusted by cadence is established for step length estimation. Compared to the traditional PDR navigation, experimental results showed that the error of navigation reduces 32.6%.

  10. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications.......A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing...... a two-stage frequency measurement cooperating with digital signal processing. In the experiment, 10GHz measurement range is guaranteed and the average uncertainty of estimated microwave frequency is 5.4MHz, which verifies the measurement accuracy is significantly improved by achieving an unprecedented...

  11. Brief Report: Face Configuration Accuracy and Processing Speed Among Adults with High-Functioning Autism Spectrum Disorders

    OpenAIRE

    Faja, Susan; Webb, Sara Jane; Merkle, Kristen; Aylward, Elizabeth; Dawson, Geraldine

    2008-01-01

    The present study investigates the accuracy and speed of face processing employed by high-functioning adults with autism spectrum disorders (ASDs). Two behavioral experiments measured sensitivity to distances between features and face recognition when performance depended on holistic versus featural information. Results suggest adults with ASD were less accurate, but responded as quickly as controls for both tasks. In contrast to previous findings with children, adults with ASD demonstrated a...

  12. The Effect of Moderate and High-Intensity Fatigue on Groundstroke Accuracy in Expert and Non-Expert Tennis Players

    OpenAIRE

    Mark Lyons; Yahya Al-Nakeeb; Joanne Hankey; Alan Nevill

    2013-01-01

    peer-reviewed Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player's achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expe...

  13. A High Accuracy Pedestrian Detection System Combining a Cascade AdaBoost Detector and Random Vector Functional-Link Net

    OpenAIRE

    Zhihui Wang; Sook Yoon; Shan Juan Xie; Yu Lu; Dong Sun Park

    2014-01-01

    In pedestrian detection methods, their high accuracy detection rates are always obtained at the cost of a large amount of false pedestrians. In order to overcome this problem, the authors propose an accurate pedestrian detection system based on two machine learning methods: cascade AdaBoost detector and random vector functional-link net. During the offline training phase, the parameters of a cascade AdaBoost detector and random vector functional-link net are trained by standard dataset. These...

  14. Influence of low- and high-elevation plant genomes on the regulation of autumn cold acclimation in Abies sachalinensis.

    Science.gov (United States)

    Ishizuka, Wataru; Ono, Kiyomi; Hara, Toshihiko; Goto, Susumu

    2015-01-01

    Boreal coniferous species with wide geographic distributions show substantial variation in autumn cold acclimation among populations. To determine how this variation is inherited across generations, we conducted a progeny test and examined the development of cold hardening in open-pollinated second-generation (F2) progeny of Abies sachalinensis. The F1 parents had different genetic backgrounds resulting from reciprocal interpopulational crosses between low-elevation (L) and high-elevation (H) populations: L × L, L × H, H × L, and H × H. Paternity analysis of the F2 progeny using molecular genetic markers showed that 91.3% of the fathers were located in surrounding stands of the F1 planting site (i.e., not in the F1 test population). The remaining fathers were assigned to F1 parents of the L × L cross-type. This indicates that the high-elevation genome in the F1 parents was not inherited by the F2 population via pollen flow. The timing of autumn cold acclimation in the F2 progeny depended on the cross-type of the F1 mother. The progeny of H × H mothers showed less damage in freezing tests than the progeny of other cross-types. Statistical modeling supported a linear effect of genome origin. In the best model, variation in freezing damage was explained by the proportion of maternally inherited high-elevation genome. These results suggest that autumn cold acclimation was partly explained by the additive effect of the responsible maternal genome. Thus, the offspring that inherited a greater proportion of the high-elevation genome developed cold hardiness earlier. Genome-based variation in the regulation of autumn cold acclimation matched the local climatic conditions, which may be a key factor in elevation-dependent adaptation.

  15. Influence of low- and high-elevation plant genomes on the regulation of autumn cold acclimation in Abies sachalinensis

    Directory of Open Access Journals (Sweden)

    Wataru eIshizuka

    2015-10-01

    Full Text Available Boreal coniferous species with wide geographic distributions show substantial variation in autumn cold acclimation among populations. To determine how this variation is inherited across generations, we conducted a progeny test and examined the development of cold hardening in open-pollinated second-generation (F2 progeny of Abies sachalinensis. The F1 parents had different genetic backgrounds resulting from reciprocal interpopulational crosses between low-elevation (L and high-elevation (H populations: L × L, L × H, H × L, and H × H. Paternity analysis of the F2 progeny using molecular genetic markers showed that 91.3% of the fathers were located in surrounding stands of the F1 planting site (i.e., not in the F1 test population. The remaining fathers were assigned to F1 parents of the L × L cross-type. This indicates that the high-elevation genome in the F1 parents was not inherited by the F2 population via pollen flow. The timing of autumn cold acclimation in the F2 progeny depended on the cross-type of the F1 mother. The progeny of H × H mothers showed less damage in freezing tests than the progeny of other cross-types. Statistical modeling supported a linear effect of genome origin. In the best model, variation in freezing damage was explained by the proportion of maternally inherited high-elevation genome. These results suggest that autumn cold acclimation was partly explained by the additive effect of the responsible maternal genome. Thus, the offspring that inherited a greater proportion of the high-elevation genome developed cold hardiness earlier. Genome-based variation in the regulation of autumn cold acclimation matched the local climatic conditions, which may be a key factor in elevation-dependent adaptation.

  16. Submarine Melting of Icebergs from Repeat High-Resolution Digital Elevation Models

    Science.gov (United States)

    Enderlin, E. M.; Hamilton, G. S.; Straneo, F.; Cenedese, C.

    2014-12-01

    Icebergs calved from tidewater glaciers act as distributed freshwater sources as they transit through fjords to the surrounding ocean basins. Glacier discharge estimates provide a crude approximation of the total iceberg discharge on inter-annual timescales, but the liquid freshwater flux from icebergs in glacial fjords is largely unknown. Here we use repeat high-resolution digital elevation models (DEMs) to derive meltwater fluxes for 18 icebergs in Sermilik Fjord, East Greenland, during the 2011-2013 boreal summers, and for 33 comparably-sized icebergs in Ilulissat Fjord, West Greenland, during March-April 2011 and July 2012. We find that iceberg melt rates for Sermilik Fjord are in good agreement with simulated melt rates along the vertical terminus of Helheim Glacier in winter, i.e. when melting at the glacier front is not enhanced by subglacial discharge, providing an independent validation of our technique. Variations in meltwater fluxes from icebergs are primarily related to differences in the submerged area of individual icebergs, which is consistent with theory. The stratification of water masses in fjords has a noticeable effect on summertime-derived melt estimates, with lower melt rates (and meltwater fluxes) observed in the relatively cold and fresh Polar Water layer and higher melt rates in the underlying warmer and more saline Atlantic Water layer. The meltwater flux dependence on submerged area, particularly within the deeper Atlantic Water layer, suggests that changes in the characteristics of icebergs (size/shape/keel-depth) calved from a tidewater glacier will alter the magnitude and distribution of meltwater fluxes within the fjord, which may in turn influence fjord circulation and the heat content delivered to the glacier terminus.

  17. Elk herbivory alters small mammal assemblages in high-elevation drainages.

    Science.gov (United States)

    Parsons, Elliott W R; Maron, John L; Martin, Thomas E

    2013-03-01

    Heavy herbivory by ungulates can substantially alter habitat, but the indirect consequences of habitat modification for animal assemblages that rely on that habitat are not well studied. This is a particularly important topic given that climate change can alter plant-herbivore interactions. We explored short-term responses of small mammal communities to recent exclusion of Rocky Mountain elk (Cervus elaphus) in high-elevation riparian drainages in northern Arizona, where elk impacts on vegetation have increased over the past quarter century associated with climate change. We used 10-ha elk exclosures paired with unfenced control drainages to examine how browsing influenced the habitat use, relative abundance, richness and diversity of a small mammal assemblage. We found that the small mammal assemblage changed significantly after 5 years of elk exclusion. Relative abundance of voles (Microtus mexicanus) increased in exclosure drainages, likely due to an increase in habitat quality. The relative abundances of woodrats (Neotoma neomexicana) and two species of mice (Peromyscus maniculatus and P. boylii) decreased in the controls, while remaining stable in exclosures. The decline of mice in control drainages was likely due to the decline in shrub cover that they use. Thus, elk exclusion may have maintained or improved habitat for mice inside the exclosures while habitat quality and mouse abundance both declined outside the fences. Finally, small mammal species richness increased in the exclosures relative to the controls while species diversity showed no significant trends. Together, our results show that relaxation of heavy herbivore pressure by a widespread native ungulate can lead to rapid changes in small mammal assemblages. Moreover, exclusion of large herbivores can yield rapid responses by vegetation that may enhance or maintain habitat quality for small mammal populations. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  18. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  19. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Directory of Open Access Journals (Sweden)

    Megan P Keville

    Full Text Available Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP (Pinus albicaulis ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺ concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  20. Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides

    CERN Document Server

    Marie-Jeanne, M; Blaum, K; Djekic, S; Dworschak, M; Hager, U; Herlert, A; Nagy, S; Savreux, R; Schweikhard, L; Stahl, S; Yazidjian, C

    2008-01-01

    The field stability of a mass spectrometer plays a crucial role in the accuracy of mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of fluctuations are temperature variations in the vicinity of the trap and pressure changes in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the temperature and pressure fluctuations by at least an order of magnitude down to and has been achieved, which corresponds to a relative magnetic field change of ΔB/B=2.7×10-9 and 1.1×10-10, respectively.

  1. High accuracy calculation of the hydrogen negative ion in strong magnetic fields

    Institute of Scientific and Technical Information of China (English)

    Zhao Ji-Jun; Wang Xiao-Feng; Qiao Hao-Xue

    2011-01-01

    Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 110+, 11(-1)+ and l1(-2)+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 <γ< 4 and 0.02 < 7< 0.05, in which the l1(-l)+ and l1(-2)+states start to become bound, respectively, are also determined based on the calculated electron detachment energies.

  2. Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian

    Science.gov (United States)

    Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki

    2016-01-01

    In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.

  3. Evaluation of Heart Rate Assessment Timing, Communication, Accuracy, and Clinical Decision-Making during High Fidelity Simulation of Neonatal Resuscitation

    Directory of Open Access Journals (Sweden)

    Win Boon

    2014-01-01

    Full Text Available Objective. Accurate heart rate (HR determination during neonatal resuscitation (NR informs subsequent NR actions. This study’s objective was to evaluate HR determination timeliness, communication, and accuracy during high fidelity NR simulations that house officers completed during neonatal intensive care unit (NICU rotations. Methods. In 2010, house officers in NICU rotations completed high fidelity NR simulation. We reviewed 80 house officers’ videotaped performance on their initial high fidelity simulation session, prior to training and performance debriefing. We calculated the proportion of cases congruent with NR guidelines, using chi square analysis to evaluate performance across HR ranges relevant to NR decision-making: <60, 60–99, and ≥100 beats per minute (bpm. Results. 87% used umbilical cord palpation, 57% initiated HR assessment within 30 seconds, 70% were accurate, and 74% were communicated appropriately. HR determination accuracy varied significantly across HR ranges, with 87%, 57%, and 68% for HR <60, 60–99, and ≥100 bpm, respectively (P<0.001. Conclusions. Timeliness, communication, and accuracy of house officers’ HR determination are suboptimal, particularly for HR 60–100 bpm, which might lead to inappropriate decision-making and NR care. Training implications include emphasizing more accurate HR determination methods, better communication, and improved HR interpretation during NR.

  4. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  5. Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA

    Science.gov (United States)

    Scanlon, B.R.; Nicot, J.-P.; Reedy, R.C.; Kurtzman, D.; Mukherjee, A.; Nordstrom, D.K.

    2009-01-01

    High groundwater As concentrations in oxidizing systems are generally associated with As adsorption onto hydrous metal (Al, Fe or Mn) oxides and mobilization with increased pH. The objective of this study was to evaluate the distribution, sources and mobilization mechanisms of As in the Southern High Plains (SHP) aquifer, Texas, relative to those in other semiarid, oxidizing systems. Elevated groundwater As levels are widespread in the southern part of the SHP (SHP-S) aquifer, with 47% of wells exceeding the current EPA maximum contaminant level (MCL) of 10 μg/L (range 0.3–164 μg/L), whereas As levels are much lower in the north (SHP-N: 9% ⩾ As MCL of 10 μg/L; range 0.2–43 μg/L). The sharp contrast in As levels between the north and south coincides with a change in total dissolved solids (TDS) from 395 mg/L (median north) to 885 mg/L (median south). Arsenic is present as arsenate (As V) in this oxidizing system and is correlated with groundwater TDS (Spearman’s ρ = 0.57). The most likely current source of As is sorbed As onto hydrous metal oxides based on correlations between As and other oxyanion-forming elements (V, ρ = 0.88; Se, ρ = 0.54; B, ρ = 0.51 and Mo, ρ = 0.46). This source is similar to that in other oxidizing systems and constitutes a secondary source; the most likely primary source being volcanic ashes in the SHP aquifer or original source rocks in the Rockies, based on co-occurrence of As and F (ρ = 0.56), oxyanion-forming elements and SiO2 (ρ = 0.41), which are found in volcanic ashes. High groundwater As concentrations in some semiarid oxidizing systems are related to high evaporation. Although correlation of As with TDS in the SHP aquifer may suggest evaporative concentration, unenriched stable isotopes (δ2H: −65 to −27; δ18O: −9.1 to −4.2) in the SHP aquifer do not support evaporation. High TDS in the SHP aquifer is most likely related to upward movement of saline water from the underlying

  6. 25 CFR 171.215 - What if the elevation of my farm unit is too high to receive irrigation water?

    Science.gov (United States)

    2010-04-01

    ... receive irrigation water? 171.215 Section 171.215 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.215 What if the elevation of my farm unit is too high to receive irrigation water? (a) We will not change our service ditch...

  7. Elevation of circulating miR-210-3p in high-altitude hypoxic environment

    Directory of Open Access Journals (Sweden)

    Yan eYan

    2016-03-01

    Full Text Available Background: The induction of miR-210-3p, a master hypoxamir, is a consistent feature of the hypoxic response in both normal and malignant cells. However, whether miR-210-3p acts as a circulating factor in response to a hypoxic environment remains unknown. The current study aimed to examine the effect of a high-altitude hypoxic environment on circulating miR-210-3p.Methods: We examined and compared the levels of miR-210-3p using TaqMan-based qRT-PCR in both peripheral blood cells and plasma from 84 ethnic Chinese Tibetans residing at 3560 m, 46 newly arrived migrant Han Chinese (Tibet Han and 82 Han Chinese residing at 8.9 m (Nanjing Han. Furthermore, we analyzed the correlations of miR-210-3p with hematological indices. Results: The relative concentrations of miR-210-3p to internal reference U6 in blood cells were significantly higher in the Tibet Han group (1.01±0.11, P<0.001 and in the Tibetan group (1.17±0.09, P<0.001 than in the Nanjing Han group (0.51±0.04. The absolute concentrations of plasma miR-210-3p were also markedly elevated in the Tibet Han group (503.54±42.95 fmol/L, P=0.004 and in the Tibetan group (557.78±39.84 fmol/L, P<0.001 compared to the Nanjing Han group (358.39±16.16 fmol/L. However, in both blood cells and plasma, miR-210-3p levels were not significantly different between the Tibet Han group and the Tibetan group (P=0.280, P=0.620, respectively. Plasma miR-210-3p concentrations were positively correlated with miR-210-3p levels in blood cells (r=0.192, P=0.005. Furthermore, miR-210-3p levels in both blood cells and plasma showed strong positive correlations with red blood cell counts and hemoglobin and hematocrit values. Conclusion: These data demonstrated, for the first time, that miR-210-3p might act as a circulating factor in response to hypoxic environments and could be associated with human adaptation to life at high altitudes.

  8. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    Science.gov (United States)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  9. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager

    Science.gov (United States)

    Gorroño, Javier; Banks, Andrew C.; Fox, Nigel P.; Underwood, Craig

    2017-08-01

    Optical earth observation (EO) satellite sensors generally suffer from drifts and biases relative to their pre-launch calibration, caused by launch and/or time in the space environment. This places a severe limitation on the fundamental reliability and accuracy that can be assigned to satellite derived information, and is particularly critical for long time base studies for climate change and enabling interoperability and Analysis Ready Data. The proposed TRUTHS (Traceable Radiometry Underpinning Terrestrial and Helio-Studies) mission is explicitly designed to address this issue through re-calibrating itself directly to a primary standard of the international system of units (SI) in-orbit and then through the extension of this SI-traceability to other sensors through in-flight cross-calibration using a selection of Committee on Earth Observation Satellites (CEOS) recommended test sites. Where the characteristics of the sensor under test allows, this will result in a significant improvement in accuracy. This paper describes a set of tools, algorithms and methodologies that have been developed and used in order to estimate the radiometric uncertainty achievable for an indicative target sensor through in-flight cross-calibration using a well-calibrated hyperspectral SI-traceable reference sensor with observational characteristics such as TRUTHS. In this study, Multi-Spectral Imager (MSI) of Sentinel-2 and Landsat-8 Operational Land Imager (OLI) is evaluated as an example, however the analysis is readily translatable to larger-footprint sensors such as Sentinel-3 Ocean and Land Colour Instrument (OLCI) and Visible Infrared Imaging Radiometer Suite (VIIRS). This study considers the criticality of the instrumental and observational characteristics on pixel level reflectance factors, within a defined spatial region of interest (ROI) within the target site. It quantifies the main uncertainty contributors in the spectral, spatial, and temporal domains. The resultant tool

  10. Adaptive switching frequency buck DC—DC converter with high-accuracy on-chip current sensor

    Science.gov (United States)

    Jinguang, Jiang; Fei, Huang; Zhihui, Xiong

    2015-05-01

    A current-mode PWM buck DC—DC converter is proposed. With the high-accuracy on-chip current sensor, the switching frequency can be selected automatically according to load requirements. This method improves efficiency and obtains an excellent transient response. The high accuracy of the current sensor is achieved by a simple switch technique without an amplifier. This has the direct benefit of reducing power dissipation and die size. Additionally, a novel soft-start circuit is presented to avoid the inrush current at the starting up state. Finally, this DC—DC converter is fabricated with the 0.5 μm standard CMOS process. The chip occupies 3.38 mm2. The accuracy of the proposed current sensor can achieve 99.5% @ 200 mA. Experimental results show that the peak efficiency is 91.8%. The input voltage ranges from 5 to 18 V, while a 2 A load current can be obtained. Project supported by the National Natural Science Foundation of China (No. 41274047), the Natural Science Foundation of Jiangsu Province (No. BK2012639), the Science and Technology Enterprises in Jiangsu Province Technology Innovation Fund (No. BC2012121), and the Changzhou Science and Technology Support (Industrial) Project (No. CE20120074).

  11. Use of Light Detection and Ranging (LiDAR) to Obtain High-Resolution Elevation Data for Sussex County, Delaware

    Science.gov (United States)

    Barlow, Roger A.; Nardi, Mark R.; Reyes, Betzaida

    2008-01-01

    Sussex County, Delaware, occupies a 938-square-mile area of low relief near sea level in the Atlantic Coastal Plain. The county is bounded on the east by the Delaware Bay and the Atlantic Ocean, including a barrier-island system, and inland bays that provide habitat for valuable living resources. Eastern Sussex County is an area of rapid population growth with a long-established beach-resort community, where land elevation is a key factor in determining areas that are appropriate for development. Of concern to State and local planners are evacuation routes inland to escape flooding from severe coastal storms, as most major transportation routes traverse areas of low elevation that are subject to inundation. The western half of the county is typically rural in character, and land use is largely agricultural with some scattered forest land cover. Western Sussex County has several low-relief river flood-prone areas, where accurate high-resolution elevation data are needed for Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Map (DFIRM) studies. This fact sheet describes the methods and techniques used to collect and process LiDAR elevation data, the generation of the digital elevation model (DEM) and the 2-foot contours, and the quality-assurance procedures and results. It indicates where to view metadata on the data sets and where to acquire bare-earth mass points, DEM data, and contour data.

  12. Temporal seizure focus and status epilepticus are associated with high-sensitive troponin I elevation after epileptic seizures.

    Science.gov (United States)

    Chatzikonstantinou, Anastasios; Ebert, Anne D; Hennerici, Michael G

    2015-09-01

    Postictal elevation of high-sensitive troponin I (TNI), a highly specific biomarker for myocardial ischemia, has been reported. We aimed at evaluating its association of high-sensitive troponin I (TNI) with seizure type and focus, as well as vascular risk factors. TNI was measured in 247 patients admitted to our clinic via the emergency room with an acute epileptic seizure. TNI control measurements were performed in 61.5% of cases. All patients underwent electroencephalography and cerebral imaging. Seizure focus - when possible - was determined using results from these examinations as well as clinical data. Of 247 patients, 133 (53.8%) were men, the mean age was 59 ± 18 years. 70 (28.3%) patients had focal and 177 (71.7%) generalized seizures. Status epilepticus was present in 38 cases (15.4%). Mean TNI was 0.05 ± 0.17. TNI was elevated in 27 patients (10.9%). Higher age, status epilepticus and temporal seizure focus were significantly associated with TNI elevation in multivariate analysis. In 21 (13.8%) of the patients with TNI control measurement, TNI was continuously elevated. Higher age and temporal seizure focus were significantly associated with continuously high TNI. Coronary heart disease and vascular risk factors were significantly associated with high TNI only in univariate analysis. No patient had a symptomatic myocardial ischemia. Postictal TNI elevation is relatively common in older patients with status epilepticus or temporal seizure focus. These data support the concept of relevant and possibly dangerous ictal effects on cardiac function especially in temporal lobe seizures. Although the risk of manifest postictal myocardial infarction seems to be very low, selected patients could profit from closer monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Mountain pine beetle in high-elevation five-needle white pine ecosystems

    Science.gov (United States)

    Barbara Bentz; Elizabeth Campbell; Ken Gibson; Sandra Kegley; Jesse Logan; Diana Six

    2011-01-01

    Across western North America mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae), populations are growing at exponential rates in pine ecosystems that span a wide range of elevations. As temperature increased over the past several decades, the flexible, thermally-regulated life-history strategies of mountain pine beetle have allowed...

  14. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Shaohui Foong

    2016-08-01

    Full Text Available In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs. Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.

  15. High-resolution CT of transplanted teeth: imaging technique and measurement accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Gahleitner, Andre [Medical University of Vienna, Department of Radiology/Osteology and MR, Vienna (Austria); Medical University Vienna, Department of Radiology, Vienna (Austria); Kuchler, Ulrike; Heschl, Janina; Watzek, Georg [Medical University of Vienna, Department of Oral Surgery, Vienna (Austria); Homolka, Peter [Medical University of Vienna, Center for Biomedical Engineering and Physics, Vienna (Austria); Imhof, Herwig [Medical University of Vienna, Department of Radiology/Osteology and MR, Vienna (Austria)

    2008-12-15

    The aim of this study was to determine the accuracy of crown diameter measurements by dental CT as a tool for preoperative diagnosis before tooth transplantations. Fifty-eight patients underwent clinically indicated dental CT. The diameter of the crowns were measured by CT using a standard protocol (1.5-mm slice thickness, 1-mm table feed, 120 kV, 25-75 mA/s, 2-s scan time/slice, 512 matrix) and a standard dental software package. Postoperatively, the same distances were clinically measured using a sliding gauge. The degree of the deviation between CT measurements and clinical measurements was in the sub-millimeter range. According to the regression analysis, the correlation coefficient equals 0.98 and 0.97, indicating a strong relationship between the CT and the manual measurement of the crown diameter in the bucco-lingual and the mesio-distal direction. The mean deviation of CT measurements with regard to the bucco-lingual diameter of the crown was +0.08 mm (SD: {+-}0.38 mm). For the mesio-distal diameter, the mean deviation of CT measurements was -0.24 mm (SD: {+-}0.53 mm). These results demonstrate that dental CT promises to be a valuable tool for the evaluation of the potential and optimal size and site for tooth transplantations. (orig.)

  16. Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease.

    Science.gov (United States)

    Tsanas, Athanasios; Little, Max A; McSharry, Patrick E; Spielman, Jennifer; Ramig, Lorraine O

    2012-05-01

    There has been considerable recent research into the connection between Parkinson's disease (PD) and speech impairment. Recently, a wide range of speech signal processing algorithms (dysphonia measures) aiming to predict PD symptom severity using speech signals have been introduced. In this paper, we test how accurately these novel algorithms can be used to discriminate PD subjects from healthy controls. In total, we compute 132 dysphonia measures from sustained vowels. Then, we select four parsimonious subsets of these dysphonia measures using four feature selection algorithms, and map these feature subsets to a binary classification response using two statistical classifiers: random forests and support vector machines. We use an existing database consisting of 263 samples from 43 subjects, and demonstrate that these new dysphonia measures can outperform state-of-the-art results, reaching almost 99% overall classification accuracy using only ten dysphonia features. We find that some of the recently proposed dysphonia measures complement existing algorithms in maximizing the ability of the classifiers to discriminate healthy controls from PD subjects. We see these results as an important step toward noninvasive diagnostic decision support in PD.

  17. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis

    Science.gov (United States)

    Foong, Shaohui; Sun, Zhenglong

    2016-01-01

    In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison. PMID:27529253

  18. Designing a high accuracy 3D auto stereoscopic eye tracking display, using a common LCD monitor

    Science.gov (United States)

    Taherkhani, Reza; Kia, Mohammad

    2012-09-01

    This paper describes the design and building of a low cost and practical stereoscopic display that does not need to wear special glasses, and uses eye tracking to give a large degree of freedom to viewer (or viewer's) movement while displaying the minimum amount of information. The parallax barrier technique is employed to turn a LCD into an auto-stereoscopic display. The stereo image pair is screened on the usual liquid crystal display simultaneously but in different columns of pixels. Controlling of the display in red-green-blue sub pixels increases the accuracy of light projecting direction to less than 2 degrees without losing too much LCD's resolution and an eye-tracking system determines the correct angle to project the images along the viewer's eye pupils and an image processing system puts the 3D images data in correct R-G-B sub pixels. 1.6 degree of light direction controlling achieved in practice. The 3D monitor is just made by applying some simple optical materials on a usual LCD display with normal resolution. [Figure not available: see fulltext.

  19. High Accuracy Passive Magnetic Field-Based Localization for Feedback Control Using Principal Component Analysis.

    Science.gov (United States)

    Foong, Shaohui; Sun, Zhenglong

    2016-08-12

    In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.

  20. UAS-SfM for coastal research: Geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery

    Science.gov (United States)

    Sturdivant, Emily; Lentz, Erika; Thieler, E. Robert; Farris, Amy; Weber, Kathryn; Remsen, David P.; Miner, Simon; Henderson, Rachel

    2017-01-01

    The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically characterized using a combination of ground and manned airborne systems that have limited spatial or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM) from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing methods to (a) determine the position of shorelines and foredunes using a feature extraction routine developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a supervised classification routine. In both analyses, we experimentally vary the input datasets to understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage and sub-meter precision, better than was possible from a recent lidar dataset covering the same area; and (b) land cover classification is greatly improved by including topographic data with visual reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.

  1. Experimental and Computational Investigation of High Entropy Alloys for Elevated-Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, Peter [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Fan [CompuTherm LLC, Madison, WI (United States); Zhang, Chuan [CompuTherm LLC, Madison, WI (United States); Wang, Gongyao [Univ. of Tennessee, Knoxville, TN (United States); Xie, Xie [Univ. of Tennessee, Knoxville, TN (United States); Diao, Haoyan [Univ. of Tennessee, Knoxville, TN (United States); Kuo, Chih-Hsiang [Univ. of Tennessee, Knoxville, TN (United States); An, Zhinan [Univ. of Tennessee, Knoxville, TN (United States); Hemphill, Michael [Univ. of Tennessee, Knoxville, TN (United States)

    2016-07-30

    tomography (APT), and transmission electron microscopy (TEM). In-situ neutron diffraction experiments were conducted to study the strengthening effect of B2 phase on tensile properties of Al0.3CoCrFeNi HEAs directly. The results shows the creep behavior of Al0.3CoCrFeNi is superior to conventional alloys, and the heat treatment introduces secondary B2 phase into the FCC matrix, which increase the yielding strength, decrease the ductility, diminish the serrated flow during compression tests at high temperatures. In summary, the outcomes of the development of the HEAs with creep resistance include: (1) Suitable candidates, for the application to boilers and steam and gas turbines at temperatures above 760 °C and a stress of 35 MPa. (2) Fundamental understanding on the precipitate stability and deformation mechanisms of both single-phase and precipitate-strengthened alloys at room and elevated temperatures, and (3) The demonstration of an integrated approach, coupling modeling [thermodynamic calculations and crystal-plasticity finite-element modeling (CPFEM)] and focused experiments, to identify HEAs that outperform conventional alloys for high-temperature applications, which will be applicable for the discovery and development of other high-temperature materials in the power-generating industry.

  2. Stable isotopes reflect the ecological stability of two high-elevation mammals from the late Quaternary of Colorado

    Science.gov (United States)

    McLean, Bryan S.; Emslie, Steven D.

    2012-05-01

    The vertebrate fossil record of Cement Creek Cave, Colorado, spans from > 45,000 yr ago to the present and represents the richest stratified series of high-elevation (> 2900 m) mammal remains known from the late Quaternary of North America. Stable carbon and oxygen isotope analyses of tooth enamel were used to assess potential ecological responses of two species found commonly throughout the cave, Yellow-bellied marmots (Marmota flaviventris) and Bushy-tailed woodrats (Neotoma cinerea), to late Quaternary climate and environmental changes of the Southern Rocky Mountains. Results indicate that despite such perturbations, the dietary ecologies of both species were maintained across this period. Neither taxon shifted to consuming C4 taxa or different C3 functional groups; similarly, no significant shifts in surface water use were detected. Variations in enamel δ13C were observed, however, that represent the physiological responses of high-elevation plants to changing levels of late Quaternary atmospheric CO2. While our findings extend both the geographic and elevational record of this plant CO2 response, they simultaneously highlight the ecological stability of high-elevation M. flaviventris and N. cinerea during climate changes of late Quaternary magnitude.

  3. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  4. ISPA - a high accuracy X-ray and gamma camera Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    ISPA offers ... Ten times better resolution than Anger cameras High efficiency single gamma counting Noise reduction by sensitivity to gamma energy ...for Single Photon Emission Computed Tomography (SPECT)

  5. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    Science.gov (United States)

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Pete; Bergstresser, Sarah

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  6. Expression of CRM1 and CDK5 shows high prognostic accuracy for gastric cancer

    Science.gov (United States)

    Sun, Yu-Qin; Xie, Jian-Wei; Xie, Hong-Teng; Chen, Peng-Chen; Zhang, Xiu-Li; Zheng, Chao-Hui; Li, Ping; Wang, Jia-Bin; Lin, Jian-Xian; Cao, Long-Long; Huang, Chang-Ming; Lin, Yao

    2017-01-01

    AIM To evaluate the predictive value of the expression of chromosomal maintenance (CRM)1 and cyclin-dependent kinase (CDK)5 in gastric cancer (GC) patients after gastrectomy. METHODS A total of 240 GC patients who received standard gastrectomy were enrolled in the study. The expression level of CRM1 and CDK5 was detected by immunohistochemistry. The correlations between CRM1 and CDK5 expression and clinicopathological factors were explored. Univariate and multivariate survival analyses were used to identify prognostic factors for GC. Receiver operating characteristic analysis was used to compare the accuracy of the prediction of clinical outcome by the parameters. RESULTS The expression of CRM1 was significantly related to size of primary tumor (P = 0.005), Borrmann type (P = 0.006), degree of differentiation (P = 0.004), depth of invasion (P = 0.008), lymph node metastasis (P = 0.013), TNM stage (P = 0.002) and distant metastasis (P = 0.015). The expression of CDK5 was significantly related to sex (P = 0.048) and Lauren’s classification (P = 0.011). Multivariate Cox regression analysis identified that CRM1 and CDK5 co-expression status was an independent prognostic factor for overall survival (OS) of patients with GC. Integration of CRM1 and CDK5 expression could provide additional prognostic value for OS compared with CRM1 or CDK5 expression alone (P = 0.001). CONCLUSION CRM1 and CDK5 co-expression was an independent prognostic factors for GC. Combined CRM1 and CDK5 expression could provide a prognostic model for OS of GC. PMID:28373767

  7. Influence of measuring algorithm on shape accuracy in the compensating turning of high gradient thin-wall parts

    Science.gov (United States)

    Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi

    2015-02-01

    In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.

  8. High-accuracy measurement of ship velocities by DGPS; DGPS ni yoru sensoku keisoku no koseidoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Koterayama, W. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1996-04-10

    The differential global positioning system (DGPS) can eliminate most of errors in ship velocity measurement by GPS positioning alone. Through two rounds of marine observations by towing an observation robot in summer 1995, the authors attempted high-accuracy measurement of ship velocities by DGPS, and also carried out both positioning by GPS alone and measurement using the bottom track of ADCP (acoustic Doppler current profiler). In this paper, the results obtained by these measurement methods were examined through comparison among them, and the accuracy of the measured ship velocities was considered. In DGPS measurement, both translocation method and interference positioning method were used. ADCP mounted on the observation robot allowed measurement of the velocity of current meter itself by its bottom track in shallow sea areas less than 350m. As the result of these marine observations, it was confirmed that the accuracy equivalent to that of direct measurement by bottom track is possible to be obtained by DGPS. 3 refs., 5 figs., 1 tab.

  9. High-accuracy current generation in the nanoampere regime from a silicon single-trap electron pump

    Science.gov (United States)

    Yamahata, Gento; Giblin, Stephen P.; Kataoka, Masaya; Karasawa, Takeshi; Fujiwara, Akira

    2017-01-01

    A gigahertz single-electron (SE) pump with a semiconductor charge island is promising for a future quantum current standard. However, high-accuracy current in the nanoampere regime is still difficult to achieve because the performance of SE pumps tends to degrade significantly at frequencies exceeding 1 GHz. Here, we demonstrate robust SE pumping via a single-trap level in silicon up to 7.4 GHz, at which the pumping current exceeds 1 nA. An accuracy test with an uncertainty of about one part per million (ppm) reveals that the pumping current deviates from the ideal value by only about 20 ppm at the flattest part of the current plateau. This value is two orders of magnitude better than the best one reported in the nanoampere regime. In addition, the pumping accuracy is almost unchanged up to 7.4 GHz, probably due to strong electron confinement in the trap. These results indicate that trap-mediated SE pumping is promising for achieving the practical operation of the quantum current standard. PMID:28322339

  10. Non-ST Elevation Myocardial Infraction after High Dose Intravenous Immunoglobulin Infusion

    Directory of Open Access Journals (Sweden)

    Meir Mizrahi

    2009-01-01

    Full Text Available Intravenous immunoglobulins (IVIgs are used for several indications, including autoimmune conditions. IVIg treatment is associated with several possible adverse reactions including induction of a hypercoagulable state. We report a 76-year-old woman treated with IVIg for myasthenia gravis, which developed chest pain and weakness following IVIg infusion. The symptoms were associated with ST segment depression in V4–6 and elevated troponin levels. The patient was diagnosed with non-ST elevation myocardial infarction (NSTEMI. The patient had no significant risk factor besides age and a cardiac perfusion scan was interpreted as normal (the patient refused to undergo cardiac catheterization. This case is compatible with IVIg-induced hypercoagulability resulting in NSTEMI. Cardiac evaluation should therefore be considered prior to initiation of IVIg treatment especially in patients with multiple cardiovascular risks.

  11. Climate change and plant distribution: local models predict high-elevation persistence

    DEFF Research Database (Denmark)

    Randin, Christophe F.; Engler, Robin; Normand, Signe

    2009-01-01

    of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolutions and geographic extents. Here, we assess whether climate change-induced habitat losses predicted at the European scale (10 × 10' grid...... in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10 × 10' cells. The greatest prediction discrepancy for alpine species occurs in the area......Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range, and spatial resolution of data used in making these models, different rates...

  12. DURA-Peel, DURACON-Based Removable High Accuracy IR Thermography Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforced composite materials are used extensively in aerospace applications due to their high stiffness and strength to weight ratio, and superior thermal,...

  13. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction

    Science.gov (United States)

    Ribeiro, Daniel Rios Pinto; Ramos, Adriane Monserrat; Vieira, Pedro Lima; Menti, Eduardo; Bordin, Odemir Luiz; de Souza, Priscilla Azambuja Lopes; de Quadros, Alexandre Schaan; Portal, Vera Lúcia

    2014-01-01

    Background The association between high-sensitivity C-reactive protein and recurrent major adverse cardiovascular events (MACE) in patients with ST-elevation myocardial infarction who undergo primary percutaneous coronary intervention remains controversial. Objective To investigate the potential association between high-sensitivity C-reactive protein and an increased risk of MACE such as death, heart failure, reinfarction, and new revascularization in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. Methods This prospective cohort study included 300 individuals aged >18 years who were diagnosed with ST-elevation myocardial infarction and underwent primary percutaneous coronary intervention at a tertiary health center. An instrument evaluating clinical variables and the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) risk scores was used. High-sensitivity C-reactive protein was determined by nephelometry. The patients were followed-up during hospitalization and up to 30 days after infarction for the occurrence of MACE. Student's t, Mann-Whitney, chi-square, and logistic regression tests were used for statistical analyses. P values of ≤0.05 were considered statistically significant. Results The mean age was 59.76 years, and 69.3% of patients were male. No statistically significant association was observed between high-sensitivity C-reactive protein and recurrent MACE (p = 0.11). However, high-sensitivity C-reactive protein was independently associated with 30-day mortality when adjusted for TIMI [odds ratio (OR), 1.27; 95% confidence interval (CI), 1.07-1.51; p = 0.005] and GRACE (OR, 1.26; 95% CI, 1.06-1.49; p = 0.007) risk scores. Conclusion Although high-sensitivity C-reactive protein was not predictive of combined major cardiovascular events within 30 days after ST-elevation myocardial infarction in patients who underwent primary angioplasty and stent

  14. High-Sensitivity C-Reactive Protein as a Predictor of Cardiovascular Events after ST-Elevation Myocardial Infarction

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Daniel Rios Pinto; Ramos, Adriane Monserrat; Vieira, Pedro Lima; Menti, Eduardo; Bordin, Odemir Luiz Jr.; Souza, Priscilla Azambuja Lopes de; Quadros, Alexandre Schaan de; Portal, Vera Lúcia, E-mail: veraportal.pesquisa@gmail.com [Programa de Pós-Graduação em Ciências da Saúde: Cardiologia - Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS (Brazil)

    2014-07-15

    The association between high-sensitivity C-reactive protein and recurrent major adverse cardiovascular events (MACE) in patients with ST-elevation myocardial infarction who undergo primary percutaneous coronary intervention remains controversial. To investigate the potential association between high-sensitivity C-reactive protein and an increased risk of MACE such as death, heart failure, reinfarction, and new revascularization in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. This prospective cohort study included 300 individuals aged >18 years who were diagnosed with ST-elevation myocardial infarction and underwent primary percutaneous coronary intervention at a tertiary health center. An instrument evaluating clinical variables and the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events (GRACE) risk scores was used. High-sensitivity C-reactive protein was determined by nephelometry. The patients were followed-up during hospitalization and up to 30 days after infarction for the occurrence of MACE. Student's t, Mann-Whitney, chi-square, and logistic regression tests were used for statistical analyses. P values of ≤0.05 were considered statistically significant. The mean age was 59.76 years, and 69.3% of patients were male. No statistically significant association was observed between high-sensitivity C-reactive protein and recurrent MACE (p = 0.11). However, high-sensitivity C-reactive protein was independently associated with 30-day mortality when adjusted for TIMI [odds ratio (OR), 1.27; 95% confidence interval (CI), 1.07-1.51; p = 0.005] and GRACE (OR, 1.26; 95% CI, 1.06-1.49; p = 0.007) risk scores. Although high-sensitivity C-reactive protein was not predictive of combined major cardiovascular events within 30 days after ST-elevation myocardial infarction in patients who underwent primary angioplasty and stent implantation, it was an independent predictor

  15. Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions.

    Science.gov (United States)

    Kessler, Michael; Toivonen, Johanna M; Sylvester, Steven P; Kluge, Jürgen; Hertel, Dietrich

    2014-01-01

    We studied tree height in stands of high-Andean Polylepis forests in two cordilleras near Cuzco (Peru) with respect to variations in human impact and climatic conditions, and compared air and soil temperatures between qualitatively defined dry and humid slopes. We studied 46 forest plots of 100 m(2) of five Polylepis species at 3560-4680 m. We measured diameter at breast height (dbh) and tree height in the stands (1229 trees in total), as well as air and soil temperatures in a subset of plots. The data was analyzed combining plots of given species from different sites at the same elevation (±100 m). There was no elevational decrease of mean maximum tree height across the entire data set. On humid slopes, tree height decreased continuously with elevation, whereas on dry slopes it peaked at middle elevations. With mean maximum tree heights of 9 m at 4530 m on the humid slopes and of 13 m at 4650 m on the dry slopes, we here document the tallest high-elevation forests found so far worldwide. These highest stands grow under cold mean growing season air temperatures (3.6 and 3.8°C on humid vs. dry slopes) and mean growing season soil temperatures (5.1 vs. 4.6°C). Mean annual air and soil temperature both decreased with elevation. Dry slopes had higher mean and maximum growing season air temperatures than humid slopes. Mean annual soil temperatures did not significantly differ and mean annual air temperatures only slightly differed between slopes. However, maximum air temperatures differed on average by 6.6 K between dry and humid slopes. This suggests that the differences in tree height between the two slopes are most likely due to differences in solar radiation as reflected by maximum air temperatures. Our study furthermore provides evidence that alpine Polylepis treelines grow under lower temperature conditions than global high-elevation treelines on average, suggesting that Polylepis species may have evolved special physiological adaptations to low temperatures.

  16. Elevational patterns of Polylepis tree height (Rosaceae in the high Andes of Peru: role of human impact and climatic conditions

    Directory of Open Access Journals (Sweden)

    Michael eKessler

    2014-05-01

    Full Text Available We studied tree height in stands of high-Andean Polylepis forests in two cordilleras near Cuzco (Peru with respect to variations in human impact and climatic conditions, and compared air and soil temperatures between qualitatively defined dry and humid slopes. We studied 46 forest plots of 100 m2 of five Polylepis species at 3560-4680 m. We measured diameter at breast height (dbh and tree height in the stands (1229 trees in total, as well as air and soil temperatures in a subset of plots. The data was analysed combining plots of given species from different sites at the same elevation (±100 m. There was no elevational decrease of mean maximum tree height across the entire data set. On humid slopes, tree height decreased continuously with elevation, whereas on dry slopes it peaked at middle elevations. With mean maximum tree heights of 9 m at 4530 m on the humid slopes and of 13 m at 4650 m on the dry slopes, we here document the tallest high-elevation forests found so far worldwide. These highest stands grow under cold mean growing season air temperatures (3.6 °C and 3.8 °C on humid vs. dry slopes and mean growing season soil temperatures (5.1 °C vs. 4.6 °C. Mean annual air and soil temperature both decreased with elevation. Dry slopes had higher mean and maximum growing season air temperatures than humid slopes. Mean annual soil temperatures did not significantly differ and mean annual air temperatures only slightly differed between slopes. However, maximum air temperatures differed on average by 6.6 K between dry and humid slopes. This suggests that the differences in tree height between the two slopes are most likely due to differences in solar radiation as reflected by maximum air temperatures. Our study furthermore provides evidence that alpine Polylepis treelines grow under lower temperature conditions than global high-elevation treelines on average, suggesting that Polylepis species may have evolved special physiological adaptations

  17. Interethnic differences in the accuracy of anthropometric indicators of obesity in screening for high risk of coronary heart disease

    Science.gov (United States)

    Herrera, VM; Casas, JP; Miranda, JJ; Perel, P; Pichardo, R; González, A; Sanchez, JR; Ferreccio, C; Aguilera, X; Silva, E; Oróstegui, M; Gómez, LF; Chirinos, JA; Medina-Lezama, J; Pérez, CM; Suárez, E; Ortiz, AP; Rosero, L; Schapochnik, N; Ortiz, Z; Ferrante, D; Diaz, M; Bautista, LE

    2009-01-01

    Background Cut points for defining obesity have been derived from mortality data among Whites from Europe and the United States and their accuracy to screen for high risk of coronary heart disease (CHD) in other ethnic groups has been questioned. Objective To compare the accuracy and to define ethnic and gender-specific optimal cut points for body mass index (BMI), waist circumference (WC) and waist-to-hip ratio (WHR) when they are used in screening for high risk of CHD in the Latin-American and the US populations. Methods We estimated the accuracy and optimal cut points for BMI, WC and WHR to screen for CHD risk in Latin Americans (n=18 976), non-Hispanic Whites (Whites; n=8956), non-Hispanic Blacks (Blacks; n=5205) and Hispanics (n=5803). High risk of CHD was defined as a 10-year risk ≥20% (Framingham equation). The area under the receiver operator characteristic curve (AUC) and the misclassification-cost term were used to assess accuracy and to identify optimal cut points. Results WHR had the highest AUC in all ethnic groups (from 0.75 to 0.82) and BMI had the lowest (from 0.50 to 0.59). Optimal cut point for BMI was similar across ethnic/gender groups (27 kg/m2). In women, cut points for WC (94 cm) and WHR (0.91) were consistent by ethnicity. In men, cut points for WC and WHR varied significantly with ethnicity: from 91 cm in Latin Americans to 102 cm in Whites, and from 0.94 in Latin Americans to 0.99 in Hispanics, respectively. Conclusion WHR is the most accurate anthropometric indicator to screen for high risk of CHD, whereas BMI is almost uninformative. The same BMI cut point should be used in all men and women. Unique cut points for WC and WHR should be used in all women, but ethnic-specific cut points seem warranted among men. PMID:19238159

  18. High Accuracy Investigation of Microwave Absorption in Polymer Electrical Components on Motherboard of Computers

    Science.gov (United States)

    Dašić, P.; Hutanu, C.; Jevremović, V.; Dobra, R.; Risteiu, M.; Ileana, I.

    2017-06-01

    Electronic operating at high frequencies can have problems with emission of high frequency noise. Once put inside an enclosure, the energy will add in phase at certain frequencies to cause resonances which will hinder the performance of the device. These absorbers are based upon open celled foam impregnated with a carbon coating. It is quite possible that in the near future, microprocessors would be to work on a frequency located in 5 to 10 GHz. In these circumstances it is useful to know how and how much of the electromagnetic field emitted by a microprocessor, it is absorbed by the circuit elements in the immediate vicinity of the microprocessor. The aim of this contribution is to demonstrate throughout high-level experimental analysis how the main electric parameters of polymer materials, which build the printed circuits and the one of electric capacitors and resistors, depend on the frequencies on which they work from the microwave range.

  19. Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability.

    Science.gov (United States)

    Barroso, L M A; Teodoro, P E; Nascimento, M; Torres, F E; Dos Santos, A; Corrêa, A M; Sagrilo, E; Corrêa, C C G; Silva, F A; Ceccon, G

    2016-03-11

    This study aimed to verify that a Bayesian approach could be used for the selection of upright cowpea genotypes with high adaptability and phenotypic stability, and the study also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 17 upright cowpea genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian approach was effective for selection of upright cowpea genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions.

  20. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    Science.gov (United States)

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  1. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    NARCIS (Netherlands)

    Van den Berg, S.A.; Van Eldik, S.; Bhattacharya, N.

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phas

  2. Novel method of high-accuracy wavefront-phase and amplitude correction for coronagraphy

    Science.gov (United States)

    Bowers, Charles W.; Woodgate, Bruce E.; Lyon, Richard G.

    2003-11-01

    Detection of extra-solar, and especially terrestrial-like planets, using coronagraphy requires an extremely high level of wavefront correction. For example, the study of Woodruff et al. (2002) has shown that phase uniformity of order 10-4λ(rms) must be achieved over the critical range of spatial frequencies to produce the ~1010 contrast needed for the Terrestrial Planet Finder (TPF) mission. Correction of wavefront phase errors to this level may be accomplished by using a very high precision deformable mirror (DM). However, not only phase but also amplitude uniformity of the same scale (~10-4) and over the same spatial frequency range must be simultaneously obtained to remove all residual speckle in the image plane. We present a design for producing simultaneous wavefront phase and amplitude uniformity to high levels from an input wavefront of lower quality. The design uses a dual Michelson interferometer arrangement incorporating two DM and a single, fixed mirror (all at pupils) and two beamsplitters: one with unequal (asymmetric) beam splitting and one with symmetric beam splitting. This design allows high precision correction of both phase and amplitude using DM with relatively coarse steps and permits a simple correction algorithm.

  3. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces

    Science.gov (United States)

    Zhang, Huiping; Oskin, Michael E.; Liu-Zeng, Jing; Zhang, Peizhen; Reiners, Peter W.; Xiao, Ping

    2016-09-01

    River incision into a widespread, upland low-relief landscape, and related patterns of exhumation recorded by low-temperature thermochronology, together underpin geodynamic interpretations for crustal thickening and uplift of the eastern Tibetan Plateau. We report results from a suite of 11 (U-Th-Sm)/He cooling-age samples. Eight samples comprise a 1.2 km relief section collected from elevations up to 4800 m in the Jiulong Shan, an elevated, rugged region located in the hinterland of the Yalong-Longmen Shan Thrust Belt, and surrounded on three sides by upland low-relief landscape surfaces. Zircon and apatite cooling ages record two episodes of rapid exhumation in the early Oligocene and late Miocene, that were separated by a period of stability from ∼30 to 15 Ma. The first episode is consistent with a similar pulse evident from the Longmen Shan. The second episode is ongoing, and when integrated with adjacent cooling-age data sets, shows that doming of the Jiulong Shan has resulted in 2 to 4 km of differential exhumation of the plateau interior. We show from a compilation of glacial landform-mapping that the elevation of the plateau surface closely tracks global last glacial maximum equilibrium line altitude. We hypothesize that smoothing of highlands by efficient glacial and periglacial erosion, coupled with potential river captures and conveyance of sediments via external drainage, can yield an apparently continuous low-relief plateau landscape formed diachronously at high elevation.

  4. Links between N deposition and nitrate export from a high-elevation watershed in the Colorado Front Range

    Science.gov (United States)

    Mast, M. Alisa; Clow, David W.; Baron, Jill S.; Wetherbee, Gregory A.

    2014-01-01

    Long-term patterns of stream nitrate export and atmospheric N deposition were evaluated over three decades in Loch Vale, a high-elevation watershed in the Colorado Front Range. Stream nitrate concentrations increased in the early 1990s, peaked in the mid-2000s, and have since declined by over 40%, coincident with trends in nitrogen oxide emissions over the past decade. Similarities in the timing and magnitude of N deposition provide evidence that stream chemistry is responding to changes in atmospheric deposition. The response to deposition was complicated by a drought in the early 2000s that enhanced N export for several years. Other possible explanations, including forest disturbance, snow depth, or permafrost melting, could not explain patterns in N export. Our results show that stream chemistry responds rapidly to changes in N deposition in high-elevation watersheds, similar to the response observed to changes in sulfur deposition.

  5. Impact of an Elevated Temperature Environment on Sn-Ag-Cu Interconnect Board Level High-G Mechanical Shock Performance

    Science.gov (United States)

    Lee, Tae-Kyu; Chen, Zhiqiang; Baty, Greg; Bieler, Thomas R.; Kim, Choong-Un

    2016-12-01

    The mechanical stability of Sn-Ag-Cu interconnects with low and high silver content against mechanical shock at room and elevated temperatures was investigated. With a heating element-embedded printed circuit board design, a test temperature from room temperature to 80°C was established. High impact shock tests were applied to isothermally pre-conditioned ball-grid array interconnects. Under cyclic shock testing, degradation and improved shock performances were identified associated with test temperature variation and non-solder mask defined and solder-mask defined pad design configuration differences. Different crack propagation paths were observed, induced by the effect of the elevated temperature test conditions and isothermal aging pre-conditions.

  6. High-accuracy alignment based on atmospherical dispersion - technological approaches and solutions for the dual-wavelength transmitter

    Energy Technology Data Exchange (ETDEWEB)

    Burkhard, Boeckem [Institute for Geodesy and Photogrammetry, ETH Zurich (Switzerland)

    1999-07-01

    In the course of the progressive developments of sophisticated geodetic systems utilizing electromagnetic waves in the visible or near IR-range a more detailed knowledge of the propagation medium and coevally solutions of atmospherically induced limitations will become important. An alignment system based on atmospherical dispersion, called a dispersometer, is a metrological solution to the atmospherically induced limitations, in optical alignment and direction observations of high accuracy. In the dispersometer we are using the dual-wavelength method for dispersive air to obtain refraction compensated angle measurements, the detrimental impact of atmospheric turbulence notwithstanding. The principle of the dual-wavelength method utilizes atmospherical dispersion, i.e. the wavelength dependence of the refractive index. The difference angle between two light beams of different wavelengths, which is called the dispersion angle {delta}{beta}, is to first approximation proportional to the refraction angle: {beta}{sub IR} {nu}({beta}{sub blue} - {beta}{sub IR}) = {nu} {delta}{beta}, this equation implies that the dispersion angle has to be measured at least 42 times more accurate than the desired accuracy of the refraction angle for the wavelengths used in the present dispersometer. This required accuracy constitutes one major difficulty for the instrumental performance in applying the dispersion effect. However, the dual-wavelength method can only be successfully used in an optimized transmitter-receiver combination. Beyond the above mentioned resolution requirement for the detector, major difficulties in instrumental realization arise in the availability of a suitable dual-wavelength laser light source, laser light modulation with a very high extinction ratio and coaxial emittance of mono-mode radiation at both wavelengths. Therefore, this paper focuses on the solutions of the dual-wavelength transmitter introducing a new hardware approach and a complete re-design of

  7. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen

    2009-01-01

    mapped to 1118 proteins, representatively covering the yeast kinome and a multitude of transcription factors. We show that a single false discovery rate for all peptide identifications significantly overestimates occurrence of rare modifications, such as tyrosine phosphorylation in yeast. The identified...... phosphorylation sites are predominantly located on irregularly structured and accessible protein regions. We found high evolutionary conservation of phosphorylated proteins and a large overlap of significantly over-represented motifs with the human phosphoproteome. Nevertheless, phosphorylation events at the site...... level were not highly conserved between yeast and higher eukaryotes, which points to metazoan-specific kinase and substrate families. We constructed a yeast-specific phosphorylation sites predictor on the basis of a support vector machine, which - together with the yeast phosphorylation data...

  8. High accuracy and precision micro injection moulding of thermoplastic elastomers micro ring production

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Elsborg, René

    2016-01-01

    of using tool geometries as reference calibrated artefacts to establish effective process technology development and control. The results allow identifying the correct process windows for optimal part quality reducing product dimensional variation in the micrometer dimensional range. The proposed......The mass-replication nature of the process calls for fast monitoring of process parameters and product geometrical characteristics. In this direction, the present study addresses the possibility to develop a micro manufacturing platform for micro assembly injection moulding with real-time process/product...... monitoring and metrology. The study represent a new concept yet to be developed with great potential for high precision mass-manufacturing of highly functional 3D multi-material (i.e. including metal/soft polymer) micro components. The activities related to HINMICO project objectives proves the importance...

  9. Challenges in high accuracy surface replication for micro optics and micro fluidics manufacture

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Calaon, Matteo;

    2014-01-01

    by replication technologies such as nickel electroplating. All replication steps are enabled by a high precision master and high reproduction fidelity to ensure that the functionalities associated with the design are transferred to the final component. Engineered surface micro structures can be either......Patterning the surface of polymer components with microstructured geometries is employed in optical and microfluidic applications. Mass fabrication of polymer micro structured products is enabled by replication technologies such as injection moulding. Micro structured tools are also produced...... distributed, e.g., to create an optical pattern, or discretised, e.g., as micro channels for fluids manipulation. Key aspects of two process chains based on replication technologies for both types of micro structures are investigated: lateral replication fidelity, dimensional control at micro scale, edge...

  10. Modelling and Control of Stepper Motors for High Accuracy Positioning Systems Used in Radioactive Environments

    OpenAIRE

    Picatoste Ruilope, Ricardo

    2014-01-01

    Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and pre...

  11. The Ultrasonic Piezo Drive an Innovative Solution for High-Accuracy Positioning

    OpenAIRE

    Seiler, René; Six, Marc; Debornot, Miguel; Le Letty, Ronan; CLAEYSSEN, Frank

    2002-01-01

    Piezo-electric motors have been successfully developed for various applications like autofocus drives in camera lenses and handling equipment for semiconductor production. Their high speed and accurate positioning capability, combined with a favourable holding torque in unpowered condition, make piezo motors also very attractive for actuation purposes in spacecraft mechanisms. However, so far only a few studies have been reported considering their suitability for actual use in space. Piezo mo...

  12. High-Accuracy Methods for Numerical Flow Analysis Using Adaptive Non-Linear Wavelets

    Science.gov (United States)

    2012-08-01

    to the research by Bacry, Mallat and Papanicolaou [10] or Holmström and Walden [11], AWGM solves PDE problems in a wavelet coefficient space. It is...of the threshold value, these variations are discarded and restricted by multiplying the weighting factor . This process can especially contribute the...weighting factor . This restriction technique enhances the convergence rate of steady state calculations. References [1] Harten A., “High

  13. High accuracy measure of atomic polarizability in an optical lattice clock

    OpenAIRE

    Sherman, J. A.; Lemke, N. D.; Hinkley, N.; Pizzocaro, M.; Fox, R. W.; Ludlow, A. D.; Oates, C. W.

    2011-01-01

    Despite being a canonical example of quantum mechanical perturbation theory, as well as one of the earliest observed spectroscopic shifts, the Stark effect contributes the largest source of uncertainty in a modern optical atomic clock through blackbody radiation. By employing an ultracold, trapped atomic ensemble and high stability optical clock, we characterize the quadratic Stark effect with unprecedented precision. We report the ytterbium optical clock's sensitivity to electric fields (suc...

  14. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array

    Directory of Open Access Journals (Sweden)

    Liang Hao

    2016-06-01

    Full Text Available In this study, we investigate the estimation of the Two-Dimensional (2D Direction Of Arrival (DOA in monostatic multiple-input–multiple-output radar with cross array and propose a novel, highly accurate DOA estimation method based on unitary transformation. First, we design a new unitary matrix using the central symmetry of a cross array at transmit and receive sites. Then, the rotational invariance relationships of these arrays with long and short baselines can be transformed into a real-value field via unitary transformation. In addition, non-ambiguous and highly accurate 2D DOA estimations can be obtained using a unitary dual-resolution ESPRIT algorithm. Simulations show that the proposed method can estimate 2D highly accurate spatial angles using automatic pairing without incurring the expense of array aperture and peak searching. Compared with traditional unitary transformation, the steering vectors of transmit and receive arrays can be transformed into real-value fields via the unitary matrix and the transformation method of our scheme, respectively. This effectively overcomes the problem of shift invariance factors in real-value fields that cannot be extracted using traditional algorithms. Therefore, the proposed method can absolutely compute eigenvalue decomposition and estimate parameters in a real-value field, resulting in lower computational complexity compared with traditional methods. Simulation results verify both the correctness of our theoretical analysis and the effectiveness of the proposed algorithm.

  15. High-degree atrioventricular block complicating ST-segment elevation myocardial infarction in the era of primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Gang, Uffe Jakob Ortved; Hvelplund, Anders; Pedersen, Sune

    2012-01-01

    Primary percutaneous coronary intervention (pPCI) has replaced thrombolysis as treatment-of-choice for ST-segment elevation myocardial infarction (STEMI). However, the incidence and prognostic significance of high-degree atrioventricular block (HAVB) in STEMI patients in the pPCI era has been only...... sparsely investigated. The objective of this study was to assess the incidence, predictors and prognostic significance of HAVB in STEMI patients treated with pPCI....

  16. Accuracy optimization of high-speed AFM measurements using Design of Experiments

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, F.; Hansen, Hans Nørgaard

    2010-01-01

    , the estimated dimensions of measured features. The definition of scan settings is based on a comprehensive optimization that targets maximization of information from collected data and minimization of measurement uncertainty and scan time. The Design of Experiments (DOE) technique is proposed and applied......Atomic Force Microscopy (AFM) is being increasingly employed in industrial micro/nano manufacturing applications and integrated into production lines. In order to achieve reliable process and product control at high measuring speed, instrument optimization is needed. Quantitative AFM measurement...

  17. Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems

    CERN Document Server

    Cieśliński, Jan L

    2011-01-01

    We present a class of non-standard numerical schemes which are modifications of the discrete gradient method. They preserve the energy integral exactly (up to the round-off error). The considered class contains locally exact discrete gradient schemes and integrators of arbitrary high order. In numerical experiments we compare our integrators with some other numerical schemes, including the standard discrete gradient method, the leap-frog scheme and a symplectic scheme of 4th order. We study the error accumulation for very long time and the conservation of the energy integral.

  18. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  19. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  20. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants.

    Science.gov (United States)

    Jagadish, S V Krishna; Bahuguna, Rajeev N; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P V Vara; Craufurd, Peter Q

    2016-01-01

    Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation.

  1. High accuracy indirect optical manipulation of live cells with functionalized microtools

    Science.gov (United States)

    Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd

    2016-09-01

    Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.

  2. Automated high-accuracy mutation screening with the WAVE nucleic acid fragment analysis system

    Science.gov (United States)

    Hecker, Karl H.

    2002-06-01

    The analysis of DNA fragments by ion-pair reversed-phase high-performance liquid chromatography on an alkylated, nonporous poly(styrene-divinylbenzene) matrix (DNA Cartridge) using the WAVE Nucleic Acid Fragment Analysis System is a powerful and versatile tool for DNA analysis. Resolution of DNA fragments is based on two principles, size-dependent retention of double-stranded (ds) DNA and differential retention of ds vs. single-stranded (ss) DNA. Temperature Modulated Heteroduplex Analysis utilizes both principles of separation to detect single nucleotide polymorphisms (SNP) and short insertions/deletions. At a given temperature the difference in the melting between homo- and heteroduplexes is revealed by differences in retention times. The temperature at which differential melting occurs is sequence dependent and is predicated accurately using either WAVEMAKER or WAVE Navigator software, which use a modified Fixman-Friere algorithm. Detection of known and unknown sequence variations can be performed on DNA fragments of up to 1,000 base pairs with high sensitivity and specificity. The use of fluorescent labels is compatible with the technology and increases sensitivity. Retention times are increased and resolution is not affected. Fluorescent labeling significantly increases sensitivity.

  3. High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keiko, E-mail: fujii-keiko-nv@ynu.jp [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Endo, Yuya; Torigoe, Yui; Nakamura, Shogo [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Haruyama, Tomiyoshi; Kasami, Katsuyu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Mihara, Satoshi; Saito, Kiwamu; Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); The Graduate School of Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Tawara, Hiroko [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2015-09-21

    The emission spectrum of cryogenic liquid xenon in the vacuum ultraviolet region was measured by irradiating liquid xenon with gamma-rays from a radioactive source. To achieve a high signal-to-noise ratio, we employed coincident photon counting. Additionally, the charge of the photo-sensor signals was measured to estimate the number of detected photons accurately. In addition, proper corrections were incorporated for the wavelength; response functions of the apparatus obtained using a low-pressure mercury lamp, and photon detection efficiencies of the optical system were considered. The obtained emission spectrum is found to be in the shape of a Gaussian function, with the center at 57,199±34 (stat.)±33 (syst.) cm{sup −1} (174.8±0.1 (stat.)±0.1 (syst.) nm) and the full width at half maximum of 3328±72 (stat.)±65 (syst.) cm{sup −1} (10.2±0.2 (stat.)±0.2 (sys.) nm). These results are the most accurate values obtained in terms of the data acquisition method and the calibration for the experimental system and provide valuable information regarding the high-precision instruments that employ a liquid-xenon scintillator.

  4. Modelling and Control of Stepper Motors for High Accuracy Positioning Systems Used in Radioactive Environments

    CERN Document Server

    Picatoste Ruilope, Ricardo; Masi, Alessandro

    Hybrid Stepper Motors are widely used in open-loop position applications. They are the choice of actuation for the collimators in the Large Hadron Collider, the largest particle accelerator at CERN. In this case the positioning requirements and the highly radioactive operating environment are unique. The latter forces both the use of long cables to connect the motors to the drives which act as transmission lines and also prevents the use of standard position sensors. However, reliable and precise operation of the collimators is critical for the machine, requiring the prevention of step loss in the motors and maintenance to be foreseen in case of mechanical degradation. In order to make the above possible, an approach is proposed for the application of an Extended Kalman Filter to a sensorless stepper motor drive, when the motor is separated from its drive by long cables. When the long cables and high frequency pulse width modulated control voltage signals are used together, the electrical signals difer greatl...

  5. Recent Shift of Deforestation to High Elevation Areas from 2001 to 2013 in Borneo Detected by MODIS Data

    Science.gov (United States)

    Nagai, S.; Suzuki, R.

    2015-12-01

    The biomass of tropical forests sequestrates tons of carbon and plays an important role in the global carbon cycle regulating the climate. Also its high biodiversity ecosystems bring us many valuable resources and cultural and educational ecosystem services. However, large areas of the tropical forest are deforested and converted to oil palm or acacia plantation for the economic benefit of the local society mainly in Southeast Asia. Monitoring of the tropical forest from satellites provides us the information about the deforestation for decadal time period over extensive areas and enables us to discuss it from a scientific point of view. The purpose of this study is to reveal the interannual change and recent trend of deforestation in relation to the land elevation for decadal time period over Borneo by using data from Moderate Resolution Imaging Spectroradiometer (MODIS). We acquired the atmospherically corrected and cloud free Terra-MODIS and Aqua-MODIS daily data products (MOD09GA and MYD09GA; collection 5) from 2001 to 2013 for Borneo. We extracted the pixel values in the 500m surface reflectance bands 1 (red) and 4 (green) products and calculated the green-red vegetation index (GRVI), (band 4 - band 1) / (band 4 + band 1), at a daily time step. GRVI shows a positive value for the land prevailed by green vegetation, while it shows a negative value for the land prevailed by no-green components such as bare land. As for the elevation data, ASTER Global Digital Elevation Model (GDEM) which has 33.3m spatial resolution was employed. The original resolution was resampled to the grid system of MODIS data (i.e. 500m resolution). Pixels which had a negative GRVI ratio more than 80 % (termed as "no green pixel") in each year were regarded as the land characterized by no vegetation, and mapped the distribution for each year. Throughout the 13 years, no green pixels mainly found over the coastal low land below 20m of the elevation and the area was almost constant (around

  6. Determination of the QCD Λ Parameter and the Accuracy of Perturbation Theory at High Energies.

    Science.gov (United States)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-10-28

    We discuss the determination of the strong coupling α_{MS[over ¯]}(m_{Z}) or, equivalently, the QCD Λ parameter. Its determination requires the use of perturbation theory in α_{s}(μ) in some scheme s and at some energy scale μ. The higher the scale μ, the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ parameter in three-flavor QCD, we perform lattice computations in a scheme that allows us to nonperturbatively reach very high energies, corresponding to α_{s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a 3% error in the Λ parameter, while data around α_{s}≈0.2 are clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  7. A magnetic bearing momentum wheel for high pointing accuracy and vibration sensitive space applications

    Science.gov (United States)

    Bichler, U. J.

    The paper describes a magnetic bearing momentum wheel (MW-X) theoretically and experimentally with attention given to its low-noise application to spacecraft attitude-control systems. The MW-X gyroscopic actuator comprises a rotor, emergency bearings, a locking mechanisms, and a drive motor, and Vernier gimballing is employed so that the rotor and the momentum vector can be tilted actively with about one degree. The MW-X utilizes a suspension-control system for noise attenuation and active vibration suppression to reduce noise from the sensor surface. The actively controlled magnetic bearing wheels are shown to provide active damping of flexible structures by means of fully controllable translational bearing forces. The MW-X devices are of interest for applications to optical communications links, space telescopes, and earth-observation satellites with high resolutions.

  8. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    Science.gov (United States)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  9. Ultraviolet Raman lidar for high-accuracy profiling of aerosol extinction coefficient

    Institute of Scientific and Technical Information of China (English)

    Fei Gao; Xiaoquan Song; Yufeng Wang; Yi Zhou; Dengxin Hua

    2009-01-01

    An ultraviolet (UV) Raman lidar system at 354.7 nm has been developed for accurately measuring the aerosol extinction profiles. A spectroscopic filter combining a high-spectral-resolution grating with two narrowband mirrors is used to separate the vibrational Raman scattering signal of N2 at a central wave-length of 386.7 nm and the elastic scattering signal at 354.7 nm. The aerosol extinction is derived from the Raman scattering of N2 and the elastic scattering by the use of Raman method and Klett method, respectively. The derived results of aerosol extinction are used to compare the difference of two retrieval methods, and the preliminary experiment shows that the Raman lidar system operated in analog detection mode has the capability of measuring aerosol profiles up to a height of 3 km with a laser energy of 250 mJ and an integration time of 8 min.

  10. High Accuracy Tracking of Space-Borne Non-Cooperative Targets

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang

    for the spacecraft to navigate safely and autonomously towards the target. These methods are applied on three distinct study cases, which are based on the platform of the microASC instrument. In relation to the Mars2020 rover, a structured light system is used to navigate the PIXL instrument towards the Martian...... the surface and to enhance the PIXL instrument's capabilities with highly accurate distance measurements. Optical observations of planetary bodies and satellites are utilized to determine the inertial position of a spacecraft. A software module is developed, tested and verified by both ground based and in......-ight observations, where the performanceover the complete operational envelope is characterized by simulations. The in-flight observations were captured onboard Juno, during the Earth flyby, by the microASC instrument, operating as an inertially controlled imager. The involvement in Juno's Earth Fly By operational...

  11. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Directory of Open Access Journals (Sweden)

    C. W. Rella

    2012-08-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gas in the well-mixed atmosphere have required extremely dry sample gas streams (dew point < −25 °C to achieve the inter-laboratory compatibility goals set forth by the Global Atmospheric Watch program of the World Meteorological Organization (WMO/GAW for carbon dioxide (±0.1 ppm and methane (±2 ppb. Drying the sample gas to low levels of water vapor can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular Cavity Ring Down Spectroscopy (CRDS, have led to the development of highly stable and precise greenhouse gas analyzers capable of highly accurate measurements of carbon dioxide, methane, and water vapor. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapor, these instruments permit for the first time accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapor correction factors, and we summarize a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterized dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to at least 1% water vapor. By determining the correction factors for individual instruments once at the start of life, this range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended above 4%.

  12. Indexing Large Visual Vocabulary by Randomized Dimensions Hashing for High Quantization Accuracy: Improving the Object Retrieval Quality

    Science.gov (United States)

    Yang, Heng; Wang, Qing; He, Zhoucan

    The bag-of-visual-words approach, inspired by text retrieval methods, has proven successful in achieving high performance in object retrieval on large-scale databases. A key step of these methods is the quantization stage which maps the high-dimensional image feature vectors to discriminatory visual words. In this paper, we consider the quantization step as the nearest neighbor search in large visual vocabulary, and thus proposed a randomized dimensions hashing (RDH) algorithm to efficiently index and search the large visual vocabulary. The experimental results have demonstrated that the proposed algorithm can effectively increase the quantization accuracy compared to the vocabulary tree based methods which represent the state-of-the-art. Consequently, the object retrieval performance can be significantly improved by our method in the large-scale database.

  13. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    Science.gov (United States)

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently.

  14. Hybrid single-packet IP traceback with low storage and high accuracy.

    Science.gov (United States)

    Yang, Ming Hour

    2014-01-01

    Traceback schemes have been proposed to trace the sources of attacks that usually hide by spoofing their IP addresses. Among these methods, schemes using packet logging can achieve single-packet traceback. But packet logging demands high storage on routers and therefore makes IP traceback impractical. For lower storage requirement, packet logging and packet marking are fused to make hybrid single-packet IP traceback. Despite such attempts, their storage still increases with packet numbers. That is why RIHT bounds its storage with path numbers to guarantee low storage. RIHT uses IP header's ID and offset fields to mark packets, so it inevitably suffers from fragment and drop issues for its packet reassembly. Although the 16-bit hybrid IP traceback schemes, for example, MORE, can mitigate the fragment problem, their storage requirement grows up with packet numbers. To solve the storage and fragment problems in one shot, we propose a single-packet IP traceback scheme that only uses packets' ID field for marking. Our major contributions are as follows: (1) our fragmented packets with tracing marks can be reassembled; (2) our storage is not affected by packet numbers; (3) it is the first hybrid single-packet IP traceback scheme to achieve zero false positive and zero false negative rates.

  15. High-accuracy acoustic detection of nonclassical component of material nonlinearity.

    Science.gov (United States)

    Haupert, Sylvain; Renaud, Guillaume; Rivière, Jacques; Talmant, Maryline; Johnson, Paul A; Laugier, Pascal

    2011-11-01

    The aim is to assess the nonclassical component of material nonlinearity in several classes of materials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized nonlinear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to small samples is described. The protocol is used to overcome the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic nonlinearity. External temperature fluctuation is identified as a primary source of measurement contamination. For instance, a variation of 0.1 °C produced a frequency variation of 0.01%, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environmental effects, the reference frequency measurements are repeated before each excitation level and then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts of 10(-5) can be measured, which is below the limit of 10(-4) often considered as the limit of NRUS sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the correction procedure applied in this work, nonclassical nonlinearity in materials that before have been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported.

  16. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2016-04-15

    We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  17. Temporal Stability of the Velodyne HDL-64E S2 Scanner for High Accuracy Scanning Applications

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2011-03-01

    Full Text Available The temporal stability and static calibration and analysis of the Velodyne HDL‑64E S2 scanning LiDAR system is discussed and analyzed. The mathematical model for measurements for the HDL-64E S2 scanner is updated to include misalignments between the angular encoder and scanner axis of rotation, which are found to be a marginally significant source of error. It is reported that the horizontal and vertical laser offsets cannot reliably be obtained with the current calibration model due to their high correlation with the horizontal and vertical offsets. By analyzing observations from two separate HDL-64E S2 scanners it was found that the temporal stability of the horizontal angle offset is near the quantization level of the encoder, but the vertical angular offset, distance offset and distance scale are slightly larger than expected. This is felt to be due to long term variations in the scanner range, whose root cause is as of yet unidentified. Nevertheless, a temporally averaged calibration dataset for each of the scanners resulted in a 25% improvement in the 3D planar misclosure residual RMSE over the standard factory calibration model.

  18. High-accuracy local positioning network for the alignment of the Mu2e experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Hejdukova, Jana B. [Czech Technical Univ., Prague (Czech Republic)

    2017-06-01

    This Diploma thesis describes the establishment of a high-precision local positioning network and accelerator alignment for the Mu2e physics experiment. The process of establishing new network consists of few steps: design of the network, pre-analysis, installation works, measurements of the network and making adjustments. Adjustments were performed using two approaches. First is a geodetic approach of taking into account the Earth’s curvature and the metrological approach of a pure 3D Cartesian system on the other side. The comparison of those two approaches is performed and evaluated in the results and compared with expected differences. The effect of the Earth’s curvature was found to be significant for this kind of network and should not be neglected. The measurements were obtained with Absolute Tracker AT401, leveling instrument Leica DNA03 and gyrotheodolite DMT Gyromat 2000. The coordinates of the points of the reference network were determined by the Least Square Meth od and the overall view is attached as Annexes.

  19. High-accuracy, high-precision, high-resolution, continuous monitoring of urban greenhouse gas emissions? Results to date from INFLUX

    Science.gov (United States)

    Davis, K. J.; Brewer, A.; Cambaliza, M. O. L.; Deng, A.; Hardesty, M.; Gurney, K. R.; Heimburger, A. M. F.; Karion, A.; Lauvaux, T.; Lopez-Coto, I.; McKain, K.; Miles, N. L.; Patarasuk, R.; Prasad, K.; Razlivanov, I. N.; Richardson, S.; Sarmiento, D. P.; Shepson, P. B.; Sweeney, C.; Turnbull, J. C.; Whetstone, J. R.; Wu, K.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) is testing the boundaries of our ability to use atmospheric measurements to quantify urban greenhouse gas (GHG) emissions. The project brings together inventory assessments, tower-based and aircraft-based atmospheric measurements, and atmospheric modeling to provide high-accuracy, high-resolution, continuous monitoring of emissions of GHGs from the city. Results to date include a multi-year record of tower and aircraft based measurements of the urban CO2 and CH4 signal, long-term atmospheric modeling of GHG transport, and emission estimates for both CO2 and CH4 based on both tower and aircraft measurements. We will present these emissions estimates, the uncertainties in each, and our assessment of the primary needs for improvements in these emissions estimates. We will also present ongoing efforts to improve our understanding of atmospheric transport and background atmospheric GHG mole fractions, and to disaggregate GHG sources (e.g. biogenic vs. fossil fuel CO2 fluxes), topics that promise significant improvement in urban GHG emissions estimates.

  20. Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A total of 14 surface snow (0-10 cm) samples were collected along the climbing route (6500-8844 m a.s.l.) on the northern slope of Mt. Qomolangma in May, 2005. Analysis of elemental concentrations in these samples showed that there are no clear trends for element variations with elevation due to redistribution of surface snow by strong winds during spring. In addition, local crustal aerosol inputs also have an influence on elemental composition of surface snow. Comparison between elemental concentration datasets of 2005 and 1997 indicated that data from 2005 were of higher quality. Elemental concentrations (especially for heavy metals) at Mt. Qomolangma are comparable with polar sites, and far lower than large cities. This indicates that anthropogenic activities and heavy metal pollution have little effect on the Mt. Qomolangma atmospheric environment, which can be representative of the background atmospheric environment.

  1. Mesophyll conductance and leaf carbon isotope composition of two high elevation conifers along an altitudinal gradient

    Science.gov (United States)

    Guo, J.; Beverly, D.; Cook, C.; Ewers, B.; Williams, D. G.

    2016-12-01

    Carbon isotope ratio values (δ13C) of conifer leaf material generally increases with elevation, potentially reflecting decreases in the leaf internal to ambient CO2 concentration ratio (Ci/Ca) during photosynthesis. Reduced stomatal conductance or increased carboxylation capacity with increasing elevation could account for these patterns. But some studies reported conifers δ13C increased with altitude consistently, but Ci/Ca did not significantly decrease and leaf nitrogen content remained constant with increasing of altitude in Central Rockies. Variation in leaf mesophyll conductance to CO2 diffusion, which influences leaf δ13C independently of effects related to stomatal conductance and carboxylation demand, might reconcile these conflicting observations. Leaf mass per unit area (LMA) increases with altitude and often correlates with δ13C and mesophyll conductance. Therefore, we hypothesized that increases in δ13C of conifers with altitude are controlled mainly by changes in mesophyll conductance. To test this hypothesis, leaf δ13C, photosynthetic capacity, leaf nitrogen content, LMA, and mesophyll conductance were determined on leaves of two dominant conifers (Pinus contorta and Picea engelmannii) along a 90-km transect in SE Wyoming at altitudes ranging from 2400 to 3200 m above sea level. Mesophyll conductance was determined by on-line 13C discrimination using isotope laser spectroscopy. We expected to observe relatively small differences in stomatal conductance and decreases in mesophyll conductance from lower and higher altitude sites. Such a pattern would have important implications for how differences in leaf δ13C values across altitude are interpreted in relation to forest water use and productivity from scaling of leaf-level water-use efficiency.

  2. Rediscovery and uncertain future of high-elevation Haleakala carabid beetles (Coleoptera)

    Science.gov (United States)

    Krushelnycky, Paul D.; Gillespie, Rosemary G.; Loope, Lloyd L.; Liebherr, James K.

    2005-01-01

    Recent biotic surveys in subalpine shrubland on Haleakala¯ Volcano, Maui, Hawai‘i, have resulted in rediscovery of several species of carabid beetles previously known only from their nineteenth-century type specimens. Blackburnia lenta (Sharp), described from specimens collected just below Haleakala¯ summit in 1894, was found at lower elevational sites ranging from 2,400 to 2,750 m. Mecyclothorax rusticus Sharp, last seen in 1896, and M. nubicola (Blackburn), collected only in 1878, were also rediscovered in that vicinity. Recent collections of B. lenta contradict the U.S. Fish and Wildlife Service’s previous classification of this species as one likely to be extinct. Nevertheless, B. lenta’s known distribution comprises only 145 ha within an elevational zone that is bounded above and below by unicolonial populations of the invasive alien Argentine ant, Linepithema humile (Mayr). The known recent collections of M. rusticus and M. nubicola also occurred outside the distributional range of the Argentine ant. Mature eggs held in the lateral oviducts of B. lenta females averaged 1.4 the volume of the largest eggs previously reported among 13 species of Blackburnia. We hypothesize that the giant eggs of B. lenta result from selective forces favoring large, well-nourished developing and hatched first-instar larvae, consistent with a patchy distribution of suitable microhabitat and prey in the subalpine Haleakala¯ landscape. The specialized life history of B. lenta, and coincidence of distributional limits of the three rediscovered carabid species with range limits of the Argentine ant populations suggest that all would be jeopardized by future distributional expansion of Argentine ant. These intersecting phenomena compel us to conclude that B. lenta, M. nubicola, and M. rusticus are appropriate candidates for I.U.C.N. threatened species designation, pending further studies of their geographic ranges and historical trends in abundance.

  3. Analysis of bromotryptophan and hydroxyproline modifications by high-resolution, high-accuracy precursor ion scanning utilizing fragment ions with mass-deficient mass tags.

    Science.gov (United States)

    Steen, Hanno; Mann, Matthias

    2002-12-15

    Protein modifications are often detected by precursor ion scanning. When quadrupole TOF mass spectrometers are used for precursor ion scanning with high-resolution, high-accuracy fragment ion selection, "reporter" ions are required to have a unique mass within +/-0.04 Da or less instead of +/-0.5 Da on triple quadrupole mass spectrometers, the traditional instrument used for precursor ion scanning. Thus, characteristic fragment ions can be utilized even if other fragment ions have the same nominal mass as long as the characteristic fragment ions are slightly mass deficient as compared to the other fragments, i.e., when they have an inherent mass-deficient mass tag. Here, the immonium ions of bromotryptophan and hydroxyproline are described as two fragment ions characteristic for tryptophan-brominated and proline-hydroxylated peptides, respectively. The "reporter" ion of trytophan-brominated peptides is highly mass deficient due to the presence of bromine, thereby allowing the selective detection of these species and the distinction from other dipeptidic a-, b-, and y-fragment ions by high-resolution, high-accuracy precursor ion scanning. This strategy also enables the differentiation between precursors giving rise to the oxygen-containing immonium ion of hydroxyproline and precursors of the immonium ions of near-ubiquitous leucine/isoleucine. Both immonium ions have the same nominal mass of 86 Da, but the exact masses differ by less than 0.04 Da. High-resolution, high-accuracy precursor ion scanning enabled the identification of proline-hydroxylated and tryptophan-brominated species and the directed analysis of species carrying these modifications in a highly complex Conus textile conotoxin mixture. This lead to the characterization of one novel C. textile conotoxin containing a bromotryptophan residue and one novel C. textile conotoxin carrying two hydroxyproline residues.

  4. Real-time integration of a tactical-grade IMU and GPS for high-accuracy positioning and navigation

    Science.gov (United States)

    Petovello, Mark G.

    2003-10-01

    The integration of the Global Positioning System (CPS) and Inertial Navigation Systems (INSs) is often used to provide accurate positioning and navigation information. For applications requiring the highest accuracy, the quality of the inertial sensors required is usually assumed to be very high. This dissertation investigates the integration of CPS with a tactical-grade Inertial Measurement Unit (IMU) for centimetre-level navigation in real-time. Different GPS/INS integration strategies are investigated to assess their relative performance in terms of position and velocity accuracy during partial and complete data outages, carrier phase ambiguity resolution after such data outages, and the overall statistical reliability of the system. In terms of statistical reliability, the traditional equations used in dynamic systems are redeveloped in light of some practical considerations, including centralized and decentralized filter architectures, and sequential versus simultaneous measurement updating. Results show that the integrated solution outperforms the GPS-only approach in all areas. The difference between loose and tight integration strategies was most significant for ambiguity resolution and system reliability. The integrated solution is capable of providing decimetre-level accuracy or better for durations of about five or ten seconds when a complete or partial CPS outage is simulated. This level of accuracy, extended over longer time intervals, is shown to reduce the time required to resolve the L1 ambiguities by an average of about 50% or more for data outages as long as 30 seconds when using a tight integration strategy. More importantly, the reliability of the ambiguity resolution process is improved with the integrated system. Statistical reliability parameters are also dramatically better when using the integrated system with the ability of detecting a single-cycle cycle slip being better and more consistent, relative to GPS-only. The effect of undetected

  5. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF

    OpenAIRE

    Moy, Gregory A.; McNay, Ewan C.

    2012-01-01

    Obesity, high-fat diets, and subsequent type 2 diabetes (T2DM) are associated with cognitive impairment. Moreover, T2DM increases the risk of Alzheimer’s disease (AD) and leads to abnormal elevation of brain beta-amyloid levels, one of the hallmarks of AD. The psychoactive alkaloid caffeine has been shown to have therapeutic potential in AD but the central impact of caffeine has not been well-studied in the context of a high-fat diet. Here we investigated the impact of caffeine administration...

  6. Numerical modelling of ground vibration caused by elevated high-speed railway lines considering structure-soil-structure interaction

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Andersen, Lars Vabbersgaard; Persson, Kent

    2016-01-01

    Construction of high speed railway lines has been an increasing trend in recent years. Countries like Denmark and Sweden plan to expand and upgrade their railways to accommodate high-speed traffic. To benefit from the full potential of the reduced commuting times, these lines must pass through...... densely populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge structure. The proposed model employs finite-element analysis to model...

  7. A new TEC interpolation method based on the least squares collocation for high accuracy regional ionospheric maps

    Science.gov (United States)

    Krypiak-Gregorczyk, Anna; Wielgosz, Paweł; Jarmołowski, Wojciech

    2017-04-01

    The ionosphere plays a crucial role in space weather that affects satellite navigation as the ionospheric delay is one of the major errors in GNSS. On the other hand, GNSS observations are widely used to determine the amount of ionospheric total electron content (TEC). An important aspect in the electron content estimation at regional and global scale is adopting the appropriate interpolation strategy. In this paper we propose and validate a new method for regional TEC modeling based on least squares collocation (LSC) with noise variance estimation. This method allows for providing accurate TEC maps with high spatial and temporal resolution. Such maps may be used to support precise GNSS positioning and navigation, e.g. in RTK mode and also in the ionosphere studies. To test applicability of new TEC maps to positioning, double-difference ionospheric corrections were derived from the maps and their accuracy was analyzed. In addition, the corrections were applied to GNSS positioning and validated in ambiguity resolution domain. The tests were carried out during a strong ionospheric storm when the ionosphere is particularly difficult to model. The performance of the new approach was compared to IGS and UPC global, and CODE regional TEC maps. The results showed an advantage of our solution with resulting accuracy of the relative ionospheric corrections usually better than 10 cm, even during the ionospheric disturbances. This proves suitability of our regional TEC maps for, e.g. supporting fast ambiguity resolution in kinematic GNSS positioning.

  8. High-resolution spectroscopy of gases at elevated temperatures for industrial applications

    DEFF Research Database (Denmark)

    development of existing and developing new databases. Measurements should be performed at well-controlled conditions in a highly temperature uniform heated gas cell with a high-resolution spectrometer. In this work some high-temperature, high-resolution IR absorption/transmission measurements gases relevant...

  9. High-resolution digital elevation model of Mount St. Helens crater and upper North Fork Toutle River basin, Washington, based on an airborne lidar survey of September 2009

    Science.gov (United States)

    Mosbrucker, Adam

    2014-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last

  10. High-resolution digital elevation model of lower Cowlitz and Toutle Rivers, adjacent to Mount St. Helens, Washington, based on an airborne lidar survey of October 2007

    Science.gov (United States)

    Mosbrucker, Adam

    2015-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the Toutle River basin, which drains the northern and western flanks of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and lower Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, continues to monitor and mitigate excess sediment in North and South Fork Toutle River basins to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From October 22–27, 2007, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 273 square kilometers (105 square miles) of lower Cowlitz and Toutle River tributaries from the Columbia River at Kelso, Washington, to upper North Fork Toutle River (below the volcano's edifice), including lower South Fork Toutle River. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at

  11. Location accuracy evaluation of lightning location systems using natural lightning flashes recorded by a network of high-speed cameras

    Science.gov (United States)

    Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.

    2014-12-01

    This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.

  12. Genesis of high-Mg andesites through shallow fractionation of primitive arc basalts at elevated oxygen fugacities

    Science.gov (United States)

    Zellmer, G. F.; Shellnutt, J. G.

    2009-12-01

    The petrogenesis of high-Mg andesites has been linked to a variety of processes, including partial melting of hydrous mantle peridotite, re-equilibration of partial melts of the subducting slab with the mantle wedge, and assimilation of lower crustal cumulates into dacitic melts. Yet none of these processes can explain the recently identified association of adakitic andesites, many of which are high-Mg andesites, with regions of elevated surface heat flux that are likely related to unusually shallow magma ponding levels in the upper crust (Zellmer, 2009). Using MELTS modeling, we demonstrate here that at high oxygen fugacities (NNO+2, which based on whole-rock Fe3+/Fe2+ ratios is appropriate for the Western and Central Aleutians, the Trans-Mexican Volcanic Belt, and the Setouchi Volcanic Belt), shallow crustal pressures (0.7 kbar), and initial H2O contents between 0.5 and 4 wt%, iron-magnesium spinel will be fractionated from primitive arc basalts, producing andesitic residual melts with elevated Mg#. Subsequent assimilation of a few percent of autocrystic mafic phases makes typical high-Mg andesites with forsteritic olivines. Orthopyroxenes in equilibrium with these melts are Cr-rich due to increased uptake of Cr into orthopyroxene (Dopx/lq≥25) at lower temperatures (≤1130°C) and elevated oxygen fugacities (NNO+2). While arc magmas with high initial H2O contents will undergo early degassing induced crystallization and viscous stagnation, lower primary melt H2O contents will result in delayed crystallization and shallower magma ponding levels, accounting for elevated surface heat flux. Our findings are therefore consistent with the location of many high-Mg andesites in areas of high surface heat flux, and challenge the commonly accepted notion that these compositions are particularly hydrous primary melts generated in equilibrium with mantle peridotite. Reference: Zellmer G.F. (2009) Petrogenesis of Sr-rich adakitic rocks at volcanic arcs: insights from global

  13. Quantifying seasonal volume of groundwater in high elevation meadows: Implications for complex aquifer geometry in a changing climate

    Science.gov (United States)

    Ciruzzi, Dominick M.

    The hydrologic impacts of rising global temperatures are severe and imminent particularly in snow-dominated regions. In the western United States, high elevation meadows are among the ecosystems highly sensitive to climate change. High elevation meadows are groundwater dependent ecosystems and rely on seasonal snowpack melt in order to support ecologic function and baseflow to streams. This stream flow in turn supplies an estimated 2.6 million San Francisco residents with water. Once the snow melts and recharges the aquifer, groundwater supports vegetation separate from the surrounding hillslopes, which promotes important ecologic functions like flood regulation and nutrient cycling. Groundwater also supports baseflow to perennial rivers late into the summer months transferring this snowmelt to downstream ecologic and human communities. By 2100 snowpack accumulation in the Sierra Nevada is expected to decrease by ~40-90% due to near-surface temperature rise. Though precipitation intensity is not expected to change, a decrease in snowpack will change the timing and magnitude of groundwater recharge necessary to sustain high elevation meadows. An additional climate-driven shift and decrease in peak stream flow to early spring away from summer when demand is highest puts into question ecosystem survivability and water supply to downstream users. Here, a new quantitative framework is presented to lay the foundation for the widespread identification of vulnerabilities in high elevation meadows due to climate change. This research proposed and tested a new conceptual model for the volume of groundwater stored in high elevation meadows similar to that of a reservoir with active and dead storage. The seasonal fluctuations in active storage, which is defined as the volume of groundwater able to exchange between the aquifer, streams, and vegetation, are thought to be highly sensitive to aquifer parameters, such as bedrock geometry, meadow gradient, and hydraulic conductivity

  14. Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly?

    Science.gov (United States)

    Damialis, Athanasios; Kaimakamis, Evangelos; Konoglou, Maria; Akritidis, Ioannis; Traidl-Hoffmann, Claudia; Gioulekas, Dimitrios

    2017-03-01

    Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities’ fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

  15. Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2010-06-01

    Full Text Available The static calibration and analysis of the Velodyne HDL-64E S2 scanning LiDAR system is presented and analyzed. The mathematical model for measurements for the HDL-64E S2 scanner is derived and discussed. A planar feature based least squares adjustment approach is presented and utilized in a minimally constrained network in order to derive an optimal solution for the laser’s internal calibration parameters. Finally, the results of the adjustment along with a detailed examination of the adjustment residuals are given. A three-fold improvement in the planar misclosure residual RMSE over the standard factory calibration model was achieved by the proposed calibration. Results also suggest that there may still be some unmodelled distortions in the range measurements from the scanner. However, despite this, the overall precision of the adjusted laser scanner data appears to make it a viable choice for high accuracy mobile scanning applications.

  16. High-accuracy measurements of snow Bidirectional Reflectance Distribution Function at visible and NIR wavelengths – comparison with modelling results

    Directory of Open Access Journals (Sweden)

    Y. Arnaud

    2009-09-01

    Full Text Available High-accuracy measurements of snow Bidirectional Reflectance Distribution Function (BRDF were performed for four natural snow samples with a spectrogonio-radiometer in the 500–2600 nm wavelength range. These measurements are one of the first set of direct snow BRDF values over a wide range of lighting and viewing geometry. They were compared to BRDF calculated with two optical models. Variations of the snow anisotropy factor with lighting geometry, wavelength and snow physical properties were investigated. Results show that at